WO2006039580A1 - Refrigeration system and method with controllable heat recovery - Google Patents

Refrigeration system and method with controllable heat recovery Download PDF

Info

Publication number
WO2006039580A1
WO2006039580A1 PCT/US2005/035349 US2005035349W WO2006039580A1 WO 2006039580 A1 WO2006039580 A1 WO 2006039580A1 US 2005035349 W US2005035349 W US 2005035349W WO 2006039580 A1 WO2006039580 A1 WO 2006039580A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat recovery
heat
condenser
circuit
fluid
Prior art date
Application number
PCT/US2005/035349
Other languages
French (fr)
Inventor
Michel K. Grabon
Ba-Tung Pham
Philippe Rigal
Pierre Delpech
Original Assignee
Carrier Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corporation filed Critical Carrier Corporation
Priority to EP05800853A priority Critical patent/EP1802922A4/en
Priority to US11/576,316 priority patent/US20090120110A1/en
Publication of WO2006039580A1 publication Critical patent/WO2006039580A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • the invention relates to a refrigeration system and method for providing heat recovery on a flexible basis as desired by the end-user.
  • Cooling circuits of refrigeration units frequently include heat recovery units which allow heat from refrigerant discharged by the compressor to be used for heating other fluids.
  • heat recovery units which allow heat from refrigerant discharged by the compressor to be used for heating other fluids.
  • One example of use of this type of system would be in heating water for satisfying the hot water requirements of a building. This advantageously allows the use of such heat to satisfy other energy needs.
  • a method for providing controllable amounts of heat recovery from a refrigerant circuit comprises the steps of providing a cooling circuit comprising a compressor, a condenser, an expansion device and an evaporator connected in series by refrigerant flow lines; providing a heat recovery circuit comprising a heat recovery heat exchanger, the heat recovery circuit being connected to the cooling circuit so that the heat recovery heat exchanger is in parallel with the condenser, and the heat recovery heat exchanger being in heat exchange relationship with a fluid to be heated based upon an end-user demand for heat; and selectively flowing refrigerant through the condenser of the cooling circuit and the heat recovery heat exchanger of the heat recovery circuit so as to maintain temperature of the fluid within a temperature band around a set point provided by the end user.
  • the system may further comprise a plurality of cooling circuits and a plurality of heat recovery circuits, and the selectively flowing step may suitably comprise selectively flowing refrigerant through heat recovery heat exchangers of one or more of the heat recovery circuits.
  • Figure 1 schematically illustrates a single circuit adapted for cooling and heat reclaim operation according to the invention
  • Figure 2 schematically illustrates a multiple-circuit system embodiment according to the invention.
  • Figure 3 illustrates operation of a system in accordance with the present invention to maintain temperature of a fluid within a particular band utilizing the heat recovery operation of the system of a present invention.
  • the invention relates to a refrigeration system which includes at least one heat recovery circuit.
  • the system can selectively operate in a conventional cooling mode, and in heat recovery mode to provide transfer of heat from heated refrigerant fluid to a fluid which is desired to be heated.
  • a fluid is water to meet the hot water requirements of an end-user, for example, the hot water requirements of a building.
  • the system of the present invention can be used to heat fluids such as this water, and functions in such a way that widely varying needs can be met with the same system. Specifically, the system can be used to supply heated fluid at a broad range of different temperature setpoints, and within a selectable range of the setpoint.
  • FIG. 1 shows a system 10 which includes refrigeration circuit having a compressor 12, a condenser 14, an expansion device 16 and an evaporator 18. While the lines which connect these various components will be further discussed below, it should be readily appreciated that these components when operated in series define a typical refrigeration circuit.
  • Compressed refrigerant from compressor 12 is sequentially passed through condenser 14 and expansion device 16 to evaporator 18, wherein the refrigerant cools a stream of air as desired.
  • Refrigerant from evaporator 18 then returns to compressor 12 to complete the circuit.
  • the refrigerant exiting the compressor has a temperature which is sufficiently high that heat can be effectively transferred to other fluids, for example to water which must be heated to a temperature sufficient for meeting typical domestic, commercial or industrial hot water needs.
  • Figure 1 further shows a heat recovery heat exchanger 20 which is positioned to receive refrigerant from system 10 and exchange heat from the refrigerant to a separate stream of fluid
  • This fluid may be water for supplying the hot water needs of a building, or any other fluid which can advantageously make use of heat transferred to same from the refrigerant.
  • Figure 1 also shows a control unit 22 which is adapted for controlling the system 10 to operate in various different modes as will be further discussed below.
  • system 10 is controlled so as to flow refrigerant from compressor 12 to either condenser 14 or heat recovery heat exchanger 20.
  • refrigerant flows from compressor 12 to heat recovery heat exchanger 20
  • the high- temperature refrigerant advantageously transfers heat through heat exchanger 20 to the fluid to be heated as desired.
  • a series of valves 24, 26, 28 and 30, are positioned along lines of system 10 and operated by control unit 22 so as to direct flow from compressor 12 to condenser 14 or heat recovery heat exchanger 20, and also to direct flow from these components as desired.
  • flow from compressor 12 passes through a compressor discharge line 32 to a first branch 34 which extends through valve 24 to condenser 14, and through a second branch 36 which extends through valve 28 to heat recovery- heat exchanger 20.
  • discharge goes through condenser discharge line 38 through a first branch 40 which flows to expansion device 16, and a second branch 42 which flows through valve 26 and line 44 to evaporator 18.
  • Flow from evaporator 18 passes through line 46 to compressor 12.
  • Figure 1 also shows check valves 54, 56, which advantageously serve to maintain flow through the lines of system 10 as desired.
  • cooling mode the system is operated as described above, with the valves set to operate without flow through heat recovery heat exchanger 20. During this operation, while condenser 14 gives off heat to an outside location as is well known, heat exchanger 20 stores charge and evaporator 18 cools a stream of air to be conditioned as is well known.
  • Control unit 22 is operatively communicated with each of valves 24, 26, 28 and 30, as well as sensor 58 and advantageously expansion device 16, as shown by the dashed lines in Figure 1.
  • Control unit 22 is advantageously programmed to control the position of the various valves discussed above based upon information from sensor 58, and thereby to determine position of the various valves so as to operate in cooling mode without the heat recovery heat exchanger, or in heat recovery mode, and to cycle between these modes as needed. According to the invention, by cycling between cooling mode and heat recovery mode, a desired amount of heat between 0 and 100% of the system capability can be transferred to the fluid to be heated.
  • control unit 22 is preferably also utilized and would be connected and programmed in similar manner to provide desired amounts of heat recovery.
  • control unit 22 would preferably further include stepped or otherwise controlled amounts of change in heat recovery mode.
  • control unit 22 in the embodiment of Figure 2 could be programmed to change or cycle one circuit at a time in order to maintain a desired temperature of the heat receiving fluid.
  • Valves 26, 30 are used to selectively recover charge stored in whichever one of condenser 14 and heat exchanger 20 is not active. This charge can help to control the subcooling or saturation temperature of refrigerant measured at sensor 58.
  • FIG. 2 shows a further system in accordance with the present invention, with the additional showing being that two different circuits 1OA and 1OB are provided, each of which selectively communicate with evaporator 18 and heat recovery heat exchanger 20.
  • circuits 1OA and 1OB flow to the same evaporator 18 and the same heat recovery heat exchanger 20, although other configurations are possible and well within the broad scope of the present invention.
  • circuits 1OA, 1OB operated independently in similar fashion to the operation of the system of Figure 1.
  • Each circuit 1OA, 1OB has the same type of components as discussed above regarding Figure 1. Thus, further description of these components is not repeated here.
  • Figure 2 shows heat recovery heat exchanger 20 with a heat exchange line 60 which would carry the fluid to which heat is being provided.
  • Figure 3 shows an example of operation of the present invention. As shown, an end-user would select a set point for desired temperature of fluid to be treated using the heat recovery heat exchanger. A reasonable tolerance is utilized to set a band around the set point, and temperature measurements of the fluid are made. Figure 3 shows the change over time of the temperature in such a system, and begins with the heat reclaim heat exchanger not in use. As the temperature of the fluid (labeled "condenser water temperature" in Figure 3) gradually declines, it eventually hits the lower threshold of the band around the set point. The system is programmed such that, when the lower threshold is hit, valves are controlled to operate at least one circuit in a heat recovery mode to provide heat to the fluid and thereby keep the fluid temperature within the band. Figure 3 shows the temperature of the fluid increasing accordingly after operation in heat recovery mode. When the temperature hits an upper threshold of the range surrounding the set point, the compressor circuit which was being operated in heat reclaim mode is switched off, and the temperature of the fluid again drops.
  • This cycle is repeated, switching heat reclaim mode on when the temperature reaches a lower threshold and switching heat reclaim mode off when the temperature reaches a high level of the band.
  • Figure 3 shows a simple illustration for a system having only one heat recovery heat exchanger. It should be appreciated that with a multiple circuit system, different ranges within the broad operating band could be adapted to trigger adding more circuits to heat recovery mode and/or removing one of a plurality of circuits operating in heat recovery mode so as to provide more flexibility in maintaining the heated fluid temperature as desired.
  • control unit 22 is programmed to operate the system in cooling and heat recovery or reclaim modes, and suitable programming for a two circuit system is described below.
  • condenser 14 is referred to as an air cooled condenser since the condenser is normally cooled by outside air
  • the heat recovery heat exchanger is referred to as a water cooled condenser since this condenser is cooled by the fluid to which heat is being transferred, which in one embodiment is water.
  • control unit 22 controls the changeover from operation in air cooled to reclaim or reclaim to air cooled modes of operation.
  • condenser 14 is considered active, as a major portion of refrigerant is passed through same, and heat recovery heat exchanger 20 is considered inactive, as refrigerant flows through this heat exchanger only in incidental amounts, for example due to an imperfect valve.
  • the inverse of this definition also applies to use of the term "active", that is, in heat reclaim mode the substantial portion of refrigerant flows through heat recovery heat exchanger, and only incidental amounts of refrigerant flow to condenser 14.
  • Changeover from reclaim to air cooled can be caused by: a manual reclaim select change due to a local, remote or other command on the unit.
  • a changeover can also be caused by a heat reclaim temperature change while reclaim has been selected.
  • an algorithm is provided for monitoring the entering reclaim sensor temperature and comparing it with the reclaim setpoint so as to determine if reclaim is active or not.
  • control unit 22 determines if one or two circuits are required to provide heat reclaim capacity. In this manner, control unit 22 maintains the temperature of fluid as close as possible to the desired setpoint, and also avoids frequent changing from air cooled to reclaim or reclaim to air cooled cycles. Programming for control unit 22 can further be illustrated with reference to the below table.
  • pumpdown sessions are periodically utilized to recover refrigerant volumes stored in the non-active heat exchanger. Further according to the invention, it is preferred that both circuits shall not initiate a pumpdown session at the same time. Each circuit therefore has its own reclaim function, and the description below is applied for both circuit.
  • a function is preferably run, for example at every 3 second interval, in order to adjust subcooling correctly during reclaim operation (a longer interval is not recommended) .
  • gas is injected into the water condenser by opening the leaving air condenser valve once, for about 3s, every 20s (This is an air condenser pumpdown as refrigerant is still resident in the air condenser because its capacity is typically larger than the reclaim condenser capacity) .
  • Such a pumpdown is efficient only if the delta pressure between air and suction pressure is correct.
  • Gas injection should not be done if reclaim water temperature is high or saturated condensing temperature is not too high or superheat is not too low.
  • the fluctuation or difference between the high and low points of the range is dependent, among other things, upon the power capacity of the fluid which is receiving the heat.
  • the more water which is passed through the heat exchanger the more gradual will be the change in temperature of this water.
  • an end-user can determine what level of stability is desired in connection with the temperature of the outgoing liquid, and can adjust the amount of water passing through the heat reclaim heat exchanger based upon same.
  • Table 1 below sets forth a series of different stabilities along with volume of the water needed in connection with same.

Abstract

A method for providing controllable amounts of heat recovery from a refrigerant circuit includes the steps of providing a cooling circuit comprising a compressor, a condenser, an expansion device and an evaporator connected in series by refrigerant flow lines; providing a heat recovery circuit comprising a heat recovery heat exchanger, the heat recovery circuit being connected to the cooling circuit so that the heat recovery heat exchanger is in parallel with the condenser, and the heat recovery heat exchanger being in heat exchange relationship with a fluid to be heated based upon an end-user demand for heat; and selectively flowing refrigerant through the condenser of the cooling circuit and the heat recovery heat exchanger of the heat recovery circuit so as to maintain temperature of the fluid within a temperature band around a set point provided by the end user.

Description

REFRIGERATION SYSTEM AND METHOD WITH CONTROLLABLE HEAT RECOVERY
CROSS REFERENCE TO PROVISIONAL APPLICATION
[0001] This application claims the benefit of the filing date of co-pending and commonly owned provisional application serial number 60/615,440, filed September 30, 2004.
BACKGROUND OF THE INVENTION
[0002] The invention relates to a refrigeration system and method for providing heat recovery on a flexible basis as desired by the end-user.
[0003] Cooling circuits of refrigeration units frequently include heat recovery units which allow heat from refrigerant discharged by the compressor to be used for heating other fluids. One example of use of this type of system would be in heating water for satisfying the hot water requirements of a building. This advantageously allows the use of such heat to satisfy other energy needs.
[0004] The needs of various different buildings or other end- users in connection with the amount of heat provided to other fluids from the refrigerant circuit can vary substantially from end-user to end-user, and further can vary significantly over time for any end-user.
[0005] Unfortunately, refrigeration systems with heat recovery circuits are not capable of providing sufficient flexibility to meet the various demands of different end-users, and further the time-changing demands of individual end-users.
[0006] It is the primary object of the present invention to provide a system and method which address these needs.
[0007] Other objects and advantages of the present invention will appear hereinbelow. SUMMARY OF THE INVENTION
[0008] In accordance with the present invention, the foregoing objects and advantages have been readily attained.
[0009] According to the invention, a method is provided for providing controllable amounts of heat recovery from a refrigerant circuit, which method comprises the steps of providing a cooling circuit comprising a compressor, a condenser, an expansion device and an evaporator connected in series by refrigerant flow lines; providing a heat recovery circuit comprising a heat recovery heat exchanger, the heat recovery circuit being connected to the cooling circuit so that the heat recovery heat exchanger is in parallel with the condenser, and the heat recovery heat exchanger being in heat exchange relationship with a fluid to be heated based upon an end-user demand for heat; and selectively flowing refrigerant through the condenser of the cooling circuit and the heat recovery heat exchanger of the heat recovery circuit so as to maintain temperature of the fluid within a temperature band around a set point provided by the end user.
[0010] In further accordance with the present invention, the system may further comprise a plurality of cooling circuits and a plurality of heat recovery circuits, and the selectively flowing step may suitably comprise selectively flowing refrigerant through heat recovery heat exchangers of one or more of the heat recovery circuits.
[0011] The foregoing system and method allow flexible heating of fluid with the heat recovery heat exchanger to satisfy different and changing heat recovery needs of different end- users with a single system. BRIEF DESCRIPTION OF THE DRAWINGS
[0012] A detailed description of preferred embodiments of the present invention follows, with reference to the attached drawings, wherein:
[0013] Figure 1 schematically illustrates a single circuit adapted for cooling and heat reclaim operation according to the invention;
[0014] Figure 2 schematically illustrates a multiple-circuit system embodiment according to the invention; and
[0015] Figure 3 illustrates operation of a system in accordance with the present invention to maintain temperature of a fluid within a particular band utilizing the heat recovery operation of the system of a present invention.
DETAILED DESCRIPTION
[0016] The invention relates to a refrigeration system which includes at least one heat recovery circuit. The system can selectively operate in a conventional cooling mode, and in heat recovery mode to provide transfer of heat from heated refrigerant fluid to a fluid which is desired to be heated. One example of such a fluid is water to meet the hot water requirements of an end-user, for example, the hot water requirements of a building. The system of the present invention can be used to heat fluids such as this water, and functions in such a way that widely varying needs can be met with the same system. Specifically, the system can be used to supply heated fluid at a broad range of different temperature setpoints, and within a selectable range of the setpoint.
[0017] Figure 1 shows a system 10 which includes refrigeration circuit having a compressor 12, a condenser 14, an expansion device 16 and an evaporator 18. While the lines which connect these various components will be further discussed below, it should be readily appreciated that these components when operated in series define a typical refrigeration circuit. Compressed refrigerant from compressor 12 is sequentially passed through condenser 14 and expansion device 16 to evaporator 18, wherein the refrigerant cools a stream of air as desired. Refrigerant from evaporator 18 then returns to compressor 12 to complete the circuit. The refrigerant exiting the compressor has a temperature which is sufficiently high that heat can be effectively transferred to other fluids, for example to water which must be heated to a temperature sufficient for meeting typical domestic, commercial or industrial hot water needs.
[0018] Figure 1 further shows a heat recovery heat exchanger 20 which is positioned to receive refrigerant from system 10 and exchange heat from the refrigerant to a separate stream of fluid
(shown in Figure 2 which is described below) so as to heat this fluid as desired. This fluid may be water for supplying the hot water needs of a building, or any other fluid which can advantageously make use of heat transferred to same from the refrigerant.
[0019] Figure 1 also shows a control unit 22 which is adapted for controlling the system 10 to operate in various different modes as will be further discussed below.
[0020] In order to operate as desired in accordance with the present invention, system 10 is controlled so as to flow refrigerant from compressor 12 to either condenser 14 or heat recovery heat exchanger 20. When refrigerant flows from compressor 12 to heat recovery heat exchanger 20, the high- temperature refrigerant advantageously transfers heat through heat exchanger 20 to the fluid to be heated as desired.
[0021] A series of valves 24, 26, 28 and 30, are positioned along lines of system 10 and operated by control unit 22 so as to direct flow from compressor 12 to condenser 14 or heat recovery heat exchanger 20, and also to direct flow from these components as desired. Thus, flow from compressor 12 passes through a compressor discharge line 32 to a first branch 34 which extends through valve 24 to condenser 14, and through a second branch 36 which extends through valve 28 to heat recovery- heat exchanger 20. From condenser 14, discharge goes through condenser discharge line 38 through a first branch 40 which flows to expansion device 16, and a second branch 42 which flows through valve 26 and line 44 to evaporator 18. Flow from evaporator 18 passes through line 46 to compressor 12.
[0022] Figure 1 also shows check valves 54, 56, which advantageously serve to maintain flow through the lines of system 10 as desired.
[0023] Co-pending and commonly owned U.S. Patent Application serial number 10/957,181, filed September 30, 2005, discloses a method of managing refrigerant charge in a system such as that illustrated in Figure 1, and discloses methods whereby refrigerant charge stored in whichever of condenser 14 and heat recovery heat exchanger 20 is not currently active is used to help maintain a sub-cooling or saturation temperature within a range or setpoint. This application (S.N. 10/957,181) is incorporated herein, in its entirety, by reference.
[0024] In cooling mode, the system is operated as described above, with the valves set to operate without flow through heat recovery heat exchanger 20. During this operation, while condenser 14 gives off heat to an outside location as is well known, heat exchanger 20 stores charge and evaporator 18 cools a stream of air to be conditioned as is well known.
[0025] In heat recovery mode, flow from compressor 12 passes through line 36 to valve 28 which is open so that refrigerant enters heat recovery heat exchanger 20. In ehat exchanger 20, refrigerant gives off heat to a fluid to be heated, for example water. From heat exchanger 20, flow passes to a condenser discharge line 48 and, from there, passes through line 52 to expansion device 16 and then to evaporator 18. A sensor 58 can advantageously be positioned along the refrigerant lines, preferably just upstream of evaporator 16, and is utilized to determine properties of the refrigerant at that point. [0026] Control unit 22 is operatively communicated with each of valves 24, 26, 28 and 30, as well as sensor 58 and advantageously expansion device 16, as shown by the dashed lines in Figure 1. Control unit 22 is advantageously programmed to control the position of the various valves discussed above based upon information from sensor 58, and thereby to determine position of the various valves so as to operate in cooling mode without the heat recovery heat exchanger, or in heat recovery mode, and to cycle between these modes as needed. According to the invention, by cycling between cooling mode and heat recovery mode, a desired amount of heat between 0 and 100% of the system capability can be transferred to the fluid to be heated. In the embodiment of Figure 2 to be discussed below, control unit 22 is preferably also utilized and would be connected and programmed in similar manner to provide desired amounts of heat recovery. In this embodiment, programming of control unit 22 would preferably further include stepped or otherwise controlled amounts of change in heat recovery mode. In other words, control unit 22 in the embodiment of Figure 2 could be programmed to change or cycle one circuit at a time in order to maintain a desired temperature of the heat receiving fluid. [0027] Valves 26, 30 are used to selectively recover charge stored in whichever one of condenser 14 and heat exchanger 20 is not active. This charge can help to control the subcooling or saturation temperature of refrigerant measured at sensor 58. When charge is to be recovered from condenser 14, valve 26 is opened to allow charge to flow through lines 42, 44 to evaporator 18, and when charge is to be recovered from heat exchanger 20, calve 30 is opened to allow charge to flow from heat exchanger 20 through line 50 to evaporator 18. [0028] Figure 2 shows a further system in accordance with the present invention, with the additional showing being that two different circuits 1OA and 1OB are provided, each of which selectively communicate with evaporator 18 and heat recovery heat exchanger 20. In this embodiment, circuits 1OA and 1OB flow to the same evaporator 18 and the same heat recovery heat exchanger 20, although other configurations are possible and well within the broad scope of the present invention. [0029] The system of Figure 2 can be operated with circuits 1OA, 1OB operated independently in similar fashion to the operation of the system of Figure 1. Each circuit 1OA, 1OB has the same type of components as discussed above regarding Figure 1. Thus, further description of these components is not repeated here.
[0030] Figure 2 shows heat recovery heat exchanger 20 with a heat exchange line 60 which would carry the fluid to which heat is being provided.
[0031] It should readily be appreciated that, depending upon the needs of an end-user, the system of Figure 2 can be operated with one or both of the circuits in heat recovery mode, and that this will serve to better provide the desired reclaim heat to the end-user.
[0032] Figure 3 shows an example of operation of the present invention. As shown, an end-user would select a set point for desired temperature of fluid to be treated using the heat recovery heat exchanger. A reasonable tolerance is utilized to set a band around the set point, and temperature measurements of the fluid are made. Figure 3 shows the change over time of the temperature in such a system, and begins with the heat reclaim heat exchanger not in use. As the temperature of the fluid (labeled "condenser water temperature" in Figure 3) gradually declines, it eventually hits the lower threshold of the band around the set point. The system is programmed such that, when the lower threshold is hit, valves are controlled to operate at least one circuit in a heat recovery mode to provide heat to the fluid and thereby keep the fluid temperature within the band. Figure 3 shows the temperature of the fluid increasing accordingly after operation in heat recovery mode. When the temperature hits an upper threshold of the range surrounding the set point, the compressor circuit which was being operated in heat reclaim mode is switched off, and the temperature of the fluid again drops.
[0033] This cycle is repeated, switching heat reclaim mode on when the temperature reaches a lower threshold and switching heat reclaim mode off when the temperature reaches a high level of the band.
[0034] Figure 3 shows a simple illustration for a system having only one heat recovery heat exchanger. It should be appreciated that with a multiple circuit system, different ranges within the broad operating band could be adapted to trigger adding more circuits to heat recovery mode and/or removing one of a plurality of circuits operating in heat recovery mode so as to provide more flexibility in maintaining the heated fluid temperature as desired.
[0035] In this regard, according to the invention, control unit 22 is programmed to operate the system in cooling and heat recovery or reclaim modes, and suitable programming for a two circuit system is described below. In this description, condenser 14 is referred to as an air cooled condenser since the condenser is normally cooled by outside air, and the heat recovery heat exchanger is referred to as a water cooled condenser since this condenser is cooled by the fluid to which heat is being transferred, which in one embodiment is water.
[0036] The software or programming of control unit 22 controls the changeover from operation in air cooled to reclaim or reclaim to air cooled modes of operation. In air cooled operation, condenser 14 is considered active, as a major portion of refrigerant is passed through same, and heat recovery heat exchanger 20 is considered inactive, as refrigerant flows through this heat exchanger only in incidental amounts, for example due to an imperfect valve. The inverse of this definition also applies to use of the term "active", that is, in heat reclaim mode the substantial portion of refrigerant flows through heat recovery heat exchanger, and only incidental amounts of refrigerant flow to condenser 14.
[0037] Changeover from reclaim to air cooled can be caused by: a manual reclaim select change due to a local, remote or other command on the unit. A changeover can also be caused by a heat reclaim temperature change while reclaim has been selected. According to the invention, an algorithm is provided for monitoring the entering reclaim sensor temperature and comparing it with the reclaim setpoint so as to determine if reclaim is active or not.
[0038] If a reclaim function is currently active, or has been selected, the reclaim shall become active when the entering reclaim temperature comes below the reclaim setpoint.
[0039] Based on a difference between reclaim entering water temperature and the reclaim setpoint, control unit 22 determines if one or two circuits are required to provide heat reclaim capacity. In this manner, control unit 22 maintains the temperature of fluid as close as possible to the desired setpoint, and also avoids frequent changing from air cooled to reclaim or reclaim to air cooled cycles. Programming for control unit 22 can further be illustrated with reference to the below table.
Figure imgf000013_0001
[0040] According to the invention, pumpdown sessions are periodically utilized to recover refrigerant volumes stored in the non-active heat exchanger. Further according to the invention, it is preferred that both circuits shall not initiate a pumpdown session at the same time. Each circuit therefore has its own reclaim function, and the description below is applied for both circuit.
[0041] For a change from non-reclaim to reclaim operation, the following procedure is preferred:
[0042] Verify the circuit has run for more than 2 minutes in cooling mode.
[0043] Turn on the reclaim condenser pump if reclaim select is enabled.
[0044] Verify that condenser flow is established: if not after 1 minute delay has elapsed, reclaim operation shall be aborted and an alarm shall be displayed. [0045] Check whether reclaim water entering requires the , circuit to go to a heat reclaim session and whether the number of air cooled to reclaim changeovers is not higher than 4 per hour and whether the last changeover did not occur within a 7 minute delay.
[0046] Wait until saturated condensing temperature minus saturated suction temperature is higher than 100F (100C) .
[0047] Start the air condenser pumpdown sequence by opening the water condenser entering valve, and closing the air condenser valve 3s later.
[0048] After a 1 minute duration or as soon as the subcooling is greater than 13°F, reclaim operation is effective.
[0049] For a change from reclaim to non-reclaim mode, changeover is preferred according to the following procedure:
[0050] Start a water condenser pumpdown sequence by opening the air condenser entering valve, and closing the water condenser valve 3s later.
[0051] If reclaim select is no longer active, turn off condenser pump.
[0052] According to the invention, a function is preferably run, for example at every 3 second interval, in order to adjust subcooling correctly during reclaim operation (a longer interval is not recommended) .
[0053] During a heat recovery operation, too much charge
(high subcooling) can cause high a condensing temperature, and it is necessary to inject gas into the air condenser by opening the entering air condenser valve for example by opening the valve once, for about 3s, and repeating every 20s.
[0054] During heat recovery operation, missing gas
(refrigerant) can cause poor heating performance and/or low subcooling. In order to address this, gas is injected into the water condenser by opening the leaving air condenser valve once, for about 3s, every 20s (This is an air condenser pumpdown as refrigerant is still resident in the air condenser because its capacity is typically larger than the reclaim condenser capacity) . Such a pumpdown is efficient only if the delta pressure between air and suction pressure is correct. Gas injection should not be done if reclaim water temperature is high or saturated condensing temperature is not too high or superheat is not too low.
[0055] In this regard, the fluctuation or difference between the high and low points of the range is dependent, among other things, upon the power capacity of the fluid which is receiving the heat. In other words, the more water which is passed through the heat exchanger, the more gradual will be the change in temperature of this water. Thus, an end-user can determine what level of stability is desired in connection with the temperature of the outgoing liquid, and can adjust the amount of water passing through the heat reclaim heat exchanger based upon same. As one non-limiting example, Table 1 below sets forth a series of different stabilities along with volume of the water needed in connection with same.
Figure imgf000015_0001
[0056] It should readily be appreciated that the system and method of the present invention advantageously provides for extremely flexible specification of heated fluid requirements of an end-user.
[0057] It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention, and which are susceptible of modification of form, size, arrangement of parts and details of operation. The invention rather is intended to encompass all such modifications which are within its spirit and scope as defined by the claims.

Claims

WHAT IS CLAIMED IS:
1. A method for providing controllable amounts of heat recovery from a refrigerant circuit, comprising the steps of: providing a cooling circuit comprising a compressor, a condenser, an expansion device and an evaporator connected in series by refrigerant flow lines; providing a heat recovery circuit comprising a heat recovery heat exchanger, the heat recovery circuit being connected to the cooling circuit so that the heat recovery heat exchanger is in parallel with the condenser, and the heat recovery heat exchanger being in heat exchange relationship with a fluid to be heated based upon an end-user demand for heat/ and selectively flowing refrigerant through the condenser of the cooling circuit and the heat recovery heat exchanger of the heat recovery circuit so as to maintain temperature of the fluid within a temperature band around a set point provided by the end user.
2. The method of claim 1, further comprising a plurality of cooling circuits and a plurality of heat recovery circuits, and wherein the selectively flowing step comprises comparing a temperature of the fluid with a fluid temperature setpoint and increasing a number of heat recovery circuits which are active when the temperature is below the fluid temperature setpoint.
3. The method of claim 2, further comprising the step of decreasing the number of heat recovery circuits which are active when the temperature is greater than the fluid temperature setpoint .
4. The method of claim 1, further comprising the step of cycling the heat recovery circuit between an active mode wherein a substantial portion of refrigerant passes through the heat recovery heat exchanger and transfers heat to the fluid in heat exchange relationship with the heat recovery heat exchanger; and an inactive mode wherein a substantial portion of refrigerant flows to the condenser.
5. A refrigeration system with controllable heat recovery, comprising: a cooling circuit having a compressor, a condenser, an expansion device and an evaporator connected in series by refrigerant flow lines; a heat recovery circuit having a heat recovery heat exchanger, the heat recovery circuit being connected to the cooling circuit so that the heat recovery heat exchanger is in parallel with the condenser, and wherein the heat recovery heat exchanger is in heat exchange relationship with a fluid to be heated based upon an end-user demand for heat; and a control unit programmed to selectively flow refrigerant through the condenser of the cooling circuit and the heat recovery heat exchanger of the heat recovery circuit so as to maintain temperature of the fluid within a temperature band around a set point provided by the end user.
PCT/US2005/035349 2004-09-30 2005-09-30 Refrigeration system and method with controllable heat recovery WO2006039580A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05800853A EP1802922A4 (en) 2004-09-30 2005-09-30 Refrigeration system and method with controllable heat recovery
US11/576,316 US20090120110A1 (en) 2004-09-30 2005-09-30 Refrigeration System and Method with Controllable Heat Recovery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61544004P 2004-09-30 2004-09-30
US60/615,440 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006039580A1 true WO2006039580A1 (en) 2006-04-13

Family

ID=36142890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/035349 WO2006039580A1 (en) 2004-09-30 2005-09-30 Refrigeration system and method with controllable heat recovery

Country Status (4)

Country Link
US (1) US20090120110A1 (en)
EP (1) EP1802922A4 (en)
CN (1) CN101065624A (en)
WO (1) WO2006039580A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036686A1 (en) * 2014-09-02 2016-03-10 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US9366247B2 (en) 2011-04-18 2016-06-14 Gardner Denver Deutschland Gmbh Method for intelligent control of a compressor system with heat recovery
US9879881B2 (en) 2013-03-13 2018-01-30 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
US10458678B2 (en) 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
CN111912128A (en) * 2019-05-09 2020-11-10 开利公司 Refrigeration system utilizing heat recovery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120163A1 (en) * 2009-10-19 2011-05-26 Carrier Corporation Semi-Frozen Product Dispenser
CN102080893A (en) * 2010-12-29 2011-06-01 山东绿能燃气实业有限责任公司 Novel ammonia refrigerating device and technical process
CN102269661B (en) * 2011-07-01 2014-04-30 南京师范大学 Testing system for performance of air-cooled compression condensing unit
CN103874894B (en) 2011-09-02 2017-03-08 开利公司 Refrigeration system and the refrigerating method of recuperation of heat are provided
GB2550781B (en) * 2015-02-24 2020-08-05 Walmart Apollo Llc Refrigeration heat reclaim
WO2016198258A1 (en) 2015-06-08 2016-12-15 Danfoss A/S A method for operating a vapour compression system with heat recovery
CN115031455A (en) * 2022-04-13 2022-09-09 天津大学 Heat recovery control method and device, electronic equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926008A (en) * 1974-08-15 1975-12-16 Robert C Webber Building cooling and pool heating system
JPH0599532A (en) * 1991-10-04 1993-04-20 Mitsubishi Electric Corp Heat pump type hot water feeder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179894A (en) * 1977-12-28 1979-12-25 Wylain, Inc. Dual source heat pump
FR2516223A2 (en) * 1978-08-11 1983-05-13 Zundel Daniel Multi-function modular heat pump - has double evaporators and condensers with low temperature heat storage
US5495723A (en) * 1994-10-13 1996-03-05 Macdonald; Kenneth Convertible air conditioning unit usable as water heater
US5906104A (en) * 1997-09-30 1999-05-25 Schwartz; Jay H. Combination air conditioning system and water heater
US6502412B1 (en) * 2001-11-19 2003-01-07 Dube Serge Refrigeration system with modulated condensing loops
JP3788419B2 (en) * 2002-11-07 2006-06-21 松下電器産業株式会社 Water heater
JP3869798B2 (en) * 2003-01-14 2007-01-17 三洋電機株式会社 Heat pump water heater / heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926008A (en) * 1974-08-15 1975-12-16 Robert C Webber Building cooling and pool heating system
JPH0599532A (en) * 1991-10-04 1993-04-20 Mitsubishi Electric Corp Heat pump type hot water feeder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366247B2 (en) 2011-04-18 2016-06-14 Gardner Denver Deutschland Gmbh Method for intelligent control of a compressor system with heat recovery
US9879881B2 (en) 2013-03-13 2018-01-30 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
US9945582B2 (en) 2013-03-13 2018-04-17 Rheem Manufacturing Company Apparatus and methods for pre-heating water with air conditioning unit or heat pump
US10871307B2 (en) 2013-03-13 2020-12-22 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant from air conditioning system
WO2016036686A1 (en) * 2014-09-02 2016-03-10 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US9945587B2 (en) 2014-09-02 2018-04-17 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US10041702B2 (en) 2014-09-02 2018-08-07 Rheem Manufacturing Company Apparatus and method for hybrid water heating and air cooling and control thereof
US10458678B2 (en) 2016-07-06 2019-10-29 Rheem Manufacturing Company Apparatus and methods for heating water with refrigerant and phase change material
CN111912128A (en) * 2019-05-09 2020-11-10 开利公司 Refrigeration system utilizing heat recovery

Also Published As

Publication number Publication date
EP1802922A4 (en) 2010-06-02
CN101065624A (en) 2007-10-31
EP1802922A1 (en) 2007-07-04
US20090120110A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
EP1802922A1 (en) Refrigeration system and method with controllable heat recovery
US9518754B2 (en) Air-conditioning apparatus
KR101192346B1 (en) Heat pump type speed heating apparatus
EP2631562B1 (en) Heat pump-type air-warming device
EP2381180B1 (en) Heat pump type hot water supply apparatus
EP3246634B1 (en) Air-conditioning device
CN109386909B (en) Outdoor unit, oil return control method and air conditioner
KR20060108222A (en) Wide temperature range air-condition heat pump
US20110041541A1 (en) Air Conditioner
EP2482014B1 (en) Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
CN102072559A (en) Heat pump type hot water supply apparatus
JP2008224088A (en) Hot water system
KR101155497B1 (en) Heat pump type speed heating apparatus
WO2006120922A1 (en) Refrigeration cycle system
CN105579794A (en) Air conditioner
CN107490090B (en) Air conditioner
CN112739966A (en) Heat pump device
CN212538209U (en) Heat pump system, heat pump air conditioner comprising same and heat pump water heater
CN101365917A (en) Defrost system
KR100712196B1 (en) Heat pump system and a method for eliminating frost on the outdoor heat exchanger of the heat pump system
KR100822432B1 (en) Air conditioner having auxiliary exchanger
KR101161381B1 (en) Refrigerant cycle apparatus
CN105650822A (en) Air conditioner for heat pump and defrosting method of air conditioner for heat pump
CN100436970C (en) Air conditioner and its control method for the pressure equilibrium
CN211424782U (en) Hot fluorine defrosting device and air conditioning unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11576316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005800853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580040776.5

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005800853

Country of ref document: EP