WO2006038595A1 - Base station device and packet communication method - Google Patents

Base station device and packet communication method Download PDF

Info

Publication number
WO2006038595A1
WO2006038595A1 PCT/JP2005/018307 JP2005018307W WO2006038595A1 WO 2006038595 A1 WO2006038595 A1 WO 2006038595A1 JP 2005018307 W JP2005018307 W JP 2005018307W WO 2006038595 A1 WO2006038595 A1 WO 2006038595A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
terminal device
terminal
time slot
base station
Prior art date
Application number
PCT/JP2005/018307
Other languages
French (fr)
Japanese (ja)
Inventor
Isamu Yoshii
Akihiko Nishio
Atsushi Matsumoto
Jun Cheng
Kenichi Miyoshi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to BRPI0516458-3A priority Critical patent/BRPI0516458A/en
Priority to JP2006539286A priority patent/JPWO2006038595A1/en
Publication of WO2006038595A1 publication Critical patent/WO2006038595A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0089Multiplexing, e.g. coding, scrambling, SONET
    • H04J2203/0091Time slot assignment

Definitions

  • the present invention relates to a base station apparatus that performs packet communication with a communication terminal apparatus and a bucket communication method thereof.
  • a technique called scheduling is used for a packet transmission method in which a plurality of communication terminal apparatuses transmit a packet on a line shared by time division.
  • Scheduling is a technique in which a base station apparatus assigns communication terminal apparatuses for each time slot.
  • the communication terminal device that received the packet transmits an ACK signal or NACK signal depending on whether or not the packet has been correctly demodulated, and when the base station device receives the ACK signal, a packet different from that packet (new When a NACK signal is received, the same packet (retransmission packet) is retransmitted.
  • the communication terminal device that is the transmission destination of the packet that is, the communication terminal device to which the time slot is allocated, is selected from among the plurality of communication terminal devices that share the line. Determined based on quality. For example, in the conventional base station device described in Patent Document 1, a packet is transmitted to a communication terminal device having the best reception quality among a plurality of communication terminal devices.
  • Patent Document 1 JP 2004-80165 A
  • the communication terminal apparatus that is the packet transmission destination is simply determined based on the reception quality, that is, the communication terminal apparatus having the best reception quality is determined as the packet transmission destination. Therefore, the allocation probability of a certain communication terminal device tends to be higher than that of other communication terminal devices. That is, while packet transmission to a certain communication terminal device is frequent, packet transmission to other communication terminal devices is low. Sometimes.
  • An object of the present invention is to provide a base station apparatus and a packet communication method that can improve the throughput of the entire system.
  • the base station apparatus of the present invention includes terminal allocation means for allocating a time slot to a first terminal apparatus among a plurality of terminal apparatuses, and information relating to dispersion on the frequency axis of interference signals for the first terminal apparatus And when the dispersion of the interference signal of the first terminal device is equal to or higher than a specific level, a packet different from the retransmission packet addressed to the first terminal device is assigned to the time slot, and A configuration is adopted that includes packet allocating means for avoiding retransmission packets addressed to the first terminal apparatus being assigned to the time slot, and transmitting means for transmitting the packet assigned to the time slot.
  • the throughput of the entire system can be improved.
  • FIG. 1 is a block diagram showing a configuration of a base station apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining an interference dispersion calculation method according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart for explaining the operation of the scheduler according to the first embodiment of the present invention.
  • FIG. 5A is a diagram for explaining a specific operation example of the scheduler according to the first embodiment of the present invention.
  • FIG. 5B is a diagram for explaining a specific operation example of the scheduler according to Embodiment 1 of the present invention.
  • FIG. 5C is a diagram for explaining a specific operation example of the scheduler according to Embodiment 1 of the present invention.
  • FIG. 5D is a diagram for explaining a specific operation example of the scheduler according to Embodiment 1 of the present invention.
  • FIG. 6 Diagram for explaining the effect of packet retransmission on the magnitude of interference dispersion
  • FIG. 8 is a block diagram showing a configuration of a base station apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a base station apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is a flowchart for explaining the operation of the scheduler according to the third embodiment of the present invention.
  • FIG. 12A is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
  • FIG. 12B is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
  • FIG. 12C is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
  • FIG. 12D is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
  • FIG. 13 is a block diagram showing a configuration of a base station apparatus according to Embodiment 4 of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the base station apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 shows a communication terminal device (hereinafter referred to as a packet communication device) that performs packet communication with the base station device 100 of FIG.
  • a packet communication device a communication terminal device that performs packet communication with the base station device 100 of FIG.
  • FIG. 2 is a block diagram illustrating a configuration of “terminal”.
  • Base station apparatus 100 includes antenna 101, reception RF section 102, demodulation section 103, interference dispersion information recovery.
  • Unit 2 includes an antenna 151, a reception RF unit 152, a demodulation unit 153, a synthesis unit 154, a nofer 155, an error correction decoding unit 156, an error detection unit 157, a switch unit 158, and an ACKZNACK signal generation.
  • Unit 159 interference signal extraction unit 160, interference dispersion calculation unit 161, interference dispersion information generation unit 162, SINR (Signal to Interference and Noise Ratio) measurement unit 163, SINR information generation unit 164, modulation unit 165, and transmission RF unit 166
  • SINR Signal to Interference and Noise Ratio
  • reception RF section 102 receives an OFDM (Orthogonal Frequency Division Multiplexing) signal transmitted from n terminals 150 currently in communication via antenna 101, and converts the received signal into the OFDM signal. Then, predetermined radio processing is performed, and a baseband signal is output to the demodulation unit 103. Demodulation section 103 demodulates the OFDM signal output from reception RF section 102.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Interference dispersion information decoding section 104 serving as acquisition means decodes interference dispersion information indicating interference dispersion (described later) of each terminal 150 from the output signal of demodulation section 103 and outputs the decoded information to scheduler 107.
  • ACKZNACK signal decoding section 105 decodes an ACK (Acknowledgement) signal or NACK (Negative Acknowledgement) signal of each terminal 150 from the output signal of demodulation section 103, and outputs the decoding result to scheduler 107.
  • SINR information decoding section 106 decodes the SINR information of each terminal 150 from the output signal of demodulation section 103 and outputs it to scheduler 107.
  • Scheduler 107 receives the interference dispersion information of each terminal 150 input from interference dispersion information decoding section 104, the ACKZN ACK signal and SINR information decoding section 106 of each terminal 150 input from ACKZNACK signal decoding section 105, and so on. Based on the SINR information of each terminal 150, downlink packet communication scheduling is performed. In other words, the process of assigning time slots to any terminal 150 (terminal assignment) is performed for each time slot. More specifically, the scheduler 107, as a control means, transmits a retransmission packet to / from a terminal 150 when the interference dispersion of the terminal 150 to which the time slot is allocated is equal to or higher than a specific level.
  • Control is performed to avoid retransmission packet transmission between the communication unit and its terminal 150 by causing the communication unit described later to perform packet communication different from the above.
  • a terminal allocation means a time slot is allocated to the terminal 150 having the largest SINR among the plurality of terminals 150.
  • a packet allocation means a new packet or retransmission packet is allocated to each time slot, and if the interference variance of the terminal 150 to which the time slot is allocated exceeds a specific level, it is different from the retransmission packet addressed to that terminal 150.
  • a packet is assigned to the time slot, and a retransmission packet addressed to the terminal 150 is prevented from being assigned to the time slot.
  • scheduler 107 determines a modulation scheme and a coding rate (MCS) based on the SINR information of that terminal 150, and performs MCS indication Part 110 is notified. Further, based on the above determination, the packet generation instructing unit 108 is notified of the terminal 150 to which the time slot is allocated and the data amount of the packet to be generated. In addition, terminal 150 to which the time slot is allocated and the ACK signal or NACK signal are notified to buffer instruction section 109. In addition, terminal 150 and MCS to which the time slot is allocated are notified to multiplexing method instruction signal generation section 111.
  • MCS modulation scheme and a coding rate
  • the packet generation instruction unit 108 instructs the packet generation unit 113 to generate a packet having a data amount notified from the scheduler 107, which is a packet addressed to the terminal 150 to which the time slot is assigned.
  • the packet generation unit 113 uses data addressed to the terminal 150 to which the time slot is allocated (data # 1 to data #n , which is a shift), and the terminal 150 A packet addressed to the address is generated and output to the buffer 114.
  • the noffer instruction unit 109 instructs the buffer 114 to select a packet addressed to the terminal 150 to which the time slot is assigned.
  • the buffer 114 is instructed to delete a packet left in preparation for retransmission, and the packet generated by the packet generator 113 is stored in the buffer 114. Indicate.
  • the input NACK Instructs the buffer 114 to leave a packet corresponding to the signal.
  • the noffer 114 selects a packet addressed to the terminal 150 to which the time slot is assigned. At this time, when an ACK signal is input to the nota instruction unit 109, the buffer 114 deletes the packet stored for retransmission and stores the packet generated by the packet generation unit 113 for retransmission. At the same time, it is output to the error correction code field 115. In addition, when a NACK signal is input to the notch 109, the buffer 114 outputs the packet stored for retransmission to the error correction code unit 115.
  • the MCS instruction unit 110 instructs the error correction code unit 115 of the code rate notified from the scheduler 107 and also instructs the modulation unit 116 of the modulation scheme notified from the scheduler 107.
  • the error correction code encoding unit 115 encodes the packet input from the nother 114 in accordance with an instruction from the MCS instruction unit 110 and outputs the packet to the modulation unit 116.
  • Modulation section 116 performs OF DM modulation on the packet input from error correction code encoding section 115 in accordance with an instruction from MCS instruction section 110, and outputs the result to multiplexing section 117.
  • Multiplex method instruction signal generation section 111 generates a multiple method instruction signal indicating information related to terminal allocation and MCS.
  • Modulation section 112 modulates the generated multiplexing method instruction signal.
  • Multiplexing section 117 multiplexes each modulated packet and multiplexing method instruction signal.
  • the transmission RF section 118 performs predetermined radio processing on the multiplexed OFDM signal, and transmits the radio signal after the radio processing to the packet transmission destination terminal 150 via the antenna 101.
  • multiplexing method instruction signal generation section 111 the combination of multiplexing method instruction signal generation section 111, modulation section 112, packet generation section 113, buffer 114, error correction code section 115, modulation section 116, multiplexing section 117, and transmission RF section 118 is
  • a communication unit that performs packet communication with the terminal 150 to which the time slot is allocated is configured, and a transmission unit that transmits the packet allocated to the time slot is configured.
  • reception RF section 152 receives an OFDM signal transmitted from base station apparatus 100 via antenna 151, and performs a predetermined process on the OFDM signal. Radio processing is performed, and a baseband signal is output to demodulation section 153. Demodulation section 153 demodulates the OFDM signal output from reception RF section 152.
  • Combining section 154 combines the output signal of demodulation section 153 and the signal stored in buffer 155, and outputs the combined signal obtained by the combining to buffer 155 and error correction decoding section 156.
  • the buffer 155 outputs the stored signal to the synthesis unit 154 and overwrites and saves the new signal output from the synthesis unit 154.
  • Error correction decoding section 156 performs error correction decoding processing such as Viterbi decoding on the output signal of combining section 154, and outputs the result to error detection section 157 and switch section 158.
  • Error detection section 157 performs error detection (CRC determination) on the output signal of error correction decoding section 156, and outputs the error detection result to ACKZNACK signal generation section 159. If an error is detected by error detection, error detection section 157 disconnects switch section 158, and the output signal (received data) of error correction decoding section 156 is output to a device that performs a post-process not shown in the figure. To prevent that. On the other hand, when an error is detected by the error detection, the error detection unit 157 deletes the signal stored in the nota 155 and connects the switch unit 158. In this case, the output signal (received data) of error correction decoding section 156 is output to the device that performs the above-described subsequent process.
  • CRC determination CRC determination
  • ACKZNACK signal generation section 159 generates an ACK signal or a NACK signal according to the error detection result input from error detection section 157. If no error is detected by error detection, an ACK signal is generated. On the other hand, if an error is detected, a NACK signal is generated. The generated ACK signal or NACK signal is output to modulation section 165.
  • SINR measurement section 163 measures SINR using the output signal of reception RF section 152.
  • the S INR information generation unit 164 generates SINR information based on the SINR measurement result of the SINR measurement unit 163! /.
  • the SINR information may indicate numbers that represent discrete SINR discretely, or may indicate measured values as they are.
  • the generated SINR information is output to modulation section 165.
  • Interference signal extraction section 160 extracts a signal addressed to other terminal 150 from the output signal of demodulation section 153 as an interference signal for own terminal 150. That is, a signal obtained by removing a signal addressed to own terminal 150 from the received signal is extracted as an interference signal. The extracted interference signal is It is output to the interference variance calculation unit 161.
  • Interference dispersion calculation section 161 calculates the dispersion of interference signals on the frequency axis (hereinafter referred to as “interference dispersion”), in other words, the dispersion (nonuniformity) of interference power on the frequency axis. .
  • the calculated interference variance is output to interference variance information generation section 162.
  • the calculation of interference dispersion will be specifically described with reference to FIG.
  • the calculation of interference dispersion in the case of four subcarriers is illustrated.
  • the real value of the power for each subcarrier of the interference signal is [0.5, 0.5, 1.0, 2.0] as shown in Fig. 3
  • the interference variance is calculated by the following (Equation 1).
  • the real value is calculated after setting the power of the third subcarrier to the reference value, but the method of setting the reference value is not limited to this.
  • Interference dispersion information generation section 162 generates interference dispersion information for notifying base station apparatus 100 of interference dispersion that is an output signal of interference dispersion calculation section 161.
  • the generated interference dispersion information is output to modulation section 165.
  • Modulation section 165 performs OFDM modulation on the output signals of ACKZNACK signal generation section 159, interference dispersion information generation section 162, and SINR information generation section 164, and outputs the result to transmission RF section 166.
  • Transmission RF section 166 performs predetermined radio processing on the OFDM signal output from modulation section 165, and transmits the radio signal after radio processing to base station apparatus 100 via antenna 151.
  • step ST 1001 normal scheduling is performed based on SINR information notified from each terminal 150. That is, a time slot is assigned to terminal 150 having the largest SINR.
  • step ST1002 based on the ACK signal or NACK signal notified from terminal 150 to which a time slot is allocated, the packet transmitted to terminal 150 is a new packet or a retransmission packet. Determine whether.
  • step ST1002 if the packet transmitted to terminal 150 is a new packet (ST1002: NO), the new packet is directly assigned to the time slot (ST1003). Therefore, in this case, a new packet is transmitted.
  • the threshold value is set to a value obtained by adding a margin to the received average interference amount.
  • step ST1004 If the result of determination in step ST1004 is that the interference variance is less than the threshold (ST1004: NO), the retransmission packet is assigned to the time slot as it is (ST1005). Therefore, in this case, a retransmission packet is transmitted.
  • the transmission of a new packet addressed to terminal 150 is determined and the data amount is notified to packet generation instructing section 108. Also, the generated new packet is assigned to the time slot (ST1006). Therefore, in this case, a new packet is transmitted.
  • the retransmission packet from which transmission is avoided is assigned to the next transmission queue (ST100 7).
  • the retransmission packet stored in the nother 114 is stored as it is and becomes a transmission candidate again in the next scheduling cycle. For example, when scheduling is performed every 2 msec, the flow in Fig. 4 is executed again 2 msec after transmission is avoided. If the interference variance becomes lower than the threshold at that time, the retransmission packet is transmitted.
  • Each SINR of terminals A to C in the section from time tl to tl7 is shown in (a).
  • the scheduler 107 refers to these SINRs and assigns each time slot in the transmission queue corresponding to this section to any of the terminals A to C.
  • the result of this assignment is shown in (b). Specifically, at time tl to t3, terminal A has the highest SINR, so a time slot is assigned to terminal A, and at time t4 to t6, terminal B has the highest SINR, so terminal B has a time slot. At time t7-9, terminal A has the highest SINR, so time slot is assigned to terminal A, and at time tlO-tl3, terminal B has the highest SINR, so time slot is assigned to terminal B. At time tl4 to tl7 Since the SINR is the highest, a time slot is assigned to terminal C.
  • scheduler 107 newly creates a packet addressed to a terminal to which each time slot is assigned based on the ACK signal or NACK signal from each terminal A to C. It is determined whether it should be a packet or a retransmission packet.
  • the packets corresponding to the time slots at times t3, t6, t8, t9, and tl2 to tl5 are retransmission packets.
  • the scheduler 107 refers to the interference dispersion of the terminals A to C in the section from time tl to tl7. These interference variances are shown in (c). According to the notified interference dispersion, the interference dispersion of terminal A at times t5 to tl7 is equal to or greater than the threshold value.
  • FIG. 6 shows the normalized throughput for each SINR.
  • Curve D shows the case where the interference signal is the same as that of stationary thermal noise and the variance is lower than a predetermined level and is a signal (hereinafter referred to as “white signal”), and ARQ (Automatic Repeat Request) control is performed. Shows the throughput of the case. Curve D is when the interference signal is a white signal and ARQ control is performed.
  • Curve D Shows the throughput when trapping. Curve D shows that the interference signal differs from stationary thermal noise.
  • the throughput is shown when the ARQ control is used.
  • the interference signal for UE1 is a colored signal and for U E2
  • the interference signal is a white signal
  • the magnitude of the SINR improvement with ARQ control compared to the case without ARQ control, that is, the packet retransmission effect is about 3 dB
  • the UE For 1 the interference signal is a colored signal, so the packet retransmission effect is about ldB
  • the power (Pd) of the desired signal (S) after synthesis is equal to the power (Pa) of the desired signal (S) at the time of new transmission. This is the sum of the power (Pa) of the desired signal (S) at the time of retransmission.
  • the power (Pe—Pd) of the synthesized noise signal (N) is the power of the noise signal (N) at the time of new transmission (Pb—Pa) and the power of the noise signal (N) at the time of retransmission (Pb-Pa). ) Respectively.
  • the power (Pf—Pe) of the combined interference signal (I) is the power (Pc—Pb) of the interference signal (I) at the time of new transmission and the power (P c ⁇ Pb) of the interference signal (I) at the time of retransmission. Each is equivalent to Pb).
  • the interference signal is the power (Pd) of the desired signal (S) after synthesis and the power (Pe-Pd) of the noise signal (N) after synthesis.
  • the power (Pg—Pe) of the combined interference signal (I) is equal to that of the interference signal (I) at the time of new transmission. This is the sum of the power (Pc – Pb) and the power (Pc – Pb) of the interference signal (I) during retransmission. Therefore, when the interference signal is a colored signal, the SINR improvement effect by packet retransmission is smaller than when the interference signal is a white signal.
  • a terminal assigned by normal scheduling compares the interference dispersion with a threshold value, and when the interference dispersion is less than the threshold value, avoids transmission of a retransmission packet addressed to that terminal, and By sending new packets, throughput can be improved.
  • the interference variance of terminal 150 to which a time slot is assigned is equal to or greater than the threshold
  • a new packet addressed to terminal 150 is assigned to the time slot, and terminal 150 is assigned.
  • the retransmission packet addressed to the time slot is assigned, it is possible to avoid the retransmission of the retransmission packet from the base station apparatus 100 to the terminal 150 having a small retransmission effect repeatedly, and in the downlink.
  • the throughput of the entire system can be improved.
  • FIG. 8 is a block diagram showing the configuration of the base station apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a configuration of the terminal according to the present embodiment. Note that base station apparatus 200 in FIG. 8 and terminal 250 in FIG. 9 have the same basic configuration as base station apparatus 100 and terminal 150 described in Embodiment 1, respectively. Therefore, the same components as those described in Embodiment 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Base station apparatus 200 has GIVEUP signal decoding section 201 and scheduler 202 instead of interference dispersion information decoding section 104 and scheduler 107 described in Embodiment 1.
  • GIVEUP signal decoding section 201 as an acquisition means decodes a GIVEUP signal indicating that the interference dispersion of any terminal 250 is above a specific level from the output signal of demodulation section 103, and scheduler 202 Output to.
  • the scheduler 202 has the same basic configuration as the scheduler 107. If the scheduler 202 uses the GIVEUP signal of any terminal 250 input from the GIVEUP signal decoding unit 201 instead of the interference dispersion information, it is different from the scheduler 107!
  • Terminal 250 in FIG. 9 has GIVEUP signal generation section 251 instead of interference dispersion information generation section 162 described in Embodiment 1.
  • GIVEUP signal generation section 251 stores in advance a predetermined threshold value used for comparison with interference dispersion that is an output signal of interference dispersion calculation section 161. This threshold value is the same as the threshold value used by the scheduler 107 described in Embodiment 1 for comparison with interference dispersion. Then, compare the interference variance with its threshold. As a result of the comparison, if the interference variance is greater than or equal to the threshold value, a GIVEUP signal is generated. The generated GIVEUP signal is output to modulation section 165 and subjected to OFDM modulation by modulation section 165.
  • the GIVEUP signal is a signal for notifying the base station apparatus 200 that the interference dispersion is equal to or greater than the threshold value, and for causing the base station apparatus 200 to avoid transmission of a retransmission packet addressed to the terminal 250 itself.
  • Embodiment 3 the same operational effects as in Embodiment 1 can be realized, and only when the interference dispersion of terminal 250 is greater than or equal to the threshold value, notification to that effect is given to base station apparatus 200. Therefore, the amount of signaling information can be reduced.
  • FIG. 10 is a block diagram showing the configuration of the base station apparatus according to Embodiment 3 of the present invention.
  • base station apparatus 300 in FIG. 10 has the same basic configuration as base station apparatus 100 described in the first embodiment, and has the same constituent elements as those described in the previous embodiment. The detailed description is abbreviate
  • Base station apparatus 300 performs packet communication with terminal 150 described in the first embodiment.
  • Base station apparatus 300 includes scheduler 301 instead of scheduler 107 described in the first embodiment.
  • the scheduler 301 has the same basic configuration as the scheduler 107, but is different from the scheduler 107 in the configuration as a terminal allocation unit. That is, scheduler 301 assigns a time slot to terminal 150 having the maximum SINR among a plurality of terminals 150, and differs from terminal 150 when the interference variance of terminal 150 to which the time slot is assigned exceeds a specific level. Assign a time slot to terminal 150.
  • steps ST1001 to ST1005 the same processing as in the first embodiment is performed.
  • step ST1004 If the result of determination in step ST1004 is that the interference variance is greater than or equal to a threshold (ST1004: YES), it is determined whether or not the number of times the terminal 150 to which the time slot is allocated has changed reaches a predetermined value (ST2001). ). Note that the value used for comparison with the number of changes may be the number n of terminals 150 currently in communication, or an arbitrary integer smaller than n.
  • step ST2001 if the number of changes has not reached the predetermined value (ST2 002: NO), the terminal 150 to which the time slot is allocated is the terminal 150 (that is, the current processing target) The terminal is changed to the terminal 150 having the next highest SINR after the terminal 150) to which the time slot is allocated (ST2002).
  • step ST2003 the same processing as ST1007 described in the first embodiment is performed. That is, the retransmission packet for which transmission has been avoided is assigned to the next transmission queue.
  • step ST1001 that is, the maximum SINR end
  • ST2004 a new packet addressed to end 150 is assigned to a time slot (ST2004).
  • Each SINR of terminals A to C in the section from time tl to tl7 is shown in (a).
  • the scheduler 301 refers to these SINRs and assigns each time slot in the transmission queue corresponding to this section to any of the terminals A to C.
  • the result of this assignment is shown in (b). Specifically, at time tl to t3, terminal A has the highest SINR, so a time slot is assigned to terminal A, and at time t4 to t6, terminal B has the highest SINR, so terminal B has a time slot. At times t7-9, terminal A has the highest SINR, so time slot is assigned to terminal A, and at times tl0-tl3, terminal B has the highest SINR, so time slot is assigned to terminal B. At times tl4 to tl7, since the terminal SINR is the highest, a time slot is assigned to terminal C.
  • a packet addressed to a terminal assigned with each time slot is a new packet based on the ACK signal or NACK signal from each terminal A to C. Or retransmission packet.
  • packets corresponding to time slots at times t3, t6, t8, t9, and tl2 to tl5 are retransmission packets.
  • the scheduler 301 refers to the interference dispersion of the terminals A to C in the section from time tl to tl7. These interference variances are shown in (c). According to the notified interference dispersion, the interference dispersion of terminal A at times t5 to tl7 is equal to or greater than the threshold value.
  • the interference variance for a terminal assigned by normal scheduling is compared with a threshold, and if the interference variance is less than the threshold, transmission of a retransmission packet addressed to that terminal is avoided, and packets destined for other terminals are You can send.
  • FIG. 13 is a block diagram showing the configuration of the base station apparatus according to Embodiment 4 of the present invention.
  • base station apparatus 400 in FIG. 13 has the same basic configuration as base station apparatus 100 described in the first embodiment, and is identical to the same components as those described in the previous embodiment. The detailed description is abbreviate
  • Base station apparatus 400 performs packet communication with terminal 250 described in the second embodiment.
  • Base station apparatus 400 has GIVEUP signal decoding section 201 described in Embodiment 2 instead of interference dispersion information decoding section 104 described in Embodiment 1, and includes scheduler 107 described in Embodiment 1. Instead of the scheduler 401.
  • Scheduler 401 has the same basic configuration as scheduler 301 described in the third embodiment.
  • the scheduler 401 is different from the scheduler 301 when the GIVEUP signal of the other terminal 250 is used instead of the interference dispersion information and the GIVEUP signal of the terminal 250 is input.
  • each of the above-described embodiments has been described by taking the case of scheduling packet transmission on the downlink as an example.
  • the present invention is also applied to scheduling of packet transmission on the uplink. Can do. That is, if the interference variance of a terminal to which a time slot is allocated is greater than or equal to a threshold value, a different transmission from that for retransmission packet transmission to that terminal.
  • a threshold value a different transmission from that for retransmission packet transmission to that terminal.
  • Each functional block used in the description of each embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip to include some or all of them.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI super LSI
  • monolithic LSI monolithic LSI
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. It is also possible to use a field programmable gate array (FPGA) that can be programmed after LSI manufacture and a reconfigurable processor that can reconfigure the connection and settings of circuit cells inside the LSI.
  • FPGA field programmable gate array
  • Embodiments 1 and 3 When the error correction code key unit 115 performs an error correction code key using a systematic code such as a turbo code or an LDPC code, a systematic bit that is a transmission bit itself by the code key, Redundancy bits, NORITY bits, are generated. Therefore, in Embodiments 1 and 3, a new packet is replaced with a packet including both systematic bits and parity bits, and the present invention is implemented using a packet including only the NORMAL bit as a retransmission packet. Yo ... A bucket that contains both systematic and parity bits is a packet that can be decoded independently, as well as a new packet, while a packet that contains only the NORITY bit is a packet that cannot be decoded alone.
  • a systematic code such as a turbo code or an LDPC code
  • the base station apparatus and packet communication method of the present invention are useful for performing packet communication with a terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

There is provided a base station device capable of improving the throughput of the entire system. The base station device (100) performs packet communication with a communication terminal (150) to which a time slot is allocated. An interference distribution information decoding unit (104) acquires information on the distribution of the interference signal to the terminal (150) on a frequency axis. When the distribution of the interference signal of the terminal (150) reaches a particular level, a scheduler (107) evades transmission of a retransmission packet between the base station device (100) and the terminal (150) by a packet communication different from the transmission of the retransmission packet to/from the terminal (150).

Description

明 細 書  Specification
基地局装置およびパケット通信方法  Base station apparatus and packet communication method
技術分野  Technical field
[0001] 本発明は、通信端末装置との間でパケット通信を行う基地局装置およびそのバケツ ト通信方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a base station apparatus that performs packet communication with a communication terminal apparatus and a bucket communication method thereof.
背景技術  Background art
[0002] 複数の通信端末装置が時分割により共有する回線でパケットを送信するパケット伝 送方式には、スケジューリングと呼ばれる技術が用いられる。スケジューリングとは、 基地局装置がタイムスロット毎に通信端末装置の割り当てを行う技術である。  [0002] A technique called scheduling is used for a packet transmission method in which a plurality of communication terminal apparatuses transmit a packet on a line shared by time division. Scheduling is a technique in which a base station apparatus assigns communication terminal apparatuses for each time slot.
[0003] 以下、一般的なパケット伝送方式について、下り回線のパケット伝送方式を例にと つて説明する。パケットを受信した通信端末装置では、そのパケットを正しく復調でき たか否かに応じて ACK信号または NACK信号を送信し、基地局装置では、 ACK信 号を受信したときはそのパケットと異なるパケット (新規パケット)を送信する一方、 NA CK信号を受信したときはそのパケットと同一のパケット (再送パケット)を再送する。  [0003] Hereinafter, a general packet transmission scheme will be described taking a downlink packet transmission scheme as an example. The communication terminal device that received the packet transmits an ACK signal or NACK signal depending on whether or not the packet has been correctly demodulated, and when the base station device receives the ACK signal, a packet different from that packet (new When a NACK signal is received, the same packet (retransmission packet) is retransmitted.
[0004] パケットの送信先となる通信端末装置、つまりタイムスロットが割り当てられる通信端 末装置を、回線を共有する複数の通信端末装置の中のどれにするかは、例えば各 通信端末装置の受信品質に基づ 、て決定される。例えば特許文献 1に記載された 従来の基地局装置では、複数の通信端末装置のうち受信品質の最も良い通信端末 装置に対してパケットの送信が行われる。  [0004] The communication terminal device that is the transmission destination of the packet, that is, the communication terminal device to which the time slot is allocated, is selected from among the plurality of communication terminal devices that share the line. Determined based on quality. For example, in the conventional base station device described in Patent Document 1, a packet is transmitted to a communication terminal device having the best reception quality among a plurality of communication terminal devices.
特許文献 1 :特開 2004— 80165号公報  Patent Document 1: JP 2004-80165 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記従来の基地局装置においては、パケット送信先となる通信端末 装置を受信品質に基づいて単純に決定する、つまり、受信品質の最も良い通信端末 装置をパケット送信先に決定するため、ある通信端末装置の割り当て確率が他の通 信端末装置に比べて高くなる傾向がある。すなわち、ある通信端末装置へのパケット 送信が高頻度となる一方で、その他の通信端末装置へのパケット送信が低頻度とな ることがある。 However, in the conventional base station apparatus described above, the communication terminal apparatus that is the packet transmission destination is simply determined based on the reception quality, that is, the communication terminal apparatus having the best reception quality is determined as the packet transmission destination. Therefore, the allocation probability of a certain communication terminal device tends to be higher than that of other communication terminal devices. That is, while packet transmission to a certain communication terminal device is frequent, packet transmission to other communication terminal devices is low. Sometimes.
[0006] ところで、ある通信端末装置に対して伝送されたパケットに誤りが発生したときは、 その通信端末装置に対して再送パケットが伝送されることとなるが、再送によって誤り が訂正される可能性、換言すれば、再送効果の得られる可能性が最も高い通信端末 装置は、受信品質の最も良い通信端末装置であるとは限らない。したがって、割り当 て確率の高い通信端末装置に対してパケットの再送を行っても、誤りが訂正されずに 何度も再送が繰り返されるという状況が起こり得る。よって、従来の基地局装置にお いて行われるパケット通信では、システム全体のスループットの向上に一定の限界が ある。  [0006] By the way, when an error occurs in a packet transmitted to a certain communication terminal device, a retransmission packet is transmitted to the communication terminal device, but the error can be corrected by retransmission. In other words, the communication terminal apparatus having the highest possibility of obtaining the retransmission effect is not necessarily the communication terminal apparatus having the best reception quality. Therefore, even if a packet is retransmitted to a communication terminal apparatus having a high allocation probability, a situation may occur in which retransmission is repeated many times without error correction. Therefore, in packet communication performed in a conventional base station apparatus, there is a certain limit to improving the throughput of the entire system.
[0007] 本発明の目的は、システム全体のスループットを向上させることができる基地局装 置およびパケット通信方法を提供することである。  An object of the present invention is to provide a base station apparatus and a packet communication method that can improve the throughput of the entire system.
課題を解決するための手段  Means for solving the problem
[0008] 本発明の基地局装置は、複数の端末装置のうち第 1の端末装置にタイムスロットを 割り当てる端末割当手段と、前記第 1の端末装置に対する干渉信号の周波数軸上で の分散に関する情報を取得する取得手段と、前記第 1の端末装置の干渉信号の分 散が特定のレベル以上の場合、前記第 1の端末装置宛ての再送パケットと異なるパ ケットを前記タイムスロットに割り当てて、前記第 1の端末装置宛ての再送パケットが 前記タイムスロットに割り当てられることを回避するパケット割当手段と、前記タイムス ロットに割り当てられたパケットを送信する送信手段と、を有する構成を採る。 [0008] The base station apparatus of the present invention includes terminal allocation means for allocating a time slot to a first terminal apparatus among a plurality of terminal apparatuses, and information relating to dispersion on the frequency axis of interference signals for the first terminal apparatus And when the dispersion of the interference signal of the first terminal device is equal to or higher than a specific level, a packet different from the retransmission packet addressed to the first terminal device is assigned to the time slot, and A configuration is adopted that includes packet allocating means for avoiding retransmission packets addressed to the first terminal apparatus being assigned to the time slot, and transmitting means for transmitting the packet assigned to the time slot.
発明の効果  The invention's effect
[0009] 本発明によれば、システム全体のスループットを向上させることができる。  According to the present invention, the throughput of the entire system can be improved.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]本発明の実施の形態 1に係る基地局装置の構成を示すブロック図 FIG. 1 is a block diagram showing a configuration of a base station apparatus according to Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1に係る通信端末装置の構成を示すブロック図  FIG. 2 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 1 of the present invention.
[図 3]本発明の実施の形態 1に係る干渉分散の計算方法を説明するための図  FIG. 3 is a diagram for explaining an interference dispersion calculation method according to Embodiment 1 of the present invention;
[図 4]本発明の実施の形態 1に係るスケジューラの動作を説明するためのフロー図 [図 5A]本発明の実施の形態 1に係るスケジューラの具体的な動作例を説明するため の図 [図 5B]本発明の実施の形態 1に係るスケジューラの具体的な動作例を説明するため の図 FIG. 4 is a flowchart for explaining the operation of the scheduler according to the first embodiment of the present invention. FIG. 5A is a diagram for explaining a specific operation example of the scheduler according to the first embodiment of the present invention. FIG. 5B is a diagram for explaining a specific operation example of the scheduler according to Embodiment 1 of the present invention.
[図 5C]本発明の実施の形態 1に係るスケジューラの具体的な動作例を説明するため の図  FIG. 5C is a diagram for explaining a specific operation example of the scheduler according to Embodiment 1 of the present invention.
[図 5D]本発明の実施の形態 1に係るスケジューラの具体的な動作例を説明するため の図  FIG. 5D is a diagram for explaining a specific operation example of the scheduler according to Embodiment 1 of the present invention.
[図 6]干渉分散の大きさに対するパケット再送効果を説明するための図  [Fig. 6] Diagram for explaining the effect of packet retransmission on the magnitude of interference dispersion
[図 7]合成処理による信号電力の変化を説明するための図  [Fig.7] Diagram for explaining changes in signal power due to synthesis processing
[図 8]本発明の実施の形態 2に係る基地局装置の構成を示すブロック図  FIG. 8 is a block diagram showing a configuration of a base station apparatus according to Embodiment 2 of the present invention.
[図 9]本発明の実施の形態 2に係る通信端末装置の構成を示すブロック図  FIG. 9 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 2 of the present invention.
[図 10]本発明の実施の形態 3に係る基地局装置の構成を示すブロック図  FIG. 10 is a block diagram showing a configuration of a base station apparatus according to Embodiment 3 of the present invention.
[図 11]本発明の実施の形態 3に係るスケジューラの動作を説明するためのフロー図 FIG. 11 is a flowchart for explaining the operation of the scheduler according to the third embodiment of the present invention.
[図 12A]本発明の実施の形態 3に係るスケジューラの具体的な動作例を説明するた めの図 FIG. 12A is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
[図 12B]本発明の実施の形態 3に係るスケジューラの具体的な動作例を説明するた めの図  FIG. 12B is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
[図 12C]本発明の実施の形態 3に係るスケジューラの具体的な動作例を説明するた めの図  FIG. 12C is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
[図 12D]本発明の実施の形態 3に係るスケジューラの具体的な動作例を説明するた めの図  FIG. 12D is a diagram for explaining a specific operation example of the scheduler according to Embodiment 3 of the present invention.
[図 13]本発明の実施の形態 4に係る基地局装置の構成を示すブロック図  FIG. 13 is a block diagram showing a configuration of a base station apparatus according to Embodiment 4 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施の形態について、図面を用いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012] (実施の形態 1) [0012] (Embodiment 1)
図 1は、本発明の実施の形態 1に係る基地局装置の構成を示すブロック図である。 また、図 2は、図 1の基地局装置 100との間でパケット通信を行う通信端末装置 (以下 FIG. 1 is a block diagram showing the configuration of the base station apparatus according to Embodiment 1 of the present invention. In addition, FIG. 2 shows a communication terminal device (hereinafter referred to as a packet communication device) that performs packet communication with the base station device 100 of FIG.
「端末」と言う)の構成を示すブロック図である。 2 is a block diagram illustrating a configuration of “terminal”.
[0013] 基地局装置 100は、アンテナ 101、受信 RF部 102、復調部 103、干渉分散情報復 号部 104、 ACKZNACK信号復号部 105、 SINR情報復号部 106、スケジューラ 1 07、パケット生成指示部 108、バッファ指示部 109、 MCS (Modulation and Coding S cheme)指示部 110、多重方法指示信号生成部 111、変調部 112、パケット生成部 1 13、ノ ッファ 114、誤り訂正符号ィ匕部 115、変調部 116、多重化部 117および送信 R F部 118を有する。また、図 2の通信端末装置 150は、アンテナ 151、受信 RF部 152 、復調部 153、合成部 154、ノ ッファ 155、誤り訂正復号部 156、誤り検出部 157、ス イッチ部 158、 ACKZNACK信号生成部 159、干渉信号抽出部 160、干渉分散計 算部 161、干渉分散情報生成部 162、 SINR (Signal to Interference and Noise Ratio )測定部 163、 SINR情報生成部 164、変調部 165および送信 RF部 166を有する。 Base station apparatus 100 includes antenna 101, reception RF section 102, demodulation section 103, interference dispersion information recovery. Signal unit 104, ACKZNACK signal decoding unit 105, SINR information decoding unit 106, scheduler 107, packet generation instruction unit 108, buffer instruction unit 109, MCS (Modulation and Coding Scheme) instruction unit 110, multiplexing method instruction signal generation unit 111 A modulation unit 112, a packet generation unit 113, a notch 114, an error correction code unit 115, a modulation unit 116, a multiplexing unit 117, and a transmission RF unit 118. 2 includes an antenna 151, a reception RF unit 152, a demodulation unit 153, a synthesis unit 154, a nofer 155, an error correction decoding unit 156, an error detection unit 157, a switch unit 158, and an ACKZNACK signal generation. Unit 159, interference signal extraction unit 160, interference dispersion calculation unit 161, interference dispersion information generation unit 162, SINR (Signal to Interference and Noise Ratio) measurement unit 163, SINR information generation unit 164, modulation unit 165, and transmission RF unit 166 Have
[0014] 基地局装置 100において、受信 RF部 102は、現在通信中の n個の端末 150から 送信された OFDM (Orthogonal Frequency Division Multiplexing)信号を、アンテナ 101を介して受信し、その OFDM信号に対して所定の無線処理を行い、ベースバン ドの信号を復調部 103に出力する。復調部 103は、受信 RF部 102から出力された O FDM信号を復調する。 In base station apparatus 100, reception RF section 102 receives an OFDM (Orthogonal Frequency Division Multiplexing) signal transmitted from n terminals 150 currently in communication via antenna 101, and converts the received signal into the OFDM signal. Then, predetermined radio processing is performed, and a baseband signal is output to the demodulation unit 103. Demodulation section 103 demodulates the OFDM signal output from reception RF section 102.
[0015] 取得手段としての干渉分散情報復号部 104は、復調部 103の出力信号から、各端 末 150の干渉分散 (後述する)を示す干渉分散情報を復号してスケジューラ 107に 出力する。  Interference dispersion information decoding section 104 serving as acquisition means decodes interference dispersion information indicating interference dispersion (described later) of each terminal 150 from the output signal of demodulation section 103 and outputs the decoded information to scheduler 107.
[0016] ACKZNACK信号復号部 105は、復調部 103の出力信号から、各端末 150の A CK (Acknowledgement)信号または NACK (Negative Acknowledgement)信号を復 号し、その復号結果をスケジューラ 107に出力する。  [0016] ACKZNACK signal decoding section 105 decodes an ACK (Acknowledgement) signal or NACK (Negative Acknowledgement) signal of each terminal 150 from the output signal of demodulation section 103, and outputs the decoding result to scheduler 107.
[0017] SINR情報復号部 106は、復調部 103の出力信号から、各端末 150の SINR情報 を復号してスケジューラ 107に出力する。  [0017] SINR information decoding section 106 decodes the SINR information of each terminal 150 from the output signal of demodulation section 103 and outputs it to scheduler 107.
[0018] スケジューラ 107は、干渉分散情報復号部 104から入力された各端末 150の干渉 分散情報、 ACKZNACK信号復号部 105から入力された各端末 150の ACKZN ACK信号および SINR情報復号部 106から入力された各端末 150の SINR情報に 基づいて、下り回線のパケット通信のスケジューリングを行う。つまり、いずれかの端 末 150にタイムスロットを割り当てる処理 (端末割り当て)を各タイムスロットにつ ヽて行 [0019] より具体的には、スケジューラ 107は、制御手段として、タイムスロットが割り当てら れた端末 150の干渉分散が特定のレベル以上の場合、その端末 150との間での再 送パケットの伝送と異なるパケット通信を後述の通信部に行わせて、通信部とその端 末 150との間での再送パケット伝送を回避する制御を行う。また、端末割当手段とし て、複数の端末 150のうち SINRが最大の端末 150にタイムスロットを割り当てる。ま た、パケット割当手段として、各タイムスロットに新規パケットまたは再送パケットを割り 当てるとともに、タイムスロットが割り当てられた端末 150の干渉分散が特定のレベル 以上の場合、その端末 150宛ての再送パケットと異なるパケットをそのタイムスロット に割り当てて、その端末 150宛ての再送パケットがそのタイムスロットに割り当てられ ることを回避する。 [0018] Scheduler 107 receives the interference dispersion information of each terminal 150 input from interference dispersion information decoding section 104, the ACKZN ACK signal and SINR information decoding section 106 of each terminal 150 input from ACKZNACK signal decoding section 105, and so on. Based on the SINR information of each terminal 150, downlink packet communication scheduling is performed. In other words, the process of assigning time slots to any terminal 150 (terminal assignment) is performed for each time slot. More specifically, the scheduler 107, as a control means, transmits a retransmission packet to / from a terminal 150 when the interference dispersion of the terminal 150 to which the time slot is allocated is equal to or higher than a specific level. Control is performed to avoid retransmission packet transmission between the communication unit and its terminal 150 by causing the communication unit described later to perform packet communication different from the above. Also, as a terminal allocation means, a time slot is allocated to the terminal 150 having the largest SINR among the plurality of terminals 150. Also, as a packet allocation means, a new packet or retransmission packet is allocated to each time slot, and if the interference variance of the terminal 150 to which the time slot is allocated exceeds a specific level, it is different from the retransmission packet addressed to that terminal 150. A packet is assigned to the time slot, and a retransmission packet addressed to the terminal 150 is prevented from being assigned to the time slot.
[0020] また、スケジューラ 107は、いずれかの端末 150へのタイムスロット割り当てを決定し た後、その端末 150の SINR情報に基づいて、変調方式および符号化率 (MCS)を 決定し、 MCS指示部 110に通知する。また、上記の決定内容に基づいて、タイムス ロットが割り当てられた端末 150と生成すべきパケットのデータ量を、パケット生成指 示部 108に通知する。また、タイムスロットが割り当てられた端末 150と ACK信号また は NACK信号とをバッファ指示部 109に通知する。また、タイムスロットが割り当てら れた端末 150と MCSとを多重方法指示信号生成部 111に通知する。  [0020] In addition, after determining time slot allocation to any terminal 150, scheduler 107 determines a modulation scheme and a coding rate (MCS) based on the SINR information of that terminal 150, and performs MCS indication Part 110 is notified. Further, based on the above determination, the packet generation instructing unit 108 is notified of the terminal 150 to which the time slot is allocated and the data amount of the packet to be generated. In addition, terminal 150 to which the time slot is allocated and the ACK signal or NACK signal are notified to buffer instruction section 109. In addition, terminal 150 and MCS to which the time slot is allocated are notified to multiplexing method instruction signal generation section 111.
[0021] パケット生成指示部 108は、タイムスロットが割り当てられた端末 150宛てのパケット であって、スケジューラ 107から通知されたデータ量のパケットの生成を、パケット生 成部 113に指示する。  [0021] The packet generation instruction unit 108 instructs the packet generation unit 113 to generate a packet having a data amount notified from the scheduler 107, which is a packet addressed to the terminal 150 to which the time slot is assigned.
[0022] パケット生成部 113は、パケット生成指示部 108からの指示に従い、タイムスロットが 割り当てられた端末 150宛てのデータ(データ # 1〜データ # nの 、ずれか)を用い て、その端末 150宛てのパケットを生成してバッファ 114に出力する。 [0022] In accordance with an instruction from the packet generation instruction unit 108, the packet generation unit 113 uses data addressed to the terminal 150 to which the time slot is allocated (data # 1 to data #n , which is a shift), and the terminal 150 A packet addressed to the address is generated and output to the buffer 114.
[0023] ノッファ指示部 109は、タイムスロットが割り当てられた端末 150宛てのパケットを選 択するようバッファ 114に指示する。また、スケジューラ 107から ACK信号が入力され た場合、再送に備えて残していたパケットを削除するようバッファ 114に指示するとと もに、パケット生成部 113で生成されたパケットを記憶するようバッファ 114に指示す る。一方、スケジューラ 107から NACK信号が入力された場合、入力された NACK 信号に対応するパケットを残すようにバッファ 114に指示する。 [0023] The noffer instruction unit 109 instructs the buffer 114 to select a packet addressed to the terminal 150 to which the time slot is assigned. In addition, when an ACK signal is input from the scheduler 107, the buffer 114 is instructed to delete a packet left in preparation for retransmission, and the packet generated by the packet generator 113 is stored in the buffer 114. Indicate. On the other hand, when a NACK signal is input from the scheduler 107, the input NACK Instructs the buffer 114 to leave a packet corresponding to the signal.
[0024] ノッファ 114は、バッファ指示部 109からの指示に従い、タイムスロットが割り当てら れた端末 150宛てのパケットを選択する。その際、ノ ッファ指示部 109に ACK信号 が入力された場合は、バッファ 114は、再送に備えて記憶していたパケットを削除し、 パケット生成部 113で生成されたパケットを再送に備えて記憶するとともに誤り訂正符 号ィ匕部 115に出力する。また、ノッファ 109に NACK信号が入力された場合は、バッ ファ 114は、再送に備えて記憶しているパケットを誤り訂正符号ィ匕部 115に出力する [0024] In accordance with the instruction from the buffer instruction unit 109, the noffer 114 selects a packet addressed to the terminal 150 to which the time slot is assigned. At this time, when an ACK signal is input to the nota instruction unit 109, the buffer 114 deletes the packet stored for retransmission and stores the packet generated by the packet generation unit 113 for retransmission. At the same time, it is output to the error correction code field 115. In addition, when a NACK signal is input to the notch 109, the buffer 114 outputs the packet stored for retransmission to the error correction code unit 115.
[0025] MCS指示部 110は、スケジューラ 107から通知された符号ィ匕率を誤り訂正符号ィ匕 部 115に指示するとともに、スケジューラ 107から通知された変調方式を変調部 116 に指示する。 [0025] The MCS instruction unit 110 instructs the error correction code unit 115 of the code rate notified from the scheduler 107 and also instructs the modulation unit 116 of the modulation scheme notified from the scheduler 107.
[0026] 誤り訂正符号ィ匕部 115は、 MCS指示部 110からの指示に従って、ノッファ 114か ら入力されたパケットを符号ィ匕し、変調部 116に出力する。変調部 116は、 MCS指 示部 110からの指示に従って、誤り訂正符号ィ匕部 115から入力されたパケットを OF DM変調し、多重化部 117に出力する。  The error correction code encoding unit 115 encodes the packet input from the nother 114 in accordance with an instruction from the MCS instruction unit 110 and outputs the packet to the modulation unit 116. Modulation section 116 performs OF DM modulation on the packet input from error correction code encoding section 115 in accordance with an instruction from MCS instruction section 110, and outputs the result to multiplexing section 117.
[0027] 多重方法指示信号生成部 111は、端末割り当てに関する情報と MCSとを示す多 重方法指示信号を生成する。変調部 112は、生成された多重方法指示信号を変調 する。多重化部 117は、それぞれ変調されたパケットと多重方法指示信号とを多重す る。送信 RF部 118は、多重された OFDM信号に対して所定の無線処理を行い、無 線処理後の OFDM信号をアンテナ 101を介してパケット送信先の端末 150に対して 送信する。  [0027] Multiplex method instruction signal generation section 111 generates a multiple method instruction signal indicating information related to terminal allocation and MCS. Modulation section 112 modulates the generated multiplexing method instruction signal. Multiplexing section 117 multiplexes each modulated packet and multiplexing method instruction signal. The transmission RF section 118 performs predetermined radio processing on the multiplexed OFDM signal, and transmits the radio signal after the radio processing to the packet transmission destination terminal 150 via the antenna 101.
[0028] すなわち、多重方法指示信号生成部 111、変調部 112、パケット生成部 113、バッ ファ 114、誤り訂正符号ィ匕部 115、変調部 116、多重化部 117および送信 RF部 118 の組み合わせは、タイムスロットが割り当てられた端末 150とパケット通信を行う通信 部を構成するとともに、タイムスロットに割り当てられたパケットを送信する送信部を構 成する。  That is, the combination of multiplexing method instruction signal generation section 111, modulation section 112, packet generation section 113, buffer 114, error correction code section 115, modulation section 116, multiplexing section 117, and transmission RF section 118 is In addition, a communication unit that performs packet communication with the terminal 150 to which the time slot is allocated is configured, and a transmission unit that transmits the packet allocated to the time slot is configured.
[0029] 一方、図 2の端末 150において、受信 RF部 152は、基地局装置 100から送信され た OFDM信号を、アンテナ 151を介して受信し、その OFDM信号に対して所定の 無線処理を行い、ベースバンドの信号を復調部 153に出力する。復調部 153は、受 信 RF部 152から出力された OFDM信号を復調する。 On the other hand, in terminal 150 in FIG. 2, reception RF section 152 receives an OFDM signal transmitted from base station apparatus 100 via antenna 151, and performs a predetermined process on the OFDM signal. Radio processing is performed, and a baseband signal is output to demodulation section 153. Demodulation section 153 demodulates the OFDM signal output from reception RF section 152.
[0030] 合成部 154は、復調部 153の出力信号とバッファ 155に保存されている信号とを合 成し、その合成によって得られた合成信号をバッファ 155および誤り訂正復号部 156 に出力する。バッファ 155は、保存している信号を合成部 154に出力するとともに、合 成部 154から出力された新たな信号を上書き保存する。  [0030] Combining section 154 combines the output signal of demodulation section 153 and the signal stored in buffer 155, and outputs the combined signal obtained by the combining to buffer 155 and error correction decoding section 156. The buffer 155 outputs the stored signal to the synthesis unit 154 and overwrites and saves the new signal output from the synthesis unit 154.
[0031] 誤り訂正復号部 156は、合成部 154の出力信号に対して例えばビタビ復号などの 誤り訂正復号処理を行って、誤り検出部 157およびスィッチ部 158に出力する。  [0031] Error correction decoding section 156 performs error correction decoding processing such as Viterbi decoding on the output signal of combining section 154, and outputs the result to error detection section 157 and switch section 158.
[0032] 誤り検出部 157は、誤り訂正復号部 156の出力信号に対して誤り検出(CRC判定) を行い、誤り検出結果を ACKZNACK信号生成部 159に出力する。また、誤り検出 によって誤りが検出された場合、誤り検出部 157は、スィッチ部 158を切断して、誤り 訂正復号部 156の出力信号 (受信データ)が図示されない後工程を行う装置に出力 されることを防止する。一方、誤り検出によって誤りが検出されな力つた場合、誤り検 出部 157は、ノ ッファ 155に保存されている信号を消去するとともに、スィッチ部 158 を接続する。この場合、誤り訂正復号部 156の出力信号 (受信データ)は、前述の後 工程を行う装置に出力される。  [0032] Error detection section 157 performs error detection (CRC determination) on the output signal of error correction decoding section 156, and outputs the error detection result to ACKZNACK signal generation section 159. If an error is detected by error detection, error detection section 157 disconnects switch section 158, and the output signal (received data) of error correction decoding section 156 is output to a device that performs a post-process not shown in the figure. To prevent that. On the other hand, when an error is detected by the error detection, the error detection unit 157 deletes the signal stored in the nota 155 and connects the switch unit 158. In this case, the output signal (received data) of error correction decoding section 156 is output to the device that performs the above-described subsequent process.
[0033] ACKZNACK信号生成部 159は、誤り検出部 157から入力された誤り検出結果 に応じて、 ACK信号または NACK信号を生成する。誤り検出によって誤りが検出さ れなカゝつた場合は ACK信号を生成する一方、誤りが検出された場合は NACK信号 を生成する。生成された ACK信号または NACK信号は、変調部 165に出力される。  [0033] ACKZNACK signal generation section 159 generates an ACK signal or a NACK signal according to the error detection result input from error detection section 157. If no error is detected by error detection, an ACK signal is generated. On the other hand, if an error is detected, a NACK signal is generated. The generated ACK signal or NACK signal is output to modulation section 165.
[0034] SINR測定部 163は、受信 RF部 152の出力信号を用いて、 SINRの測定を行う。 S INR情報生成部 164は、 SINR測定部 163の SINR測定結果に基づ!/、て SINR情報 を生成する。なお、 SINR情報は、予め決められた SINRを離散的に表す数字を示す ものであっても良いし、測定値をそのまま示すものであっても良い。生成された SINR 情報は、変調部 165に出力される。  [0034] SINR measurement section 163 measures SINR using the output signal of reception RF section 152. The S INR information generation unit 164 generates SINR information based on the SINR measurement result of the SINR measurement unit 163! /. The SINR information may indicate numbers that represent discrete SINR discretely, or may indicate measured values as they are. The generated SINR information is output to modulation section 165.
[0035] 干渉信号抽出部 160は、復調部 153の出力信号から、他の端末 150宛ての信号を 、自端末 150に対する干渉信号として抽出する。つまり、受信信号から自端末 150宛 ての信号を取り除いた信号を干渉信号として抽出する。抽出された干渉信号は、干 渉分散計算部 161に出力される。 Interference signal extraction section 160 extracts a signal addressed to other terminal 150 from the output signal of demodulation section 153 as an interference signal for own terminal 150. That is, a signal obtained by removing a signal addressed to own terminal 150 from the received signal is extracted as an interference signal. The extracted interference signal is It is output to the interference variance calculation unit 161.
[0036] 干渉分散計算部 161は、干渉信号の周波数軸上での分散 (以下「干渉分散」と言う )、換言すれば、周波数軸上での干渉電力のばらつき (不均一性)を計算する。計算 された干渉分散は、干渉分散情報生成部 162に出力される。  Interference dispersion calculation section 161 calculates the dispersion of interference signals on the frequency axis (hereinafter referred to as “interference dispersion”), in other words, the dispersion (nonuniformity) of interference power on the frequency axis. . The calculated interference variance is output to interference variance information generation section 162.
[0037] ここで、干渉分散の計算について、図 3を用いて具体的に説明する。ここでは、 4つ のサブキャリアの場合の干渉分散の計算につ 、て例示する。干渉信号のサブキヤリ ァ毎の電力の実数値が、図 3に示すように [0.5, 0.5, 1.0, 2.0]の場合、干渉分散 は、次の(式 1)によって算出される。なお、この例示では、 3番目のサブキャリアの電 力を基準値に設定した上で実数値を算出しているが、基準値の設定方法はこれだけ に限定されない。  Here, the calculation of interference dispersion will be specifically described with reference to FIG. Here, the calculation of interference dispersion in the case of four subcarriers is illustrated. When the real value of the power for each subcarrier of the interference signal is [0.5, 0.5, 1.0, 2.0] as shown in Fig. 3, the interference variance is calculated by the following (Equation 1). In this example, the real value is calculated after setting the power of the third subcarrier to the reference value, but the method of setting the reference value is not limited to this.
10 X loglO (0.5 + 0.5 + 1.0 + 2.0) = 10 X loglO (4)  10 X loglO (0.5 + 0.5 + 1.0 + 2.0) = 10 X loglO (4)
= 6 [dB] …(式 1)  = 6 [dB]… (Formula 1)
[0038] 干渉分散情報生成部 162は、干渉分散計算部 161の出力信号である干渉分散を 基地局装置 100に通知するための干渉分散情報を生成する。生成された干渉分散 情報は、変調部 165に出力される。  [0038] Interference dispersion information generation section 162 generates interference dispersion information for notifying base station apparatus 100 of interference dispersion that is an output signal of interference dispersion calculation section 161. The generated interference dispersion information is output to modulation section 165.
[0039] 変調部 165は、 ACKZNACK信号生成部 159、干渉分散情報生成部 162および SINR情報生成部 164の各出力信号を OFDM変調して、送信 RF部 166に出力す る。送信 RF部 166は、変調部 165から出力された OFDM信号に対して所定の無線 処理を行い、無線処理後の OFDM信号をアンテナ 151を介して基地局装置 100に 対して送信する。  Modulation section 165 performs OFDM modulation on the output signals of ACKZNACK signal generation section 159, interference dispersion information generation section 162, and SINR information generation section 164, and outputs the result to transmission RF section 166. Transmission RF section 166 performs predetermined radio processing on the OFDM signal output from modulation section 165, and transmits the radio signal after radio processing to base station apparatus 100 via antenna 151.
[0040] 以下、上記構成を有する基地局装置 100のスケジューラ 107における動作例につ いて、図 4のフロー図を用いて説明する。  [0040] Hereinafter, an operation example of scheduler 107 of base station apparatus 100 having the above configuration will be described with reference to the flowchart of FIG.
[0041] まず、ステップ ST1001では、各端末 150から通知された SINR情報に基づいて通 常のスケジューリングを行う。すなわち、 SINRが最大の端末 150にタイムスロットを割 り当てる。 First, in step ST 1001, normal scheduling is performed based on SINR information notified from each terminal 150. That is, a time slot is assigned to terminal 150 having the largest SINR.
[0042] そして、ステップ ST1002では、タイムスロットを割り当てられた端末 150から通知さ れた ACK信号または NACK信号に基づ 、て、その端末 150宛てに送信されるパケ ットが新規パケットか再送パケットかを判断する。 [0043] ステップ ST1002での判断の結果、端末 150宛てに送信されるパケットが新規パケ ットの場合 (ST1002 :NO)、その新規パケットをそのままタイムスロットに割り当てる( ST1003)。したがって、この場合、新規パケットが送信される。 [0042] Then, in step ST1002, based on the ACK signal or NACK signal notified from terminal 150 to which a time slot is allocated, the packet transmitted to terminal 150 is a new packet or a retransmission packet. Determine whether. [0043] As a result of the determination in step ST1002, if the packet transmitted to terminal 150 is a new packet (ST1002: NO), the new packet is directly assigned to the time slot (ST1003). Therefore, in this case, a new packet is transmitted.
[0044] 一方、端末 150宛てのパケットが再送パケットの場合(ST1002 : YES)、端末 150 力も通知された干渉分散が所定の閾値以上である力否かを判断する(ST1004)。上 記閾値は、例えば、受信した平均干渉量にマージンを加えた値に設定される。  On the other hand, when the packet addressed to terminal 150 is a retransmission packet (ST1002: YES), it is determined whether or not the interference dispersion in which terminal 150 power is also notified is greater than or equal to a predetermined threshold (ST1004). For example, the threshold value is set to a value obtained by adding a margin to the received average interference amount.
[0045] ステップ ST1004での判断の結果、干渉分散が閾値未満の場合(ST1004 :NO) 、その再送パケットをそのままタイムスロットに割り当てる(ST1005)。したがって、こ の場合、再送パケットが送信される。  If the result of determination in step ST1004 is that the interference variance is less than the threshold (ST1004: NO), the retransmission packet is assigned to the time slot as it is (ST1005). Therefore, in this case, a retransmission packet is transmitted.
[0046] 一方、干渉分散が閾値以上の場合 (ST1004 : YES)、その端末 150宛ての新規 パケットの送信を決定するとともに、そのデータ量をパケット生成指示部 108に通知 する。また、生成される新規パケットをタイムスロットに割り当てる(ST1006)。したが つて、この場合、新規パケットが送信される。  On the other hand, when the interference variance is equal to or greater than the threshold (ST1004: YES), the transmission of a new packet addressed to terminal 150 is determined and the data amount is notified to packet generation instructing section 108. Also, the generated new packet is assigned to the time slot (ST1006). Therefore, in this case, a new packet is transmitted.
[0047] そして、送信が回避された再送パケットを、次回の送信キューに割り当てる(ST100 7)。このとき、ノ ッファ 114に保存されている再送パケットは、そのまま保存され、次回 のスケジューリング周期において、再度送信候補となる。例えば 2msec毎にスケジュ 一リングを行う場合には、送信回避された 2msec後に再び図 4のフローが実行される こととなる。その時点で干渉分散が閾値よりも低くなつていれば、その再送パケットは 送信されることとなる。  [0047] Then, the retransmission packet from which transmission is avoided is assigned to the next transmission queue (ST100 7). At this time, the retransmission packet stored in the nother 114 is stored as it is and becomes a transmission candidate again in the next scheduling cycle. For example, when scheduling is performed every 2 msec, the flow in Fig. 4 is executed again 2 msec after transmission is avoided. If the interference variance becomes lower than the threshold at that time, the retransmission packet is transmitted.
[0048] 次いで、スケジューラ 107の具体的な動作例について、図 5を用いて説明する。  Next, a specific operation example of the scheduler 107 will be described with reference to FIG.
[0049] 時刻 tl〜tl7の区間における端末 A〜Cの各 SINRが(a)に示されている。スケジ ユーラ 107では、これらの SINRを参照して、端末 A〜Cのいずれかに、この区間に対 応する送信キュー内の各タイムスロットを割り当てる。この割り当ての結果は、(b)に 示されている。具体的には、時刻 tl〜t3では、端末 Aの SINRが最も高いので、端末 Aにタイムスロットが割り当てられ、時刻 t4〜6では、端末 Bの SINRが最も高いので、 端末 Bにタイムスロットが割り当てられ、時刻 t7〜9では、端末 Aの SINRが最も高い ので、端末 Aにタイムスロットが割り当てられ、時刻 tlO〜tl3では、端末 Bの SINRが 最も高いので、端末 Bにタイムスロットが割り当てられ、時刻 tl4〜tl7では、端末じの SINRが最も高 、ので、端末 Cにタイムスロットが割り当てられる。 [0049] Each SINR of terminals A to C in the section from time tl to tl7 is shown in (a). The scheduler 107 refers to these SINRs and assigns each time slot in the transmission queue corresponding to this section to any of the terminals A to C. The result of this assignment is shown in (b). Specifically, at time tl to t3, terminal A has the highest SINR, so a time slot is assigned to terminal A, and at time t4 to t6, terminal B has the highest SINR, so terminal B has a time slot. At time t7-9, terminal A has the highest SINR, so time slot is assigned to terminal A, and at time tlO-tl3, terminal B has the highest SINR, so time slot is assigned to terminal B. At time tl4 to tl7 Since the SINR is the highest, a time slot is assigned to terminal C.
[0050] また、(b)に示すように、スケジューラ 107では、各端末 A〜Cからの ACK信号また は NACK信号に基づ 、て、各タイムスロットを割り当てられた端末宛てのパケットを新 規パケットにすべきか再送パケットにすべきかを判断する。この例示では、時刻 t3、 t 6、 t8、 t9、 tl2〜tl5のタイムスロットに対応するパケットが再送パケットとなっている [0050] Also, as shown in (b), scheduler 107 newly creates a packet addressed to a terminal to which each time slot is assigned based on the ACK signal or NACK signal from each terminal A to C. It is determined whether it should be a packet or a retransmission packet. In this example, the packets corresponding to the time slots at times t3, t6, t8, t9, and tl2 to tl5 are retransmission packets.
[0051] そして、スケジューラ 107は、時刻 tl〜tl7の区間における端末 A〜Cの各干渉分 散を参照する。これらの干渉分散は、(c)に示されている。通知された干渉分散によ れば、時刻 t5〜tl 7の端末 Aの干渉分散が閾値以上の状態となっている。 [0051] Then, the scheduler 107 refers to the interference dispersion of the terminals A to C in the section from time tl to tl7. These interference variances are shown in (c). According to the notified interference dispersion, the interference dispersion of terminal A at times t5 to tl7 is equal to or greater than the threshold value.
[0052] このため、(d)に示すように、時刻 t8、 t9での端末 A宛ての再送パケットの送信が回 避され、その代わりに、時刻 t8、 t9では、端末 A宛てに新規パケットの送信が行われ るように、端末 A宛ての新規パケットが時刻 t8、 t9のタイムスロットに割り当てられる。 送信回避された再送パケットは、時刻 tl8以降の区間に対応する送信キューに割り 当てられる。  [0052] Therefore, as shown in (d), transmission of a retransmission packet addressed to terminal A at times t8 and t9 is avoided. Instead, at time t8 and t9, a new packet is addressed to terminal A. A new packet destined for terminal A is assigned to the time slot at times t8 and t9 so that the transmission is performed. The retransmitted packet whose transmission has been avoided is assigned to the transmission queue corresponding to the section after time tl8.
[0053] ここで、干渉分散の大きさに対するパケット再送の効果の大きさにつ 、て説明する。  Here, the magnitude of the effect of packet retransmission on the magnitude of interference dispersion will be described.
[0054] 図 6には、 SINR毎の正規化スループットが示されている。曲線 Dは、干渉信号が 定常的な熱雑音と同様で且つ分散が所定レベルよりも低 、信号 (以下「白色信号」と 定義する)の場合であって ARQ (Automatic Repeat Request)制御を行った場合のス ループットを示す。曲線 Dは、干渉信号が白色信号の場合であって ARQ制御を行 FIG. 6 shows the normalized throughput for each SINR. Curve D shows the case where the interference signal is the same as that of stationary thermal noise and the variance is lower than a predetermined level and is a signal (hereinafter referred to as “white signal”), and ARQ (Automatic Repeat Request) control is performed. Shows the throughput of the case. Curve D is when the interference signal is a white signal and ARQ control is performed.
2  2
わなカゝつた場合のスループットを示す。曲線 Dは、干渉信号が定常的な熱雑音と異  Shows the throughput when trapping. Curve D shows that the interference signal differs from stationary thermal noise.
3  Three
なり且つ分散が所定レベル以上である信号 (以下「有色信号」と定義する)の場合で あって ARQ制御を行った場合のスループットを示す。曲線 Dは、干渉信号が有色信  This shows the throughput when ARQ control is performed for a signal with a variance equal to or higher than a predetermined level (hereinafter defined as “colored signal”). Curve D shows that the interference signal is colored
4  Four
号の場合であって ARQ制御を行わな力つた場合のスループットを示す。  In this case, the throughput is shown when the ARQ control is used.
[0055] ある端末 (UE1)の正規化スループットともう 1つの端末 (UE2)の正規化スループッ トとがほぼ同じ (約 0.3)場合であって、 UE1に対する干渉信号が有色信号で且つ U E2に対する干渉信号が白色信号である場合を例にとって説明する。 UE2について は、干渉信号が白色信号であるため、 ARQ制御なしの場合に対する ARQ制御あり の場合の SINRの改善の大きさ、つまりパケット再送効果は、約 3dBである一方、 UE 1については、干渉信号が有色信号であるため、パケット再送効果は、約 ldBである [0055] When the normalized throughput of one terminal (UE1) and the normalized throughput of the other terminal (UE2) are approximately the same (about 0.3), the interference signal for UE1 is a colored signal and for U E2 A case where the interference signal is a white signal will be described as an example. For UE2, since the interference signal is a white signal, the magnitude of the SINR improvement with ARQ control compared to the case without ARQ control, that is, the packet retransmission effect is about 3 dB, while the UE For 1, the interference signal is a colored signal, so the packet retransmission effect is about ldB
[0056] 干渉信号が白色信号である場合、図 7に示すように、合成後の希望信号 (S)の電 力(Pd)は、新規送信時の希望信号 (S)の電力(Pa)と再送時の希望信号 (S)の電 力(Pa)とを加算した値となる。一方、合成後の雑音信号 (N)の電力(Pe— Pd)は、 新規送信時の雑音信号 (N)の電力(Pb— Pa)および再送時の雑音信号 (N)の電力 (Pb-Pa)とそれぞれ同等である。また、合成後の干渉信号 (I)の電力(Pf— Pe)は、 新規送信時の干渉信号 (I)の電力(Pc— Pb)および再送時の干渉信号 (I)の電力(P c-Pb)とそれぞれ同等である。 [0056] When the interference signal is a white signal, as shown in Fig. 7, the power (Pd) of the desired signal (S) after synthesis is equal to the power (Pa) of the desired signal (S) at the time of new transmission. This is the sum of the power (Pa) of the desired signal (S) at the time of retransmission. On the other hand, the power (Pe—Pd) of the synthesized noise signal (N) is the power of the noise signal (N) at the time of new transmission (Pb—Pa) and the power of the noise signal (N) at the time of retransmission (Pb-Pa). ) Respectively. Also, the power (Pf—Pe) of the combined interference signal (I) is the power (Pc—Pb) of the interference signal (I) at the time of new transmission and the power (P c−Pb) of the interference signal (I) at the time of retransmission. Each is equivalent to Pb).
[0057] ところが、干渉信号が有色信号である場合は、合成後の希望信号 (S)の電力(Pd) および合成後の雑音信号 (N)の電力(Pe— Pd)については、干渉信号が白色信号 である場合と同様であるが、干渉信号 (I)が有色信号であるため、合成後の干渉信号 (I)の電力(Pg— Pe)は、新規送信時の干渉信号 (I)の電力(Pc— Pb)と再送時の干 渉信号 (I)の電力(Pc— Pb)とを加算した値になる。よって、干渉信号が有色信号で ある場合は、干渉信号が白色信号である場合に比べて、パケット再送による SINR改 善効果が小さい。  [0057] However, when the interference signal is a colored signal, the interference signal is the power (Pd) of the desired signal (S) after synthesis and the power (Pe-Pd) of the noise signal (N) after synthesis. As with the white signal, since the interference signal (I) is a colored signal, the power (Pg—Pe) of the combined interference signal (I) is equal to that of the interference signal (I) at the time of new transmission. This is the sum of the power (Pc – Pb) and the power (Pc – Pb) of the interference signal (I) during retransmission. Therefore, when the interference signal is a colored signal, the SINR improvement effect by packet retransmission is smaller than when the interference signal is a white signal.
[0058] したがって、ある端末の SINRが高 、としても、その端末の干渉分散が大きければ、 パケット再送の効果は小さくなる。このため、通常のスケジューリングによって割り当て られた端末にっ 、ての干渉分散を閾値と比較し、干渉分散が閾値未満の場合にそ の端末宛ての再送パケットの送信を回避して、その端末宛ての新規パケットの送信を 行うことにより、スループットの改善を図ることができる。  Therefore, even if the SINR of a certain terminal is high, the effect of packet retransmission is small if the interference variance of that terminal is large. For this reason, a terminal assigned by normal scheduling compares the interference dispersion with a threshold value, and when the interference dispersion is less than the threshold value, avoids transmission of a retransmission packet addressed to that terminal, and By sending new packets, throughput can be improved.
[0059] このように、本実施の形態によれば、タイムスロットが割り当てられた端末 150の干 渉分散が閾値以上の場合、その端末 150宛ての新規パケットをタイムスロットに割り 当てて、端末 150宛ての再送パケットがタイムスロットに割り当てられることを回避する ため、基地局装置 100から再送効果の小さい端末 150への再送パケットの送信が何 度も繰り返されることを回避することができ、下り回線でパケット伝送方式を用いるシス テムにおいてシステム全体のスループットを向上させることができる。  [0059] Thus, according to the present embodiment, when the interference variance of terminal 150 to which a time slot is assigned is equal to or greater than the threshold, a new packet addressed to terminal 150 is assigned to the time slot, and terminal 150 is assigned. In order to avoid that the retransmission packet addressed to the time slot is assigned, it is possible to avoid the retransmission of the retransmission packet from the base station apparatus 100 to the terminal 150 having a small retransmission effect repeatedly, and in the downlink. In a system using a packet transmission method, the throughput of the entire system can be improved.
[0060] (実施の形態 2) 図 8は、本発明の実施の形態 2に係る基地局装置の構成を示すブロック図である。 また、図 9は、本実施の形態の端末の構成を示すブロック図である。なお、図 8の基 地局装置 200および図 9の端末 250は、実施の形態 1で説明した基地局装置 100お よび端末 150とそれぞれ同様の基本的構成を有する。よって、実施の形態 1で説明し たものと同一の構成要素には同一の参照符号を付し、その詳細な説明を省略する。 [0060] (Embodiment 2) FIG. 8 is a block diagram showing the configuration of the base station apparatus according to Embodiment 2 of the present invention. FIG. 9 is a block diagram showing a configuration of the terminal according to the present embodiment. Note that base station apparatus 200 in FIG. 8 and terminal 250 in FIG. 9 have the same basic configuration as base station apparatus 100 and terminal 150 described in Embodiment 1, respectively. Therefore, the same components as those described in Embodiment 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0061] 基地局装置 200は、実施の形態 1で説明した干渉分散情報復号部 104およびスケ ジユーラ 107の代わりに GIVEUP信号復号部 201およびスケジューラ 202を有する [0061] Base station apparatus 200 has GIVEUP signal decoding section 201 and scheduler 202 instead of interference dispersion information decoding section 104 and scheduler 107 described in Embodiment 1.
[0062] 取得手段としての GIVEUP信号復号部 201は、復調部 103の出力信号から、いず れかの端末 250の干渉分散が特定のレベル以上であることを示す GIVEUP信号を 復号してスケジューラ 202に出力する。 [0062] GIVEUP signal decoding section 201 as an acquisition means decodes a GIVEUP signal indicating that the interference dispersion of any terminal 250 is above a specific level from the output signal of demodulation section 103, and scheduler 202 Output to.
[0063] スケジューラ 202は、スケジューラ 107と同様の基本構成を有する。スケジューラ 20 2は、干渉分散情報の代わりに、 GIVEUP信号復号部 201から入力されたいずれか の端末 250の GIVEUP信号を用いると!、う点にお!、て、スケジューラ 107と相違する  The scheduler 202 has the same basic configuration as the scheduler 107. If the scheduler 202 uses the GIVEUP signal of any terminal 250 input from the GIVEUP signal decoding unit 201 instead of the interference dispersion information, it is different from the scheduler 107!
[0064] 図 9の端末 250は、実施の形態 1で説明した干渉分散情報生成部 162の代わりに、 GIVEUP信号生成部 251を有する。 Terminal 250 in FIG. 9 has GIVEUP signal generation section 251 instead of interference dispersion information generation section 162 described in Embodiment 1.
[0065] GIVEUP信号生成部 251は、干渉分散計算部 161の出力信号である干渉分散と の比較に用いられる所定の閾値を予め記憶している。この閾値は、実施の形態 1で 説明したスケジューラ 107が干渉分散との比較に用いた閾値と同一のものである。そ して、干渉分散をその閾値と比較する。比較の結果、干渉分散が閾値以上の場合は 、 GIVEUP信号を生成する。生成された GIVEUP信号は、変調部 165に出力され、 変調部 165で OFDM変調される。 GIVEUP信号は、干渉分散が閾値以上であるこ とを基地局装置 200に通知して、自端末 250宛ての再送パケットの送信を基地局装 置 200に回避させるための信号である。  [0065] GIVEUP signal generation section 251 stores in advance a predetermined threshold value used for comparison with interference dispersion that is an output signal of interference dispersion calculation section 161. This threshold value is the same as the threshold value used by the scheduler 107 described in Embodiment 1 for comparison with interference dispersion. Then, compare the interference variance with its threshold. As a result of the comparison, if the interference variance is greater than or equal to the threshold value, a GIVEUP signal is generated. The generated GIVEUP signal is output to modulation section 165 and subjected to OFDM modulation by modulation section 165. The GIVEUP signal is a signal for notifying the base station apparatus 200 that the interference dispersion is equal to or greater than the threshold value, and for causing the base station apparatus 200 to avoid transmission of a retransmission packet addressed to the terminal 250 itself.
[0066] このように、本実施の形態によれば、実施の形態 1と同様の作用効果を実現できる とともに、端末 250の干渉分散が閾値以上の場合のみ、その旨を基地局装置 200に 通知するため、シグナリングの情報量を削減することができる。 [0067] (実施の形態 3) [0066] Thus, according to the present embodiment, the same operational effects as in Embodiment 1 can be realized, and only when the interference dispersion of terminal 250 is greater than or equal to the threshold value, notification to that effect is given to base station apparatus 200. Therefore, the amount of signaling information can be reduced. [Embodiment 3]
図 10は、本発明の実施の形態 3に係る基地局装置の構成を示すブロック図である 。なお、図 10の基地局装置 300は、実施の形態 1で説明した基地局装置 100と同様 の基本的構成を有し、前述の実施の形態で説明したものと同一の構成要素には同 一の参照符号を付し、その詳細な説明を省略する。また、基地局装置 300は、実施 の形態 1で説明した端末 150との間でパケット通信を行う。  FIG. 10 is a block diagram showing the configuration of the base station apparatus according to Embodiment 3 of the present invention. Note that base station apparatus 300 in FIG. 10 has the same basic configuration as base station apparatus 100 described in the first embodiment, and has the same constituent elements as those described in the previous embodiment. The detailed description is abbreviate | omitted. Base station apparatus 300 performs packet communication with terminal 150 described in the first embodiment.
[0068] 基地局装置 300は、実施の形態 1で説明したスケジューラ 107の代わりに、スケジュ ーラ 301を有する。  [0068] Base station apparatus 300 includes scheduler 301 instead of scheduler 107 described in the first embodiment.
[0069] スケジューラ 301は、スケジューラ 107と同様の基本構成を有するが、端末割当手 段としての構成においてスケジューラ 107と相違する。すなわち、スケジューラ 301は 、複数の端末 150のうち SINRが最大の端末 150にタイムスロットを割り当てるとともに 、タイムスロットが割り当てられた端末 150の干渉分散が特定のレベル以上の場合に 、その端末 150と異なる端末 150にタイムスロットを割り当てる。  [0069] The scheduler 301 has the same basic configuration as the scheduler 107, but is different from the scheduler 107 in the configuration as a terminal allocation unit. That is, scheduler 301 assigns a time slot to terminal 150 having the maximum SINR among a plurality of terminals 150, and differs from terminal 150 when the interference variance of terminal 150 to which the time slot is assigned exceeds a specific level. Assign a time slot to terminal 150.
[0070] 以下、スケジューラ 301における動作例について図 11のフロー図を用いて説明す る。  Hereinafter, an operation example in the scheduler 301 will be described with reference to the flowchart of FIG.
[0071] ステップ ST1001〜ST1005では、実施の形態 1と同様の処理を行う。  [0071] In steps ST1001 to ST1005, the same processing as in the first embodiment is performed.
[0072] ステップ ST1004での判断の結果、干渉分散が閾値以上の場合(ST1004 :YES) 、タイムスロットが割り当てられる端末 150を変更した回数が所定値に達している力否 かを判断する(ST2001)。なお、変更回数との比較に用いる値は、現在通信中の端 末 150の数 nであっても良いし、 nより小さい任意の整数であっても良い。  [0072] If the result of determination in step ST1004 is that the interference variance is greater than or equal to a threshold (ST1004: YES), it is determined whether or not the number of times the terminal 150 to which the time slot is allocated has changed reaches a predetermined value (ST2001). ). Note that the value used for comparison with the number of changes may be the number n of terminals 150 currently in communication, or an arbitrary integer smaller than n.
[0073] ステップ ST2001での判断の結果、変更回数が所定値に達していない場合 (ST2 002 :NO)、タイムスロットが割り当てられる端末 150を、現在処理対象になつている 端末 150 (つまり、現在タイムスロットが割り当てられている端末 150)の次に高い SIN Rを有する端末 150に変更する(ST2002)。  [0073] As a result of the determination in step ST2001, if the number of changes has not reached the predetermined value (ST2 002: NO), the terminal 150 to which the time slot is allocated is the terminal 150 (that is, the current processing target) The terminal is changed to the terminal 150 having the next highest SINR after the terminal 150) to which the time slot is allocated (ST2002).
[0074] そして、ステップ ST2003では、実施の形態 1で説明した ST1007と同様の処理を 行う。すなわち、送信が回避された再送パケットを、次回の送信キューに割り当てる。  [0074] Then, in step ST2003, the same processing as ST1007 described in the first embodiment is performed. That is, the retransmission packet for which transmission has been avoided is assigned to the next transmission queue.
[0075] また、ステップ ST2001での判断の結果、変更回数が所定値に達している場合 (S T2002 :YES)、ステップ ST1001で選択された端末 150、つまり、最大 SINRの端 末 150宛ての新規パケットをタイムスロットに割り当てる(ST2004)。これにより、一定 の再送効果が得られる端末 150が所定数の端末 150の中に存在しな力つた場合、タ ィムスロットが当初割り当てられていた端末 150、すなわち、最大 SINRの端末 150に 新規パケットを送信することができる。 [0075] If the number of changes reaches the predetermined value as a result of the determination in step ST2001 (ST2002: YES), terminal 150 selected in step ST1001, that is, the maximum SINR end A new packet addressed to end 150 is assigned to a time slot (ST2004). As a result, when the terminal 150 that can achieve a certain retransmission effect does not exist in the predetermined number of terminals 150, a new packet is sent to the terminal 150 to which the time slot was initially assigned, that is, the terminal 150 with the maximum SINR. Can be sent.
[0076] 次いで、スケジューラ 301の具体的な動作例について、図 12を用いて説明する。  Next, a specific operation example of the scheduler 301 will be described with reference to FIG.
[0077] 時刻 tl〜tl7の区間における端末 A〜Cの各 SINRが(a)に示されている。スケジ ユーラ 301では、これらの SINRを参照して、端末 A〜Cのいずれかに、この区間に対 応する送信キュー内の各タイムスロットを割り当てる。この割り当ての結果は、(b)に 示されている。具体的には、時刻 tl〜t3では、端末 Aの SINRが最も高いので、端末 Aにタイムスロットが割り当てられ、時刻 t4〜6では、端末 Bの SINRが最も高いので、 端末 Bにタイムスロットが割り当てられ、時刻 t7〜9では、端末 Aの SINRが最も高い ので、端末 Aにタイムスロットが割り当てられ、時刻 tl0〜tl3では、端末 Bの SINRが 最も高いので、端末 Bにタイムスロットが割り当てられ、時刻 tl4〜tl7では、端末じの SINRが最も高 、ので、端末 Cにタイムスロットが割り当てられる。  [0077] Each SINR of terminals A to C in the section from time tl to tl7 is shown in (a). The scheduler 301 refers to these SINRs and assigns each time slot in the transmission queue corresponding to this section to any of the terminals A to C. The result of this assignment is shown in (b). Specifically, at time tl to t3, terminal A has the highest SINR, so a time slot is assigned to terminal A, and at time t4 to t6, terminal B has the highest SINR, so terminal B has a time slot. At times t7-9, terminal A has the highest SINR, so time slot is assigned to terminal A, and at times tl0-tl3, terminal B has the highest SINR, so time slot is assigned to terminal B. At times tl4 to tl7, since the terminal SINR is the highest, a time slot is assigned to terminal C.
[0078] また、(b)に示すように、スケジューラ 301では、各端末 A〜Cからの ACK信号また は NACK信号に基づ 、て、各タイムスロットを割り当てられた端末宛てのパケットが 新規パケットか再送パケットかを判断する。この例示では、時刻 t3、 t6、 t8、 t9、 tl2 〜tl5のタイムスロットに対応するパケットが再送パケットとなっている。  [0078] Also, as shown in (b), in scheduler 301, a packet addressed to a terminal assigned with each time slot is a new packet based on the ACK signal or NACK signal from each terminal A to C. Or retransmission packet. In this example, packets corresponding to time slots at times t3, t6, t8, t9, and tl2 to tl5 are retransmission packets.
[0079] そして、スケジューラ 301は、時刻 tl〜tl7の区間における端末 A〜Cの各干渉分 散を参照する。これらの干渉分散は、(c)に示されている。通知された干渉分散によ れば、時刻 t5〜tl 7の端末 Aの干渉分散が閾値以上の状態となっている。  [0079] Then, the scheduler 301 refers to the interference dispersion of the terminals A to C in the section from time tl to tl7. These interference variances are shown in (c). According to the notified interference dispersion, the interference dispersion of terminal A at times t5 to tl7 is equal to or greater than the threshold value.
[0080] このため、(d)に示すように、時刻 t8、 t9での端末 A宛ての再送パケットの送信が回 避され、その代わりに、時刻 t8、 t9では、端末 Aの次に高い SINRを有する端末 B宛 てにパケットの送信が行われるように、端末 B宛てのパケットが時刻 t8、 t9のタイムス ロットに割り当てられる。送信回避された端末 A宛ての再送パケットは、時刻 tl8以降 の区間に対応する送信キューに割り当てられる。なお、この例示では、時刻 t8、 t9に 割り当てられた端末 B宛てのパケットが 、ずれも新規パケットとなって 、るが、図 11の フローに従って処理を行う場合、端末 B宛ての再送パケットが割り当てられる場合もあ り得る、ということは明らかである。 [0080] For this reason, as shown in (d), transmission of a retransmission packet addressed to terminal A at times t8 and t9 is avoided. Instead, at time t8 and t9, the next highest SINR after terminal A is avoided. Packet addressed to terminal B is assigned to the time slot at times t8 and t9 so that the packet is transmitted to terminal B having The retransmitted packet destined for terminal A that was avoided from transmission is assigned to the transmission queue corresponding to the section after time tl8. In this example, the packet addressed to terminal B assigned at times t8 and t9 is a new packet, but when processing is performed according to the flow in FIG. 11, a retransmission packet addressed to terminal B is assigned. Sometimes It is clear that this is possible.
[0081] 図 6および図 7を用いて実施の形態 1で説明したとおり、ある端末の SINRが高いと しても、その端末の干渉分散が大きければ、パケット再送の効果は小さくなる。このた め、通常のスケジューリングによって割り当てられた端末についての干渉分散を閾値 と比較し、干渉分散が閾値未満の場合にその端末宛ての再送パケットの送信を回避 して、他の端末宛てのパケットの送信を行うことができる。  As described in Embodiment 1 with reference to FIGS. 6 and 7, even if the SINR of a certain terminal is high, the effect of packet retransmission is small if the interference dispersion of that terminal is large. For this reason, the interference variance for a terminal assigned by normal scheduling is compared with a threshold, and if the interference variance is less than the threshold, transmission of a retransmission packet addressed to that terminal is avoided, and packets destined for other terminals are You can send.
[0082] このように、本実施の形態によれば、再送効果の小さい端末 150と異なる端末 150 にパケットを送信することにより、スループットの改善を図ることができる。  Thus, according to the present embodiment, it is possible to improve throughput by transmitting packets to terminal 150 different from terminal 150 having a small retransmission effect.
[0083] (実施の形態 4)  [0083] (Embodiment 4)
図 13は、本発明の実施の形態 4に係る基地局装置の構成を示すブロック図である 。なお、図 13の基地局装置 400は、実施の形態 1で説明した基地局装置 100と同様 の基本的構成を有し、前述の実施の形態で説明したものと同一の構成要素には同 一の参照符号を付し、その詳細な説明を省略する。また、基地局装置 400は、実施 の形態 2で説明した端末 250との間でパケット通信を行う。  FIG. 13 is a block diagram showing the configuration of the base station apparatus according to Embodiment 4 of the present invention. Note that base station apparatus 400 in FIG. 13 has the same basic configuration as base station apparatus 100 described in the first embodiment, and is identical to the same components as those described in the previous embodiment. The detailed description is abbreviate | omitted. Base station apparatus 400 performs packet communication with terminal 250 described in the second embodiment.
[0084] 基地局装置 400は、実施の形態 1で説明した干渉分散情報復号部 104の代わりに 実施の形態 2で説明した GIVEUP信号復号部 201を有し、実施の形態 1で説明した スケジューラ 107の代わりにスケジューラ 401を有する。  [0084] Base station apparatus 400 has GIVEUP signal decoding section 201 described in Embodiment 2 instead of interference dispersion information decoding section 104 described in Embodiment 1, and includes scheduler 107 described in Embodiment 1. Instead of the scheduler 401.
[0085] スケジューラ 401は、実施の形態 3で説明したスケジューラ 301と同様の基本構成 を有する。スケジューラ 401は、干渉分散情報の代わりに、 GIVEUP信号復号部 20 1力 入力された 、ずれかの端末 250の GIVEUP信号を用いると!、う点にお!、て、ス ケジユーラ 301と相違する。  [0085] Scheduler 401 has the same basic configuration as scheduler 301 described in the third embodiment. The scheduler 401 is different from the scheduler 301 when the GIVEUP signal of the other terminal 250 is used instead of the interference dispersion information and the GIVEUP signal of the terminal 250 is input.
[0086] このように、本実施の形態によれば、実施の形態 3と同様の作用効果を実現できる とともに、端末 250の干渉分散が閾値以上の場合のみ、その旨を基地局装置 400に 通知するため、シグナリングの情報量を削減することができる。  [0086] Thus, according to the present embodiment, the same operational effects as in Embodiment 3 can be realized, and notification is made to base station apparatus 400 only when the interference dispersion of terminal 250 is greater than or equal to the threshold value. Therefore, the amount of signaling information can be reduced.
[0087] なお、前述の各実施の形態は、下り回線でのパケット伝送のスケジューリングを行う 場合を例にとって説明した力 上り回線でのパケット伝送のスケジューリングを行う場 合にも本発明を適用することができる。すなわち、タイムスロットが割り当てられた端末 の干渉分散が閾値以上の場合、その端末との間での再送パケットの伝送と異なるパ ケット通信を通信部に行わせて、再送パケットの伝送を回避するため、基地局装置と 再送効果の小さい端末との間での再送パケットの伝送が何度も繰り返されることを回 避することができ、システム全体のスループットを向上させることができる。 It should be noted that each of the above-described embodiments has been described by taking the case of scheduling packet transmission on the downlink as an example. The present invention is also applied to scheduling of packet transmission on the uplink. Can do. That is, if the interference variance of a terminal to which a time slot is allocated is greater than or equal to a threshold value, a different transmission from that for retransmission packet transmission to that terminal. In order to avoid retransmission of retransmission packets by causing the communication unit to perform packet communication, it is possible to avoid repeated retransmission of retransmission packets between the base station apparatus and a terminal having a small retransmission effect. And the throughput of the entire system can be improved.
[0088] また、各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であ る LSIとして実現される。これらは個別に 1チップ化されても良いし、一部又は全てを 含むように 1チップィ匕されても良 、。  [0088] Each functional block used in the description of each embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip to include some or all of them.
[0089] ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレ卜ラ LSIと呼称されることちある。  [0089] Here, it is sometimes called an IC, a system LSI, a super LSI, or a monolithic LSI, depending on the difference in power integration as LSI.
[0090] また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサ で実現しても良い。 LSI製造後に、プログラムすることが可能な FPGA (Field Program mable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリコンフィ ギュラブノレ ·プロセッサーを利用しても良 、。  [0090] Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. It is also possible to use a field programmable gate array (FPGA) that can be programmed after LSI manufacture and a reconfigurable processor that can reconfigure the connection and settings of circuit cells inside the LSI.
[0091] さらには、半導体技術の進歩又は派生する別技術により LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って も良い。バイオ技術の適応等が可能性としてありえる。  [0091] Further, if integrated circuit technology that replaces LSI appears as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using that technology. Biotechnology can be applied.
[0092] また、誤り訂正符号ィ匕部 115がターボ符号や LDPC符号等の組織符号を用いた誤 り訂正符号ィ匕を行う場合は、その符号ィ匕により送信ビットそのものであるシステマチッ クビットと、冗長ビットであるノ リティビットとが生成される。そこで、実施の形態 1および 3にお 、て、新規パケットをシステマチックビットおよびパリティビットの双方を含むパ ケットと読み替えるとともに、ノ リティビットのみを含むパケットを再送パケットとして本 発明を実施してもよ 、。システマチックビットおよびパリティビットの双方を含むバケツ トは、新規パケット同様、単独で復号可能なパケットである一方、ノ リティビットのみを 含むパケットは単独では復号不可能なパケットである。  [0092] When the error correction code key unit 115 performs an error correction code key using a systematic code such as a turbo code or an LDPC code, a systematic bit that is a transmission bit itself by the code key, Redundancy bits, NORITY bits, are generated. Therefore, in Embodiments 1 and 3, a new packet is replaced with a packet including both systematic bits and parity bits, and the present invention is implemented using a packet including only the NORMAL bit as a retransmission packet. Yo ... A bucket that contains both systematic and parity bits is a packet that can be decoded independently, as well as a new packet, while a packet that contains only the NORITY bit is a packet that cannot be decoded alone.
[0093] 本明細書は、 2004年 10月 4日出願の特願 2004— 291814に基づくものである。  [0093] This specification is based on Japanese Patent Application No. 2004-291814 filed on Oct. 4, 2004.
この内容はすべてここに含めておく。  All this content is included here.
産業上の利用可能性  Industrial applicability
[0094] 本発明の基地局装置およびパケット通信方法は、端末との間でパケット通信を行う のに有用である。 The base station apparatus and packet communication method of the present invention are useful for performing packet communication with a terminal.

Claims

請求の範囲 The scope of the claims
[1] 複数の端末装置のうち第 1の端末装置にタイムスロットを割り当てる端末割当手段と 前記第 1の端末装置に対する干渉信号の周波数軸上での分散に関する情報を取 得する取得手段と、  [1] a terminal allocation unit that allocates a time slot to a first terminal device among a plurality of terminal devices, an acquisition unit that acquires information on dispersion on the frequency axis of an interference signal for the first terminal device;
前記第 1の端末装置の干渉信号の分散が特定のレベル以上の場合、前記第 1の 端末装置宛ての再送パケットと異なるパケットを前記タイムスロットに割り当てて、前記 第 1の端末装置宛ての再送パケットが前記タイムスロットに割り当てられることを回避 するパケット割当手段と、  If the dispersion of the interference signal of the first terminal device is a specific level or higher, a packet different from the retransmission packet addressed to the first terminal device is assigned to the time slot, and the retransmission packet addressed to the first terminal device Packet allocating means for avoiding being allocated to the time slot;
前記タイムスロットに割り当てられたパケットを送信する送信手段と、  Transmitting means for transmitting a packet assigned to the time slot;
を有する基地局装置。  A base station apparatus.
[2] 前記パケット割当手段は、  [2] The packet allocation means includes:
前記第 1の端末装置の干渉信号の分散が前記特定のレベル以上の場合、前記第 1の端末装置宛ての新規パケット、または、システマチックビットおよびパリティビットの 双方を含むパケットを前記タイムスロットに割り当てる、  When the dispersion of the interference signal of the first terminal device is equal to or higher than the specific level, a new packet addressed to the first terminal device or a packet including both systematic bits and parity bits is allocated to the time slot. ,
請求項 1記載の基地局装置。  The base station apparatus according to claim 1.
[3] 前記端末割当手段は、 [3] The terminal allocation means includes
前記第 1の端末装置の干渉信号の分散が前記特定のレベル以上の場合、前記タ ィムスロットが割り当てられる端末装置を、前記複数の端末装置のうち前記第 1の端 末装置と異なる第 2の端末装置に変更する、  If the dispersion of the interference signal of the first terminal device is equal to or higher than the specific level, a terminal device to which the time slot is assigned is a second terminal different from the first terminal device among the plurality of terminal devices. Change to device,
請求項 1記載の基地局装置。  The base station apparatus according to claim 1.
[4] 前記パケット割当手段は、 [4] The packet allocation means includes:
前記第 2の端末装置宛ての新規パケット、または、システマチックビットおよびパリテ ィビットの双方を含むパケットを前記タイムスロットに割り当てる、  Assigning a new packet addressed to the second terminal device or a packet including both systematic bits and parity bits to the time slot;
請求項 3記載の基地局装置。  The base station apparatus according to claim 3.
[5] 前記取得手段は、 [5] The acquisition means includes:
前記第 2の端末装置に対する干渉信号の周波数軸上での分散に関する情報をさら に取得し、 前記パケット割当手段は、 Further acquiring information on dispersion on the frequency axis of the interference signal for the second terminal device, The packet allocation means includes
前記第 2の端末装置の干渉信号の分散が前記特定のレベル未満の場合、前記第 2の端末装置宛ての再送パケットを前記タイムスロットに割り当てる、  If the variance of the interference signal of the second terminal device is less than the specific level, a retransmission packet addressed to the second terminal device is assigned to the time slot.
請求項 3記載の基地局装置。  The base station apparatus according to claim 3.
[6] 前記端末割当手段は、 [6] The terminal allocation means includes:
前記複数の端末装置の中で、前記第 1の端末装置の次に受信品質の良い端末装 置を前記第 2の端末装置として選択する、  A terminal device having a reception quality next to the first terminal device is selected as the second terminal device among the plurality of terminal devices;
請求項 3記載の基地局装置。  The base station apparatus according to claim 3.
[7] 前記端末割当手段は、 [7] The terminal allocation means includes:
前記複数の端末装置の中で、前記第 1の端末装置の次に優先度の高い端末装置 を前記第 2の端末装置として選択する、  A terminal device having the second highest priority after the first terminal device among the plurality of terminal devices is selected as the second terminal device;
請求項 3記載の基地局装置。  The base station apparatus according to claim 3.
[8] 前記取得手段は、 [8] The acquisition means includes:
前記複数の端末装置のうち前記第 1の端末装置と異なる複数の端末装置の各々に 対する干渉信号の周波数軸上での分散に関する情報をさらに取得し、  Further obtaining information on dispersion on the frequency axis of interference signals for each of a plurality of terminal devices different from the first terminal device among the plurality of terminal devices,
前記パケット割当手段は、  The packet allocation means includes
前記第 1の端末装置と異なる複数の端末装置の各々の干渉信号の分散が前記特 定のレベル以上の場合、前記第 1の端末装置宛ての新規パケット、または、システマ チックビットおよびパリティビットの双方を含むパケットを前記タイムスロットに割り当て る、  When dispersion of interference signals of a plurality of terminal devices different from the first terminal device is equal to or higher than the specific level, a new packet addressed to the first terminal device or both systematic bits and parity bits Is assigned to the time slot,
請求項 1記載の基地局装置。  The base station apparatus according to claim 1.
[9] タイムスロットが割り当てられた端末装置とパケット通信を行う通信手段と、 [9] a communication means for performing packet communication with a terminal device to which a time slot is allocated;
前記端末装置に対する干渉信号の周波数軸上での分散に関する情報を取得する 取得手段と、  An acquisition means for acquiring information on dispersion on a frequency axis of an interference signal for the terminal device;
前記端末装置の干渉信号の分散が特定のレベル以上の場合、前記端末装置との 間での再送パケットの伝送と異なるパケット通信を前記通信手段に行わせて、前記通 信手段と前記端末装置との間での再送パケットの伝送を回避する制御を行う制御手 段と、 を有する基地局装置。 When the dispersion of interference signals of the terminal device is equal to or higher than a specific level, the communication unit performs packet communication different from transmission of a retransmission packet with the terminal device, and the communication unit and the terminal device A control means for performing control to avoid transmission of retransmission packets between A base station apparatus.
[10] 複数の端末装置のうちタイムスロットが割り当てられた端末装置に対する干渉信号 の周波数軸上での分散に関する情報を取得する取得ステップと、  [10] An acquisition step of acquiring information on dispersion on the frequency axis of an interference signal for a terminal device to which a time slot is assigned among a plurality of terminal devices;
前記端末装置の干渉信号の分散が特定のレベル以上の場合、前記端末装置宛て の再送パケットと異なるパケットを前記タイムスロットに割り当てて、前記第 1の端末装 置宛ての再送パケットが前記タイムスロットに割り当てられることを回避するパケット割 当ステップと、  If the dispersion of the interference signal of the terminal device is a specific level or higher, a packet different from the retransmission packet addressed to the terminal device is assigned to the time slot, and the retransmission packet addressed to the first terminal device is assigned to the time slot. A packet allocation step to avoid being allocated;
前記タイムスロットに割り当てられたパケットを送信する送信ステップと、 パケット通信方法。  A transmission step of transmitting a packet assigned to the time slot; and a packet communication method.
[11] 基地局装置とタイムスロットが割り当てられた端末装置との間でパケット通信を行うと きに用いられるパケット通信方法であって、  [11] A packet communication method used when packet communication is performed between a base station device and a terminal device to which a time slot is assigned,
前記端末装置に対する干渉信号の周波数軸上での分散に関する情報を取得し、 前記端末装置の干渉信号の分散が特定のレベル以上の場合、前記端末装置との間 での再送パケットの伝送と異なるパケット通信を行わせて、前記基地局装置と前記端 末装置との間での再送パケットの伝送を回避する、  Obtaining information related to dispersion on the frequency axis of interference signals for the terminal device, and if the dispersion of interference signals of the terminal device is equal to or higher than a specific level, packets different from transmission of retransmission packets with the terminal device Causing communication to avoid transmission of retransmission packets between the base station apparatus and the terminal apparatus;
パケット通信方法。  Packet communication method.
PCT/JP2005/018307 2004-10-04 2005-10-03 Base station device and packet communication method WO2006038595A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BRPI0516458-3A BRPI0516458A (en) 2004-10-04 2005-10-03 base station device and packet communication scheme
JP2006539286A JPWO2006038595A1 (en) 2004-10-04 2005-10-03 Base station apparatus and packet communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-291814 2004-10-04
JP2004291814 2004-10-04

Publications (1)

Publication Number Publication Date
WO2006038595A1 true WO2006038595A1 (en) 2006-04-13

Family

ID=36142668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018307 WO2006038595A1 (en) 2004-10-04 2005-10-03 Base station device and packet communication method

Country Status (5)

Country Link
JP (1) JPWO2006038595A1 (en)
KR (1) KR20070108848A (en)
CN (1) CN101027930A (en)
BR (1) BRPI0516458A (en)
WO (1) WO2006038595A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218830A (en) * 2002-01-17 2003-07-31 Matsushita Electric Ind Co Ltd Wireless transmitter, wireless receiver and wireless transmission method
JP2004080165A (en) * 2002-08-12 2004-03-11 Matsushita Electric Ind Co Ltd Receiver, transmitter and communication method
JP2004104293A (en) * 2002-09-06 2004-04-02 Mitsubishi Electric Corp Retransmission control method and communication apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218830A (en) * 2002-01-17 2003-07-31 Matsushita Electric Ind Co Ltd Wireless transmitter, wireless receiver and wireless transmission method
JP2004080165A (en) * 2002-08-12 2004-03-11 Matsushita Electric Ind Co Ltd Receiver, transmitter and communication method
JP2004104293A (en) * 2002-09-06 2004-04-02 Mitsubishi Electric Corp Retransmission control method and communication apparatus

Also Published As

Publication number Publication date
BRPI0516458A (en) 2008-09-02
JPWO2006038595A1 (en) 2008-05-15
KR20070108848A (en) 2007-11-13
CN101027930A (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP3902343A1 (en) Method and apparatus of handling time gap for sidelink hybrid automatic request (harq) in network scheduling mode in a wireless communication system
TWI407720B (en) Shared signaling channel for a communication system
KR101242036B1 (en) Collision-free group hopping in a wireless communication system
JP4519817B2 (en) Base station and mobile station
KR101292889B1 (en) Apparatus and method for transmitting/receiving controll channel in mobile communication system
US10523373B2 (en) Base station device, user equipment, wireless communication system, and communication method
JP5710578B2 (en) Apparatus and method for hybrid automatic repeat request
CN109792328B (en) Base station, terminal and communication method
JP2006135992A (en) Method and apparatus for scheduling uplink data transmission using ue-ids in mobile communication system supporting uplink packet data service
JP2004173019A (en) Base station device and transmitting assignment control method
US8208495B2 (en) Data transmission with supplemental resources
WO2007108473A1 (en) Radio communication system, radio transmission device, and retransmission method
KR20090022048A (en) Apparatus and method of hybrid automatic repeat request operatation to allocate resource as a circuit mode based on packet in wireless communication system
JP2020504469A (en) Terminal, base station and communication method
US11863478B2 (en) Base station, terminal, and communication method
US11923982B2 (en) Transmission device, reception device, transmission method, and reception method
US8085661B2 (en) Control channel allocation apparatus, mobile communications system, and control channel allocation method
KR101460747B1 (en) Method and apparatus for transmitting and receiving data in resource allocation in wireless communication system
KR100929077B1 (en) Methdo and apparatus for allocating communication resources using virtual circuit switching in a wireless communication system and method for transmitting/receiving data in a mobile station
JP7158538B2 (en) Terminal, communication method and integrated circuit
US20220158768A1 (en) Base station, terminal, transmission method and reception method
WO2006038595A1 (en) Base station device and packet communication method
JP7189979B2 (en) Terminal device, communication method and integrated circuit
JP2022058559A (en) Communication device, and communication method
JP2010050818A (en) Radio base station and transmission power control method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539286

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580031924.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 470/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077007635

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Ref document number: PI0516458

Country of ref document: BR