WO2006038462A1 - Novel steroid-producing cell - Google Patents

Novel steroid-producing cell Download PDF

Info

Publication number
WO2006038462A1
WO2006038462A1 PCT/JP2005/017349 JP2005017349W WO2006038462A1 WO 2006038462 A1 WO2006038462 A1 WO 2006038462A1 JP 2005017349 W JP2005017349 W JP 2005017349W WO 2006038462 A1 WO2006038462 A1 WO 2006038462A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
steroid
steroidogenic
cells
producing
Prior art date
Application number
PCT/JP2005/017349
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeki Gondo
Toshihiko Yanase
Taijirou Okabe
Hajime Nawata
Original Assignee
Kyushu University, National University Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation filed Critical Kyushu University, National University Corporation
Priority to JP2006539219A priority Critical patent/JPWO2006038462A1/en
Publication of WO2006038462A1 publication Critical patent/WO2006038462A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/566Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol having an oxo group in position 17, e.g. estrone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/567Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in position 17 alpha, e.g. mestranol, norethandrolone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • A61K31/568Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone
    • A61K31/5685Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in positions 10 and 13 by a chain having at least one carbon atom, e.g. androstanes, e.g. testosterone having an oxo group in position 17, e.g. androsterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/04Antipruritics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/26Androgens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/30Oestrogens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/34Gestagens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/38Drugs for disorders of the endocrine system of the suprarenal hormones
    • A61P5/44Glucocorticosteroids; Drugs increasing or potentiating the activity of glucocorticosteroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0613Cells from endocrine organs
    • C12N5/0614Adrenal gland
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1353Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from bone marrow mesenchymal stem cells (BM-MSC)

Definitions

  • the present invention relates to the production of steroid-producing cells, and more specifically, to a novel steroid-producing cell produced thereby and a production method thereof.
  • the invention also relates to the use of the cells so produced.
  • steroid hormones are known as “steroidal agents” used in bronchial asthma and rheumatism in addition to external and internal use for atopic dermatitis.
  • This steroidal agent has a strong immunosuppressive action, and it should be used with caution from the viewpoint of the power and side effects used in the treatment of a wide range of diseases.
  • steroid hormones produced in vivo are hormones that play a very important role in living organism maintenance. Insufficient production of steroid hormones in vivo reduces maintenance of regulation of glucose, regulation of Na'K balance, promotion of protein synthesis, control of inflammatory response 'immune response, sexual development, reproductive function, etc. When this steroid hormone is missing or decreased for various reasons, a condition called “steroid hormone deficiency” is caused.
  • adrenal cortex dysfunction is caused by a lack of adrenal steroid hormones, and specific symptoms include generalized malaise due to lack of secretion of the stress-responsive hormone glucocorticoid cortisol. It may become stronger and medical findings may include hypotension, hypoglycemia, hyponatremia, hyperkemia, and pigmentation. In the worst case, acute adrenal insufficiency may result in death due to an absolute shortage of adrenal steroid hormones or a sudden increase in the amount required due to stress such as infection. Adrenal cortex dysfunction is often accompanied by poor secretion of the mineralocorticoid hormone aldosterone, further promoting hyponatremia and hyperkemia.
  • Gonadal dysfunction All have a decreased production of gonadal steroid hormones due to a variety of etiologies, such as genetic factors, tumors, inflammation, surgery, radiation, etc. Refers to the disease state. Basically it is not a life-threatening problem, but when it occurs in young people in their teens and twenties, secondary sexual characteristics are impaired and the lack of masculinity and femininity also causes complex problems. It can happen. At the same time, it can be a problem that affects future fertility. In addition, there is a problem that osteoporosis and arteriosclerosis are likely to occur due to a long-term absence of gonadal hormones that are caused only by the effects on the reproductive system.
  • Steroid hormone supplementation therapy has been established as a current treatment method for these steroid hormone deficiencies, and provides many benefits as described in Non-Patent Document 1, for example.
  • Glucocorticoids are generally supplemented, but mineral corticoids are also added if that alone does not correct the electrolyte dysfunction.
  • it may be a fixed-dose oral administration, and it may be difficult to respond when the steroid requirement is rapidly increased due to infection, etc. If steroid excess continues, various side effects may occur.
  • Non-patent document 1 Laureti, S., Falorni, A., and Santeusanio, F. Improveme nt of treatment of primary adrenal insufficiency by administration of cortisone acetate in three daily doses.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a novel steroid-producing cell that can be used for the treatment of abnormal steroid hormone secretion such as steroid hormone deficiency.
  • steroid-producing cells that can secrete physiologically diverse steroid hormones, their production methods, uses, pharmaceutical compositions using the secreted hormones, and various diseases using the cells A cure for the disease For that purpose.
  • bone marrow cell transplantation may contribute to the regeneration of hematopoietic / mesenchymal cell groups in various organs.
  • bone marrow cells contain pluripotent progenitor cells that can be divided into various organs.
  • Bone marrow stem cells are known to grow into hematopoietic and mesenchymal cell groups, but before the present invention, they were not known to be separated into steroidogenic cells.
  • bone marrow cells can be separated into muscles and fats derived from the mesenchymal system as well as the adrenal cortex 'gonadal gland, and when steroidogenic cells are separated from bone marrow cells, Based on this new knowledge, and based on this and sincere examination and experimentation, we have succeeded in producing steroid-producing cells with several properties as described below.
  • a steroid-producing cell characterized by introducing a factor involved in steroid hormone synthesis into bone marrow cells and allowing the bone marrow cells to differentiate. Provided.
  • a novel steroid hormone-producing cell that can be used for treatment of abnormal steroid hormone secretion such as steroid hormone deficiency can be obtained by transplantation or the like.
  • the bone marrow cells include, but are not limited to, bone marrow stem cells, bone marrow mesenchymal stem cells, hematopoietic stem cells, and pluripotent progenitor cells.
  • a steroid characterized by introducing a factor involved in steroid hormone synthesis into a pluripotent stem cell and allowing the pluripotent stem cell to differentiate.
  • a production cell is provided.
  • the pluripotent stem cells are preferably somatic pluripotent stem cells including mesenchymal stem cells and hematopoietic stem cells.
  • the pluripotent stem cells are preferably derived from bone marrow cells.
  • the pluripotent stem cells of the present invention are not limited to those derived from bone marrow, but may be those derived from yarn and tissue where pluripotent stem cells are present.
  • the factor involved in the steroid synthesis is not limited to this, but is a transcriptional regulator of steroid hormone synthase. Transcription of this steroid hormone synthase
  • the factor is preferably Steroidogenic factor 1 (SF—l).
  • the steroid hormones produced in the steroidogenic cells are predanenolone, progesterone, oxycorticosterone, conoleticosterone. emissions (corticoste rone), 18-hydroxy-Kono retinyl corticosterone (18- hydroxycorticosterone), Anoredosute Ron, aldosterone Roh, 1 ⁇ Hitoro 3 r shea pregnenolone, 17 a- hyaroxypregnelone)
  • 17-Hydroxyprogesterone (17 0; -11 (1): 0): 0865 6]: 0116), 11 deoxyconoreth, 11-deoxycortisol, Cortisol, DHEA (dehydroepia ndrosterone, Andros anion ( one or more of the steroid hormones consisting of androstenedione), estrone, androstenediol, testosterone, and estradiol.
  • the steroid-producing cells secrete steroid hormones over a predetermined period.
  • the predetermined period is preferably at least 2 weeks. This can reduce the frequency of treatment and reduce the burden on the patient.
  • the steroidogenic cells are adrenocorticotropic hormone (ACTH) responsive.
  • ACTH responsiveness is dose dependent.
  • a steroidogenic bone marrow cell obtained in the present invention is transplanted to a patient with adrenal insufficiency, if the steroid in the adrenal cortex in the living body is insufficient, ACTH is secreted, and the adrenal gland is secreted from the cell.
  • Cortical steroids are secreted and, conversely, if excessive, ACTH can be suppressed and, as a result, corticosteroid secretion can also be suppressed.
  • the steroid-producing cells are cultured in a retinoic acid-containing medium or a medium containing retinoic acid and hCG (human chorionic stimulating hormone) to obtain a gonadal steroid hormone.
  • a retinoic acid-containing medium or a medium containing retinoic acid and hCG human chorionic stimulating hormone
  • a step of preparing bone marrow cells (a) a step of preparing bone marrow cells, and (b) introducing a factor involved in steroid hormone synthesis in the bone marrow cells,
  • a method for producing steroid-producing cells comprising the step of separating the cells into steroid-producing cells. This makes it possible to produce a variety of effective steroid hormones It becomes possible to produce steroidogenic cells that can be secreted.
  • the method further comprises a step of culturing in a retinoic acid-containing medium, or a retinoic acid and hCG (human chorionic stimulating hormone) -containing medium.
  • a method for producing a steroidogenic cell characterized by inducing differentiation.
  • a pharmaceutical composition comprising the physiologically diverse steroid hormone secreted by the steroidogenic cell force and a pharmaceutically acceptable carrier. According to the pharmaceutical composition thus obtained, it becomes possible to effectively treat steroid hormone secretion abnormalities such as steroid hormone deficiency and various self-exemptions.
  • a steroidogenic cell obtained by introducing a factor involved in a steroid synthase into bone marrow cells or pluripotent stem cells and allowing the cells to differentiate.
  • bone marrow cell transplantation may contribute to the regeneration of hematopoietic and mesenchymal cells in various organs.
  • bone marrow cells contain pluripotent progenitor cells that can be divided into various organs.
  • Bone marrow stem cells are known to grow into hematopoietic and mesenchymal cells, but before the present invention, they were known to be separated into steroidogenic cells.
  • bone marrow cells can be divided into muscles and fats derived from the mesenchymal system as well as the adrenal cortex 'gonadal gland, and when steroidogenic cells are separated from bone marrow cells, As a result of obtaining new knowledge and conducting repeated sincerity studies and experiments based on this knowledge, we succeeded in generating steroid-producing cells having several desirable properties described below.
  • bone marrow cells and pluripotent stem cells can be separated into steroidogenic cells. It is not limited to a good person or a mammal such as a mouse.
  • the cell collection method may be a known method.
  • SF-1 a tissue-specific transcription factor of steroid hormone synthase, also known as ad renal 4 binding protein (Ad4BP), belongs to the nuclear receptor superfamily and is reported to be involved in many steroidogenic genes. (1). SF-1 is thought to be particularly important for steroidogenesis and steroidogenic tissue growth, as a complete absence of adrenal glands and gonadal glands was observed in this SF-1 knockout mouse.
  • Ad4BP a tissue-specific transcription factor of steroid hormone synthase
  • Ad4BP ad renal 4 binding protein
  • the transcriptional regulatory factor is not limited to Steroidogenic factor 1 (SF-1), but may be a factor necessary for synthesizing steroid hormones in the cell.
  • SF-1 Steroidogenic factor 1
  • an adenovirus vector for example, an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a lenti Virus vectors, HIV vectors, etc. This is done using a kuta. However, it can be carried out by using known techniques such as electoral positioning and protein direct introduction using only such methods using vectors derived from viruses.
  • the method of separating bone marrow cells and the like into steroid-producing cells is considered to be a method in which an exogenous factor that acts only by introduction of an endogenous factor involved in steroid hormone synthesis is also possible. That is, by culturing the bone marrow cells in a culture solution and medium containing exogenous factors, it is possible to separate them into target steroid-producing cells.
  • the production of steroid hormones by steroid-producing cells according to the present invention increases the amount of steroid hormone synthase in bone marrow cells by introducing a synthase transcription regulatory factor. It seems to be the cause. That is, in the steroidogenic cells according to the present invention, it was found from experiments using RT-PCR that the mRNA expression of the steroid hormone synthase is enhanced by forcibly expressing the transcriptional regulatory factor. Furthermore, immunostaining experiments using anti-cytochrome P450 SCC antibodies showed that the expression of the steroid hormone synthase is enhanced at the protein level.
  • the steroidogenic bone marrow cells obtained in the present invention are required to produce stable steroid hormones for a certain period or longer (at least 2 weeks, preferably 3 weeks or more).
  • steroid hormone production continued for at least 112 days.
  • this long-lasting ability to produce steroids is due to the introduced adenovirus-derived urine SF-1 rather than by induction of endogenous mouse SF-1. It was confirmed. That is, even if the expression level of ushi SF-1 by adenovirus is low, the bone marrow cells are sufficient for long-term and diverse steroid production, or SF-1 is necessary for the initiation of steroid production. However, it is not important to maintain it.
  • the novel steroidogenic cells can control steroid secretion in response to corticotropin (ACTH).
  • This ACTH response is dose-dependent.
  • the steroidogenic cells obtained in the present invention are considered to be beneficial.
  • ACTH corticotropin
  • the steroidogenic cells obtained in the present invention are considered to be beneficial.
  • ACTH corticotropin
  • the steroidogenic cells obtained in the present invention are transplanted to a patient with adrenal insufficiency
  • ACTH is secreted if the steroid in the adrenal cortex in the living body is insufficient, and the corticosteroid is secreted from the cells.
  • a CTH is suppressed, and as a result, corticosteroid secretion can also be suppressed.
  • the present inventors further examined how the novel steroidogenic cells are affected by the culture conditions.
  • the novel steroid-producing cells can produce gonadal steroid hormones by culturing them in a medium containing retinoic acid or a medium containing retinoic acid and hCG (human chorionic stimulating hormone).
  • retinoic acid induces the production of a potent gland hormone that is known to induce the production of adrenal hormone (corticosterone).
  • steroids can be secreted at a high local concentration in transplantation in vivo. In other words, steroids are secreted at the necessary site as much as necessary, and the systemic steroids do not become excessive, so no serious side effects are expected.
  • the steroidogenic bone marrow cells obtained in the present invention were transferred to autologous cells.
  • steroid hormone secretion abnormalities such as steroid hormone deficiency, allergy / autoimmune disease treatment, rejection of transplanted organ rejection, etc.! U, thought to provide a cure.
  • steroid hormone secretion abnormalities such as steroid hormone deficiency, allergy / autoimmune disease treatment, rejection of transplanted organ rejection, etc. by transplanting the novel steroid-producing cells to a target site in the living body.
  • a method of treatment is provided.
  • a pharmaceutical composition comprising the steroid hormone secreted from the novel steroidogenic cell obtained above and a pharmaceutically acceptable carrier. Is done.
  • the pharmaceutical composition may be used as a “steroid” for the treatment of bronchial asthma, rheumatism and the like, as well as external use for oral atopic dermatitis. It can also be used for the treatment of steroid deficiency, allergies, autoimmune diseases and the like.
  • the pluripotency of bone marrow cells obtained in the present invention into adrenal or gonadal steroid-producing cells is an important model for elucidating the tissue, site, and cell-specific mechanism of adrenal gonadal cell differentiation. It is speculated that it can be.
  • the steroidogenic cells obtained in one embodiment of the present invention are differentiated from pluripotent stem cells such as bone marrow stem cells, mesenchymal stem cells, hematopoietic stem cells in bone marrow cells. Presumed to be. As is known, mesenchymal stem cells are also present in fat and muscle. Therefore, it is considered that mesenchymal stem cells and hematopoietic stem cells can be separated from the steroid-producing cells of the present invention even if they are not derived from bone marrow cells. If it can be collected from sources other than bone marrow, it has the advantages of wide options and high convenience and safety.
  • pluripotent stem cells such as bone marrow stem cells, mesenchymal stem cells, hematopoietic stem cells in bone marrow cells. Presumed to be.
  • mesenchymal stem cells are also present in fat and muscle. Therefore, it is considered that mesenchymal stem cells and hematopoietic stem cells can be separated from the
  • a recombinant (recombinant) vector derived from a human type 5-adenovirus vector was prepared.
  • Usci SF—lZAd4BP cDNA (distributed by Prof. Kenichiro Morohashi, National Institute for Basic Biology, Okazaki National Research Institute) was digested with BamHI and EcoRI, and the recombinant cosmid vector pAxCAwt (Takara) containing the CAG promoter Inserted into Swal site.
  • the recombinant bovine SF-1 adenoviral vector (Adx-bSF-1) is reported by Miyake et al. (See Proc. Natl. Acad. Sci. USA 93: 132, 1996) I made it.
  • Adx-LacZ an adenovirus vector into which only the j8-galactosidase gene was transferred was constructed. This vector was called Adx-LacZ.
  • a 3-month-old male B6-GFP (green fluorescence protein) mouse (C57BLZ6Tgl 4 (act-EGFP) osbY01) was donated by Yamada (Kyoto University).
  • 4-month-old male 129SVJ mice were also used.
  • the bone marrow cells were cultured using conventional techniques with some adjustments. Briefly, fresh complete bone marrow cells were recovered by pouring the bone marrow cells from the mice into the culture medium.
  • Culture medium A consists of 2 mM ML-daltamine, lOOUZml penicillin, 100 gZml sprepmycin, 0.0125 / z gZml amphotericin (Sigma—aldrich, Irvine ⁇ UK) ⁇ 10-7 M hydrocortisone (Nikkenk ayaku, Japan) and Contains a-MEM containing 20% donor horse serum (Lot6603F and 7307F, ICN Biochemicals, Aurora, Ohio). The collected cells were seeded in a 75 cm 2 tissue culture flask (Nalge Nunc, Rochester, NY) and incubated with the culture medium A at 37 ° C. and 5% C02.
  • Adherent cells were cultured for several weeks, treated with trypsin, and stored at ⁇ 80 ° C. with a cell banker until use.
  • the stored BMCs were cultured in culture medium A for 120-180 days (passage 12-18) with the goal of growing a relatively purified cell population as needed in the experiment. From this cell population, 5 ⁇ 10 5 BMCs were again seeded in a 60 mm Petri dish (Nunc) with the culture medium A. When the BMCs grow to subconfluent The cells were infected with adenovirus with about 10 plaque forming unit Z cells. As a control for all experiments, the BMCs expressed
  • Progesterone P4
  • Deoxycorticosterone DOC
  • Corticosterone
  • 17 ⁇ Hydroxyprogesterone 17 ⁇ —OH P4
  • 11 Deoxycortisol S
  • dehydroepandrosterone DHEA
  • ⁇ 4-A ⁇ 4 -androstenedione
  • T testosterone
  • the amount of P4 and DOC secreted into the culture medium was also confirmed in the presence of synthetic 124ACTH (Shionogi Co., Osaka, Japan) in the absence of Z.
  • the detection limits for P4, DOC, ⁇ , 17 ⁇ —OH ⁇ 4, S, DHEA, ⁇ 4— A, and T are 0.1 ng / ml, 0.02 ⁇ g / ml, 20. Ong / ml, 0 lng / ml, 0.04 ng / ml, 0.2 ng / ml, 0.1 ng / ml, and 0.05 ngZml or less.
  • LightCycler for quantitative analysis of various steroidogenic enzymes, including StAR, ACTH receptor (ACTH—R), and P450scc, P450cl7, P450C11, P450501, P450ald, 3 j8— HSD, and 17 j8—HSD type 3 GmbH, Mannheim, Germany).
  • the cultured BMCs and Y-1 Total RNA was isolated from cells using RNasy mini kit (Qiagen) and from mouse testis and adrenal gland using Isogen (Wako Pure Chemical Industries, Osaka Japan).
  • First-strand complementary DNA was synthesized using 5 ⁇ g of total RNA as a template, and PCR was performed in the LightCycler according to the manufacturer's instructions.
  • the sense Z antisense primer used was reported by Mukai et al. (Conditionally immortalized adrenocortical cell lines at undifferentiated states exhibit inducible Expression of glucocorticoid—synthesizing g enes; Eur. J. Biochem. 269, 69-81, 2002 ). PCR conditions are available upon request. The threshold was measured when the fluorescence intensity determined in LightCycler Software Ver. 3.5 was in the geometric phase of amplification. The product was subjected to a 2% agarose gel. The nucleotide sequence of each PCR product was confirmed by direct sequencing using appropriate primers. The relative expression levels of the mRNA were calibrated against their ⁇ -actin and its ratio to mouse adrenal cortex ⁇ -1 cells, or mouse testis or adrenal gland, which were the controls.
  • the present inventors used the above-described method to adenovirus with ushi SF-1 (Adx — BSF— Created 1). As a result of experiments, the present inventors have clarified that various steroids are produced when long-term cultured bone marrow cells are infected with Adx-bSF-1.
  • Adx—bSF 1 infected bone marrow cells contain significant amounts of progesterone (P4), deoxycorticosterone (DOC), corticosterone ( ⁇ ), 17 ⁇ hydroxyprogesterone (17 ⁇ -OH).
  • Adx—LacZ infected cells did not produce. In Adx-LacZ-infected control cell cultures, all steroids except S were not detected. The trace amount of S detected in the control medium is probably a cross-reaction (9.5%) of S antibody to hydrocortisone, and no steroid precursors are likely to be produced.
  • FIG. 2 (a) to (f) are graphs showing the results of real-time PCR for StAR, P450scc, 3 j8- HSD, P450cl1, P450cl7, 17 j8- HSD type 3 and ACTH-R, respectively.
  • the actual specific PCR band in the agarose gel amplified above 40 centimeters and stained with ethidium bromide is shown below the figure.
  • the relative mRNA expression level is j8— Calibrated with actin.
  • S and L indicate BM Cs transfected with Adx-bSF-1 and BMCs transfected with Adx-LacZ, respectively.
  • Adx LacZ-infected target Itoda force, etc.
  • the steroid hormone synthetase ster oidogenic acute regulatory protein (StAR), P450scc, 3 j8—hydroxysteroid dehydrogenase (3 j8—USD;), P450cl l, P450cl7, and 17 j8—USD type 3 MRNA expression was observed in bone marrow cells at 11 days after Adx-bSF-1 infection. On the other hand, it was not observed in Adx-LacZ-infected cells. P450ald mRNA could not be verified.
  • Adrenocorticotropic hormone receptor (ACTH-R) was also expressed in Adx-LacZ-infected cells but the expression level was very low (2Z1000 of adrenal expression) and was further decreased in Adx bSF-1 infected cells .
  • the relative ratio to the expression of control Y-1 cells is expressed in the case of StAR, P450scc, and 3 ⁇ HSD; for the expression of the mouse adrenal gland, it is expressed in the case of P450cl l and ACTH-R. It is expressed in the case of P450cl7 and 17
  • FIG. Fig. 3 reveals the expression of P450scc, a steroid hormone synthase. Green fluorescent cells are positive for P450scc. As a negative control, preimmune serum and cells did not react (data not shown). That is, it was found that the expression level of steroid hormone synthase protein is enhanced by expressing bSF-1 in the bone marrow cells.
  • the steroidogenic cells simultaneously produce a mixture of adrenal and gonadal steroids, that is, DOC, B, DHEA, ⁇ 4-A, and T.
  • P450cl7 which is a steroid hormone synthase, is expressed in human adrenal gland but not in mouse adrenal gland, the prominent expression of P450cl 7 in the bone marrow cells in the present invention is due to the mixed production of steroids. It suggests that it will occur beyond.
  • the bone marrow cells are pluripotent in steroid-producing cells, and there is a common source of steroid-producing tissue; that is, the bone marrow cell-derived steroid obtained in the present invention. It was suggested that the producer cells may be stem cells. Then, this assumption was examined using flow cytometry.
  • FIG. 4 (a) to (f) show cell surface markers c-kit, CDl lb, CD34, CD44, CD45, and Sea-1. From the experimental results, CD45 specific for hematopoietic cells and CD34 specific for hematopoietic progenitor cells were negative. CD1 lb, a marker for monocytes and macrophages, was also negative. Although the mouse mesenchymal stem cell marker is not completely clear and controversial, the potential marker CD44 was negative in the bone marrow cells. On the other hand, hematopoietic and mesenchymal stem / progenitor cell markers c kit and Sea-1 were positive.
  • the bone marrow cells obtained in the present invention are heterogeneous, steroidogenic cells were probably pluripotent and originated from immature stem cells.
  • Long-term cultured bone marrow cells were treated with 0.05 mM ascorbic acia, 10 mM ⁇ -glycerophosphate ⁇ and 0.1 ⁇ dexameth asone, so that they were separated like osteoblasts stained with alkaline phosphatase (data shown). ) This proves that long-term cultured bone marrow cells have mesenchymal properties!
  • FIG. 5 is a graph showing the results.
  • mRNA induction of steroidogenic enzymes P450scc, 3 ⁇ -HSD, P450c21, P450cl1, and 17j8-HSD by 2.4 M ACTH was also confirmed by real-time PCR.
  • mRNA induction of ACTH-R was not confirmed (Fig. 6).
  • Cells used in the experiment were treated with 2.4 ⁇ ACTH on days 0, 4, and 7 after infection with Adx-bSF-1 (DayO) and cultured for 4 days. On day 11, the total RNA of the cells was extracted and subjected to real-time PCR.
  • Figures 6 (a) to (f) are respectively P450scc, 3
  • 8— HSD, P450c21, P450cl l in the presence of 2.4 M ACTH (lower right oblique column) and absence (white column). , 17 j8-HSD type 3 and ACTH-R mRNA expression. The values in the figure are indicated by the average value person SD (n 3). Relative mRNA expression levels were calibrated with ⁇ 8-actin.
  • control Y-1 cells The relative ratio to the expression of control Y-1 cells is expressed in the case of P4 50scc and 3 j8- HSD; P450c21, P45 for mouse adrenal glands It is expressed in the case of Ocl l and ACTH-R; it is expressed in the case of 17 j8-HSD type 3 for mouse testis.
  • Figs. 7 (a) and 7 (b) show the results of progesterone (P4) and deoxycorticosterone (DOC) in the culture medium of long-term cultured BMCs from GFP mice, respectively. Shows the time course of basal secretions (time course). The value in the figure shows the average value of duplicate (duplicate) dishes.
  • the black column shows the steroid secreted by the cell force infected with Adx-bSF-1. Secretion of P4 and DOC was not detectable in cultures from BMCs infected with Adx-LacZ (data not shown). From Figure 7, it is clear that P4 and DOC production lasted at least 112 days. Considering the half-life of adenovirus (2-3 weeks), this long-term steroid production is unexpected.
  • bSF-1 RT-PCR was performed using RNA extracted from cell forces obtained on days 0, 14, 21, and 49 in FIG. Electrophoresis was performed on a 1.5% agarose gel, and ethidium bromide was used for staining.
  • Fig. 8 shows the results.
  • Y1, V, (1), S and L are Y-1 cells (negative control), Adx-bSF1 (positive control), BMCs before infection, Adx-bSF, respectively.
  • the present inventors further examined how the steroidogenic cells of the present invention are affected by the culture conditions. Similar to the method described above, long-term cultured bone marrow cells (LTBMCs) Infection with urine SF-1-expressing virus or control virus, and retinoic acid (A TRA), retinoic acid and hCG (human chorionic stimulating hormone) during viral infection and medium exchange. day 0, 4, 7, 11, 14), dayl 4-18 [Honolemon in the cultured medium was measured. The results are shown in FIGS. 9A and 9B (when ATRA is added to the medium) and FIGS. 10A and 1 OB (when ATRA and hCG are added to the medium).
  • LTBMCs long-term cultured bone marrow cells
  • a TRA retinoic acid
  • hCG human chorionic stimulating hormone
  • the production of testosterone was markedly promoted (from Fig. 9B)
  • the steroid-producing cells of the present invention were induced to differentiate into gonadal hormone-producing cells when cultured in a medium containing retinoic acid. It was suggested.
  • Fig. 1 (a) to (h) are long-term cultures from GFP mice, pgestesterone (P4), deoxycorticosterone (DOC), corticostero (B), 17 ⁇ hydroxyprogesterone (17 ⁇ — ⁇ 4), 11 deoxycortisol (S), dehydroepandrosterone (DHEA), ⁇ 4—androstenedine ( ⁇ 4—A), And a graph showing the basal secretion amount of testosterone (T).
  • FIG. 2 (a) to (f) are graphs showing the results of real-time PCR of StAR, P450scc, 3 j8- HSD, P450cl 1, P450cl 7, 17 j8-HSD type 3 and ACTH-R, respectively.
  • FIG. 3 is a view showing an immunostained image obtained by using an anti-cytochrome P450scc antibody of BMCs collected from a 129VJ mouse.
  • FIGS. 5 (a) and 5 (b) are graphs showing the effect of ACTH on the secretion of progesterone (P4) and DOC from cultured BMCs in which GFP mouse power was also collected.
  • Figures 6 (a) to (f) are respectively 2.
  • Figures 7 (a) and (b) show the time courses of the basal secretions of progesterone (P4) and deoxycorticosterone (DOC) in the culture medium of long-term cultured BMCs from GFP mice, respectively.
  • FIG. 8 shows the expression of AdSF-bSF-1 derived bSF-1 on agarose gel.
  • FIG. 9 129VJ mouse Adx-BSF-l infection BMCs obtained from retinoic acid (concentration 0 ⁇ : L0 _4 M) corticosterone production amount when cultured in medium containing the (a), Tesutosu The figure which shows teron production amount (b).
  • Fig. 10 shows Adx-bSF-l-infected BMCs collected from 129VJ mice when cultured under various culture conditions (containing cortisol, retinoic acid, and hCG (human chorionic gonadotropin)) The figure which shows corticosterone production amount (a) and testosterone production amount (b).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Obesity (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Surgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)

Abstract

[PROBLEMS] To provide a novel steroid-producing cell which is usable in treating abnormal steroid hormone secretion such as steroid hormone deficiency via transplantation or the like. [MEANS FOR SOLVING PROBLEMS] A steroid-producing cell characterized by having been differentiated from a bone marrow cell or a multipotent stem cell by transferring a factor participating in steroid hormone synthesis thereto is provided. Moreover, a method of producing this steroid hormone-producing cell, utilization thereof, a medicinal composition with the use of a hormone secreted by the cell and a method of treating various diseases by using the cell are provided.

Description

明 細 書  Specification
新規ステロイド産生細胞  New steroidogenic cells
技術分野  Technical field
[0001] 本発明はステロイド産生細胞の生成に関するものであり、より具体的には、それによ り生成された新規ステロイド産生細胞、その生成方法に関するものである。またこの 発明は、そのようにして生産された細胞の使用にも関するものである。  [0001] The present invention relates to the production of steroid-producing cells, and more specifically, to a novel steroid-producing cell produced thereby and a production method thereof. The invention also relates to the use of the cells so produced.
背景技術  Background art
[0002] 一般的に、ステロイドホルモンは、アトピー性皮膚炎の外用 ·内服の他、気管支喘息 やリウマチで用いられる「ステロイド剤」として知られている。このステロイド剤は強力な 免疫抑制作用を有しており幅広い疾患の治療に使用されている力、副作用の観点か らその使用は慎重に行わなければならな ヽとされて 、る。  [0002] In general, steroid hormones are known as “steroidal agents” used in bronchial asthma and rheumatism in addition to external and internal use for atopic dermatitis. This steroidal agent has a strong immunosuppressive action, and it should be used with caution from the viewpoint of the power and side effects used in the treatment of a wide range of diseases.
[0003] 一方、生体内で産生されるステロイドホルモンは、生体維持に非常に重要な役割を 果たすホルモンである。生体内におけるステロイドホルモンの産生が不足すると、ブド ゥ糖の調節維持、 Na'Kバランスの調節、タンパク質の合成促進、炎症反応'免疫応 答の制御、性的発達、生殖機能等が低下する。このステロイドホルモンが様々な理由 により欠落、低下した場合、「ステロイドホルモン欠損症」と呼ばれる病態が引き起こさ れる。  [0003] On the other hand, steroid hormones produced in vivo are hormones that play a very important role in living organism maintenance. Insufficient production of steroid hormones in vivo reduces maintenance of regulation of glucose, regulation of Na'K balance, promotion of protein synthesis, control of inflammatory response 'immune response, sexual development, reproductive function, etc. When this steroid hormone is missing or decreased for various reasons, a condition called “steroid hormone deficiency” is caused.
[0004] このステロイドホルモン欠損症の一つに副腎皮質機能不全がある。この副腎皮質機 能不全は、副腎ステロイドホルモンの欠落のために起こるものであり、具体的な症状 としては、ストレス対応ホルモンである糖質コルチコイドのコルチゾールの分泌欠落の ために全身倦怠感が非常に強くなり、医学的な所見として低血圧、低血糖、低 Na血 症、高 K血症、色素沈着などが見られることがある。副腎ステロイドホルモンの絶対的 不足や、感染などのストレスを契機に必要量が急増により、最悪の場合、急性副腎不 全となり死に至る場合がある。副腎皮質機能不全症では多くの場合鉱質コルチコイド ホルモンであるアルドステロンの分泌も悪いため、低 Na血症、高 K血症がさらに助長 される。  [0004] One of these steroid hormone deficiencies is adrenal cortex dysfunction. This adrenal cortical dysfunction is caused by a lack of adrenal steroid hormones, and specific symptoms include generalized malaise due to lack of secretion of the stress-responsive hormone glucocorticoid cortisol. It may become stronger and medical findings may include hypotension, hypoglycemia, hyponatremia, hyperkemia, and pigmentation. In the worst case, acute adrenal insufficiency may result in death due to an absolute shortage of adrenal steroid hormones or a sudden increase in the amount required due to stress such as infection. Adrenal cortex dysfunction is often accompanied by poor secretion of the mineralocorticoid hormone aldosterone, further promoting hyponatremia and hyperkemia.
[0005] 他のステロイドホルモン欠損症としては、性腺機能不全が挙げられる。性腺機能不 全は、様々な病因、例えば遺伝的要因、腫瘍、炎症、手術、放射線照射などによつ て性腺 (男性であれば睾丸、女性であれば卵巣)力 の性腺ステロイドホルモンの分 泌が低下する病態を指す。基本的には命を左右する問題ではないが、 10〜20代と いった若い人に生じた場合、二次性徴が障害され「男らしさ'女らしさ」の欠如カもコ ンプレックスの問題が生じる可能性がある。またこれと同時に、将来の生殖能力に影 響を及ぼす問題となり得る。またこのような生殖系への影響だけでなぐ性腺系ホル モンが長期間欠落することによって、骨粗鬆症や動脈硬化を起こしやすくなるという 問題もある。 [0005] Other steroid hormone deficiencies include gonadal dysfunction. Gonadal dysfunction All have a decreased production of gonadal steroid hormones due to a variety of etiologies, such as genetic factors, tumors, inflammation, surgery, radiation, etc. Refers to the disease state. Basically it is not a life-threatening problem, but when it occurs in young people in their teens and twenties, secondary sexual characteristics are impaired and the lack of masculinity and femininity also causes complex problems. It can happen. At the same time, it can be a problem that affects future fertility. In addition, there is a problem that osteoporosis and arteriosclerosis are likely to occur due to a long-term absence of gonadal hormones that are caused only by the effects on the reproductive system.
[0006] これらステロイドホルモン欠損症に対する現在の治療法としてステロイドホルモン補 充療法が確立されており、例えば非特許文献 1に記載されて 、るように多くの利益を 供与している。しかし特に副腎皮質機能不全の場合、一生涯補充を継続する必要が ある。一般的には糖質コルチコイドが補充されるが、それだけでは電解質失調が是 正されない場合、鉱質コルチコイドも追加される。患者によってはそれのみでは定量 内服投与となり、感染症などでステロイド必要量が急増した場合などの対応が難しぐ またステロイド過剰が続けば様々な副作用の可能性がある。  [0006] Steroid hormone supplementation therapy has been established as a current treatment method for these steroid hormone deficiencies, and provides many benefits as described in Non-Patent Document 1, for example. However, especially in the case of adrenal insufficiency, it is necessary to continue supplementation throughout the lifetime. Glucocorticoids are generally supplemented, but mineral corticoids are also added if that alone does not correct the electrolyte dysfunction. Depending on the patient, it may be a fixed-dose oral administration, and it may be difficult to respond when the steroid requirement is rapidly increased due to infection, etc. If steroid excess continues, various side effects may occur.
[0007] 従って、遺伝子治療やステロイド産生細胞移植といった新たな治療法が切望されて いるが、決定的な治療方法は現在のところまだ開発されて ヽな ヽ。  [0007] Accordingly, new therapies such as gene therapy and steroidogenic cell transplantation are eagerly desired, but definitive treatment methods are still being developed at present.
[0008」 非特 s午文献 1 :Laureti, S. , Falorni, A. , and Santeusanio, F. Improveme nt of treatment of primary adrenal insufficiency by administration of cortisone acetate in three daily doses.〃J Endocrinol Invest. 20 03 (11) : 1071~1075  [0008] Non-patent document 1: Laureti, S., Falorni, A., and Santeusanio, F. Improveme nt of treatment of primary adrenal insufficiency by administration of cortisone acetate in three daily doses. 〃J Endocrinol Invest. 20 03 ( 11): 1071 ~ 1075
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明はこのような課題に鑑みてなされたものであり、ステロイドホルモン欠損症等 のステロイドホルモン分泌異常の治療に利用できる新規ステロイド産生細胞を提供す ることを目的とするものであり、具体的には、生理的に多様なステロイドホルモンを分 泌できるステロイド産生細胞、その製造方法、使用、その細胞力 分泌されたホルモ ンを用いた薬剤組成物、その細胞を用いた様々な疾患に対する治療方法を提供す ることをその目的とするものである。 [0009] The present invention has been made in view of such problems, and an object of the present invention is to provide a novel steroid-producing cell that can be used for the treatment of abnormal steroid hormone secretion such as steroid hormone deficiency. Specifically, steroid-producing cells that can secrete physiologically diverse steroid hormones, their production methods, uses, pharmaceutical compositions using the secreted hormones, and various diseases using the cells A cure for the disease For that purpose.
課題を解決するための手段  Means for solving the problem
[0010] 最近、多くの研究により、骨髄細胞の移植は様々な臓器の造血系 ·間葉系細胞群 再生に寄与して 、る可能性が示唆されて 、る。つまり骨髄細胞は様々な臓器に分ィ匕 する多能性前駆細胞を含んで 、るのではな 、かと考えられて 、る。骨髄幹細胞は、 造血系 ·間葉系細胞群に成長することは知られているが、本発明以前にはステロイド 産生細胞に分ィ匕することは知られていな力 た。しかし本発明者らは、骨髄細胞が副 腎皮質'性腺と同じく間葉系由来である筋や脂肪等に分ィ匕できることに着目し、骨髄 細胞からステロイド産生細胞を分ィ匕させると!、う新たな知見を得、これに基づ!/、て誠 意検討、実験を重ねた結果、以下に述べるいくつかの性質を併せ持つステロイド産 生細胞の生成に成功したものである。  Recently, many studies have suggested that bone marrow cell transplantation may contribute to the regeneration of hematopoietic / mesenchymal cell groups in various organs. In other words, it is thought that bone marrow cells contain pluripotent progenitor cells that can be divided into various organs. Bone marrow stem cells are known to grow into hematopoietic and mesenchymal cell groups, but before the present invention, they were not known to be separated into steroidogenic cells. However, the present inventors paid attention to the fact that bone marrow cells can be separated into muscles and fats derived from the mesenchymal system as well as the adrenal cortex 'gonadal gland, and when steroidogenic cells are separated from bone marrow cells, Based on this new knowledge, and based on this and sincere examination and experimentation, we have succeeded in producing steroid-producing cells with several properties as described below.
[0011] すなわち、本発明の第 1の主要な観点によれば、骨髄細胞中にステロイドホルモン 合成に関与する因子を導入し、前記骨髄細胞から分化させたことを特徴とするステロ イド産生細胞が提供される。  That is, according to the first main aspect of the present invention, there is provided a steroid-producing cell characterized by introducing a factor involved in steroid hormone synthesis into bone marrow cells and allowing the bone marrow cells to differentiate. Provided.
[0012] このような構成によれば、移植等によりステロイドホルモン欠損症等のステロイドホル モン分泌異常の治療に利用できる新規ステロイドホルモン産生細胞を得ることができ る。  [0012] According to such a configuration, a novel steroid hormone-producing cell that can be used for treatment of abnormal steroid hormone secretion such as steroid hormone deficiency can be obtained by transplantation or the like.
[0013] ここで、前記骨髄細胞は、これに限定するものではな!/、が、骨髄幹細胞、骨髄間葉 系幹細胞、造血幹細胞、及び多能性前駆細胞を含むものである。  Here, the bone marrow cells include, but are not limited to, bone marrow stem cells, bone marrow mesenchymal stem cells, hematopoietic stem cells, and pluripotent progenitor cells.
[0014] また、本発明の第 2の主要な観点によれば、多能性幹細胞中にステロイドホルモン 合成に関与する因子を導入し、前記多能性幹細胞から分化させたことを特徴とする ステロイド産生細胞が提供される。ここで多能性幹細胞とは、間葉系幹細胞、造血幹 細胞を含む体性多能性幹細胞であることが好ましい。 [0014] Further, according to the second main aspect of the present invention, a steroid characterized by introducing a factor involved in steroid hormone synthesis into a pluripotent stem cell and allowing the pluripotent stem cell to differentiate. A production cell is provided. Here, the pluripotent stem cells are preferably somatic pluripotent stem cells including mesenchymal stem cells and hematopoietic stem cells.
[0015] 前記多能性幹細胞は骨髄細胞由来のものであることが好ま 、。ただし、この発明 の多能性幹細胞は骨髄由来のものに限定されるものではなぐ多能性幹細胞が存在 する糸且織由来のものであればよい。 [0015] The pluripotent stem cells are preferably derived from bone marrow cells. However, the pluripotent stem cells of the present invention are not limited to those derived from bone marrow, but may be those derived from yarn and tissue where pluripotent stem cells are present.
[0016] 前記ステロイド合成に関与する因子は、これに限定されるものではないが、ステロイ ドホルモン合成酵素の転写調節因子である。このステロイドホルモン合成酵素の転写 因子は、 Steroidogenic factor 1 (SF—l)であることが好ましい。 [0016] The factor involved in the steroid synthesis is not limited to this, but is a transcriptional regulator of steroid hormone synthase. Transcription of this steroid hormone synthase The factor is preferably Steroidogenic factor 1 (SF—l).
[0017] 本発明の 1の実施形態によれば、前記ステロイド産生細胞において産生されるステ ロイドホルモンは、プレダネノロン (pregnenolone)、プロゲステロン (progesterone) 、ァォキシコノレチコステロン (deoxycorticosterone)、コノレチコステロン (corticoste rone) , 18ヒドロキシコノレチコステロン (18— hydroxycorticosterone)、ァノレドステ ロン、 aldosteroneノ、 1 αヒトロ3 rシプレグネノロン、 17 a― hyaroxypregnelone)[0017] According to one embodiment of the present invention, the steroid hormones produced in the steroidogenic cells are predanenolone, progesterone, oxycorticosterone, conoleticosterone. emissions (corticoste rone), 18-hydroxy-Kono retinyl corticosterone (18- hydroxycorticosterone), Anoredosute Ron, aldosterone Roh, 1 α Hitoro 3 r shea pregnenolone, 17 a- hyaroxypregnelone)
、 17ひヒドロキシプロゲステロン(17 0;—11 (1]:0 ]:0865 6]:0116)、 11デォキシコノレ チソ一ノレ (11— deoxycortisol)、コルテゾーノレ (Cortisol)、 DHEA (dehydroepia ndrosterone 、アンドロスアンシオン (androstenedione)、エストロン、 estrone)、 アンドロステンジォーノレ(androstenediol)、テストステロン(testosterone) ,エストラ ジオール(estradiol)から成るステロイドホルモンのうち 1つ若しくはそれ以上である。 17-Hydroxyprogesterone (17 0; -11 (1): 0): 0865 6]: 0116), 11 deoxyconoreth, 11-deoxycortisol, Cortisol, DHEA (dehydroepia ndrosterone, Andros anion ( one or more of the steroid hormones consisting of androstenedione), estrone, androstenediol, testosterone, and estradiol.
[0018] また、前記ステロイド産生細胞は、ステロイドホルモンを所定期間以上に亘つて分泌 するものである。そして、この所定期間は少なくとも 2週間以上であることが好ましい。 このことにより、治療の頻度を少なくすることができ、患者の負担を減らすことが可能 になる。 [0018] The steroid-producing cells secrete steroid hormones over a predetermined period. The predetermined period is preferably at least 2 weeks. This can reduce the frequency of treatment and reduce the burden on the patient.
[0019] さらに、本発明の 1実施形態によれば、前記ステロイド産生細胞は、副腎皮質刺激 ホルモン (ACTH)反応性である。また、ここで ACTH反応性は用量依存性である。 これにより、例えば副腎不全の患者に対して本発明で得られたステロイド産生骨髄細 胞を移植した場合、生体の副腎皮質のステロイドが不足して 、れば ACTHが分泌さ れ、前記細胞より副腎皮質ステロイドが分泌され、反対に過剰であれば ACTHが抑 制され、その結果副腎皮質ステロイド分泌も抑制され得る。  [0019] Furthermore, according to one embodiment of the present invention, the steroidogenic cells are adrenocorticotropic hormone (ACTH) responsive. Also here ACTH responsiveness is dose dependent. Thus, for example, when a steroidogenic bone marrow cell obtained in the present invention is transplanted to a patient with adrenal insufficiency, if the steroid in the adrenal cortex in the living body is insufficient, ACTH is secreted, and the adrenal gland is secreted from the cell. Cortical steroids are secreted and, conversely, if excessive, ACTH can be suppressed and, as a result, corticosteroid secretion can also be suppressed.
[0020] 本発明の 1実施形態によれば、前記ステロイド産生細胞は、レチノイン酸含有培地 、若しくはレチノイン酸と hCG (ヒト絨毛性刺激ホルモン)含有培地で培養することによ つて、性腺ステロイドホルモンを産生するものである。  [0020] According to one embodiment of the present invention, the steroid-producing cells are cultured in a retinoic acid-containing medium or a medium containing retinoic acid and hCG (human chorionic stimulating hormone) to obtain a gonadal steroid hormone. To produce.
[0021] また本発明の第 3の主要な観点によれば、(a)骨髄細胞を用意する工程と、(b)前 記骨髄細胞中でステロイドホルモン合成に関与する因子を導入し、前記骨髄細胞を ステロイド産生細胞へと分ィ匕させる工程とを有することを特徴とするステロイド産生細 胞の生産方法が提供される。このことで、治療に有効な多様なステロイドホルモンを 分泌できるステロイド産生細胞を製造することが可能になる。 [0021] According to a third main aspect of the present invention, (a) a step of preparing bone marrow cells, and (b) introducing a factor involved in steroid hormone synthesis in the bone marrow cells, There is provided a method for producing steroid-producing cells, comprising the step of separating the cells into steroid-producing cells. This makes it possible to produce a variety of effective steroid hormones It becomes possible to produce steroidogenic cells that can be secreted.
[0022] 本発明の 1実施形態によれば、前記方法はさらに、レチノイン酸含有培地、若しくは レチノイン酸と hCG (ヒト絨毛性刺激ホルモン)含有培地で培養する工程を有し、性腺 ステロイド産生細胞に分化誘導することを特徴とするステロイド産生細胞の生産方法 である。  [0022] According to one embodiment of the present invention, the method further comprises a step of culturing in a retinoic acid-containing medium, or a retinoic acid and hCG (human chorionic stimulating hormone) -containing medium. A method for producing a steroidogenic cell characterized by inducing differentiation.
[0023] 本発明の第 4の主要な観点によれば、前記ステロイド産生細胞力 分泌された生理 的に多様なステロイドホルモンと、薬学的に許容される担体からなる薬剤組成物が提 供される。このようにして得られた薬剤組成物によれば、ステロイドホルモン欠損症等 のステロイドホルモン分泌異常、各種自己免患などを有効に治療することが可能にな る。  [0023] According to a fourth main aspect of the present invention, there is provided a pharmaceutical composition comprising the physiologically diverse steroid hormone secreted by the steroidogenic cell force and a pharmaceutically acceptable carrier. . According to the pharmaceutical composition thus obtained, it becomes possible to effectively treat steroid hormone secretion abnormalities such as steroid hormone deficiency and various self-exemptions.
[0024] この発明の更なる特徴及び顕著な効果は次に記載する発明の実施の形態の項の 記載から当業者にとって明らかになるものである。  [0024] Further features and remarkable effects of the present invention will become apparent to those skilled in the art from the description of the embodiments of the present invention described below.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[0026] 上述したように、本発明によれば、骨髄細胞若しくは多能性幹細胞中でステロイド 合成酵素に関与する因子を導入し、前記細胞力 分化させてなるステロイド産生細 胞が提供される。  [0026] As described above, according to the present invention, there is provided a steroidogenic cell obtained by introducing a factor involved in a steroid synthase into bone marrow cells or pluripotent stem cells and allowing the cells to differentiate.
[0027] # 纏 び 亩^^纏  [0027] # Summary and 亩 ^^ Summary
最近、多くの研究により、骨髄細胞の移植は様々な臓器の造血系 ·間葉系細胞群 再生に寄与して 、る可能性が示唆されて 、る。つまり骨髄細胞は様々な臓器に分ィ匕 する多能性前駆細胞を含んで 、るのではな 、かと考えられて 、る。骨髄幹細胞は、 造血系 ·間葉系細胞群に成長することは知られているが、本発明以前にはステロイド 産生細胞に分ィ匕することは知られていな力つた。しかし、本発明者らは、骨髄細胞が 副腎皮質'性腺と同じく間葉系由来である筋や脂肪等に分ィ匕できることに着目し、骨 髄細胞からステロイド産生細胞を分ィ匕させると 、う新たな知見を得、これに基づ 、て 誠意検討、実験を重ねた結果、以下に述べるいくつかの好ましい性質を併せ持つス テロイド産生細胞の生成に成功した。  Recently, many studies suggest that bone marrow cell transplantation may contribute to the regeneration of hematopoietic and mesenchymal cells in various organs. In other words, it is thought that bone marrow cells contain pluripotent progenitor cells that can be divided into various organs. Bone marrow stem cells are known to grow into hematopoietic and mesenchymal cells, but before the present invention, they were known to be separated into steroidogenic cells. However, the present inventors paid attention to the fact that bone marrow cells can be divided into muscles and fats derived from the mesenchymal system as well as the adrenal cortex 'gonadal gland, and when steroidogenic cells are separated from bone marrow cells, As a result of obtaining new knowledge and conducting repeated sincerity studies and experiments based on this knowledge, we succeeded in generating steroid-producing cells having several desirable properties described below.
[0028] ここで、骨髄細胞及び多能性幹細胞は、ステロイド産生細胞に分ィヒできるものであ れば良ぐ人やマウス等の哺乳類に限定されるものではない。また前記細胞の採取 方法は、公知の方法でよい。 [0028] Here, bone marrow cells and pluripotent stem cells can be separated into steroidogenic cells. It is not limited to a good person or a mammal such as a mouse. The cell collection method may be a known method.
[0029] ステロイド合成酵素の転写調節闵子の導入  [0029] Introduction of transcription regulatory insulator for steroid synthase
骨髄細胞及び多能性幹細胞をステロイド産生細胞に分化させるには、ステロイド合 成に関与する因子を導入等してステロイドホルモンを合成させる必要があると考えら れる。  In order to differentiate bone marrow cells and pluripotent stem cells into steroidogenic cells, it is considered necessary to synthesize steroid hormones by introducing factors involved in steroid synthesis.
[0030] ここで、ステロイドホルモン合成酵素の組織特異的転写因子である SF— 1、別名 ad renal 4 binding protein (Ad4BP)は、核内レセプタースーパーファミリーに属し 、多くのステロイド産生遺伝子に関与すると報告されている(1)。この SF—1ノックァゥ トマウスにおいて副腎と性腺の完全な欠如が観察されたため、 SF— 1はステロイド産 生及びステロイド産生組織成長に特に重要であると考えられている。  [0030] Here, SF-1, a tissue-specific transcription factor of steroid hormone synthase, also known as ad renal 4 binding protein (Ad4BP), belongs to the nuclear receptor superfamily and is reported to be involved in many steroidogenic genes. (1). SF-1 is thought to be particularly important for steroidogenesis and steroidogenic tissue growth, as a complete absence of adrenal glands and gonadal glands was observed in this SF-1 knockout mouse.
[0031] 一方、胚性幹細胞内で持続的に SF— 1を発現させたところ、この胚性幹細胞はス テロイド生産能を獲得し、 cAMP及びレチノイン酸依存的に P450sccが誘導され、プ 口ゲステロンを産生したとの実験報告もある。しかし、このステロイド産生能はプロゲス テロン分泌レベルに制限されており、また外来基質でありミトコンドリア外膜を通過す る 20 a—hydroxycholesterolの添カ卩が必要なため、生理的分泌が生じない。しか しこれらの結果は、 SF— 1がステロイド産生細胞分ィ匕の鍵を握っていることを強く示 唆するものである。  [0031] On the other hand, when SF-1 was continuously expressed in embryonic stem cells, these embryonic stem cells acquired the ability to produce steroids, and P450scc was induced in a cAMP- and retinoic acid-dependent manner. There is also an experiment report that it produced. However, this ability to produce steroids is limited to the level of progesterone secretion, and the addition of 20 a-hydroxycholesterol, which is a foreign substrate and passes through the outer mitochondrial membrane, requires no physiological secretion. However, these results strongly suggest that SF-1 is the key to steroidogenic cell sorting.
[0032] 本発明者らは SF— 1の骨髄細胞への導入によりステロイド産生細胞が生成される かを検証するために、ゥシ SF— 1を有するアデノウイルス (Adx-bSF- 1)を作成し 、マウス由来の長期培養骨髄細胞に Adx— bSF— 1を感染させると、著明な量の多 様なステロイドが産生されることを明らかにした。  [0032] In order to verify whether steroidogenic cells are generated by introduction of SF-1 into bone marrow cells, the present inventors have created an adenovirus (Ux-bSF-1) having ushi SF-1 However, it has been clarified that when a long-term cultured bone marrow cell derived from a mouse is infected with Adx-bSF-1, a significant amount of various steroids are produced.
[0033] ただし、本発明においては、前記転写調節因子は、 Steroidogenic factor 1 (S F- l)に限定されるものではなぐ前記細胞中でステロイドホルモンを合成させるた めに必要である因子であればょ 、。  [0033] However, in the present invention, the transcriptional regulatory factor is not limited to Steroidogenic factor 1 (SF-1), but may be a factor necessary for synthesizing steroid hormones in the cell. Yeah.
[0034] また、本発明において骨髄細胞中で目的遺伝子を導入,強制発現させる方法とし ては、本発明の 1実施例に従うと、例えばアデノウイルスベクター、アデノ随伴ウィル スベクター、レトロウイルスベクター、レンチウィルスベクター、 HIVベクターなどのべ クタ一を用いて行われる。しかし、このようなウィルス由来などのベクターを用いた方 法だけでなぐエレクト口ポレーシヨン、タンパク質直接導入法などの公知技術を用い て行われ得るものである。 [0034] In the present invention, as a method for introducing and forcibly expressing a target gene in bone marrow cells, according to one embodiment of the present invention, for example, an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a lenti Virus vectors, HIV vectors, etc. This is done using a kuta. However, it can be carried out by using known techniques such as electoral positioning and protein direct introduction using only such methods using vectors derived from viruses.
[0035] さらに、前記骨髄細胞等をステロイド産生細胞に分ィ匕させる方法は、ステロイドホル モン合成に関与する内因性因子の導入だけでなぐ外因性因子を作用させる方法も 可能であると考えられる。すなわち、前記骨髄細胞を外因性因子を含有する培養液 と培地で培養することにより、目的ステロイド産生細胞に分ィ匕させることも可能である。  [0035] Further, the method of separating bone marrow cells and the like into steroid-producing cells is considered to be a method in which an exogenous factor that acts only by introduction of an endogenous factor involved in steroid hormone synthesis is also possible. . That is, by culturing the bone marrow cells in a culture solution and medium containing exogenous factors, it is possible to separate them into target steroid-producing cells.
[0036] 新規ステロイド' 牛.細胞、その機能及びその使用  [0036] New Steroid 'Bovine. Cell, Its Function and Use
本発明の新規ステロイド産生細胞によれば、以下の、プレダネノロン(pregnenolon e)、プロゲステロン (progesterone)、テ才キシコルチコステロン (deoxycorticoster one) ,コノレチコステロン(corticosterone)、 18ヒドロキシコノレチコステロン(18— hyd roxycorticosterone)、ァノレドステロン (aldosterone)、 17 αヒドロキシプレグネノロ ン (1 /■ α— hydroxypregneloneノ、 1 " αヒ 口3 rンフ口ゲスァロン (1 1 a—hydroxy progesterone;、 11デォゃシコルチゾーノレ (11— deoxycortisol)、コルテゾーノレ (c ortisol)、 DHEA (dehydroepiandrosterone)、アンドロスアンシオン、 androstene dione)、エストロン (estrone)、アンドロステンジ才ーノレ (androstenediol)、テストス テロン(testosterone)、エストラジオール (estradiol)から成るステロイドホルモンの 少なくとも 1以上が産生される。 According to the novel steroid-producing cells of the present invention, the following pregnenolone, progesterone, deoxycorticosterone, corticosterone, 18 hydroxyconoleticosterone (18- hyd roxycorticosterone), Anoredosuteron (aldosterone), 17 α-hydroxy pregnane Nenoro down (1 / ■ α- hydroxypregnelone Roh, 1 "α shed 3 r Nfu opening Gesuaron (1 1 a-hydroxy progesterone ;, 11 Doya From Sikorchizonole (11—deoxycortisol), Cortezonole (cortisol), DHEA (dehydroepiandrosterone), Andros anion, androstene dione, Estrone, Androstenediol, testosterone, Estradiol (estradiol) At least one of the steroid hormones produced.
[0037] 本発明者らの解析によれば、本発明によるステロイド産生細胞によるステロイドホル モンの産生は、合成酵素転写調節因子を導入したことによる骨髄細胞中におけるス テロイドホルモン合成酵素量の増加に起因するものであると思われる。すなわち、本 発明によるステロイド産生細胞においては、前記転写調節因子を強制発現させること により前記ステロイドホルモン合成酵素の mRNA発現が増強されることが RT—PCR を用 、た実験より判明した。さらに抗チトクローム P450SCC抗体を用 、た免疫染色の 実験より、前記ステロイドホルモン合成酵素の発現がタンパク質レベルで増強される ことが示されたちのである。 [0037] According to the analysis of the present inventors, the production of steroid hormones by steroid-producing cells according to the present invention increases the amount of steroid hormone synthase in bone marrow cells by introducing a synthase transcription regulatory factor. It seems to be the cause. That is, in the steroidogenic cells according to the present invention, it was found from experiments using RT-PCR that the mRNA expression of the steroid hormone synthase is enhanced by forcibly expressing the transcriptional regulatory factor. Furthermore, immunostaining experiments using anti-cytochrome P450 SCC antibodies showed that the expression of the steroid hormone synthase is enhanced at the protein level.
[0038] また、本発明で得られたステロイド産生骨髄細胞は、一定期間以上の安定したステ ロイドホルモンの産生 (少なくとも 2週間、好ましくは 3週間以上)が必要と考えられると ころ、本実施例によれば、ステロイドホルモンの産生は少なくとも 112日間続いた。 R T—PCRによる分析によれば、この長期に亘る持続的なステロイド産生能は、内因性 マウス SF— 1の誘導によるものではなぐ導入されたアデノウイルス由来ゥシ SF— 1 に起因するものであることが確認された。すなわち、アデノウイルスによるゥシ SF— 1 の発現が低レベルであっても前記骨髄細胞の長期 ·多様なステロイド産生には十分 である、若しくは前記 SF— 1はステロイド産生の開始には必要であるが維持には重 要でな 、のではな!/、かと考えられる。 [0038] Further, it is considered that the steroidogenic bone marrow cells obtained in the present invention are required to produce stable steroid hormones for a certain period or longer (at least 2 weeks, preferably 3 weeks or more). However, according to this example, steroid hormone production continued for at least 112 days. According to RT-PCR analysis, this long-lasting ability to produce steroids is due to the introduced adenovirus-derived urine SF-1 rather than by induction of endogenous mouse SF-1. It was confirmed. That is, even if the expression level of ushi SF-1 by adenovirus is low, the bone marrow cells are sufficient for long-term and diverse steroid production, or SF-1 is necessary for the initiation of steroid production. However, it is not important to maintain it.
[0039] また、フローサイトメトリーの結果より、前記ステロイド産生細胞は、多能性を持ち未 熟な造血系 Z間葉系幹細胞を起源とすることが示唆された。 [0039] The results of flow cytometry suggested that the steroidogenic cells originated from pluripotent and immature hematopoietic Z mesenchymal stem cells.
[0040] さらに、本新規ステロイド産生細胞によれば、副腎皮質刺激ホルモン (ACTH)に反 応しステロイドの分泌がコントロールできることが判明した。また、この ACTH反応性 は用量依存性である。この点にぉ ヽても本発明で得られたステロイド産生細胞は有 益であると考えられる。例えば副腎不全の患者に対して本発明で得られたステロイド 産生骨髄細胞を移植した場合、生体の副腎皮質のステロイドが不足して 、れば ACT Hが分泌され、前記細胞より副腎皮質ステロイドが分泌され、反対に過剰であれば A CTHが抑制され、その結果副腎皮質ステロイド分泌も抑制され得るからである。  [0040] Furthermore, it was found that the novel steroidogenic cells can control steroid secretion in response to corticotropin (ACTH). This ACTH response is dose-dependent. Even in this respect, the steroidogenic cells obtained in the present invention are considered to be beneficial. For example, when the steroid-producing bone marrow cells obtained in the present invention are transplanted to a patient with adrenal insufficiency, ACTH is secreted if the steroid in the adrenal cortex in the living body is insufficient, and the corticosteroid is secreted from the cells. On the contrary, if it is excessive, A CTH is suppressed, and as a result, corticosteroid secretion can also be suppressed.
[0041] 本発明者らはさらに、本新規ステロイド産生細胞が培養条件によってどのような影 響を受けるかを検討した。実験の結果、本新規ステロイド産生細胞は、レチノイン酸 含有培地、若しくはレチノイン酸と hCG (ヒト絨毛性刺激ホルモン)含有培地で培養す ることによって、性腺ステロイドホルモンを産生することができることを明らかにした。従 来技術として、レチノイン酸が副腎ホルモン (コルチコステロン)産生を誘導することは 知られていた力 性腺ホルモンの産生を誘導することは、本発明以前には知られて いないことであった。 [0041] The present inventors further examined how the novel steroidogenic cells are affected by the culture conditions. As a result of experiments, it was clarified that the novel steroid-producing cells can produce gonadal steroid hormones by culturing them in a medium containing retinoic acid or a medium containing retinoic acid and hCG (human chorionic stimulating hormone). . As a conventional technique, it has not been known before the present invention that retinoic acid induces the production of a potent gland hormone that is known to induce the production of adrenal hormone (corticosterone).
[0042] また本発明で得られたステロイド産生細胞は、移植した場合、生体内でステロイドを 移植局所高濃度に分泌できると推測される。すなわち必要な部位で必要なだけステ ロイドが分泌され、なおかつ全身的にステロイド過剰にならないので、重大な副作用 を起こすことがな 、と考えられる。  [0042] Further, when the steroid-producing cells obtained in the present invention are transplanted, it is presumed that steroids can be secreted at a high local concentration in transplantation in vivo. In other words, steroids are secreted at the necessary site as much as necessary, and the systemic steroids do not become excessive, so no serious side effects are expected.
[0043] 以上の知見に基づくと、本発明で得られたステロイド産生骨髄細胞を自己細胞移 植などの手段を用 、て使用することにより、ステロイドホルモン欠損症等のステロイド ホルモン分泌異常へのステロイド細胞移植、アレルギー/自己免疫疾患治療、移植 臓器の拒絶予防などへの応用と!、つた新 U、治療法を提供すると考えられる。すな わち、本発明によれば、上記新規ステロイド産生細胞を生体内の目的箇所に移植す ることによるステロイドホルモン欠損症等のステロイドホルモン分泌異常、自己免疫疾 患、移植臓器の拒絶予防等の治療方法が提供される。 [0043] Based on the above findings, the steroidogenic bone marrow cells obtained in the present invention were transferred to autologous cells. By using such means as transplantation, it can be applied to steroid cell transplantation for steroid hormone secretion abnormalities such as steroid hormone deficiency, allergy / autoimmune disease treatment, rejection of transplanted organ rejection, etc.! U, thought to provide a cure. That is, according to the present invention, steroid hormone secretion abnormalities such as steroid hormone deficiency, autoimmune disease, prevention of rejection of transplanted organs, etc. by transplanting the novel steroid-producing cells to a target site in the living body. A method of treatment is provided.
[0044] また、上記知見に基づくと、前記で得られた新規ステロイド産生細胞カゝら分泌された ステロイドホルモンと、薬学的に許容される担体とを有することを特徴とする薬剤組成 物が提供される。前記薬剤組成物は、アトピー性皮膚炎の外用'内服の他、気管支 喘息やリウマチ等の治療用の「ステロイド剤」として用いてもょ 、。またステロイド欠損 症、アレルギー、自己免疫疾患等の治療用として用いることも可能である。  [0044] Further, based on the above findings, there is provided a pharmaceutical composition comprising the steroid hormone secreted from the novel steroidogenic cell obtained above and a pharmaceutically acceptable carrier. Is done. The pharmaceutical composition may be used as a “steroid” for the treatment of bronchial asthma, rheumatism and the like, as well as external use for oral atopic dermatitis. It can also be used for the treatment of steroid deficiency, allergies, autoimmune diseases and the like.
[0045] さらに、本発明で得られた骨髄細胞の副腎若しくは性腺ステロイド産生細胞への多 分化能は、副腎'性腺細胞分化の組織、部位、細胞特異的機序を解明する重要なモ デルになり得ると推測される。  [0045] Furthermore, the pluripotency of bone marrow cells obtained in the present invention into adrenal or gonadal steroid-producing cells is an important model for elucidating the tissue, site, and cell-specific mechanism of adrenal gonadal cell differentiation. It is speculated that it can be.
[0046] また、上述したように、本発明の 1実施形態で得られたステロイド産生細胞は、骨髄 細胞中の骨髄幹細胞、間葉系幹細胞、造血幹細胞等の多能性幹細胞から分化した ものであると推測される。公知のように、間葉系幹細胞は脂肪や筋にも存在する。従 つて、間葉系幹細胞、造血幹細胞であれば、骨髄細胞由来のものでなくても、本発 明のステロイド産生細胞に分ィ匕し得るものと考えられる。骨髄以外からも採取できる 場合、広い選択肢と、高い簡便性 ·安全性が期待できるという利点がある。  [0046] Further, as described above, the steroidogenic cells obtained in one embodiment of the present invention are differentiated from pluripotent stem cells such as bone marrow stem cells, mesenchymal stem cells, hematopoietic stem cells in bone marrow cells. Presumed to be. As is known, mesenchymal stem cells are also present in fat and muscle. Therefore, it is considered that mesenchymal stem cells and hematopoietic stem cells can be separated from the steroid-producing cells of the present invention even if they are not derived from bone marrow cells. If it can be collected from sources other than bone marrow, it has the advantages of wide options and high convenience and safety.
[0047] 次に、以下の実施例において本発明に係る新規ステロイド産生細胞の生成の一例 を説明する。 [0047] Next, an example of generation of a novel steroidogenic cell according to the present invention will be described in the following examples.
実施例 1  Example 1
[0048] 本発明者らは SF— 1の骨髄細胞への導入によりステロイド産生細胞が生成される かを検証するために、まず、ゥシ SF— 1を有するアデノウイルス (Adx— bSF— 1)を 作成し、長期培養骨髄細胞に Adx— bSF—1を感染させた。ことにより当該骨髄細胞 力 は著明な量の多様なステロイドが産生され、ステロイド産生細胞が生成されたこと を明らかにした。以下、この検証工程を詳しく説明する。 [0049] SF— 1を含むアデノウイルスベクターの作製 [0048] In order to verify whether steroidogenic cells are generated by introduction of SF-1 into bone marrow cells, the present inventors first have an adenovirus having ushi SF-1 (Adx-bSF-1). And long-term cultured bone marrow cells were infected with Adx-bSF-1. Thus, the bone marrow cell force revealed that a significant amount of various steroids were produced and steroidogenic cells were produced. Hereinafter, this verification process will be described in detail. [0049] Preparation of adenoviral vector containing SF-1
Adenovirus Expression Vector Kit (Takara、 Osaka、 Japan)を用いてヒト 型 5—アデノウイルスベクターから由来したリコンビナント (組換え)ベクターを作製し た。  Using the Adenovirus Expression Vector Kit (Takara, Osaka, Japan), a recombinant (recombinant) vector derived from a human type 5-adenovirus vector was prepared.
[0050] ゥシ SF—lZAd4BP cDNA (岡崎国立共同研究機構 基礎生物学研究所、諸 橋憲一郎教授より分与)を BamHI及び EcoRI消化し、 CAGプロモーターを有するリ コンビナントコスミドベクター pAxCAwt (Takara)の Swalサイトに挿入した。前記リコ ンビナントウシ SF— 1アデノウイルスベクター(Adx— bSF— 1)は Miyakeら(Proc. Natl. Acad. Sci. USA 93 : 132, 1996参照)の報告【こ基づ!/ヽた製造方法【こ従!ヽ 作製した。  [0050] Usci SF—lZAd4BP cDNA (distributed by Prof. Kenichiro Morohashi, National Institute for Basic Biology, Okazaki National Research Institute) was digested with BamHI and EcoRI, and the recombinant cosmid vector pAxCAwt (Takara) containing the CAG promoter Inserted into Swal site. The recombinant bovine SF-1 adenoviral vector (Adx-bSF-1) is reported by Miyake et al. (See Proc. Natl. Acad. Sci. USA 93: 132, 1996) I made it.
[0051] 陰性対照として、 j8—ガラクトシダーゼ遺伝子のみを移入するアデノウイルスベクタ 一を構築した。このベクターを Adx— LacZとした。  [0051] As a negative control, an adenovirus vector into which only the j8-galactosidase gene was transferred was constructed. This vector was called Adx-LacZ.
[0052] マウス骨髄細朐の探 Β¾ 長期焙着  [0052] Searching for mouse bone marrow cells 朐 ¾ Long-term roasting
3ヶ月齢の雄 B6— GFP (green fluorescence protein)マウス(C57BLZ6Tgl 4 (act-EGFP) osbY01)は山田(京都大学)より寄贈された。また、別の実験にお いては 4ヶ月齢の雄 129SVJマウスも用いた。前記骨髄細胞は、いくつかの調整を加 えた従来技術を用いて培養した。簡潔には、マウスから前記骨髄細胞を培養液中に 流し出すことによって新鮮な完全骨髄細胞を回収した。培養液 Aは、 2mML—ダル タミン、 lOOUZmlペニシリン、 100 gZmlス卜レプ卜マイシン、 0. 0125 /z gZmlァ ンホテリシン(Sigma— aldrich、 Irvineゝ UK)ゝ 10— 7Mヒドロコルチゾン(Nikkenk ayaku、 Japan)及び 20%ドナーゥマ血清(Lot6603F及び 7307F、 ICN Bioche micals、 Aurora, Ohio)を含有する a— MEMを含む。回収した細胞を 75cm2組 織培養フラスコ(Nalge Nunc, Rochester, NY)に播種し、培養液 Aと共に 37° C 、 5% C02でインキュベートした。接着細胞を数週間培養しトリプシン処理した後、 使用するまで cell bankerで— 80° C貯蔵した。実験で必要な際、比較的精製され た細胞集団を増殖することを目標に、前記貯蔵 BMCsを 120〜180日間 (継代数 12 〜18)培養液 Aで培養した。この細胞集団から 5X105BMCsを再び培養液 Aと共に 60mmシャーレ(Nunc)に播種した。前記 BMCsがサブコンフルェントに増殖した際 、前記細胞をアデノウイルスで約 10プラーク形成ユニット Z細胞で感染させた。全て の実験の対照として、前記 BMCsを |8—ガラクトシダーゼ (Adx— LacZ)を発現する
Figure imgf000012_0001
A 3-month-old male B6-GFP (green fluorescence protein) mouse (C57BLZ6Tgl 4 (act-EGFP) osbY01) was donated by Yamada (Kyoto University). In another experiment, 4-month-old male 129SVJ mice were also used. The bone marrow cells were cultured using conventional techniques with some adjustments. Briefly, fresh complete bone marrow cells were recovered by pouring the bone marrow cells from the mice into the culture medium. Culture medium A consists of 2 mM ML-daltamine, lOOUZml penicillin, 100 gZml sprepmycin, 0.0125 / z gZml amphotericin (Sigma—aldrich, Irvine ゝ UK) ゝ 10-7 M hydrocortisone (Nikkenk ayaku, Japan) and Contains a-MEM containing 20% donor horse serum (Lot6603F and 7307F, ICN Biochemicals, Aurora, Ohio). The collected cells were seeded in a 75 cm 2 tissue culture flask (Nalge Nunc, Rochester, NY) and incubated with the culture medium A at 37 ° C. and 5% C02. Adherent cells were cultured for several weeks, treated with trypsin, and stored at −80 ° C. with a cell banker until use. The stored BMCs were cultured in culture medium A for 120-180 days (passage 12-18) with the goal of growing a relatively purified cell population as needed in the experiment. From this cell population, 5 × 10 5 BMCs were again seeded in a 60 mm Petri dish (Nunc) with the culture medium A. When the BMCs grow to subconfluent The cells were infected with adenovirus with about 10 plaque forming unit Z cells. As a control for all experiments, the BMCs expressed | 8-galactosidase (Adx- LacZ)
Figure imgf000012_0001
[0053] 前記 BMCsから分泌された培着液中のステロイド含有量の測定  [0053] Measurement of steroid content in culture fluid secreted from BMCs
培養液中に分泌された以下のホルモン:プロゲステロン(P4)、デォキシコルチコス テロン(DOC)、コルチコステロン(Β)、 17 α ヒドロキシプロゲステロン(17 α— OH P4)、 11 デォキシコルチゾール(S)、デヒドロェピアンドロステロン(DHEA)、 Δ 4 —アンドロステンジオン(Δ 4— A)、及びテストステロン (T)の含有量を、市販の RIA kit (Diagnostic Products Corp.、 LA)を用いて SRL Co. Ltd. (Tokyo, Ja pan)と共同研究で測定した (各特異的な RIAシステムは SRLによって開発された)。 培養液中への前記 P4及び DOCの分泌量は、合成 1 24ACTH (Shionogi Co. 、 Osaka、 Japan)の存在下 Z非存在下でも確認された。 P4、 DOC、 Β、 17 α— OH Ρ4、 S、 DHEA, Δ 4— A、及び Tのそれぞれの検出限界は、 0. lng/ml、 0. 02η g/ml、 20. Ong/ml、 0. lng/ml、 0. 04ng/ml、 0. 2ng/ml、 0. lng/ml、 及び 0. 05ngZml以下である。  The following hormones secreted into the culture medium: Progesterone (P4), Deoxycorticosterone (DOC), Corticosterone (Β), 17 α Hydroxyprogesterone (17 α—OH P4), 11 Deoxycortisol (S), dehydroepandrosterone (DHEA), Δ 4 -androstenedione (Δ 4-A), and testosterone (T) content using commercially available RIA kit (Diagnostic Products Corp., LA) Measured in collaboration with SRL Co. Ltd. (Tokyo, Japan) (each specific RIA system was developed by SRL). The amount of P4 and DOC secreted into the culture medium was also confirmed in the presence of synthetic 124ACTH (Shionogi Co., Osaka, Japan) in the absence of Z. The detection limits for P4, DOC, Β, 17 α—OH Ρ4, S, DHEA, Δ 4— A, and T are 0.1 ng / ml, 0.02 ηg / ml, 20. Ong / ml, 0 lng / ml, 0.04 ng / ml, 0.2 ng / ml, 0.1 ng / ml, and 0.05 ngZml or less.
[0054] 免疫細朐化学(immunocvtochemistrv) [0054] immunoocvtochemistrv
Zenonラビット IgG標識キット(Molecular probes, Inc.、 OR)を用いて抗ラビット チトクローム P450scc抗体 (RDI、 NJ)によって、若しくは対照として免疫前血清によ つて、 129VJマウスからの BMCsの免疫細胞化学研究を行った。前記細胞は 35mm シャーレ中のコラーゲンタイプ Iメンブレン (Asahi technoglass、 Tokyo ^ Japan)に 播種され、 4%パラホルムアルデヒドで 4° C、 1時間固定された。その後は製造者取 扱説明書に従った。蛍光は蛍光顕微鏡(BX— 51 ;01ympus、 Tokyo、 Japan)を用 いて観察された。  Perform immunocytochemistry studies of BMCs from 129VJ mice with anti-rabbit cytochrome P450scc antibodies (RDI, NJ) using Zenon Rabbit IgG labeling kit (Molecular probes, Inc., OR) or with preimmune serum as a control. went. The cells were seeded on a collagen type I membrane (Asahi technoglass, Tokyo ^ Japan) in a 35 mm petri dish and fixed with 4% paraformaldehyde at 4 ° C. for 1 hour. After that, the manufacturer's instructions were followed. Fluorescence was observed using a fluorescence microscope (BX-51; 01ympus, Tokyo, Japan).
[0055] リアルタイム PCR定量 [0055] Real-time PCR quantification
StAR、 ACTH受容体 (ACTH— R)、及び P450scc、 P450cl7、 P450C11、 P4 50C21、 P450ald、 3 j8— HSD、及び 17 j8—HSDタイプ 3を含む様々なステロイド 産生酵素の定量分析を LightCycler (Poche Diagnostics GmbH、 Mannheim 、 Germany)を用いたリアルタイム PCRによって行った。前記培養 BMCs及び Y— 1 細胞からは RNasy mini kit (Qiagen)を用いて、及びマウス精巣、副腎からは Iso gen (Wako Pure Chemical Industries、 Osakaゝ Japan)を用いて総 RNAを単 離した。テンプレートとして 5 μ gの総 RNAを用いて第一鎖(First— strand)相補 D NAを合成し、製造取扱説明書に従って LightCyclerにおいて PCRを実行した。用 いたセンス Zアンチセンスプライマーは Mukaiらによって報告されたものである(Con ditionally immortalized adrenocortical cell lines at undifferentiated states exhibit inducible Expression of glucocorticoid— synthesizing g enes ;Eur. J. Biochem. 269, 69〜81, 2002)。 PCR条件は要望に応じて利用で きる。 LightCycler Software Ver. 3. 5で決定された蛍光強度が増幅の幾何学 位相にある時に、閾値が測定された。産物は 2%ァガロースゲルに供された。各 PCR 産物のヌクレオチド配列を適切なプライマーを用いてダイレクトシークェンスで確認し た。前記 mRNAの相対的な発現レベルは、それらの βーァクチンに対して、及び対 照であるマウス副腎皮質性 Υ— 1細胞、若しくはマウス精巣若しくは副腎に対するそ の割合で較正された。 LightCycler (Poche Diagnostics) for quantitative analysis of various steroidogenic enzymes, including StAR, ACTH receptor (ACTH—R), and P450scc, P450cl7, P450C11, P450501, P450ald, 3 j8— HSD, and 17 j8—HSD type 3 GmbH, Mannheim, Germany). The cultured BMCs and Y-1 Total RNA was isolated from cells using RNasy mini kit (Qiagen) and from mouse testis and adrenal gland using Isogen (Wako Pure Chemical Industries, Osaka Japan). First-strand complementary DNA was synthesized using 5 μg of total RNA as a template, and PCR was performed in the LightCycler according to the manufacturer's instructions. The sense Z antisense primer used was reported by Mukai et al. (Conditionally immortalized adrenocortical cell lines at undifferentiated states exhibit inducible Expression of glucocorticoid—synthesizing g enes; Eur. J. Biochem. 269, 69-81, 2002 ). PCR conditions are available upon request. The threshold was measured when the fluorescence intensity determined in LightCycler Software Ver. 3.5 was in the geometric phase of amplification. The product was subjected to a 2% agarose gel. The nucleotide sequence of each PCR product was confirmed by direct sequencing using appropriate primers. The relative expression levels of the mRNA were calibrated against their β-actin and its ratio to mouse adrenal cortex Υ-1 cells, or mouse testis or adrenal gland, which were the controls.
[0056] フローサイトメトリー  [0056] Flow cytometry
フローサイトメトリーの基本的なプロトコールは公知の方法に従った。簡潔には、 3Χ 105BMCsを ΡΕ (フィコエリトリン)結合性抗マウス c— kitゝ CDl lb、 CD34、 CD44 、 CD45、及び Sea— 1モノクローナル抗体(BD Biosciences, Japan)、若しくはァ イソタイプ適合 PE結合性ラット IgG (BD Biosciences)と共に 4° C、 30分間インキュ ペートした。前記細胞は FACScanフローサイトメーター(Becton Dickinson)で解 析された。  The basic protocol of flow cytometry followed a known method. Briefly, 3 Χ105BMCs を (phycoerythrin) -binding anti-mouse c—kit ゝ CDl lb, CD34, CD44, CD45, and Sea-1 monoclonal antibodies (BD Biosciences, Japan), or isotype-matched PE-binding rat IgG (BD Biosciences) and incubation at 4 ° C for 30 minutes. The cells were analyzed with a FACScan flow cytometer (Becton Dickinson).
[0057] 統計  [0057] Statistics
1 factor (l因子) ANOVA (分散分析)が統計評価のために用いられた。 P〈0. 0 1 factor ANOVA (ANOVA) was used for statistical evaluation. P <0. 0
5は統計的に有意であるとみなされた。 5 was considered statistically significant.
[0058] 長期培着骨髄細胞への Adx—bSF— 1の感染 [0058] Adx—bSF— 1 infection of long-term cultured bone marrow cells
(1) BMCsから分泌された培養液中のステロイド含有量の測定  (1) Measurement of steroid content in culture fluid secreted from BMCs
本発明者らは SF— 1の骨髄細胞への導入によりステロイド産生細胞が生成される かを検証するために、上記の方法を用いてゥシ SF— 1を有するアデノウイルス (Adx — bSF— 1)を作成した。実験の結果、本発明者らは長期培養骨髄細胞に Adx— bS F— 1を感染させると、多様なステロイドが産生されることを明らかにした。 In order to verify whether steroidogenic cells are generated by introducing SF-1 into bone marrow cells, the present inventors used the above-described method to adenovirus with ushi SF-1 (Adx — BSF— Created 1). As a result of experiments, the present inventors have clarified that various steroids are produced when long-term cultured bone marrow cells are infected with Adx-bSF-1.
[0059] 雄 GFPマウスの長期(123日)培養骨髄細胞に Adx— bSF—1若しくは対照として Adx— LacZを感染させ、 7日間培養した。その後 4日間培養した培養液中のステロ イド量を測定した。この結果を図 1に示す。図 l (a)〜(h)はそれぞれ GFPマウスから の長期培養 BMCsの培養液中へのプロゲステロン(P4)、デォキシコルチコステロン( DOC)、コルチコステロン(Β)、 17 α ヒドロキシプロゲステロン(17 α— OHP4)、 1 1 デォキシコルチゾール(S)、デヒドロェピアンドロステロン (DHEA)、 Δ 4 アンド ロステンジオン( Δ 4— A)、及びテストステロン (T)の基礎分泌量を示して 、る。図中 の値は平均値士 SD (n= 3)で示された。 S、及び Lはそれぞれ Adx—bSF—lで形 質移入された BMCs、及び Adx— LacZで形質移入された BMCsを示す。図 1に示 すように、 Adx— bSF 1感染骨髄細胞は著明な量のプロゲステロン (P4)、デォキ シコルチコステロン(DOC)、コルチコステロン(Β)、 17 α ヒドロキシプロゲステロン( 17 α -OH Ρ4)、 11 デォキシコルチゾール(S)、デヒドロェピアンドロステロン(D ΗΕΑ)、 Δ 4—アンドロステンジオン(Δ 4— Α)、及びテストステロン (Τ)を生成したが 、 Adx— LacZ感染細胞は生成しなかった。 Adx-LacZ感染の対照細胞培養液では 、 Sを除きステロイドは全て検出されな力つた。対照培養液中に検出された微量の S は、恐らく S抗体の hydrocortisoneへのクロスリアクション(9. 5%)であり、ステロイド 前駆体は生成されな ヽと考えられる。  [0059] Long-term (123 days) cultured bone marrow cells of male GFP mice were infected with Adx-bSF-1 or Adx-LacZ as a control, and cultured for 7 days. Thereafter, the amount of steroid in the culture medium cultured for 4 days was measured. Figure 1 shows the results. Figures l (a) to (h) show progesterone (P4), deoxycorticosterone (DOC), corticosterone (Β), and 17α-hydroxyprogesterone, respectively, in long-term cultures of GFP mice. (17 α—OHP4), 11 Deoxycortisol (S), Dehydroepiandrosterone (DHEA), Δ 4 Androstenedione (Δ 4— A), and Testosterone (T) showing the basal secretion amount, The The values in the figure are indicated by the average value person SD (n = 3). S and L indicate BMCs transfected with Adx-bSF-l and BMCs transfected with Adx-LacZ, respectively. As shown in Figure 1, Adx—bSF 1 infected bone marrow cells contain significant amounts of progesterone (P4), deoxycorticosterone (DOC), corticosterone (Β), 17 α hydroxyprogesterone (17 α -OH). Ρ4), 11 Doxycortisol (S), Dehydroepiandrosterone (D ΗΕΑ), Δ 4—Androstenedione (Δ 4— Α), and Testosterone (Τ), but Adx—LacZ infected cells Did not produce. In Adx-LacZ-infected control cell cultures, all steroids except S were not detected. The trace amount of S detected in the control medium is probably a cross-reaction (9.5%) of S antibody to hydrocortisone, and no steroid precursors are likely to be produced.
[0060] 前記骨髄細朐における Adx— bSF— 1発現のステロイドホルモン合成酵素への影 響  [0060] Effect of Adx-bSF-1 expression on steroid hormone synthase in bone marrow
(1)RT— PCRによる測定 (mRNA発現に対する効果)  (1) RT-PCR measurement (effect on mRNA expression)
次に、上己実験で用 ヽられァこ糸田胞の Realtime reverse transcriptase -polym erase chain reaction (RT— PCR)を行った。その結果を図 2に示す。図 2 (a)〜( f)はそれぞれ StAR、 P450scc、 3 j8— HSD、 P450cl l、 P450cl7、 17 j8— HSD タイプ 3及び ACTH—Rのリアルタイム PCRの結果を示すグラフである。さらに、 40サ イタル以上で増幅され、ェチジゥムブロマイド染色されたァガロースゲルにおける実 際の特異的 PCRバンドを、図の下に示してある。相対的 mRNA発現レベルは j8— ァクチンで較正された。 S、及び Lはそれぞれ Adx— bSF— 1で形質移入された BM Cs、及び Adx— LacZで形質移入された BMCsを指し示す。 Adx— LacZで感染さ れた対象糸田胞力ら ίま StAR、 P450scc、 3 j8— HSD、 P450cl l、 17 j8— HSDタイ プ 3の有意な PCR産物は得られな力つた。値は平均値士 SD (n= 3)で示された。 * は P〈0. 05を示している。これらのグラフより、ステロイドホルモン合成酵素である ster oidogenic acute regulatory protein (StAR)、 P450scc、 3 j8—hydroxyster oid dehydrogenase (3 j8— USD;)、 P450cl l、 P450cl7、及び 17 j8— USDタ ィプ 3の mRNA発現は、 Adx— bSF— 1感染 11日目の骨髄細胞で認められた。一 方 Adx— LacZ感染細胞では認められなかった。 P450aldの mRNAは証明できなか つた。副腎皮質刺激ホルモン受容体 (ACTH—R)は Adx— LacZ感染細胞でも発 現していたが発現レベルはとても低力つた(副腎発現の 2Z1000)にも関わらず Adx bSF— 1感染細胞では更に低下した。 Next, a real-time reverse transcriptase-polym erase chain reaction (RT-PCR) was performed on the cocoon filaments used in the experiment. The result is shown in Fig.2. Figures 2 (a) to (f) are graphs showing the results of real-time PCR for StAR, P450scc, 3 j8- HSD, P450cl1, P450cl7, 17 j8- HSD type 3 and ACTH-R, respectively. In addition, the actual specific PCR band in the agarose gel amplified above 40 centimeters and stained with ethidium bromide is shown below the figure. The relative mRNA expression level is j8— Calibrated with actin. S and L indicate BM Cs transfected with Adx-bSF-1 and BMCs transfected with Adx-LacZ, respectively. Adx— LacZ-infected target Itoda force, etc. Significant PCR products of StAR, P450scc, 3 j8—HSD, P450cl1, 17 j8—HSD type 3 were not obtained. The value was expressed as the average scrutiny SD (n = 3). * Indicates P <0. 05. From these graphs, the steroid hormone synthetase ster oidogenic acute regulatory protein (StAR), P450scc, 3 j8—hydroxysteroid dehydrogenase (3 j8—USD;), P450cl l, P450cl7, and 17 j8—USD type 3 MRNA expression was observed in bone marrow cells at 11 days after Adx-bSF-1 infection. On the other hand, it was not observed in Adx-LacZ-infected cells. P450ald mRNA could not be verified. Adrenocorticotropic hormone receptor (ACTH-R) was also expressed in Adx-LacZ-infected cells but the expression level was very low (2Z1000 of adrenal expression) and was further decreased in Adx bSF-1 infected cells .
[0061] すなわち、対照 Y— 1細胞の発現に対する相対比は StAR、 P450scc、及び 3 β HSDの場合に発現される;マウス副腎の発現に対しては P450cl l及び ACTH—R の場合に発現される;マウス精巣の発現に対しては P450cl7及び 17 |8— HSDタイ プ 3の場合に発現される。 Adx— LacZで感染された対象細胞からは StAR、 P450s cc、 3 j8— HSD、 P450cl l、 17 j8—HSDタイプ 3の有意な PCR産物 ίま得られな力 つた。以上の結果より、前記骨髄細胞に bSF—1を発現させることにより、ステロイドホ ルモン合成酵素の mRNA発現を増強することが判明した。  [0061] That is, the relative ratio to the expression of control Y-1 cells is expressed in the case of StAR, P450scc, and 3 β HSD; for the expression of the mouse adrenal gland, it is expressed in the case of P450cl l and ACTH-R. It is expressed in the case of P450cl7 and 17 | 8—HSD type 3 for mouse testis expression. From the target cells infected with Adx—LacZ, significant PCR products of StAR, P450s cc, 3 j8—HSD, P450cl1, 17 j8—HSD type 3 were obtained. From the above results, it was found that expression of bSF-1 in the bone marrow cells enhances steroid hormone synthase mRNA expression.
[0062] 同様の結果が 129VJマウスでも観察されており、血統により殆ど差はないと示唆さ れた (データは示さず)。  [0062] Similar results were observed in 129VJ mice, suggesting little difference by pedigree (data not shown).
[0063] (2)免疫細胞化学による観察 (タンパク質発現に対する効果)  [0063] (2) Observation by immunocytochemistry (effect on protein expression)
上に記載された抗体を用いた 129VJマウス骨髄細胞の免疫染色の結果を図 3に示 している。図 3より、ステロイドホルモン合成酵素である P450sccの発現が明らかにな つた。緑色蛍光細胞は P450sccに対してポジティブであることを示している。陰性対 照として、免疫前血清と細胞は反応しな力つた (データは示さず)。すなわち、前記骨 髄細胞に bSF— 1を発現させることにより、ステロイドホルモン合成酵素タンパク質の 発現量を増強することが判明した。 [0064] 本発明にお 、てステロイド産生細胞は、副腎と性腺のステロイドの混合、つまり DO C、 B、 DHEA、 Δ 4— A、及び Tを同時に産生している。ステロイドホルモン合成酵 素である P450cl7はヒト副腎に発現しているがマウス副腎では発現していないため、 本発明における前記骨髄細胞での P450cl 7の著明な発現は、ステロイドの混合性 産生が種を越えて生じることを示唆して 、る。 The results of immunostaining of 129VJ mouse bone marrow cells using the antibodies described above are shown in FIG. Fig. 3 reveals the expression of P450scc, a steroid hormone synthase. Green fluorescent cells are positive for P450scc. As a negative control, preimmune serum and cells did not react (data not shown). That is, it was found that the expression level of steroid hormone synthase protein is enhanced by expressing bSF-1 in the bone marrow cells. [0064] In the present invention, the steroidogenic cells simultaneously produce a mixture of adrenal and gonadal steroids, that is, DOC, B, DHEA, Δ4-A, and T. Since P450cl7, which is a steroid hormone synthase, is expressed in human adrenal gland but not in mouse adrenal gland, the prominent expression of P450cl 7 in the bone marrow cells in the present invention is due to the mixed production of steroids. It suggests that it will occur beyond.
[0065] またこれらの結果より、ステロイド産生細胞への分ィヒにおいて前記骨髄細胞は多能 性を有する、ステロイド産生組織の共通の起源が存在する;つまり本発明で得られた 骨髄細胞由来ステロイド産生細胞が幹細胞である可能性が示唆された。そこで次に フローサイトメトリーを用いて、この仮定を検討した。  [0065] From these results, the bone marrow cells are pluripotent in steroid-producing cells, and there is a common source of steroid-producing tissue; that is, the bone marrow cell-derived steroid obtained in the present invention. It was suggested that the producer cells may be stem cells. Then, this assumption was examined using flow cytometry.
[0066] # 細q力 分化させたステロイド、 細 が (;告 rfn. /曰 H ) 細qであるか の驢  [0066] # fine q force Differentiated steroids, fine is (; notification rfn. / 曰 H)
(1)フローサイトメトリーによる前記骨髄細胞表面マーカーの解析  (1) Analysis of the bone marrow cell surface marker by flow cytometry
フローサイトメトリーを用いて、前記骨髄細胞表面マーカーを解析した結果を図 4に 示した。前記フローサイトメトリー実験は図 1の実験において使用したものと同じ BMC sを用いてアデノウイルスの感染前に行われた。図 4 (a)〜 (f)はそれぞれ、細胞表面 マーカーである c—kit、 CDl lb、 CD34、 CD44、 CD45、 Sea— 1を示す。実験の 結果より、造血細胞に特異的な CD45、及び造血前駆細胞に特異的な CD34は陰 性であった。また単球、マクロファージのマーカーである CD1 lbも陰性であった。マ ウス間葉系幹細胞のマーカーは完全には明らかにされておらず議論の余地があるが 、潜在的マーカーである CD44は前記骨髄細胞では陰性であった。一方、造血系及 び間葉系の幹細胞 ·前駆細胞マーカーである c kit及び Sea— 1は陽性であった。  The results of analyzing the bone marrow cell surface markers using flow cytometry are shown in FIG. The flow cytometry experiment was performed prior to adenovirus infection using the same BMC s used in the experiment of FIG. Figures 4 (a) to (f) show cell surface markers c-kit, CDl lb, CD34, CD44, CD45, and Sea-1. From the experimental results, CD45 specific for hematopoietic cells and CD34 specific for hematopoietic progenitor cells were negative. CD1 lb, a marker for monocytes and macrophages, was also negative. Although the mouse mesenchymal stem cell marker is not completely clear and controversial, the potential marker CD44 was negative in the bone marrow cells. On the other hand, hematopoietic and mesenchymal stem / progenitor cell markers c kit and Sea-1 were positive.
[0067] 本発明で得られる骨髄細胞は不均一ではあるが、恐らくステロイド産生細胞は多能 性を有し未熟な幹細胞を起源とすると考えられた。また長期培養骨髄細胞は 0. 05m M ascorbic acia、 10mM β— glycerophosphate^及び 0. 1 μ Μ dexameth asoneで処理することにより、アルカリフォスファターゼに染まる骨芽細胞様に分ィ匕し た (データは示さず)。これは長期培養骨髄細胞が間葉系の性質を持つと!、う傍証と なる。 [0067] Although the bone marrow cells obtained in the present invention are heterogeneous, steroidogenic cells were probably pluripotent and originated from immature stem cells. Long-term cultured bone marrow cells were treated with 0.05 mM ascorbic acia, 10 mM β-glycerophosphate ^ and 0.1 μΜ dexameth asone, so that they were separated like osteoblasts stained with alkaline phosphatase (data shown). ) This proves that long-term cultured bone marrow cells have mesenchymal properties!
[0068] 長期培着骨髄細胞の ACTH反]^件の確認 上で ACTH— Rの発現が確認されたため、次に骨髄細胞の ACTH反応性を P4及 び DOCを測定することで検討した。雄 GFPマウスの長期(100日)培養骨髄細胞に Adx— bSF— 1若しくは Adx— LacZを感染させ、感染後 3〜4日毎に 2. 4nM〜2. 4 Mの ACTHで刺激し、培養液中のステロイドを測定した。 Adx— bSF— 1若しく ίま Adx— LacZで感染した(DayO)後、糸田胞 ίま 0、 4、 7、 11、 14、 18、 21、 25、 28日 目に 2. 4ηΜ力ら 2. 4 μ Μの ACTHで処理された。 ACTHを添カ卩する前に、培養液 を回収し前記ステロイド濃度を測定した。図 5はその結果を示したグラフであり、図 5 ( a)、 (b)はそれぞれ GFPマウスから採取された培養 BMCsからのプロゲステロン(P4 )及び DOCの分泌に対する ACTHの影響を示す。図中の値は平均値士 SD (n= 3) で示された; a、 b、 c、 d、及び eはそれぞれ 0、 2. 4、 24、 240nM及び 2. 4 /z Mの A CTHを示している。対照(ACTH非存在下)に対して *は P〈0. 05、 * *は P〈0. 0 1を示している。実験の結果より、 ACTHは Adx— bSF—1感染骨髄細胞においてこ れらのステロイドを用量依存的に生成した。しかし Adx— LacZ感染細胞では生成さ れなかった (データは示さず)。 [0068] Confirmation of ACTH in long-term cultured bone marrow cells Since the expression of ACTH-R was confirmed above, the ACTH reactivity of bone marrow cells was examined by measuring P4 and DOC. Infect long-term (100 days) cultured bone marrow cells of male GFP mice with Adx-bSF-1 or Adx-LacZ, and stimulate with 2.4 nM to 2.4 M ACTH every 3-4 days after infection. Steroids were measured. Adx— bSF— 1 young ίma Adx— It was infected with LacZ (DayO), then itoda tsukuma on days 0, 4, 7, 11, 14, 18, 21, 25, 28 2. 4ηΜ 力 et al. 2 Treated with 4 μΜ ACTH. Before adding ACTH, the culture solution was collected and the steroid concentration was measured. FIG. 5 is a graph showing the results. FIGS. 5 (a) and (b) show the effect of ACTH on the secretion of progesterone (P4) and DOC from cultured BMCs collected from GFP mice, respectively. The values in the figure are indicated by the mean valuer SD (n = 3); a, b, c, d, and e are A CTH of 0, 2.4, 24, 240 nM and 2.4 / z M, respectively. Is shown. * Indicates P <0. 05 and ** indicates P <0. 01 relative to the control (without ACTH). From the experimental results, ACTH produced these steroids in a dose-dependent manner in Adx-bSF-1-infected bone marrow cells. However, it was not generated in Adx-LacZ infected cells (data not shown).
[0069] これらの結果より、長期培養骨髄細胞への bSF— 1の導入により、基礎状態と同様 に ACTH刺激状態でも多様なステロイドを分泌するステロイド産生細胞に分ィ匕するこ とを示している。 [0069] These results indicate that the introduction of bSF-1 into long-term cultured bone marrow cells can be separated into steroidogenic cells that secrete various steroids under ACTH-stimulated as well as basal conditions. .
[0070] また、 2. 4 Mの ACTHによる、ステロイド産生酵素である P450scc、 3 β— HSD 、 P450c21、 P450cl l及び 17 j8— HSDの mRNA誘導もリアルタイム PCRによつ て確認された。しかし ACTH— Rの mRNA誘導は確認されなかった(図 6)。実験に 用いられた細胞は、 Adx— bSF— 1での感染(DayO)の後、 BMCsは 0、 4、及び 7日 目に 2. 4 μ Μ ACTHで処理し、 4日間培養した。 11日目に、前記細胞の総 RNA を抽出し、リアルタイム PCRを行った。図 6 (a)〜(f)はそれぞれ、 2. 4 M ACTH の存在下 (右下下がり斜線柱)及び非存在下(白柱)〖こおける P450scc、 3 |8— HSD 、 P450c21、 P450cl l、 17 j8—HSDタイプ 3、及び ACTH— Rの mRNAの発現を 示す図である。図中の値は平均値士 SD (n= 3)で示されている。相対的 mRNA発 現レベルは ι8—ァクチンで較正された。対照 Y— 1細胞の発現に対する相対比は P4 50scc及び 3 j8— HSDの場合に発現される;マウス副腎に対しては P450c21、 P45 Ocl l、及び ACTH— Rの場合に発現される;マウス精巣に対しては 17 j8—HSDタ ィプ 3の場合に発現される。対照(ACTH非存在下)に対して *は P〈0. 05、 * *は P〈0. 01を示している。 [0070] In addition, mRNA induction of steroidogenic enzymes P450scc, 3β-HSD, P450c21, P450cl1, and 17j8-HSD by 2.4 M ACTH was also confirmed by real-time PCR. However, mRNA induction of ACTH-R was not confirmed (Fig. 6). Cells used in the experiment were treated with 2.4 μΜ ACTH on days 0, 4, and 7 after infection with Adx-bSF-1 (DayO) and cultured for 4 days. On day 11, the total RNA of the cells was extracted and subjected to real-time PCR. Figures 6 (a) to (f) are respectively P450scc, 3 | 8— HSD, P450c21, P450cl l in the presence of 2.4 M ACTH (lower right oblique column) and absence (white column). , 17 j8-HSD type 3 and ACTH-R mRNA expression. The values in the figure are indicated by the average value person SD (n = 3). Relative mRNA expression levels were calibrated with ι8-actin. The relative ratio to the expression of control Y-1 cells is expressed in the case of P4 50scc and 3 j8- HSD; P450c21, P45 for mouse adrenal glands It is expressed in the case of Ocl l and ACTH-R; it is expressed in the case of 17 j8-HSD type 3 for mouse testis. * Indicates P <0. 05 and ** indicates P <0.01 relative to the control (in the absence of ACTH).
[0071] 骨髄細朐からの長期ステロイド' 牛.能の沏 I定  [0071] Long-term steroids from bone marrow sputum 'cattle.
Adx— bSF— 1感染によって、骨髄細胞のステロイド産生がどの程度の期間続くの かを検討した。長期( 180日)培養骨髄細胞に Adx— bSF— 1若しくは Adx - LacZ を感染させ、培養液中の P4及び DOCを 3〜4日毎に測定した。その結果は図 7に示 しており、図 7 (a)、(b)はそれぞれ GFPマウスからの長期培養 BMCsの培養液中に おけるプロゲステロン(P4)及びデォキシコルチコステロン(DOC)の基礎分泌量の 時間経過(タイムコース)を示す。図中の値は複製(2つ組の)シャーレの平均値を示 している。黒柱は Adx— bSF— 1で感染された細胞力も分泌された前記ステロイドを 示して 、る。 P4及び DOCの分泌は Adx— LacZで感染させた BMCsからの培養液 中では検出不可能であった (データは示さず)。図 7より、明らかな P4及び DOCの産 生は少なくとも 112日間続いた。アデノウイルスの半減期(2〜3週間)から考えると、 この長期ステロイド産生は予想を超えたものである。  We examined the duration of bone marrow cell steroidogenesis following Adx—bSF—1 infection. Long-term (180 days) cultured bone marrow cells were infected with Adx-bSF-1 or Adx-LacZ, and P4 and DOC in the culture were measured every 3-4 days. The results are shown in Fig. 7. Figs. 7 (a) and 7 (b) show the results of progesterone (P4) and deoxycorticosterone (DOC) in the culture medium of long-term cultured BMCs from GFP mice, respectively. Shows the time course of basal secretions (time course). The value in the figure shows the average value of duplicate (duplicate) dishes. The black column shows the steroid secreted by the cell force infected with Adx-bSF-1. Secretion of P4 and DOC was not detectable in cultures from BMCs infected with Adx-LacZ (data not shown). From Figure 7, it is clear that P4 and DOC production lasted at least 112 days. Considering the half-life of adenovirus (2-3 weeks), this long-term steroid production is unexpected.
[0072] また図 7における 0、 14、 21、及び 49日目に得られた細胞力 抽出した RNAを用 いて bSF— 1の RT— PCRを行った。電気泳動は 1. 5%ァガロースゲルを用いて行 い、染色のためにェチジゥムブロマイドを使用した。図 8はその結果を示しており、 Y 1、 V、(一)、 S及び Lはそれぞれ Y—1細胞(ネガティブコントロール)、 Adx— bSF 1 (ポジティブコントロール)、感染前の BMCs、 Adx-bSF- 1で形質移入した B MCs、及び Adx— LacZで形質移入した BMCsを示している。 Adx— bSF— 1由来 b SF— 1の発現の実験において内因性マウス SF— 1の発現は確認することができず、 アデノウイルス由来ゥシ SF— 1のみが検出された(図 8)。この結果は長期持続ステロ イド産生は内因性マウス SF— 1から誘導されるものではなぐアデノウイルス由来ゥシ SF— 1に起因するものであることが示唆された。  [0072] Also, bSF-1 RT-PCR was performed using RNA extracted from cell forces obtained on days 0, 14, 21, and 49 in FIG. Electrophoresis was performed on a 1.5% agarose gel, and ethidium bromide was used for staining. Fig. 8 shows the results. Y1, V, (1), S and L are Y-1 cells (negative control), Adx-bSF1 (positive control), BMCs before infection, Adx-bSF, respectively. -BMCs transfected with 1 and BMCs transfected with Adx-LacZ. In the experiment of expression of bSF-1 derived from Adx-bSF-1, the expression of endogenous mouse SF-1 could not be confirmed, and only adenovirus-derived ushi SF-1 was detected (FIG. 8). This result suggests that long-lasting steroid production is caused by adenovirus-derived ushi SF-1, which is not derived from endogenous mouse SF-1.
[0073] 性腺ホルモン産牛.細胞への分化誘導  [0073] Gonadal hormone-producing cattle. Induction of cell differentiation
本発明者らはさらに、本発明のステロイド産生細胞が培養条件によってどのような 影響を受けるかを検討した。上述した方法と同様に、長期培養骨髄細胞 (LTBMCs) にゥシ SF— 1発現ウィルスもしくはコントロールウィルスを感染させ、レチノイン酸 (A TRA)、及びレチノイン酸と hCG (ヒト絨毛性刺激ホルモン)をウィルス感染時及び培 地交換時【こ添カ卩し (day 0、 4、 7、 11、 14)、 dayl4〜18【こ培養した培地のホノレモン を測定した。この結果を図 9A、 9B (ATRAを培地に添カロした場合)、及び図 10A、 1 OB (ATRAと hCGを培地に添カ卩した場合)に示した。実験の結果より、コルチコステ ロン (副腎ホルモン)とテストステロン (性腺ホルモン)の産生が促進されることが明らか になった。特にテストステロンの産生の促進が顕著に見られたため(図 9Bより)、本発 明のステロイド産生細胞はレチノイン酸含有培地で培養することによって、性腺ホル モン産生細胞への分化が誘導されたことが示唆された。 The present inventors further examined how the steroidogenic cells of the present invention are affected by the culture conditions. Similar to the method described above, long-term cultured bone marrow cells (LTBMCs) Infection with urine SF-1-expressing virus or control virus, and retinoic acid (A TRA), retinoic acid and hCG (human chorionic stimulating hormone) during viral infection and medium exchange. day 0, 4, 7, 11, 14), dayl 4-18 [Honolemon in the cultured medium was measured. The results are shown in FIGS. 9A and 9B (when ATRA is added to the medium) and FIGS. 10A and 1 OB (when ATRA and hCG are added to the medium). The experimental results revealed that the production of corticosterone (adrenal hormone) and testosterone (gonad hormone) was promoted. In particular, since the production of testosterone was markedly promoted (from Fig. 9B), the steroid-producing cells of the present invention were induced to differentiate into gonadal hormone-producing cells when cultured in a medium containing retinoic acid. It was suggested.
[0074] レチノイン酸が副腎細胞を刺激し、副腎ホルモンの産生が促進されることは公知で あるが、性腺ホルモンの産生を誘導することは、本発明によって初めて明らかにされ た。 [0074] Although it is known that retinoic acid stimulates adrenal cells and promotes the production of adrenal hormones, it was first demonstrated by the present invention that it induces the production of gonadal hormones.
[0075] 本発明の特定の好ま ヽ実施形態及び実施例は上記で記載され、例証されて ヽる 力 本発明はこれらの一実施形態や一実施例に限定されるものではなぐ本発明の 要旨を変更しな 、範囲で種々変形可能である。  [0075] Certain preferred embodiments and examples of the invention have been described and illustrated above. The invention is not limited to these embodiments or examples. SUMMARY OF THE INVENTION Various modifications can be made without departing from the scope.
図面の簡単な説明  Brief Description of Drawings
[0076] [図 1]図 1 (a)〜(h)はそれぞれ GFPマウスからの長期培養 BMCsの培養液中へのプ 口ゲステロン(P4)、デォキシコルチコステロン(DOC)、コルチコステロン(B)、 17 α ヒドロキシプロゲステロン(17 α— ΟΗΡ4)、 11 デォキシコルチゾール(S)、デヒ ドロェピアンドロステロン(DHEA)、 Δ 4—アンドロステンジ才ン(Δ 4— A)、及びテス トステロン (T)の基礎分泌量を示すグラフ。  [0076] [Fig. 1] Fig. 1 (a) to (h) are long-term cultures from GFP mice, pgestesterone (P4), deoxycorticosterone (DOC), corticostero (B), 17 α hydroxyprogesterone (17 α— ΟΗΡ4), 11 deoxycortisol (S), dehydroepandrosterone (DHEA), Δ 4—androstenedine (Δ 4—A), And a graph showing the basal secretion amount of testosterone (T).
[図 2]図 2 (a)〜(f)はそれぞれ StAR、 P450scc、 3 j8— HSD、 P450cl l、 P450cl 7、 17 j8—HSDタイプ 3及び ACTH—Rのリアルタイム PCRの結果を示すグラフ。  FIG. 2 (a) to (f) are graphs showing the results of real-time PCR of StAR, P450scc, 3 j8- HSD, P450cl 1, P450cl 7, 17 j8-HSD type 3 and ACTH-R, respectively.
[図 3]図 3は、 129VJマウスから採取した BMCsの抗チトクローム P450scc抗体を用 Vヽた免疫染色像を示した図。  [FIG. 3] FIG. 3 is a view showing an immunostained image obtained by using an anti-cytochrome P450scc antibody of BMCs collected from a 129VJ mouse.
[図 4]図 4 (a)〜(f)はそれぞれ培養 BMCsにおける表面マーカーである c— kit、 CD l ib, CD34、 CD44、 CD45、 Sea— 1発現のフローサイトメトリー解析の結果を示す 図。 [図 5]図 5 (a)、 (b)はそれぞれ GFPマウス力も採取された培養 BMCsからのプロゲス テロン (P4)及び DOCの分泌に対する ACTHの影響を示すグラフ。 [Figure 4] Figures 4 (a) to (f) show the results of flow cytometric analysis of c-kit, CD ib, CD34, CD44, CD45, and Sea-1 expression, which are surface markers in cultured BMCs, respectively. . [FIG. 5] FIGS. 5 (a) and 5 (b) are graphs showing the effect of ACTH on the secretion of progesterone (P4) and DOC from cultured BMCs in which GFP mouse power was also collected.
[図 6]図 6 (a)〜(f)はそれぞれ、 2. ACTHの存在下 (右下下がり斜線柱)及 び 存在下(白柱)における P450scc、 3 j8— HSD、 P450c21、 P450cl l、 17 β [Fig.6] Figures 6 (a) to (f) are respectively 2. P450scc, 3 j8— HSD, P450c21, P450cl l, in the presence of ACTH (lower right slanted column) and in the presence (white column), 17 β
— HSDタイプ 3、及び ACTH—Rのリアルタイム PCRを示すグラフ。 — Graph showing real-time PCR for HSD type 3 and ACTH-R.
[図 7]図 7 (a)、 (b)はそれぞれ GFPマウスからの長期培養 BMCsの培養液中におけ るプロゲステロン (P4)及びデォキシコルチコステロン(DOC)の基礎分泌量の時間 経過(タイムコース)を示すグラフ。  [Figure 7] Figures 7 (a) and (b) show the time courses of the basal secretions of progesterone (P4) and deoxycorticosterone (DOC) in the culture medium of long-term cultured BMCs from GFP mice, respectively. The graph which shows (time course).
[図 8]図 8は、ァガロースゲルにおける Adx—bSF—l由来 bSF—lの発現を示す図  FIG. 8 shows the expression of AdSF-bSF-1 derived bSF-1 on agarose gel.
[図 9]図 9は、 129VJマウスから採取した Adx—bSF—l感染 BMCsをレチノイン酸( 濃度 0〜: L0_4M)含有培地で培養した場合のコルチコステロン産生量 (a)と、テストス テロン産生量 (b)を示す図。 [9] FIG. 9, 129VJ mouse Adx-BSF-l infection BMCs obtained from retinoic acid (concentration 0~: L0 _4 M) corticosterone production amount when cultured in medium containing the (a), Tesutosu The figure which shows teron production amount (b).
[図 10]図 10は、 129VJマウスから採取した Adx—bSF—l感染 BMCsを、様々な培 養条件 (コルチゾール、レチノイン酸、 hCG (ヒト絨毛性線刺激ホルモン)含有)で培 養した場合のコルチコステロン産生量 (a)と、テストステロン産生量 (b)を示す図。  [Fig. 10] Fig. 10 shows Adx-bSF-l-infected BMCs collected from 129VJ mice when cultured under various culture conditions (containing cortisol, retinoic acid, and hCG (human chorionic gonadotropin)) The figure which shows corticosterone production amount (a) and testosterone production amount (b).

Claims

請求の範囲 The scope of the claims
[I] 骨髄細胞中にステロイドホルモン合成に関与する因子を導入することで前記骨髄 細胞から分化させたことを特徴とするステロイド産生細胞。  [I] A steroidogenic cell characterized by differentiation from a bone marrow cell by introducing a factor involved in steroid hormone synthesis into the bone marrow cell.
[2] 多能性幹細胞中にステロイドホルモン合成に関与する因子を導入することで前記 多能性幹細胞力 分化させたことを特徴とするステロイド産生細胞。  [2] A steroidogenic cell characterized in that the pluripotent stem cell force is differentiated by introducing a factor involved in steroid hormone synthesis into the pluripotent stem cell.
[3] 請求項 2記載のステロイド産生細胞にお 、て、 [3] In the steroidogenic cell according to claim 2,
前記多能性幹細胞は、骨髄細胞由来であることを特徴とするステロイド産生細胞。  A steroidogenic cell, wherein the pluripotent stem cell is derived from a bone marrow cell.
[4] 請求項 2記載のステロイド産生細胞にお 、て、 [4] In the steroidogenic cell according to claim 2,
前記多能性幹細胞は、間葉系幹細胞、及び造血幹細胞を含む体性多能性幹細胞 であることを特徴とするステロイド産生細胞。  The pluripotent stem cells are somatic pluripotent stem cells including mesenchymal stem cells and hematopoietic stem cells.
[5] 請求項 1若しくは 2記載のステロイド産生細胞において、 [5] In the steroidogenic cell according to claim 1 or 2,
前記ステロイドホルモン合成に関与する因子は、ステロイドホルモン合成酵素の転 写調節因子であることを特徴とするステロイド産生細胞。  A steroidogenic cell, wherein the factor involved in steroid hormone synthesis is a transcriptional regulator of steroid hormone synthase.
[6] 請求項 5記載のステロイド産生細胞にお 、て、 [6] In the steroidogenic cell according to claim 5,
前記ステロイドホルモン合成酵素の転写調節因子は Steroidogenic factor 1 (S F- l)であることを特徴とするステロイド産生細胞。  A steroidogenic cell, wherein the transcriptional regulator of the steroid hormone synthase is Steroidogenic factor 1 (S F-l).
[7] 請求項 1若しくは 2記載のステロイド産生細胞において、 [7] In the steroidogenic cell according to claim 1 or 2,
前記ステロイド産生細胞は、ステロイドホルモンを所定期間以上に亘つて分泌する ものであることを特徴とするステロイド産生細胞。  The steroid-producing cell is characterized in that it secretes steroid hormones over a predetermined period.
[8] 請求項 7記載のステロイド産生細胞にお 、て、 [8] In the steroidogenic cell according to claim 7,
前記所定期間は少なくとも 2週間以上であることを特徴とするステロイド産生細胞。  The steroidogenic cell, wherein the predetermined period is at least 2 weeks or more.
[9] 請求項 1若しくは 2記載のステロイド産生細胞において、 [9] In the steroidogenic cell according to claim 1 or 2,
前記ステロイド産生細胞は、副腎皮質刺激ホルモン (ACTH)反応性であることを 特徴とするステロイド産生細胞。  The steroid-producing cell is a corticotrophic hormone (ACTH) responsiveness.
[10] 請求項 9記載のステロイド産生細胞にぉ 、て、 [10] The steroid-producing cell according to claim 9, wherein
前記 ACTH反応性は ACTH用量依存性であることを特徴とするステロイド産生細 胞。  A steroidogenic cell, wherein the ACTH reactivity is ACTH dose-dependent.
[I I] 請求項 1若しくは 2記載のステロイド産生細胞において、 前記ステロイド産生細胞は、プレダネノロン(pregnenolone)、プロゲステロン(pro gesterone)、ァォキシコノレチコステロン (deoxycorticosterone)、コノレチコステロン (.corticosterone)、 18ヒドロキシコノレテコスァロン (18— hydroxycorticosterone 、フノレドスァロン、 aldosterone)、 丄 / αヒト口3 rンプレク不ノロン (17 — hydroxypr egnelone)、 17 αヒドロキシプロケステロン (17 α— hydroxyprogesterone)、 11テ ォキシコノレチゾーノレ (11 - deoxycortisol)、コノレチゾーノレ(Cortisol)、 DHEA (deh ydroepiandrosterone)、アンドロスアンシオン、androstenedione)、エストロン、es trone)、アンドロステンジォーノレ (androstenediol)、テストステロン (testosterone) 、エストラジオール(estradiol)から成るステロイドホルモンの少なくとも 1つを産生す るものであることを特徴とするステロイド産生細胞。 [II] In the steroidogenic cell according to claim 1 or 2, The steroidogenic cells include pregnenolone, pro gesterone, hydroxycorticosterone, 18-hydroxycorticosterone, 18-hydroxycorticosterone, 18-hydroxycorticosterone, aldosterone, aldosterone ), 丄 / α human mouth 3 r prepreg nonolone (17 — hydroxypr egnelone), 17 α hydroxyprogesterone (17 α-hydroxyprogesterone), 11 oxyconoretizole (11-deoxycortisol), cortisol (cortisol), Produces at least one steroid hormone consisting of DHEA (deh ydroepiandrosterone), androstenedione), estrone, estrone, androstenediol, testosterone, and estradiol Steroidogenic cells characterized by .
[12] 請求項 1若しくは 2記載のステロイド産生細胞において、 [12] In the steroidogenic cell according to claim 1 or 2,
前記ステロイド産生細胞は、レチノイン酸含有培地で培養することによって、性腺ス テロイドホルモンを産生するものであることを特徴とするステロイド産生細胞。  The steroid-producing cells are those that produce gonadal steroid hormones by culturing in a retinoic acid-containing medium.
[13] 請求項 1若しくは 2記載のステロイド産生細胞において、  [13] In the steroidogenic cell according to claim 1 or 2,
前記ステロイド産生細胞は、レチノイン酸及び hCG (ヒト絨毛性刺激ホルモン)含有 培地で培養することによって、性腺ステロイドホルモンを産生するものであることを特 徴とするステロイド産生細胞。  A steroidogenic cell characterized in that the steroidogenic cell is one that produces a gonadal steroid hormone by culturing in a medium containing retinoic acid and hCG (human chorionic stimulating hormone).
[14] (a)骨髄細胞を用意する工程と、 [14] (a) preparing a bone marrow cell;
(b)前記骨髄細胞中にステロイドホルモン合成に関与する因子を導入し、前記骨髄 細胞をステロイド産生細胞へと分化させる工程と  (b) introducing a factor involved in steroid hormone synthesis into the bone marrow cells and differentiating the bone marrow cells into steroidogenic cells;
を有することを特徴とするステロイド産生細胞の生産方法。  A method for producing a steroid-producing cell, comprising:
[15] 請求項 14記載のステロイド産生細胞の生産方法にぉ 、て、 [15] The method for producing a steroid-producing cell according to claim 14, wherein
前記骨髄細胞を、レチノイン酸含有培地で培養する工程をさらに有し、性腺ステロ イド産生細胞に分化誘導することを特徴とするステロイド産生細胞の生産方法。  A method for producing a steroid-producing cell, further comprising the step of culturing the bone marrow cell in a retinoic acid-containing medium, wherein the bone marrow cell is induced to differentiate into a gonadal steroid-producing cell.
[16] 請求項 14記載のステロイド産生細胞の生産方法にお 、て、 [16] In the method for producing a steroid-producing cell according to claim 14,
前記骨髄細胞を、レチノイン酸と hCG (ヒト絨毛性刺激ホルモン)含有培地で培養 する工程をさらに有し、性腺ステロイド産生細胞に分ィ匕誘導することを特徴とするステ ロイド産生細胞の生産方法。 A method for producing a steroid-producing cell, further comprising the step of culturing the bone marrow cell in a medium containing retinoic acid and hCG (human chorionic stimulating hormone), and further inducing differentiation into a gonadal steroid-producing cell.
[17] 請求項 1若しくは 2記載のステロイド産生細胞力 分泌されたステロイドホルモンと、 薬学的に許容される担体とを有することを特徴とする薬剤組成物。 [17] A pharmaceutical composition comprising the secreted steroid hormone secreted steroid hormone according to claim 1 or 2, and a pharmaceutically acceptable carrier.
[18] 請求項 17記載の薬剤組成物において、 [18] The pharmaceutical composition according to claim 17,
前記薬剤組成物は、ステロイドホルモン分泌異常を治療するためのものであること を特徴とする薬剤組成物。  The pharmaceutical composition is for treating abnormal steroid hormone secretion.
[19] 請求項 17記載の薬剤組成物において、 [19] The pharmaceutical composition according to claim 17,
前記薬剤組成物は、自己免疫性疾患を治療するためのものであることを特徴とする 薬剤組成物。  The pharmaceutical composition is for treating an autoimmune disease.
[20] 請求項 17記載の薬剤組成物において、 [20] The pharmaceutical composition according to claim 17,
前記薬剤組成物は、臓器移植時における免疫抑制剤として用いるものであることを 特徴とする薬剤組成物。  The pharmaceutical composition, which is used as an immunosuppressant during organ transplantation.
PCT/JP2005/017349 2004-10-01 2005-09-21 Novel steroid-producing cell WO2006038462A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006539219A JPWO2006038462A1 (en) 2004-10-01 2005-09-21 New steroidogenic cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004289709 2004-10-01
JP2004-289709 2004-10-01

Publications (1)

Publication Number Publication Date
WO2006038462A1 true WO2006038462A1 (en) 2006-04-13

Family

ID=36142541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017349 WO2006038462A1 (en) 2004-10-01 2005-09-21 Novel steroid-producing cell

Country Status (2)

Country Link
JP (1) JPWO2006038462A1 (en)
WO (1) WO2006038462A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136044A1 (en) * 2006-05-19 2007-11-29 Kyushu University, National University Corporation Steroid hormone-producing cell
WO2011051406A1 (en) 2009-10-29 2011-05-05 Ascendis Pharma As Sterilization of biodegradable hydrogels
US9133276B2 (en) 2010-09-17 2015-09-15 Sanofi-Aventis Deutschland Gmbh Prodrugs comprising an exendin linker conjugate
US9138462B2 (en) 2009-07-31 2015-09-22 Sanofi-Aventis Deutschland Gmbh Prodrugs comprising an insulin linker conjugate
US9265723B2 (en) 2009-07-31 2016-02-23 Sanofi-Aventis Deutschland Gmbh Long acting insulin composition
WO2023083839A1 (en) 2021-11-09 2023-05-19 Technische Universität Dresden A method for producing induced steroidogenic cells and use thereof in cell therapy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085425A1 (en) * 2004-03-03 2005-09-15 Japan Science And Technology Agency Method of differentiating mesenchymal stem cells into steroid-producing cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085425A1 (en) * 2004-03-03 2005-09-15 Japan Science And Technology Agency Method of differentiating mesenchymal stem cells into steroid-producing cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CRAWFORD P.A. ET AL: "Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage", MOL. CELL BIOL., vol. 17, no. 7, 1997, pages 3997 - 4006, XP002999322 *
FUHRMANN G. ET AL: "Mouse germline restriction of Oct4 expression by germ cell nuclear factor", DEV. CELL., vol. 1, no. 3, 2001, pages 377 - 387, XP002999325 *
GONDO S. ET AL: "SF-1/Ad4BP transforms primary long-term cultured bone marrow cells into ACTH-responsive steroidogenic cells", GENES TO CELLS, vol. 9, no. 12, December 2004 (2004-12-01), pages 1239 - 1247, XP002987177 *
LI H-A. ET AL: "Steroidogenic factor 1 differentially regulates basal and inducible steroidogenic gene expression and steroid synthesis in human adrenocortical H295R cells", JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 91, no. 1-2, June 2004 (2004-06-01), pages 11 - 20, XP002999323 *
YANASE T.: "Fukujin no Hassei Banka to Saisei", IGAKU NO AYUMI, vol. 213, no. 5, 2005, pages 397 - 400, XP002999324 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136044A1 (en) * 2006-05-19 2007-11-29 Kyushu University, National University Corporation Steroid hormone-producing cell
US9138462B2 (en) 2009-07-31 2015-09-22 Sanofi-Aventis Deutschland Gmbh Prodrugs comprising an insulin linker conjugate
US9265723B2 (en) 2009-07-31 2016-02-23 Sanofi-Aventis Deutschland Gmbh Long acting insulin composition
US9457066B2 (en) 2009-07-31 2016-10-04 Sanofi-Aventis Deutschland Gmbh Prodrugs comprising an insulin linker conjugate
WO2011051406A1 (en) 2009-10-29 2011-05-05 Ascendis Pharma As Sterilization of biodegradable hydrogels
US8986609B2 (en) 2009-10-29 2015-03-24 Ascendis Pharma A/S Sterilization of biodegradable hydrogels
US9133276B2 (en) 2010-09-17 2015-09-15 Sanofi-Aventis Deutschland Gmbh Prodrugs comprising an exendin linker conjugate
WO2023083839A1 (en) 2021-11-09 2023-05-19 Technische Universität Dresden A method for producing induced steroidogenic cells and use thereof in cell therapy

Also Published As

Publication number Publication date
JPWO2006038462A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1272204B1 (en) Soft tissue and bone augmentation and bulking utilizing muscle-derived progenitor cells, compositions and treatments thereof
EP0136353B1 (en) Serum-free animal cell culture medium and method for the primary culture and obtention of cell lines using such medium
Mason et al. Ovine placental steroid 17α-hydroxylase/C-17, 20-lyase, aromatase and sulphatase in dexamethasone-induced and natural parturition
Kim et al. Direct reprogramming of urine-derived cells with inducible MyoD for modeling human muscle disease
Zhang et al. Proliferation and odontogenic differentiation of BMP2 gene‑transfected stem cells from human tooth apical papilla: An in vitro study
WO2006038462A1 (en) Novel steroid-producing cell
AU2007325698B2 (en) Muscle derived cells for the treatment of cardiac pathologies and methods of making and using the same
CN114040967A (en) Improvement in and promotion of recovery following hematopoietic stem cell transplantation
CN104096233B (en) Prevention and treatment of bone diseases caused by glucocorticoid medicines
Liu et al. Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells
An et al. Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro
US7879603B2 (en) Method for differentiating mesenchymal stem cells into steroid-producing cells
Ma et al. Human amnion-derived mesenchymal stem cells promote osteogenic differentiation of human bone marrow mesenchymal stem cells via H19/miR-675/APC axis
Balachandrudu et al. Hormonal pathogenesis of acne-simplified
Sreenivasulu et al. A role for cytochrome P450 17α-hydroxylase/c17-20 lyase during shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation
Ybarra et al. Involvement of the nitric oxide-soluble guanylyl cyclase pathway in the oxytocin-mediated differentiation of porcine bone marrow stem cells into cardiomyocytes
US20220325301A1 (en) Auxotrophic selection methods
Fei et al. The impaired bone anabolic effect of PTH in the absence of endogenous FGF2 is partially due to reduced ATF4 expression
JP2006122040A (en) New steroid-producing cell
Zhang et al. Estradiol synthesis and release in cultured female rat bone marrow stem cells
EP4023231A1 (en) Extracellular vesicles derived from mesenchymal stromal cells genetically modified to overexpress hif-1a and htert
WO2007136044A1 (en) Steroid hormone-producing cell
Rao et al. In-vitro culture of porcine periodontal ligament cells: Response of fibroblast-like and epithelial-like cells to prostaglandin E1, parathyroid hormone and calcitonin and separation of a pure population of fibroblast-like cells
JP2021522865A (en) Methods and compositions of gene therapy using auxotrophic adjustable cells
Chen et al. Vitamin D activates type A natriuretic peptide receptor gene transcription in inner medullary collecting duct cells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539219

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785927

Country of ref document: EP

Kind code of ref document: A1