WO2006040319A1 - Process to prepare a haze free base oil - Google Patents

Process to prepare a haze free base oil Download PDF

Info

Publication number
WO2006040319A1
WO2006040319A1 PCT/EP2005/055157 EP2005055157W WO2006040319A1 WO 2006040319 A1 WO2006040319 A1 WO 2006040319A1 EP 2005055157 W EP2005055157 W EP 2005055157W WO 2006040319 A1 WO2006040319 A1 WO 2006040319A1
Authority
WO
WIPO (PCT)
Prior art keywords
base oil
fraction
cloud point
fischer
heavy
Prior art date
Application number
PCT/EP2005/055157
Other languages
French (fr)
Inventor
Paulus Theodorus Maria Van Brugge
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to JP2007535183A priority Critical patent/JP2008516035A/en
Priority to EP05792010A priority patent/EP1812538A1/en
Priority to US11/664,952 priority patent/US20090020485A1/en
Publication of WO2006040319A1 publication Critical patent/WO2006040319A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/065Saturated Compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/60Electro rheological properties

Definitions

  • the invention is related to a process to reduce haze precursors from a lubricating base oil.
  • Background of the invention WO-A-02070627 describes a process to prepare a base oil having a kinematic viscosity at 100 0 C of 22.9 cSt and a pour point of +9 0 C and a viscosity index of 178.
  • the process involves the hydroisomerisation of a Fischer- Tropsch synthesis product boiling from C5 up to 750 0 C. From the effluent of the hydroisomerisation a distillation residue boiling above 370 0 C was isolated and catalytically dewaxed.
  • WO-A-2004007647 describes a process to prepare a heavy base oil from a Fischer-Tropsch derived wax. The process involves the hydroisomerisation of a Fischer-Tropsch synthesis product boiling from C5 up to
  • An advantage of the process of WO-A-02070627 or WO-A-2004007647 is that base oils are obtained having a high viscosity and a high viscosity index.
  • a problem is that when the base oils are obtained by means of a catalytic dewaxing step haze precursors causing haze may be present in the base oils. This makes the base oil less suitable for certain applications.
  • WO-A-03033622 describes a process to prepare a low haze heavy base oil from a Fischer-Tropsch derived wax by isolating by means of deep cut distillation a fraction boiling between 1000 and 1200 0 F (538 and 649 0 C) and a residue boiling above 1200 0 F.
  • the fraction boiling between 1000 and 1200 0 F is subjected to a hydroisomerisation step.
  • a base oil having no haze can be obtained having a pour point of less than +10 0 C and a kinematic viscosity at 100 0 C of greater than 15 cSt.
  • WO-A-03033622 the haze precursors are removed from the base oil by the deep cut distillation whereby the haze precursors remain in the residual fraction.
  • a disadvantage of this process is the deep cut distillation itself. Such a distillation is difficult to perform. Moreover, because a substantial part of the feed is recovered as the top product, a substantial amount of energy will be required for such a distillation.
  • WO-A-0077125 describes a process to remove haze precursors from a heavy mineral base oil, referred to as Bright Stock, by contacting the base oil with a solid alumina sorbent.
  • US-A-3670888 and US-A-2036966 disclose processes to separate wax compounds from an oil by first cooling the oil and subsequently separating the wax by means of centrifugal force. These publications provide an alternative for the bulk separation of the wax molecules as an alternative for solvent dewaxing.
  • the object of this invention is to provide a process to prepare haze free heavy base oils starting from base oils which have been previously dewaxed but still are hazy. The content of haze is expressed in the difference between the cloud point and the pour point of the oil. The smaller this difference the less haze is present in the oil.
  • This object is achieved by the following process.
  • Process for reducing the cloud point of a base oil having a kinematic viscosity at 100 0 C of greater than 10 cSt by separating the molecules inferring the high cloud point from the base oil by subjecting the base oil to a centrifugal force such to obtain a base oil having the reduced cloud point and a fraction rich in haze precursor compounds.
  • haze precursors can be removed from the oil by means of a centrifugal force even without previously cooling the oil feed. Furthermore the process is advantageous because it can be performed on a continuous basis without the need for regeneration as is required for e.g. the sorbent type processes as described in WO-A-0077125.
  • the base oil feed is subjected to a centrifugal force.
  • a centrifugal force is achieved by a rotation between 1000 and 6000 rpm for a time of sufficient to achieve the desired separation, suitably at least 15 minutes.
  • a liquid cyclone is used to achieve a centrifugal separation of the base oil according to the present invention.
  • the use of a cyclone is advantageous because they can be operated in a continuous mode, thereby simplifying the process. Examples of liquid cyclones are described in Perry' s Chemical Engineers' Handbook, McGraw-Hill Book Company, New York, 1984, page 21-19 to 21-20. Preferably a multitude of liquid cyclones may be used in a parallel process.
  • One such bank of parallel operated cyclones may be aligned in series with a second bank of parallel operated cyclones.
  • Other possible apparatuses for performing the invention are centrifugal gravitation separators and liquid-liquid centrifuges as for example described in Perry's Chemical Engineers' Handbook, McGraw-Hill Book Company, New York, 1984, pages 19-89-19-91.
  • the base oil used as feed for the process of the present invention preferably has a kinematic viscosity at
  • the feed may also comprise said base oil.
  • the base oil having this specific viscosity is isolated from the wide boiling haze free fluid as obtained by the process of the present invention by means of distillation.
  • base oils are so-called bright stock, which are obtained by de-asphalting the residue of a vacuum distillation, step of a mineral crude oil. This de-asphalted fraction is typically subjected to solvent extraction and solvent or catalytic dewaxing steps and still contain some haze. Application of the present invention would remove the haze problem.
  • Such a mineral oil derived bright stock may even have a kinematic viscosity at 100 0 C of greater than 30 cSt.
  • the base oil is a paraffinic base oil having a kinematic viscosity at 100 0 C of greater than 10 cSt, more preferably greater than 15 cSt and even more preferably greater than 18 cSt.
  • the paraffin content of the base oil is preferably greater than 50 wt%, more preferably more than 70 wt% and even more preferably greater than 90 wt%.
  • the paraffin content is measured according to the following method.
  • the cyclo-paraffin (naphthenic compounds) content in this mixture of cyclo-, normal and iso-paraffins is measured by the following method. Any other method resulting in the same results may also be used.
  • the base oil sample is first separated into a polar (aromatic) phase and a non-polar (saturates) phase by making use of a high performance liquid chromatography (HPLC) method IP368/01, wherein as mobile phase pentane is used instead of hexane as the method states.
  • HPLC high performance liquid chromatography
  • the saturates and aromatic fractions are then analyzed using a Finnigan MAT90 mass spectrometer equipped with a Field desorption/Field Ionisation (FD/FI) interface, wherein FI (a "soft” ionisation technique) is used for the quantitative determination of hydrocarbon types in terms of carbon number and hydrogen deficiency of this particular base oil fraction.
  • FD/FI Field desorption/Field Ionisation
  • the instrument conditions to achieve such a soft ionization technique are a source temperature of 30 0 C, an extraction voltage of 5kV, an emitter current of 5mA and a probe temperature ramp of 40 0 C to 400 0 C (20 °C/min)
  • the type classification of compounds in mass spectrometry is determined by the characteristic ions formed and is normally classified by "z number". This is given by the general formula for all hydrocarbon species: CnH2n+z. Because the saturates phase is analysed separately from the aromatic phase it is possible to determine the content of the different (cyclo) -paraffins having the same stoichiometry.
  • the results of the mass spectrometer are processed using commercial software (poly 32; available from Sierra Analytics LLC,
  • the pour point is preferably smaller than +10 0 C and more preferably smaller than 0 0 C.
  • the viscosity index is preferably greater than 140 and smaller than 200.
  • the cloud point is typically greater than -5 0 C, often greater than 0 0 C or greater than 5 or even 10 0 C.
  • the difference between the cloud point of the feed and the pour point of the feed is typically greater than 10 0 C, often greater than 15 0 C, or greater than 20 0 C and even sometimes more than 30 0 C.
  • Such a spread between cloud point and pour point distinguishes the preferred feed from a solvent dewaxed base oil, which typically has a difference in pour point and cloud point equal to or near to zero.
  • the content of haze compounds in the hazy base oil is low, typically well below 1 wt%.
  • Such base oil feeds may be suitably obtained in a process wherein base oils are prepared from a Fischer- Tropsch derived wax. Examples of such processes are the earlier referred to processes as described in WO-A-02070627 and in WO-A-2004007647. It has been found that the process of this invention is especially advantageous for base oils obtained from processes, which make use of residual fractions of the mineral crude or synthetic Fischer-Tropsch wax.
  • WO-A-03033622 which prepares the base oil from a fraction just boiling above the residual fraction. It has also been found that the inventive process is especially suited for base oils as obtained by a catalytic dewaxing step.
  • the process of the present invention makes it possible to make haze free base oils from residual fractions. This is advantageous for the yield of the heavy base oil as well as the maximum achievable viscosity.
  • heavier haze free base oils may be prepared by simply starting from a more heavy Fischer-Tropsch wax, subjecting the wax to a hydroisomerisation and catalytic dewaxing step and subjecting the oil to the centrifugal separation step according to the present invention.
  • the following process is used to prepare a haze free base oil.
  • step (b) isolating, by means of distillation, a heavy base oil precursor fraction from the effluent of step (a) , wherein the heavy base oil precursor fraction is the residual fraction of the distillation,
  • step (c) reducing the pour point of the heavy base oil precursor fraction by means of catalytic dewaxing, (d) reducing the cloud point of the product of step (c) or from a residual fraction of the product of step (c) by means of the process of the present invention.
  • the Fischer-Tropsch derived waxy product will comprise a Fischer-Tropsch synthesis product.
  • a Fischer-Tropsch synthesis product is meant the product directly obtained from a Fischer-Tropsch synthesis reaction, which product may optionally have been subjected to a distillation and/or hydrogenation step only.
  • the Fischer-Tropsch synthesis product can be obtained by well-known processes, for example the so- called commercial Sasol process, the Shell Middle Distillate Synthesis Process or by the non-commercial Exxon process. These and other processes are for example described in more detail in EP-A-776959, EP-A-668342, US-A-4943672, US-A-5059299, WO-A-9934917 and
  • WO-A-9920720 typically these Fischer-Tropsch synthesis products will comprise hydrocarbons having 1 to 100 and even more than 100 carbon atoms. This hydrocarbon product will comprise normal paraffins, iso-paraffins, oxygenated products and unsaturated products.
  • the feed to step (a) may be hydrogenated in order to remove any oxygenates or unsaturated products.
  • a relatively heavy Fischer-Tropsch waxy product used in step (a) having at least 30 wt%, preferably at least 50 wt%, and more preferably at least 55 wt% of compounds having at least 30 carbon atoms.
  • the weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms of the Fischer-Tropsch product is at least 0.2, preferably at least 0.4 and more preferably at least 0.55.
  • the Fischer-Tropsch product comprises a C20 + fraction having an ASF-alpha value
  • Such a Fischer-Tropsch product can be obtained by any process, which yields a relatively heavy Fischer-Tropsch product as described above. Not all Fischer-Tropsch processes yield such a heavy product.
  • An example of a suitable Fischer-Tropsch process is described in
  • step (a) the Fischer-Tropsch derived waxy feed is subjected to a hydroconversion step to yield the waxy
  • Step (a) is performed in the presence of hydrogen and a catalyst, which catalyst can be chosen from those known to one skilled in the art as being suitable for this reaction.
  • Catalysts for use in step (a) typically are amorphous catalysts comprising an acidic functionality and a hydrogenation/dehydrogenation functionality.
  • Preferred acidic functionalities are refractory metal oxide carriers.
  • Suitable carrier materials include silica, alumina, silica-alumina, zirconia, titania and mixtures thereof.
  • Preferred carrier materials for inclusion in the catalyst for use in the process of this invention are silica, alumina and silica- alumina.
  • a particularly preferred catalyst comprises platinum supported on a silica-alumina carrier.
  • the acidity of the catalyst carrier may be enhanced by applying a halogen moiety, in particular fluorine or chlorine to the carrier.
  • a halogen moiety in particular fluorine or chlorine
  • Preferred hydrogenation/dehydrogenation functionality's are Group VIII non-noble metals, for example nickel as described in WO-A-0014179, US-A-5370788 or US-A-5378348 and more preferably Group VIII noble metals, for example palladium and most preferably platinum.
  • the catalyst may comprise the hydrogenation/ dehydrogenation active component in an amount of from 0.005 to 5 parts by weight, preferably from 0.02 to 2 parts by weight, per 100 parts by weight of carrier material.
  • a particularly preferred catalyst for use in the hydroconversion stage comprises platinum in an amount in the range of from 0.05 to 2 parts by weight, more preferably from 0.1 to 1 parts by weight, per 100 parts by weight of carrier material.
  • the catalyst may also comprise a binder to enhance the strength of the catalyst.
  • the binder can be non-acidic. Examples are clays, alumina and other binders known to one skilled in the art.
  • the catalyst is substantially amorphous, meaning that no crystalline phases are present in the catalyst.
  • step (a) the Fischer-Tropsch derived feed is contacted with hydrogen in the presence of the catalyst at elevated temperature and pressure.
  • the temperatures typically will be in the range of from 175 to 380 0 C, preferably higher than 250 0 C and more preferably from 300 to 370 0 C.
  • the pressure will typically be in the range of from 10 to 250 bar and preferably between 20 and 80 bar.
  • Hydrogen may be supplied at a gas hourly space velocity of from 100 to 10000 Nl/l/hr, preferably from
  • the hydrocarbon feed may be provided at a weight hourly space velocity of from 0.1 to 5 kg/l/hr, preferably higher than 0.5 kg/l/hr and more preferably lower than 2 kg/l/hr.
  • the ratio of hydrogen to hydrocarbon feed may range from 100 to 5000 Nl/kg and is preferably from 250 to 2500 Nl/kg.
  • the conversion in step (a) as defined as the weight percentage of the feed boiling above 370 0 C which reacts per pass to a fraction boiling below 370 0 C is preferably at least 20 wt%, more preferably at least 25 wt%, preferably not more than 80 wt% and more preferably not more than 65 wt%.
  • a residual fraction is isolated from the effluent of step (a) .
  • This isolation may be performed by first performing a distillation at atmospheric pressure obtaining the residue as the base oil precursor fraction.
  • This residue may suitably be further distilled at vacuum distillation conditions whereby again a base oil precursor fraction is obtained having a higher initial boiling point that the residue obtained in the atmospheric distillation.
  • residual fraction is meant that no fractions boiling above said residual fraction are obtained in said distillation.
  • the T10wt% recovery boiling point of the base oil precursor fraction may thus range from preferably between 350 and 600 0 C. At the lower end of this boiling range also base oils and even gas oils having lower viscosities will be prepared by the process as additional products.
  • the upper limit of the boiling range of this fraction will depend on the heaviness of the original Fischer-Tropsch wax used in step (a) and the hydroisomerisation severity in step (a) .
  • the final boiling point may be as high as 700 0 C in some cases and in other cases even higher than 750 0 C.
  • Step (c) is performed by means catalytic dewaxing.
  • the catalytic dewaxing process may be any process wherein in the presence of a catalyst and hydrogen the pour point of the base oil precursor fraction is reduced.
  • Suitable dewaxing catalysts are heterogeneous catalysts comprising a molecular sieve and optionally in combination with a metal having a hydrogenation function, such as the Group VIII metals.
  • Molecular sieves, and more suitably intermediate pore size zeolites have shown a good catalytic ability to reduce the pour point of the base oil precursor fraction under catalytic dewaxing conditions.
  • the intermediate pore size zeolites have a pore diameter of between 0.35 and 0.8 nm.
  • Suitable intermediate pore size zeolites are mordenite, ZSM-5, ZSM-12, ZSM-22, ZSM-23, SSZ-32, ZSM-35, ZSM-48 and MCM-68.
  • Another preferred group of molecular sieves are the silica-aluminaphosphate (SAPO) materials of which SAPO-Il is most preferred as for example described in
  • ZSM-5 may optionally be used in its HZSM-5 form in the absence of any Group VIII metal.
  • the other molecular sieves are preferably used in combination with an added Group VIII metal.
  • Suitable Group VIII metals are nickel, cobalt, platinum and palladium. Examples of possible combinations are Pt/ZSM-35, Ni/ZSM-5, Pt/ZSM-23, Pd/ZSM-23, Pt/ZSM-48 and Pt/SAPO-11.
  • the dewaxing catalyst suitably also comprises a binder.
  • the binder can be a synthetic or naturally occurring (inorganic) substance, for example clay, silica and/or metal oxides. Natural occurring clays are for example of the montmorillonite and kaolin families.
  • the binder is preferably a porous binder material, for example a refractory oxide of which examples are: alumina, silica-alumina, silica-magnesia, silica- zirconia, silica-thoria, silica-beryllia, silica-titania as well as ternary compositions for example silica- alumina-thoria, silica-alumina-zirconia, silica-alumina- magnesia and silica-magnesia-zirconia. More preferably a low acidity refractory oxide binder material, which is essentially free of alumina, is used. Examples of these binder materials are silica, zirconia, titanium dioxide, germanium dioxide, boria and mixtures of two or more of these of which examples are listed above. The most preferred binder is silica.
  • a refractory oxide of which examples are: alumina, silica-alumina, silica-
  • a preferred class of dewaxing catalysts comprise intermediate pore size zeolite crystallites as described above and a low acidity refractory oxide binder material which is essentially free of alumina as described above, wherein the alumina content of the aluminosilicate zeolite crystallites and especially the surface of said zeolite crystallites has been modified by subjecting the aluminosilicate zeolite crystallites to a surface dealumination treatment. Steaming is a possible method of reducing the alumina content of the crystallites.
  • a preferred dealumination treatment is by contacting an extrudate of the binder and the zeolite with an aqueous solution of a fluorosilicate salt as described in for example US-A-5157191 or WO-A-0029511. This method is believed to selectively dealuminate the surface of the zeolite crystallites.
  • suitable dewaxing catalysts as described above are silica bound and dealuminated Pt/ZSM-5, silica bound and dealuminated Pt/ZSM-23, silica bound and dealuminated Pt/ZSM-12, silica bound and dealuminated Pt/ZSM-22, as for example described in WO-A-0029511 and EP-B-832171.
  • the molecular sieve is a MTW, MTT or TON type molecular sieve, of which examples are described above, the Group VIII metal is platinum or palladium and the binder is silica.
  • the catalytic dewaxing of the heavy base oil precursor fraction is performed in the presence of a catalyst as described above wherein the zeolite has at least one channel with pores formed by 12-member rings containing 12 oxygen atoms.
  • 12-member rings are of the MOR type, MTW type, FAU type, or of the BEA type (according to the framework type code) .
  • a MTW type for example ZSM-12, zeolite is used.
  • a preferred MTW type zeolite containing catalyst also comprises as a platinum or palladium metal as Group VIII metal and a silica binder. More preferably the catalyst is a silica bound AHS treated Pt/ZSM-12 containing catalyst as described above.
  • These 12-member ring type zeolite based catalysts are preferred because they have been found to be suitable to convert waxy paraffinic compounds to less waxy iso-paraffinic compounds .
  • Catalytic dewaxing conditions are known in the art and typically involve operating temperatures in the range of from 200 to 500 0 C, suitably from 250 to 400 0 C, hydrogen pressures in the range of from 10 to 200 bar, preferably from 40 to 70 bar, weight hourly space velocities (WHSV) in the range of from 0.1 to 10 kg of oil per litre of catalyst per hour (kg/l/hr) , suitably from 0.2 to 5 kg/l/hr, more suitably from 0.5 to - IA -
  • WHSV weight hourly space velocities
  • Step (d) is the centrifugal separation as discussed above.
  • Step (d) may be performed on the effluent of step (c) or more preferably on the heavy base oil as isolated by means of distillation from said effluent.
  • This heavy base oil is again characterized in that it is the residual fraction of the distillation step.
  • the fraction comprising the haze precursors in step (d) is suitably recycled to step (c) or to step (a) such that the haze compounds can be converted as much as possible. More preferably this fraction is recycled to step (a) wherein the haze precursors will more likely crack to lower boiling compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Lubricants (AREA)

Abstract

Process for reducing the cloud point of a base oil having a kinematic viscosity at 100 °C of greater than 10 cSt by separating the molecules inferring the high cloud point from the base oil by subjecting the base oil to a centrifugal force such to obtain a base oil having the reduced cloud point and a fraction rich in haze precursor compounds.

Description

PROCESS TO PREPARE A HAZE FREE BASE OIL
Field of invention
The invention is related to a process to reduce haze precursors from a lubricating base oil. Background of the invention WO-A-02070627 describes a process to prepare a base oil having a kinematic viscosity at 100 0C of 22.9 cSt and a pour point of +9 0C and a viscosity index of 178. The process involves the hydroisomerisation of a Fischer- Tropsch synthesis product boiling from C5 up to 750 0C. From the effluent of the hydroisomerisation a distillation residue boiling above 370 0C was isolated and catalytically dewaxed. The dewaxed oil was distilled to obtain as a distillation residue boiling above 510 0C the base oil as described above. WO-A-2004007647 describes a process to prepare a heavy base oil from a Fischer-Tropsch derived wax. The process involves the hydroisomerisation of a Fischer-Tropsch synthesis product boiling from C5 up to
750 0C. From the effluent of the hydroisomerisation a distillation residue boiling above 370 0C was isolated. This residue was split into a light and a heavy base oil precursor fraction. By catalytically dewaxing the heavy base oil precursor fraction a base oil having a pour point of -15 0C, a viscosity index of 157 and a kinematic viscosity at 100 0C of 26.65 cSt was prepared.
An advantage of the process of WO-A-02070627 or WO-A-2004007647 is that base oils are obtained having a high viscosity and a high viscosity index. A problem is that when the base oils are obtained by means of a catalytic dewaxing step haze precursors causing haze may be present in the base oils. This makes the base oil less suitable for certain applications.
WO-A-03033622 describes a process to prepare a low haze heavy base oil from a Fischer-Tropsch derived wax by isolating by means of deep cut distillation a fraction boiling between 1000 and 1200 0F (538 and 649 0C) and a residue boiling above 1200 0F. The fraction boiling between 1000 and 1200 0F is subjected to a hydroisomerisation step. According to the specification a base oil having no haze can be obtained having a pour point of less than +10 0C and a kinematic viscosity at 100 0C of greater than 15 cSt.
According to WO-A-03033622 the haze precursors are removed from the base oil by the deep cut distillation whereby the haze precursors remain in the residual fraction. A disadvantage of this process is the deep cut distillation itself. Such a distillation is difficult to perform. Moreover, because a substantial part of the feed is recovered as the top product, a substantial amount of energy will be required for such a distillation.
Furthermore valuable heavy base oil molecules are removed with the distillation residue. This is disadvantageous for the yield to the heavy base oils. Moreover the maximum achievable viscosity of the heavy base oil is limited by this distillation.
WO-A-0077125 describes a process to remove haze precursors from a heavy mineral base oil, referred to as Bright Stock, by contacting the base oil with a solid alumina sorbent. US-A-3670888 and US-A-2036966 disclose processes to separate wax compounds from an oil by first cooling the oil and subsequently separating the wax by means of centrifugal force. These publications provide an alternative for the bulk separation of the wax molecules as an alternative for solvent dewaxing. The object of this invention is to provide a process to prepare haze free heavy base oils starting from base oils which have been previously dewaxed but still are hazy. The content of haze is expressed in the difference between the cloud point and the pour point of the oil. The smaller this difference the less haze is present in the oil.
This object is achieved by the following process. Process for reducing the cloud point of a base oil having a kinematic viscosity at 100 0C of greater than 10 cSt by separating the molecules inferring the high cloud point from the base oil by subjecting the base oil to a centrifugal force such to obtain a base oil having the reduced cloud point and a fraction rich in haze precursor compounds.
Applicants have found that haze precursors can be removed from the oil by means of a centrifugal force even without previously cooling the oil feed. Furthermore the process is advantageous because it can be performed on a continuous basis without the need for regeneration as is required for e.g. the sorbent type processes as described in WO-A-0077125.
The base oil feed is subjected to a centrifugal force. This may be accomplished in a well known centrifuge. Preferably the centrifugal force is achieved by a rotation between 1000 and 6000 rpm for a time of sufficient to achieve the desired separation, suitably at least 15 minutes. Preferably a liquid cyclone is used to achieve a centrifugal separation of the base oil according to the present invention. The use of a cyclone is advantageous because they can be operated in a continuous mode, thereby simplifying the process. Examples of liquid cyclones are described in Perry' s Chemical Engineers' Handbook, McGraw-Hill Book Company, New York, 1984, page 21-19 to 21-20. Preferably a multitude of liquid cyclones may be used in a parallel process. One such bank of parallel operated cyclones may be aligned in series with a second bank of parallel operated cyclones. Other possible apparatuses for performing the invention are centrifugal gravitation separators and liquid-liquid centrifuges as for example described in Perry's Chemical Engineers' Handbook, McGraw-Hill Book Company, New York, 1984, pages 19-89-19-91. The base oil used as feed for the process of the present invention preferably has a kinematic viscosity at
100 0C of greater than 10 cSt, more preferably greater than 15 cSt and even more preferably greater than 18 cSt. The feed may also comprise said base oil. In such a situation the base oil having this specific viscosity is isolated from the wide boiling haze free fluid as obtained by the process of the present invention by means of distillation. Examples of such base oils are so-called bright stock, which are obtained by de-asphalting the residue of a vacuum distillation, step of a mineral crude oil. This de-asphalted fraction is typically subjected to solvent extraction and solvent or catalytic dewaxing steps and still contain some haze. Application of the present invention would remove the haze problem. Such a mineral oil derived bright stock may even have a kinematic viscosity at 100 0C of greater than 30 cSt.
More preferably the base oil is a paraffinic base oil having a kinematic viscosity at 100 0C of greater than 10 cSt, more preferably greater than 15 cSt and even more preferably greater than 18 cSt. The paraffin content of the base oil is preferably greater than 50 wt%, more preferably more than 70 wt% and even more preferably greater than 90 wt%. The paraffin content is measured according to the following method. The cyclo-paraffin (naphthenic compounds) content in this mixture of cyclo-, normal and iso-paraffins is measured by the following method. Any other method resulting in the same results may also be used. The base oil sample is first separated into a polar (aromatic) phase and a non-polar (saturates) phase by making use of a high performance liquid chromatography (HPLC) method IP368/01, wherein as mobile phase pentane is used instead of hexane as the method states. The saturates and aromatic fractions are then analyzed using a Finnigan MAT90 mass spectrometer equipped with a Field desorption/Field Ionisation (FD/FI) interface, wherein FI (a "soft" ionisation technique) is used for the quantitative determination of hydrocarbon types in terms of carbon number and hydrogen deficiency of this particular base oil fraction. The instrument conditions to achieve such a soft ionization technique are a source temperature of 30 0C, an extraction voltage of 5kV, an emitter current of 5mA and a probe temperature ramp of 40 0C to 400 0C (20 °C/min)
The type classification of compounds in mass spectrometry is determined by the characteristic ions formed and is normally classified by "z number". This is given by the general formula for all hydrocarbon species: CnH2n+z. Because the saturates phase is analysed separately from the aromatic phase it is possible to determine the content of the different (cyclo) -paraffins having the same stoichiometry. The results of the mass spectrometer are processed using commercial software (poly 32; available from Sierra Analytics LLC,
3453 Dragoo Park Drive, Modesto, Calif. GA95350 USA) to determine the relative proportions of each hydrocarbon type and the average molecular weight and polydispersity of the saturates and aromatics fractions. The pour point is preferably smaller than +10 0C and more preferably smaller than 0 0C. The viscosity index is preferably greater than 140 and smaller than 200. The cloud point is typically greater than -5 0C, often greater than 0 0C or greater than 5 or even 10 0C. The difference between the cloud point of the feed and the pour point of the feed is typically greater than 10 0C, often greater than 15 0C, or greater than 20 0C and even sometimes more than 30 0C. Such a spread between cloud point and pour point distinguishes the preferred feed from a solvent dewaxed base oil, which typically has a difference in pour point and cloud point equal to or near to zero. The content of haze compounds in the hazy base oil is low, typically well below 1 wt%. Such base oil feeds may be suitably obtained in a process wherein base oils are prepared from a Fischer- Tropsch derived wax. Examples of such processes are the earlier referred to processes as described in WO-A-02070627 and in WO-A-2004007647. It has been found that the process of this invention is especially advantageous for base oils obtained from processes, which make use of residual fractions of the mineral crude or synthetic Fischer-Tropsch wax. This in contrast with the process of WO-A-03033622, which prepares the base oil from a fraction just boiling above the residual fraction. It has also been found that the inventive process is especially suited for base oils as obtained by a catalytic dewaxing step. Thus the process of the present invention makes it possible to make haze free base oils from residual fractions. This is advantageous for the yield of the heavy base oil as well as the maximum achievable viscosity. For example heavier haze free base oils may be prepared by simply starting from a more heavy Fischer-Tropsch wax, subjecting the wax to a hydroisomerisation and catalytic dewaxing step and subjecting the oil to the centrifugal separation step according to the present invention.
Preferably the following process is used to prepare a haze free base oil. Process to prepare a heavy lubricating base oil from a Fischer-Tropsch derived feedstock by
(a) subjecting the Fischer-Tropsch derived waxy feedstock to a hydroisomerisation process,
(b) isolating, by means of distillation, a heavy base oil precursor fraction from the effluent of step (a) , wherein the heavy base oil precursor fraction is the residual fraction of the distillation,
(c) reducing the pour point of the heavy base oil precursor fraction by means of catalytic dewaxing, (d) reducing the cloud point of the product of step (c) or from a residual fraction of the product of step (c) by means of the process of the present invention.
The Fischer-Tropsch derived waxy product will comprise a Fischer-Tropsch synthesis product. With a Fischer-Tropsch synthesis product is meant the product directly obtained from a Fischer-Tropsch synthesis reaction, which product may optionally have been subjected to a distillation and/or hydrogenation step only. The Fischer-Tropsch synthesis product can be obtained by well-known processes, for example the so- called commercial Sasol process, the Shell Middle Distillate Synthesis Process or by the non-commercial Exxon process. These and other processes are for example described in more detail in EP-A-776959, EP-A-668342, US-A-4943672, US-A-5059299, WO-A-9934917 and
WO-A-9920720. Typically these Fischer-Tropsch synthesis products will comprise hydrocarbons having 1 to 100 and even more than 100 carbon atoms. This hydrocarbon product will comprise normal paraffins, iso-paraffins, oxygenated products and unsaturated products. The feed to step (a) may be hydrogenated in order to remove any oxygenates or unsaturated products.
Preferably a relatively heavy Fischer-Tropsch waxy product used in step (a) having at least 30 wt%, preferably at least 50 wt%, and more preferably at least 55 wt% of compounds having at least 30 carbon atoms. Furthermore the weight ratio of compounds having at least 60 or more carbon atoms and compounds having at least 30 carbon atoms of the Fischer-Tropsch product is at least 0.2, preferably at least 0.4 and more preferably at least 0.55. Preferably the Fischer-Tropsch product comprises a C20+ fraction having an ASF-alpha value
(Anderson-Schulz-Flory chain growth factor) of at least 0.925, preferably at least 0.935, more preferably at least 0.945, even more preferably at least 0.955.
Such a Fischer-Tropsch product can be obtained by any process, which yields a relatively heavy Fischer-Tropsch product as described above. Not all Fischer-Tropsch processes yield such a heavy product. An example of a suitable Fischer-Tropsch process is described in
WO-A-9934917 and in AU-A-698392. These processes may yield the relatively heavy Fischer-Tropsch derived waxy product as described above.
In step (a) the Fischer-Tropsch derived waxy feed is subjected to a hydroconversion step to yield the waxy
Raffinate product. Step (a) is performed in the presence of hydrogen and a catalyst, which catalyst can be chosen from those known to one skilled in the art as being suitable for this reaction. Catalysts for use in step (a) typically are amorphous catalysts comprising an acidic functionality and a hydrogenation/dehydrogenation functionality. Preferred acidic functionalities are refractory metal oxide carriers. Suitable carrier materials include silica, alumina, silica-alumina, zirconia, titania and mixtures thereof. Preferred carrier materials for inclusion in the catalyst for use in the process of this invention are silica, alumina and silica- alumina. A particularly preferred catalyst comprises platinum supported on a silica-alumina carrier. If desired, but generally not preferred because of environmental reasons, the acidity of the catalyst carrier may be enhanced by applying a halogen moiety, in particular fluorine or chlorine to the carrier. Examples of suitable hydroconversion/hydroisomerisation processes and suitable catalysts are described in WO-A-200014179, EP-A-532118 and the earlier referred to EP-A-776959.
Preferred hydrogenation/dehydrogenation functionality's are Group VIII non-noble metals, for example nickel as described in WO-A-0014179, US-A-5370788 or US-A-5378348 and more preferably Group VIII noble metals, for example palladium and most preferably platinum. The catalyst may comprise the hydrogenation/ dehydrogenation active component in an amount of from 0.005 to 5 parts by weight, preferably from 0.02 to 2 parts by weight, per 100 parts by weight of carrier material. A particularly preferred catalyst for use in the hydroconversion stage comprises platinum in an amount in the range of from 0.05 to 2 parts by weight, more preferably from 0.1 to 1 parts by weight, per 100 parts by weight of carrier material. The catalyst may also comprise a binder to enhance the strength of the catalyst. The binder can be non-acidic. Examples are clays, alumina and other binders known to one skilled in the art. Preferably the catalyst is substantially amorphous, meaning that no crystalline phases are present in the catalyst.
In step (a) the Fischer-Tropsch derived feed is contacted with hydrogen in the presence of the catalyst at elevated temperature and pressure. The temperatures typically will be in the range of from 175 to 380 0C, preferably higher than 250 0C and more preferably from 300 to 370 0C. The pressure will typically be in the range of from 10 to 250 bar and preferably between 20 and 80 bar. Hydrogen may be supplied at a gas hourly space velocity of from 100 to 10000 Nl/l/hr, preferably from
500 to 5000 Nl/l/hr. The hydrocarbon feed may be provided at a weight hourly space velocity of from 0.1 to 5 kg/l/hr, preferably higher than 0.5 kg/l/hr and more preferably lower than 2 kg/l/hr. The ratio of hydrogen to hydrocarbon feed may range from 100 to 5000 Nl/kg and is preferably from 250 to 2500 Nl/kg.
The conversion in step (a) as defined as the weight percentage of the feed boiling above 370 0C which reacts per pass to a fraction boiling below 370 0C is preferably at least 20 wt%, more preferably at least 25 wt%, preferably not more than 80 wt% and more preferably not more than 65 wt%.
In step (b) a residual fraction is isolated from the effluent of step (a) . This isolation may be performed by first performing a distillation at atmospheric pressure obtaining the residue as the base oil precursor fraction. This residue may suitably be further distilled at vacuum distillation conditions whereby again a base oil precursor fraction is obtained having a higher initial boiling point that the residue obtained in the atmospheric distillation. With residual fraction is meant that no fractions boiling above said residual fraction are obtained in said distillation. Thus the residual fraction comprises all the highest boiling compounds of the feed to said distillation. The T10wt% recovery boiling point of the base oil precursor fraction may thus range from preferably between 350 and 600 0C. At the lower end of this boiling range also base oils and even gas oils having lower viscosities will be prepared by the process as additional products. At the higher end of this range relatively more of the heavy base oil product is prepared by the process. The upper limit of the boiling range of this fraction will depend on the heaviness of the original Fischer-Tropsch wax used in step (a) and the hydroisomerisation severity in step (a) . The final boiling point may be as high as 700 0C in some cases and in other cases even higher than 750 0C.
Step (c) is performed by means catalytic dewaxing. The catalytic dewaxing process may be any process wherein in the presence of a catalyst and hydrogen the pour point of the base oil precursor fraction is reduced. Suitable dewaxing catalysts are heterogeneous catalysts comprising a molecular sieve and optionally in combination with a metal having a hydrogenation function, such as the Group VIII metals. Molecular sieves, and more suitably intermediate pore size zeolites, have shown a good catalytic ability to reduce the pour point of the base oil precursor fraction under catalytic dewaxing conditions. Preferably the intermediate pore size zeolites have a pore diameter of between 0.35 and 0.8 nm. Suitable intermediate pore size zeolites are mordenite, ZSM-5, ZSM-12, ZSM-22, ZSM-23, SSZ-32, ZSM-35, ZSM-48 and MCM-68. Another preferred group of molecular sieves are the silica-aluminaphosphate (SAPO) materials of which SAPO-Il is most preferred as for example described in
US-A-4859311. ZSM-5 may optionally be used in its HZSM-5 form in the absence of any Group VIII metal. The other molecular sieves are preferably used in combination with an added Group VIII metal. Suitable Group VIII metals are nickel, cobalt, platinum and palladium. Examples of possible combinations are Pt/ZSM-35, Ni/ZSM-5, Pt/ZSM-23, Pd/ZSM-23, Pt/ZSM-48 and Pt/SAPO-11. Further details and examples of suitable molecular sieves and dewaxing conditions are for example described in WO-A-9718278, US-A-4343692, US-A-5053373, US-A-5252527, US-A-4574043, WO-A-0014179 and EP-A-1029029.
The dewaxing catalyst suitably also comprises a binder. The binder can be a synthetic or naturally occurring (inorganic) substance, for example clay, silica and/or metal oxides. Natural occurring clays are for example of the montmorillonite and kaolin families. The binder is preferably a porous binder material, for example a refractory oxide of which examples are: alumina, silica-alumina, silica-magnesia, silica- zirconia, silica-thoria, silica-beryllia, silica-titania as well as ternary compositions for example silica- alumina-thoria, silica-alumina-zirconia, silica-alumina- magnesia and silica-magnesia-zirconia. More preferably a low acidity refractory oxide binder material, which is essentially free of alumina, is used. Examples of these binder materials are silica, zirconia, titanium dioxide, germanium dioxide, boria and mixtures of two or more of these of which examples are listed above. The most preferred binder is silica.
A preferred class of dewaxing catalysts comprise intermediate pore size zeolite crystallites as described above and a low acidity refractory oxide binder material which is essentially free of alumina as described above, wherein the alumina content of the aluminosilicate zeolite crystallites and especially the surface of said zeolite crystallites has been modified by subjecting the aluminosilicate zeolite crystallites to a surface dealumination treatment. Steaming is a possible method of reducing the alumina content of the crystallites. A preferred dealumination treatment is by contacting an extrudate of the binder and the zeolite with an aqueous solution of a fluorosilicate salt as described in for example US-A-5157191 or WO-A-0029511. This method is believed to selectively dealuminate the surface of the zeolite crystallites. Examples of suitable dewaxing catalysts as described above are silica bound and dealuminated Pt/ZSM-5, silica bound and dealuminated Pt/ZSM-23, silica bound and dealuminated Pt/ZSM-12, silica bound and dealuminated Pt/ZSM-22, as for example described in WO-A-0029511 and EP-B-832171.
More preferably the molecular sieve is a MTW, MTT or TON type molecular sieve, of which examples are described above, the Group VIII metal is platinum or palladium and the binder is silica.
Preferably the catalytic dewaxing of the heavy base oil precursor fraction is performed in the presence of a catalyst as described above wherein the zeolite has at least one channel with pores formed by 12-member rings containing 12 oxygen atoms. Preferred zeolites having
12-member rings are of the MOR type, MTW type, FAU type, or of the BEA type (according to the framework type code) . Preferably a MTW type, for example ZSM-12, zeolite is used. A preferred MTW type zeolite containing catalyst also comprises as a platinum or palladium metal as Group VIII metal and a silica binder. More preferably the catalyst is a silica bound AHS treated Pt/ZSM-12 containing catalyst as described above. These 12-member ring type zeolite based catalysts are preferred because they have been found to be suitable to convert waxy paraffinic compounds to less waxy iso-paraffinic compounds .
Catalytic dewaxing conditions are known in the art and typically involve operating temperatures in the range of from 200 to 500 0C, suitably from 250 to 400 0C, hydrogen pressures in the range of from 10 to 200 bar, preferably from 40 to 70 bar, weight hourly space velocities (WHSV) in the range of from 0.1 to 10 kg of oil per litre of catalyst per hour (kg/l/hr) , suitably from 0.2 to 5 kg/l/hr, more suitably from 0.5 to - IA -
3 kg/l/hr and hydrogen to oil ratios in the range of from 100 to 2,000 litres of hydrogen per litre of oil.
Step (d) is the centrifugal separation as discussed above. Step (d) may be performed on the effluent of step (c) or more preferably on the heavy base oil as isolated by means of distillation from said effluent. This heavy base oil is again characterized in that it is the residual fraction of the distillation step. The fraction comprising the haze precursors in step (d) is suitably recycled to step (c) or to step (a) such that the haze compounds can be converted as much as possible. More preferably this fraction is recycled to step (a) wherein the haze precursors will more likely crack to lower boiling compounds. The invention will be illustrated with the following example. Example
30 ml of a hazy sample of a Fischer-Tropsch derived base oil having a kinematic viscosity at 40 0C of 16.5 cSt was placed in a four armed centrifuge (a Hermle Z320 centrifuge), at room temperature. After 60 minutes at 4000 rpm the sample was removed and observed. It turned out that the sample from the centrifuge consisted of a large haze free liquid fraction and a small hazy wax fraction on the bottom of the bottle. After decanting the clear liquid, the hazy fraction remained behind in the sample bottle. From the clear liquid a haze free heavy base oil may be obtained as the residual fraction of a distillative separation.

Claims

C L A I M S
1. Process for reducing the cloud point of a base oil having a kinematic viscosity at 100 0C of greater than 10 cSt by separating the molecules inferring the high cloud point from the base oil by subjecting the base oil to a centrifugal force such to obtain a base oil having the reduced cloud point and a fraction rich in haze precursor compounds.
2. Process according to claim 1, wherein the centrifugal force is obtained in a centrifuge gravitation separator.
3. Process according to claim 1, wherein the centrifugal force is obtained in a liquid cyclone separator.
4. Process according to any one of claims 1-3, wherein the base oil has a cloud point greater than 20 0C, a saturates content of greater than 97 wt%, a kinematic viscosity at 100 0C of greater than 15 cSt, a sulphur content of less than 50 ppm and a viscosity index of greater than 140.
5. Process to prepare a heavy lubricating base oil from a Fischer-Tropsch derived feedstock by (a) subjecting the Fischer-Tropsch derived waxy feedstock to a hydroisomerisation process,
(b) isolating, by means of distillation, a heavy base oil precursor fraction from the effluent of step (a) , wherein the heavy base oil precursor fraction is the residual fraction of the distillation,
(c) reducing the pour point of the heavy base oil precursor fraction by means of catalytic dewaxing,
(d) reducing the cloud point of the product of step (c) or from a residual fraction of the product of step (c) by the process according to any one of claims 1-4.
6. Process according to claim 5, wherein the retentate obtained in step (d) is recycled to step (a) or (c) .
7. Process according to claim 6, wherein the retentate is recycled to step (a) .
PCT/EP2005/055157 2004-10-11 2005-10-11 Process to prepare a haze free base oil WO2006040319A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007535183A JP2008516035A (en) 2004-10-11 2005-10-11 Method for producing cloudy base oil
EP05792010A EP1812538A1 (en) 2004-10-11 2005-10-11 Process to prepare a haze free base oil
US11/664,952 US20090020485A1 (en) 2004-10-11 2005-10-11 Process to prepare a haze free base oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04104974 2004-10-11
EP04104974.3 2004-10-11

Publications (1)

Publication Number Publication Date
WO2006040319A1 true WO2006040319A1 (en) 2006-04-20

Family

ID=34929689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055157 WO2006040319A1 (en) 2004-10-11 2005-10-11 Process to prepare a haze free base oil

Country Status (4)

Country Link
US (1) US20090020485A1 (en)
EP (1) EP1812538A1 (en)
JP (1) JP2008516035A (en)
WO (1) WO2006040319A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080679A1 (en) * 2007-12-20 2009-07-02 Shell Internationale Research Maatschappij B.V. Process to prepare a gas oil and a base oil
US8152869B2 (en) 2007-12-20 2012-04-10 Shell Oil Company Fuel compositions
US8152868B2 (en) 2007-12-20 2012-04-10 Shell Oil Company Fuel compositions
US10934496B2 (en) 2016-12-23 2021-03-02 Shell Oil Company Fischer-tropsch feedstock derived haze-free base oil fractions
US11078430B2 (en) 2016-12-23 2021-08-03 Shell Oil Company Haze-free base oils with high paraffinic content
US11142705B2 (en) 2015-12-23 2021-10-12 Shell Oil Company Process for preparing a base oil having a reduced cloud point

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216449B2 (en) * 2009-03-17 2012-07-10 Exxonmobil Research And Engineering Company Bubble separation to remove haze and improve filterability of lube base stocks
JP2015512464A (en) * 2012-04-04 2015-04-27 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap Method for preparing residual base oil
WO2017109191A1 (en) * 2015-12-23 2017-06-29 Shell Internationale Research Maatschappij B.V. Residual base oil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036966A (en) * 1930-12-20 1936-04-07 Sharples Specialty Co Dewaxing oil
US3670888A (en) * 1970-01-07 1972-06-20 British Petroleum Co Method of separation of wax from oil
WO2002070627A2 (en) * 2001-03-05 2002-09-12 Shell Internationale Research Maatschappij B.V. Process to prepare a lubricating base oil and a gas oil
WO2003033622A1 (en) * 2001-10-17 2003-04-24 Chevron U.S.A. Inc. Process for converting waxy feeds into low haze heavy base oil
WO2004007647A1 (en) * 2002-07-12 2004-01-22 Shell Internationale Research Maatschappij B.V. Process to prepare a heavy and a light lubricating base oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343692A (en) * 1981-03-27 1982-08-10 Shell Oil Company Catalytic dewaxing process
US5157191A (en) * 1986-01-03 1992-10-20 Mobil Oil Corp. Modified crystalline aluminosilicate zeolite catalyst and its use in the production of lubes of high viscosity index
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US5059299A (en) * 1987-12-18 1991-10-22 Exxon Research And Engineering Company Method for isomerizing wax to lube base oils
US5053373A (en) * 1988-03-23 1991-10-01 Chevron Research Company Zeolite SSZ-32
US5252527A (en) * 1988-03-23 1993-10-12 Chevron Research And Technology Company Zeolite SSZ-32
US5370788A (en) * 1992-12-18 1994-12-06 Texaco Inc. Wax conversion process
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2036966A (en) * 1930-12-20 1936-04-07 Sharples Specialty Co Dewaxing oil
US3670888A (en) * 1970-01-07 1972-06-20 British Petroleum Co Method of separation of wax from oil
WO2002070627A2 (en) * 2001-03-05 2002-09-12 Shell Internationale Research Maatschappij B.V. Process to prepare a lubricating base oil and a gas oil
WO2003033622A1 (en) * 2001-10-17 2003-04-24 Chevron U.S.A. Inc. Process for converting waxy feeds into low haze heavy base oil
WO2004007647A1 (en) * 2002-07-12 2004-01-22 Shell Internationale Research Maatschappij B.V. Process to prepare a heavy and a light lubricating base oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080679A1 (en) * 2007-12-20 2009-07-02 Shell Internationale Research Maatschappij B.V. Process to prepare a gas oil and a base oil
US8152869B2 (en) 2007-12-20 2012-04-10 Shell Oil Company Fuel compositions
US8152868B2 (en) 2007-12-20 2012-04-10 Shell Oil Company Fuel compositions
US11142705B2 (en) 2015-12-23 2021-10-12 Shell Oil Company Process for preparing a base oil having a reduced cloud point
US10934496B2 (en) 2016-12-23 2021-03-02 Shell Oil Company Fischer-tropsch feedstock derived haze-free base oil fractions
US11078430B2 (en) 2016-12-23 2021-08-03 Shell Oil Company Haze-free base oils with high paraffinic content

Also Published As

Publication number Publication date
JP2008516035A (en) 2008-05-15
EP1812538A1 (en) 2007-08-01
US20090020485A1 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
EP1370633B1 (en) Lubricant composition
US20090020485A1 (en) Process to prepare a haze free base oil
EP1534801B1 (en) Process to prepare a heavy and a light lubricating base oil
US20040079675A1 (en) Automatic transmission fluid
US20090012342A1 (en) Process to prepare a haze free base oil
AU2002249198A1 (en) Lubricant composition
AU2002308283A1 (en) Base oil composition
US7674363B2 (en) Process to prepare a haze free base oil
EP2864456B1 (en) Lubricating oil compositions comprising heavy fischer-tropsch derived base oils and alkylated aromatic base oil
WO2014001546A1 (en) Process to prepare a gas oil fraction and a residual base oil
WO2005000999A1 (en) Process to prepare a lubricating base oil
EP1853682A1 (en) Process to prepare a lubricating base oil
WO2017109179A1 (en) Process for preparing a base oil having a reduced cloud point

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005792010

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007535183

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11664952

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005792010

Country of ref document: EP