WO2006037258A1 - A ofdm and ofdma coexistence system and a cooperation method thereof - Google Patents

A ofdm and ofdma coexistence system and a cooperation method thereof Download PDF

Info

Publication number
WO2006037258A1
WO2006037258A1 PCT/CN2004/001145 CN2004001145W WO2006037258A1 WO 2006037258 A1 WO2006037258 A1 WO 2006037258A1 CN 2004001145 W CN2004001145 W CN 2004001145W WO 2006037258 A1 WO2006037258 A1 WO 2006037258A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm
ofdma
module
base station
coexistence
Prior art date
Application number
PCT/CN2004/001145
Other languages
French (fr)
Chinese (zh)
Inventor
Ning Wang
Hexing Liu
Xiang Gao
Ying Liu
Yanwei Wu
Jiying Xiang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN2004800439418A priority Critical patent/CN101015149B/en
Priority to PCT/CN2004/001145 priority patent/WO2006037258A1/en
Publication of WO2006037258A1 publication Critical patent/WO2006037258A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals

Definitions

  • the invention relates to a coexistence system of two time division systems and a method for realizing different time division systems to work together, in particular to an orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDM) (OFDMA, orthogonal frequency division multiplexing access)
  • OFDM orthogonal frequency division multiplexing
  • OFDM orthogonal frequency division multiple access
  • Orthogonal Frequency Division Multiplexing is a common time division system with high spectrum utilization and is suitable for wireless data transmission.
  • the structure of the traditional OFDM system transceiver is shown in Figure 1.
  • This uses digital modulation, such as QPSK (quadrature phase shift keying) and QAM (quadrature amplitude modulation).
  • the encoding method can take many forms, such as RS (Reed-Solomon) code, BTC (Block Turbo Code) code, CTC (Conventional Turbo Code) code, and the like.
  • RS Random-Solomon
  • BTC Block Turbo Code
  • CTC Conventional Turbo Code
  • the pilot is inserted, and the inverse fast Fourier transform (IFFT operation) is performed after serial-to-parallel conversion, and then subjected to parallel-serial conversion, and sent to the radio unit for processing and sent to the transmitting antenna.
  • IFFT operation inverse fast Fourier transform
  • the purpose of inserting the cyclic prefix and the force window here is to overcome the multipath interference and to facilitate the fast Fourier transform (FFT operation) on the receiver side to reduce the spur of the transmitted signal.
  • the receiving process is: after the RF-transformed signal from the receiving antenna is subjected to A/D processing, converted into digital information, serial-to-serial converted, FFT operation and parallel-to-serial conversion are performed, channel estimation and channel correction are performed, and digital is performed. Demodulation, deinterleaving and decoding, complete the processing.
  • the generalized OFDM system includes both OFDM and OFDMA systems.
  • the basic principle of OFDMA is similar to OFDM.
  • the other two regions are that the burst allocation of the OFDMA system is performed in the two-dimensional interval of time and frequency, while the OFDM system bursts. Assignments are only allocated on the time dimension.
  • the OFDMA system has more flexible bandwidth allocation and is more suitable for cellular networking, and thus has attracted more and more attention.
  • the IEEE 802.16 standard specifies the protocol stack structure of the base station system data/control plane, as shown in Figure 2.
  • the protocol stack includes two parts, the MAC layer and the PHY layer.
  • the MAC layer is further divided into a CS sublayer (Convergence Sublayer), a CPS sublayer (Common Part Sublayer), and a Security Sublayer from top to bottom in the protocol stack. Three parts.
  • the CS sublayer is responsible for receiving the upper layer data, dividing the external network service data unit and respectively associated with the appropriate MAC traffic flow and CID (Connection Identifier) and completing the load header compression; the CPS sublayer completes system access, bandwidth allocation, resource scheduling , connection establishment and maintenance functions; security sub-layer to complete the functions of authentication, key management and encryption and decryption; physical layer to achieve data encoding and transmission and transmission.
  • CID Connection Identifier
  • the conventional protocol stack cannot meet the compatibility of OFDM and OFDMA, so the base station system structure of OFDM and OFDMA coexistence systems needs to be redesigned.
  • the OFDM system adopts multi-carrier technology to convert the high-speed data stream through serial-to-parallel conversion, so that the duration of the data symbols on each sub-carrier is relatively increased, so that the time dispersion of the wireless channel can be effectively reduced (ISI) (InterSymbol Interference, Inter-symbol interference), which reduces the complexity of the equalization in the receiver, and even avoids the use of an equalizer, eliminating the adverse effects of ISI only by inserting a cyclic prefix.
  • ISI InterSymbol Interference, Inter-symbol interference
  • FIG. 3 is a time domain waveform diagram of an OFDM symbol using a cyclic insertion prefix in the prior art.
  • Tb represents the effective symbol period in the OFDM signal
  • Tg is the inserted cyclic prefix
  • the content of Tg is the copy of the last part of the content in the Tb period
  • Ts is the period of the entire OFDM symbol.
  • FIG. 4 and FIG. 5 respectively show the OFDM frame structure and the frame structure of OFDMA in the TDD (Time Division Duplex) mode in the IEEE802.16a protocol.
  • one OFDM frame includes one downlink subframe and one uplink subframe.
  • a downlink subframe includes only one downlink PHY PDU (Physical Protocol Data Unit).
  • One uplink subframe includes a contention interval for initial Ranging and bandwidth requests and one or more uplink PHY PDUs, each of which is transmitted by a different terminal.
  • the downstream PHY PDU starts with a long prefix and is used for physical layer synchronization.
  • FCH Fram Control Header
  • DL-MAP Downlink Map
  • MAC Medium Access Control
  • Each burst can be transmitted using a different Burst Profile.
  • Each downlink burst includes an integer number of OFDM symbols.
  • an 0FDMA frame includes one downlink subframe and one uplink subframe, and the first two channels transmitted in the first data symbol of the downlink 0FDMA subframe are FCH.
  • the Ranging subchannel indicated in the UL-MAP message is included in the uplink 0FDMA subframe for Ranging processing and bandwidth application.
  • the main object of the present invention is to provide an OFDM and OFDMA coexistence system and a cooperative working method thereof, which ensures compatibility of the air interface with the two systems by constructing a reasonable frame format, and implements OFDM and OFDMA through a reasonable base station structure.
  • the construction of the frame structure of the coexistence system, and thus the compatibility of OFDM and OFDMA and the realization of two different time systems of OFDM and OFDMA Work together to maximize the protection of the interests of investors and users.
  • the present invention proposes a coexistence system of OFDM and OFDMA, which is characterized in that it comprises:
  • At least one terminal of the OFDM or OFDMA system configured to receive downlink information from the base station system and send uplink information according to the indication of the base station;
  • a base station system configured to receive uplink information from an OFDM or OFDMA system terminal and send corresponding downlink information
  • the base station system further includes:
  • a MAC layer configured to receive data from an OFDM or OFDMA system terminal, and construct a frame structure in which OFDM and OFDMA coexist in a time division manner by OFDM and OFDMA data in the same frequency band, and distribute the frame structure to the physical layer;
  • a physical layer includes an OFDM physical layer module and an OFDMA physical layer module, configured to separately code and modulate OFDM or OFDMA data and transmit according to resources allocated by the MAC layer.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer of the base station system has a dual MAC structure, which includes:
  • the lower layer adaptation module is respectively connected to the OFDM MAC layer module, the OFDMA MAC layer module and the OFDM physical layer module and the OFDMA physical layer module located at the upper layer thereof, and is used for completing system mixed frame construction, resource allocation, and data. Transmission and other functions.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer further includes an upper layer adaptation module, configured to separately distribute the upper layer data packets to the OFDM MAC layer module or the OFDMA MAC layer module according to the receiving object.
  • an upper layer adaptation module configured to separately distribute the upper layer data packets to the OFDM MAC layer module or the OFDMA MAC layer module according to the receiving object.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer distributes the upper layer data packets to the OFDM MAC layer module or the OFDMA MAC layer module according to the receiving object through the router outside the base station system.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the lower layer adaptation module performs all information interactions with the MAC layer module and the physical layer module, including data and related resource scheduling messages.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the lower layer adaptation module Only the related resource scheduling messages are exchanged with the MAC layer module and the physical layer module, and the data interaction is directly performed between the MAC layer module and the physical layer module.
  • the OFDM MAC layer module is composed of an OFDM CS sublayer module, an OFDM CPS sublayer module, and an OFDM security sublayer module that are sequentially connected;
  • the OFDMA MAC layer module The OFDM A CS sublayer module, the OFDMA CPS sublayer module, and the OFDMA security sublayer module are sequentially connected, wherein
  • the OFDM CS sublayer module and the OFDMA CS sublayer module are respectively used to perform classification and packing of OFDM and OFDMA data processed by the upper layer adaptation module;
  • the OFDM CPS sublayer module and the OFDMA CPS sublayer module are respectively configured to process data output by the OFDM CS sublayer module and the OFDMA CS sublayer module, and construct a frame structure capable of realizing OFDM and OFDMA coexistence in a time division manner, and complete the system.
  • Core MAC functions including system access, bandwidth allocation, resource scheduling, connection establishment and maintenance;
  • the OFDM security sublayer module and the OFDMA security sublayer module are respectively configured to process data outputted by the OFDM CPS sublayer module and the OFDMA CPS sublayer module, and implement functions such as system authentication, key management, and data encryption and decryption.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer of the base station system adopts a converged MAC structure, including:
  • CS sublayer module for uniformly classifying and packing OFDM and OFDMA data
  • the CPS reuse module is configured to uniformly process the OFDM and OFDMA data output by the CS sublayer module, and implement the processing of the reusable part and the uniform resource scheduling part in the CPS processing of the OFDM and the OFDMA;
  • the security sublayer module is connected to the OFDM CPS sublayer non-reuse module, the OFDMA CPS sublayer non-reuse module, and the CPS reuse module, and is used for unified authentication, key management, data encryption and decryption, etc. of the OFDM and OFDMA systems.
  • the management function is connected to the OFDM physical layer module and the OFDMA physical layer module, and is configured to distribute the processed data to the OFDM physical layer module and the OFDMA physical layer module.
  • the foregoing OFDM and OFDMA coexistence system is characterized in that the base station system uses a stack Additive structure, including independent
  • An OFDM base station system configured to receive uplink information from an OFDM system terminal and transmit corresponding downlink information thereto;
  • the OFDM base station system includes an OFDM MAC sublayer module of a MAC layer and an OFDM physical layer module of a physical layer;
  • An OFDMA base station system configured to receive uplink information from an OFDMA system terminal and send corresponding downlink information thereto;
  • the OFDMA base station system includes an OFDMA MAC sublayer module of a MAC layer and an OFDMA physical layer module of a physical layer;
  • the OFDM base station system and the OFDMA base station system exchange information at the MAC layer through the interface to determine the transmission order of the two base station systems.
  • the present invention also provides a method for cooperative operation of an OFDM and OFDMA coexistence system, which is applied to a coexistence system of OFDM and OFDMA, the coexistence system comprising at least one terminal of OFDM or OFDMA system, and a base station system
  • the method includes the following steps:
  • the base station system constructs the OFDM and OFDMA data of the same frequency band into a frame structure capable of coexisting OFDM and OFDMA in a time division manner, including respective uplink and downlink subframes;
  • the base station system sets the overhead information of the OFDMA and the OFDM respectively, and the allocation information of the respective uplink and downlink subframes is indicated in the overhead information;
  • the base station system sends downlink data such as synchronization information, overhead information, and load in the OFDMA downlink subframe according to the requirements of the OFDMA system, and sends downlink information such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
  • the terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
  • the terminal receives the downlink load data at the location specified by the base station according to the received overhead information.
  • the terminal sends the uplink data at the location specified by the base station according to the received overhead information.
  • the base station divides the frame into two parts on the time axis, one part is used for transmitting the downlink subframe, and the other part is used for receiving the uplink subframe;
  • the base station divides the downlink subframe into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for transmitting the OFDM downlink subframe;
  • the base station divides the uplink subframe into two parts on the time axis, one part for transmitting the OFDMA uplink subframe and the other part for transmitting the OFDM uplink subframe.
  • the foregoing method for cooperating the OFDM and the OFDMA coexistence system is characterized in that: part of the OFDM uplink or downlink subframe may be used for the OFDMA uplink or downlink subframe as needed, and part of the OFDMA uplink or downlink subframe may also be used. Lend to OFDM uplink or downlink subframes as needed.
  • the above method for cooperating OFDM and OFDMA coexistence systems is characterized in that the process of constructing a coexistence frame structure by the base station system comprises the following steps: the base station divides the frame into two parts on the time axis, one part for transmitting the OFDMA frame, and the other part for transmitting the OFDMA frame, and the other part Used to transmit OFDM frames;
  • the base station divides the OFDMA frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
  • the base station divides the OFDM frame into two parts on the time axis, one for transmitting the OFDM downlink subframe and the other for receiving the OFDM uplink subframe.
  • the foregoing method for cooperating OFDM and OFDMA cooperating systems is characterized in that a part of the OFDM subframe can be used for the OFDMA subframe as needed, and a part of the OFDMA subframe can also be borrowed for the OFDM subframe as needed.
  • the base station divides the frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
  • the base station allocates a region in the OFDMA downlink subframe for transmitting the OFDM downlink subframe.
  • the base station allocates a region in the OFDMA uplink subframe for receiving the OFDM uplink subframe.
  • Figure 1 is a block diagram of an existing OFDM system
  • FIG. 2 is a schematic diagram of a protocol structure on a system data/control plane in the IEEE802.16 standard in the prior art
  • FIG. 3 is a time domain waveform diagram of an OFDM signal with a cyclic prefix added in the prior art
  • FIG. 4 is a schematic structural diagram of an OFDM frame in the prior art
  • FIG. 5 is a schematic structural diagram of an OFDMA frame in the prior art
  • FIG. 4 is a schematic structural diagram of an OFDM frame in the prior art
  • FIG. 5 is a schematic structural diagram of an OFDMA frame in the prior art
  • FIG. 5 is a schematic structural diagram of an OFDMA frame in the prior art
  • FIG. 6 is a schematic diagram of a frame structure of a time division system commonly used in the prior art
  • FIG. 7A is a schematic diagram of a frame structure of a first embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention
  • FIG. 7B is a schematic diagram of another frame structure of a first embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention
  • FIG. 8 is a schematic diagram of a frame structure of a second embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention
  • FIG. 9 is a schematic diagram of a frame structure of a third embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention.
  • 10A is a schematic structural diagram of a base station system having a dual MAC structure in a first embodiment of a frame for implementing an OFDM and OFDMA coexistence system according to the present invention
  • FIG. 10B is another schematic structural diagram of a base station system with dual MAC structure according to a first embodiment of an OFDM and OFDMA coexistence system according to the present invention.
  • FIG. 11 is a schematic structural diagram of a base station system having a fused MAC structure according to a second embodiment of the OFDM and OFDMA coexistence system of the present invention
  • FIG. 12 is a schematic structural diagram of a superposed base station system according to a third embodiment of the OFDM and OFDMA coexistence system of the present invention.
  • FIG. 13A is a schematic diagram of a network structure of an alternative base station according to the present invention.
  • FIG. 13B is a schematic structural diagram of a superposed base station network according to the present invention.
  • FIG. 13C is a schematic diagram of another superposed base station network architecture according to the present invention. The best way to implement the invention
  • the frame structure of a common time division system is as shown in FIG. 6.
  • One frame includes one downlink subframe and one uplink subframe, and the uplink or downlink subframe includes multiple slots for data transmission, downlink subframes and uplink subframes.
  • the transition interval between them is called a TGW (transition transition gap), and the transition interval between an uplink subframe and a downlink subframe is called RTG (receive transition gap).
  • a frame is first divided into a downlink subframe and an uplink subframe, and the uplink/downlink subframes are respectively combined by the OFDMA subframe and the OFDM subframe in a time division manner.
  • the downlink subframe is divided into an OFDMA downlink subframe and an OFDM downlink subframe
  • the uplink subframe is divided into an OFDMA uplink subframe and an OFDM uplink subframe.
  • OFDMA terminal it sees a complete OFDMA frame.
  • the time slot occupied by the OFDM downlink subframe can be regarded as part of the TTG in the OFDMA frame or an area already allocated in the OFDMA downlink subframe.
  • the OFDM uplink subframe The occupied time slot can also be regarded as a part of the RTG in the OFDMA frame or an area already allocated in the OFDMA uplink subframe.
  • the area occupied by the TTG, RTG or OFDM subframe may be indicated in the overhead message in the OFDMA subframe.
  • For an OFDM terminal it also sees a complete OFDM frame.
  • the time slot occupied by the OFDMA uplink subframe can be regarded as a part of the TTG in the OFDM frame or an area already allocated in the OFDM downlink subframe.
  • the OFDMA downlink subframe The occupied time slot can be seen as part of the RTG in the OFDM frame.
  • the time slot occupied by the TTG or OFDMA subframe may be indicated in the overhead message in the OFDM subframe.
  • the communication process of the OFDM or OFDMA terminal is exactly the same as the conventional method. They can obtain the starting position of the downlink frame by searching the prefix, and obtain the starting position of the uplink frame by using the overhead message.
  • FIG. 7A becomes FIG. 7B, and the OFDM and OFDMA terminals are processed at this time. Similar to the previous description.
  • the position of the OFDMA subframe and the position of the OFDM subframe are also interchangeable, and the processing manner of the terminal is basically the same as that of the foregoing, and will not be described in detail herein.
  • the advantage of this embodiment is that the OFDMA subframe and the OFDM subframe are completely independent, and the communication requirements of the OFDMA and the OFDM system can be satisfied simultaneously without changing the implementation of the two systems.
  • an OFDM subframe and an OFDMA subframe are combined in a time division manner in one frame.
  • one frame includes one OFDM subframe and one OFDMA subframe, and one OFDM subframe includes one lower if.
  • An OFDM subframe and an uplink OFDM subframe one OFDMA subframe includes one downlink OFDMA subframe and one uplink OFDMA subframe.
  • For OFDM terminals it looks A complete OFDM frame is obtained.
  • the time slot occupied by the OFDMA subframe is regarded as a part of the RTG in the OFDM frame or the burst allocated by the uplink OFDM subframe.
  • the time slot occupied by the RTG or OFDMA subframe is determined by the OFDM system. Opening the message instructions.
  • the time slot occupied by the OFDM subframe can be regarded as part of the RTG in the OFDMA frame or the burst allocated by the uplink OFDMA subframe, occupied by the RTG or OFDM subframe.
  • the time slot is indicated by the overhead message of the OFDMA system.
  • the difference between this embodiment and the above-mentioned first embodiment lies in the overhead of requiring additional uplink/downlink conversion time between the upper fi downlink subframes of OFDM or OFDMA.
  • the OFDM sub-frame and the OFDMA subframe of this embodiment may also be interchanged, that is, the OFDMA subframe is first, and the OFDM subframe is after, because there is no difference in implementation and processing, and no further description is made.
  • the data area (excluding the prefix) in the OFDMA uplink/downlink frame is divided into a continuous frequency band for the uplink/downlink frame transmission of the OFDM system, and the position of the OFDM frequency band in the OFDMA band can be based on actual conditions. The situation is adjusted. As shown in FIG. 9, the OFDM subframe and the OFDMA subframe respectively have their own independent uplink and downlink subframes. In order to prevent OFDM data and OFDMA data from interfering with each other, a certain guard band needs to be allocated around the OFDM subframe frequency band. This scheme is applicable to the case where the OFDM system and the OFDMA system use the same frequency band but different bandwidths and the OFDMA system adopts the continuous subcarrier allocation mode.
  • the OFDMA system actually plays the role of the OFDM data bearer.
  • the advantage of this embodiment is that when the bandwidths of the two systems are different, the spectrum utilization is high.
  • the disadvantage is that when the OFDMA subcarriers adopt the discontinuous division mode, the system cannot implement the system.
  • the above different OFDMA frame structures can be selected to ensure that the upgraded OFDMA system satisfies both OFDM simultaneously. Communication requirements with OFDMA terminals.
  • the OFDM and OFDMA coexistence system includes: at least one OFDM or OFDMA terminal for receiving downlink information from a base station system and transmitting uplink information according to a base station indication; and a base station system for receiving from Uplink information of an OFDM or OFDMA system terminal and transmitting corresponding downlink information, the base station system includes: a MAC layer, used for Receiving data from an OFDM or OFDMA system terminal, processing the OFDM or OFDMA data separately, and distributing the processed data to the physical layer; and a physical layer including the OFDM physical layer module and the OFDMA physical layer module, The OFDM or OFDMA data is separately coded and transmitted and transmitted according to resources allocated by the MAC layer.
  • the OFDM and OFDMA coexistence systems can adopt the following three structures:
  • the base station system adopts a dual MAC structure. As shown in FIG. 10A or FIG. 10B, the base station system includes the following modules:
  • the upper layer adaptation module is configured to separately distribute the upper layer data packet to the OFDM CS sublayer module or the OFDMA CS sublayer module according to the receiving object.
  • the module can also be implemented by a router outside the base station, and the base station system will not include the module;
  • An OFDM CS sublayer module and an OFDMA CS sublayer module which are used to perform classification and packing of OFDM and OFDMA data processed by the upper layer adaptation module;
  • An OFDM CPS sublayer module and an OFDMA CPS sublayer module which are respectively used to process data output by the OFDM CS sublayer module and the OFDMA CS sublayer module, respectively (Note: the construction of the frame structure is performed in the CPS sublayer module, Not implemented in the CS layer) They complete the core MAC functions of the system, such as system access, bandwidth allocation, resource scheduling, connection establishment and maintenance, etc.
  • OFDM security sublayer module and OFDMA security sublayer module which are respectively used to process data outputted by the OFDM CPS sublayer module and the OFDMA CPS f layer module, which implement system authentication, key management, and data encryption and decryption. Waiting for
  • a lower layer adaptation module which is followed by an OFDM Security Sublayer Module and an OFDMA Security Sublayer Module. Responsible for completing system mix frame construction, resource allocation, data transfer and other functions;
  • An OFDM physical layer module and an OFDMA physical layer module where the layer is used for coding and modulating OFDM and OFDMA data respectively, and transmitting according to resources allocated by the lower layer adaptation module;
  • the processing of the upper layer data packet by the upper layer adaptation module is respectively sent to the OFDM CS sublayer module or the OFDMA CS sublayer module for processing according to the receiving object.
  • the data processed by the OFDM CPS sublayer module and the security sublayer module or the OFDMA CPS sublayer module and the security sublayer module are processed by the lower layer adaptation module to complete the functions of mixed frame construction, resource allocation and scheduling, data transmission, etc., and then pass through OFDM respectively.
  • the physical layer module or the OFDMA physical layer module performs code modulation and transmits, as shown in FIG. 10A.
  • the information flow between the modules in Figure 10A is represented by the arrows shown in the figure, the module The information flow between the data stream sent by the uplink and the downlink and the message stream of the 5: between the modules.
  • the dual MAC structure shown in FIG. 10A can also be changed to that shown in FIG. 10B.
  • the information flow between the modules includes three types, and 2 is data and messages. Information flow, 3 is the data stream, and 4 is the message stream.
  • the interaction between the lower layer adaptation module and the OFDM MAC layer module, the OFDMA MAC layer module, the OFDM physical layer module, and the OFDMA physical layer module is only a message flow for resource allocation and scheduling, and the OFDM MAC layer module or the OFDMA MAC layer
  • the data stream output by the module is sent directly to the OFDM physical layer module or the OFDMA physical layer module.
  • there is a completely independent OFDM corresponding processing module and an OFDMA corresponding processing module so the implementation is relatively simple.
  • the base station system adopts a converged MAC structure.
  • the base station system includes the following modules:
  • CS sub-layer module which is used for uniformly classifying and packaging OFDM and OFDMA data
  • OFDM CPS sub-layer non-reuse module and OFDMA CPS sub-layer reuse module; the two modules respectively process OFDM and OFDMA data output by the CS sub-layer module, which implement a part of the difference between CPS processing of OFDM and OFDMA;
  • CPS reuse module which uniformly processes the CS sub-layer module output S J OFDM and OFDMA data, and the reuse module combines the same part of OFDM and OFDMA in CPS processing and the part of unified resource scheduling;
  • Security sublayer module which is used to uniformly implement functions such as authentication, key management, and data encryption and decryption of OFDM and OFDMA systems;
  • An OFDM physical layer module and an OFDMA physical layer module which are used to separately code and modulate OFDM and OFDMA data and transmit according to resources allocated by the CPS reuse module.
  • the upper layer data is processed by the unified CS sublayer module and then processed to perform corresponding CPS processing.
  • the reusable parts (such as resource allocation and scheduling) in the CPS processing are uniformly processed in the CPS reuse module, and the non-reusable parts in the CPS processing are processed. It is processed by the OFDM CPS sublayer non-reuse module and the OFDMA CPS sublayer non-reuse module, respectively.
  • the security sublayer module performs unified encryption, decryption and security management on the data output by the OFDM CPS sublayer non-reuse module and the OFDMA CPS sublayer non-reuse module.
  • the OFDM physical layer module and the OFDMA physical layer module are separately transmitted according to the scheduling information in the CPS reuse module.
  • the base station system that combines the MAC structure maximizes the reuse between the OFDM and OFDMA modules, and fuses the same modules or modules that require joint scheduling. For modules with large differences, such as some MAC messages, they are processed separately, so they are more efficient.
  • the base station system may also adopt a structure of a superposition manner, as shown in FIG. 12, including an OFDM base station system, configured to receive uplink information from an OFDM system terminal and send corresponding downlink information thereto; a base station system, configured to receive uplink information from an OFDMA standard terminal and send corresponding downlink information thereto.
  • the OFDM system and the OFDMA system are independent of each other, and have a certain interface (there is no special requirement for the interface, as long as the interaction of the relevant parameters is completed) to meet the needs of the interaction between the MAC layer of the OFDM system and the MAC layer of the OFDMA system.
  • the order of transmission of the two base station systems is determined.
  • the MAC layer includes a CS, a CPS, and a security sublayer module, and the process of constructing the frame structure is implemented in the CPS.
  • the information exchanged by the interface mainly includes the start and end slots of the OFDM subframe, the start junction slot of the OFDMA subframe, and the like.
  • the information interaction between the OFDM system and the OFDMA system can also be guaranteed by the setting in the background, but this method is less flexible in implementation.
  • the area of the network architecture of the base station of the dual MAC structure and the base station of the fused MAC structure is only the internal implementation of the base station system, and can be represented by Fig. 13A.
  • 11 is an OFDM terminal
  • 12 is an OFDMA terminal
  • 13 is a base station system with a dual MAC structure or a fused MAC structure.
  • the data sent to 11 and 12 is processed by two completely independent systems after being easily distinguished by the adaptation layer.
  • the data sent to 11 and 12 is uniformly processed by 13, and the time-sharing transmission of OFDM and OFDMA data is realized by the CPS reuse module therein.
  • FIG. 13B 21 is an OFDM terminal
  • 22 is an OFDM terminal
  • 23 is a base station system of OFDM
  • 24 is a base station system of OFDMA, where 23 and 24 ⁇ ; two separate entities can be placed in the same location, 23 and 24
  • the core network is independently accessed to support different terminals 21 and 22, and the interface between 23 and 24 completes the message interaction between 23 and 24 to form a timing match on the transmission of the OFDM base station and the OFDMA base station.
  • FIG. 13C 31 is an OFDM terminal, 32 is an OFDMA terminal, 33 is a base station system of OFDM; and 34 is a base station system of OFDM.
  • the difference between FIG. 13B and FIG. 13C is that the base station 33 does not directly access the core network, and the base station
  • the interface between the network 33 and the base station 34 requires both simple information interaction and data transmitted by the base station 33 to the core network. Therefore, in the two implementation manners, the design of the interface should have different requirements.
  • the above different base station system structure and network architecture implementation manner are selected, and the system can be conveniently compatible with the OFDM system and the OFDMA system.
  • Method one includes the following steps:
  • the base station divides the frame into two parts on the time axis, one part is used for transmitting the downlink subframe, and the other part is used for receiving the uplink subframe;
  • the base station divides the downlink subframe into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for transmitting the OFDM downlink subframe, wherein part of the OFDM uplink or downlink subframe can be loaned to the OFD.MA uplink as needed.
  • the downlink subframe is used, and part of the OFDMA uplink or downlink subframe may also be used for OFDM uplink or downlink subframes as needed;
  • the base station divides the uplink subframe into two parts on the time axis, one part is used for transmitting the OFDMA uplink subframe, and the other part is used for transmitting the OFDM uplink subframe;
  • the base station sets the overhead information of OFDMA and OFDM respectively, and indicates the allocation of the respective uplink and downlink subframes in the overhead information;
  • the base station transmits downlink data such as synchronization information, resale information, and load according to the requirements of the OFDMA system in the OFDMA downlink subframe, and transmits downlink information such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
  • the terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
  • the terminal receives the downlink load data at the location specified by the base station according to the received overhead information.
  • the terminal sends the uplink data at the location specified by the base station according to the received overhead information.
  • the base station divides the frame into two parts on the time axis, one part for transmitting the OFDMA frame and the other part for transmitting the OFDM frame;
  • the base station divides the OFDMA frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
  • the base station divides the OFDM frame into two parts on the time axis, one part is used for transmitting the OFDM downlink subframe, and the other part is used for receiving the OFDM uplink subframe; wherein, part of the OFDM subframe can be borrowed for the OFDMA subframe as needed, the OFDMA sub- A part of the frame may also be borrowed for use by the OFDM subframe as needed;
  • the base station sets the overhead information of the OFDMA and the OFDM according to the allocation of the frame, and indicates the allocation of the uplink and downlink subframes in the overhead information;
  • the base station sends downlink data such as synchronization information, sales information, and load in the OFDMA downlink subframe according to the requirements of the OFDMA system;
  • the base station transmits downlink data such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
  • the terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
  • the terminal receives the downlink load data at the location specified by the base station according to the received overhead information.
  • the terminal sends the uplink data at the location specified by the base station according to the received overhead information.
  • Method three includes the following steps:
  • the base station divides the frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
  • the base station allocates a region in the OFDMA downlink subframe for transmitting the OFDM downlink subframe.
  • the base station allocates a region in the OFDMA uplink subframe for receiving the OFDM uplink subframe.
  • the base station sets the overhead information of the OFDMA according to the allocation of the frame, and indicates the allocation of the uplink and downlink subframes in the overhead information in the overhead information;
  • the base station sets the OFDM overhead information according to the allocation of the frame, and specifies the allocation of the OFDM uplink and downlink subframes in the overhead information.
  • the part of the base station allocated to the OFDMA system in the downlink subframe transmits downlink data such as synchronization information, overhead information, and load according to the requirements of the OFDMA system;
  • the part of the OFDM system allocated by the base station in the downlink subframe transmits downlink data such as synchronization information, overhead information, and load according to the requirements of the OFDM system;
  • the terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
  • the terminal receives downlink load data at a location specified by the base station according to the received overhead information;
  • the terminal transmits the uplink data at the location specified by the base station according to the received overhead information.
  • the OFDMA system can be easily upgraded and compatible with the OFDM terminal
  • the backward compatibility of the OFDM system can be maintained after the OFDM system is upgraded to the OFDMA system, thereby protecting the interests of the operator and the user;

Abstract

A OFDM and OFDMA coexistence system and a cooperation method thereof, the coexistence system comprises : at least a OFDM or OPDMA terminal for receiving downlink information from a BS system and transmitting uplink information based on the indication of the BS; and a BS system for receiving the uplink information from the OFDM or OPDMA terminal and transmitting corresponding downlink information , the frame struq,ture of OFDM and OPDMA coexistence is realized by constituting the OFDM land OPDMA data which are in the same frequency band in TDMA fashion then the OFDM and OPDMA coexistence is realized The BS system may be a BS system with a double MAC structure or an inosculated MAC structure or a superimpose structure , and the appropriate frame structure of the OFDM and OPDMA coexistence system is realized by the BS system , then the appropriate frame structure ensures that the air interface is compatible with two different TDMA systems so that the benefit of the investor and user can be protected at the maximum extent.

Description

一种 OFDM和 OFDMA的共存系统及其协同工作方法 技术领域  Coexistence system of OFDM and OFDMA and cooperative working method thereof
本发明涉及两种时分系统的共存系统及实现不同时分系统协同工作的方 法, 特别是涉及一种正交频分复用 (OFDM, orthogonal frequency division multiplexing) 禾口正交频分多址接入 ( OFDMA, orthogonal frequency division multiplexing access) 这两种不同的时分系统的共存系统及其协同工作方法。 背景技术  The invention relates to a coexistence system of two time division systems and a method for realizing different time division systems to work together, in particular to an orthogonal frequency division multiplexing (OFDM) and orthogonal frequency division multiple access (OFDM) (OFDMA, orthogonal frequency division multiplexing access) The coexistence system of these two different time division systems and their cooperative working methods. Background technique
正交频分复用系统(OFDM)是一种常见的时分系统, 该系统有很高的频 谱利用率, 适应于无线数据传输领域。  Orthogonal Frequency Division Multiplexing (OFDM) is a common time division system with high spectrum utilization and is suitable for wireless data transmission.
传统 OFDM系统收发信机结构见图 1,这其中采用了数字调制,如 QPSK (正交相移键控— quadrature phase-shift keying) 、 QAM (正交幅度调制一 quadrature amplitude modulation) 等。 编码方式可以采用多种形式, 如 RS (Reed-Solomon)码、 BTC (Block Turbo Code)码、 CTC ( Conventional Turbo Code)码等。 在图 1中, 包括发射机的结构 100, 接收机的结构 200。 发射的 信号经过编码、交织后, 进行数字调制后, 插入导频, 经串并转换后执行逆快 速傅立叶变换 (IFFT运算) , 再经过并串转换, 送到射频单元处理, 送到发 射天线。这里插入循环前缀和力 Π窗的目的是为了克服多径的干扰,并且有利于 接收机侧执行快速傅立叶变换 (FFT运算) , 减少发射信号的杂散。接收处理 过程是, 将从接收天线来的信号经过 RF变换后, 经 A/D处理, 转换成数字信 息, 再串并转换, 执行 FFT运算和并串转换, 执行信道估计和信道校正, 进 行数字解调, 经解交织和解码, 完成处理。  The structure of the traditional OFDM system transceiver is shown in Figure 1. This uses digital modulation, such as QPSK (quadrature phase shift keying) and QAM (quadrature amplitude modulation). The encoding method can take many forms, such as RS (Reed-Solomon) code, BTC (Block Turbo Code) code, CTC (Conventional Turbo Code) code, and the like. In Fig. 1, a structure 100 of a transmitter, a structure 200 of a receiver is included. After the signal is encoded and interleaved, digitally modulated, the pilot is inserted, and the inverse fast Fourier transform (IFFT operation) is performed after serial-to-parallel conversion, and then subjected to parallel-serial conversion, and sent to the radio unit for processing and sent to the transmitting antenna. The purpose of inserting the cyclic prefix and the force window here is to overcome the multipath interference and to facilitate the fast Fourier transform (FFT operation) on the receiver side to reduce the spur of the transmitted signal. The receiving process is: after the RF-transformed signal from the receiving antenna is subjected to A/D processing, converted into digital information, serial-to-serial converted, FFT operation and parallel-to-serial conversion are performed, channel estimation and channel correction are performed, and digital is performed. Demodulation, deinterleaving and decoding, complete the processing.
广义的 OFDM系统包括 OFDM和 OFDMA两种系统, OFDMA的基本原 理与 OFDM类似, 两者的区另 1J在于 OFDMA系统突发的分配是在时间和频率 的二维区间进行, 而 OFDM系统突发的分配仅在时间维上进行分配。 与传统 的 OFDM系统相比, OFDMA系统带宽分配更加灵活, 且更适用于蜂窝组网, 因而越来越受到人们的关注。  The generalized OFDM system includes both OFDM and OFDMA systems. The basic principle of OFDMA is similar to OFDM. The other two regions are that the burst allocation of the OFDMA system is performed in the two-dimensional interval of time and frequency, while the OFDM system bursts. Assignments are only allocated on the time dimension. Compared with the traditional OFDM system, the OFDMA system has more flexible bandwidth allocation and is more suitable for cellular networking, and thus has attracted more and more attention.
而在 IEEE802.16标准中虽然采用了 OFDM和 OFDMA两种技术,但在现 有的标准中,这两种技术是相对独立的,标准中没有专门为这两种系统的协同 工作作任何明确的规定。 从兼容性的角度出发, 有必要对 OFDM 系统和 OFDMA系统的协同工作进行研究, 使得未来的系统能够同时支持 OFDM和 OFDMA两种技术, 最大程度地保护投资者和用户的利益。 In the IEEE802.16 standard, although the two technologies of OFDM and OFDMA are adopted, in the existing standards, the two technologies are relatively independent, and there is no cooperation for the two systems in the standard. Work is clearly defined. From the perspective of compatibility, it is necessary to study the cooperative work of OFDM system and OFDMA system, so that future systems can support both OFDM and OFDMA technologies to protect the interests of investors and users.
IEEE802.16标准中规定了基站系统数据 /控制平面的协议栈结构, 如图 2 所示。协议栈包括 MAC层和 PHY层两个部分,其中 MAC层在协议栈中从上 到下又分为 CS 子层 (Convergence Sublayer) 、 CPS 子层 (Common Part Sublayer) 、 安全子层 (Security Sublayer) 三个部分。 其中 CS子层负责接收 上层数据, 划分外部网络业务数据单元并分别与适当的 MAC 业务流和 CID (Connection Identifier)相联系以及完成负载头压缩; CPS子层完成系统接入、 带宽分配、 资源调度、 连接建立和保持等功能; 安全子层完成鉴权、密钥管理 和加解密的功能; 物理层实现数据的编码调制以及发送。  The IEEE 802.16 standard specifies the protocol stack structure of the base station system data/control plane, as shown in Figure 2. The protocol stack includes two parts, the MAC layer and the PHY layer. The MAC layer is further divided into a CS sublayer (Convergence Sublayer), a CPS sublayer (Common Part Sublayer), and a Security Sublayer from top to bottom in the protocol stack. Three parts. The CS sublayer is responsible for receiving the upper layer data, dividing the external network service data unit and respectively associated with the appropriate MAC traffic flow and CID (Connection Identifier) and completing the load header compression; the CPS sublayer completes system access, bandwidth allocation, resource scheduling , connection establishment and maintenance functions; security sub-layer to complete the functions of authentication, key management and encryption and decryption; physical layer to achieve data encoding and transmission and transmission.
对于 OFDM和 OFDMA共存系统, 常规的协议栈无法满足对 OFDM和 OFDMA的兼容, 因此需要重新设计 OFDM和 OFDMA共存系统的基站系统 结构。  For OFDM and OFDMA coexistence systems, the conventional protocol stack cannot meet the compatibility of OFDM and OFDMA, so the base station system structure of OFDM and OFDMA coexistence systems needs to be redesigned.
另外, OFDM系统采用多载波技术, 将高速数据流通过串并转换, 使得 每个子载波上的数据符号持续长度相对增加,从而可以有效地减小无线信道的 时间弥散随带来的 ISI (InterSymbol Interference, 号间干扰) , 这样就减小了 接收机内均衡的复杂度,甚至可以避免采用均衡器,仅通过采用插入循环前缀 的方法消除 ISI的不利影响。 OFDM系统的各个子载波之间存在正交性, 容许 各个子载波的频谱相互重叠, 因此与常规的频分复用系统相比, OFDM系统 可以最大限度地利用频谱资源。  In addition, the OFDM system adopts multi-carrier technology to convert the high-speed data stream through serial-to-parallel conversion, so that the duration of the data symbols on each sub-carrier is relatively increased, so that the time dispersion of the wireless channel can be effectively reduced (ISI) (InterSymbol Interference, Inter-symbol interference), which reduces the complexity of the equalization in the receiver, and even avoids the use of an equalizer, eliminating the adverse effects of ISI only by inserting a cyclic prefix. There is orthogonality between the subcarriers of the OFDM system, which allows the spectrum of each subcarrier to overlap each other, so the OFDM system can make maximum use of the spectrum resources compared with the conventional frequency division multiplexing system.
如图 3是现有技术中一种采用循环插入前缀的 OFDM符号时域波形图。 在图 3中, Tb代表了 OFDM信号中有效的符号周期, Tg是插入的循环前缀, Tg的内容是 Tb时间段内最后一部分内容的拷贝, Ts为整个 OFDM符号的周 期。 只要循环前缀的长度大于 OFDM符号的最大时延扩展, 在一个 OFDM符 号内各子载波的正交性将仍能得到保证。 因此, 通过周期性的插入循环前缀 Tg就可以克服多径的干扰。  FIG. 3 is a time domain waveform diagram of an OFDM symbol using a cyclic insertion prefix in the prior art. In Figure 3, Tb represents the effective symbol period in the OFDM signal, Tg is the inserted cyclic prefix, the content of Tg is the copy of the last part of the content in the Tb period, and Ts is the period of the entire OFDM symbol. As long as the length of the cyclic prefix is greater than the maximum delay spread of the OFDM symbol, the orthogonality of each subcarrier within an OFDM symbol will still be guaranteed. Therefore, multipath interference can be overcome by periodically inserting the cyclic prefix Tg.
IEEE802.16工作组将 OFDM和 OFDMA技术作为固定宽带无线接入的实 现方式。 图 4和图 5分别给出了 IEEE802.16a协议中 TDD (时分双工) 方式 下的 OFDM帧结构和 OFDMA的帧结构示意图。 在图 4中, 一个 OFDM帧包括一个下行子帧和一个上行子帧。 一个下行 子帧只包括一个下行 PHY PDU (Physical Protocol Data Unit) 。 一个上行子帧 包括用于初始 Ranging和带宽申请的竞争间隔以及一个或者多个上行 PHY PDU, 每个 PDU由不同的终端发送。 下行 PHY PDU从一个长前缀开始, 用 于物理层同步。 前缀之后是 FCH (Frame Control Header) 突发。 当前帧中如 果发送了 DL-MAP(Downlink Map)消息,它将是 FCH后第一个 MAC(Medium Access Control) PDU, FCH之后是一个或者多个下行突发。 每个突发可以采 用不同的突发属性(Burst Profile)传送。 每个下行突发包括整数个 OFDM符 号。 The IEEE 802.16 working group uses OFDM and OFDMA techniques as implementations of fixed broadband wireless access. FIG. 4 and FIG. 5 respectively show the OFDM frame structure and the frame structure of OFDMA in the TDD (Time Division Duplex) mode in the IEEE802.16a protocol. In FIG. 4, one OFDM frame includes one downlink subframe and one uplink subframe. A downlink subframe includes only one downlink PHY PDU (Physical Protocol Data Unit). One uplink subframe includes a contention interval for initial Ranging and bandwidth requests and one or more uplink PHY PDUs, each of which is transmitted by a different terminal. The downstream PHY PDU starts with a long prefix and is used for physical layer synchronization. The prefix is followed by a FCH (Frame Control Header) burst. If a DL-MAP (Downlink Map) message is sent in the current frame, it will be the first MAC (Medium Access Control) PDU after the FCH, and the FCH is followed by one or more downlink bursts. Each burst can be transmitted using a different Burst Profile. Each downlink burst includes an integer number of OFDM symbols.
在图 5 中, 一个 0FDMA 帧包括一个下行子帧和一个上行子帧, 下行 0FDMA 子帧的第一个数据符号中首先发射的两个子信道为 FCH。 上行 0FDMA子帧中包括 UL-MAP消息中指示的 Ranging子信道用于 Ranging处理 和带宽申请。  In Figure 5, an 0FDMA frame includes one downlink subframe and one uplink subframe, and the first two channels transmitted in the first data symbol of the downlink 0FDMA subframe are FCH. The Ranging subchannel indicated in the UL-MAP message is included in the uplink 0FDMA subframe for Ranging processing and bandwidth application.
在现有的技术中, 尚没有能够有效地实现 OFDM系统和 0FDMA系统协 同工作的方法。最近似的方法是在美国专利 US 6567374"Data and pilot mapping in an OFDM system"禾口 US 6535501 " Transmission method and transmission apparatus for transmitting signals on the basis of a OFDM/TDMA-system in a GSM/system"中提出的一种将 OFDM符号映射到 GSM时隙中的方法,在其中, 为了适应 GSM时隙的要求, OFDM的循环前缀和子载波间隔都需要进行相应 的修改。  In the prior art, there is no method for effectively implementing the cooperation between the OFDM system and the 0FDMA system. The most recent method is in US Pat. No. 6,567,374, "Data and pilot mapping in an OFDM system" and US 6,535,501 "Transmission method and transmission apparatus for transmitting signals on the basis of a OFDM/TDMA-system in a GSM/system". A method for mapping OFDM symbols into GSM time slots is proposed, in which the cyclic prefix and subcarrier spacing of OFDM need to be modified accordingly in order to adapt to the requirements of the GSM time slot.
因此, 为了使得未来的系统能够同时支持 0FDM、 OFDMA两种技术, 最 大程度地保护投资者和用户的利益,有必要设计一种满足 0FDM、 OFDMA共 存系统要求的帧结构及实现该帧结构的基站系统, 进而实现对 OFDM 和 OFDMA系统的兼容。 发明公开  Therefore, in order to enable the future system to support both 0FDM and OFDMA technologies to maximize the protection of investors and users, it is necessary to design a frame structure that satisfies the requirements of the 0FDM and OFDMA coexistence systems and the base station that implements the frame structure. The system, in turn, is compatible with OFDM and OFDMA systems. Invention disclosure
本发明的主要目的在于提供一种 OFDM和 OFDMA共存系统及其协同工 作的方法,通过构建合理的帧格式保证了空中接口对两种系统的兼容,及通过 一个合理的基站结构来实现 OFDM和 OFDMA的共存系统帧结构的构建, 进 而实现对 OFDM和 OFDMA的兼容及实现 OFDM和 OFDMA两种不同时分系 统的协同工作, 从而最大程度的保护投资者和用户的利益。 The main object of the present invention is to provide an OFDM and OFDMA coexistence system and a cooperative working method thereof, which ensures compatibility of the air interface with the two systems by constructing a reasonable frame format, and implements OFDM and OFDMA through a reasonable base station structure. The construction of the frame structure of the coexistence system, and thus the compatibility of OFDM and OFDMA and the realization of two different time systems of OFDM and OFDMA Work together to maximize the protection of the interests of investors and users.
为了实现上述目的, 本发明提出了一种 OFDM和 OFDMA的共存系统, 其特点在于, 包括:  In order to achieve the above object, the present invention proposes a coexistence system of OFDM and OFDMA, which is characterized in that it comprises:
至少一个 OFDM或者 OFDMA制式的终端, 用于接收来自基站系统的下 行信息并根据基站指示发送上行信息;  At least one terminal of the OFDM or OFDMA system, configured to receive downlink information from the base station system and send uplink information according to the indication of the base station;
一个基站系统, 用于接收来自 OFDM或者 OFDMA制式终端的上行信息 并发送相应的下行信息, 该基站系统又包括:  a base station system, configured to receive uplink information from an OFDM or OFDMA system terminal and send corresponding downlink information, where the base station system further includes:
一 MAC层, 用于接收来自 OFDM或者 OFDMA制式终端的数据, 通 过将相同频段的 OFDM和 OFDMA数据以时分方式构建 实现 OFDM和 OFDMA共存的帧结构, 并分发至物理层;  a MAC layer, configured to receive data from an OFDM or OFDMA system terminal, and construct a frame structure in which OFDM and OFDMA coexist in a time division manner by OFDM and OFDMA data in the same frequency band, and distribute the frame structure to the physical layer;
一物理层, 包含有 OFDM物理层模块和 OFDMA物理层模块, 用于对 OFDM或者 OFDMA数据分别进行编码调制并按照该 MAC层分配的资源进行 发送。  A physical layer includes an OFDM physical layer module and an OFDMA physical layer module, configured to separately code and modulate OFDM or OFDMA data and transmit according to resources allocated by the MAC layer.
上述的 OFDM和 OFDMA的共存系统,其特点在于,该基站系统的 MAC 层具有双 MAC结构, 其包括:  The foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer of the base station system has a dual MAC structure, which includes:
各自独立的 OFDM MAC层模块和 OFDMA MAC层模块, 用于分别接收 OFDM和 OFDMA数据并进行处理, 完成传统 MAC层所有的功能;  Separate OFDM MAC layer modules and OFDMA MAC layer modules for respectively receiving and processing OFDM and OFDMA data to complete all functions of the legacy MAC layer;
一下层适配模块, 分别与位于其上层的 OFDM MAC 层模块、 OFDMA MAC层模块以及位于其下层的 OFDM物理层模块、 OFDMA物理层模块相 连接, 用于完成系统混和帧构建、 资源分配、 数据传输等功能。  The lower layer adaptation module is respectively connected to the OFDM MAC layer module, the OFDMA MAC layer module and the OFDM physical layer module and the OFDMA physical layer module located at the upper layer thereof, and is used for completing system mixed frame construction, resource allocation, and data. Transmission and other functions.
上述的 OFDM和 OFDMA的共存系统, 其特点在于, 该 MAC层还包括 一上层适配模块,用于将上层数据包按照接收对象分别分发到 OFDM MAC层 模块或者 OFDMA MAC层模块进行处理。  The foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer further includes an upper layer adaptation module, configured to separately distribute the upper layer data packets to the OFDM MAC layer module or the OFDMA MAC layer module according to the receiving object.
上述的 OFDM和 OFDMA的共存系统, 其特点在于, 该 MAC层通过基 站系统外部的路由器来将上层数据包按照接收对象分别分发到 OFDM MAC 层模块或者 OFDMA MAC层模块进行处理。  The foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer distributes the upper layer data packets to the OFDM MAC layer module or the OFDMA MAC layer module according to the receiving object through the router outside the base station system.
上述的 OFDM和 OFDMA的共存系统, 其特点在于, 所述下层适配模块 与 MAC层模块和物理层模块之间进行所有的信息交互, 包括数据和相关资源 调度消息。  The foregoing OFDM and OFDMA coexistence system is characterized in that the lower layer adaptation module performs all information interactions with the MAC layer module and the physical layer module, including data and related resource scheduling messages.
上述的 OFDM和 OFDMA的共存系统, 其特点在于, 所述下层适配模块 与 MAC层模块和物理层模块之间只进行相关资源调度消息的交互, 而数据的 交互在 MAC层模块与物理层模块之间直接进行。 The foregoing OFDM and OFDMA coexistence system is characterized in that the lower layer adaptation module Only the related resource scheduling messages are exchanged with the MAC layer module and the physical layer module, and the data interaction is directly performed between the MAC layer module and the physical layer module.
上述的 OFDM和 OFDMA的共存系统,其特点在于,所述的 OFDM MAC 层模块由依序连接的 OFDM CS子层模块、 OFDM CPS子层模块、 OFDM安 全子层模块组成; 所述的 OFDMA MAC层模块由依序连接的 OFDM A CS子 层模块、 OFDMA CPS子层模块、 OFDMA安全子层模块组成, 其中,  The foregoing OFDM and OFDMA coexistence system is characterized in that: the OFDM MAC layer module is composed of an OFDM CS sublayer module, an OFDM CPS sublayer module, and an OFDM security sublayer module that are sequentially connected; the OFDMA MAC layer module The OFDM A CS sublayer module, the OFDMA CPS sublayer module, and the OFDMA security sublayer module are sequentially connected, wherein
所述 OFDM CS子层模块和 OFDMA CS子层模块, 分别用于完成经上层 适配模块处理后的 OFDM和 OFDMA数据的分类和打包;  The OFDM CS sublayer module and the OFDMA CS sublayer module are respectively used to perform classification and packing of OFDM and OFDMA data processed by the upper layer adaptation module;
所述 OFDM CPS子层模块和 OFDMA CPS子层模块,分别用于处理 OFDM CS 子层模块和 OFDMA CS 子层模块输出的数据, 以时分方式构建可实现 OFDM和 OFDMA共存的帧结构, 并完成系统的核心 MAC功能,包括系统接 入、 带宽分配、 资源调度、 连接建立和保持等功能;  The OFDM CPS sublayer module and the OFDMA CPS sublayer module are respectively configured to process data output by the OFDM CS sublayer module and the OFDMA CS sublayer module, and construct a frame structure capable of realizing OFDM and OFDMA coexistence in a time division manner, and complete the system. Core MAC functions, including system access, bandwidth allocation, resource scheduling, connection establishment and maintenance;
所述 OFDM安全子层模块和 OFDMA安全子层模块,分别用于处理 OFDM CPS子层模块和 OFDMA CPS子层模块输出的数据, 实现系统的鉴权、 密钥 管理以及数据的加解密等功能。  The OFDM security sublayer module and the OFDMA security sublayer module are respectively configured to process data outputted by the OFDM CPS sublayer module and the OFDMA CPS sublayer module, and implement functions such as system authentication, key management, and data encryption and decryption.
上述的 OFDM和 OFDMA的共存系统, 其特点在于, 该基站系统的 MAC 层采用融合 MAC结构, 包括:  The foregoing OFDM and OFDMA coexistence system is characterized in that the MAC layer of the base station system adopts a converged MAC structure, including:
CS子层模块, 用于统一对 OFDM和 OFDMA数据进行分类和打包; a CS sublayer module for uniformly classifying and packing OFDM and OFDMA data;
OFDM CPS子层非重用模块和 OFDMA CPS子层非重用模块, 用于分别 处理 CS子层模块输出的 OFDM和 OFDMA数据, 实现 OFDM和 OFDMA的 CPS处理中不可重用的部分的处理; An OFDM CPS sub-layer non-reuse module and an OFDMA CPS sub-layer non-reuse module for separately processing OFDM and OFDMA data output by the CS sub-layer module, and implementing a non-reusable portion of the CPS processing of OFDM and OFDMA;
CPS重用模块, 用于统一对 CS子层模块输出的 OFDM和 OFDMA数据 进行处理, 实现 OFDM和 OFDMA的 CPS处理中可重用的部分和统一资源调 度部分的处理;  The CPS reuse module is configured to uniformly process the OFDM and OFDMA data output by the CS sublayer module, and implement the processing of the reusable part and the uniform resource scheduling part in the CPS processing of the OFDM and the OFDMA;
安全子层模块, 与该 OFDM CPS子层非重用模块、 OFDMA CPS子层非 重用模块、 CPS重用模块连接,用于统一实现 OFDM和 OFDMA系统的鉴权、 密钥管理以及数据的加解密等安全管理功能; 并与该 OFDM物理层模块、 OFDMA物理层模块连接, 用于分发处理后的数据至该 OFDM物理层模块、 OFDMA物理层模块。  The security sublayer module is connected to the OFDM CPS sublayer non-reuse module, the OFDMA CPS sublayer non-reuse module, and the CPS reuse module, and is used for unified authentication, key management, data encryption and decryption, etc. of the OFDM and OFDMA systems. The management function is connected to the OFDM physical layer module and the OFDMA physical layer module, and is configured to distribute the processed data to the OFDM physical layer module and the OFDMA physical layer module.
上述的 OFDM和 OFDMA的共存系统, 其特点在于, 该基站系统釆用叠 加式结构, 包括相互独立的 The foregoing OFDM and OFDMA coexistence system is characterized in that the base station system uses a stack Additive structure, including independent
一个 OFDM基站系统, 用于接收来自 OFDM制式终端的上行信息并向其 发送相应的下行信息; 所述的 OFDM基站系统包括 MAC层的 OFDM MAC 子层模块和物理层的 OFDM物理层模块;  An OFDM base station system, configured to receive uplink information from an OFDM system terminal and transmit corresponding downlink information thereto; the OFDM base station system includes an OFDM MAC sublayer module of a MAC layer and an OFDM physical layer module of a physical layer;
一个 OFDMA基站系统, 用于接收来自 OFDMA制式终端的上行信息并 向其发送相应的下行信息; 所述的 OFDMA基站系统包括 MAC层的 OFDMA MAC子层模块和物理层的 OFDMA物理层模块;  An OFDMA base station system, configured to receive uplink information from an OFDMA system terminal and send corresponding downlink information thereto; the OFDMA base station system includes an OFDMA MAC sublayer module of a MAC layer and an OFDMA physical layer module of a physical layer;
其中 OFDM基站系统和 OFDMA基站系统之间在 MAC层通过接口交互 信息以确定两基站系统的发送顺序。  The OFDM base station system and the OFDMA base station system exchange information at the MAC layer through the interface to determine the transmission order of the two base station systems.
为了实现上述目的, 本发明还提供了一种 OFDM和 OFDMA的共存系统 协同工作的方法, 应用于一 OFDM和 OFDMA的共存系统, 该共存系统包含 至少一个 OFDM或者 OFDMA制式的终端, 以及一个基站系统; 其特点在于, 该方法包括如下步骤:  In order to achieve the above object, the present invention also provides a method for cooperative operation of an OFDM and OFDMA coexistence system, which is applied to a coexistence system of OFDM and OFDMA, the coexistence system comprising at least one terminal of OFDM or OFDMA system, and a base station system The feature is that the method includes the following steps:
基站系统将相同频段的 OFDM和 OFDMA数据以时分方式构建成可实现 OFDM和 OFDMA共存的帧结构, 包括各自的上、 下行子帧;  The base station system constructs the OFDM and OFDMA data of the same frequency band into a frame structure capable of coexisting OFDM and OFDMA in a time division manner, including respective uplink and downlink subframes;
基站系统分别设置 OFDMA和 OFDM的开销信息, 在开销信息中将指明 各自的上、 下行子帧的分配情况;  The base station system sets the overhead information of the OFDMA and the OFDM respectively, and the allocation information of the respective uplink and downlink subframes is indicated in the overhead information;
基站系统在 OFDMA下行子帧中按照 OFDMA系统的要求发送同步信息、 开销信息和负载等下行数据, 在 OFDM下行子帧中按照 OFDM系统的要求发 送同步信息、 开销信息和负载等下行数据;  The base station system sends downlink data such as synchronization information, overhead information, and load in the OFDMA downlink subframe according to the requirements of the OFDMA system, and sends downlink information such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
终端接收对应制式的下行同步信息和开销信息, 实现与基站的下行同步, 并获取相应的上、 下行子帧的分配信息;  The terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
终端根据接收到的开销信息, 在基站指定的位置接收下行负载数据; 终端根据接收到的开销信息, 在基站指定的位置发送上行数据。  The terminal receives the downlink load data at the location specified by the base station according to the received overhead information. The terminal sends the uplink data at the location specified by the base station according to the received overhead information.
上述的 OFDM和 OFDMA的共存系统协同工作的方法, 其特点在于, 该 基站系统构建共存帧结构的过程包括如下步骤:  The foregoing method for cooperating OFDM and OFDMA coexistence systems is characterized in that the process of constructing a coexistence frame structure by the base station system includes the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送下行子帧, 另一部分用 于接收上行子帧;  The base station divides the frame into two parts on the time axis, one part is used for transmitting the downlink subframe, and the other part is used for receiving the uplink subframe;
基站将下行子帧在时间轴上分成两部分, 一部分用于传送 OFDMA下行 子帧, 另一部分用于传送 OFDM下行子帧; 基站将上行子帧在时间轴上分成两部分, 一部分用于传送 OFDMA上行 子帧, 另一部分用于传送 OFDM上行子帧。 The base station divides the downlink subframe into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for transmitting the OFDM downlink subframe; The base station divides the uplink subframe into two parts on the time axis, one part for transmitting the OFDMA uplink subframe and the other part for transmitting the OFDM uplink subframe.
上述的 OFDM和 OFDMA的共存系统协同工作的方法, 其特点在于, 所 述 OFDM上行或者下行子帧的一部分可以根据需要借给 OFDMA上行或者下 行子帧使用, OFDMA上行或者下行子帧的一部分也可以根据需要借给 OFDM 上行或者下行子帧使用。  The foregoing method for cooperating the OFDM and the OFDMA coexistence system is characterized in that: part of the OFDM uplink or downlink subframe may be used for the OFDMA uplink or downlink subframe as needed, and part of the OFDMA uplink or downlink subframe may also be used. Lend to OFDM uplink or downlink subframes as needed.
上述的 OFDM和 OFDMA的共存系统协同工作的方法, 其特点在于, 该 基站系统构建共存帧结构的过程包括如下步骤- 基站将帧在时间轴上分成两部分, 一部分用于传送 OFDMA帧, 另一部 分用于传送 OFDM帧;  The above method for cooperating OFDM and OFDMA coexistence systems is characterized in that the process of constructing a coexistence frame structure by the base station system comprises the following steps: the base station divides the frame into two parts on the time axis, one part for transmitting the OFDMA frame, and the other part for transmitting the OFDMA frame, and the other part Used to transmit OFDM frames;
基站将 OFDMA帧在时间轴上分成两部分, 一部分用于发送 OFDMA下 行子帧, 另一部分用于接收 OFDMA上行子帧;  The base station divides the OFDMA frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
基站将 OFDM帧在时间轴上分成两部分,一部分用于发送 OFDM下行子 帧, 另一部分用于接收 OFDM上行子帧。  The base station divides the OFDM frame into two parts on the time axis, one for transmitting the OFDM downlink subframe and the other for receiving the OFDM uplink subframe.
上述的 OFDM和 OFDMA的共存系统协同工作的方法, 其特点在于, 所 述 OFDM子帧的一部分可以根据需要借给 OFDMA子帧使用, OFDMA子帧 的一部分也可以根据需要借给 OFDM子帧使用。  The foregoing method for cooperating OFDM and OFDMA cooperating systems is characterized in that a part of the OFDM subframe can be used for the OFDMA subframe as needed, and a part of the OFDMA subframe can also be borrowed for the OFDM subframe as needed.
上述的 OFDM和 OFDMA的共存系统协同工作的方法, 其特点在于, 该 基站系统构建共存帧结构的过程包括如下步骤:  The foregoing method for cooperating OFDM and OFDMA coexistence systems is characterized in that the process of constructing a coexistence frame structure by the base station system includes the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送 OFDMA下行子帧, 另一部分用于接收 OFDMA上行子帧;  The base station divides the frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
基站在 OFDMA下行子帧中分配出一段区域,用于发射 OFDM下行子帧; 基站在 OFDMA上行子帧中分配出一段区域,用于接收 OFDM上行子帧。 附图简要说明  The base station allocates a region in the OFDMA downlink subframe for transmitting the OFDM downlink subframe. The base station allocates a region in the OFDMA uplink subframe for receiving the OFDM uplink subframe. BRIEF DESCRIPTION OF THE DRAWINGS
图 1为现有的 OFDM系统框图;  Figure 1 is a block diagram of an existing OFDM system;
图 2为现有技术中 IEEE802.16标准中系统数据 /控制平面上的协议桟结构 示意图;  2 is a schematic diagram of a protocol structure on a system data/control plane in the IEEE802.16 standard in the prior art;
图 3为现有技术中加入循环前缀的 OFDM信号时域波形图;  3 is a time domain waveform diagram of an OFDM signal with a cyclic prefix added in the prior art;
图 4为现有技术中 OFDM帧结构示意图; 图 5为现有技术中 OFDMA帧结构示意图; 4 is a schematic structural diagram of an OFDM frame in the prior art; FIG. 5 is a schematic structural diagram of an OFDMA frame in the prior art; FIG.
图 6为现有技术中常用的时分系统帧结构示意图;  6 is a schematic diagram of a frame structure of a time division system commonly used in the prior art;
图 7A为实现本发明的 OFDM和 OFDMA共存系统协同工作方法的第一 实施例的一种帧结构示意图;  7A is a schematic diagram of a frame structure of a first embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention;
图 7B为实现本发明的 OFDM和 OFDMA共存系统协同工作方法的第一 实施例的另一种帧结构示意图;  7B is a schematic diagram of another frame structure of a first embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention;
图 8为实现本发明的 OFDM和 OFDMA共存系统协同工作方法的第二实 施例的一种帧结构示意图;  8 is a schematic diagram of a frame structure of a second embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention;
图 9为实现本发明的 OFDM和 OFDMA共存系统协同工作方法的第三实 施例的一种帧结构示意图;  9 is a schematic diagram of a frame structure of a third embodiment of a method for cooperatively operating an OFDM and OFDMA coexistence system according to the present invention;
图 10A为实现本发明的 OFDM和 OFDMA共存系统的帧第一实施例的具 有双 MAC结构的基站系统的结构示意图;  10A is a schematic structural diagram of a base station system having a dual MAC structure in a first embodiment of a frame for implementing an OFDM and OFDMA coexistence system according to the present invention;
图 10B为本发明的 OFDM和 OFDMA共存系统的第一实施例的具有双 MAC结构的基站系统的另一结构示意图;  FIG. 10B is another schematic structural diagram of a base station system with dual MAC structure according to a first embodiment of an OFDM and OFDMA coexistence system according to the present invention; FIG.
图 11为本发明的 OFDM和 OFDMA共存系统的第二实施例的具有融合 MAC结构的基站系统的结构示意图;  11 is a schematic structural diagram of a base station system having a fused MAC structure according to a second embodiment of the OFDM and OFDMA coexistence system of the present invention;
图 12为本发明的 OFDM和 OFDMA共存系统的第三实施例的叠加式基站 系统的结构示意图;  12 is a schematic structural diagram of a superposed base station system according to a third embodiment of the OFDM and OFDMA coexistence system of the present invention;
图 13A为本发明的替换式基站网络架构示意图;  13A is a schematic diagram of a network structure of an alternative base station according to the present invention;
图 13B为本发明的叠加式基站网络架构示意图;  13B is a schematic structural diagram of a superposed base station network according to the present invention;
图 13C为本发明的另一叠加式基站网络架构示意图。 实现本发明的最佳方式  FIG. 13C is a schematic diagram of another superposed base station network architecture according to the present invention. The best way to implement the invention
下面结合附图和实施例对本发明做进一步详细说明。  The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
常见的时分系统的帧结构如图 6所示,一帧包括一个下行子帧和一个上行 子帧, 上行或者下行子帧中包括多个时隙用于数据的发送,下行子帧和上行子 帧之间的转换间隔称为 TTG (transmit transition gap) , 上行子帧和下行子帧 之间的转换间隔称为 RTG ( receive transition gap ) 。  The frame structure of a common time division system is as shown in FIG. 6. One frame includes one downlink subframe and one uplink subframe, and the uplink or downlink subframe includes multiple slots for data transmission, downlink subframes and uplink subframes. The transition interval between them is called a TGW (transition transition gap), and the transition interval between an uplink subframe and a downlink subframe is called RTG (receive transition gap).
由于 OFDM和 OFDMA技术在实现上的明显差异, 两者很难直接实现物 理层之间的兼容。 但是由于两系统都是时分系统, 当 OFDM和 OFDMA系统 采用相同的频段日 t, 它们可以通过时分方式实现帧结构上的共存。 图 7A、 图 7B和图 8、 图 9显示了三种同时兼容 OFDM和 OFDMA终端 的系统帧结构。 〔注: 这三种帧结构对于后述的三种结构的基站系统都适用) 下面将分别进行介绍。 Due to the significant difference in implementation between OFDM and OFDMA techniques, it is difficult to directly achieve compatibility between physical layers. But since both systems are time division systems, when OFDM and OFDMA systems Using the same frequency band day t, they can achieve coexistence in the frame structure in a time division manner. 7A, 7B and 8, and 9 show the system frame structure of three simultaneously compatible OFDM and OFDMA terminals. [Note: These three frame configurations are applicable to the base station systems of the three configurations described later.) The following description will be respectively made.
如图 7A所示, 在第一种帧结构中, 一帧首先分为一个下行子帧和一个上 行子帧,上行 /下亍的子帧分别由 OFDMA子帧和 OFDM子帧按照时分方式组 合而成, 例如图 7A所示。 下行子帧分为 OFDMA下行子帧和 OFDM下行子 帧,上行子帧分为 OFDMA上行子帧和 OFDM上行子帧。对于 OFDMA终端, 它看到的是一个完整的 OFDMA帧, OFDM下行子帧占用的时隙可以看成是 OFDMA帧中 TTG的一部分或者 OFDMA下行子帧中已经被分配的一块区域, OFDM上行子帧占用的时隙也可以看成 OFDMA帧中 RTG 的一部分或者 OFDMA上行子帧中已经被分配的一块区域。 TTG、 RTG或者 OFDM子帧占 用的区域可以在 OFDMA子帧中的开销消息中指示。 对于 OFDM终端, 它看 到的也是一个完整的 OFDM帧, OFDMA上行子帧占用的时隙可以看成是 OFDM帧中 TTG 的一部分或者 OFDM下行子帧中已经被分配的一块区域, OFDMA下行子帧占用的时隙可以看成是 OFDM帧中 RTG的一部分。 TTG或 者 OFDMA子帧占用的时隙可以在 OFDM子帧中的开销消息中指示。 OFDM 或者 OFDMA终端的通信过程和常规方式完全相同, 它们通过对前缀的搜索 可以获取下行帧的起始位置, 通过开销消息可以获得上行帧的起始位置。  As shown in FIG. 7A, in the first frame structure, a frame is first divided into a downlink subframe and an uplink subframe, and the uplink/downlink subframes are respectively combined by the OFDMA subframe and the OFDM subframe in a time division manner. Thus, for example, as shown in Fig. 7A. The downlink subframe is divided into an OFDMA downlink subframe and an OFDM downlink subframe, and the uplink subframe is divided into an OFDMA uplink subframe and an OFDM uplink subframe. For an OFDMA terminal, it sees a complete OFDMA frame. The time slot occupied by the OFDM downlink subframe can be regarded as part of the TTG in the OFDMA frame or an area already allocated in the OFDMA downlink subframe. The OFDM uplink subframe The occupied time slot can also be regarded as a part of the RTG in the OFDMA frame or an area already allocated in the OFDMA uplink subframe. The area occupied by the TTG, RTG or OFDM subframe may be indicated in the overhead message in the OFDMA subframe. For an OFDM terminal, it also sees a complete OFDM frame. The time slot occupied by the OFDMA uplink subframe can be regarded as a part of the TTG in the OFDM frame or an area already allocated in the OFDM downlink subframe. The OFDMA downlink subframe The occupied time slot can be seen as part of the RTG in the OFDM frame. The time slot occupied by the TTG or OFDMA subframe may be indicated in the overhead message in the OFDM subframe. The communication process of the OFDM or OFDMA terminal is exactly the same as the conventional method. They can obtain the starting position of the downlink frame by searching the prefix, and obtain the starting position of the uplink frame by using the overhead message.
如果 OFDM用户较少,为了提高频谱利用效率,可以将上行和下行 OFDM 子帧的后面划出一部分用于 OFDMA数据的发送, 此时图 7A变为了图 7B, 此时 OFDM和 OFDMA终端的处理方式与前面叙述类似。 图 7A的实例中, OFDMA子帧的位置和 OFDM子帧的位置还可以互换, 终端的处理方式与前 面基本相同,此处不再详细叙述。本实施例的优点在于 OFDMA子帧和 OFDM 子帧完全独立, 无需改变两系统的实现方式即可同时满足 OFDMA和 OFDM 系统的通信要求。  If there are few OFDM users, in order to improve the spectrum utilization efficiency, a part of the uplink and downlink OFDM subframes may be used for the transmission of OFDMA data. At this time, FIG. 7A becomes FIG. 7B, and the OFDM and OFDMA terminals are processed at this time. Similar to the previous description. In the example of FIG. 7A, the position of the OFDMA subframe and the position of the OFDM subframe are also interchangeable, and the processing manner of the terminal is basically the same as that of the foregoing, and will not be described in detail herein. The advantage of this embodiment is that the OFDMA subframe and the OFDM subframe are completely independent, and the communication requirements of the OFDMA and the OFDM system can be satisfied simultaneously without changing the implementation of the two systems.
在第二种帧结构中, 一帧中按照时分方式组合 OFDM子帧和 OFDMA子 帧,如图 8所示,一帧包括一个 OFDM子帧和一个 OFDMA子帧,一个 OFDM 子帧包括一个下 i f OFDM子帧和一个上行 OFDM子帧,一个 OFDMA子帧包 括一个下行 OFDMA子帧和一个上行 OFDMA子帧。 对于 OFDM终端, 它看 到的是一个完整的 OFDM帧, OFDMA子帧占用的时隙被看成是 OFDM帧中 RTG的一部分或者上行 OFDM子帧已分配的突发, RTG或者 OFDMA子帧占 用的时隙由 OFDM系统的开肖消息指示。 对于 OFDMA终端, 它看到的也是 一个完整的 OFDMA帧, OFDM子帧占用的时隙可以看成是 OFDMA帧中 RTG 的一部分或者上行 OFDMA子帧已分配的突发, RTG或者 OFDM子帧占用的 时隙由 OFDMA系统的开销消息指示。 本实施例与上述第一实施例的差别在 于 OFDM或者 OFDMA的上 fi 下行子帧之间需要额外的上行 /下行转换时间的 开销。 本实施例的 OFDM子顿和 OFDMA子帧的前后顺序也可以互换, 即 OFDMA子帧在前, OFDM子帧在后, 由于在实现和处理上没有任何差别, 不 再另外进行叙述。 In the second frame structure, an OFDM subframe and an OFDMA subframe are combined in a time division manner in one frame. As shown in FIG. 8, one frame includes one OFDM subframe and one OFDMA subframe, and one OFDM subframe includes one lower if. An OFDM subframe and an uplink OFDM subframe, one OFDMA subframe includes one downlink OFDMA subframe and one uplink OFDMA subframe. For OFDM terminals, it looks A complete OFDM frame is obtained. The time slot occupied by the OFDMA subframe is regarded as a part of the RTG in the OFDM frame or the burst allocated by the uplink OFDM subframe. The time slot occupied by the RTG or OFDMA subframe is determined by the OFDM system. Opening the message instructions. For an OFDMA terminal, it also sees a complete OFDMA frame. The time slot occupied by the OFDM subframe can be regarded as part of the RTG in the OFDMA frame or the burst allocated by the uplink OFDMA subframe, occupied by the RTG or OFDM subframe. The time slot is indicated by the overhead message of the OFDMA system. The difference between this embodiment and the above-mentioned first embodiment lies in the overhead of requiring additional uplink/downlink conversion time between the upper fi downlink subframes of OFDM or OFDMA. The OFDM sub-frame and the OFDMA subframe of this embodiment may also be interchanged, that is, the OFDMA subframe is first, and the OFDM subframe is after, because there is no difference in implementation and processing, and no further description is made.
在第三种帧结构中, 在 OFDMA上行 /下行帧中的数据区 (不包括前缀) 划分出一段连续的频段用于 OFDM系统上行 /下行帧的发送, OFDM频段在 OFDMA频段的位置可以根据实际情况进行调整,如图 9所示, OFDM子帧和 OFDMA子帧分别拥有自己独立的上下行子帧。为了使 OFDM数据和 OFDMA 数据不发生相互干扰, 需要在 OFDM子帧频段周围划分出一定的保护带。 该 方案适用于 OFDM 系统和 OFDMA 系统采用的频段相同但带宽不同且 OFDMA系统采用连续子载波分配方式的情况。 在本实施例中, OFDMA系统 实际扮演了 OFDM数据承载的角色。 本实施例的优点在于当两系统带宽不同 时, 频谱利用率较高, 缺点在于当 OFDMA子载波采用非连续划分方式时, 系统无法实现。  In the third frame structure, the data area (excluding the prefix) in the OFDMA uplink/downlink frame is divided into a continuous frequency band for the uplink/downlink frame transmission of the OFDM system, and the position of the OFDM frequency band in the OFDMA band can be based on actual conditions. The situation is adjusted. As shown in FIG. 9, the OFDM subframe and the OFDMA subframe respectively have their own independent uplink and downlink subframes. In order to prevent OFDM data and OFDMA data from interfering with each other, a certain guard band needs to be allocated around the OFDM subframe frequency band. This scheme is applicable to the case where the OFDM system and the OFDMA system use the same frequency band but different bandwidths and the OFDMA system adopts the continuous subcarrier allocation mode. In this embodiment, the OFDMA system actually plays the role of the OFDM data bearer. The advantage of this embodiment is that when the bandwidths of the two systems are different, the spectrum utilization is high. The disadvantage is that when the OFDMA subcarriers adopt the discontinuous division mode, the system cannot implement the system.
对所有的帧结构而言, 根裾 OFDM系统实际不同的情况(如根据资源利 用率和实现复杂度的不同要求) , 选择以上不同的 OFDMA帧结构, 可以保 证经过升级后的 OFDMA系统同时满足 OFDM和 OFDMA终端的通信需求。  For all frame structures, depending on the actual situation of the OFDM system (such as different requirements of resource utilization and implementation complexity), the above different OFDMA frame structures can be selected to ensure that the upgraded OFDMA system satisfies both OFDM simultaneously. Communication requirements with OFDMA terminals.
对于一个 OFDM和 OFDMA的共存系统, 合理的帧格式保证了空中接口 对两种系统的兼容,除此之外, 还需要设计一个合理的基站结构以实现 OFDM 和 OFDMA的共存系统帧结椅。  For a coexistence system of OFDM and OFDMA, a reasonable frame format guarantees the compatibility of the air interface to the two systems. In addition, it is necessary to design a reasonable base station structure to realize the coexistence system frame of OFDM and OFDMA.
在本发明中, 该 OFDM禾口 OFDMA的共存系统包括: 至少一个 OFDM或 者 OFDMA制式的终端, 用于接收来自基站系统的下行信息并根据基站指示 发送上行信息; 以及一个基站系统, 用于接收来自 OFDM或者 OFDMA制式 终端的上行信息并发送相应的下行信息, 该基站系统包括: 一 MAC层, 用于 接收来自 OFDM或者 OFDMA制式终端的数据,并分别对 OFDM或者 OFDMA 数据进行处理,并将处理后的数据分发至物理层;以及一物理层,包含有 OFDM 物理层模块和 OFDMA物理层模块, 用于对 OFDM或者 OFDMA数据分别进 行编码调制并按照该 MAC层分配的资源进行发送。 In the present invention, the OFDM and OFDMA coexistence system includes: at least one OFDM or OFDMA terminal for receiving downlink information from a base station system and transmitting uplink information according to a base station indication; and a base station system for receiving from Uplink information of an OFDM or OFDMA system terminal and transmitting corresponding downlink information, the base station system includes: a MAC layer, used for Receiving data from an OFDM or OFDMA system terminal, processing the OFDM or OFDMA data separately, and distributing the processed data to the physical layer; and a physical layer including the OFDM physical layer module and the OFDMA physical layer module, The OFDM or OFDMA data is separately coded and transmitted and transmitted according to resources allocated by the MAC layer.
如上所述, OFDM和 OFDMA共存系统为了实现帧格式上对 OFDM和 OFDMA系统的兼容, 可以采用以下三种结构:  As described above, in order to achieve compatibility with OFDM and OFDMA systems in the frame format, the OFDM and OFDMA coexistence systems can adopt the following three structures:
在第一种结构中, 基站系统采用双 MAC结构, 如图 10A或者图 10B所 示, 基站系统包括以下模块:  In the first configuration, the base station system adopts a dual MAC structure. As shown in FIG. 10A or FIG. 10B, the base station system includes the following modules:
上层适配模块,该模块用于将上层数据包按照接收对象分别分发到 OFDM CS子层模块或者 OFDMA CS子层模块进^处理。特定情况下,该模块也可以 通过基站外部的路由器实现, 此时基站系统将不包括该模块;  The upper layer adaptation module is configured to separately distribute the upper layer data packet to the OFDM CS sublayer module or the OFDMA CS sublayer module according to the receiving object. In a specific case, the module can also be implemented by a router outside the base station, and the base station system will not include the module;
OFDM CS子层模块和 OFDMA CS子层模块, 这两个模块用于完成经上 层适配模块处理后的 OFDM和 OFDMA数据的分类和打包;  An OFDM CS sublayer module and an OFDMA CS sublayer module, which are used to perform classification and packing of OFDM and OFDMA data processed by the upper layer adaptation module;
OFDM CPS子层模块和 OFDMA CPS子层模块, 这两个模块分别用于处 理 OFDM CS子层模块和 OFDMA CS子层模块输出的数据, (注: 帧结构的 构建在 CPS子层模块中完成, 不在 CS层中实现) 它们完成系统的核心 MAC 功能, 如系统接入、 带宽分配、 资源调度、 连接建立和保持等;  An OFDM CPS sublayer module and an OFDMA CPS sublayer module, which are respectively used to process data output by the OFDM CS sublayer module and the OFDMA CS sublayer module, respectively (Note: the construction of the frame structure is performed in the CPS sublayer module, Not implemented in the CS layer) They complete the core MAC functions of the system, such as system access, bandwidth allocation, resource scheduling, connection establishment and maintenance, etc.
OFDM安全子层模块和 OFDMA安全子层模块, 这两个模块分别用于处 理 OFDM CPS子层模块和 OFDMA CPS f层模块输出的数据, 它们实现系统 的鉴权、 密钥管理以及数据的加解密等功肯  OFDM security sublayer module and OFDMA security sublayer module, which are respectively used to process data outputted by the OFDM CPS sublayer module and the OFDMA CPS f layer module, which implement system authentication, key management, and data encryption and decryption. Waiting for
下层适配模块,它在 OFDM安全子层模块和 OFDMA安全子层模块之后。 负责完成系统混和帧构建、 资源分配、 数据传输等功能;  A lower layer adaptation module, which is followed by an OFDM Security Sublayer Module and an OFDMA Security Sublayer Module. Responsible for completing system mix frame construction, resource allocation, data transfer and other functions;
OFDM物理层模块和 OFDMA物理层模块,该层用于对 OFDM和 OFDMA 数据分别进行编码调制并按照下层适配模块分配的资源进行发送;  An OFDM physical layer module and an OFDMA physical layer module, where the layer is used for coding and modulating OFDM and OFDMA data respectively, and transmitting according to resources allocated by the lower layer adaptation module;
上层数据包经上层适配模块的处理按照接收对象分别发送到 OFDM CS 子层模块或者 OFDMA CS子层模块进行处理。经 OFDM CPS子层模块和安全 子层模块或者 OFDMA CPS子层模块和安全子层模块处理的数据通过下层适 配模块的处理完成混和帧构建、资源分配与调度、数据传输等功能后分别通过 OFDM物理层模块或者 OFDMA物理层模块进行编码调制后进行发送, 如图 10A所示。 图 10A中各模块之间交互的信息流由图中所示的箭头表示, 模块 之间的信息流包括上下行发送的数据流和模块之间交 5:的消息流。为了减轻下 层适配模块的处理负担, 也可以将图 10A所示的双 MAC结构变为图 10B所 示,在图 10B中,模块之间的信息流包括三类, 2为包括数据和消息的信息流, 3为数据流, 4为消息流。其中下层适配模块与 OFDM MAC层模块、 OFDMA MAC层模块、 OFDM物理层模块以及 OFDMA物理层模块之间的交互仅为用 于资源分配和调度的消息流, OFDM MAC层模块或會 OFDMA MAC层模块 输出的数据流直接发往 OFDM物理层模块或者 OFDMA物理层模块。 在该种 结构的基站系统中, 存在完全独立的 OFDM相应处理模块和 OFDMA相应处 理模块, 因此实现比较简单。 The processing of the upper layer data packet by the upper layer adaptation module is respectively sent to the OFDM CS sublayer module or the OFDMA CS sublayer module for processing according to the receiving object. The data processed by the OFDM CPS sublayer module and the security sublayer module or the OFDMA CPS sublayer module and the security sublayer module are processed by the lower layer adaptation module to complete the functions of mixed frame construction, resource allocation and scheduling, data transmission, etc., and then pass through OFDM respectively. The physical layer module or the OFDMA physical layer module performs code modulation and transmits, as shown in FIG. 10A. The information flow between the modules in Figure 10A is represented by the arrows shown in the figure, the module The information flow between the data stream sent by the uplink and the downlink and the message stream of the 5: between the modules. In order to reduce the processing load of the lower layer adaptation module, the dual MAC structure shown in FIG. 10A can also be changed to that shown in FIG. 10B. In FIG. 10B, the information flow between the modules includes three types, and 2 is data and messages. Information flow, 3 is the data stream, and 4 is the message stream. The interaction between the lower layer adaptation module and the OFDM MAC layer module, the OFDMA MAC layer module, the OFDM physical layer module, and the OFDMA physical layer module is only a message flow for resource allocation and scheduling, and the OFDM MAC layer module or the OFDMA MAC layer The data stream output by the module is sent directly to the OFDM physical layer module or the OFDMA physical layer module. In the base station system of the structure, there is a completely independent OFDM corresponding processing module and an OFDMA corresponding processing module, so the implementation is relatively simple.
在第二种结构中, 基站系统采用融合 MAC结构, 如图 11所示, 基站系 统包括以下模块:  In the second structure, the base station system adopts a converged MAC structure. As shown in Fig. 11, the base station system includes the following modules:
CS子层模块,该模块用于统一对 OFDM和 OFDMA数据进行分类和打包; CS sub-layer module, which is used for uniformly classifying and packaging OFDM and OFDMA data;
OFDM CPS子层非重用模块和 OFDMA CPS子层 重用模块; 这两个模 块分别处理 CS子层模块输出的 OFDM和 OFDMA数据, 它们实现 OFDM和 OFDMA的 CPS处理中差异较大的部分功能; OFDM CPS sub-layer non-reuse module and OFDMA CPS sub-layer reuse module; the two modules respectively process OFDM and OFDMA data output by the CS sub-layer module, which implement a part of the difference between CPS processing of OFDM and OFDMA;
CPS重用模块, 该模块统一对 CS子层模块输出 S J OFDM和 OFDMA数 据进行处理, 该重用模块融合了 OFDM和 OFDMA在 CPS处理中相同的部分 和统一资源调度的部分;  CPS reuse module, which uniformly processes the CS sub-layer module output S J OFDM and OFDMA data, and the reuse module combines the same part of OFDM and OFDMA in CPS processing and the part of unified resource scheduling;
安全子层模块, 该模块用于统一实现 OFDM和 OFDMA系统的鉴权、 密 钥管理以及数据的加解密等功能;  Security sublayer module, which is used to uniformly implement functions such as authentication, key management, and data encryption and decryption of OFDM and OFDMA systems;
OFDM物理层模块和 OFDMA物理层模块, 该模块用于对 OFDM和 OFDMA数据分别进行编码调制并按照 CPS重用模块分配的资源进行发送。  An OFDM physical layer module and an OFDMA physical layer module, which are used to separately code and modulate OFDM and OFDMA data and transmit according to resources allocated by the CPS reuse module.
上层的数据进行统一的 CS子层模块处理后到达进行相应的 CPS处理, CPS处理中可重用的部分 (如资源分配和调度等)在 CPS重用模块中进行统 一处理, CPS 处理中不可重用的部分分别由 OFDM CPS 子层非重用模块和 OFDMA CPS子层非重用模块进行处理。 安全子层模块对 OFDM CPS子层非 重用模块和 OFDMA CPS子层非重用模块输出的数据进行统一的加解密和安 全管理。 OFDM物理层模块和 OFDMA物理层模块分另 lj依据 CPS重用模块中 的调度信息进行发送。 融合 MAC结构的基站系统最大限度进行了 OFDM和 OFDMA模块之间的重用, 对于相同的模块或需要联合调度的模块进行融合。 对于差异较大的模块, 如某些 MAC消息, 则进行单独处理, 因此其运行效率 较咼。 The upper layer data is processed by the unified CS sublayer module and then processed to perform corresponding CPS processing. The reusable parts (such as resource allocation and scheduling) in the CPS processing are uniformly processed in the CPS reuse module, and the non-reusable parts in the CPS processing are processed. It is processed by the OFDM CPS sublayer non-reuse module and the OFDMA CPS sublayer non-reuse module, respectively. The security sublayer module performs unified encryption, decryption and security management on the data output by the OFDM CPS sublayer non-reuse module and the OFDMA CPS sublayer non-reuse module. The OFDM physical layer module and the OFDMA physical layer module are separately transmitted according to the scheduling information in the CPS reuse module. The base station system that combines the MAC structure maximizes the reuse between the OFDM and OFDMA modules, and fuses the same modules or modules that require joint scheduling. For modules with large differences, such as some MAC messages, they are processed separately, so they are more efficient.
在第三实施例中, 基站系统还可以采用叠加方式的结构, 如图 12所示, 包括一个 OFDM基站系统, 用于接收来自 OFDM制式终端的上行信息并向其 发送相应的下行信息; 一个 OFDMA基站系统, 用于接收来自 OFDMA制式 终端的上行信息并向其发送相应的下行信息。 其中 OFDM系统和 OFDMA系 统彼此相互独立, 通过一定的接口(对接口没有特殊的要求, 只要旨 完成相关 参数的交互即可)满足 OFDM系统 MAC层和 OFDMA系统 MAC层之间相关 参数交互的需要, 以确定两基站系统的发送顺序。 其中, 该 MAC层包括 CS、 CPS、安全子层模块, 构建帧结构的过程在 CPS中实现。该接口交互的信息主 要包括 OFDM 子帧的开始和结束时隙、 OFDMA 子帧的开始结 时隙等。 OFDM系统和 OFDMA系统之间的信息交互也可以通过后台的设置来保证, 但这种方式在实现上灵活性较差。  In the third embodiment, the base station system may also adopt a structure of a superposition manner, as shown in FIG. 12, including an OFDM base station system, configured to receive uplink information from an OFDM system terminal and send corresponding downlink information thereto; a base station system, configured to receive uplink information from an OFDMA standard terminal and send corresponding downlink information thereto. The OFDM system and the OFDMA system are independent of each other, and have a certain interface (there is no special requirement for the interface, as long as the interaction of the relevant parameters is completed) to meet the needs of the interaction between the MAC layer of the OFDM system and the MAC layer of the OFDMA system. The order of transmission of the two base station systems is determined. The MAC layer includes a CS, a CPS, and a security sublayer module, and the process of constructing the frame structure is implemented in the CPS. The information exchanged by the interface mainly includes the start and end slots of the OFDM subframe, the start junction slot of the OFDMA subframe, and the like. The information interaction between the OFDM system and the OFDMA system can also be guaranteed by the setting in the background, but this method is less flexible in implementation.
对于以上的三种实施方式,可以有两种基站的组网方式, 即替換式网络架 构和叠加式网络架构。  For the above three implementation manners, there may be two base station networking modes, that is, a replacement network architecture and a superimposed network architecture.
双 MAC结构的基站和融合 MAC结构的基站的网络架构的区 ij仅在于基 站系统内部的实现方式, 都可以采用图 13A表示。 其中 11为 OFDM终端, 12为 OFDMA终端, 13为双 MAC结构或融合 MAC结构的基站系统。 对于 双 MAC结构的基站系统, 发往 11和 12的数据在经过适配层的简 区分后通 过两套完全独立的系统进行处理。 对于融合 MAC 结构的基站系统, 发往 11 和 12的数据经 13统一处理, 并通过其中的 CPS重用模块实现对 OFDM和 OFDMA数据的分时发送。  The area of the network architecture of the base station of the dual MAC structure and the base station of the fused MAC structure is only the internal implementation of the base station system, and can be represented by Fig. 13A. 11 is an OFDM terminal, 12 is an OFDMA terminal, and 13 is a base station system with a dual MAC structure or a fused MAC structure. For a base station system with dual MAC structure, the data sent to 11 and 12 is processed by two completely independent systems after being easily distinguished by the adaptation layer. For a base station system with a converged MAC structure, the data sent to 11 and 12 is uniformly processed by 13, and the time-sharing transmission of OFDM and OFDMA data is realized by the CPS reuse module therein.
对于采用叠加结构的基站系统,其网络架构有两种可能的实现方式, 如图 13B和 13C所示。 在图 13B中, 21为 OFDM终端, 22为 OFDM 终端, 23 为 OFDM的基站系统; 24为 OFDMA的基站系统, 其中 23和 24 ^;两个单独 的实体, 可以放于同一位置, 23和 24分别独立接入核心网, 实现对不同终端 21和 22的支持, 23和 24之间的接口完成 23和 24之间的消息交互以便形成 OFDM基站和 OFDMA基站发送上的定时匹配。在图 13C中, 31为 OFDM终 端, 32为 OFDMA终端, 33为 OFDM的基站系统; 34为 OFDM 的基站系 统。 图 13B和图 13C之间的不同之处在于基站 33并不直接接入核心网, 基站 33与基站 34之间的接口既要实现简单信息的交互, 也要传递基站 33发往核 心网的数据, 因此在这两种实现方式下, 对该接口的设计应该有不同的要求。 For a base station system employing a superimposed structure, there are two possible implementations of the network architecture, as shown in Figures 13B and 13C. In FIG. 13B, 21 is an OFDM terminal, 22 is an OFDM terminal, 23 is a base station system of OFDM; 24 is a base station system of OFDMA, where 23 and 24^; two separate entities can be placed in the same location, 23 and 24 The core network is independently accessed to support different terminals 21 and 22, and the interface between 23 and 24 completes the message interaction between 23 and 24 to form a timing match on the transmission of the OFDM base station and the OFDMA base station. In Fig. 13C, 31 is an OFDM terminal, 32 is an OFDMA terminal, 33 is a base station system of OFDM; and 34 is a base station system of OFDM. The difference between FIG. 13B and FIG. 13C is that the base station 33 does not directly access the core network, and the base station The interface between the network 33 and the base station 34 requires both simple information interaction and data transmitted by the base station 33 to the core network. Therefore, in the two implementation manners, the design of the interface should have different requirements.
根据 OFDM和 OFDMA共存系统实际不同的情况, 选择以上不同的基站 系统结构和网络架构实施方式, 可以很方便的实现系统对 OFDM 系统和 OFDMA系统的兼容。  According to the actual situation of the OFDM and OFDMA coexistence system, the above different base station system structure and network architecture implementation manner are selected, and the system can be conveniently compatible with the OFDM system and the OFDMA system.
结合上述的 OFDM和 OFDMA共存系统的帧结构和基站系统, 下面详细 说明本发明的共存系统协同工作的方法。  In combination with the above-described frame structure and base station system of the OFDM and OFDMA coexistence system, the method of cooperating the coexistence systems of the present invention will be described in detail below.
方法一, 包括如下步骤:  Method one includes the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送下行子帧, 另一部分用 于接收上行子帧;  The base station divides the frame into two parts on the time axis, one part is used for transmitting the downlink subframe, and the other part is used for receiving the uplink subframe;
基站将下行子帧在时间轴上分成两部分, 一部分用于传送 OFDMA下行 子帧, 另一部分用于传送 OFDM下行子帧, 其中 OFDM上行或者下行子帧的 一部分可以根据需要借给 OFD.MA上行或者下行子帧使用, OFDMA上行或者 下行子帧的一部分也可以根据需要借给 OFDM上行或者下行子帧使用;  The base station divides the downlink subframe into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for transmitting the OFDM downlink subframe, wherein part of the OFDM uplink or downlink subframe can be loaned to the OFD.MA uplink as needed. Or the downlink subframe is used, and part of the OFDMA uplink or downlink subframe may also be used for OFDM uplink or downlink subframes as needed;
基站将上行子帧在时间轴上分成两部分, 一部分用于传送 OFDMA上行 子帧, 另一部分用于传送 OFDM上行子帧;  The base station divides the uplink subframe into two parts on the time axis, one part is used for transmitting the OFDMA uplink subframe, and the other part is used for transmitting the OFDM uplink subframe;
基站分别设置 OFDMA和 OFDM的开销信息, 在开销信息中将指明各自 的上、 下行子帧分配情况;  The base station sets the overhead information of OFDMA and OFDM respectively, and indicates the allocation of the respective uplink and downlink subframes in the overhead information;
基站在 OFDMA下行子帧中按照 OFDMA系统的要求发送同步信息、 开 销信息和负载等下行数据, 在 OFDM下行子帧中按照 OFDM系统的要求发送 同步信息、 开销信息和负载等下行数据;  The base station transmits downlink data such as synchronization information, resale information, and load according to the requirements of the OFDMA system in the OFDMA downlink subframe, and transmits downlink information such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
终端接收对应制式的下行同步信息和开销信息, 实现与基站的下行同步, 并获取相应的上、 下行子帧的分配信息;  The terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
终端根据接收到的开销信息, 在基站指定的位置接收下行负载数据; 终端根据接收到的开销信息, 在基站指定的位置发送上行数据。  The terminal receives the downlink load data at the location specified by the base station according to the received overhead information. The terminal sends the uplink data at the location specified by the base station according to the received overhead information.
方法二, 包括如下步骤:  Method two, including the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送 OFDMA帧, 另一部 分用于传送 OFDM帧;  The base station divides the frame into two parts on the time axis, one part for transmitting the OFDMA frame and the other part for transmitting the OFDM frame;
基站将 OFDMA帧在时间轴上分成两部分, 一部分用于发送 OFDMA下 行子帧, 另一部分用于接收 OFDMA上行子帧; 基站将 OFDM帧在时间轴上分成两部分,一部分用于发送 OFDM下行子 帧, 另一部分用于接收 OFDM上行子帧; 其中, OFDM子帧的一部分可以根 据需要借给 OFDMA子帧使用, OFDMA子帧的一部分也可以根据需要借给 OFDM子帧使用; The base station divides the OFDMA frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe; The base station divides the OFDM frame into two parts on the time axis, one part is used for transmitting the OFDM downlink subframe, and the other part is used for receiving the OFDM uplink subframe; wherein, part of the OFDM subframe can be borrowed for the OFDMA subframe as needed, the OFDMA sub- A part of the frame may also be borrowed for use by the OFDM subframe as needed;
基站按照帧的分配情况设置 OFDMA和 OFDM的开销信息, 在开销信息 中将指明上、 下行子帧的分配情况;  The base station sets the overhead information of the OFDMA and the OFDM according to the allocation of the frame, and indicates the allocation of the uplink and downlink subframes in the overhead information;
基站在 OFDMA下行子帧中按照 OFDMA系统的要求发送同步信息、 开 销信息和负载等下行数据;  The base station sends downlink data such as synchronization information, sales information, and load in the OFDMA downlink subframe according to the requirements of the OFDMA system;
基站在 OFDM下行子帧中按照 OFDM系统的要求发送同步信息、开销信 息和负载等下行数据;  The base station transmits downlink data such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
终端接收对应制式的下行同步信息和开销信息, 实现与基站的下行同步, 并获取相应的上、 下行子帧的分配信息;  The terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
终端根据接收到的开销信息, 在基站指定的位置接收下行负载数据; 终端根据接收到的开销信息, 在基站指定的位置发送上行数据。  The terminal receives the downlink load data at the location specified by the base station according to the received overhead information. The terminal sends the uplink data at the location specified by the base station according to the received overhead information.
方法三, 包括如下步骤:  Method three includes the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送 OFDMA下行子帧, 另一部分用于接收 OFDMA上行子帧;  The base station divides the frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
基站在 OFDMA下行子帧中分配出一段区域,用于发射 OFDM下行子帧。 基站在 OFDMA上行子帧中分配出一段区域,用于接收 OFDM上行子帧。 基站按照帧的分配情况设置 OFDMA 的开销信息, 在开销信息中将指明 OFDMA上、 下行子帧的分配情况;  The base station allocates a region in the OFDMA downlink subframe for transmitting the OFDM downlink subframe. The base station allocates a region in the OFDMA uplink subframe for receiving the OFDM uplink subframe. The base station sets the overhead information of the OFDMA according to the allocation of the frame, and indicates the allocation of the uplink and downlink subframes in the overhead information in the overhead information;
基站按照帧的分配情况设置 OFDM 的开销信息, 在开销信息中将指明 OFDM上、 下行子帧的分配情况;  The base station sets the OFDM overhead information according to the allocation of the frame, and specifies the allocation of the OFDM uplink and downlink subframes in the overhead information.
基站在下行子帧中分配给 OFDMA制式的部分按照 OFDMA系统的要求 发送同步信息、 开销信息和负载等下行数据;  The part of the base station allocated to the OFDMA system in the downlink subframe transmits downlink data such as synchronization information, overhead information, and load according to the requirements of the OFDMA system;
基站在下行子帧中分配给 OFDM制式的部分按照 OFDM系统的要求发送 同步信息、 开销信息和负载等下行数据;  The part of the OFDM system allocated by the base station in the downlink subframe transmits downlink data such as synchronization information, overhead information, and load according to the requirements of the OFDM system;
终端接收对应制式的下行同步信息和开销信息, 实现与基站的下行同步, 并获取相应的上、 下行子帧的分配信息;  The terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
终端根据接收到的开销信息, 在基站指定的位置接收下行负载数据; 终端根据接收到的开销信息, 在基站指定的位置发送上行数据。 Receiving downlink load data at a location specified by the base station according to the received overhead information; The terminal transmits the uplink data at the location specified by the base station according to the received overhead information.
当然,本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情 况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。 工业应用性  There are a variety of other embodiments of the present invention, and various modifications and changes can be made thereto in accordance with the present invention without departing from the spirit and scope of the invention. Changes and modifications are intended to be included within the scope of the appended claims. Industrial applicability
通过本发明的设计, 可以在不改变 OFDM和 OFDMA具体实施方式的前 提下实现对 OFDM和 OFDMA系统的兼容;  With the design of the present invention, compatibility with OFDM and OFDMA systems can be achieved without changing the specific implementation of OFDM and OFDMA;
通过本发明的设计,可以使得 OFDMA系统经过简单的升级后兼容 OFDM 终端;  Through the design of the invention, the OFDMA system can be easily upgraded and compatible with the OFDM terminal;
通过本发明的设计, 可以在 OFDM系统升级到 OFDMA系统后仍然保持 对 OFDM系统的向下兼容, 从而保护运营商和用户的利益;  With the design of the present invention, the backward compatibility of the OFDM system can be maintained after the OFDM system is upgraded to the OFDMA system, thereby protecting the interests of the operator and the user;
通过本发明的设计, 可以实现 OFDM和 OFDMA共存系统的组网。  Through the design of the present invention, networking of OFDM and OFDMA coexistence systems can be realized.

Claims

权利要求书 Claim
1、 一种 OFDM和 OFDMA的共存系统, 其特征在于, 包括: A coexistence system of OFDM and OFDMA, comprising:
至少一个 OFDM或者 OFDMA制式的终端, 用于接收来自基站系统的下 行信息并根据基站指示发送上行信息;  At least one terminal of the OFDM or OFDMA system, configured to receive downlink information from the base station system and send uplink information according to the indication of the base station;
一个基站系统, 用于接收来自 OFDM或者 OFDMA制式终端的上行信息 并发送相应的下行信息, 该基站系统又包括:  a base station system, configured to receive uplink information from an OFDM or OFDMA system terminal and send corresponding downlink information, where the base station system further includes:
一 MAC层, 用于接收来自 OFDM或者 OFDMA制式终端的数据, 通 过将相同频段的 OFDM和 OFDMA数据以时分方式构建可实现 OFDM和 OFDMA共存的帧结构, 并分发至物理层;  a MAC layer, configured to receive data from an OFDM or OFDMA system terminal, construct a frame structure that can realize OFDM and OFDMA coexistence in a time division manner by OFDM and OFDMA data in the same frequency band, and distribute the frame structure to the physical layer;
一物理层, 包含有 OFDM物理层模块和 OFDMA物理层模块, 用于对 OFDM或者 OFDMA数据分别进行编码调制并按照该 MAC层分配的资源进行 发送。  A physical layer includes an OFDM physical layer module and an OFDMA physical layer module, configured to separately code and modulate OFDM or OFDMA data and transmit according to resources allocated by the MAC layer.
2、 根据权利要求 1所述的 OFDM和 OFDMA的共存系统, 其特征在于, 该基站系统的 MAC层具有双 MAC结构, 其包括:  2. The OFDM and OFDMA coexistence system according to claim 1, wherein the MAC layer of the base station system has a dual MAC structure, and the method includes:
各自独立的 OFDM MAC层模块和 OFDMA MAC层模块, 用于分别接收 OFDM和 OFDMA数据并进行处理, 完成传统 MAC层所有的功能;  Separate OFDM MAC layer modules and OFDMA MAC layer modules for respectively receiving and processing OFDM and OFDMA data to complete all functions of the legacy MAC layer;
一下层适配模块, 分别与位于其上层的 OFDM MAC 层模块、 OFDMA MAC层模块以及位于其下层的 OFDM物理层模块、 OFDMA物理层模块相 连接, 用于完成系统混和帧构建、 资源分配、 数据传输等功能。  The lower layer adaptation module is respectively connected to the OFDM MAC layer module, the OFDMA MAC layer module and the OFDM physical layer module and the OFDMA physical layer module located at the upper layer thereof, and is used for completing system mixed frame construction, resource allocation, and data. Transmission and other functions.
3、 根据权利要求 2所述的 OFDM和 OFDMA的共存系统, 其特征在于, 该 MAC层还包括一上层适配模块,用于将上层数据包按照接收对象分别分发 到 OFDM MAC层模块或者 OFDMA MAC层模块进行处理。  The OFDM and OFDMA coexistence system according to claim 2, wherein the MAC layer further comprises an upper layer adaptation module, configured to separately distribute the upper layer data packets to the OFDM MAC layer module or the OFDMA MAC according to the receiving object. Layer modules are processed.
4、 根据权利要求 2所述的 OFDM和 OFDMA的共存系统, 其特征在于, 该 MAC层通过基站系统外部的路由器来将上层数据包按照接收对象分别分发 到 OFDM MAC层模块或者 OFDMA MAC层模块进行处理。  The OFDM and OFDMA coexistence system according to claim 2, wherein the MAC layer distributes the upper layer data packet to the OFDM MAC layer module or the OFDMA MAC layer module according to the receiving object by using a router outside the base station system. deal with.
5、根据权利要求 2或 3或 4所述的 OFDM和 OFDMA的共存系统,其特 征在于, 所述下层适配模块与 MAC层模块和物理层模块之间进行所有的信息 交互, 包括数据和相关资源调度消息。  The OFDM and OFDMA coexistence system according to claim 2 or 3 or 4, wherein the lower layer adaptation module performs all information interactions between the MAC layer module and the physical layer module, including data and correlation. Resource scheduling message.
6、根据权利要求 2或 3或 4所述的 OFDM和 OFDMA的共存系统,其特 征在于, 所述下层适配模块与 MAC层模块和物理层模块之间只进行相关资源 调度消息的交互, 而数据的交互在 MAC层模块与物理层模块之间直接进行。 6. The coexistence system of OFDM and OFDMA according to claim 2 or 3 or 4, The interaction between the lower layer adaptation module and the MAC layer module and the physical layer module is performed only on the related resource scheduling message, and the data interaction is directly performed between the MAC layer module and the physical layer module.
7、 根据权利要求 3所述的 OFDM和 OFDMA的共存系统, 其特征在于, 所述的 OFDM MAC层模块由依序连接的 OFDM CS子层模块、 OFDM CPS子 层模块、 OFDM安全子层模块组成; 所述的 OFDMA MAC层模块由依序连接 的 OFDM A CS子层模块、 OFDMA CPS子层模块、 OFDMA安全子层模块组 成, 其中,  The OFDM and OFDMA coexistence system according to claim 3, wherein the OFDM MAC layer module is composed of an OFDM CS sublayer module, an OFDM CPS sublayer module, and an OFDM security sublayer module that are sequentially connected; The OFDMA MAC layer module is composed of an OFDM A CS sublayer module, an OFDMA CPS sublayer module, and an OFDMA security sublayer module, which are sequentially connected, where
所述 OFDM CS子层模块和 OFDMA CS子层模块, 分别用于完成经上层 适配模块处理后的 OFDM和 OFDMA数据的分类和打包;  The OFDM CS sublayer module and the OFDMA CS sublayer module are respectively used to perform classification and packing of OFDM and OFDMA data processed by the upper layer adaptation module;
所述 OFDM CPS子层模块和 OFDMA CPS子层模块,分别用于处理 OFDM CS 子层模块和 OFDMA CS 子层模块输出的数据, 以时分方式构建可实现 OFDM和 OFDMA共存的帧结构,并完成系统的核心 MAC功能,包括系统接 入、 带宽分配、 资源调度、 连接建立和保持等功能;  The OFDM CPS sub-layer module and the OFDMA CPS sub-layer module are respectively configured to process data output by the OFDM CS sub-layer module and the OFDMA CS sub-layer module, and construct a frame structure capable of realizing OFDM and OFDMA coexistence in a time division manner, and complete the system. Core MAC functions, including system access, bandwidth allocation, resource scheduling, connection establishment and maintenance;
所述 OFDM安全子层模块和 OFDMA安全子层模块,分别用于处理 OFDM CPS子层模块和 OFDMA CPS子层模块输出的数据, 实现系统的鉴权、 密钥 管理以及数据的加解密等功能。  The OFDM security sublayer module and the OFDMA security sublayer module are respectively configured to process data outputted by the OFDM CPS sublayer module and the OFDMA CPS sublayer module, and implement functions such as system authentication, key management, and data encryption and decryption.
8、 根据权利要求 1所述的 OFDM和 OFDMA的共存系统, 其特征在于, 该基站系统的 MAC层采用融合 MAC结构, 包括:  The OFDM and OFDMA coexistence system according to claim 1, wherein the MAC layer of the base station system adopts a fused MAC structure, and includes:
CS子层模块, 用于统一对 OFDM和 OFDMA数据进行分类和打包; OFDM CPS子层非重用模块和 OFDMA CPS子层非重用模块, 用于分别 处理 CS子层模块输出的 OFDM和 OFDMA数据, 实现 OFDM和 OFDMA的 a CS sublayer module for uniformly classifying and packing OFDM and OFDMA data; an OFDM CPS sublayer non-reuse module and an OFDMA CPS sublayer non-reuse module for respectively processing OFDM and OFDMA data output by the CS sublayer module, OFDM and OFDMA
CPS处理中不可重用的部分的处理; Processing of parts that are not reusable in CPS processing;
CPS重用模块, 用于统一对 CS子层模块输'出的 OFDM和 OFDMA数据 进行处理, 实现 OFDM和 OFDMA的 CPS处理中可重用的部分和统一资源调 度部分的处理;  The CPS reuse module is configured to uniformly process the OFDM and OFDMA data transmitted by the CS sublayer module, and implement the processing of the reusable part and the uniform resource scheduling part of the CPS processing of the OFDM and the OFDMA;
安全子层模块, 与该 OFDM CPS子层非重用模块、 OFDMA CPS子层非 重用模块、 CPS重用模块连接,用于统一实现 OFDM和 OFDMA系统的鉴权、 密钥管理以及数据的加解密等安全管理功能; 并与该 OFDM物理层模块、 OFDMA物理层模块连接, 用于分发处理后的数据至该 OFDM物理层模块、 OFDMA物理层模块。 The security sublayer module is connected to the OFDM CPS sublayer non-reuse module, the OFDMA CPS sublayer non-reuse module, and the CPS reuse module, and is used for unified authentication, key management, data encryption and decryption, etc. of the OFDM and OFDMA systems. The management function is connected to the OFDM physical layer module and the OFDMA physical layer module, and is configured to distribute the processed data to the OFDM physical layer module and the OFDMA physical layer module.
9、 根据权利要求 1所述的 OFDM和 OFDMA的共存系统, 其特征在于, 该基站系统采用叠加式结构, 包括相互独立的 9. The OFDM and OFDMA coexistence system according to claim 1, wherein the base station system adopts a superimposed structure, including independent of each other.
一个 OFDM基站系统, 用于接收来自 OFDM制式终端的上行信息并向其 发送相应的下行信息; 所述的 OFDM基站系统包括 MAC层的 OFDM MAC 子层模块和物理层的 OFDM物理层模块;  An OFDM base station system, configured to receive uplink information from an OFDM system terminal and transmit corresponding downlink information thereto; the OFDM base station system includes an OFDM MAC sublayer module of a MAC layer and an OFDM physical layer module of a physical layer;
一个 OFDMA基站系统, 用于接收来自 OFDMA制式终端的上行信息并 向其发送相应的下行信息; 所述的 OFDMA基站系统包括 MAC层的 OFDMA MAC子层模块和物理层的 OFDMA物理层模块;  An OFDMA base station system, configured to receive uplink information from an OFDMA system terminal and send corresponding downlink information thereto; the OFDMA base station system includes an OFDMA MAC sublayer module of a MAC layer and an OFDMA physical layer module of a physical layer;
其中 OFDM基站系统和 OFDMA基站系统之间在 MAC层通过接口交互 信息以确定两基站系统的发送顺序。  The OFDM base station system and the OFDMA base station system exchange information at the MAC layer through the interface to determine the transmission order of the two base station systems.
10、一种 OFDM和 OFDMA的共存系统协同工作的方法,应用于一 OFDM 和 OFDMA的共存系统, 该共存系统包含至少一个 OFDM或者 OFDMA制式 的终端, 以及一个基站系统; 其特征在于, 该方法包括如下步骤:  10. A method for cooperative operation of an OFDM and OFDMA coexistence system, applied to a coexistence system of OFDM and OFDMA, the coexistence system comprising at least one terminal of OFDM or OFDMA system, and a base station system; characterized in that the method comprises The following steps:
基站系统将相同频段的 OFDM和 OFDMA数据以时分方式构建成可实现 OFDM和 OFDMA共存的帧结构, 包括各自的上、 下行子帧;  The base station system constructs the OFDM and OFDMA data of the same frequency band into a frame structure capable of coexisting OFDM and OFDMA in a time division manner, including respective uplink and downlink subframes;
基站系统分别设置 OFDMA和 OFDM的开销信息, 在开销信息中将指明 各自的上、 下行子帧的分配情况;  The base station system sets the overhead information of the OFDMA and the OFDM respectively, and the allocation information of the respective uplink and downlink subframes is indicated in the overhead information;
基站系统在 OFDMA下行子帧中按照 OFDMA系统的要求发送同步信息、 开销信息和负载等下行数据, 在 OFDM下行子帧中按照 OFDM系统的要求发 送同步信息、 开销信息和负载等下行数据;  The base station system sends downlink data such as synchronization information, overhead information, and load in the OFDMA downlink subframe according to the requirements of the OFDMA system, and sends downlink information such as synchronization information, overhead information, and load in the OFDM downlink subframe according to the requirements of the OFDM system;
终端接收对应制式的下行同步信息和开销信息, 实现与基站的下行同步, 并获取相应的上、 下行子帧的分配信息;  The terminal receives the downlink synchronization information and the overhead information of the corresponding system, implements downlink synchronization with the base station, and acquires allocation information of the corresponding uplink and downlink subframes;
终端根据接收到的开销信息, 在基站指定的位置接收下行负载数据; 终端根据接收到的开销信息, 在基站指定的位置发送上行数据。  The terminal receives the downlink load data at the location specified by the base station according to the received overhead information. The terminal sends the uplink data at the location specified by the base station according to the received overhead information.
11、根据权利要求 10所述的 OFDM和 OFDMA的共存系统协同工作的方 法, 其特征在于, 该基站系统构建共存帧结构的过程包括如下步骤:  The method for cooperating OFDM and OFDMA coexistence systems according to claim 10, wherein the process of constructing the coexistence frame structure by the base station system comprises the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送下行子帧, 另一部分用 于接收上行子帧;  The base station divides the frame into two parts on the time axis, one part is used for transmitting the downlink subframe, and the other part is used for receiving the uplink subframe;
基站将下行子帧在时间轴上分成两部分, 一部分用于传送 OFDMA下行 子帧, 另一部分用于传送 OFDM下行子帧; 基站将上行子帧在时间轴上分成两部分, 一部分用于传送 OFDMA上行 子帧, 另一部分用于传送 OFDM上行子帧。 The base station divides the downlink subframe into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for transmitting the OFDM downlink subframe; The base station divides the uplink subframe into two parts on the time axis, one part for transmitting the OFDMA uplink subframe and the other part for transmitting the OFDM uplink subframe.
12、根据权利要求 11所述的 OFDM和 OFDMA的共存系统协同工作的方 法, 其特征在于, 所述 OFDM上行或者下行子帧的一部分可以根据需要借给 OFDMA上行或者下行子帧使用, OFDMA上行或者下行子帧的一部分也可以 根据需要借给 OFDM上行或者下行子帧使用。  The OFDM and OFDMA coexistence system cooperatively working according to claim 11, wherein a part of the OFDM uplink or downlink subframe can be used for an OFDMA uplink or downlink subframe, OFDMA uplink or A part of the downlink subframe may also be used for OFDM uplink or downlink subframes as needed.
13、根据权利要求 10所述的 OFDM和 OFDMA的共存系统协同工作的方 法, 其特征在于, 该基站系统构建共存帧结构的过程包括如下步骤- 基站将帧在时间轴上分成两部分, 一部分用于传送 OFDMA帧, 另一部 分用于传送 OFDM帧;  The method for cooperating OFDM and OFDMA coexistence systems according to claim 10, wherein the process of constructing the coexistence frame structure by the base station system comprises the following steps: the base station divides the frame into two parts on the time axis, and the part is used The OFDMA frame is transmitted, and the other part is used to transmit an OFDM frame;
基站将 OFDMA帧在时间轴上分成两部分, 一部分用于发送 OFDMA下 行子巾贞, 另一部分用于接收 OFDMA上行子帧;  The base station divides the OFDMA frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink sub-frame, and the other part is used for receiving the OFDMA uplink subframe;
基站将 OFDM帧在时间轴上分成两部分,一部分用于发送 OFDM下行子 帧, 另一部分用于接收 OFDM上行子帧。  The base station divides the OFDM frame into two parts on the time axis, one for transmitting the OFDM downlink subframe and the other for receiving the OFDM uplink subframe.
14、根据权利要求 13所述的 OFDM和 OFDMA的共存系统协同工作的方 法, 其特征在于, 所述 OFDM子帧的一部分可以根据需要借给 OFDMA子帧 使用, OFDMA子帧的一部分也可以根据需要借给 OFDM子帧使用。  The method for cooperating OFDM and OFDMA coexistence systems according to claim 13, wherein a part of the OFDM subframe can be borrowed for use in an OFDMA subframe, and a part of the OFDMA subframe can also be used as needed. Borrowed for use in OFDM subframes.
15、根据权利要求 10所述的 OFDM和 OFDMA的共存系统协同工作的方 法, 其特征在于, 该基站系统构建共存帧结构的过程包括如下步骤:  The method for cooperating OFDM and OFDMA coexistence systems according to claim 10, wherein the process of constructing the coexistence frame structure by the base station system comprises the following steps:
基站将帧在时间轴上分成两部分, 一部分用于传送 OFDMA下行子帧, 另一部分用于接收 OFDMA上行子帧;  The base station divides the frame into two parts on the time axis, one part is used for transmitting the OFDMA downlink subframe, and the other part is used for receiving the OFDMA uplink subframe;
基站在 OFDMA下行子帧中分配出一段区域,用于发射 OFDM下行子帧; 基站在 OFDMA上行子帧中分配出一段区域,用于接收 OFDM上行子帧。  The base station allocates a region in the OFDMA downlink subframe for transmitting the OFDM downlink subframe. The base station allocates a region in the OFDMA uplink subframe for receiving the OFDM uplink subframe.
PCT/CN2004/001145 2004-10-09 2004-10-09 A ofdm and ofdma coexistence system and a cooperation method thereof WO2006037258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2004800439418A CN101015149B (en) 2004-10-09 2004-10-09 Coexistent system of OFDM and OFDMA and collaborative working method thereof
PCT/CN2004/001145 WO2006037258A1 (en) 2004-10-09 2004-10-09 A ofdm and ofdma coexistence system and a cooperation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/001145 WO2006037258A1 (en) 2004-10-09 2004-10-09 A ofdm and ofdma coexistence system and a cooperation method thereof

Publications (1)

Publication Number Publication Date
WO2006037258A1 true WO2006037258A1 (en) 2006-04-13

Family

ID=36142287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/001145 WO2006037258A1 (en) 2004-10-09 2004-10-09 A ofdm and ofdma coexistence system and a cooperation method thereof

Country Status (2)

Country Link
CN (1) CN101015149B (en)
WO (1) WO2006037258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516483A (en) * 2004-10-09 2008-05-15 ゼット ティー イー コーポレイション Frequency spectrum bandwidth allocation method for coexistence system of OFDM and OFDMA.
CN113259961A (en) * 2020-02-13 2021-08-13 华为技术有限公司 Network management method and device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142084A1 (en) * 2009-06-12 2010-12-16 华为技术有限公司 System compatibility method and device
CN102487514B (en) * 2010-12-06 2014-06-04 华为技术有限公司 Method and equipment for coexisting WiMAX (Worldwide Interoperability for Microwave Access) system and TDD-LTE (Time Division Duplex Long Term Evolution) system
WO2015123887A1 (en) 2014-02-24 2015-08-27 华为技术有限公司 Method and apparatus for receiving and sending information
CN107078870B (en) * 2014-05-02 2021-01-26 马维尔国际有限公司 Multi-user allocation signaling in a wireless communication network
WO2017107198A1 (en) * 2015-12-25 2017-06-29 华为技术有限公司 Method, device and system for transmitting and receiving information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535501B1 (en) * 1997-11-07 2003-03-18 Sony International (Europe) Gmbh Transmission method and transmission apparatus for transmitting signals on the basis of a OFDM/TDMA-system in a GSM/system
CN1434588A (en) * 2003-03-07 2003-08-06 北京邮电大学 Time-frequency union spreading method based on OFDM-CDMA for broadband radio communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535501B1 (en) * 1997-11-07 2003-03-18 Sony International (Europe) Gmbh Transmission method and transmission apparatus for transmitting signals on the basis of a OFDM/TDMA-system in a GSM/system
CN1434588A (en) * 2003-03-07 2003-08-06 北京邮电大学 Time-frequency union spreading method based on OFDM-CDMA for broadband radio communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008516483A (en) * 2004-10-09 2008-05-15 ゼット ティー イー コーポレイション Frequency spectrum bandwidth allocation method for coexistence system of OFDM and OFDMA.
JP4714742B2 (en) * 2004-10-09 2011-06-29 ゼット ティー イー コーポレイション Frequency spectrum bandwidth allocation method for coexistence system of OFDM and OFDMA.
CN113259961A (en) * 2020-02-13 2021-08-13 华为技术有限公司 Network management method and device

Also Published As

Publication number Publication date
CN101015149A (en) 2007-08-08
CN101015149B (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US20220014322A1 (en) Downlink control channel in wireless systems
JP6541762B2 (en) Method and apparatus for transmitting / receiving time division duplex frame configuration information in wireless communication system
US8488634B2 (en) Use of first and second preambles in wireless communication signals
EP2474182B1 (en) Mac packet data unit construction for wireless systems
JP2009089388A (en) Wireless communication system
CA2773945C (en) The use of first and second preambles in wireless communication signals
WO2018145607A1 (en) Method and device for wireless communications
US20160248549A1 (en) Transmission of Symbols in a MIMO Environment using Alamouti Based Codes
WO2010051752A1 (en) Method and device for enabling multi-carriers aggregation transmission
WO2013079034A1 (en) Downlink data transmitting and receiving method, base station and user terminal
WO2018141231A1 (en) Ue and base station method and apparatus for wireless communication
WO2010078770A1 (en) Resource mapping methods for control channels
CN114938260B (en) Method and apparatus in a node for wireless communication
US20110069772A1 (en) Transmission of multicast broadcast service (mbs) traffic in a wireless environment
EP3619901A1 (en) Coexistence of ofdm and on-off keying (ook) signals in wlan
WO2019085729A1 (en) Method and device used in user equipment and base station for wireless communication
WO2006037258A1 (en) A ofdm and ofdma coexistence system and a cooperation method thereof
CA2772443A1 (en) Transmission of multicast broadcast service (mbs) traffic in a wireless environment
WO2023284598A1 (en) Method and apparatus for node of wireless communication
WO2023103924A1 (en) Method and apparatus used in node for wireless communications
WO2023131145A1 (en) Method and apparatus for use in node for wireless communication
WO2023138485A1 (en) Method and apparatus used in node for wireless communication
CN111769920B (en) Method and apparatus in a node used for wireless communication
CN111726869B (en) Method and apparatus in a node used for wireless communication
WO2010054571A1 (en) Multiple access method and apparatus for physical channels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200480043941.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase