WO2006038371A1 - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
WO2006038371A1
WO2006038371A1 PCT/JP2005/014202 JP2005014202W WO2006038371A1 WO 2006038371 A1 WO2006038371 A1 WO 2006038371A1 JP 2005014202 W JP2005014202 W JP 2005014202W WO 2006038371 A1 WO2006038371 A1 WO 2006038371A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic resonance
magnetic field
imaging apparatus
image
resonance imaging
Prior art date
Application number
PCT/JP2005/014202
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Kurokawa
Yo Taniguchi
Hisaaki Ochi
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006539172A priority Critical patent/JP4810432B2/en
Publication of WO2006038371A1 publication Critical patent/WO2006038371A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • the present invention relates to an inspection apparatus (MRI: Magnetic Resonance Imaging) using nuclear magnetic resonance, and more particularly, to a magnetic resonance imaging technique using coil sensitivity.
  • MRI Magnetic Resonance Imaging
  • a magnetic resonance imaging apparatus is a medical diagnostic imaging apparatus that causes nuclear magnetic resonance to occur in a hydrogen nucleus in an arbitrary cross section that crosses an examination target, and obtains a tomographic image in the cross section from the generated nuclear magnetic resonance signal. .
  • Non-Patent Document 1 In contrast to the normal imaging method, which uses only a gradient magnetic field to add position information in the phase encoding direction to an image, the imaging method of Non-Patent Document 1 uses the sensitivity distribution of the receiving coil in combination. The information is encoded into the image.
  • this encoding method is referred to as a coil sensitivity combined encoding, and encoding using only a normal gradient magnetic field that does not use sensitivity distribution is referred to as gradient magnetic field encoding.
  • the coil sensitivity combined encoding described above can be performed without phase encoding.
  • the number of phase encodes can be performed without phase encoding.
  • phase encoding is called coil sensitivity encoding.
  • the coil sensitivity encoding can be used not only in the phase encoding direction but also in the frequency encoding direction (reading direction) (see, for example, Patent Document 1). That is, by measuring a nuclear magnetic resonance signal using a coil having a frequency encoding number or more, it is not necessary to perform frequency encoding, and therefore it is not necessary to apply a gradient magnetic field for reading. When the gradient magnetic field for reading is not applied, there is an advantage that no noise is generated by switching the gradient magnetic field.
  • Patent Document 1 Japanese Patent Laid-Open No. 08-322814
  • Non-Patent Literature l Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P.
  • SENSE sensitivity encoding for fast MRI. Magn Reson Med, vol. 42, no. 5, 952-62, 1999
  • Non-Patent Document 1 or Patent Document 1 described above can be performed to obtain an unfolded image.
  • noise that cannot be ignored in actual shooting, and in order to obtain a stable solution even in the presence of noise, the first-order independence between the sensitivity distributions of each subcoil must be high.
  • an object of the present invention is to provide a magnetic resonance imaging apparatus that can stably perform reconstruction using the sensitivity distribution of the coil even when the primary independence of the sensitivity distribution is low.
  • the magnetic resonance imaging apparatus of the present invention has the following characteristics.
  • High-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object placed in a static magnetic field space, gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object, and the inspection object
  • Receiving means for receiving a nuclear magnetic resonance signal generated from the image, an image reconstruction means for reconstructing the image to be inspected based on the received nuclear magnetic resonance signal, and operations of the respective means.
  • a sequence control means for controlling the tomography of the examination object by nuclear magnetic resonance.
  • the receiving means has a spatially different sensitivity distribution state with respect to the examination object.
  • the nuclear magnetic resonance signal uses the sensitivity distribution obtained in advance and the S / N ratio of the nuclear magnetic resonance signal under the constraint on the magnetic moment in the inspection object, An arithmetic processing for obtaining a magnetic moment distribution of a region of interest in the inspection object is performed.
  • the receiving means includes a receiving coil configured by a plurality of sub-coil members that receive the nuclear magnetic resonance signals with spatially different sensitivity distributions. It is characterized by comprising.
  • the inspection object is mounted and in a desired direction (for example, in the body axis direction of the inspection object or in a direction substantially perpendicular to the body axis direction) And b) a movable top plate, wherein the pulse sequence control means controls the receiving means so as to receive the magnetic resonance signal a plurality of times during the movement of the top board.
  • the image reconstruction unit performs processing for maximizing an SN ratio of the reconstructed image with respect to the region of interest and an external region of the region of interest
  • the constraint condition includes a condition that the distribution of the magnetic moment in the outer region is known, and a condition that an upper limit value and a lower limit value that can be taken by the distribution of the magnetic moment in the region of interest are known.
  • a resolution lower than the resolution of an image finally obtained by imaging using the gradient magnetic field (for example, less than half the resolution of the finally obtained image)
  • the sensitivity distribution and the upper limit value and the lower limit value in the constraint conditions are determined based on the magnetic moment distribution of the inspection object obtained in advance at a resolution of (5).
  • the magnetic resonance imaging apparatus includes a display means for displaying the reconstructed image.
  • the reconstruction using the sensitivity distribution of the receiving coil can be performed even when the primary independence of the sensitivity distribution of the receiving coil is low.
  • a magnetic resonance imaging apparatus capable of performing stably can be realized.
  • a first embodiment of the magnetic resonance imaging apparatus according to the present invention will be described below.
  • FIG. 13 is a schematic view of a magnetic resonance imaging apparatus
  • FIG. 1 is a block diagram showing a schematic configuration of the nuclear magnetic resonance imaging apparatus.
  • 101 is a magnet that generates a static magnetic field
  • 103 is an inspection object
  • 300 is a top plate.
  • 101 is a magnet that generates a static magnetic field
  • 102 is a coil that generates a gradient magnetic field
  • 103 is an inspection object
  • the inspection object 103 is installed in a static magnetic field space generated by the magnet 101.
  • the sequencer 104 sends commands to the gradient magnetic field power source 105 and the high-frequency magnetic field generator 106 to generate a gradient magnetic field and a high-frequency magnetic field, respectively.
  • the high frequency magnetic field is applied to the inspection object 103 through the irradiation coil 107.
  • a signal generated from the inspection object 103 is received by the receiving coil 116 and detected by the receiver 108.
  • the sequencer 104 sets a nuclear magnetic resonance frequency (hereinafter referred to as a detection reference frequency) as a reference for detection.
  • the detected signal is sent to the computer 109, where signal processing such as image reconstruction is performed.
  • the shim coil 112 is used.
  • the shim coil 112 includes a plurality of channels, and current is supplied from the shim power supply 113.
  • the sequencer 104 controls the current flowing through each shim coil during static magnetic field uniformity adjustment.
  • the sequencer 104 sends a command to the shim power supply 113 to generate an additional magnetic field from the shim coil 112 so as to correct the static magnetic field inhomogeneity.
  • sequencer 104 normally performs control so that each device operates at a preprogrammed timing and intensity.
  • those that describe the timing and intensity of the high-frequency magnetic field, gradient magnetic field, and signal reception are called pulse sequences.
  • FIG. 14 shows the flow of photographing according to the present invention using this apparatus.
  • the shooting is performed for the main shooting by switching the coil sensitivity and the preliminary shooting at a low resolution using a normal gradient magnetic field.
  • Preliminary shooting can be performed in a short time because of its low resolution (Step 1), and the sensitivity distribution of each coil is acquired by preliminary shooting (Step 2).
  • Step 1 From the same preliminary shooting Determine the existence range to be inspected and the upper and lower limits of the pixel value of each pixel in the reconstructed image (step 3).
  • shooting is performed while switching the coil (step 4).
  • the image to be inspected is reconstructed by optimization from the data obtained in the main imaging, the sensitivity distribution obtained in the preliminary imaging, and the conditions of the inspection object (Step 5).
  • RF represents an excitation radio frequency pulse
  • Gs represents a slice selective gradient magnetic field
  • Ge represents a phase encoding gradient magnetic field.
  • the excitation high-frequency pulse 1 is applied simultaneously with the slice gradient magnetic field 2 to the inspection object, and only a desired slice is excited.
  • FIG. 3 shows an example of a specific configuration of the receiving coil.
  • the receiving coil is composed of a plurality of sub-coils 80.
  • FIG. 3 shows an example of a receiving coil composed of six sub-coils (cl to c6).
  • a diode 81 is connected to each subcoil, and each diode can be individually turned ON / OFF by a signal from the sequencer 104.
  • imaging using a gradient magnetic field generally performed in a magnetic resonance imaging apparatus is performed at a low resolution (for example, before imaging with the pulse sequence shown in FIG. 2).
  • Half of the resolution of the finally obtained image is created with the resolution of the finally obtained image by interpolation (for example, polynomial approximation).
  • FIG. 4 (a) The relationship between the sensitivity distribution of each sub-coil obtained as described above and the inspection object is as shown in FIG.
  • the sensitivity of the coil also extends outside the region of interest 900.
  • the area where the coil sensitivity exists is divided into N sections.
  • the magnitude of the magnetic moment of the hydrogen nucleus in the jth section is I. I is a value corresponding to the luminance information in the reconstructed image.
  • the nuclear magnetic resonance signal S observed through the i-th subcoil is expressed by the following (Equation 1).
  • f is a matrix whose element is sensitivity f
  • s is a vector whose element is a nuclear magnetic resonance signal S
  • the magnitude of the magnetic moment (reconstructed) I represents a vector with I as the element).
  • correct I is obtained by the following solution. That is, magnetic
  • Ij j E region of interest
  • MMSE Minimum Mean Square Error
  • e ′ is an objective function, which is an expected value of the square of the difference between the true value I of the magnitude of the magnetic moment and the estimated solution I ′.
  • ⁇ ⁇ is the expected value, and
  • ⁇ II is the size of the vector.
  • the second constraint is “I ⁇ Ij ⁇ I; region of interest”.
  • Equation 4 ⁇ is the square of the reciprocal of the SN ratio of the nuclear magnetic resonance signal, and the second term ⁇
  • lf is a term related to noise.
  • the second term is a term that maximizes the S / N ratio.
  • Equation 4 Although the solution of (Equation 4) is uniquely determined, there are various methods such as a method based on the Jacobi method and a gradient projection method as specific methods for optimization. For convergence speed and stability Which method is selected depends on how reliable the computer performance and solution are required.
  • the Jacobi method is used as a basic example.
  • Figure 5 shows a method for checking the range of the constraint condition at each iteration and replacing the value with the boundary value of the constraint condition if the range is exceeded.
  • the gradient vector d el d I 'of the objective function e at the set value is obtained (step 2).
  • (Calculated gradient vector) Change only X (1/2) (Step 3). If the result of the change does not satisfy the restriction condition, change to further satisfy the constraint condition and minimize the amount of change (step 4).
  • Step 6 If not satisfied, go back to Step 2, and if it is satisfied, let I ′ at that time be the solution. By the above procedure, is determined, and a projected image in the X-axis direction is obtained.
  • Figure 6 shows this storage state. Each is arranged and stored along the X-axis direction at a position on the ky axis in the figure corresponding to the phase encoding gradient magnetic field applied when acquiring the nuclear magnetic resonance signal.
  • the position information in the X-axis direction is given without particularly applying the read-out gradient magnetic field, and the image force S is obtained. IJ is halfway to be done.
  • FIG. 7 is an image to be obtained by photographing the inspection object, and shows the shape of the inspection object. The However, even outside the region of interest that cannot be obtained with the reconstructed image, it can be displayed.
  • the upper diagram shows a two-dimensional image to be inspected
  • the lower diagram shows a one-dimensional profile obtained by projecting the image on the X axis.
  • the X-axis and y-axis in the figure are the position axes, and the scale is set so that the pixel size is 1.
  • the X-axis direction is the direction in which the sensitivity distribution changes in each subcoil, and is the direction in which coil sensitivity encoding is performed.
  • the y-axis direction is the direction in which the sensitivity distribution does not change in each sub-coil, and is the direction in which frequency encoding is performed.
  • the vertical axis of the lower profile indicates the pixel value.
  • the inspection object used is a rectangle having a slit with a width of 4 pixels.
  • the area A shown in white is an area where the inspection object exists, and there is an area where there is no inspection object (a 4-pixel slit) between them.
  • the reconstruction in the X direction was performed with 128 sections (see Fig. 4) 128.
  • the SN ratio is 100.
  • FIG. 8 shows a reconstructed image obtained by the present invention.
  • the upper diagram shows the two-dimensional reconstructed image
  • the lower diagram shows the one-dimensional profile that is projected onto the X axis.
  • the X and y axes in the figure are axes indicating the position, the scale is the same as in FIG. 7, but the range is the range of the region of interest 900 in FIG.
  • the X-axis direction is the direction in which the sensitivity distribution changes in each subcoil, and is the direction in which coil sensitivity encoding is performed.
  • the y-axis direction is a direction in which the sensitivity distribution does not change in each sub-coil, and is a direction in which frequency encoding is performed.
  • the vertical axis of the lower profile indicates the pixel value.
  • FIG. 9 is a reconstructed image according to the conventional method.
  • the upper diagram shows the two-dimensional reconstructed image
  • the lower diagram shows the one-dimensional profile that is projected onto the X axis.
  • the X-axis and y-axis in the figure are axes indicating position, and the scale is the same as in FIGS.
  • the sensitivity distribution changes in each subcoil. This is the direction in which coil sensitivity encoding is performed.
  • the y-axis direction is a direction in which the sensitivity distribution does not change in each subcoil, and is a direction in which frequency encoding is performed.
  • the vertical axis of the lower profile indicates the pixel value.
  • An image is acquired using 16 subcoils that cover the region where the inspection target exists so that the spatial resolution in the X direction is the same as the spatial resolution achieved by the method of the present invention described above.
  • the region of interest in the X-axis direction is divided into 16 pixels and image reconstruction is performed.
  • the pixel size in the X direction of the image shown in Fig. 9 is four times that of Fig. 8.
  • spatial resolution is not obtained in the X direction, and image reconstruction fails.
  • the luminance value of the image is 2000 times the original luminance value.
  • coil sensitivity encoding can be performed with resolution that was not possible with the conventional method.
  • coil sensitivity encoding can be performed instead of frequency encoding, and the gradient magnetic field can be encoded. It is possible to shoot without noise caused by switching.
  • imaging is performed by changing the sensitivity distribution by moving the top plate on which the inspection object is placed in a desired direction.
  • the top plate is
  • the force configured to be movable in the body axis direction of the inspection object
  • it may be movable in a direction substantially perpendicular to the body axis direction.
  • FIG. 10 is a diagram showing a relationship among the inspection target 103, the top plate 300, and the receiving coil 301.
  • the inspection object is placed on a movable top plate, and the receiving coil is composed of a single coil and is stationary.
  • RF is the excitation high-frequency pulse
  • Gs is the slice selective gradient magnetic field
  • Gr is the read gradient magnetic field
  • the top plate positions pl, p2, and -pL are the celestial coordinates in the coordinate system x 'with reference to the stationary receiver coil.
  • the plate position and coil sensitivity distribution show the coil sensitivity distribution in the coordinate system fixed to the top plate.
  • the excitation high-frequency pulse 1 is applied to the inspection object simultaneously with the slice gradient magnetic field 2, and only a specific slice is excited. As a result, only a specific slice generates the nuclear magnetic resonance signal 42.
  • a time after applying the excitation high-frequency pulse 1, when the ⁇ pulse 41 is applied the magnetic resonance signal once attenuated becomes large again, and begins to attenuate again after a certain time.
  • the nuclear magnetic resonance signal repeatedly increases and decreases.
  • a read gradient magnetic field 5 is applied in the y direction in FIG. 10 to give position information in the y direction.
  • the nuclear magnetic resonance signal is measured while moving the top board.
  • the magnetic resonance signals (E (ky), E (ky), E (ky), ... ⁇ are applied by the receiving coil while applying the reading gradient magnetic field in each of two ⁇ pulses.
  • E (ky)) is measured sequentially.
  • the nuclear magnetic resonance signal E (ky) is a value at a point ky in the k space of the nuclear magnetic resonance signal received at the top plate position Pi.
  • the relationship between the sensitivity distribution f of the receiving coil and the inspection target at the coordinates fixed to the top plate at the top plate position Pi is as shown in FIG.
  • the sensitivity of the coil extends outside the region of interest 900, and the region where the coil sensitivity exists is divided into N sections.
  • the magnitude of the magnetic moment of the hydrogen nucleus existing in the j-th section is I and j. I is a value corresponding to the luminance information in the reconstructed image.
  • the present invention it is possible to stably perform reconfiguration using the sensitivity distribution of the receiving coil even when the primary independence between the sensitivity distributions of the plurality of receiving coils is low.
  • encoding using the sensitivity distribution of the receiving coil can be performed without restriction of maintaining primary independence.
  • a reading gradient magnetic field is not applied, and instead, imaging using the sensitivity distribution of the receiving coil can be performed, and imaging with less noise can be performed.
  • the phase encoding direction is set to the moving direction, the force that has conventionally been unable to move the top plate continuously is used. Therefore, if the receiver coil sensitivity encoding is used instead of the phase encoding, the top plate can be moved continuously, and images without discontinuous areas can be obtained efficiently. Can be achieved.
  • reconfiguration using the sensitivity distribution of the receiving coil can be performed even when the primary independence of the sensitivity distribution of the receiving coil is low by using the condition to be satisfied by the distribution of the magnetic moment.
  • a stable magnetic resonance imaging system can be realized in the medical field! The possibility of its use is great.
  • FIG. 1 is a diagram showing a configuration example of a magnetic resonance imaging apparatus to which the present invention is applied.
  • FIG. 2 is a diagram for explaining a pulse sequence for performing imaging by switching sub-coils in the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of a receiving coil including a plurality of subcoils.
  • FIG. 4 is a diagram for explaining the relationship between the sensitivity distribution of each subcoil and the inspection object.
  • FIG. 5 is a diagram for explaining an example of an optimization procedure.
  • FIG. 6 is a diagram for explaining a state in which nuclear magnetic resonance signals and image information are stored in a memory.
  • FIG. 7 is a diagram showing the inspection target.
  • FIG. 8 shows a reconstructed image according to the present invention.
  • FIG. 9 is a diagram showing a reconstructed image obtained by a conventional method.
  • FIG. 10 is a diagram for explaining the relationship among the inspection object, the top plate, and the receiving coil in the second embodiment.
  • FIG. 11 is a diagram for explaining a pulse sequence for performing imaging while moving the top board.
  • FIG. 12 is a diagram for explaining a state in which nuclear magnetic resonance signals and image information are stored in a memory.
  • FIG. 13 is a diagram showing an overview of a photographing apparatus.
  • FIG. 14 is a diagram for explaining a flow of photographing until an image to be inspected according to the present invention is acquired. Explanation of symbols
  • Shim coil 113 ⁇ Shim power supply, 116...
  • Receiving coil 300 ⁇ Top plate, 301 ⁇ Receiving coil, 302 ⁇ Direction of moving the top plate, 400 ⁇ Measurement memory, 401 ⁇ Intermediate memory, 402 ⁇ ⁇ Image memory, 403 ⁇ ⁇ ⁇ Memory, 900 ⁇ ⁇ ⁇ Interest area.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

There is provided a magnetic resonance imaging device capable of performing stable reconfiguration by using a coil sensitivity distribution even when the primary independence of the sensitivity distribution is low. The magnetic resonance imaging device includes: high-frequency magnetic field generation means for generating a high-frequency magnetic field to be applied to an examinee placed in a static magnetic field; gradient magnetic field generation means for generating a gradient magnetic field to be applied to the examinee; reception means for receiving the nuclear magnetic resonance signal generated from the examinee; image reconfiguration means for reconfiguring an image of the examinee according to the received magnetic resonance signal; and sequence control means for controlling operations of the respective means. The reception means has a reception coil for receiving the nuclear magnetic resonance signal by the spatially different sensitivity distributions for the examinee in a plurality of times of reception. Under the restrictive condition to set a range of the magnetic moment in the examinee, the image reconfiguration means uses the SN ratio of the sensitivity distribution and the magnetic resonance signal calculated in advance so as to perform calculation to acquire the distribution of the magnetic moment of the concerned region in the examinee by optimization to maximize the SN ratio of the reconfigured image.

Description

明 細 書  Specification
磁気共鳴撮影装置  Magnetic resonance imaging device
技術分野  Technical field
[0001] 本発明は、核磁気共鳴を用いた検査装置(MRI : Magnetic Resonance Imaging)に 係り、特に、コイル感度を利用した磁気共鳴撮影技術に関する。  The present invention relates to an inspection apparatus (MRI: Magnetic Resonance Imaging) using nuclear magnetic resonance, and more particularly, to a magnetic resonance imaging technique using coil sensitivity.
背景技術  Background art
[0002] 磁気共鳴撮影装置は、検査対象を横切る任意の断面内の水素原子核に核磁気共 鳴を起こさせ、発生する核磁気共鳴信号からその断面内における断層像を得る医用 画像診断装置である。  [0002] A magnetic resonance imaging apparatus is a medical diagnostic imaging apparatus that causes nuclear magnetic resonance to occur in a hydrogen nucleus in an arbitrary cross section that crosses an examination target, and obtains a tomographic image in the cross section from the generated nuclear magnetic resonance signal. .
[0003] MRIの画像診断に於 ヽて複数個のコイルと画像の折り返しを利用して撮影時間を 短縮する技術が、実用化されている (例えば、非特許文献 1参照)。 通常の撮影法 が傾斜磁場のみを利用して位相エンコード方向の位置情報を画像に付与しているの に対して、非特許文献 1の撮影法では、受信コイルの感度分布を併用して、位置情 報を画像にエンコードしている。以下、このエンコード法を、コイル感度併用ェンコ一 ドと呼び、また、感度分布を利用しない通常の傾斜磁場のみを利用したエンコードを 、傾斜磁場エンコードと呼ぶ。  [0003] In MRI image diagnosis, a technique for reducing imaging time by utilizing a plurality of coils and image folding has been put into practical use (for example, see Non-Patent Document 1). In contrast to the normal imaging method, which uses only a gradient magnetic field to add position information in the phase encoding direction to an image, the imaging method of Non-Patent Document 1 uses the sensitivity distribution of the receiving coil in combination. The information is encoded into the image. Hereinafter, this encoding method is referred to as a coil sensitivity combined encoding, and encoding using only a normal gradient magnetic field that does not use sensitivity distribution is referred to as gradient magnetic field encoding.
[0004] 以上に述べたコイル感度併用エンコードは、位相エンコード無しで行うことも可能で ある。つまり、位相エンコード数以上のコイルを用いることにより、位相エンコード数を [0004] The coil sensitivity combined encoding described above can be performed without phase encoding. In other words, by using a coil with more than the number of phase encodes, the number of phase encodes
1、つまり、位相エンコードを行う必要が無くなる。この場合のエンコードを、コイル感 度エンコードと呼ぶことにする。 1, that is, there is no need to perform phase encoding. This encoding is called coil sensitivity encoding.
[0005] また、コイル感度エンコードは、位相エンコード方向に限らず、周波数エンコード方 向(読み取り方向)にも利用することができる (例えば、特許文献 1参照)。つまり、周 波数エンコード数以上のコイルを用いて核磁気共鳴信号を計測することにより、周波 数エンコードを行う必要がなくなり、したがって、読み取り用傾斜磁場を印加する必要 がなくなる。読み取り用傾斜磁場を印加しない場合は、傾斜磁場の切り替えによる騒 音が生じな 、と 、う利点が得られる。  [0005] In addition, the coil sensitivity encoding can be used not only in the phase encoding direction but also in the frequency encoding direction (reading direction) (see, for example, Patent Document 1). That is, by measuring a nuclear magnetic resonance signal using a coil having a frequency encoding number or more, it is not necessary to perform frequency encoding, and therefore it is not necessary to apply a gradient magnetic field for reading. When the gradient magnetic field for reading is not applied, there is an advantage that no noise is generated by switching the gradient magnetic field.
[0006] 特許文献 1 :特開平 08— 322814号公報 非特許文献 l : Pruessmann KP、 Weiger M、 Scheidegger MB、 Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 、 vol. 42、 no. 5、 952— 62、 1999 [0006] Patent Document 1: Japanese Patent Laid-Open No. 08-322814 Non-Patent Literature l: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med, vol. 42, no. 5, 952-62, 1999
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 検査対象から発生するノイズが無いとすれば、上述の非特許文献 1あるいは特許 文献 1のコイル感度エンコードを行って折り返しの無い画像を得ることができる。しか し、実際の撮影においては無視できないノイズが存在し、ノイズが存在する場合にも 安定して解を求めるためには、各サブコイルの感度分布の間の一次独立性が高い必 要がある。 If there is no noise generated from the inspection object, the coil sensitivity encoding described in Non-Patent Document 1 or Patent Document 1 described above can be performed to obtain an unfolded image. However, there is noise that cannot be ignored in actual shooting, and in order to obtain a stable solution even in the presence of noise, the first-order independence between the sensitivity distributions of each subcoil must be high.
[0008] また、コイル感度エンコードの数を増やすには、サブコイルの数を増やす必要があ るが、サブコイルの数を増やすと一般に感度分布間の一次独立性が下がるため、傾 斜磁場エンコードをコイル感度エンコードに置き換えられるほどサブコイルの数を増 やすことは困難である。  [0008] In order to increase the number of coil sensitivity encodings, it is necessary to increase the number of subcoils. However, increasing the number of subcoils generally reduces the primary independence between the sensitivity distributions. It is difficult to increase the number of subcoils as the sensitivity encoding is replaced.
[0009] 感度分布間の一次独立性が低下すると、再構成が不安定になる。つまり、撮影対 象と異なる画像が再構成されてしまう。  [0009] When primary independence between sensitivity distributions decreases, reconstruction becomes unstable. That is, an image different from the object to be photographed is reconstructed.
[0010] そこで、本発明の目的は、感度分布の一次独立性が低い場合にもコイルの感度分 布を利用した再構成を安定して行える磁気共鳴撮影装置を提供することにある。 課題を解決するための手段 Accordingly, an object of the present invention is to provide a magnetic resonance imaging apparatus that can stably perform reconstruction using the sensitivity distribution of the coil even when the primary independence of the sensitivity distribution is low. Means for solving the problem
[0011] 上記目的を達成するために、本発明の磁気共鳴撮影装置は、下記に示す特徴を 有する。  In order to achieve the above object, the magnetic resonance imaging apparatus of the present invention has the following characteristics.
[0012] (1)静磁場空間内に置かれた検査対象に印加する高周波磁場を発生する高周波 磁場発生手段と、前記検査対象に印加する傾斜磁場を発生する傾斜磁場発生手段 と、前記検査対象から発生する核磁気共鳴信号を受信する受信手段と、受信された 前記核磁気共鳴信号に基づ!、て、前記検査対象の画像を再構成する画像再構成 手段と、前記各手段の動作を制御するシーケンス制御手段とを具備して、核磁気共 鳴により前記検査対象の断層撮影を行う磁気共鳴撮影装置において、前記受信手 段は、検査対象に対して空間的に異なる感度分布状態となって前記核磁気共鳴信 号を受信する受信コイルを有し、前記画像再構成手段は、前記検査対象における磁 気モーメントに対する制約条件のもと、予め求められた前記感度分布と前記核磁気 共鳴信号の SN比を用い、前記検査対象における関心領域の磁気モーメントの分布 を求める演算処理を行なうことを特徴とする。 (1) High-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object placed in a static magnetic field space, gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object, and the inspection object Receiving means for receiving a nuclear magnetic resonance signal generated from the image, an image reconstruction means for reconstructing the image to be inspected based on the received nuclear magnetic resonance signal, and operations of the respective means. And a sequence control means for controlling the tomography of the examination object by nuclear magnetic resonance. In the magnetic resonance imaging apparatus, the receiving means has a spatially different sensitivity distribution state with respect to the examination object. The nuclear magnetic resonance signal The image reconstruction means uses the sensitivity distribution obtained in advance and the S / N ratio of the nuclear magnetic resonance signal under the constraint on the magnetic moment in the inspection object, An arithmetic processing for obtaining a magnetic moment distribution of a region of interest in the inspection object is performed.
[0013] (2)前記(1)の磁気共鳴撮影装置において、前記受信手段は、互いに空間的に異 なる感度分布により前記核磁気共鳴信号を受信する複数のサブコイルカゝら構成され る受信コイルを具備することを特徴とする。  [0013] (2) In the magnetic resonance imaging apparatus of (1), the receiving means includes a receiving coil configured by a plurality of sub-coil members that receive the nuclear magnetic resonance signals with spatially different sensitivity distributions. It is characterized by comprising.
[0014] (3)前記(1)の磁気共鳴撮影装置において、前記検査対象を搭載し、所望とする 方向に(例えば、前記検査対象の体軸方向に、あるいは体軸方向と略垂直の方向に )移動可能な天板を具備し、前記パルスシーケンス制御手段は、前記天板の移動中 に前記磁気共鳴信号を複数回受信するように前記受信手段を制御することを特徴と する。  [0014] (3) In the magnetic resonance imaging apparatus of (1), the inspection object is mounted and in a desired direction (for example, in the body axis direction of the inspection object or in a direction substantially perpendicular to the body axis direction) And b) a movable top plate, wherein the pulse sequence control means controls the receiving means so as to receive the magnetic resonance signal a plurality of times during the movement of the top board.
[0015] (4)前記磁気共鳴撮影装置において、前記画像再構成手段は、前記関心領域と 前記関心領域の外部領域に関して前記再構成される画像の SN比を最大にする処 理を行い、前記制約条件は、前記外部領域における前記磁気モーメントの分布が既 知であるという条件と、前記関心領域における前記磁気モーメントの分布がとり得る 上限値及び下限値が既知であるという条件とを含むことを特徴とする。  (4) In the magnetic resonance imaging apparatus, the image reconstruction unit performs processing for maximizing an SN ratio of the reconstructed image with respect to the region of interest and an external region of the region of interest, The constraint condition includes a condition that the distribution of the magnetic moment in the outer region is known, and a condition that an upper limit value and a lower limit value that can be taken by the distribution of the magnetic moment in the region of interest are known. Features.
[0016] (5)前記磁気共鳴撮影装置にお!ヽて、前記傾斜磁場を用いた撮影を最終的に得 る画像の解像度よりも低い解像度 (例えば、最終的に得る画像の解像度の半分以下 の解像度)で予め行って取得した前記検査対象の磁気モーメントの分布をもとに、前 記感度分布と、前記制約条件における前記上限値及び下限値とを決定することを特 徴とする。  [0016] (5) In the magnetic resonance imaging apparatus, a resolution lower than the resolution of an image finally obtained by imaging using the gradient magnetic field (for example, less than half the resolution of the finally obtained image) The sensitivity distribution and the upper limit value and the lower limit value in the constraint conditions are determined based on the magnetic moment distribution of the inspection object obtained in advance at a resolution of (5).
[0017] (6)前記磁気共鳴撮影装置にお!ヽて、再構成された前記画像を表示する表示手 段を有することを特徴とする。  [0017] (6) The magnetic resonance imaging apparatus includes a display means for displaying the reconstructed image.
発明の効果  The invention's effect
[0018] 本発明によれば、磁気モーメントの分布の満たすべき条件を利用することにより、受 信コイルの感度分布の一次独立性が低い場合にも受信コイルの感度分布を利用し た再構成を安定して行える磁気共鳴撮影装置を実現できる。 発明を実施するための最良の形態 [0018] According to the present invention, by using the condition to be satisfied by the distribution of the magnetic moment, the reconstruction using the sensitivity distribution of the receiving coil can be performed even when the primary independence of the sensitivity distribution of the receiving coil is low. A magnetic resonance imaging apparatus capable of performing stably can be realized. BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施例について、図面を参照して詳述する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0020] (実施例 1)  [0020] (Example 1)
以下、本発明による磁気共鳴撮影装置の第 1の実施例を説明する。  A first embodiment of the magnetic resonance imaging apparatus according to the present invention will be described below.
[0021] 図 13は、磁気共鳴撮影装置の概観図であり、図 1は、その核磁気共鳴イメージング 装置の概略構成を示すブロック図である。図 13において、 101は静磁場を発生する マグネット、 103は検査対象、 300は天板を示す。また、図 1において、 101は静磁場 を発生するマグネット、 102は傾斜磁場を発生するコイル、 103は検査対象であり、 検査対象 103はマグネット 101の発生する静磁場空間内に設置される。また、シーケ ンサ 104は、傾斜磁場電源 105と高周波磁場発生器 106に命令を送り、それぞれ傾 斜磁場および高周波磁場を発生させる。高周波磁場は、照射用コイル 107を通じて 検査対象 103に印加される。検査対象 103から発生した信号は、受信コイル 116〖こ よって受波され、受信器 108で検波が行われる。検波の基準とする核磁気共鳴周波 数 (以下、検波基準周波数と記す。)は、シーケンサ 104によりセットされる。検波され た信号は、計算機 109に送られ、ここで画像再構成などの信号処理が行われる。  FIG. 13 is a schematic view of a magnetic resonance imaging apparatus, and FIG. 1 is a block diagram showing a schematic configuration of the nuclear magnetic resonance imaging apparatus. In FIG. 13, 101 is a magnet that generates a static magnetic field, 103 is an inspection object, and 300 is a top plate. In FIG. 1, 101 is a magnet that generates a static magnetic field, 102 is a coil that generates a gradient magnetic field, 103 is an inspection object, and the inspection object 103 is installed in a static magnetic field space generated by the magnet 101. The sequencer 104 sends commands to the gradient magnetic field power source 105 and the high-frequency magnetic field generator 106 to generate a gradient magnetic field and a high-frequency magnetic field, respectively. The high frequency magnetic field is applied to the inspection object 103 through the irradiation coil 107. A signal generated from the inspection object 103 is received by the receiving coil 116 and detected by the receiver 108. The sequencer 104 sets a nuclear magnetic resonance frequency (hereinafter referred to as a detection reference frequency) as a reference for detection. The detected signal is sent to the computer 109, where signal processing such as image reconstruction is performed.
[0022] その結果は、ディスプレイ 110に表示される。必要に応じて、記憶媒体 111に検波 された信号や測定条件を記憶させることもできる。また、静磁場均一度を調整する必 要があるときは、シムコイル 112を使う。シムコイル 112は複数のチャネルからなり、シ ム電源 113により電流が供給される。静磁場均一度調整時には各シムコイルに流れ る電流をシーケンサ 104により制御する。シーケンサ 104は、シム電源 113に命令を 送り、静磁場不均一を補正するような付加的な磁場をシムコイル 112より発生させる。  The result is displayed on the display 110. If necessary, the detected signal and measurement conditions can be stored in the storage medium 111. If it is necessary to adjust the static magnetic field uniformity, the shim coil 112 is used. The shim coil 112 includes a plurality of channels, and current is supplied from the shim power supply 113. The sequencer 104 controls the current flowing through each shim coil during static magnetic field uniformity adjustment. The sequencer 104 sends a command to the shim power supply 113 to generate an additional magnetic field from the shim coil 112 so as to correct the static magnetic field inhomogeneity.
[0023] なお、シーケンサ 104は、通常、予めプログラムされたタイミング、強度で各装置が 動作するように制御を行う。上記プログラムのうち、特に、高周波磁場、傾斜磁場、信 号受信のタイミングや強度を記述したものは、パルスシーケンスと呼ばれて ヽる。  [0023] Note that the sequencer 104 normally performs control so that each device operates at a preprogrammed timing and intensity. Among the above programs, those that describe the timing and intensity of the high-frequency magnetic field, gradient magnetic field, and signal reception are called pulse sequences.
[0024] この装置を用いた本発明による撮影の流れを、図 14に示す。撮影は、コイル感度 の切り替えによる本撮影と、通常の傾斜磁場を利用した低解像度での予備撮影にわ けて行う。予備撮影は、低解像度であるため短時間で行うことができ (ステップ 1)、予 備撮影により各コイルの感度分布を取得する (ステップ 2)。また、同じ予備撮影から 検査対象の存在範囲と、再構成画像の各ピクセルの画素値の上限値と下限値を決 定する (ステップ 3)。本撮影では、コイルを切り替えながらの撮影を行う (ステップ 4)。 本撮影で得られたデータと予備撮影で得られた感度分布と検査対象の条件から、最 適化により検査対象の画像を再構成する (ステップ 5)。 FIG. 14 shows the flow of photographing according to the present invention using this apparatus. The shooting is performed for the main shooting by switching the coil sensitivity and the preliminary shooting at a low resolution using a normal gradient magnetic field. Preliminary shooting can be performed in a short time because of its low resolution (Step 1), and the sensitivity distribution of each coil is acquired by preliminary shooting (Step 2). From the same preliminary shooting Determine the existence range to be inspected and the upper and lower limits of the pixel value of each pixel in the reconstructed image (step 3). In the actual shooting, shooting is performed while switching the coil (step 4). The image to be inspected is reconstructed by optimization from the data obtained in the main imaging, the sensitivity distribution obtained in the preliminary imaging, and the conditions of the inspection object (Step 5).
[0025] 本実施例の撮影は、図 2に示すパルスシーケンスを用いて行われる。図 2において 、 RFは励起高周波パルス、また、 Gsはスライス選択傾斜磁場、 Geは位相エンコード 傾斜磁場を示す。 The imaging in this embodiment is performed using the pulse sequence shown in FIG. In FIG. 2, RF represents an excitation radio frequency pulse, Gs represents a slice selective gradient magnetic field, and Ge represents a phase encoding gradient magnetic field.
[0026] まず、検査対象にスライス傾斜磁場 2と同時に励起高周波パルス 1を印加し、所望 のスライスのみを励起する。  [0026] First, the excitation high-frequency pulse 1 is applied simultaneously with the slice gradient magnetic field 2 to the inspection object, and only a desired slice is excited.
[0027] 励起高周波パルス 1を印加してから時間 τ後、 πパルス 41を印加すると核磁気共 鳴信号 (エコー信号) 45が段々大きくなり、一定時間後再び減衰を始める。 πパルス 41を印加して時間 2 て後、再び πノ ルス 43、 44を印加するということを繰り返すと、 磁気共鳴信号 46、 47は増減を繰り返す。なお、この繰返しの際には位相エンコード 傾斜磁場 4an、 4bnをそれぞれ印加し、これにより y方向の位置情報を付与する。  [0027] After time τ after applying the excitation high-frequency pulse 1, when the π pulse 41 is applied, the nuclear magnetic resonance signal (echo signal) 45 gradually increases, and starts to attenuate again after a certain time. When π pulses 43 and 44 are applied again after π pulse 41 is applied for 2 hours, magnetic resonance signals 46 and 47 repeatedly increase and decrease. During this repetition, phase encode gradient magnetic fields 4an and 4bn are applied, respectively, to thereby provide position information in the y direction.
[0028] 核磁気共鳴信号は、受信コイルを構成する L個のサブコイルを切り替えながら計測 する。図 2に示すように、二つの πパルスの間のそれぞれにおいて、時間 i (i= l、 2、 3、……、 L)には一個のサブコイル ciだけをアクティブにして、核磁気共鳴信号 Siを 順次計測する。  [0028] The nuclear magnetic resonance signal is measured while switching the L sub-coils constituting the receiving coil. As shown in Fig. 2, at each time between two π pulses, only one subcoil ci is active at time i (i = l, 2, 3, ..., L), and the nuclear magnetic resonance signal Si Are measured sequentially.
[0029] 受信コイルの具体的な構成の一例を、図 3に示す。受信コイルは、複数のサブコィ ル 80で構成されており、図 3には 6個のサブコイル(cl〜c6)からなる受信コイルの例 を示す。各サブコイルには、ダイオード 81が接続されており、それぞれのダイオード はシーケンサ 104からの信号によって個別に ONZOFFさせることができる。  FIG. 3 shows an example of a specific configuration of the receiving coil. The receiving coil is composed of a plurality of sub-coils 80. FIG. 3 shows an example of a receiving coil composed of six sub-coils (cl to c6). A diode 81 is connected to each subcoil, and each diode can be individually turned ON / OFF by a signal from the sequencer 104.
[0030] 各サブコイルの感度分布を求めるためには、図 2に示されるパルスシーケンスによ る撮影の前に、磁気共鳴撮影装置で一般的に行われる傾斜磁場を用いた撮影を低 解像度 (例えば、最終的に得る画像の解像度の半分)で行い、補間(例えば多項式 近似)により最終的に得る画像の解像度で感度分布を作成する。  [0030] In order to obtain the sensitivity distribution of each sub-coil, imaging using a gradient magnetic field generally performed in a magnetic resonance imaging apparatus is performed at a low resolution (for example, before imaging with the pulse sequence shown in FIG. 2). , Half of the resolution of the finally obtained image), and a sensitivity distribution is created with the resolution of the finally obtained image by interpolation (for example, polynomial approximation).
[0031] 以上のようにして求めた各サブコイルの感度分布と検査対象の関係は、図 4に示す 通りである。図 4 (a)に示すように、コイルの感度は、関心領域 900の外側にも広がつ ており、コイル感度の存在する領域は N個の区間に分割されている。 i番目のサブコィ ルの感度分布 f (X)の; j (j = l、 2、 · ··、 N)番目の区間の平均値を f とする。また、図 4 ( b)に示すように、 j番目の区間に存在する水素原子核の磁気モーメントの大きさを Iと する。 Iは再構成画像における輝度情報に対応する値となる。 [0031] The relationship between the sensitivity distribution of each sub-coil obtained as described above and the inspection object is as shown in FIG. As shown in Figure 4 (a), the sensitivity of the coil also extends outside the region of interest 900. The area where the coil sensitivity exists is divided into N sections. Let f be the average value of the sensitivity distribution f (X) of the i-th sub-coil; j (j = l, 2, ..., N) -th interval. In addition, as shown in Fig. 4 (b), the magnitude of the magnetic moment of the hydrogen nucleus in the jth section is I. I is a value corresponding to the luminance information in the reconstructed image.
[0032] ここで、 i番目のサブコイルを介して観測される核磁気共鳴信号 Sは、次の(数 1)で 表される。  Here, the nuclear magnetic resonance signal S observed through the i-th subcoil is expressed by the following (Equation 1).
[0033] [数 1]  [0033] [Equation 1]
N  N
ニ 〗- '
Figure imgf000008_0001
D
Figure imgf000008_0001
[0034] そして、サブコイルの切り替えにより感度分布を示す関数 f (X)を i= l、 2、 3、 · ··、 L と変化させた場合、各サブコイルを介して得られる核磁気共鳴信号 (i= l、 2、 3、 · ··、 L)のそれぞれは、次式の(数 2)で表されることになる。 [0034] When the function f (X) indicating the sensitivity distribution by changing the subcoil is changed to i = l, 2, 3,..., L, the nuclear magnetic resonance signal ( Each of i = l, 2, 3, ..., L) is expressed by the following equation (Equation 2).
[0035] [数 2] 、  [0035] [Equation 2],
(数 2 )
Figure imgf000008_0003
Figure imgf000008_0002
j
(Equation 2)
Figure imgf000008_0003
Figure imgf000008_0002
j
[0036] ここで、この (数 2)にお 、て感度 f を要素とする行列を f、また、核磁気共鳴信号 S を要素とするベクトルを s、磁気モーメントの大きさ(再構成される画像の画素値) Iを 要素とするベクトルを Iであらわすことにする。 [0036] Here, in this (Equation 2), f is a matrix whose element is sensitivity f, s is a vector whose element is a nuclear magnetic resonance signal S, and the magnitude of the magnetic moment (reconstructed) I represents a vector with I as the element).
[0037] (数 2)から Iを求めることにより画像を再構成することが可能である。コイル感度分布 が完全に同じでない限り、 fの逆行列 Γ1が存在するため、 Sにノイズ成分が含まれて いない場合には、容易に Iを求めることが可能である。しかし、実際には少な力もずノ ィズが含まれており、また、 fの形状が互いに似ていることから fの各行間の一次独立 性が低 、ため、 Γ1による解では正し 、1が得られな!、。 [0037] An image can be reconstructed by obtaining I from (Expression 2). Unless the coil sensitivity distributions are exactly the same, the inverse matrix Γ 1 of f exists, so if S does not contain noise components, I can be easily obtained. However, in practice, noise is included with little force, and since the shapes of f are similar to each other, the primary independence between each row of f is low, so the solution by Γ 1 is correct. I can't get 1!
[0038] そこで、本実施例では、以下の解法により正しい Iを求める。すなわち、磁気モーメ ントの大きさ Ijのうち、関心領域内の Ij (j E関心領域)は、例えば、(数 3)に示す制約 条件つきの MMSE (Minimum Mean Square Error)規範に基づき決定する。 Therefore, in this embodiment, correct I is obtained by the following solution. That is, magnetic For example, Ij (j E region of interest) within the region of interest is determined based on the MMSE (Minimum Mean Square Error) criterion with constraints shown in (Equation 3).
[0039] [数 3]  [0039] [Equation 3]
Minimize e = Ε{\\ 1 - Γ \\~ } Minimize e = Ε {\\ 1-Γ \\ ~}
'/;.  '/ ;.
Subject to <j  Subject to <j
ί I.R
Figure imgf000009_0001
ί IR
Figure imgf000009_0001
[0040] ここで、 e'は目的関数であり、磁気モーメントの大きさの真値 Iと推定解 I 'の差の 2 乗の期待値である。また、 Ε{ · }は期待値、 |卜 IIはベクトルの大きさを表す。 Here, e ′ is an objective function, which is an expected value of the square of the difference between the true value I of the magnitude of the magnetic moment and the estimated solution I ′. Ε {·} is the expected value, and | 卜 II is the size of the vector.
[0041] (数 3)では、 2個の制約条件を定めている。すなわち、関心領域外では、水素原子 核が存在せず磁気モーメントの大きさは 0となるため、一つ目の制約条件として「 = 0、 jは関心領域外」という条件を定める。さらに、 I'は大きさを表すため正の値であり、 また、感度分布を求めるために行った撮影から、 の  [0041] (Equation 3) defines two constraint conditions. In other words, since there are no hydrogen nuclei outside the region of interest and the magnitude of the magnetic moment is 0, the first constraint condition is “= 0, j is outside the region of interest”. Furthermore, I 'is a positive value to represent the magnitude, and from the image taken to determine the sensitivity distribution,
] 下限 I I  ] Lower limit I I
inf jと上限 sup jがわかるため to know inf j and upper limit sup j
、二つ目の制約条件として「I ≤Ij≤I 、; 関心領域」という条件を定める。 The second constraint is “I ≤ Ij ≤ I; region of interest”.
lnr j sup j  lnr j sup j
[0042] 受信コイルで取得する核磁気共鳴信号と検査対象の出すノイズは、互いに独立な 確率過程に従うと考えられるので、(数 3)は (数 4)に置き換えられる。  [0042] Since the nuclear magnetic resonance signal acquired by the receiving coil and the noise generated by the test object are considered to follow a mutually independent stochastic process, (Equation 3) is replaced by (Equation 4).
[0043] [数 4] [0043] [Equation 4]
Minimize e =\\ S - fV ||2 +σ \\尸 112 Minimize e = \\ S-fV || 2 + σ \\ 尸112
{r Jf = 0,ゾ 関心領域 {r J f = 0, Z
Subject to i
Figure imgf000009_0002
Subject to i
Figure imgf000009_0002
[0044] (数 4)において、 σは核磁気共鳴信号の SN比の逆数の 2乗であり、第 2項 σ ||lfは ノイズに関する項である。また、この第 2項は、 SN比が最大値となるようにする項であ る。 In (Equation 4), σ is the square of the reciprocal of the SN ratio of the nuclear magnetic resonance signal, and the second term σ || lf is a term related to noise. The second term is a term that maximizes the S / N ratio.
[0045] (数 4)の解は一義的に定まるが、最適化の具体的な手法としては、 Jacobi法を基 本とする手法や勾配投影法など様々な手法がある。それぞれ収束速度や安定性に 特徴があり、どの手法を選ぶかは、計算機の性能や解にどれほどの信頼性を求める かによる。ここでは、一例として Jacobi法を基本とし、反復回ごとに制約条件の範囲を チェックし、範囲を超えた場合は の値を制約条件の境界の値に置き換える手法を、 図 5に示す。 [0045] Although the solution of (Equation 4) is uniquely determined, there are various methods such as a method based on the Jacobi method and a gradient projection method as specific methods for optimization. For convergence speed and stability Which method is selected depends on how reliable the computer performance and solution are required. Here, as an example, the Jacobi method is used as a basic example. Figure 5 shows a method for checking the range of the constraint condition at each iteration and replacing the value with the boundary value of the constraint condition if the range is exceeded.
[0046] まず、 (j = l、 2、 3、 · ··、 N)の初期値として 0を設定する (ステップ 1)。次に、設定 された の値における目的関数 eの勾配ベクトル d el d I 'を求める (ステップ 2)。(求 めた勾配ベクトル) X (1/2)だけ を変化させる (ステップ 3)。変化させた結果 が制 j ] 約条件を満たさなければ、制約条件を満たすように、かつ、最も変化量が少なくてす むようにさらに を変化させる (ステップ 4)。変化させた から目的関数 eの値を求め る (ステップ 5)。求めた目的関数 eの値が十分小さくなる(ノイズレベル程度に減少す る)という収束条件 eく eO (eO = N ' γ · ( (1 の平均値) 2) /2)を満たすかどうかを判 sup] First, 0 is set as an initial value of (j = 1, 2, 3,..., N) (step 1). Next, the gradient vector d el d I 'of the objective function e at the set value is obtained (step 2). (Calculated gradient vector) Change only X (1/2) (Step 3). If the result of the change does not satisfy the restriction condition, change to further satisfy the constraint condition and minimize the amount of change (step 4). The value of the objective function e is obtained from the change (Step 5). It is determined whether or not the convergence condition e = eO (eO = N 'γ · ((average value of 1) 2 ) / 2) is satisfied that the value of the objective function e obtained is sufficiently small (decreases to about the noise level). Size sup]
断し (ステップ 6)、満たしていなければステップ 2に戻り、満たしていれば、そのときの I 'を解とする。以上の手順によって が決定され、 X軸方向の投影像が得られる。  (Step 6) If not satisfied, go back to Step 2, and if it is satisfied, let I ′ at that time be the solution. By the above procedure, is determined, and a projected image in the X-axis direction is obtained.
[0047] 決定された 、 、 、 [0047] determined,,,
1 2 3 ···、 は、メモリ  1 2 3 ... is the memory
N 403に格納される。この格納状態を示した のが、図 6である。それぞれ、図中 ky軸上の、核磁気共鳴信号取得の際に印加され た位相エンコード傾斜磁場に対応する位置に X軸方向に沿って配列されて格納され るようになっている。  Stored in N403. Figure 6 shows this storage state. Each is arranged and stored along the X-axis direction at a position on the ky axis in the figure corresponding to the phase encoding gradient magnetic field applied when acquiring the nuclear magnetic resonance signal.
[0048] 以上、 、 、 、 · ··、 I' を求める操作が、位相エンコード傾斜磁場の変化毎にそ  [0048] As described above, the operation for obtaining,,, ..., I 'is performed for each change of the phase encoding gradient magnetic field.
1 2 3 N  1 2 3 N
れぞれなされ、これを繰り返すことによって前記メモリ 403内に磁気共鳴信号が全て 格糸内されること〖こなる。  By repeating this, all the magnetic resonance signals are stored in the memory 403 by repeating this process.
[0049] その後、前記メモリ 403に格納された情報に基づいて、図 6の下図に示すように、 k y方向にフーリエ変換して得られる情報を画像メモリ 402に格納させることによって、 断層画像に対応する 2次元画像情報が得られることになる。  [0049] After that, based on the information stored in the memory 403, as shown in the lower diagram of FIG. 6, information obtained by Fourier transform in the ky direction is stored in the image memory 402, so that the tomographic image can be handled. 2D image information will be obtained.
[0050] 以上説明したことから明らかなように、本実施例の磁気共鳴撮影装置によれば、リ ードアウト傾斜磁場を特に印加することなく X軸方向の位置情報が付与されて、画像 力 S得られることが半 IJる。 As is apparent from the above description, according to the magnetic resonance imaging apparatus of the present embodiment, the position information in the X-axis direction is given without particularly applying the read-out gradient magnetic field, and the image force S is obtained. IJ is halfway to be done.
[0051] 以下、本実施例の効果を示すため、従来法により得られる画像との比較を行う。  [0051] Hereinafter, in order to show the effect of the present embodiment, a comparison with an image obtained by a conventional method is performed.
[0052] 図 7は、検査対象を撮影して得られるべき画像であり、検査対象の形状を示す。た だし、再構成画像では得られない関心領域外につ 、ても表示して ヽる。 FIG. 7 is an image to be obtained by photographing the inspection object, and shows the shape of the inspection object. The However, even outside the region of interest that cannot be obtained with the reconstructed image, it can be displayed.
[0053] 図 7において、上側の図が検査対象の 2次元の画像を示し、下側の図はその画像 を X軸に射影した 1次元プロファイルである。図の X軸および y軸は、位置を示す軸で あり、スケールはピクセルサイズが 1になるようにしてある。 X軸方向は、各サブコイル において感度分布が変化する方向であり、コイル感度エンコードを行う方向である。 y 軸方向は、各サブコイルにおいて感度分布は変化しない方向であり、周波数ェンコ ードを行う方向である。また、下側プロファイルの縦軸は、画素値を示す。  In FIG. 7, the upper diagram shows a two-dimensional image to be inspected, and the lower diagram shows a one-dimensional profile obtained by projecting the image on the X axis. The X-axis and y-axis in the figure are the position axes, and the scale is set so that the pixel size is 1. The X-axis direction is the direction in which the sensitivity distribution changes in each subcoil, and is the direction in which coil sensitivity encoding is performed. The y-axis direction is the direction in which the sensitivity distribution does not change in each sub-coil, and is the direction in which frequency encoding is performed. The vertical axis of the lower profile indicates the pixel value.
[0054] 図 7に示されるように、使用した検査対象は、幅 4ピクセルのスリットを持つ長方形で 、ある。図 7上側の図において、白色で示される領域 Aが検査対象の存在する領域で 、その間に検査対象の存在しない領域 (4ピクセルのスリット)を有する。 X方向の再構 成は、区間の数 N (図 4参照) 128として行った。また、関心領域 900は、中心の x= 3 2から x= 95の 64ピクセルの区間である。使用したコイルの数 L (図 4参照)は 64であ る。 SN比は 100である。  [0054] As shown in FIG. 7, the inspection object used is a rectangle having a slit with a width of 4 pixels. In the upper diagram of FIG. 7, the area A shown in white is an area where the inspection object exists, and there is an area where there is no inspection object (a 4-pixel slit) between them. The reconstruction in the X direction was performed with 128 sections (see Fig. 4) 128. The region of interest 900 is a 64-pixel section from the center x = 32 to x = 95. The number of coils L used (see Fig. 4) is 64. The SN ratio is 100.
[0055] 図 8に、本発明により得られる再構成画像を示す。図 8において、上側の図が 2次元 再構成画像を示し、下側の図はその画像を X軸に射影した 1次元プロファイルである 。図の X軸および y軸は位置を示す軸であり、スケールは図 7と等しいが、範囲は図 7 の関心領域 900の範囲である。 X軸方向は、各サブコイルにおいて感度分布が変化 する方向であり、コイル感度エンコードを行う方向である。 y軸方向は、各サブコイル において感度分布は変化しない方向であり、周波数エンコードを行う方向である。ま た、下側プロファイルの縦軸は画素値を示す。  [0055] FIG. 8 shows a reconstructed image obtained by the present invention. In Fig. 8, the upper diagram shows the two-dimensional reconstructed image, and the lower diagram shows the one-dimensional profile that is projected onto the X axis. The X and y axes in the figure are axes indicating the position, the scale is the same as in FIG. 7, but the range is the range of the region of interest 900 in FIG. The X-axis direction is the direction in which the sensitivity distribution changes in each subcoil, and is the direction in which coil sensitivity encoding is performed. The y-axis direction is a direction in which the sensitivity distribution does not change in each sub-coil, and is a direction in which frequency encoding is performed. The vertical axis of the lower profile indicates the pixel value.
[0056] 図 8下側に示す 1次元プロファイルからわ力るように、検査対象の最も外側の部分 およびスリット境界部分のエッジがわずかに鈍って 、るだけで、幅 4ピクセルのスリット が分離された再構成画像が得られている。すなわち、本発明により分解能 4ピクセル で撮影が可能であることがわかる。  [0056] As shown in the lower part of the one-dimensional profile shown in the lower part of Fig. 8, the outermost part to be inspected and the edge of the slit boundary part are slightly dull, and a slit with a width of 4 pixels is separated. A reconstructed image is obtained. In other words, it can be seen that the present invention allows photographing with a resolution of 4 pixels.
[0057] 図 9は、従来法による再構成画像である。図 9において、上側の図が 2次元再構成 画像を示し、下側の図はその画像を X軸に射影した 1次元プロファイルである。図の X 軸および y軸は位置を示す軸であり、スケールは図 7、 8と等しいが、範囲は図 7の関 心領域 900の範囲である。 X軸方向は、各サブコイルにおいて感度分布が変化する 方向であり、コイル感度エンコードを行う方向である。 y軸方向は、各サブコイルにお いて感度分布は変化しない方向であり、周波数エンコードを行う方向である。また、 下側プロファイルの縦軸は、画素値を示す。 FIG. 9 is a reconstructed image according to the conventional method. In Fig. 9, the upper diagram shows the two-dimensional reconstructed image, and the lower diagram shows the one-dimensional profile that is projected onto the X axis. The X-axis and y-axis in the figure are axes indicating position, and the scale is the same as in FIGS. In the X-axis direction, the sensitivity distribution changes in each subcoil. This is the direction in which coil sensitivity encoding is performed. The y-axis direction is a direction in which the sensitivity distribution does not change in each subcoil, and is a direction in which frequency encoding is performed. The vertical axis of the lower profile indicates the pixel value.
[0058] X方向の空間分解能が、前述した本発明の手法により達成された空間分解能と同じ になるように、検査対象の存在する領域をカバーする 16個のサブコイルを用いて画 像を取得し、 X軸方向の関心領域を 16ピクセルに分割して画像再構成を行って 、る 。つまり、図 9に示す画像の X方向のピクセルサイズは、図 8の 4倍になっている。図 9 からわかるように、 X方向に空間分解能は得られず、画像再構成に失敗している。ま た、画像の輝度値は、本来の輝度値の 2000倍になっていることがわかる。  [0058] An image is acquired using 16 subcoils that cover the region where the inspection target exists so that the spatial resolution in the X direction is the same as the spatial resolution achieved by the method of the present invention described above. The region of interest in the X-axis direction is divided into 16 pixels and image reconstruction is performed. In other words, the pixel size in the X direction of the image shown in Fig. 9 is four times that of Fig. 8. As can be seen from Fig. 9, spatial resolution is not obtained in the X direction, and image reconstruction fails. It can also be seen that the luminance value of the image is 2000 times the original luminance value.
[0059] 以上まとめると、本実施例では、従来法では不可能であった分解能でコイル感度ェ ンコードが可能となり、その結果、周波数エンコードにかえてコイル感度エンコードを 行うことができ、傾斜磁場の切り替えにより生じていた騒音のない撮影を行うことがで きる。  [0059] In summary, in this embodiment, coil sensitivity encoding can be performed with resolution that was not possible with the conventional method. As a result, coil sensitivity encoding can be performed instead of frequency encoding, and the gradient magnetic field can be encoded. It is possible to shoot without noise caused by switching.
[0060] (実施例 2)  [0060] (Example 2)
本発明の第 2の実施例として、検査対象を置く天板を所望とする方向に移動させる ことにより感度分布を変化させて撮影を行う方法について述べる。本例では、天板は As a second embodiment of the present invention, a method will be described in which imaging is performed by changing the sensitivity distribution by moving the top plate on which the inspection object is placed in a desired direction. In this example, the top plate is
、検査対象の体軸方向に移動可能に構成されている力 この方向に限らず、例えばThe force configured to be movable in the body axis direction of the inspection object
、体軸方向と略垂直の方向に移動可能であってもよい。 Further, it may be movable in a direction substantially perpendicular to the body axis direction.
[0061] 図 10は、検査対象 103と天板 300と受信コイル 301の関係を示す図である。検査 対象は移動可能な天板に置かれ、受信コイルは単一のコイルで構成され、静止して いる。 FIG. 10 is a diagram showing a relationship among the inspection target 103, the top plate 300, and the receiving coil 301. The inspection object is placed on a movable top plate, and the receiving coil is composed of a single coil and is stationary.
[0062] 撮影は、図 11に示すパルスシーケンスを用いて行う。図 11で、 RFは励起高周波パ ルス、 Gsはスライス選択傾斜磁場、 Grは読み取り傾斜磁場、天板位置 pl、 p2、 -pL は静止している受信コイルを基準とした座標系 x'における天板の位置、コイル感度分 布は天板に固定した座標系でのコイル感度分布を示す。  Imaging is performed using a pulse sequence shown in FIG. In Fig. 11, RF is the excitation high-frequency pulse, Gs is the slice selective gradient magnetic field, Gr is the read gradient magnetic field, and the top plate positions pl, p2, and -pL are the celestial coordinates in the coordinate system x 'with reference to the stationary receiver coil. The plate position and coil sensitivity distribution show the coil sensitivity distribution in the coordinate system fixed to the top plate.
[0063] まず、検査対象にスライス傾斜磁場 2と同時に励起高周波パルス 1を印加し、特定 のスライスのみを励起する。これにより、特定のスライスのみが核磁気共鳴信号 42を 発生するようになる。 [0064] 励起高周波パルス 1を印加して時間て後、 πパルス 41を印加すると一度減衰した 磁気共鳴信号は再び大きくなり、一定時間後再び減衰を始める。 πパルス 41を印加 して時間 2 て後、再び πパルス 43を印加するということを繰り返すと、核磁気共鳴信 号は増減を繰り返す。なお、この繰返しの際には、図 10における y方向に読み取り傾 斜磁場 5を印加し、これにより y方向の位置情報を付与する。 [0063] First, the excitation high-frequency pulse 1 is applied to the inspection object simultaneously with the slice gradient magnetic field 2, and only a specific slice is excited. As a result, only a specific slice generates the nuclear magnetic resonance signal 42. [0064] A time after applying the excitation high-frequency pulse 1, when the π pulse 41 is applied, the magnetic resonance signal once attenuated becomes large again, and begins to attenuate again after a certain time. When the π pulse 43 is applied again after 2 hours and the π pulse 43 is applied again, the nuclear magnetic resonance signal repeatedly increases and decreases. During this repetition, a read gradient magnetic field 5 is applied in the y direction in FIG. 10 to give position information in the y direction.
[0065] 核磁気共鳴信号は、天板を移動させながら計測する。図 1 1に示すように、二つの πパルスの間のそれぞれにおいて、読み取り傾斜磁場を印加しながら受信コイルに よって磁気共鳴信号 (E (ky)、E (ky)、E (ky)、…ゝ E (ky) )を順次計測する。ここ  [0065] The nuclear magnetic resonance signal is measured while moving the top board. As shown in Fig. 11, the magnetic resonance signals (E (ky), E (ky), E (ky), ... ゝ are applied by the receiving coil while applying the reading gradient magnetic field in each of two π pulses. E (ky)) is measured sequentially. here
1 2 3 L  1 2 3 L
で、 kyは y方向に対応する k空間上の座標を表す。核磁気共鳴信号 E (ky)は、天板 位置 Piにお 、て受信した核磁気共鳴信号の k空間上の点 kyにおける値である。計測 された Eは、図 12 (a)に示すように、計測メモリ 400に格納される。以下、ある kyにお ける核磁気共鳴信号 S =E (ky)について考える。  And ky represents the coordinate in k space corresponding to the y direction. The nuclear magnetic resonance signal E (ky) is a value at a point ky in the k space of the nuclear magnetic resonance signal received at the top plate position Pi. The measured E is stored in the measurement memory 400 as shown in FIG. Below we consider the nuclear magnetic resonance signal S = E (ky) at a certain ky.
[0066] 天板位置 Piにお!/、て、天板に固定した座標での受信コイルの感度分布 fと検査対 象の関係は、実施例 1と同じぐ図 4に示す通りになる。図 4 (a)に示すように、コイル の感度は関心領域 900の外側にも広がっており、コイル感度の存在する領域は N個 の区間に分割されている。天板位置 Piにおいて、天板に固定した座標での受信コィ ルの感度分布 f (X)の; j (j = l、 2、 · · ·、 N)番目の区間の平均値を f とする。また、図 4 ( b)に示すように、 j番目の区間に存在する水素原子核の磁気モーメントの大きさを Iと j する。 Iは再構成画像における輝度情報に対応する値となる。 [0066] The relationship between the sensitivity distribution f of the receiving coil and the inspection target at the coordinates fixed to the top plate at the top plate position Pi is as shown in FIG. As shown in FIG. 4 (a), the sensitivity of the coil extends outside the region of interest 900, and the region where the coil sensitivity exists is divided into N sections. The average value of the j (j = l, 2, ..., N) -th section of the sensitivity distribution f (X) of the receiving coil at coordinates fixed to the top board at the top board position Pi is assumed to be f . Also, as shown in Fig. 4 (b), the magnitude of the magnetic moment of the hydrogen nucleus existing in the j-th section is I and j. I is a value corresponding to the luminance information in the reconstructed image.
[0067] このように、天板移動により実施例 1と同様に検査対象に対して受信コイルの感度 分布を変化させて撮影することが可能であり、 i番目の天板位置において観測される 磁気共鳴信号 Siは、(数 1)で表される。 [0067] In this way, it is possible to change the sensitivity distribution of the receiving coil with respect to the inspection object by moving the top plate and to take an image, and the magnetic field observed at the i-th top plate position. The resonance signal Si is expressed by (Equation 1).
[0068] そして、天板位置の移動により感度分布を示す関数 f (X)を i = l、 2、 3、 · · ·、 Lと変 化させた場合、核磁気共鳴信号 S (1= 1 , 2、 3、 · · ·、 L)のそれぞれも実施例 1と同じ く、(数 2)で表される。実施例 2においては、各複数のコイルの位置について、感度 分布を求める。具体的な手法は、実施例 1に記載の通りである。 [0068] When the function f (X) indicating the sensitivity distribution is changed to i = l, 2, 3, ..., L by the movement of the top position, the nuclear magnetic resonance signal S (1 = 1 , 2, 3,..., L) are also expressed by (Equation 2) as in Example 1. In the second embodiment, the sensitivity distribution is obtained for the position of each of the plurality of coils. A specific method is as described in Example 1.
[0069] よって、実施例 1に記載した方法とまったく同じ方法により、(数 4)で磁気モーメント の大きさ を求めることができ、 X軸方向の投影像が得られる。 [0070] 決定された 、 、 、 ···、 は、中間メモリ [0069] Therefore, the magnitude of the magnetic moment can be obtained by (Equation 4) by exactly the same method as described in Example 1, and a projected image in the X-axis direction can be obtained. [0070] determined,,,... Is an intermediate memory
Ν 401に格納される。この格納状態を示 格納 Stored in 401. Indicates this storage state
1 2 3 one two Three
したのが図 12(b)である。対応する kyにおいて X軸方向に沿って配列される。以上、 I '、 、1'、 ···、 を求めて中間メモリ 401に格納する操作力 ky毎に順次なされる。 This is shown in Fig. 12 (b). Arranged along the X-axis in the corresponding ky. As described above, I ′,, 1 ′,... Are sequentially obtained for each operation force ky stored in the intermediate memory 401.
1 2 3 N 1 2 3 N
[0071] その後、中間メモリ 401に格納された情報に基づいて、図 12(c)に示すように、 y方 向にフーリエ変換して得られる情報を画像メモリ 402に格納させることによって断層画 像に対応する 2次元画像情報が得られることになる。  [0071] After that, based on the information stored in the intermediate memory 401, as shown in FIG. 12 (c), information obtained by Fourier transform in the y direction is stored in the image memory 402 to store the tomographic image. 2D image information corresponding to is obtained.
[0072] 以上説明したことから明らかなように、実施例 2による核磁気共鳴を用いた検査装 置によれば、位相エンコード傾斜磁場を特に印加することなく X軸方向の位置情報が 付与されて、画像が得られる。この手法によれば、エンコード中に天板をとめる必要 がなぐ天板を連続的に移動しながらエンコードを行うことができ、不連続な領域がな Vヽ画像を効率よく得ることができる。  As is clear from the above description, according to the inspection apparatus using nuclear magnetic resonance according to Example 2, position information in the X-axis direction is given without particularly applying a phase encoding gradient magnetic field. An image is obtained. According to this method, encoding can be performed while continuously moving the top plate that does not require the top plate to be stopped during encoding, and V ヽ images without discontinuous regions can be obtained efficiently.
[0073] 以上詳述したように、本発明によれば、複数の受信コイルの感度分布間の一次独 立性が低い場合にも受信コイルの感度分布を利用した再構成を安定して行えるため 、一次独立性を保つという制限なしで受信コイルの感度分布を利用したエンコードを 行うことができる。その結果、読み取り傾斜磁場を印加せず、かわりに受信コイルの感 度分布を利用した撮影が行え、騒音の少ない撮影が行える。  [0073] As described in detail above, according to the present invention, it is possible to stably perform reconfiguration using the sensitivity distribution of the receiving coil even when the primary independence between the sensitivity distributions of the plurality of receiving coils is low. Thus, encoding using the sensitivity distribution of the receiving coil can be performed without restriction of maintaining primary independence. As a result, a reading gradient magnetic field is not applied, and instead, imaging using the sensitivity distribution of the receiving coil can be performed, and imaging with less noise can be performed.
[0074] また、天板移動により視野拡大を行う撮影法にぉ 、て、位相エンコード方向を移動 方向にした場合、従来は天板を連続的に移動することができな力つた力 本手法によ れば位相エンコードのかわりに受信コイル感度エンコードを用いることにより、天板を 連続的に移動することができ、不連続な領域のない画像を効率よく得ることができると V、う顕著な効果が達成できる。  [0074] In addition, in the imaging method in which the field of view is enlarged by moving the top plate, if the phase encoding direction is set to the moving direction, the force that has conventionally been unable to move the top plate continuously is used. Therefore, if the receiver coil sensitivity encoding is used instead of the phase encoding, the top plate can be moved continuously, and images without discontinuous areas can be obtained efficiently. Can be achieved.
産業上の利用可能性  Industrial applicability
[0075] 本発明によれば、磁気モーメントの分布の満たすべき条件を利用することにより、受 信コイルの感度分布の一次独立性が低い場合にも受信コイルの感度分布を利用し た再構成を安定して行える磁気共鳴撮影装置を実現でき、医療分野にお!ヽてその 利用可能性大である。 [0075] According to the present invention, reconfiguration using the sensitivity distribution of the receiving coil can be performed even when the primary independence of the sensitivity distribution of the receiving coil is low by using the condition to be satisfied by the distribution of the magnetic moment. A stable magnetic resonance imaging system can be realized in the medical field! The possibility of its use is great.
図面の簡単な説明  Brief Description of Drawings
[0076] [図 1]本発明が適用される磁気共鳴撮影装置の構成例を示す図。 [図 2]第 1の実施例におけるサブコイルを切り替えて撮影を行うパルスシーケンスを説 明する図。 FIG. 1 is a diagram showing a configuration example of a magnetic resonance imaging apparatus to which the present invention is applied. FIG. 2 is a diagram for explaining a pulse sequence for performing imaging by switching sub-coils in the first embodiment.
[図 3]複数のサブコイルで構成される受信コイルの一構成例を示す図。  FIG. 3 is a diagram showing a configuration example of a receiving coil including a plurality of subcoils.
[図 4]各サブコイルの感度分布と検査対象の関係を説明する図。 FIG. 4 is a diagram for explaining the relationship between the sensitivity distribution of each subcoil and the inspection object.
[図 5]最適化の手順の一例を説明する図。 FIG. 5 is a diagram for explaining an example of an optimization procedure.
[図 6]核磁気共鳴信号と画像情報がメモリに格納される状態を説明する図。  FIG. 6 is a diagram for explaining a state in which nuclear magnetic resonance signals and image information are stored in a memory.
[図 7]検査対象を示す図。  FIG. 7 is a diagram showing the inspection target.
[図 8]本発明による再構成画像を示す図。  FIG. 8 shows a reconstructed image according to the present invention.
[図 9]従来手法による再構成画像を示す図。  FIG. 9 is a diagram showing a reconstructed image obtained by a conventional method.
[図 10]第 2の実施例における検査対象と天板と受信コイルの関係を説明する図。  FIG. 10 is a diagram for explaining the relationship among the inspection object, the top plate, and the receiving coil in the second embodiment.
[図 11]天板を移動させながら撮影を行うパルスシーケンスを説明する図。 FIG. 11 is a diagram for explaining a pulse sequence for performing imaging while moving the top board.
[図 12]核磁気共鳴信号と画像情報がメモリに格納される状態を説明する図。 FIG. 12 is a diagram for explaining a state in which nuclear magnetic resonance signals and image information are stored in a memory.
[図 13]撮影装置の概観を示す図。 FIG. 13 is a diagram showing an overview of a photographing apparatus.
[図 14]本発明による検査対象の画像を取得するまでの撮影の流れを説明する図。 符号の説明  FIG. 14 is a diagram for explaining a flow of photographing until an image to be inspected according to the present invention is acquired. Explanation of symbols
1…励起高周波パルス、 2· ··スライス傾斜磁場、 4…位相エンコード傾斜磁場、 5· ·· 読み取り傾斜磁場、 41、 43、 4Φ ·· πパルス、 42· ··核磁気共鳴信号、 45…磁気共鳴 信号、 46…核磁気共鳴信号、 80· ··サブコイル、 81· ··ダイオード、 101…静磁場を発 生するマグネット、 102…傾斜磁場コイル、 103…検査対象、 104· "シーケンサ、 10 5…傾斜磁場電源、 106…高周波磁場発生器、 107…照射用コイル、 108…受信器 、 109· ··計算機、 110· ··ディスプレイ、 111· ··記憶媒体、 112· ··シムコイル、 113· ··シ ム電源、 116…受信用コイル、 300· ··天板、 301…受信コイル、 302…天板移動方 向、 400· ··計測メモリ、 401 · ··中間メモリ、 402· ··画像メモリ、 403· ··メモリ、 900· ··関 心領域。  1 ... excitation high-frequency pulse, 2 ... slice gradient magnetic field, 4 ... phase encoding gradient magnetic field, 5 ... read gradient magnetic field, 41, 43, 4Φ ... pi pulse, 42 ... nuclear magnetic resonance signal, 45 ... Magnetic resonance signal, 46 ... Nuclear magnetic resonance signal, 80 ... subcoil, 81 ... diode, 101 ... magnet that generates static magnetic field, 102 ... gradient magnetic field coil, 103 ... test object, 104 "sequencer, 10" 5 ... Gradient magnetic field power source, 106 ... High frequency magnetic field generator, 107 ... Irradiation coil, 108 ... Receiver, 109 ... Computer, 110 ... Display, 111 ... Storage medium, 112 ... Shim coil, 113 ··· Shim power supply, 116… Receiving coil, 300 ··· Top plate, 301 ··· Receiving coil, 302 ··· Direction of moving the top plate, 400 ··· Measurement memory, 401 ··· Intermediate memory, 402 ·· · Image memory, 403 · · · Memory, 900 · · · Interest area.

Claims

請求の範囲 The scope of the claims
[1] 静磁場空間内に置かれた検査対象に印加する高周波磁場を発生する高周波磁場 発生手段と、前記検査対象に印加する傾斜磁場を発生する傾斜磁場発生手段と、 前記検査対象から発生する核磁気共鳴信号を受信する受信手段と、受信された前 記核磁気共鳴信号に基づ!/、て、前記検査対象の画像を再構成する画像再構成手 段と、前記各手段の動作を制御するシーケンス制御手段と、再構成された前記画像 を表示する表示手段とを具備して、核磁気共鳴により前記検査対象の断層撮影を行 う磁気共鳴撮影装置において、前記受信手段は、検査対象に対して空間的に異な る感度分布状態となって前記核磁気共鳴信号を受信する受信コイルを有し、前記画 像再構成手段は、前記検査対象における磁気モーメントに対する制約条件のもと、 予め求められた前記感度分布と前記磁気共鳴信号の SN比を用い、前記検査対象 における関心領域の磁気モーメントの分布を求める演算処理を行なうことを特徴とす る磁気共鳴撮影装置。  [1] A high-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object placed in a static magnetic field space, a gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object, and generated from the inspection object A receiving means for receiving a nuclear magnetic resonance signal, an image reconstruction means for reconstructing the image to be inspected based on the received nuclear magnetic resonance signal, and the operation of each means. In a magnetic resonance imaging apparatus comprising a sequence control means for controlling and a display means for displaying the reconstructed image, and performing tomography of the examination object by nuclear magnetic resonance, the receiving means comprises: A receiving coil that receives the nuclear magnetic resonance signal in a spatially different sensitivity distribution state, and the image reconstructing means is configured in advance under a constraint on the magnetic moment in the inspection object. Used because was the sensitivity distribution and the SN ratio of the magnetic resonance signals, the magnetic resonance imaging apparatus you and performs the arithmetic processing for determining the distribution of the magnetic moment of the region of interest in said object.
[2] 請求項 1に記載の磁気共鳴撮影装置にお!ヽて、前記画像再構成手段は、前記関 心領域と前記関心領域の外部領域に関して前記再構成される画像の SN比を最大 にする処理を行い、前記制約条件は、前記外部領域における前記磁気モーメントの 分布が既知であるという条件と、前記関心領域における前記磁気モーメントの分布が とり得る上限値及び下限値が既知であるという条件とを含むことを特徴とする磁気共 鳴撮影装置。  [2] The magnetic resonance imaging apparatus according to claim 1! Then, the image reconstruction means performs processing for maximizing the SN ratio of the reconstructed image with respect to the region of interest and the region outside the region of interest, and the constraint condition is the magnetic field in the region outside the region. 2. A magnetic resonance imaging apparatus comprising: a condition that a moment distribution is known; and a condition that an upper limit value and a lower limit value that can be taken by the magnetic moment distribution in the region of interest are known.
[3] 請求項 2に記載の磁気共鳴撮影装置にお ヽて、前記傾斜磁場を用いた撮影を最 終的に得る画像の解像度よりも低い解像度で予め行って取得した前記検査対象の 磁気モーメントの分布をもとに、前記感度分布と、前記制約条件における前記上限 値及び下限値とを決定することを特徴とする磁気共鳴撮影装置。  [3] In the magnetic resonance imaging apparatus according to claim 2, the magnetic moment of the inspection object obtained by performing in advance at a resolution lower than the resolution of the image finally obtained by using the gradient magnetic field. The magnetic resonance imaging apparatus, wherein the sensitivity distribution and the upper limit value and the lower limit value in the constraint condition are determined based on the distribution of
[4] 請求項 2に記載の磁気共鳴撮影装置にお ヽて、前記傾斜磁場を用いた撮影を最 終的に得る画像の解像度の半分以下の解像度で予め行って取得した前記検査対象 の磁気モーメントの分布をもとに、前記感度分布と、前記制約条件における前記上限 値及び下限値とを決定することを特徴とする磁気共鳴撮影装置。  [4] In the magnetic resonance imaging apparatus according to claim 2, the magnetic field of the object to be inspected acquired in advance with a resolution equal to or less than half the resolution of the image finally obtained using the gradient magnetic field. A magnetic resonance imaging apparatus that determines the sensitivity distribution and the upper limit value and the lower limit value in the constraint condition based on a moment distribution.
[5] 請求項 1に記載の磁気共鳴撮影装置にお!、て、前記受信手段は、互いに空間的 に異なる感度分布により前記核磁気共鳴信号を受信する複数のサブコイルカゝら構成 される受信コイルを具備し、前記シーケンス制御手段は、前記複数のサブコイルを切 り替えながら核磁気共鳴信号を受信する制御を行うことを特徴とする磁気共鳴撮影 装置。 [5] In the magnetic resonance imaging apparatus according to claim 1, the receiving means are spatially connected to each other. A plurality of sub-coil receivers for receiving the nuclear magnetic resonance signals with different sensitivity distributions, and the sequence control means receives the nuclear magnetic resonance signals while switching the plurality of sub-coils. A magnetic resonance imaging apparatus.
[6] 請求項 1に記載の磁気共鳴撮影装置にぉ ヽて、前記検査対象を搭載し、所望とす る方向に移動可能な天板を具備し、前記パルスシーケンス制御手段は、前記天板の 移動中に前記核磁気共鳴信号を複数回受信するように前記受信手段を制御するこ とを特徴とする磁気共鳴撮影装置。  [6] The magnetic resonance imaging apparatus according to claim 1, further comprising a top plate on which the inspection object is mounted and movable in a desired direction, and the pulse sequence control means includes the top plate A magnetic resonance imaging apparatus for controlling the receiving means so as to receive the nuclear magnetic resonance signal a plurality of times during movement.
[7] 請求項 6に記載の磁気共鳴撮影装置において、前記画像再構成手段は、前記関 心領域と前記関心領域の外部領域に関して前記再構成される画像の SN比を最大 にする処理を行い、前記制約条件は、前記外部領域における前記磁気モーメントの 分布が既知であるという条件と、前記関心領域における前記磁気モーメントの分布が とり得る上限値及び下限値が既知であるという条件とを含むことを特徴とする磁気共 鳴撮影装置。  [7] The magnetic resonance imaging apparatus according to [6], wherein the image reconstruction unit performs a process of maximizing an SN ratio of the reconstructed image with respect to the region of interest and an external region of the region of interest. The constraint condition includes a condition that the distribution of the magnetic moment in the outer region is known, and a condition that the upper limit value and the lower limit value that can be taken by the distribution of the magnetic moment in the region of interest are known. Magnetic resonation imaging device characterized by
[8] 請求項 7に記載の磁気共鳴撮影装置にお ヽて、前記傾斜磁場を用いた撮影を最 終的に得る画像の解像度よりも低い解像度で予め行って取得した前記検査対象の 磁気モーメントの分布をもとに、前記感度分布と、前記制約条件における前記上限 値及び前記下限値とを決定することを特徴とする磁気共鳴撮影装置。  [8] In the magnetic resonance imaging apparatus according to claim 7, the magnetic moment of the inspection object obtained by performing in advance at a resolution lower than the resolution of the image finally obtained by using the gradient magnetic field. And determining the sensitivity distribution and the upper limit value and the lower limit value in the constraint condition.
[9] 請求項 7に記載の磁気共鳴撮影装置にお ヽて、前記傾斜磁場を用いた撮影を最 終的に得る画像の解像度の半分以下の解像度で予め行って取得した前記検査対象 の磁気モーメントの分布をもとに、前記感度分布と、前記制約条件における前記上限 値及び下限値とを決定することを特徴とする磁気共鳴撮影装置。  [9] In the magnetic resonance imaging apparatus according to claim 7, the magnetic field of the object to be inspected acquired in advance with a resolution equal to or less than half of the resolution of the image finally obtained using the gradient magnetic field. A magnetic resonance imaging apparatus that determines the sensitivity distribution and the upper limit value and the lower limit value in the constraint condition based on a moment distribution.
[10] 請求項 6に記載の磁気共鳴撮影装置にお 、て、前記天板は、前記検査対象の体 軸方向に移動可能であることを特徴とする磁気共鳴撮影装置。  10. The magnetic resonance imaging apparatus according to claim 6, wherein the top plate is movable in the body axis direction of the inspection object.
[11] 静磁場空間内に置かれた検査対象に印加する高周波磁場を発生する高周波磁場 発生手段と、前記検査対象に印加する傾斜磁場を発生する傾斜磁場発生手段と、 前記検査対象から発生する核磁気共鳴信号を、複数のサブコイルよりなる受信コィ ルを用いて受信する受信手段と、受信された前記核磁気共鳴信号に基づいて、前記 検査対象の画像を再構成する画像再構成手段と、前記各手段の動作を制御するシ 一ケンス制御手段と、再構成された前記画像を表示する表示手段とを具備し、前記 シーケンス制御手段は、前記複数のサブコイルを切替えながら核磁気共鳴信号を受 信する制御を行い、前記画像再構成手段は、前記検査対象における磁気モーメント の大きさの範囲を設定する制約条件のもと、前記複数のサブコイルを切替えることに より求められた前記受信コイルの感度分布と前記核磁気共鳴信号の SN比を用 ヽて 、前記検査対象における関心領域の磁気モーメントの分布を求める演算処理を行な うことを特徴とする磁気共鳴撮影装置。 [11] A high-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object placed in a static magnetic field space, a gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object, and generated from the inspection object Based on the receiving means for receiving the nuclear magnetic resonance signal using a receiving coil comprising a plurality of subcoils, and the received nuclear magnetic resonance signal, Image reconstructing means for reconstructing an image to be inspected, sequence control means for controlling the operation of each means, and display means for displaying the reconstructed image, wherein the sequence control means The image reconstructing means performs control to receive a nuclear magnetic resonance signal while switching the plurality of subcoils, and the image reconstructing means sets the plurality of the plurality of subcoils under a constraint condition for setting a range of the magnitude of the magnetic moment in the inspection target. Using the sensitivity distribution of the receiving coil obtained by switching the subcoil and the S / N ratio of the nuclear magnetic resonance signal, an arithmetic process for obtaining the distribution of the magnetic moment of the region of interest in the inspection object is performed. A magnetic resonance imaging apparatus.
[12] 静磁場空間内に置かれ、天板に搭載された検査対象に印加する高周波磁場を発 生する高周波磁場発生手段と、前記検査対象に印加する傾斜磁場を発生する傾斜 磁場発生手段と、前記検査対象カゝら発生する核磁気共鳴信号を単一の受信コイル を用いて受信する受信手段と、受信された前記核磁気共鳴信号に基づいて、前記 検査対象の画像を再構成する画像再構成手段と、前記各手段の動作を制御するシ 一ケンス制御手段と、再構成された前記画像を表示する表示手段とを具備し、前記 天板は、前記検査対象の体軸方向に移動可能に構成され、前記画像再構成手段は 、前記検査対象における磁気モーメントの大きさの範囲を設定する制約条件のもと、 前記天板の移動中に前記核磁気共鳴信号を受信するようにして求められた前記受 信コイルの感度分布と前記核磁気共鳴信号の SN比を用いて、前記検査対象におけ る関心領域の磁気モーメントの分布を求める演算処理を行なうことを特徴とする磁気 共鳴撮影装置。 [12] A high-frequency magnetic field generating means for generating a high-frequency magnetic field to be applied to an inspection object mounted on a top plate, which is placed in a static magnetic field space, and a gradient magnetic field generating means for generating a gradient magnetic field to be applied to the inspection object; Receiving means for receiving a nuclear magnetic resonance signal generated by the inspection object using a single receiving coil, and an image for reconstructing the image of the inspection object based on the received nuclear magnetic resonance signal Reconstructing means, sequence control means for controlling the operation of each means, and display means for displaying the reconstructed image, wherein the top plate moves in the body axis direction of the inspection object The image reconstruction means is configured to receive the nuclear magnetic resonance signal during the movement of the top board under a constraint condition that sets a range of the magnitude of the magnetic moment in the inspection object. Requested reception Using the SN ratio of the sensitivity distribution of yl and said nuclear magnetic resonance signals, the magnetic resonance imaging apparatus and performs arithmetic processing for obtaining the distribution of the magnetic moment of put that region of interest to the test object.
[13] 請求項 11に記載の磁気共鳴撮影装置において、前記傾斜磁場発生手段は、前記 検査対象の体軸方向と垂直な方向に、位相エンコード又は周波数エンコードのいず れか一方を行うことを特徴とする磁気共鳴撮影装置。  [13] The magnetic resonance imaging apparatus according to claim 11, wherein the gradient magnetic field generating means performs either phase encoding or frequency encoding in a direction perpendicular to a body axis direction of the inspection object. A magnetic resonance imaging apparatus.
[14] 請求項 12に記載の磁気共鳴撮影装置において、前記傾斜磁場発生手段は、前記 検査対象の体軸方向と垂直な方向に、位相エンコード又は周波数エンコードのいず れか一方を行うことを特徴とする磁気共鳴撮影装置。 [14] The magnetic resonance imaging apparatus according to [12], wherein the gradient magnetic field generating means performs either phase encoding or frequency encoding in a direction perpendicular to a body axis direction of the inspection object. A magnetic resonance imaging apparatus.
PCT/JP2005/014202 2004-09-30 2005-08-03 Magnetic resonance imaging device WO2006038371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006539172A JP4810432B2 (en) 2004-09-30 2005-08-03 Magnetic resonance imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004287272 2004-09-30
JP2004-287272 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006038371A1 true WO2006038371A1 (en) 2006-04-13

Family

ID=36142456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014202 WO2006038371A1 (en) 2004-09-30 2005-08-03 Magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JP4810432B2 (en)
WO (1) WO2006038371A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEUPP J.; ALDEFELD B.; BOERNERT P.: "Continious Moving Table SENSE Imaging", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE 12TH SCIENTIFIC MEETING AND EXHIBITION, May 2004 (2004-05-01), pages 324, XP002308391 *
KIDANE T.K. ET AL: "Backus-Gilbert Regularization for SENSE Imaging", PROCEEDINGS OF THE INTERNATIONAL SOCIETY FOR MAGNETIC RESONANCE IN MEDICINE 12TH SCIENTIFIC MEETING AND EXHIBITION, May 2004 (2004-05-01), pages 2410, XP002993301 *

Also Published As

Publication number Publication date
JPWO2006038371A1 (en) 2008-05-15
JP4810432B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
US9396562B2 (en) MRI reconstruction with incoherent sampling and redundant haar wavelets
CN108226831B (en) Magnetic resonance imaging method and magnetic resonance imaging apparatus
JP6270709B2 (en) Method and apparatus for reconstructing raw magnetic resonance data
JP6133537B2 (en) MRI B1 mapping and B1 shimming
KR102067010B1 (en) A system for motion corrected mr diffusion imaging
US9575154B2 (en) MR imaging using a multi-point dixon technique
KR102236865B1 (en) Establishing a magnetic resonance system actuation sequence
JP3869337B2 (en) Magnetic resonance imaging device
KR101663365B1 (en) Determination of a magnetic resonance control sequence
US20130249553A1 (en) Mr imaging using a multi-point dixon technique
US7859262B2 (en) Method and device for magnetic resonance imaging on the basis of a partially parallel acquisition (PPA)
JP2005152655A (en) Method and device for reducing rf power accumulation during collecting mr data
JP2005152657A (en) Method and device for generating rf excitation identical with desirable excitation profile using transmitting coil array
US7254435B2 (en) Method and magnetic resonance apparatus for calibrating coil sensitivities
EP3191862B1 (en) Zero echo time mr imaging
US9846216B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US20050083054A1 (en) Method and magnetic resonance imaging apparatus for compensating contrast inhomogeneities in magnetic resonance images
US20130134972A1 (en) Method and system for b1 field mapping in magnetic resonance imaging
JP2003230549A (en) Individual specification space saturated pulse sequence for suppression of artifact of mr image
JP2019042444A (en) Magnetic resonance imaging apparatus and noise removing method
EP3114495A1 (en) Mri propeller with motion correction, water-fat separation and estimation of magnetic field inhomogeneity information
US20140232394A1 (en) Method and apparatus for obtaining main magnetic field information and radio pulse related information in a magnetic resonance imaging system with different flip angles
JP4810432B2 (en) Magnetic resonance imaging device
US10345404B2 (en) Magnetic resonance imaging apparatus and RF coil apparatus
JP5688267B2 (en) Magnetic resonance imaging apparatus and chemical image acquisition method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006539172

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase