WO2006038326A1 - Method for controlling release of acting substance and material for use therein - Google Patents

Method for controlling release of acting substance and material for use therein Download PDF

Info

Publication number
WO2006038326A1
WO2006038326A1 PCT/JP2005/005008 JP2005005008W WO2006038326A1 WO 2006038326 A1 WO2006038326 A1 WO 2006038326A1 JP 2005005008 W JP2005005008 W JP 2005005008W WO 2006038326 A1 WO2006038326 A1 WO 2006038326A1
Authority
WO
WIPO (PCT)
Prior art keywords
active substance
hollow body
hollow fiber
hollow
substance
Prior art date
Application number
PCT/JP2005/005008
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Miyauchi
Hiromasa Tokudome
Original Assignee
Toto Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004290021A external-priority patent/JP2006104083A/en
Priority claimed from JP2004290020A external-priority patent/JP2006104082A/en
Priority claimed from JP2004290019A external-priority patent/JP2006104081A/en
Application filed by Toto Ltd. filed Critical Toto Ltd.
Publication of WO2006038326A1 publication Critical patent/WO2006038326A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6957Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a device or a kit, e.g. stents or microdevices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis

Definitions

  • the present invention relates to a method for controlling release of an active substance and a material used therefor.
  • the present invention relates to a method and a material in which an inside is filled with an active substance and the active substance is released by an external stimulus such as light irradiation or pH change.
  • Such methods and materials can be preferably used for pharmaceuticals, cosmetics, food additives, fragrances, agricultural chemicals, etc., particularly drug delivery materials or cosmetics.
  • Sustained-release materials that can gradually and controlledly release active substances such as drugs, cosmetic facial ingredients, and food nutritional ingredients in the fields of pharmaceuticals, cosmetics, food additives, fragrances, and agricultural chemicals It has been known.
  • active substances such as drugs, cosmetic facial ingredients, and food nutritional ingredients in the fields of pharmaceuticals, cosmetics, food additives, fragrances, and agricultural chemicals
  • a drug by gradually releasing the active substance, it is possible to maintain a medicinal effect for a long time and perform an effective treatment even with a small dose of drug.
  • side effects can be reduced because the concentration of medicinal ingredients in the body and blood does not increase excessively.
  • a technology called a drug delivery system has been proposed that allows medicinal ingredients to work in the pathogenic part.
  • cosmetics the whitening effect can be maintained for a long time by gradually releasing the active substance.
  • the following are known as such technologies.
  • A. Harada, K. Kataoka, Science, 283, 65 (1999) discloses a technique for sustained release of a drug using a sustained release material using polymeric micelles.
  • This sustained-release material is one in which a drug is carried in a hydrophilic part that is the central part of a micelle formed by molecular association.
  • Japanese Patent Application Laid-Open No. 2002-173319 discloses a technique for sustained release of a drug by a sustained release material using mesoporous silica.
  • Mesoporous silica has multiple holes with specific pore sizes, and can carry molecules that can enter the holes.
  • JP-A-2004-91421 discloses a cosmetic using a layered double hydroxide salt containing ascorbic acid.
  • this cosmetic there is an ascorbide layer between double hydroxides. Since the acid is included, ascorbic acid can be stably present.
  • titanium-based oxides are known. Conventionally, the synthesis of titanium oxides with specific pore sizes has been considered difficult due to unstable starting materials. In recent years, hollow fibers of titanium oxide or titanate by hydrothermal synthesis have been used. Has been reported (see, for example, JP-A-10-152323 and LM Peng et al, Adv. Mater. 14, 1208 (2002)).
  • the inventors of the present invention have now been charged with titanium oxide, titanium hydroxide, and a group force selected from the group power of titanate power, with a certain kind of active substance filled in the hollow body. It was found that by applying external stimuli such as light irradiation and pH change, the active substance is released out of the hollow body, that is, the release of the active substance can be controlled by the external stimulus.
  • external stimuli such as light irradiation and pH change
  • an object of the present invention is to control the release of an active substance by an external stimulus.
  • the method for controlling the release of an active substance according to the present invention comprises:
  • An external stimulus is applied to the hollow body filled with the active substance to release the active substance out of the hollow body.
  • the active substance release controlling material according to the present invention includes titanium oxide, titanium hydroxide, and at least one hollow body selected from the group force consisting of titanate power, And an active substance filled in the part.
  • FIG. 1 is a diagram showing the zeta potential of hollow fibers at various pH values measured in Example 3.
  • FIG. 2 is a graph showing methylene blue release characteristics at various pH values measured in Example 4.
  • FIG. 3 is a graph showing ibuprofen release characteristics at various pH values measured in Example 5. is there.
  • FIG. 4 is a graph showing ascorbic acid release characteristics at each ultraviolet irradiation time measured in Example 6.
  • FIG. 5 is a graph showing the binaphthalenediol emission characteristics measured in Example 6 for each ultraviolet irradiation time.
  • FIG. 6 is a graph showing the relationship between the double value (2R) of the molecular length of ammine ions and the amount of fixed amount of alkylamine measured in Example 7.
  • FIG. 7 is a photograph of a hollow fiber with a silane coupling agent fixed, taken in Example 8.
  • FIG. 8 is a diagram showing an FT-IR of a hollow fiber in which alkylamine is fixed, measured in Example 9.
  • FIG. 9 is a photograph of a hollow fiber in which the active substance obtained in Example 10 is immobilized.
  • FIG. 10 is a graph showing the reflectance of a hollow fiber in which the active substance obtained in Example 10 is immobilized.
  • FIG. 11 is a diagram showing the results of a methylene blue staining test conducted in Example 11. Detailed description of the invention
  • the method for controlling release of an active substance first, at least one hollow body selected from titanium oxide, titanium hydroxide, and a group force consisting of titanate is prepared. Next, this hollow body is filled with an active substance. That is, a certain kind of active substance for controlling the release (controlled release) can be filled through the opening of the hollow body. In this way, many of the active substances pre-filled in the hollow body can be held in the hollow body for a long time because they are housed, fixed, or adhered to the hollow body to prevent release. At this time, a part of the active substance may be released gradually and slowly as long as the release rate does not hinder controlled release. By holding the active substance in the hollow fiber, it is also expected to prevent thermal chemical alteration of the active substance to some extent by the masking effect of the hollow body.
  • the active substance Is released out of the hollow body.
  • an external stimulus such as light irradiation and pH change
  • the method and material of the present invention have utility value for applications where it is desired to exert the function of the active substance at a specific timing, for example, drug delivery systems, cosmetics, and food additives. High.
  • the hollow body used in the present invention is composed of at least one selected from titanium oxide, titanium hydroxide, and titanate force, and is limited as long as it has an opening capable of filling and releasing the active substance.
  • hollow fibers for example, those disclosed in JP-A-10-152323 and LM Peng et al., Adv. Mater. 14, 1208 (2002) can be used. It is a part of the disclosure of this specification. Since the constituent material of the hollow body used in the present invention is responsive to external stimuli such as light irradiation and P H change, it is possible to release the active substance filled inside according to the external stimuli. is there. In addition, these materials are known as non-toxic and highly biocompatible materials with high dispersibility, and are therefore suitable for use in drug delivery systems, cosmetics, food additives, and the like.
  • the titanium oxide usable in the hollow body of the present invention may be either crystalline or amorphous, but is preferably crystalline acid titanium.
  • crystalline acid titanium include rutile type, anatase type, brookite type, and Ti02 (B), and more preferable is anatase type acid titanium with the highest photocatalytic activity.
  • Titanium oxide contains a reductant such as Ti 0 or Ti 0 or a magnetic phase in which this reductant is regularly arranged.
  • titanates include polytitanic acid containing protons such as trititanic acid, tetratitanic acid, pentatitanic acid, hexatitanic acid, heptitanic acid, octatitanic acid, potassium titanate, and calcium titanate.
  • the shape of the hollow fiber in the present invention is not limited as long as it has an opening capable of filling and releasing the active substance at both ends in the long axis direction, but it is preferably a scroll-like layered shape.
  • the force of using a scroll-like layered titanate as a hollow fiber can be synthesized in a large amount at a low cost, and the force is also uniform pore diameter, large specific surface area, non-toxicity, And high biocompatibility.
  • the scroll-like layered titanate may be heat-treated in order to enhance crystallinity and improve thermal chemical stability.
  • the preferred heat treatment temperature at that time is 50 ° C— 600 ° C.
  • the preferred inner diameter of the hollow fiber used in the present invention is lnm-50nm, more preferably 3nm-8nm. Within this range, since the material has a nanostructure, it is excellent in dispersibility in a solvent, and as a result, the active substance can be released more efficiently when an external stimulus is applied.
  • the inner diameter of the hollow fiber can be determined by direct observation using a transmission electron microscope (TEM) or by measuring the pore size distribution by the BET method.
  • the size of the hollow fiber is preferably in the range of 3-8 nm inner diameter, 8-30 nm outer diameter, and lOOnm-1 ⁇ m length.
  • a method for producing such a hollow fiber is not limited, but it can be preferably produced by hydrothermal treatment of acid titanium particles in a sodium hydroxide aqueous solution.
  • the hollow body may include an anion other than oxygen in its chemical structure.
  • the oxygen position of the hollow body is replaced with an ion other than oxygen.
  • the photocatalytic activity of the hollow body can be expressed by visible light, or the solid acidity of the surface can be increased to increase the binding force with the modifying molecule.
  • a metal such as Pt, Pd, Ag, Cu, Au, or Ni can be supported on the hollow body.
  • the electron-hole pair photoexcited at the time of light irradiation can be efficiently separated, and the hydrophilization activity and the acid-decomposition activity can be increased.
  • the sustained release rate of the active substance may be precisely controlled by providing an opening / closing mechanism such as a molecular door at both ends of the opening of the hollow fiber.
  • Preferred examples of the material constituting the molecular door include gold fine particles; quantum dots such as CdS and CdSe; and photoisomeric materials such as azobenzene, spiropyran and coumarin.
  • the opening / closing of the molecular door can be controlled by the wavelength of light irradiation. It is also possible to remove the substance corresponding to the door by chemical treatment and release the contained active substance.
  • the hollow body is filled with an active substance.
  • the method is not limited as long as the active substance can be filled into the hollow body, but it can be simply carried out by immersing the hollow body in a solution containing the active substance.
  • the active substance used in the present invention is not limited as long as it is a substance that can be filled into the hollow body and can be released to the outside of the hollow body by external stimulation such as light or pH change.
  • Various substances such as (facial ingredients), nutrients, fragrances, agricultural chemicals, and fertilizers can be used. Therefore, the size of the active substance is desired to be smaller than the inner diameter of the hollow body.
  • Preferable drugs include, for example, fluorouracil, gemcitabine, methotrexate, cyclophosphamide, daunorubicin hydrochloride, adriamycin, idarubicin hydrochloride, bleomycin, mitomycin, actinomycin, vincristine, cisplatin, force norepoplatin, etoposide, netaxurax
  • Anticancer agents such as irinotecan hydrochloride; Penicillin, Macrolide, New quinolone, Tetracycline and other antibacterial agents; Lamivudine, Nelfinavir, Indinavir, Saquinavir, Interferon, Amantadine, Acyclovir and other antiviral drugs; New prorelin, Drugs for hormonal diseases such as buserelin, goserelin, triptorelin and nafarelin; analgesics such as ibuprofen That.
  • cosmetics include vitamins A, vitamin B, vitamin C, vitamin 0, vitamin E, vitamin! 7 , vitamin K, etc .; anthocyanins; collagen; hyaluronic acid; chalcone derivatives, etc. Is mentioned.
  • Examples of preferred oral nutrients include docosahexaenoic acid, eisacopentaenoic acid, linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic Acid, evening primrose oil, borage oil, lecithin, octacosanol, rosemary, sage, ⁇ -oryzanol, j8-carotene, palm carotene, perilla oil, chitin, chitosan, royal jelly, propolis, gimmegma, heme iron, etc. .
  • fragrances include essential oils such as oranges, limes, lemons, grapefruits and citrus oils; plant essential oils such as peppermint oil, spearmint oil, spice oil; cola nuts, coffee, rice bran, cocoa, black tea, green tea, Examples include spices and flavors derived from various animals and plants.
  • agricultural chemicals include various insecticides, repellent agents, fungicides, herbicides, rodenticides, plant growth regulators and the like.
  • fertilizer include ammonium sulfate, glass draft, sodium nitrate, lime nitrate, potassium sulfate, potassium chloride, potassium sulfate bitter soil, and soluble.
  • the active substance it is preferable to use a substance capable of binding to the inner wall of the hollow body by dehydration condensation as the active substance.
  • the active substance can be bonded to the inner wall of the hollow body by dehydration condensation, and the bond is decomposed by the photocatalytic activity of the hollow body that appears in response to light irradiation, and the active substance is released to the outside. Can be made.
  • a molecule having a hydroxyl group as the active substance capable of binding to the inner wall of the hollow body by dehydration condensation. This makes it possible to prevent decomposition of the active substance itself due to the photocatalytic activity of the hollow body. That is, the bond formed by dehydration condensation of the hydroxyl group with the hydroxyl group of the hollow body is relatively weak and easily broken by the photocatalytic activity, so that the hydroxyl group of the active substance is released in a reproducible form.
  • a molecule having a diol group as the active substance bonded to the inner wall of the hollow body by dehydration polycondensation.
  • This molecule is colorless and transparent when it dissolves in water, but when two hydroxyl groups contained in the diol group are dehydrated and polycondensed with the hollow fiber, it is colored by the interface state. Therefore, it is colored when bound and colorless when detached, so that it can be used as an indicator for confirming whether or not the active substance has been released.
  • cosmetic foundations it is possible to produce a color close to human skin by combining an active substance having a diol group.
  • L-ascorbic acid is also called vitamin C, and is known to have a pharmacological action and an immune enhancing action, as well as a great effect on whitening action and wrinkle prevention. Therefore, by filling L-ascorbic acid as an active substance in the hollow fiber, L-ascorbic acid can be released in response to the irradiation of ultraviolet rays, and as a result, the skin damage that can be caused by ultraviolet rays is reduced. It can be efficiently suppressed by the released L-ascorbic acid.
  • a molecule or particle having a charge can be used as the active substance.
  • the surface of the hollow body like many oxides and hydroxides, is force thione in acidity and ionic in alkali, so changing the pH changes the surface charge state. Can be made. And if the active substance is charged, an attractive or repulsive force due to the Coulomb force acts between the surface of the hollow body, so by changing the pH so that a repulsive force works between the hollow body and the active substance, The active substance filled inside can be released to the outside.
  • the active substance can be released out of the hollow body by applying some external stimulus to the hollow body filled with the active substance.
  • the external stimulus that can be used in the present invention is not limited as long as it can contribute to the release of the active substance out of the hollow body, and preferably includes light irradiation or pH change.
  • light irradiation accompanied by photoexcitation of a hollow body can be used as an external stimulus. Since the hollow body used in the present invention can have a photocatalytic activity, an acid reduction reaction occurs on the surface by irradiation with ultraviolet rays. By this reaction, the bond (for example, dehydration condensation) between the hollow body and the active substance is decomposed, and the active substance is released to the outside.
  • Preferred light sources for irradiating light include fluorescent lamps, black lights, germicidal lamps, incandescent lamps, low-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, mercury-xenon lamps, halogen lamps, metal halide lamps, LEDs (white, blue , Green, and red), laser light, and sunlight.
  • light irradiation into the living body is applied to the outside of the body to transmit light into the body, or from the oral using a light guiding fiber. Irradiate the internal organs or guide light Even if the fiber is inserted directly into the living tissue and irradiated, it may be out of alignment!
  • a change in pH can be used as an external stimulus. Since the surface of the hollow body used in the present invention becomes cationic under acidic conditions and cationic under alkaline conditions, the surface charge state can be changed by changing pH. For example, when a scroll-like layered titanate is used as the hollow body, the pH force at the isoelectric point is .5, so that it is cationic in a pH region lower than this value, and is ionic in a high region. .
  • the active substance filled inside can be released to the outside.
  • the active substance can be released by making the surface of the hollow body cationic.
  • the active substance can be released by making the surface of the hollow body char-on.
  • the above-described embodiment using a change in pH as an external stimulus is suitable for a cosmetic application, for example, by releasing an agent having a pharmacological effect in accordance with the pH of the skin that changes due to sweating or proliferation of various bacteria. It is possible to exert a cosmetic effect appropriately according to the skin condition.
  • This embodiment is also suitable for pharmaceutical use.
  • effective gastric treatment can be achieved by releasing a gastric drug in response to a change in pH caused by contact with gastric acid.
  • the charged active substance may be a substance in which a drug is supported on a particulate substance having a size smaller than the inner diameter of the hollow body.
  • a modifying molecule immobilized on at least one of the inner wall and the outer wall of the hollow body can be further provided according to the use environment and the type of active substance.
  • the substance that modifies the inner wall and the outer wall may be the same substance or a different substance.
  • This modifying molecule has a linker part and a main chain part, and a part of the linker is bound to the surface of the hollow body.
  • the linker force of the modifying molecule and the surface of the hollow body are selected from a group force consisting of a covalent bond, a hydrogen bond, an ionic bond, and a coordination bond. It is preferable to be fixed by one bond because of its high thermal and chemical stability.
  • the bond of the modifying molecule may be formed so as to cover a part of the surface of the hollow body, or may be formed so as to cover all of the surface.
  • Preferred examples of the linker part of the modifying molecule include, for example, diketones such as carboxyl group, phosphate group, sulfonate group, hydroxyl group, amino group, pyridine, and acetylethylacetone, and ethylene such as polyethylene dallicol. These include oxides, siloxanes, and combinations thereof. These functional groups have high bonding strength with the hollow body.
  • preferred examples of the main chain portion of the modifying molecule include polymers such as polycation and polyion, more preferably polyethyleneimine, Examples thereof include polyethylene glycol, polyallylamine, polyallylalkylamine, polyacrylic acid, polyethylene glycol and the like, and copolymers thereof.
  • a modifying molecule having a hydrophobic structure in the main chain is used in order to make the outer wall of the hollow body hydrophobic. It is preferable.
  • the modifying molecule having a hydrophobic structure in the main chain part include substances containing an alkyl chain, fluorine resin, and an aromatic molecule, and more preferably a long-chain silane coupling agent or Alkylamine is mentioned. These modifying molecules can be easily and firmly bound to the surface of the hollow body.
  • silane coupling agent when a silane coupling agent is used, condensation occurs during dehydration between the functional group of the hydrophilic portion modified with silane and the hollow fiber, and strong bonds are formed by covalent bonds.
  • the silane coupling agent is stable and difficult to be decomposed by the photocatalytic activity of the hollow body.
  • the main chain portion of the modifying molecule can function as active targeting of the substance to be decomposed.
  • the substance to be decomposed For example, raw In order to decompose malignant tissues such as cancer in the body, it is easy to incorporate the hollow body into the cells by selecting the main chain portion with high affinity with the cells.
  • the main chain part having high affinity with cells include polyethylene glycol, chitin, chitosan and the like.
  • active targeting of a substance to be decomposed by using a protein that can specifically bind to a malignant substance in a living body as a main chain part or a main chain part of a modifying molecule is used. Can function effectively.
  • nucleic acid is used as a main chain part of the modifying molecule or a substance to be bound to the main chain part. High selective adsorption ability can be exhibited.
  • amphiphilic molecule As the main chain of the modifying molecule in order to prevent water and sweat. Since these amphiphilic molecules have a high affinity for water and oil, they adhere well to the skin and do not sweat well.
  • Preferred amphiphilic molecules are molecules comprising both hydrophilic and hydrophobic groups.
  • the hydrophilic group of the amphiphilic molecule include diketone such as carboxyl group, phosphate group, sulfone group, hydroxyl group, amino group, pyridine, and acetylacetone, and ethylene oxide such as polyethylene glycol. Can be mentioned.
  • Preferred examples of the hydrophobic group of the amphiphilic molecule include alkyl, fluorinated resin, and aromatic molecules.
  • the photocatalytic activity of the outer wall portion in contact with the skin can be suppressed by modifying the outer wall of the hollow body with a modifying molecule having a hardly decomposable main chain portion, and the photocatalytic reaction can be suppressed. Therefore, damage to the skin due to the generated active oxygen can be suppressed.
  • Preferred examples of the modifying molecule having a hardly decomposable main chain include silane coupling agents and alkylamines.
  • the binding of the modifying molecule to the hollow body may be performed by any method, but can be easily performed by immersing the hollow body in a solvent containing the modifying molecule. At this time, in order to promote bonding, heat treatment or chemical treatment using acid, alkali or the like may be performed. Depending on the molecular length of the modified molecule, this The modifying molecule can be attached to both the inner and outer walls of the body, or only to the outer wall.
  • the molecular length (R) of the modifying molecule is bonded to both the inner and outer walls of the hollow fiber, it is preferable to design the molecular length (R) of the modifying molecule to be twice (2R) smaller than the inner diameter of the hollow fiber.
  • the modifying molecules are polar and, like many surfactants, can form micelles in hollow fibers. Inside the hollow fiber, the hydrophilic portion of the modifying molecule is immobilized on the hollow fiber side, and the hydrophobic portion is oriented toward the center of the hollow fiber to form a so-called “rod-like micelle”.
  • the diameter of this rod-like micelle is equivalent to twice the length (R) of the modifying molecule (2R), in order to form micelles on the inner wall, the value of 2R must be smaller than the inner diameter of the hollow fiber. I hope.
  • the modifying molecule can be bonded to the inside of the hollow fiber. For example, when the inner diameter of the hollow fiber is 3.5 nm, the 2R of the modifying molecule is designed to be smaller than 3.5 nm.
  • the modifying molecule when the modifying molecule is bonded only to the outer wall of the hollow fiber, the molecular length of the modifying molecule is
  • Two times (2R) of (R) is designed to be larger than the inner diameter of the hollow fiber.
  • the 2R of the modifying molecule is designed to be larger than 3.5 nm. If the length (2R) of the modification molecule corresponding to the size of the micelle is larger than the inner diameter of the hollow fiber, it will be difficult to form micelles on the inner wall, and the modification molecule will bind only to the outer wall. To do.
  • the modifying molecule is bonded to both the inner wall and the outer wall by the above-described method, and then chemical treatment such as acid or alkali treatment or argon sputtering is performed. It is possible to remove only the modifying molecules bound to the outer wall by plasma etching.
  • Other methods for bonding the modifying molecule to the hollow body include dry coating methods such as CVD, PVD, vacuum deposition, laser ablation, ion plating, and sputtering.
  • the presence or absence of a chemical bond between the hollow body and the modifying molecule can be confirmed by instrumental analysis such as FT-IR or NMR.
  • the presence or absence of a chemical bond can be determined by measuring the NH stretching vibration of free amine ions and amine ions adsorbed on the hollow fiber by FT-IR. In other words, NH stretching vibration force observed in the vicinity of 3300 cm-l with free amine ions. Shift to the side.
  • the presence or absence of chemical bonds can also be confirmed by measuring the stretching vibration of the OH group of the hollow fiber.
  • the modifying molecule when the modifying molecule is chemically bonded to the OH group of the hollow fiber, the signal of the OH group force that was originally adsorbed in the hollow fiber disappears. The presence or absence of chemical bonds between the hollow fiber and the modifying molecule can be confirmed.
  • the hollow body filled with the active substance according to the present invention can be used as it is, but depending on the application, it can be dispersed in a dispersion medium such as water, organic solvent and oil or fat, or supported on a base material. It can be preferably used by making it.
  • a dispersion medium such as water, organic solvent and oil or fat
  • an aqueous amine solution is used as a dispersion medium, and protons are added to the inside or the surface of the titanium-containing compound constituting the hollow body.
  • This dispersion can be easily obtained by bringing the hollow body into contact with an aqueous acid solution and then dispersing or adding it to an aqueous amine solution. That is, the hollow body is stabilized by the addition of protons to the inside and the surface by contact with the acid aqueous solution, and is highly dispersed by the aqueous amine solution.
  • the hollow body to which protons are added exhibits stronger ionic properties than conventional acid titanium, and preferably has a pH of 3-6 at the isoelectric point, more preferably pH 5-6. It is.
  • a hollow body to which such a peptone is added is superior in dispersibility in the neutral region as compared with a conventional acidic titanium colloid having a pH of 6-7 at the isoelectric point.
  • Examples of usable acids that are preferably used by contacting the hollow body with an acid aqueous solution as a method for adding protons to the hollow body include nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, hydrofluoric acid, and bromic acid.
  • the temperature at which the hollow body is brought into contact with the aqueous acid solution is preferably 0-100 ° C, more preferably 10-50 ° C.
  • the amount of proton addition to the hollow body can be analyzed by infrared spectroscopy (IR), temperature programmed desorption (TDS), or CHN coder. example For example, when the hydrogen concentration in the hollow body obtained by analysis with a CHN coder is 3% or more, it is higher than about 1%, which is the amount of hydrogen contained in the conventional anatase type titanium oxide, It can be considered that protons are added at a hydrogen concentration of 1.5% or more.
  • Rl, R2, R3, and R4 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 1 to 18 carbon atoms];
  • Rl, R2, R3, and R4 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 1 to 18 carbon atoms];
  • Rl, R2 and R3 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 1 to 18 carbon atoms];
  • a polyamine compound having a plurality of amine sites for example, a diamine compound represented by the following formula:
  • n is an integer of 1 to 10]; and (iv) a high number of amine amines may be present in the molecule, such as a polymer amine such as polydiallyldimethylamine (PDDA), polyethylene Min (PEI) and polyallylamine (PAA).
  • pH of the hollow dispersion in the present invention is not limited, it is possible to ensure a stable dispersion over a wide P H region.
  • concentration of the amine compound in the solution is preferably 0.001-10M, more preferably 0.01-2M.
  • a neutral dispersion can also be used.
  • the preferred isoelectric point of the hollow body with protons is in the weakly acidic region of PH3-6.
  • This hollow body can be dispersed even in the neutral region.
  • acidic dispersions can also be used. This is because the more preferable isoelectric point of the hollow body is pH 5-6, and if the pH of the solution is set to 1 to 5, electrostatic repulsion between the hollow bodies occurs and the dispersion can be suitably dispersed. .
  • the dispersion of the present invention may further comprise a binder component, so that it may be a coating agent for application to a substrate.
  • a binder component a substance having a siloxane bond or fluorine resin emulsion can be preferably used.
  • the solid concentration in the dispersion or coating agent of the present invention is preferably 10% or less. Within this range, the dispersion is highly stable and stable for a long time at room temperature without causing precipitation.
  • Example 1 Fabrication of hollow fiber
  • Titanium oxide powder (trade name F6, Showa Denko Co., Ltd.) (0.64 g) was placed in 80 ml of 10M aqueous sodium hydroxide solution and stirred with a glass rod for 1 minute to obtain a white suspension.
  • This white suspension was placed in a 100 ml fluorocoagulant container, and this fluorocoagulant container was further placed in a stainless steel container.
  • This stainless steel container was put in a drier and kept at 110 ° C for 20 hours. After completion of the reaction, the stainless steel container was naturally allowed to cool to room temperature, and a solution containing a white precipitate was collected.
  • the following washing step was performed on the solution containing the white precipitate.
  • the supernatant was removed from the above solution using a dropper. 100 ml of 0.1 M aqueous hydrochloric acid solution was added to the remaining white precipitate. Small portions were added. After all the aqueous hydrochloric acid solution was added, the solution was allowed to stand at room temperature (20 ° C) for 3 hours to remove the supernatant. This washing process was performed three times in total, and it was confirmed that the supernatant liquid had a pH of 7 or less. After these neutralization operations, the remaining white precipitate was washed twice with distilled water to obtain a white powder. This obtained powder is used as # 1 sample.
  • the white powder was observed at a magnification of 150,000 times using a scanning transmission electron microscope (Hitachi, Ltd., STEM S-5200). As a result, it was confirmed that the obtained white powder was an aggregate of hollow fibers, and the center of each fiber had a hollow structure with a diameter of 3.5 nm.
  • the crystal structure of the white powder was analyzed using XRD (manufactured by Mac'Science, MXP-18). As a result, it was found that the crystal structure of the white powder was a titanic acid structure.
  • the white powder was analyzed using a specific surface area Z pore distribution measuring device (Asap 2000, manufactured by Micromeritics). As a result, with respect to the pore size distribution, a steep peak corresponding to the inner diameter of 3.5 mm of the hollow fiber was observed, and the specific surface area was 78 m 2 / g.
  • Example 2 Medium Fabrication of thin film carrying fiber
  • the powder of sample # 1 obtained in Example 1 was added to 64 ml of 2M nitric acid aqueous solution and stirred with a magnetic stirrer at room temperature for 15 hours to obtain a translucent solution.
  • This translucent solution was subjected to centrifugal separation at 5000 rpm for 30 minutes with a centrifuge (Sakuma Seisakusho Co., Ltd., M200-IVD) to obtain a white gel with added protons.
  • This white gel was added to a 0.1 M aqueous solution of sodium tetrabutylammonium hydroxide and stirred at room temperature for 24 hours using a magnetic stirrer to obtain a translucent solution.
  • To this solution was further added lOOmmol hydrochloric acid to adjust the pH to 3 ⁇ 4. 5 to obtain an aqueous solution in which hollow fibers were dispersed.
  • quartz glass Toshiba Glass, T-4040
  • the substrate was immersed in hot concentrated sulfuric acid to remove organic substances adhering to the substrate surface, and then washed with pure water.
  • This substrate was immersed in a 0.25 wt% aqueous solution of polyethyleneimine (Wako Pure Chemical Industries, average molecular weight: 10000) for 10 minutes, and then washed with pure water.
  • the substrate thus cleaned was immersed in a solution containing hollow fibers for 10 minutes and washed with pure water.
  • This substrate was further immersed in a 2 wt% aqueous solution of poly (diaryldimethyldimethylammonium chloride) (PDDA: Aldrich, average molecular weight: 100000-200000) for 10 minutes and washed with pure water. It was. Thereafter, immersion and washing in a solution containing hollow fibers and an aqueous PDDA solution were repeated to produce a thin film having five hollow fiber layers.
  • PDDA poly (diaryldimethyldimethylammonium chloride)
  • the resulting thin film was irradiated with ultraviolet rays to decompose and remove the cationic polymer between the layers. This UV irradiation was carried out for 24 hours using a 200 W mercury-xenon lamp (LA-210UV, manufactured by Hayashi Watch Industry). When the cross section of the obtained thin film was observed with a scanning electron microscope (Hitachi, S-4100), the film thickness was 50 °.
  • Example 3 Measuring zeta potential of hollow fiber
  • the zeta potential of the hollow fiber at various pH values was measured using an electrophoretic light scattering photometer (model name: ELS-6000, manufactured by Otsuka Electronics Co., Ltd.).
  • the sample solution used for this measurement was lmg of the aqueous solution in which the hollow fiber prepared in Example 2 was dispersed, dropped into 200 g of 10 mmol / L sodium chloride aqueous solution, and then 10 mmol / L hydrochloric acid and sodium hydroxide. It was prepared by adjusting the pH using
  • the pH at the isoelectric point of the hollow fiber of the present invention was 5.5.
  • Example 4 Release of an active substance (methylene blue) by hatching of DH
  • the thin film (1.5 cm ⁇ 2.5 cm) obtained in Example 2 was immersed in an ImM methylene blue aqueous solution at room temperature for 15 hours and then dried in the dark.
  • This thin film adsorbed with methylene blue was immersed in 5 mL of water adjusted to pH 1.0 and 6.0 in the dark, and the concentration change of methylene blue in water (change in absorbance at 660 nm) was measured using a spectrophotometer ( It was measured using Shimadzu Corporation, UV-3150).
  • the pH was adjusted using hydrochloric acid. Water at pH 6.0 was obtained without adding HC1, and water at pH 1.0 was obtained by adding HC1.
  • Example 5 Release of active substance (ibuprofen) by DH change
  • Example 2 The thin film obtained in Example 2 (1.5 cm ⁇ 2.5 cm) was immersed in a 0.1 wt% ibuprofen aqueous solution at room temperature for 15 hours and then dried in the dark.
  • the thin film adsorbed with ibuprofen was added to 5 mL of p H1.0 Submerged in water adjusted to 6.0 and 14.0, and measured concentration change of ibuprofen in water (change in absorbance at 220 nm) using a spectrophotometer (Shimadzu Corporation, UV-3150) did.
  • the pH is adjusted using sodium hydroxide and hydrochloric acid, pH 14.0 water is added with NaOH, pH 6.0 water is not added with NaOH and HC1, pH 1.0
  • the water was obtained by adding HC1.
  • Example 6 Release of active substances (binaphthalene diol and ascorbic acid) by light irradiation
  • the thin film (1.5 cm ⁇ 2.5 cm) obtained in Example 2 was immersed in 0.1M binaphthalenediol and ascorbic acid aqueous solution at 60 ° C. for 24 hours. This thin film was immersed in 5 mL of pure water in the dark, and the concentration changes of binaphthalenediol and ascorbic acid in the water were measured using a spectrophotometer (Shimadzu Corporation, UV-3150).
  • the absorbance at a wavelength of 276 was measured in order to evaluate the concentration of binaphthalene diol, and the absorbance at a wavelength of 264 nm was measured in order to evaluate the concentration of ascorbic acid.
  • the thin film was irradiated with ultraviolet rays using a 20W black light (Toshiba). At this time, irradiation was performed so that the illuminance of ultraviolet rays was 500 ⁇ W / cm 2 as measured by an ultraviolet illuminance meter (Topcon, UVR-2).
  • Example 7 Immobilization of a modified molecule (alkylamine)
  • the powdered # 1 sample obtained in Example 1 was added to five alkylamine ion aqueous solutions having different molecular lengths.
  • the concentration of alkylamine in the aqueous solution should be 0.2 mM. It was.
  • # 1 sample O.lg was added and stirred with a stirrer in the dark at room temperature.
  • the concentration of various alkylamine ions remaining in the aqueous solution was measured using a single electrophoresis system (HP 3DCE, HEWLETT PACKARD). did. At this time, the time for binding the alkylamine to the sample surface at a certain place was set to 2 hours.
  • Example 8 Oka straitization of modifier molecule (silane coupling agent)
  • Example 2 The powdery # 1 sample obtained in Example 1 was put into an lw% octadecyltriethoxysilane (AMAX, SIO6642.0) solution dissolved in toluene and reacted at 60 ° C. The obtained reacted sample was put into water and photographed. For comparison, the unprocessed hollow fiber (# D was also photographed in the same way.
  • AMAX lw% octadecyltriethoxysilane
  • the hollow fiber modified with the silane coupling agent floats in water. This is because twice the molecular length (R) of the modifying molecule silane coupling agent (R) is longer than the inner diameter (r) of the hollow fiber, so the silane coupling agent is fixed on the outer wall of the hollow fiber. As a result, it is thought that particles float on the water surface due to the hydrophobic outer wall.
  • Example 9 Verification of chemical bond between modifying molecule and hollow fiber
  • the FT-IR was installed in the # 1 sample (untreated hollow fiber) obtained in Example 1 and the hollow fiber modified with alkylamine in Example 6 and modified with decylamine. Nicholet, 710).
  • FT-IR was measured in the same manner for molecularly free decylamine not adsorbed on the hollow fiber.
  • each sample was heat-treated at 150 ° C. in a vacuum.
  • Example 10 Medium fiber coloring by Oka qualification
  • Example 1 The # 1 sample powder obtained in Example 1 was immersed in 0.1M binaphthalenediol and ascorbic acid aqueous solution at 60 ° C. for 24 hours to obtain a hollow fiber powder in which the active substance was immobilized. The powder was collected, washed with ethanol, and dried.
  • FIG. 10 When the obtained powder was photographed, the photograph shown in FIG. 9 was obtained.
  • the reflectance of the powder was measured by a diffuse reflection method using a spectrophotometer (Shimadzu Corporation, UV-3150), the results shown in Fig. 10 were obtained.
  • FIG. 10 it can be seen that hollow fibers are colored when binaphthalenediol having a diol group and ascorbic acid are immobilized on hollow fibers.
  • the band gap of the hollow fiber itself is about 3.4 eV, so it does not absorb visible light, but it can be seen that absorption occurs in the visible light region of 400+ or more by binding molecules with diol groups to the hollow fiber.
  • binaphthalenediol and ascorbic acid are colorless and transparent in the molecular form and do not absorb visible light
  • these active substances are colored in the visible light region by fixing to the hollow fiber.
  • the diol group of these molecules is dehydrated and polycondensed with the hydroxyl group of the hollow fiber.
  • Example 11 Immobilization of modifying molecule (silane coupling agent)
  • the substrate on which the hollow fiber thin film obtained in Example 2 was formed was immersed in an ethanol solution in which the silane coupling agent was dissolved at 60 ° C for 40 hours, and the silane coupling agent was subjected to dehydration polycondensation. # Reacted to 1 sample.
  • silane coupling agents hexyltriethoxysilane (AMAX, SIH6167.5) and octadecyltriethoxysilane (AMAX, SIO6642.0) were used.
  • the concentration of each silane coupling agent in the ethanol solution was 2 wt%.
  • the obtained thin film was subjected to a methylene blue staining test.
  • Samples # 2 and # 3 were immersed in an O.lmol / L methylene blue aqueous solution for 2 hours and dried, and then the change in absorbance of the thin film was measured with a spectrophotometer (Shimadzu Corporation, UV-3150). For comparison, the same measurement as described above was performed for an untreated air fiber.

Abstract

A method for controlling the release of an acting substance which comprises providing a hollow article being made of at least one material selected from a titanium oxide, titanium hydroxide and a titanic acid salt and being packed with the acting substance, and exposing the hollow article packed with the acting substance to a stimulus from outside such as the irradiation of light or the change of pH, to thereby release the acting substance to the outside of the hollow article; and materials for use in the above method.

Description

明 細 書  Specification
作用物質の放出 1方法およびそれに用いる材料  Release of active substances 1 method and materials used therefor
発明の背景  Background of the Invention
[0001] 発明の分野  [0001] Field of the Invention
本発明は、作用物質の放出制御方法およびそれに用いる材料に関するものであり The present invention relates to a method for controlling release of an active substance and a material used therefor.
、具体的には、その内部に作用物質を充填させて、その作用物質を光照射や pH変 化等の外部刺激により放出させる方法および材料に関する。このような方法および材 料は、医薬品、化粧品、食品添加物、香料、および農薬等、特にドラッグデリバリー 材料あるいは化粧品、の用途に好ましく利用することができる。 Specifically, the present invention relates to a method and a material in which an inside is filled with an active substance and the active substance is released by an external stimulus such as light irradiation or pH change. Such methods and materials can be preferably used for pharmaceuticals, cosmetics, food additives, fragrances, agricultural chemicals, etc., particularly drug delivery materials or cosmetics.
[0002] 普晋 術 [0002] Putujutsu
医薬品、化粧品、食品添加物、香料、および農薬等の分野において、薬剤、化粧 品の美顔成分、あるいは食品の栄養成分等の作用物質を徐々にあるいは制御して 放出することができる徐放性材料が知られている。例えば、薬剤の場合にあっては、 作用物質を徐々に放出させることにより、薬効効果を長時間維持して、少ない薬の投 与でも効果的な治療を行うことが可能となる。また、体内や血中で薬効成分の濃度が 過度に上昇することが無くなるため、副作用を低減させることもできる。さらに、病原部 にピンポイントで薬効成分を働カゝせるドラッグデリバリーシステムと呼ばれる技術も提 案されている。一方、化粧品の場合にあっては、作用物質を徐々に放出することによ り、美白効果等を長時間維持させることが可能となる。このような技術としては、以下 のものが知られている。  Sustained-release materials that can gradually and controlledly release active substances such as drugs, cosmetic facial ingredients, and food nutritional ingredients in the fields of pharmaceuticals, cosmetics, food additives, fragrances, and agricultural chemicals It has been known. For example, in the case of a drug, by gradually releasing the active substance, it is possible to maintain a medicinal effect for a long time and perform an effective treatment even with a small dose of drug. In addition, side effects can be reduced because the concentration of medicinal ingredients in the body and blood does not increase excessively. In addition, a technology called a drug delivery system has been proposed that allows medicinal ingredients to work in the pathogenic part. On the other hand, in the case of cosmetics, the whitening effect can be maintained for a long time by gradually releasing the active substance. The following are known as such technologies.
[0003] A. Harada, K. Kataoka, Science, 283, 65 (1999)には、高分子ミセルを利用した徐 放性材料により薬剤を徐放する技術が開示されている。この徐放性材料は、分子の 会合によってできたミセルの中心部となる親水部に薬剤を担持したものである。  [0003] A. Harada, K. Kataoka, Science, 283, 65 (1999) discloses a technique for sustained release of a drug using a sustained release material using polymeric micelles. This sustained-release material is one in which a drug is carried in a hydrophilic part that is the central part of a micelle formed by molecular association.
[0004] 特開 2002-173319号には、メソポーラスシリカを用いた徐放性材料により薬剤を徐 放する技術が開示されている。メソポーラスシリカは特定の細孔径を持つ複数の穴が 存在しており、その穴に入りうる分子を運ぶことができる。  [0004] Japanese Patent Application Laid-Open No. 2002-173319 discloses a technique for sustained release of a drug by a sustained release material using mesoporous silica. Mesoporous silica has multiple holes with specific pore sizes, and can carry molecules that can enter the holes.
[0005] 特開 2004-91421号には、ァスコルビン酸を取り込んだ層状複水酸ィ匕物を利用した 化粧料が開示されている。この化粧料にあっては、複水酸ィ匕物の層間にァスコルビ ン酸が内包されるため、ァスコルビン酸を安定に存在させることができる。 [0005] JP-A-2004-91421 discloses a cosmetic using a layered double hydroxide salt containing ascorbic acid. In this cosmetic, there is an ascorbide layer between double hydroxides. Since the acid is included, ascorbic acid can be stably present.
[0006] 一方、生体適合性が高!、物質としてチタン系の酸ィ匕物が知られて 、る。従来、チタ ン系の酸化物で特定の細孔径を持つ物質の合成は、出発原料が不安定のため困難 とされてきた力 近年、水熱合成法による酸化チタンないしチタン酸の中空状フアイ バの合成が報告されている(例えば、特開平 10-152323号および L. M. Peng et al, Adv. Mater. 14, 1208 (2002)参照)。  [0006] On the other hand, biocompatibility is high! As a substance, titanium-based oxides are known. Conventionally, the synthesis of titanium oxides with specific pore sizes has been considered difficult due to unstable starting materials. In recent years, hollow fibers of titanium oxide or titanate by hydrothermal synthesis have been used. Has been reported (see, for example, JP-A-10-152323 and LM Peng et al, Adv. Mater. 14, 1208 (2002)).
発明の概要  Summary of the Invention
[0007] 本発明者らは、今般、酸化チタン、チタン水酸ィ匕物、およびチタン酸塩力 なる群 力 選択される少なくとも一種の中空体内にある種の作用物質を充填させておくと、 光照射や pH変化等の外部刺激を与えることにより作用物質が中空体外へ放出され る、すなわち作用物質の放出を外部刺激により制御できるとの知見を得た。  [0007] The inventors of the present invention have now been charged with titanium oxide, titanium hydroxide, and a group force selected from the group power of titanate power, with a certain kind of active substance filled in the hollow body. It was found that by applying external stimuli such as light irradiation and pH change, the active substance is released out of the hollow body, that is, the release of the active substance can be controlled by the external stimulus.
[0008] したがって、本発明は、作用物質の放出を外部刺激により制御することをその目的 としている。  [0008] Therefore, an object of the present invention is to control the release of an active substance by an external stimulus.
[0009] そして、本発明による作用物質の放出制御方法は、  [0009] And, the method for controlling the release of an active substance according to the present invention comprises:
作用物質が充填された、酸化チタン、チタン水酸ィヒ物、およびチタン酸塩からなる 群力 選択される少なくとも一種の中空体を用意し、  Prepare at least one hollow body selected from the group force consisting of titanium oxide, titanium hydroxide, and titanate filled with active substance,
該作用物質が充填された中空体に外部刺激を与えて、前記作用物質を前記中空 体外へ放出させること  An external stimulus is applied to the hollow body filled with the active substance to release the active substance out of the hollow body.
を含んでなるものである。  Is included.
[0010] また、本発明による作用物質の放出制御材料は、酸化チタン、チタン水酸ィ匕物、お よびチタン酸塩力 なる群力 選択される少なくとも一種の中空体と、該中空体の内 部に充填される作用物質とを含んでなるものである。 [0010] The active substance release controlling material according to the present invention includes titanium oxide, titanium hydroxide, and at least one hollow body selected from the group force consisting of titanate power, And an active substance filled in the part.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]例 3において測定された、各種 pHにおける中空ファイバのゼータ電位を示す図 である。  FIG. 1 is a diagram showing the zeta potential of hollow fibers at various pH values measured in Example 3.
[図 2]例 4にお 、て測定された、各種 pHにおけるメチレンブルー放出特性を示す図 である。  FIG. 2 is a graph showing methylene blue release characteristics at various pH values measured in Example 4.
[図 3]例 5において測定された、各種 pHにおけるイブプロフェン放出特性を示す図で ある。 FIG. 3 is a graph showing ibuprofen release characteristics at various pH values measured in Example 5. is there.
[図 4]例 6において測定された、各紫外線照射時間におけるァスコルビン酸放出特性 を示す図である。  FIG. 4 is a graph showing ascorbic acid release characteristics at each ultraviolet irradiation time measured in Example 6.
[図 5]例 6において測定された、各紫外線照射時間におけるビナフタレンジオール放 出特性を示す図である。  FIG. 5 is a graph showing the binaphthalenediol emission characteristics measured in Example 6 for each ultraviolet irradiation time.
[図 6]例 7において測定された、ァミンイオンの分子長の 2倍値(2R)と、アルキルアミン の固定ィ匕量との関係を示す図である。  FIG. 6 is a graph showing the relationship between the double value (2R) of the molecular length of ammine ions and the amount of fixed amount of alkylamine measured in Example 7.
[図 7]例 8において撮影された、シランカップリング剤が固定ィ匕された中空ファイバの 写真である。  FIG. 7 is a photograph of a hollow fiber with a silane coupling agent fixed, taken in Example 8.
[図 8]例 9において測定された、アルキルァミンが固定ィ匕された中空ファイバの FT-IR を示す図である。  FIG. 8 is a diagram showing an FT-IR of a hollow fiber in which alkylamine is fixed, measured in Example 9.
[図 9]例 10において得られた作用物質が固定化された中空ファイバの写真である。  FIG. 9 is a photograph of a hollow fiber in which the active substance obtained in Example 10 is immobilized.
[図 10]例 10において得られた作用物質が固定化された中空ファイバの反射率を示 す図である。  FIG. 10 is a graph showing the reflectance of a hollow fiber in which the active substance obtained in Example 10 is immobilized.
[図 11]例 11にお 、て行われたメチレンブルーの染色試験の結果を示す図である。 発明の具体的説明  FIG. 11 is a diagram showing the results of a methylene blue staining test conducted in Example 11. Detailed description of the invention
[0012] 作用物皙の放出を制御する方法および材料  [0012] Methods and materials for controlling the release of agent soot
本発明による作用物質の放出制御方法にあっては、まず、酸化チタン、チタン水酸 化物、およびチタン酸塩力 なる群力 選択される少なくとも一種の中空体を用意す る。次に、この中空体内に作用物質を充填する。すなわち、中空体の開口部を介して 、放出を制御(コントロールドリリース)するためのある種の作用物質を充填させること ができる。こうして中空体内に予め充填された作用物質の多くは、中空体内に収容、 固定、あるいは付着されて放出が妨げられるため、中空体内に長時間保持されること ができる。このとき、コントロールドリリースを妨げない程度の放出速度であれば、作用 物質の一部が徐々に緩やかに放出可能とされていてもよい。なお、作用物質を中空 ファイバ内に保持させることで、中空体によるマスキング効果により作用物質の熱的 化学的な変質をある程度防止することも期待される。  In the method for controlling release of an active substance according to the present invention, first, at least one hollow body selected from titanium oxide, titanium hydroxide, and a group force consisting of titanate is prepared. Next, this hollow body is filled with an active substance. That is, a certain kind of active substance for controlling the release (controlled release) can be filled through the opening of the hollow body. In this way, many of the active substances pre-filled in the hollow body can be held in the hollow body for a long time because they are housed, fixed, or adhered to the hollow body to prevent release. At this time, a part of the active substance may be released gradually and slowly as long as the release rate does not hinder controlled release. By holding the active substance in the hollow fiber, it is also expected to prevent thermal chemical alteration of the active substance to some extent by the masking effect of the hollow body.
[0013] そして、この中空体に光照射や pH変化等の外部刺激を与えることにより、作用物質 を中空体外へ放出させる。すなわち、それまで行われていなかった作用物質の中空 体外への放出が開始される力、またはそれまでは徐々に緩やかに行われていた作用 物質の放出がより迅速に行われるようになる。したがって、作用物質の機能を最も発 揮させたいタイミングで外部刺激を与えて作用物質の放出を促進させることにより、そ の作用物質の機能を最適なタイミングで最大限利用することができる。このため、本 発明の方法および材料は、特定のタイミングで作用物質の機能を発揮させることが望 まれる用途、例えば、ドラッグデリバリーシステム、化粧品、および食品添加物等の用 途への利用価値が高 、と言える。 [0013] Then, by applying an external stimulus such as light irradiation and pH change to the hollow body, the active substance Is released out of the hollow body. In other words, the force at which release of the active substance that has not been performed until then starts to be released to the outside of the hollow body, or the release of the active substance that has been gradually performed until then becomes faster. Therefore, by applying an external stimulus at the timing when the function of the active substance is most desired to be exerted to promote the release of the active substance, the function of the active substance can be maximized at the optimal timing. For this reason, the method and material of the present invention have utility value for applications where it is desired to exert the function of the active substance at a specific timing, for example, drug delivery systems, cosmetics, and food additives. High.
[0014] 中空体  [0014] Hollow body
本発明に用いる中空体は、酸化チタン、チタン水酸ィ匕物、およびチタン酸塩力も選 ばれる少なくとも一種で構成され、作用物質の充填および放出が可能な開口部を有 する形状であれば限定されないが、中空ファイバを用いるのが好ましい。この中空フ アイバとしては、例えば特開平 10- 152323号および L. M. Peng et al., Adv. Mater. 14, 1208 (2002)に開示されるものを利用することができ、これらの文献の開示内容は本 明細書の開示の一部とされる。本発明に用いる中空体の構成材料は、光照射や PH 変化等の外部刺激に対して応答性を有するものであるため、外部刺激に従い内部に 充填された作用物質を放出することが可能である。また、これらの材料は、分散性が 高ぐ無毒で生体適合性の高い材料として知られているため、ドラッグデリバリーシス テム、化粧品、および食品添加物等の用途に適している。 The hollow body used in the present invention is composed of at least one selected from titanium oxide, titanium hydroxide, and titanate force, and is limited as long as it has an opening capable of filling and releasing the active substance. Although not, it is preferred to use hollow fibers. As this hollow fiber, for example, those disclosed in JP-A-10-152323 and LM Peng et al., Adv. Mater. 14, 1208 (2002) can be used. It is a part of the disclosure of this specification. Since the constituent material of the hollow body used in the present invention is responsive to external stimuli such as light irradiation and P H change, it is possible to release the active substance filled inside according to the external stimuli. is there. In addition, these materials are known as non-toxic and highly biocompatible materials with high dispersibility, and are therefore suitable for use in drug delivery systems, cosmetics, food additives, and the like.
[0015] 本発明の中空体に使用可能な酸化チタンとしては、結晶質および非晶質のいずれ であってもよいが、結晶質酸ィ匕チタンが好ましい。結晶質酸ィ匕チタンの好ましい例と しては、ルチル型、アナターゼ型、ブルッカイト型、および Ti02(B)が挙げられ、より好 ましくは光触媒活性が最も高いアナターゼ型酸ィ匕チタンである。また、酸化チタンは Ti 0や Ti 0などの還元体あるいはこの還元体が規則的に配列したマグネリ相を含[0015] The titanium oxide usable in the hollow body of the present invention may be either crystalline or amorphous, but is preferably crystalline acid titanium. Preferable examples of crystalline acid titanium include rutile type, anatase type, brookite type, and Ti02 (B), and more preferable is anatase type acid titanium with the highest photocatalytic activity. . Titanium oxide contains a reductant such as Ti 0 or Ti 0 or a magnetic phase in which this reductant is regularly arranged.
2 3 3 5 2 3 3 5
むものであってもよい。チタン酸塩の好ましい例としては、三チタン酸、四チタン酸、 五チタン酸、六チタン酸、七チタン酸、八チタン酸等のプロトンを含む多価チタン酸 や、チタン酸カリウム、チタン酸カルシウム、チタン酸セシウム、チタン酸ナトリウム、チ タン酸マグネシウム、チタン酸アルミニウム、チタン酸ストロンチウム、およびチタン酸 ノリウム等の多価チタン酸塩が挙げられる。 It may be. Preferred examples of titanates include polytitanic acid containing protons such as trititanic acid, tetratitanic acid, pentatitanic acid, hexatitanic acid, heptitanic acid, octatitanic acid, potassium titanate, and calcium titanate. , Cesium titanate, sodium titanate, magnesium titanate, aluminum titanate, strontium titanate, and titanate Examples thereof include polyvalent titanates such as norium.
[0016] 本発明における中空ファイバの形状は、長軸方向の両端に作用物質の充填および 放出が可能な開口部を有する形状であれば限定されないが、巻物状の層状形状で あるのが好ましい。本発明の好ましい態様によれば、中空ファイバとして、巻物状の 層状のチタン酸塩を用いるの力 低コストで大量合成することができ、し力も、均一な 細孔径、大きな比表面積、無毒性、および高い生体適合性を有することから好ましい 。また、巻物状の層状のチタン酸塩は、結晶性を高めて熱的化学的安定性を向上さ せるため、熱処理を施したものであってよぐその際の好ましい熱処理温度は 50°C— 600°Cである。  [0016] The shape of the hollow fiber in the present invention is not limited as long as it has an opening capable of filling and releasing the active substance at both ends in the long axis direction, but it is preferably a scroll-like layered shape. According to a preferred embodiment of the present invention, the force of using a scroll-like layered titanate as a hollow fiber can be synthesized in a large amount at a low cost, and the force is also uniform pore diameter, large specific surface area, non-toxicity, And high biocompatibility. In addition, the scroll-like layered titanate may be heat-treated in order to enhance crystallinity and improve thermal chemical stability. The preferred heat treatment temperature at that time is 50 ° C— 600 ° C.
[0017] 本発明に用いる中空ファイバの好ましい内径は、 lnm— 50nmであり、より好ましくは 3nm— 8nmである。この範囲内であると、材料はナノ構造を有するため溶媒への分散 性に優れ、その結果、外部刺激を与えた際の作用物質の放出をより効率良く行なうこ とができる。中空ファイバの内径は、透過型電子顕微鏡 (TEM)を用いた直接観察、 あるいは BET法による細孔径分布の測定により知ることができる。本発明のより好まし い態様によれば、中空ファイバのサイズは、 3— 8nmの内径、 8— 30nmの外径、および lOOnm— 1 μ mの長さの範囲内であるのが好ましい。このような中空ファイバの製造方 法は限定されな 、が、酸ィ匕チタン粒子を水酸ィ匕ナトリウム水溶液中にぉ 、て水熱処 理することにより好ましく作製することができる。  [0017] The preferred inner diameter of the hollow fiber used in the present invention is lnm-50nm, more preferably 3nm-8nm. Within this range, since the material has a nanostructure, it is excellent in dispersibility in a solvent, and as a result, the active substance can be released more efficiently when an external stimulus is applied. The inner diameter of the hollow fiber can be determined by direct observation using a transmission electron microscope (TEM) or by measuring the pore size distribution by the BET method. According to a more preferred embodiment of the present invention, the size of the hollow fiber is preferably in the range of 3-8 nm inner diameter, 8-30 nm outer diameter, and lOOnm-1 μm length. A method for producing such a hollow fiber is not limited, but it can be preferably produced by hydrothermal treatment of acid titanium particles in a sodium hydroxide aqueous solution.
[0018] 本発明の好ましい態様によれば、中空体はその化学構造内に酸素以外のァニオン を含むものであることができ、例えば、中空体の酸素位置を酸素以外のァ-オンで置 換する、格子間に酸素以外のァ-オンが割り込ませる、あるいは中空体の粒界部に 酸素以外のァ-オンが配置されるものであってよい。これにより、中空体の光触媒活 性を可視光により発現させたり、表面の固体酸性度を上げて修飾分子との結合力を 高めたりすることができる。  [0018] According to a preferred embodiment of the present invention, the hollow body may include an anion other than oxygen in its chemical structure. For example, the oxygen position of the hollow body is replaced with an ion other than oxygen. It is also possible to interpose a gas ion other than oxygen between the lattices, or to arrange a gas ion other than oxygen at the grain boundary of the hollow body. Thereby, the photocatalytic activity of the hollow body can be expressed by visible light, or the solid acidity of the surface can be increased to increase the binding force with the modifying molecule.
[0019] 本発明の好ましい態様によれば、中空体に Pt, Pd, Ag, Cu, Au, Ni等の金属を担持 させることができる。これにより、光照射時に光励起された電子正孔対を効率的に分 離させて、親水化活性や酸ィ匕分解活性を増大させることができる。また、中空体に Ag や Cuを担持した場合には、上記効果に加えて、抗菌性も発揮させることができる。 [0020] 本発明の好ましい態様によれば、中空ファイバの開口部の両端に分子扉のような 開閉機構を付与することにより、作用物質の徐放速度を精密に制御してもよい。分子 扉を構成する材料の好ましい例としては、金微粒子; CdS、 CdSe等の量子ドット;ァゾ ベンゼン、スピロピラン、クマリン等の光異性材料が挙げられる。例えば、光異性材料 を使用した場合には、光照射の波長によって分子扉の開閉を制御することが可能と なる。また、化学的処理によって扉に相当する物質を外し、内包されている作用物質 を放出させることちできる。 According to a preferred embodiment of the present invention, a metal such as Pt, Pd, Ag, Cu, Au, or Ni can be supported on the hollow body. Thereby, the electron-hole pair photoexcited at the time of light irradiation can be efficiently separated, and the hydrophilization activity and the acid-decomposition activity can be increased. In addition, when Ag or Cu is supported on the hollow body, antibacterial properties can be exhibited in addition to the above effects. [0020] According to a preferred aspect of the present invention, the sustained release rate of the active substance may be precisely controlled by providing an opening / closing mechanism such as a molecular door at both ends of the opening of the hollow fiber. Preferred examples of the material constituting the molecular door include gold fine particles; quantum dots such as CdS and CdSe; and photoisomeric materials such as azobenzene, spiropyran and coumarin. For example, when a photoisomer material is used, the opening / closing of the molecular door can be controlled by the wavelength of light irradiation. It is also possible to remove the substance corresponding to the door by chemical treatment and release the contained active substance.
[0021] 作用物質  [0021] Active substance
本発明において、中空体内には作用物質を充填させる。作用物質を中空体に充填 できる限りその方法は限定されないが、作用物質を含む溶液に中空体を浸漬するこ とにより簡便に行うことができる。  In the present invention, the hollow body is filled with an active substance. The method is not limited as long as the active substance can be filled into the hollow body, but it can be simply carried out by immersing the hollow body in a solution containing the active substance.
[0022] 本発明に用いる作用物質は、中空体内に充填させることができ、かつ、光や pH変 化等の外部刺激によって中空体外に放出可能な物質であれば限定されず、薬剤、 化粧料 (美顔成分)、栄養剤、香料、農薬、および肥料等の各種の物質が使用可能 である。したがって、作用物質の大きさは、中空体の内径よりも小さいことが望まれる [0022] The active substance used in the present invention is not limited as long as it is a substance that can be filled into the hollow body and can be released to the outside of the hollow body by external stimulation such as light or pH change. Various substances such as (facial ingredients), nutrients, fragrances, agricultural chemicals, and fertilizers can be used. Therefore, the size of the active substance is desired to be smaller than the inner diameter of the hollow body.
[0023] 薬剤の好ま 、例としては、フルォロウラシル、ゲムシタビン、メソトレキセート、シク ロホスフアミド、塩酸ダウノルビシン、アドリアマイシン、塩酸イダルビシン、ブレオマイ シン、マイトマイシン、ァクチノマイシン、ビンクリスチン、シスプラチン、力ノレポプラチン 、エトポシド、ネダプラチン、パクリタキセル、ドセタキセル、塩酸イリノテカン等の抗が ん剤;ペニシリン系、マクロライド系、ニューキノロン系、テトラサイクリン系等の抗菌剤 ;ラミブジン、ネルフィナビル、インジナビ、サキナビル、インターフェロン、アマンタジ ン、ァシクロビル等のウィルス治療薬;ニュープロレリン、ブセレリン、ゴセレリン、トリプ トレリン、ナファレリン等のホルモン疾患治療薬;イブプロフェン等の鎮痛薬等が挙げ られる。化粧料 (美顔成分)の好ましい例としては、ビタミン A、ビタミン B、ビタミン C、ビ タミン0、ビタミン E、ビタミン!7、ビタミン K等のビタミン類;アントシァニン;コラーゲン;ヒ アルロン酸;カルコン誘導体等が挙げられる。好ましい経口用の栄養剤の例としては 、ドコサェキサェン酸、エイサコペンタエン酸、リノール酸、 γ -リノレン酸、 α -リノレン 酸、月見草油、ボラージ油、レシチン、ォクタコサノール、ローズマリー、セージ、 γ - オリザノール、 j8 -カロチン、パームカロチン、シソ油、キチン、キトサン、ローヤルゼリ 一、プロポリス、ギムへマ、ヘム鉄等が挙げられる。香料の好ましい例としては、オレン ジ、ライム、レモン、グレープフルーツなどの柑橘類精油や花精類;ペパーミント油、 スペアミント油、スパイス油などの植物精油;コーラナッツ、コーヒー、ヮユラ、ココア、 紅茶、緑茶、香辛料、各種動植物由来のフレーバー等が挙げられる。農薬の好まし い例としては、各種の殺虫剤、昆忌避剤、殺菌剤、除草剤、殺鼠剤、植物成長調整 剤等が挙げられる。肥料の好ましい例としては、硫安、硝案、硝酸ソーダ、硝酸石灰 、硫酸カリ、塩化カリ、硫酸カリ苦土、可溶性等が挙げられる。 [0023] Preferable drugs include, for example, fluorouracil, gemcitabine, methotrexate, cyclophosphamide, daunorubicin hydrochloride, adriamycin, idarubicin hydrochloride, bleomycin, mitomycin, actinomycin, vincristine, cisplatin, force norepoplatin, etoposide, netaxurax Anticancer agents such as irinotecan hydrochloride; Penicillin, Macrolide, New quinolone, Tetracycline and other antibacterial agents; Lamivudine, Nelfinavir, Indinavir, Saquinavir, Interferon, Amantadine, Acyclovir and other antiviral drugs; New prorelin, Drugs for hormonal diseases such as buserelin, goserelin, triptorelin and nafarelin; analgesics such as ibuprofen That. Preferred examples of cosmetics (facial ingredients) include vitamins A, vitamin B, vitamin C, vitamin 0, vitamin E, vitamin! 7 , vitamin K, etc .; anthocyanins; collagen; hyaluronic acid; chalcone derivatives, etc. Is mentioned. Examples of preferred oral nutrients include docosahexaenoic acid, eisacopentaenoic acid, linoleic acid, γ-linolenic acid, α-linolenic Acid, evening primrose oil, borage oil, lecithin, octacosanol, rosemary, sage, γ-oryzanol, j8-carotene, palm carotene, perilla oil, chitin, chitosan, royal jelly, propolis, gimmegma, heme iron, etc. . Preferable examples of the fragrances include essential oils such as oranges, limes, lemons, grapefruits and citrus oils; plant essential oils such as peppermint oil, spearmint oil, spice oil; cola nuts, coffee, rice bran, cocoa, black tea, green tea, Examples include spices and flavors derived from various animals and plants. Preferable examples of agricultural chemicals include various insecticides, repellent agents, fungicides, herbicides, rodenticides, plant growth regulators and the like. Preferable examples of the fertilizer include ammonium sulfate, glass draft, sodium nitrate, lime nitrate, potassium sulfate, potassium chloride, potassium sulfate bitter soil, and soluble.
[0024] 本発明の好ましい態様によれば、作用物質として、中空体の内壁に脱水縮合により 結合可能な物質を用いるのが好ましい。これにより、作用物質が中空体の内壁に脱 水縮合で結合されることができ、かつ、光照射に応じて発現する中空体の光触媒活 性により上記結合が分解されて作用物質を外部に放出させることができる。  [0024] According to a preferred embodiment of the present invention, it is preferable to use a substance capable of binding to the inner wall of the hollow body by dehydration condensation as the active substance. As a result, the active substance can be bonded to the inner wall of the hollow body by dehydration condensation, and the bond is decomposed by the photocatalytic activity of the hollow body that appears in response to light irradiation, and the active substance is released to the outside. Can be made.
[0025] 本発明のより好ましい態様によれば、中空体の内壁に脱水縮合で結合可能な作用 物質として、水酸基を有する分子を使用するのが好ましい。これ〖こより、中空体の光 触媒活性による作用物質自体の分解を防止することができる。すなわち、水酸基が 中空体の水酸基と脱水縮合して形成される結合は比較的弱く光触媒活性により容易 に分断されるため、作用物質の水酸基が再生可能な形で放出される。  [0025] According to a more preferred embodiment of the present invention, it is preferable to use a molecule having a hydroxyl group as the active substance capable of binding to the inner wall of the hollow body by dehydration condensation. This makes it possible to prevent decomposition of the active substance itself due to the photocatalytic activity of the hollow body. That is, the bond formed by dehydration condensation of the hydroxyl group with the hydroxyl group of the hollow body is relatively weak and easily broken by the photocatalytic activity, so that the hydroxyl group of the active substance is released in a reproducible form.
[0026] 本発明のさらに好ましい態様によれば、中空体の内壁に脱水重縮合で結合してい る作用物質として、ジオール基を有する分子を使用するのが好ましい。この分子は水 に溶力した場合は無色透明であるが、ジオール基に含まれる 2個の水酸基の双方が 中空ファイバと脱水重縮合すると、界面準位により着色する。したがって、結合してい ると着色し、脱離すると無色化するため、着色の度合いを作用物質が放出したかどう かを確認するためのインジケータ一として利用できる。また、化粧用ファンデーション の用途にあっては、ジオール基を有する作用物質を結合させることで人肌に近い色 合いを出すことができる。ジオール基を有する分子の好ましい例としては、カテコール 、メチルカテコール、ターシャリーブチルカテコール等のカテコール類;ジハイドロキ シシクロブテンジェン;ァスコノレビン酸;ドーパミン;ァリザリン;およびビナフタレンジォ ールが挙げられ、より好ましくはァスコルビン酸である。特に、 L-ァスコルビン酸はビタ ミン Cとも呼ばれ、薬理作用や免疫増強作用を有するとともに、美白作用やしわ防止 などにも大きな効果があることが知られている。したがって、中空ファイバ内に作用物 質として L-ァスコルビン酸を充填させておくことで紫外線の照射に応じて L-ァスコル ビン酸を放出させることができ、その結果、紫外線により生じ得る皮膚のダメージを、 放出される L-ァスコルビン酸によって効率的に抑制することができる。 [0026] According to a further preferred embodiment of the present invention, it is preferable to use a molecule having a diol group as the active substance bonded to the inner wall of the hollow body by dehydration polycondensation. This molecule is colorless and transparent when it dissolves in water, but when two hydroxyl groups contained in the diol group are dehydrated and polycondensed with the hollow fiber, it is colored by the interface state. Therefore, it is colored when bound and colorless when detached, so that it can be used as an indicator for confirming whether or not the active substance has been released. In addition, in the application of cosmetic foundations, it is possible to produce a color close to human skin by combining an active substance having a diol group. Preferred examples of the molecule having a diol group include catechols such as catechol, methyl catechol, and tertiary butyl catechol; dihydroxycyclobutene; asconolelevic acid; dopamine; alizarin; Ascorbic acid is more preferable. In particular, L-ascorbic acid is also called vitamin C, and is known to have a pharmacological action and an immune enhancing action, as well as a great effect on whitening action and wrinkle prevention. Therefore, by filling L-ascorbic acid as an active substance in the hollow fiber, L-ascorbic acid can be released in response to the irradiation of ultraviolet rays, and as a result, the skin damage that can be caused by ultraviolet rays is reduced. It can be efficiently suppressed by the released L-ascorbic acid.
[0027] 本発明の別の好ま 、態様によれば、作用物質として、電荷をもつ分子または粒子 を用いることもできる。中空体の表面は多くの酸ィ匕物や水酸ィ匕物と同様、酸性では力 チオン性、アルカリ性ではァ-オン性となることから、 pHを変化させることで表面の電 荷状態を変化させることができる。そして、作用物質が電荷を帯びていると中空体の 表面との間にクーロン力による引力または斥力が働くため、中空体と作用物質との間 に斥力が働くように pHを変化させることにより、内部に充填してある作用物質を外部 に放出させることが可能となる。  [0027] According to another preferred embodiment of the present invention, a molecule or particle having a charge can be used as the active substance. The surface of the hollow body, like many oxides and hydroxides, is force thione in acidity and ionic in alkali, so changing the pH changes the surface charge state. Can be made. And if the active substance is charged, an attractive or repulsive force due to the Coulomb force acts between the surface of the hollow body, so by changing the pH so that a repulsive force works between the hollow body and the active substance, The active substance filled inside can be released to the outside.
[0028] 謹  [0028] 謹
本発明にあっては、作用物質が充填された中空体に何らかの外部刺激を与えるこ とにより、作用物質を中空体外へ放出させることができる。本発明に用いることができ る外部刺激としては、作用物質の中空体外への放出に寄与し得るものであれば限定 されないが、好ましくは光照射または pH変化が挙げられる。  In the present invention, the active substance can be released out of the hollow body by applying some external stimulus to the hollow body filled with the active substance. The external stimulus that can be used in the present invention is not limited as long as it can contribute to the release of the active substance out of the hollow body, and preferably includes light irradiation or pH change.
[0029] 本発明の好ましい態様によれば、外部刺激として、中空体の光励起を伴う光照射を 使用することができる。本発明に用いる中空体は光触媒活性を有することができるた め、紫外線の照射により、表面で酸ィ匕還元反応が生じる。この反応によって中空体と 作用物質との間の結合 (例えば脱水縮合)が分解され、作用物質が外部に放出され る。光照射を行うための好ましい光源としては、蛍光灯、ブラックライト、殺菌ランプ、 白熱電球、低圧水銀ランプ、高圧水銀ランプ、キセノンランプ、水銀-キセノンランプ、 ハロゲンランプ、メタルハライドランプ、 LED (白色、青、緑、および赤)、レーザー光、 および太陽光等が挙げられる。また、ドラッグデリバリー等の生体内において作用物 質を放出させる用途にあっては、生体内への光照射は、体外に当てて光を体内に透 過させること、導光ファイバを用いて経口から内臓に向けて照射すること、または導光 ファイバを直接生体組織に挿入して照射することの 、ずれであってもよ!/、。 [0029] According to a preferred embodiment of the present invention, light irradiation accompanied by photoexcitation of a hollow body can be used as an external stimulus. Since the hollow body used in the present invention can have a photocatalytic activity, an acid reduction reaction occurs on the surface by irradiation with ultraviolet rays. By this reaction, the bond (for example, dehydration condensation) between the hollow body and the active substance is decomposed, and the active substance is released to the outside. Preferred light sources for irradiating light include fluorescent lamps, black lights, germicidal lamps, incandescent lamps, low-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, mercury-xenon lamps, halogen lamps, metal halide lamps, LEDs (white, blue , Green, and red), laser light, and sunlight. In addition, in applications such as drug delivery where the active substance is released in the living body, light irradiation into the living body is applied to the outside of the body to transmit light into the body, or from the oral using a light guiding fiber. Irradiate the internal organs or guide light Even if the fiber is inserted directly into the living tissue and irradiated, it may be out of alignment!
[0030] 本発明の別の好ましい態様によれば、外部刺激として、 pHの変化を用いることがで きる。本発明に用いる中空体の表面は、酸性下でカチオン性、アルカリ性下でァ-ォ ン性となることから、 pHを変化させることで表面の電荷状態を変化させることができる 。例えば、中空体として巻物状の層状のチタン酸塩を用いる場合、等電点における p H力 .5となるので、この値よりも低い pH領域ではカチオン性、高い領域ではァ-オン 性となる。そして、作用物質が電荷を帯びていると中空体の表面との間にクーロン力 による引力または斥力が働くため、中空体と作用物質との間に斥力が働くように pHを 変化させることにより、内部に充填してある作用物質を外部に放出させることが可能と なる。例えば、作用物質がカチオン性であれば、中空体の表面をカチオン性にするこ とで作用物質を放出させることが可能となる。一方、作用物質がァ-オン性であれば 、中空体の表面をァ-オン性にすることで作用物質を放出させることができる。  [0030] According to another preferred embodiment of the present invention, a change in pH can be used as an external stimulus. Since the surface of the hollow body used in the present invention becomes cationic under acidic conditions and cationic under alkaline conditions, the surface charge state can be changed by changing pH. For example, when a scroll-like layered titanate is used as the hollow body, the pH force at the isoelectric point is .5, so that it is cationic in a pH region lower than this value, and is ionic in a high region. . When the active substance is charged, an attractive or repulsive force due to the Coulomb force acts between the surface of the hollow body, so by changing the pH so that a repulsive force acts between the hollow body and the active substance, The active substance filled inside can be released to the outside. For example, if the active substance is cationic, the active substance can be released by making the surface of the hollow body cationic. On the other hand, if the active substance is char-on, the active substance can be released by making the surface of the hollow body char-on.
[0031] 外部刺激として pHの変化を用いる上記態様は化粧料の用途に適しており、例えば 、発汗や雑菌の増殖によって変化する肌の pHに応じて薬理効果のある作用物質を 放出させることにより、肌のコンディションに応じて適切に化粧効果を発揮させること が可能となる。また、この態様は医薬の用途にも適しており、例えば、胃酸との接触に よる pH変化に応じて胃薬を放出させることにより、効果的な胃の治療が可能となる。 このとき、電荷を帯びた作用物質は、中空体の内径よりも小さい大きさの粒子状物質 に薬剤を担持させたものであってもよ 、。  [0031] The above-described embodiment using a change in pH as an external stimulus is suitable for a cosmetic application, for example, by releasing an agent having a pharmacological effect in accordance with the pH of the skin that changes due to sweating or proliferation of various bacteria. It is possible to exert a cosmetic effect appropriately according to the skin condition. This embodiment is also suitable for pharmaceutical use. For example, effective gastric treatment can be achieved by releasing a gastric drug in response to a change in pH caused by contact with gastric acid. At this time, the charged active substance may be a substance in which a drug is supported on a particulate substance having a size smaller than the inner diameter of the hollow body.
[0032] 修飾分子  [0032] Modification molecule
本発明の好ましい態様によれば、使用環境や作用物質の種類に応じ、中空体の内 壁および外壁の少なくともいずれか一方の表面に固定ィ匕された修飾分子をさらに備 えてなることができる。内壁および外壁に修飾する物質は、同一物質および異なる物 質のいずれであってもよい。この修飾分子はリンカ一部および主鎖部を有しており、リ ンカ一部が中空体の表面に結合される。修飾分子を中空体の外壁に結合することに よって、使用環境における分散性を高めたり、がん細胞などの悪性組織に対する能 動的ターゲッティング等として機能させたりすることができる。一方、作用物質と親和 性の高い修飾分子を内壁に結合することで、作用物質を高密度に充填することが可 能となる。また、中空体の内壁に修飾分子を結合することで、作用物質と中空体間の 相互作用が変化するため、作用物質の放出速度を速めたりあるいは遅くしたりするこ とが可能となる。 According to a preferred embodiment of the present invention, a modifying molecule immobilized on at least one of the inner wall and the outer wall of the hollow body can be further provided according to the use environment and the type of active substance. The substance that modifies the inner wall and the outer wall may be the same substance or a different substance. This modifying molecule has a linker part and a main chain part, and a part of the linker is bound to the surface of the hollow body. By binding the modifying molecule to the outer wall of the hollow body, it is possible to enhance the dispersibility in the use environment or to function as an active target for malignant tissues such as cancer cells. On the other hand, it is possible to pack the active substance with high density by binding the modifying molecule with high affinity to the active substance to the inner wall. It becomes ability. In addition, by binding the modifying molecule to the inner wall of the hollow body, the interaction between the active substance and the hollow body changes, so that the release rate of the active substance can be increased or decreased.
[0033] 本発明のより好ましい態様によれば、修飾分子のリンカ一部と中空体の表面とは、 共有結合、水素結合、イオン結合、および配位結合力 なる群力 選択される少なく とも一つの結合で固定ィ匕されるのが熱的化学的な安定性が高 、ため好まし 、。修飾 分子の結合は中空体の表面の一部を覆うように形成されてもよいし、その全てを覆う ように形成されてもよい。  [0033] According to a more preferred embodiment of the present invention, the linker force of the modifying molecule and the surface of the hollow body are selected from a group force consisting of a covalent bond, a hydrogen bond, an ionic bond, and a coordination bond. It is preferable to be fixed by one bond because of its high thermal and chemical stability. The bond of the modifying molecule may be formed so as to cover a part of the surface of the hollow body, or may be formed so as to cover all of the surface.
[0034] 修飾分子のリンカ一部の好まし 、例としては、カルボンキシル基、リン酸基、スルホ ン基、水酸基、アミノ基、ピリジン、ァセチルアセトン等のジケトン類、ポリエチレンダリ コール等のエチレンオキサイド類、シロキサン類、およびこれらの組合せが挙げられ る。これらの官能基は中空体との間の結合力が高い。  [0034] Preferred examples of the linker part of the modifying molecule include, for example, diketones such as carboxyl group, phosphate group, sulfonate group, hydroxyl group, amino group, pyridine, and acetylethylacetone, and ethylene such as polyethylene dallicol. These include oxides, siloxanes, and combinations thereof. These functional groups have high bonding strength with the hollow body.
[0035] 本発明の材料を水中に分散させて使用する場合、修飾分子の主鎖部の好ましい 例としては、ポリカチオンおよびポリア-オン等のポリマーが挙げられ、より好ましくは 、ポリエチレンィミン、ポリエチレングリコール、ポリアリルァミン、ポリアリルアルキルァ ンモ-ゥム、ポリアクリル酸、ポリエチレングリコール等、およびこれらの共重合体が挙 げられる。 [0035] When the material of the present invention is used by being dispersed in water, preferred examples of the main chain portion of the modifying molecule include polymers such as polycation and polyion, more preferably polyethyleneimine, Examples thereof include polyethylene glycol, polyallylamine, polyallylalkylamine, polyacrylic acid, polyethylene glycol and the like, and copolymers thereof.
[0036] 本発明の材料を有機溶媒中に分散あるいは水中に浮揚させて使用する場合、中 空体の外壁を疎水性とするため、主鎖部が疎水性構造を有する修飾分子を使用す ることが好ましい。主鎖部が疎水性構造を有する修飾分子の好ましい例としては、ァ ルキル鎖、フッ素榭脂、および芳香族系分子を含む物質が挙げられ、より好ましくは 、長鎖状のシランカップリング剤やアルキルァミンが挙げられる。これらの修飾分子は 中空体の表面に容易かつ強固に結合することができる。特に、シランカップリング剤 を用いた場合、シランに修飾された親水部の官能基と中空ファイバとの間で脱水中 縮合が起き、共有結合で強く結合される。また、シランカップリング剤は中空体の光触 媒活性によっても分解されにくぐ安定である。  [0036] When the material of the present invention is used dispersed in an organic solvent or floated in water, a modifying molecule having a hydrophobic structure in the main chain is used in order to make the outer wall of the hollow body hydrophobic. It is preferable. Preferable examples of the modifying molecule having a hydrophobic structure in the main chain part include substances containing an alkyl chain, fluorine resin, and an aromatic molecule, and more preferably a long-chain silane coupling agent or Alkylamine is mentioned. These modifying molecules can be easily and firmly bound to the surface of the hollow body. In particular, when a silane coupling agent is used, condensation occurs during dehydration between the functional group of the hydrophilic portion modified with silane and the hollow fiber, and strong bonds are formed by covalent bonds. In addition, the silane coupling agent is stable and difficult to be decomposed by the photocatalytic activity of the hollow body.
[0037] 本発明の材料を生体内細胞または医療用途に使用する場合、修飾分子の主鎖部 を分解対象物質の能動的ターゲッティングとして機能させることができる。例えば、生 体内のガン等の悪性組織を分解するため、細胞との親和性の高 、主鎖部を選択す ることにより、細胞内への中空体の取り込みが容易となる。細胞との親和性の高い主 鎖部の例としては、ポリエチレングリコール、キチン、キトサン等が挙げられる。本発明 の好ましい態様によれば、修飾分子の主鎖部または主鎖部に結合させる物質として 、生体内の悪性物質と特異的に結合可能なタンパク質を用いることにより、分解対象 物質の能動的ターゲッティングを効果的に機能させることができる。このようなタンパ ク質の例としては、抗体、リガンド、レセプター、ポリペプチド、オリゴペプチド、および アミノ酸が挙げられる。また、本発明の別の好ましい態様によれば、修飾分子の主鎖 部または主鎖部に結合させる物質として核酸を使用することにより、核酸の塩基配列 に応じて生体内の病原遺伝子や病原物質への高い選択吸着能を発揮させることが できる。 [0037] When the material of the present invention is used for in vivo cells or medical applications, the main chain portion of the modifying molecule can function as active targeting of the substance to be decomposed. For example, raw In order to decompose malignant tissues such as cancer in the body, it is easy to incorporate the hollow body into the cells by selecting the main chain portion with high affinity with the cells. Examples of the main chain part having high affinity with cells include polyethylene glycol, chitin, chitosan and the like. According to a preferred embodiment of the present invention, active targeting of a substance to be decomposed by using a protein that can specifically bind to a malignant substance in a living body as a main chain part or a main chain part of a modifying molecule is used. Can function effectively. Examples of such proteins include antibodies, ligands, receptors, polypeptides, oligopeptides, and amino acids. Further, according to another preferred embodiment of the present invention, a nucleic acid is used as a main chain part of the modifying molecule or a substance to be bound to the main chain part. High selective adsorption ability can be exhibited.
[0038] 本発明の材料を化粧品として使用する場合、水落ちや汗落ちを防ぐために、修飾 分子の主鎖部として両親媒性の分子を用いるのが好ましい。このような両親媒性の分 子は水とも油とも親和性が高いため、肌への付着性も良ぐ汗落ちしにくい。好ましい 両親媒性の分子は、親水基と疎水基の双方を含んでなる分子である。両親媒性の分 子の親水基の好ましい例としては、カルボンキシル基、リン酸基、スルホン基、水酸基 、アミノ基、ピリジン、ァセチルアセトン等のジケトン類、およびポリエチレングリコール 等のエチレンオキサイド類が挙げられる。両親媒性の分子の疎水基の好まし 、例とし ては、アルキル、フッ素榭脂、および芳香族系分子が挙げられる。本発明の好ましい 態様によれば、難分解性の主鎖部を持つ修飾分子を中空体の外壁に修飾させること により、皮膚と接触する外壁部の光触媒活性を抑制することができ、光触媒反応によ つて生成した活性酸素による肌へのダメージを抑制することができる。難分解性の主 鎖部を持つ修飾分子の好ま 、例としては、シランカップリング剤やアルキルアミン等 が挙げられる。  [0038] When the material of the present invention is used as a cosmetic, it is preferable to use an amphiphilic molecule as the main chain of the modifying molecule in order to prevent water and sweat. Since these amphiphilic molecules have a high affinity for water and oil, they adhere well to the skin and do not sweat well. Preferred amphiphilic molecules are molecules comprising both hydrophilic and hydrophobic groups. Preferable examples of the hydrophilic group of the amphiphilic molecule include diketone such as carboxyl group, phosphate group, sulfone group, hydroxyl group, amino group, pyridine, and acetylacetone, and ethylene oxide such as polyethylene glycol. Can be mentioned. Preferred examples of the hydrophobic group of the amphiphilic molecule include alkyl, fluorinated resin, and aromatic molecules. According to a preferred embodiment of the present invention, the photocatalytic activity of the outer wall portion in contact with the skin can be suppressed by modifying the outer wall of the hollow body with a modifying molecule having a hardly decomposable main chain portion, and the photocatalytic reaction can be suppressed. Therefore, damage to the skin due to the generated active oxygen can be suppressed. Preferred examples of the modifying molecule having a hardly decomposable main chain include silane coupling agents and alkylamines.
[0039] 本発明の材料において、修飾分子の中空体への結合はいかなる方法によって行つ てもよく限定されないが、修飾分子を含む溶媒に中空体を浸漬することにより簡便に 行うことができる。このとき、結合を促進するため、加熱処理、あるいは酸やアルカリ等 を用いたィ匕学処理を行ってもよい。これにより、修飾分子の分子長に依存して、中空 体の内壁および外壁の双方、または外壁のみに修飾分子を結合させることができる。 [0039] In the material of the present invention, the binding of the modifying molecule to the hollow body may be performed by any method, but can be easily performed by immersing the hollow body in a solvent containing the modifying molecule. At this time, in order to promote bonding, heat treatment or chemical treatment using acid, alkali or the like may be performed. Depending on the molecular length of the modified molecule, this The modifying molecule can be attached to both the inner and outer walls of the body, or only to the outer wall.
[0040] 中空ファイバの内壁および外壁の双方に長鎖の修飾分子を結合させる場合、修飾 分子の分子長 (R)の 2倍 (2R)を中空ファイバの内径よりも小さく設計するのが好まし い。一般的に、修飾分子は極性を有するため、多くの界面活性剤と同様、中空フアイ バの中でミセルを形成し得る。中空ファイバの内部において、修飾分子の親水部が 中空ファイバ側へ固定化され、疎水部が中空ファイバの中心に向力つて配向する構 造をとり、いわゆる「ロッドライクミセル」を形成する。このロッドライクミセルの径は修飾 分子の長さ(R)の 2倍 (2R)に相当するため、内壁にミセルを形成させるためには、 2R の値が中空ファイバの内径よりも小さ 、ことが望まし 、。このように内径を設定すること で、修飾分子を中空ファイバの内部まで結合させることが可能となる。例えば、中空フ アイバの内径が 3.5nmである場合、修飾分子の 2Rは 3.5nmよりも小さく設計する。  [0040] When a long-chain modifying molecule is bonded to both the inner and outer walls of the hollow fiber, it is preferable to design the molecular length (R) of the modifying molecule to be twice (2R) smaller than the inner diameter of the hollow fiber. Yes. In general, the modifying molecules are polar and, like many surfactants, can form micelles in hollow fibers. Inside the hollow fiber, the hydrophilic portion of the modifying molecule is immobilized on the hollow fiber side, and the hydrophobic portion is oriented toward the center of the hollow fiber to form a so-called “rod-like micelle”. Since the diameter of this rod-like micelle is equivalent to twice the length (R) of the modifying molecule (2R), in order to form micelles on the inner wall, the value of 2R must be smaller than the inner diameter of the hollow fiber. I hope. By setting the inner diameter in this way, the modifying molecule can be bonded to the inside of the hollow fiber. For example, when the inner diameter of the hollow fiber is 3.5 nm, the 2R of the modifying molecule is designed to be smaller than 3.5 nm.
[0041] 一方、修飾分子を中空ファイバの外壁のみに結合させる場合、修飾分子の分子長  [0041] On the other hand, when the modifying molecule is bonded only to the outer wall of the hollow fiber, the molecular length of the modifying molecule is
(R)の 2倍(2R)を前記中空ファイバの内径よりも大きく設計する。例えば、中空フアイ バの内径力 ¾.5nmである場合、修飾分子の 2Rは 3.5nmよりも大きく設計する。ミセル形 成時の分子の大きさに相当する修飾分子の長さの 2倍(2R)が中空ファイバの内径よ りも大きいと、内壁にミセルを形成しにくくなり、外壁のみに修飾分子が結合する。  Two times (2R) of (R) is designed to be larger than the inner diameter of the hollow fiber. For example, when the inner diameter force of the hollow fiber is ¾.5 nm, the 2R of the modifying molecule is designed to be larger than 3.5 nm. If the length (2R) of the modification molecule corresponding to the size of the micelle is larger than the inner diameter of the hollow fiber, it will be difficult to form micelles on the inner wall, and the modification molecule will bind only to the outer wall. To do.
[0042] 中空ファイバの内壁のみに修飾分子を結合させる方法としては、上述の方法により 修飾分子を内壁および外壁の双方に結合させた後に、酸またはアルカリ処理等の化 学的処理や、アルゴンスパッタリング等のプラズマエッチングによって、外壁に結合し た修飾分子のみを除去することにより行うことができる。  [0042] As a method of bonding the modifying molecule only to the inner wall of the hollow fiber, the modifying molecule is bonded to both the inner wall and the outer wall by the above-described method, and then chemical treatment such as acid or alkali treatment or argon sputtering is performed. It is possible to remove only the modifying molecules bound to the outer wall by plasma etching.
[0043] 修飾分子を中空体に結合するための上記以外の別の方法としては、 CVD、 PVD、 真空蒸着、レーザーアブレーシヨン、イオンプレーティング、およびスパッタ等の乾式 コーティング法が挙げられる。  [0043] Other methods for bonding the modifying molecule to the hollow body include dry coating methods such as CVD, PVD, vacuum deposition, laser ablation, ion plating, and sputtering.
[0044] 中空体と修飾分子との化学結合の有無は、 FT-IRや NMR等の機器分析により確認 することができる。例えば、修飾分子がアルキルァミンの場合、フリーのァミンイオンと 中空ファイバに吸着させたァミンイオンとの NH伸縮振動を FT-IRで測定することによ り、化学結合の有無を判定することができる。すなわち、フリーのァミンイオンにて 3300cm-l付近に観察される NH伸縮振動力 中空ファイバに化学結合すると低波数 側にシフトする。また、化学結合の有無を中空ファイバの OH基の伸縮振動を測定す ることにより確認することもできる。すなわち、中空ファイバの OH基に修飾分子が化学 結合すると中空ファイバにもともと存在していたィ匕学吸着した OH基力 の信号が消 失することから、この信号の消失の有無を確認することにより中空ファイバと修飾分子 との化学結合の有無を確認できる。 [0044] The presence or absence of a chemical bond between the hollow body and the modifying molecule can be confirmed by instrumental analysis such as FT-IR or NMR. For example, when the modifying molecule is alkylamine, the presence or absence of a chemical bond can be determined by measuring the NH stretching vibration of free amine ions and amine ions adsorbed on the hollow fiber by FT-IR. In other words, NH stretching vibration force observed in the vicinity of 3300 cm-l with free amine ions. Shift to the side. The presence or absence of chemical bonds can also be confirmed by measuring the stretching vibration of the OH group of the hollow fiber. In other words, when the modifying molecule is chemically bonded to the OH group of the hollow fiber, the signal of the OH group force that was originally adsorbed in the hollow fiber disappears. The presence or absence of chemical bonds between the hollow fiber and the modifying molecule can be confirmed.
[0045] 使用形態 [0045] Usage
本発明による作用物質が充填された中空体は、そのままの形態でも使用可能であ るが、用途に応じて、水、有機溶媒、および油脂等の分散媒に分散させるか、または 基材に担持させることにより好ましく使用することができる。  The hollow body filled with the active substance according to the present invention can be used as it is, but depending on the application, it can be dispersed in a dispersion medium such as water, organic solvent and oil or fat, or supported on a base material. It can be preferably used by making it.
[0046] 本発明の好ましい態様によれば、分散媒としてァミン水溶液を用い、かつ中空体を 構成するチタン含有ィ匕合物の内部ないし表面にプロトンが付加されてなるのが好まし い。これにより、中空体の電気的中性が保たれて凝集の駆動力となる静電工ネルギ 一を低くなり、本発明の材料を高い分散性で分散媒に分散させることができる。した がって、外部刺激により作用物質の中空体外への放出をさらに促進することができる [0046] According to a preferred embodiment of the present invention, it is preferable that an aqueous amine solution is used as a dispersion medium, and protons are added to the inside or the surface of the titanium-containing compound constituting the hollow body. Thereby, the electrical neutrality of the hollow body that maintains the electrical neutrality and serves as the driving force for aggregation can be reduced, and the material of the present invention can be dispersed in the dispersion medium with high dispersibility. Therefore, it is possible to further promote the release of the active substance outside the hollow body by external stimulation.
[0047] この分散液は、中空体を酸水溶液に接触させた後、アミン水溶液に分散もしくは添 カロさせることにより容易に得ることができる。すなわち、中空体は酸水溶液との接触に よってその内部および表面にプロトンが付加されて安定ィ匕し、ァミン水溶液によって 高度に分散される。 [0047] This dispersion can be easily obtained by bringing the hollow body into contact with an aqueous acid solution and then dispersing or adding it to an aqueous amine solution. That is, the hollow body is stabilized by the addition of protons to the inside and the surface by contact with the acid aqueous solution, and is highly dispersed by the aqueous amine solution.
[0048] プロトンが付加された中空体は、従来の酸ィ匕チタンよりも強いァ-オン性を示し、好 ましくは等電点における pHが 3— 6であり、より好ましくは pH5— 6である。このようなプ 口トンが付加された中空体は、等電点での pHが 6— 7である従来の酸ィ匕チタンコロイド と比較して、中性領域の分散性に優れる。中空体にプロトンを付加する方法として、 中空体を酸水溶液と接触させることにより行うのが好ましぐ使用可能な酸の例として は、硝酸、塩酸、硫酸、過塩素酸、フッ酸、臭素酸、沃素酸、亜硝酸、酢酸、および 蓚酸が挙げられる。中空体と酸水溶液と接触させる際の温度は、 0— 100°Cであるの が好ましぐより好ましくは 10— 50°Cである。中空体に対するプロトン付加量は、赤外 分光法 (IR)、昇温脱離法 (TDS)、あるいは CHNコーダで分析することができる。例え ば、 CHNコーダで分析により得られた中空体中の水素濃度が 3%以上であった場合 、従来のアナターゼ型酸ィ匕チタンに含まれる水素の量である約 1%よりも高いことから 、水素の濃度 1.5%以上でプロトンが付加されたものと見なすことができる。 [0048] The hollow body to which protons are added exhibits stronger ionic properties than conventional acid titanium, and preferably has a pH of 3-6 at the isoelectric point, more preferably pH 5-6. It is. A hollow body to which such a peptone is added is superior in dispersibility in the neutral region as compared with a conventional acidic titanium colloid having a pH of 6-7 at the isoelectric point. Examples of usable acids that are preferably used by contacting the hollow body with an acid aqueous solution as a method for adding protons to the hollow body include nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, hydrofluoric acid, and bromic acid. , Iodic acid, nitrous acid, acetic acid, and oxalic acid. The temperature at which the hollow body is brought into contact with the aqueous acid solution is preferably 0-100 ° C, more preferably 10-50 ° C. The amount of proton addition to the hollow body can be analyzed by infrared spectroscopy (IR), temperature programmed desorption (TDS), or CHN coder. example For example, when the hydrogen concentration in the hollow body obtained by analysis with a CHN coder is 3% or more, it is higher than about 1%, which is the amount of hydrogen contained in the conventional anatase type titanium oxide, It can be considered that protons are added at a hydrogen concentration of 1.5% or more.
[0049] 本発明において分散媒に用いることができるアミンィ匕合物の好ましい例としては、(i )下記式で表される第 4級アミンィ匕合物: [0049] Preferable examples of amine compounds that can be used in the dispersion medium in the present invention include (i) a quaternary amine compound represented by the following formula:
[化 1]  [Chemical 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0050] [式中、 Rl、 R2、 R3及び R4は、それぞれ独立して、水素原子、炭素数 1一 18のアル キル基、または炭素数 1一 18のァリール基である]; (ii)下記式で表わされる第 3級ァ ミン化合物: [Wherein, Rl, R2, R3, and R4 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 1 to 18 carbon atoms]; (ii) A tertiary amine compound represented by the following formula:
[化 2]  [Chemical 2]
Figure imgf000016_0002
Figure imgf000016_0002
[0051] [式中、 Rl、 R2及び R3は、それぞれ独立して、水素原子、炭素数 1一 18のアルキル 基、または炭素数 1一 18のァリール基である]; (iii)分子中に複数のァミン部位が存 在するポリアミンィ匕合物、例えば、下記式で表されるジァミンィ匕合物: [Wherein, Rl, R2 and R3 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or an aryl group having 1 to 18 carbon atoms]; (iii) A polyamine compound having a plurality of amine sites, for example, a diamine compound represented by the following formula:
[化 3]
Figure imgf000016_0003
[Chemical 3]
Figure imgf000016_0003
[0052] [式中、 nは 1一 10の整数である];および (iv)ァミン部位が分子中に多数存在しうる 高分子ァミン、例えば、ポリジァリルジメチルァミン(PDDA)、ポリエチレンィミン(PEI) 、およびポリアリルアミン(PAA)が挙げられる。 [0053] 本発明における中空体分散液の pHは限定されず、広い PH領域にわたって安定な 分散性を確保することができる。アルカリ性の分散液を用いる場合、溶液中のアミン 化合物の濃度は 0. 001— 10Mとするのが好ましぐより好ましくは 0. 01— 2Mであ る。また、中性の分散液を用いることもできる。すなわち、等電点が通常は pH7付近 に存在する従来の光触媒材料 (例えば酸化チタン)とは異なり、プロトンが付加された 中空体の好ましい等電点は PH3— 6の弱酸性領域に存在するため、この中空体は中 性領域においても分散が可能となる。さらに、酸性の分散液も使用可能である。これ は、中空体のより好ましい等電点が pH5— 6であることから、溶液の pHを 1一 5とすれ ば、中空体同士の静電反発が生じて好適に分散可能となるためである。 [0052] [wherein n is an integer of 1 to 10]; and (iv) a high number of amine amines may be present in the molecule, such as a polymer amine such as polydiallyldimethylamine (PDDA), polyethylene Min (PEI) and polyallylamine (PAA). [0053] pH of the hollow dispersion in the present invention is not limited, it is possible to ensure a stable dispersion over a wide P H region. When an alkaline dispersion is used, the concentration of the amine compound in the solution is preferably 0.001-10M, more preferably 0.01-2M. A neutral dispersion can also be used. That is, unlike conventional photocatalytic materials (eg titanium oxide) where the isoelectric point is usually around pH 7, the preferred isoelectric point of the hollow body with protons is in the weakly acidic region of PH3-6. This hollow body can be dispersed even in the neutral region. Furthermore, acidic dispersions can also be used. This is because the more preferable isoelectric point of the hollow body is pH 5-6, and if the pH of the solution is set to 1 to 5, electrostatic repulsion between the hollow bodies occurs and the dispersion can be suitably dispersed. .
[0054] 本発明の好ましい態様によれば、本発明の分散液がバインダー成分を更に含んで なること〖こより、基材に塗布するためのコーティング剤とされてもよい。バインダーとし ては、シロキサン結合を有する物質またはフッ素榭脂ェマルジヨンを好ましく使用する ことができる。  [0054] According to a preferred embodiment of the present invention, the dispersion of the present invention may further comprise a binder component, so that it may be a coating agent for application to a substrate. As the binder, a substance having a siloxane bond or fluorine resin emulsion can be preferably used.
[0055] 本発明の好ましい態様によれば、本発明の分散液またはコーティング剤中における 固形分濃度は 10%以下とするのが好ましい。この範囲内であれば、分散性が高ぐ 沈殿を生じることなぐ室温で長期間安定である。  [0055] According to a preferred embodiment of the present invention, the solid concentration in the dispersion or coating agent of the present invention is preferably 10% or less. Within this range, the dispersion is highly stable and stable for a long time at room temperature without causing precipitation.
実施例  Example
[0056] 以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらの実施例に 何ら限定されるものではな 、。  [0056] Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
[0057] 例 1 :中空ファイバの作製  [0057] Example 1: Fabrication of hollow fiber
酸化チタン粉末 (商品名 F6、昭和電工 (株)) 0. 64gを 10M水酸ィ匕ナトリウム水溶 液 80mlに投入し、ガラス棒にて 1分間攪拌して、白色懸濁液を得た。この白色懸濁 液を 100mlフッ素榭脂製容器に入れ、このフッ素榭脂製の容器をさらにステンレス製 容器に入れた。乾燥器の中にこのステンレス容器を入れて、 110°Cで 20時間保持し た。反応終了後、室温までステンレス容器を自然放冷させ、白色沈殿物を含む溶液 を回収した。  Titanium oxide powder (trade name F6, Showa Denko Co., Ltd.) (0.64 g) was placed in 80 ml of 10M aqueous sodium hydroxide solution and stirred with a glass rod for 1 minute to obtain a white suspension. This white suspension was placed in a 100 ml fluorocoagulant container, and this fluorocoagulant container was further placed in a stainless steel container. This stainless steel container was put in a drier and kept at 110 ° C for 20 hours. After completion of the reaction, the stainless steel container was naturally allowed to cool to room temperature, and a solution containing a white precipitate was collected.
[0058] この白色沈殿物を含む溶液に以下の洗浄工程を行った。まず、スポイトを用いて上 記溶液から上澄み液を除去した。残った白色沈殿物に 0. 1M塩酸水溶液 100mlを 少量ずつ添加した。塩酸水溶液を全量添加した後、室温(20°C)で 3時間静置して 上澄み液を除去した。この洗浄工程を合計 3回行い、上澄み液が pH7以下であるこ とを確認した。これらの中和操作の後、残った白色沈殿物を蒸留水で 2回洗浄するこ と〖こより白色粉末を得た。この得られた粉末を # 1試料とする。 [0058] The following washing step was performed on the solution containing the white precipitate. First, the supernatant was removed from the above solution using a dropper. 100 ml of 0.1 M aqueous hydrochloric acid solution was added to the remaining white precipitate. Small portions were added. After all the aqueous hydrochloric acid solution was added, the solution was allowed to stand at room temperature (20 ° C) for 3 hours to remove the supernatant. This washing process was performed three times in total, and it was confirmed that the supernatant liquid had a pH of 7 or less. After these neutralization operations, the remaining white precipitate was washed twice with distilled water to obtain a white powder. This obtained powder is used as # 1 sample.
[0059] この白色粉末を走査型透過電子顕微鏡 (日立製作所 (株)、 STEM S-5200)を 用いて 15万倍の倍率で観察した。その結果、得られた白色粉末が中空ファイバの集 合体であり、各ファイバの中心部は直径 3.5nmの中空構造になっていることを確認し た。 The white powder was observed at a magnification of 150,000 times using a scanning transmission electron microscope (Hitachi, Ltd., STEM S-5200). As a result, it was confirmed that the obtained white powder was an aggregate of hollow fibers, and the center of each fiber had a hollow structure with a diameter of 3.5 nm.
[0060] また、 XRD (マック'サイエンス製、 MXP-18)を用いて白色粉末の結晶構造を解析し た。その結果、白色粉末の結晶構造は、チタン酸構造であることが判明した。  [0060] Further, the crystal structure of the white powder was analyzed using XRD (manufactured by Mac'Science, MXP-18). As a result, it was found that the crystal structure of the white powder was a titanic acid structure.
[0061] さらに、比表面積 Z細孔分布測定装置 (アサップ 2000,マイクロメリティックス社製) を用いて白色粉末を解析した。その結果、細孔径分布については中空ファイバの内 径 3.5應に相当する急峻なピークが観察され、比表面積は 78m2/gであった。 [0061] Further, the white powder was analyzed using a specific surface area Z pore distribution measuring device (Asap 2000, manufactured by Micromeritics). As a result, with respect to the pore size distribution, a steep peak corresponding to the inner diameter of 3.5 mm of the hollow fiber was observed, and the specific surface area was 78 m 2 / g.
[0062] 例 2 :中 ファイバが担持された薄膜の作製  [0062] Example 2: Medium Fabrication of thin film carrying fiber
例 1で得られた # 1試料の粉末を 2M硝酸水溶液 64ml中に添カ卩し、室温で 15時間 マグネティックスターラーによって攪拌して、半透明溶液を得た。この半透明溶液を 遠心分離機 (佐久間製作所 (株)、 M200-IVD)により 5000rpmにおいて 30分間遠 心分離を施し、プロトンを付加した白色ゲルを得た。この白色ゲルを 0.1Mの水酸ィ匕テ トラブチルアンモニゥム水溶液に加え、室温で 24時間、マグネティックスターラーを用 いて攪拌して、半透明な溶液を得た。この溶液に lOOmmolの塩酸をさらに加えて pH 力 ¾.5になるように調整して、中空ファイバが分散した水溶液を得た。  The powder of sample # 1 obtained in Example 1 was added to 64 ml of 2M nitric acid aqueous solution and stirred with a magnetic stirrer at room temperature for 15 hours to obtain a translucent solution. This translucent solution was subjected to centrifugal separation at 5000 rpm for 30 minutes with a centrifuge (Sakuma Seisakusho Co., Ltd., M200-IVD) to obtain a white gel with added protons. This white gel was added to a 0.1 M aqueous solution of sodium tetrabutylammonium hydroxide and stirred at room temperature for 24 hours using a magnetic stirrer to obtain a translucent solution. To this solution was further added lOOmmol hydrochloric acid to adjust the pH to ¾. 5 to obtain an aqueous solution in which hollow fibers were dispersed.
[0063] 一方、基材として石英ガラス (東芝ガラス、 T-4040)を用意した。この基材を熱濃硫 酸中に浸し、基材表面に付着した有機物を除去した後、純水で洗浄した。この基材 をポリエチレンィミン(和光純薬工業、平均分子量: 10000)の 0.25wt%の水溶液に 10 分間浸潰した後、純水で洗浄した。  On the other hand, quartz glass (Toshiba Glass, T-4040) was prepared as a base material. The substrate was immersed in hot concentrated sulfuric acid to remove organic substances adhering to the substrate surface, and then washed with pure water. This substrate was immersed in a 0.25 wt% aqueous solution of polyethyleneimine (Wako Pure Chemical Industries, average molecular weight: 10000) for 10 minutes, and then washed with pure water.
[0064] こうして洗浄された基材を、中空ファイバを含む溶液中に 10分間浸漬して、純水で 洗浄した。この基材をさらにポリ塩化ジァリルジメチルアンモ -ゥム(PDDA: Aldrich社 製、平均分子量: 100000— 200000)の 2wt%水溶液に 10分間浸漬して、純水で洗浄し た。以後、中空ファイバを含む溶液と PDDA水溶液への浸漬および洗浄を繰り返して 、 5層の中空ファイバの層を有してなる薄膜を作製した。 [0064] The substrate thus cleaned was immersed in a solution containing hollow fibers for 10 minutes and washed with pure water. This substrate was further immersed in a 2 wt% aqueous solution of poly (diaryldimethyldimethylammonium chloride) (PDDA: Aldrich, average molecular weight: 100000-200000) for 10 minutes and washed with pure water. It was. Thereafter, immersion and washing in a solution containing hollow fibers and an aqueous PDDA solution were repeated to produce a thin film having five hollow fiber layers.
[0065] 得られた薄膜に紫外線を照射して、層間のカチオン性ポリマーを分解して除去した 。この紫外線の照射は、 200Wの水銀-キセノンランプ (林時計工業製、 LA-210UV)を 用いて 24時間行った。得られた薄膜の断面を走査型電子顕微鏡(日立、 S-4100)で 観察したところ、膜厚は 50應であった。  [0065] The resulting thin film was irradiated with ultraviolet rays to decompose and remove the cationic polymer between the layers. This UV irradiation was carried out for 24 hours using a 200 W mercury-xenon lamp (LA-210UV, manufactured by Hayashi Watch Industry). When the cross section of the obtained thin film was observed with a scanning electron microscope (Hitachi, S-4100), the film thickness was 50 °.
[0066] 例 3:中空ファイバのゼータ電位の測定  [0066] Example 3: Measuring zeta potential of hollow fiber
各種 pHにおける中空ファイバのゼータ電位を、電気泳動光散乱光度計 (型名: ELS-6000,大塚電子製)を用いて測定した。この測定に用いた試料液は、例 2で作 製した中空ファイバが分散した水溶液 lmgを、 200gの 10mmol/Lの塩化ナトリウム水溶 液に滴下し、さらに 10mmol/Lの塩酸および水酸ィ匕ナトリウムを使用して pHの調節を 行うことにより作製した。  The zeta potential of the hollow fiber at various pH values was measured using an electrophoretic light scattering photometer (model name: ELS-6000, manufactured by Otsuka Electronics Co., Ltd.). The sample solution used for this measurement was lmg of the aqueous solution in which the hollow fiber prepared in Example 2 was dispersed, dropped into 200 g of 10 mmol / L sodium chloride aqueous solution, and then 10 mmol / L hydrochloric acid and sodium hydroxide. It was prepared by adjusting the pH using
[0067] その結果は図 1に示される通りであった。ゼータ電位力^になる pHが等電点である。  [0067] The results were as shown in FIG. The pH at which zeta potential force ^ is the isoelectric point.
この結果、本発明の中空ファイバの等電点における pHは 5.5となった。  As a result, the pH at the isoelectric point of the hollow fiber of the present invention was 5.5.
[0068] 例 4: DHの栾化による作用物皙(メチレンブルー)の放出  [0068] Example 4: Release of an active substance (methylene blue) by hatching of DH
例 2で得られた薄膜(1.5cm X 2.5cm)を ImMのメチレンブルー水溶液に室温で 15時 間浸漬した後、暗所で乾燥させた。このメチレンブルーが吸着した薄膜を 5mLの p H1.0および 6.0に調節された各水中に、暗所にて浸漬して、水中のメチレンブルーの 濃度変化 (660nmでの吸光度の変化)を分光光度計(島津製作所、 UV-3150)を用い て測定した。 pHの調整は塩酸を用いて行われ、 pH 6.0の水は HC1を添カ卩しないこと により、 pH 1.0の水は HC1を添加することにより得た。  The thin film (1.5 cm × 2.5 cm) obtained in Example 2 was immersed in an ImM methylene blue aqueous solution at room temperature for 15 hours and then dried in the dark. This thin film adsorbed with methylene blue was immersed in 5 mL of water adjusted to pH 1.0 and 6.0 in the dark, and the concentration change of methylene blue in water (change in absorbance at 660 nm) was measured using a spectrophotometer ( It was measured using Shimadzu Corporation, UV-3150). The pH was adjusted using hydrochloric acid. Water at pH 6.0 was obtained without adding HC1, and water at pH 1.0 was obtained by adding HC1.
[0069] 結果は図 2に示される通りであった。図 2に示されるように、低い ρΗ (ρΗ : 1.0)の方 力 高い ρΗ (ρΗ : 6.0)よりもメチレンブルーの放出速度が早いことが分かる。したがつ て、メチレンブルーを作用物質として用いた場合には、放出速度に pH依存性がある ことが分力ゝる。  [0069] The results were as shown in FIG. As shown in Figure 2, it can be seen that the methylene blue release rate is faster than the low ρΗ (ρΗ: 1.0). Therefore, when methylene blue is used as an active substance, the release rate is dependent on pH.
[0070] 例 5 : DHの変化による作用物質 (イブプロフェン)の放出  [0070] Example 5: Release of active substance (ibuprofen) by DH change
例 2で得られた薄膜(1.5cm X 2.5cm)を 0.1wt%のイブプロフェン水溶液に室温で 15 時間浸漬した後、暗所で乾燥させた。このイブプロフェンが吸着した薄膜を 5mLの p H1.0 6.0および 14.0に調整された各水中に喑所にて浸漬し、水中のイブプロフェン の濃度変化 (220nmでの吸光度の変化)を分光光度計(島津製作所、 UV-3150)を用 いて測定した。 pHの調整は水酸ィ匕ナトリウムおよび塩酸を用いて行われ、 pH 14.0の 水は NaOHを添カ卩することにより、 pH 6.0の水は NaOHおよび HC1を添カ卩しないことに より、 pH 1.0の水は HC1を添加することにより得た。 The thin film obtained in Example 2 (1.5 cm × 2.5 cm) was immersed in a 0.1 wt% ibuprofen aqueous solution at room temperature for 15 hours and then dried in the dark. The thin film adsorbed with ibuprofen was added to 5 mL of p H1.0 Submerged in water adjusted to 6.0 and 14.0, and measured concentration change of ibuprofen in water (change in absorbance at 220 nm) using a spectrophotometer (Shimadzu Corporation, UV-3150) did. The pH is adjusted using sodium hydroxide and hydrochloric acid, pH 14.0 water is added with NaOH, pH 6.0 water is not added with NaOH and HC1, pH 1.0 The water was obtained by adding HC1.
[0071] 結果は図 3に示される通りであった。図 3に示されるように、イブプロフェンに関して は高い pHの方が放出速度が速いことが分かる。したがって、イブプロフェンを作用物 質として用いた場合には、放出速度に pH依存性があることが分かる。  [0071] The results were as shown in FIG. As shown in Figure 3, it can be seen that for ibuprofen, the release rate is faster at higher pH. Therefore, when ibuprofen is used as the active substance, the release rate is pH-dependent.
[0072] 例 6:光照射による作用物質 (ビナフタレンジオールおよびァスコルビン酸)の放出  [0072] Example 6: Release of active substances (binaphthalene diol and ascorbic acid) by light irradiation
例 2で得られた薄膜(1.5cm X 2.5cm)を 0.1Mのビナフタレンジオールおよびァスコ ルビン酸水溶液に 60°Cで 24時間浸漬した。この薄膜を暗所にて 5mLの純水中に浸 漬し、水中のビナフタレンジオールおよびァスコルビン酸の濃度変化を分光光度計( 島津製作所、 UV-3150)を用いて測定した。  The thin film (1.5 cm × 2.5 cm) obtained in Example 2 was immersed in 0.1M binaphthalenediol and ascorbic acid aqueous solution at 60 ° C. for 24 hours. This thin film was immersed in 5 mL of pure water in the dark, and the concentration changes of binaphthalenediol and ascorbic acid in the water were measured using a spectrophotometer (Shimadzu Corporation, UV-3150).
[0073] この際、ビナフタレンジオールの濃度を評価するために波長 276 での吸光度を測 定するとともに、ァスコルビン酸の濃度を評価するために波長 264nmでの吸光度を測 定した。暗所にて所定時間が経過した後に、 20Wのブラックライト (東芝)を用いて、 薄膜に紫外線の照射を行った。このとき、紫外線の照度が、紫外線照度計 (トプコン、 UVR-2)で測定して 500 μ W/cm2となるように照射した。  At this time, the absorbance at a wavelength of 276 was measured in order to evaluate the concentration of binaphthalene diol, and the absorbance at a wavelength of 264 nm was measured in order to evaluate the concentration of ascorbic acid. After a predetermined time in the dark, the thin film was irradiated with ultraviolet rays using a 20W black light (Toshiba). At this time, irradiation was performed so that the illuminance of ultraviolet rays was 500 μW / cm 2 as measured by an ultraviolet illuminance meter (Topcon, UVR-2).
[0074] 紫外線照射前後のァスコルビン酸の濃度変化は図 4に示される通りであり、ビナフ タレンジオールの濃度変化は図 5に示される通りであった。図 4および 5に示されるよ うに、紫外線の照射によってァスコルビン酸およびピナフタレンジオールの濃度が増 カロしていることが分かる。したがって、ジオール基を有する分子を作用物質として用い た場合には、光照射により放出が促進されることが分力る。  [0074] The change in the concentration of ascorbic acid before and after UV irradiation was as shown in FIG. 4, and the change in the concentration of binaphtharangeol was as shown in FIG. As shown in Figs. 4 and 5, it can be seen that the concentrations of ascorbic acid and pinaphthalene diol increased as a result of UV irradiation. Therefore, when a molecule having a diol group is used as an active substance, it can be said that release is accelerated by light irradiation.
[0075] 例 7:修飾分子(アルキルァミン)の固定化  [0075] Example 7: Immobilization of a modified molecule (alkylamine)
5種類の分子長の異なるアルキルアミンイオン水溶液に、例 1で得られた粉末状の # 1試料を添加した。 5種類のアルキルァミンとしては、ェチルァミン (炭素鎖 C=2)、 へキシルァミン(C=6)、ォクチルァミン(C=8)、デシルァミン(C=10)、およびドデシル ァミン(C=12)を用い、各水溶液におけるアルキルァミンの濃度はいずれも 0.2mMとし た。この 5種類の各水溶液 50mLに # 1試料 O.lgを添カ卩し、室温、暗所にてスターラー で攪拌した。 The powdered # 1 sample obtained in Example 1 was added to five alkylamine ion aqueous solutions having different molecular lengths. The five types of alkylamines include ethylamine (carbon chain C = 2), hexylamine (C = 6), octylamine (C = 8), decylamine (C = 10), and dodecylamine (C = 12). The concentration of alkylamine in the aqueous solution should be 0.2 mM. It was. To each of these five aqueous solutions, # 1 sample O.lg was added and stirred with a stirrer in the dark at room temperature.
[0076] アルキルァミンの試料表面へ固定ィ匕量を測定するため、水溶液中に残存して!/、る 各種アルキルアミンイオンの濃度をキヤビラリ一電気泳動システム (HP 3DCE、 HEWLETT PACKARD)を用いて測定した。このとき、喑所にてアルキルアミンを試料 表面に結合させる時間は 2時間とした。  [0076] In order to measure the amount of alkylamine immobilized on the sample surface, the concentration of various alkylamine ions remaining in the aqueous solution was measured using a single electrophoresis system (HP 3DCE, HEWLETT PACKARD). did. At this time, the time for binding the alkylamine to the sample surface at a certain place was set to 2 hours.
[0077] ァミンイオンの分子長の 2倍値(2R)と固定ィ匕量の関係は、図 6に示される通りであつ た。アルキルァミンの分子の長さは density fonctional theory (DFT) (Accelyl社、 Dmol3)を用いて計算した。図 6に示されるように、 2Rが 3nmよりも小さい領域ではアル キルァミンの長さに応じて固定ィ匕量が増加したことから、アルキルァミンの分子長が 長くなると分子の双極子が大きくなり、吸着力が増大することが分かる。一方、アルキ ルァミンの長さが 3.0nmよりも長くなると固定ィ匕量が減少することから、 2Rの値が中空 ファイバの内径と同等になると、アルキルァミンの中空ファイバの内部への拡散が抑 制されることが分かる。すなわち、 2Rの値が中空ファイバの内径よりも大きいと、アル キルアミンは外壁のみに固定ィ匕することが示唆された。  [0077] The relationship between the double value (2R) of the molecular length of the amine ion and the amount of fixed ions was as shown in FIG. The length of the alkylamine molecule was calculated using density fonctional theory (DFT) (Accelyl, Dmol3). As shown in Fig. 6, in the region where 2R is smaller than 3 nm, the amount of fixed ions increased with the length of alkylamine.Therefore, when the molecular length of alkylamine increases, the dipole of the molecule increases and the adsorption increases. It can be seen that the force increases. On the other hand, if the length of alkylamine is longer than 3.0 nm, the amount of anchorage decreases, so if the value of 2R is equal to the inner diameter of the hollow fiber, the diffusion of alkylamine into the hollow fiber is suppressed. I understand that In other words, it was suggested that when the value of 2R is larger than the inner diameter of the hollow fiber, alkylamine is fixed only on the outer wall.
[0078] 例 8:修飾分子 (シランカップリング剤)の岡定化  [0078] Example 8: Oka straitization of modifier molecule (silane coupling agent)
例 1で得られた粉末状の # 1試料を、トルエンに溶解した lw%ォクタデシルトリエト キシシラン (ァヅマックス、 SIO6642.0)溶液中に投入し、 60°Cでー晚反応させた。得ら れた反応済みの試料を水中に投入してその様子を写真撮影した。比較のため、未処 理の中空ファイバ(# Dについても同様にして写真撮影をした。得られた写真は、図 The powdery # 1 sample obtained in Example 1 was put into an lw% octadecyltriethoxysilane (AMAX, SIO6642.0) solution dissolved in toluene and reacted at 60 ° C. The obtained reacted sample was put into water and photographed. For comparison, the unprocessed hollow fiber (# D was also photographed in the same way.
7に示される通りであった。図 7に示されるように、シランカップリング剤で修飾された 中空ファイバは水に浮かぶことが分かる。これは、修飾分子であるシランカップリング 剤の分子長(R)の 2倍(2R)は中空ファイバの内径 (r)よりも長 、ため、シランカツプリ ング剤は中空ファイバの外壁に固定ィ匕され、その結果、外壁が疎水的になることによ り粒子が水面に浮くのではないかと考えられる。 It was as shown in 7. As shown in Fig. 7, it can be seen that the hollow fiber modified with the silane coupling agent floats in water. This is because twice the molecular length (R) of the modifying molecule silane coupling agent (R) is longer than the inner diameter (r) of the hollow fiber, so the silane coupling agent is fixed on the outer wall of the hollow fiber. As a result, it is thought that particles float on the water surface due to the hydrophobic outer wall.
[0079] 例 9:修飾分子と中空ファイバの間の化学結合の検証 [0079] Example 9: Verification of chemical bond between modifying molecule and hollow fiber
例 1で得られた # 1試料 (未処理の中空ファイバ)と、例 6においてアルキルァミンの 修飾の際に作製したデシルァミンを修飾した中空ファイバにつ ヽて、 FT-IRを装置( Nicholet, 710)で測定した。比較のため、中空ファイバに吸着していない分子状のフ リーのデシルァミンについても同様に FT-IRを測定した。このとき、物理吸着水を除去 するための前処理として、各試料について、真空中で 150°Cの熱処理を行った。 The FT-IR was installed in the # 1 sample (untreated hollow fiber) obtained in Example 1 and the hollow fiber modified with alkylamine in Example 6 and modified with decylamine. Nicholet, 710). For comparison, FT-IR was measured in the same manner for molecularly free decylamine not adsorbed on the hollow fiber. At this time, as a pretreatment for removing the physically adsorbed water, each sample was heat-treated at 150 ° C. in a vacuum.
[0080] 測定結果は、図 8に示される通りであった。図 8に示されるように、フリーのデシルァ ミンでは NH伸縮振動が 3219 cm"1, 1649 cm— 1に観察された力 デシルァミンで修飾さ れた中空ファイバにあっては NH伸縮振動がより低波数側の 3219 cm"1, 1607 cm— こ シフトした、よりブロードなピークとして観察された。このシフトは修飾分子末端のァミノ 基と中空ファイバとの間で水素結合がおこった結果、誘起されたのではないかと考え られる。また、図 8の結果から、未処理の中空ファイバ(# 1試料)に存在した化学吸 着水のピーク (3660 cm"1)が修飾分子を結合させることによって消失したことも分かる 。これらの結果から、修飾分子の末端にあるアミノ基が中空ファイバの水酸基に水素 結合で結合して ヽるのではな!/ヽかと考えられる。 [0080] The measurement results were as shown in FIG. As shown in Figure 8, the free decylamine has NH stretching vibrations observed at 3219 cm " 1 , 1649 cm- 1 The NH stretching vibration is lower in hollow fibers modified with decylamine. 3219 cm " 1 , 1607 cm on the side—this was observed as a broader peak shifted. This shift may have been induced as a result of hydrogen bonding between the modified amino terminal amino group and the hollow fiber. The results in Fig. 8 also show that the peak of chemisorbed water (3660 cm " 1 ) present in the untreated hollow fiber (# 1 sample) disappeared by binding the modifying molecule. From this, it is considered that the amino group at the end of the modifying molecule is bonded to the hydroxyl group of the hollow fiber by a hydrogen bond!
[0081] 例 10 :作用物皙の岡定化による中 ファイバの着色  [0081] Example 10: Medium fiber coloring by Oka qualification
例 1で得られた # 1試料の粉末を 0.1Mのビナフタレンジオールおよびァスコルビン 酸水溶液に、 60°Cで 24時間浸漬して、作用物質が固定化された中空ファイバ粉末を 得た。この粉末を回収して、エタノールで洗浄した後、乾燥した。  The # 1 sample powder obtained in Example 1 was immersed in 0.1M binaphthalenediol and ascorbic acid aqueous solution at 60 ° C. for 24 hours to obtain a hollow fiber powder in which the active substance was immobilized. The powder was collected, washed with ethanol, and dried.
[0082] 得られた粉末を写真撮影したところ、図 9に示される写真が得られた。また、分光光 度計 (島津製作所、 UV-3150)を用いて、拡散反射法によって粉末の反射率を測定 したところ、図 10に示される通りの結果が得られた。図 10に示されるように、ジオール 基を有するビナフタレンジオール、およびァスコルビン酸を中空ファイバ〖こ固定化す ると、中空ファイバが着色することが分かる。すなわち、中空ファイバ自体のバンドギ ヤップは約 3.4eVのため可視光を吸収しないが、中空ファイバにジオール基を有する 分子を結合することで 400應以上の可視光領域に吸収が発現することが分かる。また 、ビナフタレンジオールおよびァスコルビン酸は分子状では無色透明で可視光に吸 収を持たないにもかかわらず、これらの作用物質が中空ファイバに固定ィ匕することで 可視光領域に着色を呈した。このことから、これらの分子のジオール基が中空フアイ バの水酸基と脱水重縮合して 、るのではな 、かと考えられる。  When the obtained powder was photographed, the photograph shown in FIG. 9 was obtained. When the reflectance of the powder was measured by a diffuse reflection method using a spectrophotometer (Shimadzu Corporation, UV-3150), the results shown in Fig. 10 were obtained. As shown in FIG. 10, it can be seen that hollow fibers are colored when binaphthalenediol having a diol group and ascorbic acid are immobilized on hollow fibers. In other words, the band gap of the hollow fiber itself is about 3.4 eV, so it does not absorb visible light, but it can be seen that absorption occurs in the visible light region of 400+ or more by binding molecules with diol groups to the hollow fiber. In addition, although binaphthalenediol and ascorbic acid are colorless and transparent in the molecular form and do not absorb visible light, these active substances are colored in the visible light region by fixing to the hollow fiber. . From this, it is considered that the diol group of these molecules is dehydrated and polycondensed with the hydroxyl group of the hollow fiber.
[0083] 例 11:修飾分子 (シランカップリング剤)の固定化 例 2で得られた中空ファイバの薄膜が形成された基材を、シランカップリング剤が溶 解したエタノール溶液に、 60°Cで 40時間浸漬して、シランカップリング剤を脱水重縮 合により # 1試料に反応させた。シランカップリング剤としては、へキシルトリエトキシシ ラン(ァヅマックス、 SIH6167.5)、およびォクタデシルトリエトキシシラン(ァヅマックス、 SIO6642.0)を用い、エタノール溶液中における各シランカップリング剤の濃度は 2wt %とした。上記反応後、薄膜が形成された基材をエタノールで洗浄して、乾燥させた 。シランカップリング剤としてへキシルトリエトキシシランを用いて得られた試料を # 2 試料と、ォクタデシルトリエトキシシランを用いて得られた試料を # 3試料とした。 [0083] Example 11: Immobilization of modifying molecule (silane coupling agent) The substrate on which the hollow fiber thin film obtained in Example 2 was formed was immersed in an ethanol solution in which the silane coupling agent was dissolved at 60 ° C for 40 hours, and the silane coupling agent was subjected to dehydration polycondensation. # Reacted to 1 sample. As silane coupling agents, hexyltriethoxysilane (AMAX, SIH6167.5) and octadecyltriethoxysilane (AMAX, SIO6642.0) were used. The concentration of each silane coupling agent in the ethanol solution was 2 wt%. After the reaction, the substrate on which the thin film was formed was washed with ethanol and dried. A sample obtained using hexyltriethoxysilane as a silane coupling agent was designated as # 2, and a sample obtained using octadecyltriethoxysilane was designated as # 3.
[0084] 得られた薄膜に対し、メチレンブルーの染色試験を行った。試料 # 2および # 3を O.lmol/Lのメチレンブルー水溶液に 2時間浸漬して、乾燥させた後、薄膜の吸光度 変化を分光光度計(島津製作所、 UV-3150)で測定した。比較のため、未処理の中 空ファイバについても上記同様の測定を行った。  [0084] The obtained thin film was subjected to a methylene blue staining test. Samples # 2 and # 3 were immersed in an O.lmol / L methylene blue aqueous solution for 2 hours and dried, and then the change in absorbance of the thin film was measured with a spectrophotometer (Shimadzu Corporation, UV-3150). For comparison, the same measurement as described above was performed for an untreated air fiber.
[0085] その結果は、図 11に示される通りであった。図 11に示されるように、未処理の中空 ファイバの表面は最も高い吸着能を示した。これは、メチレンブルー分子は中空ファ ィバの内径 (3.5應)よりも十分に小さ!/、ため、中空ファイバの外側だけではなく内側 にも吸着して 、るためではな 、かと考えられる。  [0085] The results were as shown in FIG. As shown in Fig. 11, the untreated hollow fiber surface showed the highest adsorption capacity. This is probably because the methylene blue molecule is sufficiently smaller than the inner diameter (3.5 mm) of the hollow fiber, so it adsorbs not only to the outside of the hollow fiber but also to the inside.
[0086] 一方、シランカップリング処理を行った試料 # 2および # 3にあっては、未処理の中 空ファイバよりも吸着量が減少したが、これは試料表面が疎水性になったことによるも のではないかと考えられる。特に、アルキル基の炭素数が 6であるシランカップリング 剤(へキシルトリエトキシシラン)を用いた試料 # 2の場合、メチレンブルーの吸着能は 低いが、これはシランカップリング剤が中空ファイバの外側と内側の双方に固定ィ匕さ れたためではないかと考えられる。また、アルキル基の炭素数が 18であるシランカツ プリング剤 (ォクタデシルトリエトキシシラン)を用いた試料 # 3の場合、試料 # 2と比 ベて、メチレンブルーの吸着能が高い。これは、シランカップリング剤の分子が中空フ アイバの内径よりも大きいため、中空ファイバの内側の壁には固定ィ匕されず、外側の みに固定ィ匕されたためではないかと考えられる。すなわち、ォクタデシルトリエトキシ シランを使用した場合、内側の壁は中空ファイバの表面が露出した状態であるためメ チレンブルーの吸着能サイトとして働き、へキシルトリエトキシシランを使用した場合よ りもメチレンブルーの吸着能が高くなるのではないかと考えられる。 [0086] On the other hand, in Samples # 2 and # 3 that had undergone silane coupling treatment, the amount of adsorption decreased compared to untreated hollow fiber, because the sample surface became hydrophobic. It may be a thing. In particular, in the case of sample # 2 using a silane coupling agent (hexyltriethoxysilane) in which the alkyl group has 6 carbon atoms, the adsorption ability of methylene blue is low, but this is because the silane coupling agent is outside the hollow fiber. It is thought that it was because it was fixed on both the inside and the inside. In addition, in the case of sample # 3 using a silane coupling agent (octadecyltriethoxysilane) having 18 carbon atoms in the alkyl group, the adsorption ability of methylene blue is higher than that of sample # 2. This is probably because the molecules of the silane coupling agent are larger than the inner diameter of the hollow fiber, so that they are not fixed on the inner wall of the hollow fiber but only on the outer side. In other words, when octadecyltriethoxysilane is used, the inner wall is exposed to the surface of the hollow fiber, so that it acts as an adsorption capacity site for methyl blue, and hexyltriethoxysilane is used. It is thought that the adsorption capacity of methylene blue may increase.

Claims

請求の範囲 The scope of the claims
[I] 作用物質が充填された、酸化チタン、チタン水酸ィヒ物、およびチタン酸塩からなる 群力 選択される少なくとも一種の中空体を用意し、  [I] At least one type of hollow body selected from the group force consisting of titanium oxide, titanium hydroxide, and titanate filled with an active substance is prepared,
該作用物質が充填された中空体に外部刺激を与えて、前記作用物質を前記中空 体外へ放出させること  An external stimulus is applied to the hollow body filled with the active substance to release the active substance out of the hollow body.
を含んでなる、作用物質の放出制御方法。  A method for controlling the release of an active substance, comprising:
[2] 前記中空体への作用物質の充填が、前記作用物質を含む溶液に前記中空体を浸 漬することにより行われる、請求項 1に記載の方法。  [2] The method according to claim 1, wherein filling the hollow body with the active substance is performed by immersing the hollow body in a solution containing the active substance.
[3] 前記中空体が、中空ファイバである、請求項 1または 2に記載の方法。 [3] The method according to claim 1 or 2, wherein the hollow body is a hollow fiber.
[4] 前記中空ファイバの内径が 3— 8應である、請求項 3に記載の方法。 4. The method according to claim 3, wherein the hollow fiber has an inner diameter of 3-8.
[5] 前記中空ファイバが巻物状の層状のチタン酸塩力もなる、請求項 3または 4のいず れか一項に記載の方法。 [5] The method according to any one of claims 3 and 4, wherein the hollow fiber also has a roll-like layered titanate force.
[6] 前記外部刺激が、中空体の光励起を伴う光照射により行われる、請求項 1一 5のい ずれか一項に記載の方法。 [6] The method according to any one of [1] to [15], wherein the external stimulation is performed by light irradiation accompanied by photoexcitation of a hollow body.
[7] 前記作用物質が、中空体の内壁に脱水縮合により結合可能な物質である、請求項[7] The active substance is a substance that can be bonded to the inner wall of the hollow body by dehydration condensation.
1一 6のいずれか一項に記載の方法。 The method according to any one of 1 to 6.
[8] 前記作用物質が水酸基を有する物質である、請求項 1一 7のいずれか一項に記載 の方法。 [8] The method according to any one of claims 1 to 7, wherein the active substance is a substance having a hydroxyl group.
[9] 前記作用物質がジオール基を有する物質である、請求項 1一 8のいずれか一項に 記載の方法。  [9] The method according to any one of claims 1 to 8, wherein the active substance is a substance having a diol group.
[10] 前記作用物質がァスコルビン酸である、請求項 1一 9のいずれか一項に記載の方 法。  10. The method according to any one of claims 1 to 9, wherein the active substance is ascorbic acid.
[II] 前記外部刺激力 ¾Hを変化させることにより行われる、請求項 1一 10のいずれか一 項に記載の方法。  [II] The method according to any one of claims 1 to 10, which is performed by changing the external stimulation force ¾H.
[12] 前記作用物質が電荷をもつ分子または粒子である、請求項 11に記載の方法。  12. The method according to claim 11, wherein the agent is a charged molecule or particle.
[13] 前記中空体がその内壁および外壁の少なくともいずれか一方の表面に固定化され た修飾分子をさらに備えてなり、該修飾分子がリンカ一部および主鎖部を有し、前記 リンカ一部が前記中空ファイバの表面に結合されてなる、請求項 1一 12のいずれか 一項に記載の方法。 [13] The hollow body further includes a modifying molecule immobilized on at least one surface of the inner wall and the outer wall, the modifying molecule having a linker part and a main chain part, and the linker part Is coupled to the surface of the hollow fiber. The method according to one item.
[14] 前記中空体がアミン水溶液中に分散されており、前記中空体の内部および Zまた は表面にプロトンが付加されてなる、請求項 13に記載の方法。  14. The method according to claim 13, wherein the hollow body is dispersed in an aqueous amine solution, and protons are added to the inside and Z or the surface of the hollow body.
[15] 酸化チタン、チタン水酸ィ匕物、およびチタン酸塩力もなる群力 選択される少なくと も一種の中空体と、該中空体の内部に充填される作用物質とを含んでなる、作用物 質の放出制御材料。 [15] Titanium oxide, titanium hydroxide, and a group force including titanate force, and at least one kind of hollow body selected and an active substance filled in the hollow body. Release material for active substances.
[16] 前記中空体が、中空ファイバである、請求項 15に記載の材料。 16. The material according to claim 15, wherein the hollow body is a hollow fiber.
[17] 前記中空ファイバの内径が 3— 8nmである、請求項 16に記載の材料。 17. The material according to claim 16, wherein the hollow fiber has an inner diameter of 3-8 nm.
[18] 前記中空ファイバが巻物状の層状のチタン酸塩力もなる、請求項 16または 17に記 載の材料。 18. The material according to claim 16 or 17, wherein the hollow fiber also has a scroll-like layered titanate force.
[19] 前記作用物質が、中空体の内壁に脱水縮合により結合可能な物質である、請求項 [19] The active substance is a substance that can be bonded to the inner wall of the hollow body by dehydration condensation.
15— 18のいずれか一項に記載の材料。 The material according to any one of 15-18.
[20] 前記作用物質が水酸基を有する物質である、請求項 15— 19のいずれか一項に記 載の材料。 [20] The material according to any one of claims 15 to 19, wherein the active substance is a substance having a hydroxyl group.
[21] 前記作用物質がジオール基を有する物質である、請求項 15— 20のいずれか一項 に記載の材料。  [21] The material according to any one of claims 15 to 20, wherein the active substance is a substance having a diol group.
[22] 前記作用物質がァスコルビン酸である、請求項 15— 21のいずれか一項に記載の 材料。  [22] The material according to any one of claims 15 to 21, wherein the active substance is ascorbic acid.
[23] 前記作用物質が電荷をもつ分子または粒子である、請求項 15— 22に記載の材料  23. The material according to claim 15-22, wherein the active substance is a charged molecule or particle.
[24] 前記中空体がその内壁および外壁の少なくともいずれか一方の表面に固定化され た修飾分子をさらに備えてなり、該修飾分子がリンカ一部および主鎖部を有し、前記 リンカ一部が前記中空ファイバの表面に結合されてなる、請求項 15— 23のいずれか 一項に記載の材料。 [24] The hollow body further includes a modifying molecule immobilized on at least one surface of the inner wall and the outer wall, the modifying molecule having a linker part and a main chain part, and the linker part 24. A material according to any one of claims 15 to 23, wherein is attached to the surface of the hollow fiber.
[25] ァミン水溶液中に分散されてなり、前記中空体の内部および Zまたは表面にプロト ンが付加されてなる、請求項 15— 24のいずれか一項に記載の材料。  [25] The material according to any one of [15] to [24], wherein the material is dispersed in an aqueous amine solution, and a proton is added to the inside and Z or the surface of the hollow body.
[26] 前記作用物質が薬剤であり、それによりドラッグデリバリー材料として機能する、請 求項 15— 25のいずれか一項に記載の材料。 [26] The material of any one of claims 15-25, wherein the agent is a drug, thereby functioning as a drug delivery material.
[27] 前記作用物質が化粧料であり、それによりィ匕粧品として機能する、請求項 14一 26 の!、ずれか一項に記載の材料。 [27] The material according to any one of claims 14 to 26, wherein the active substance is a cosmetic and thereby functions as a cosmetic.
[28] 請求項 1一 14のいずれか一項に記載の方法に使用される、請求項 15— 27のいず れか一項に記載の材料。 [28] A material according to any one of claims 15-27, used in a method according to any one of claims 1-14.
[29] 請求項 15— 27のいずれか一項に記載の材料の、外部刺激に従い前記作用物質 を前記中空体外へ放出させるための使用。 [29] Use of the material according to any one of claims 15 to 27 for releasing the active substance out of the hollow body according to an external stimulus.
PCT/JP2005/005008 2004-10-01 2005-03-18 Method for controlling release of acting substance and material for use therein WO2006038326A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-290021 2004-10-01
JP2004-290019 2004-10-01
JP2004290021A JP2006104083A (en) 2004-10-01 2004-10-01 Sustained-release material
JP2004290020A JP2006104082A (en) 2004-10-01 2004-10-01 Cosmetic
JP2004-290020 2004-10-01
JP2004290019A JP2006104081A (en) 2004-10-01 2004-10-01 Drug delivery material

Publications (1)

Publication Number Publication Date
WO2006038326A1 true WO2006038326A1 (en) 2006-04-13

Family

ID=36142414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005008 WO2006038326A1 (en) 2004-10-01 2005-03-18 Method for controlling release of acting substance and material for use therein

Country Status (2)

Country Link
TW (1) TW200611713A (en)
WO (1) WO2006038326A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910220B2 (en) 2007-07-25 2011-03-22 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US8017247B2 (en) 2007-03-30 2011-09-13 Alcoa Inc. Self cleaning aluminum alloy substrates
US8617665B2 (en) 2009-08-03 2013-12-31 Alcoa, Inc. Self-cleaning substrates and methods for making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152323A (en) * 1996-09-30 1998-06-09 Chubu Electric Power Co Inc Crystal titania and its production
JP2004026636A (en) * 2002-04-30 2004-01-29 National Institute Of Advanced Industrial & Technology Mesoporous inorganic material having slow releasing function
JP2004261885A (en) * 2003-02-18 2004-09-24 Japan Science & Technology Agency Method of leading functional material to organic nanotube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152323A (en) * 1996-09-30 1998-06-09 Chubu Electric Power Co Inc Crystal titania and its production
JP2004026636A (en) * 2002-04-30 2004-01-29 National Institute Of Advanced Industrial & Technology Mesoporous inorganic material having slow releasing function
JP2004261885A (en) * 2003-02-18 2004-09-24 Japan Science & Technology Agency Method of leading functional material to organic nanotube

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE EMBASE ON STN [online] XP002989845 *
SALZANO S. ET AL: "Sistemi di accesso venoso con impianto sottocutaneo", RIVISTA ITALIANA DI NUTRIZIONE PARENTERALE ED ENTERALE, vol. 9, no. 3, 1991, pages 235 - 239, XP002991326 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017247B2 (en) 2007-03-30 2011-09-13 Alcoa Inc. Self cleaning aluminum alloy substrates
US7910220B2 (en) 2007-07-25 2011-03-22 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US8435446B2 (en) 2007-07-25 2013-05-07 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US8617665B2 (en) 2009-08-03 2013-12-31 Alcoa, Inc. Self-cleaning substrates and methods for making the same

Also Published As

Publication number Publication date
TW200611713A (en) 2006-04-16

Similar Documents

Publication Publication Date Title
Raha et al. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives
Wieszczycka et al. Surface functionalization–The way for advanced applications of smart materials
US7893104B2 (en) Process for synthesizing silver-silica particles and applications
Al Jahdaly et al. Selenium nanoparticles synthesized using an eco-friendly method: dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness
Kumar et al. Green approach for fabrication and applications of zinc oxide nanoparticles
Zhou et al. Versatile core–shell nanoparticle@ metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration
JP3775432B2 (en) Surface-modified titanium dioxide fine particles, dispersions thereof, and production methods thereof
Zare et al. Nonspherical metal‐based nanoarchitectures: synthesis and impact of size, shape, and composition on their biological activity
KR20070028478A (en) Unagglomerated core/shell nanocomposite particles
Mohammad et al. Chitosan-mediated fabrication of metal nanocomposites for enhanced biomedical applications
Rasaee et al. Antibacterial properties of biologically formed chitosan nanoparticles using aqueous leaf extract of Ocimum basilicum
Mai et al. Novel functional mesoporous silica nanoparticles loaded with Vitamin E acetate as smart platforms for pH responsive delivery with high bioactivity
Stover et al. Formation of small gold nanoparticle chains with high NIR extinction through bridging with calcium ions
Sharmiladevi et al. Synthesis of mesoporous silica nanoparticles and drug loading for gram positive and gram-negative bacteria
Kumar et al. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications
WO2006038326A1 (en) Method for controlling release of acting substance and material for use therein
Karpuraranjith et al. Synergistic effect of chitosan-zinc-tin oxide colloidal nanoparticle and their binding performance on bovine albumin serum
Bukreeva et al. Preparation of polyelectrolyte microcapsules with silver and gold nanoparticles in a shell and the remote destruction of microcapsules under laser irradiation
Kumari et al. Pectin functionalized gold nanoparticles towards singlet oxygen generation
JP5142177B2 (en) Materials and methods for controlling agent release
ALTEMEMY et al. Synthesis and Characterization of Silk Fibroin-Coated Mesoporous Silica Nanoparticles for Tioguanine Targeting to Leukemia.
JP2006104083A (en) Sustained-release material
Salahuddin et al. Optimization delivery of 5-fluorouracil onto different morphologies of ZnO NPs: release and functional effects against colorectal cancer cell lines
Khan et al. Green Synthesis of Metal-Oxide Nanoparticles from Fruits and Their Waste Materials for Diverse Applications
KR20140094340A (en) functional alginate/silicate complex bead and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05721158

Country of ref document: EP

Kind code of ref document: A1