WO2006035960A2 - Process for production of 2-chloro-4-nitroimidazole - Google Patents

Process for production of 2-chloro-4-nitroimidazole Download PDF

Info

Publication number
WO2006035960A2
WO2006035960A2 PCT/JP2005/018230 JP2005018230W WO2006035960A2 WO 2006035960 A2 WO2006035960 A2 WO 2006035960A2 JP 2005018230 W JP2005018230 W JP 2005018230W WO 2006035960 A2 WO2006035960 A2 WO 2006035960A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitroimidazole
compound
reaction
chloro
production
Prior art date
Application number
PCT/JP2005/018230
Other languages
French (fr)
Other versions
WO2006035960A3 (en
Inventor
Koichi Shinhama
Original Assignee
Otsuka Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co., Ltd. filed Critical Otsuka Pharmaceutical Co., Ltd.
Priority to CA002580139A priority Critical patent/CA2580139A1/en
Priority to AU2005288086A priority patent/AU2005288086A1/en
Priority to MX2007003257A priority patent/MX2007003257A/en
Priority to BRPI0516009-0A priority patent/BRPI0516009A/en
Priority to EP05787645A priority patent/EP1794132A2/en
Priority to US11/663,724 priority patent/US20090082575A1/en
Publication of WO2006035960A2 publication Critical patent/WO2006035960A2/en
Publication of WO2006035960A3 publication Critical patent/WO2006035960A3/en
Priority to IL182134A priority patent/IL182134A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/91Nitro radicals
    • C07D233/92Nitro radicals attached in position 4 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/91Nitro radicals
    • C07D233/92Nitro radicals attached in position 4 or 5
    • C07D233/94Nitro radicals attached in position 4 or 5 with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to other ring members

Definitions

  • the present invention relates to a process for production of 2-chloro-4-nitroimidazole.
  • BACKGROUND ART 2-Chloro-4-nitroimidazole represented by the formula (1) is a compound useful as an intermediate for synthesis of various medicines, pesticides, etc., in particular, as an intermediate for production of an antituberculous agent.
  • reaction formula-1 As a process for production of 2-chloro-4- nitroimidazole, processes shown in the following reaction formula-1 and reaction formula-2 have been conventionally known, for example (Jerzy SUWINSKI, Ewa SALWINSKA, Jan WATRAS and Maria WIDEL, Polish Journal of Chemistry, 56, 1261-1272 (1982)) .
  • reaction formula-1 Jerzy SUWINSKI, Ewa SALWINSKA, Jan WATRAS and Maria WIDEL, Polish Journal of Chemistry, 56, 1261-1272 (1982)
  • the compounds (4) and (5) as reaction intermediates are chemically unstable compounds, and are at risk of being exploded due to an impact by fall, friction, etc.
  • an industrial mass production of the target compound involves a high risk, because conversion of compound (4) into compound (5) by heating (at about 130 0 C) is carried out at above TNR (Temperature of No Return: about 60 to 70°C, the maximum temperature which allows the compound to be handled with safety in an apparatus in a chemical process) of compound (4) .
  • TNR Tempoture of No Return: about 60 to 70°C, the maximum temperature which allows the compound to be handled with safety in an apparatus in a chemical process
  • reaction formula-2 The process shown in the reaction formula-2 is a reaction of nitration of the compound (6) . This nitration gives the compound (1) only in a low yield, and is industrially disadvantageous.
  • An object of the present invention is to provide a process for production of high-yield and high-purity 2-chloro-4-nitroimidazole by a simple operation in a safer manner involving a low risk of explosion or the like.
  • the present inventors have found that the object can be achieved by reacting a 1-alkoxyalkyl- 2-bromo-4-nitroimidazole compound represented by the following general formula (7) with hydrogen chloride.
  • the present invention has been accomplished based on such a finding.
  • the present invention provides a process for production of 2-chloro-4-nitroimidazole represented by the formula (1) :
  • R 1 represents a lower alkyl group
  • n represents an integer of 1 to 3, with hydrogen chloride.
  • examples of the lower alkyl group include linear or branched alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, and n-hexyl group.
  • reaction of converting the compound represented by the general formula (7) into 2-chloro-4- nitroimidazole is carried out in an appropriate solvent or without a solvent in the presence of hydrogen chloride.
  • hydrogen chloride used in the above-described reaction is not specifically limited, hydrogen chloride is used typically in an amount of at least 2 moles, and preferably in a large excess amount per mol of the compound of the general formula (7) .
  • Examples of the solvent used include water; lower alcohols such as methanol, ethanol, and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as ethyl ether, dimethoxyethane, dioxane, tetrahydrofuran, and ethylene glycol dimethyl ether; fatty acids such as acetic acid and formic acid; esters such as methyl acetate and butyl acetate; N,N- dimethylacetamide, N-methylpyrrolidone, and a mixed solvent thereof.
  • the above-described reaction suitably proceeds typically at about 0 to 150°C, and preferably about room temperature to 100 0 C, and is generally completed in about 5 minutes to 40 hours.
  • the compound of the general formula (7) used as a starting compound in the present invention is produced by the following process, for example.
  • R 1 and n are the same as above, X 1 represents a halogen atom, and X 2 represents a halogen atom or a lower alkoxy group.
  • Examples of the lower alkoxy group herein include linear or branched alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group, n- propoxy group, isopropoxy group, n-butoxy group, tert- butoxy group, n-pentyloxy group, and n-hexyloxy group.
  • reaction of the compound (8) with the compound (9), wherein X 2 represents a halogen atom is generally carried out in an appropriate solvent in the presence or absence of a basic compound.
  • solvent used examples include aromatic hydrocarbons such as benzene, toluene, and xylene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxane, and diethylene glycol dimethyl ether; halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, and carbon tetrachloride; lower alcohols such as methanol, ethanol, isopropanol, butanol, and tert-butanol; acetic acid; esters such as ethyl acetate, methyl acetate, and butyl acetate; ketones such as acetone and methyl ethyl ketone; acetonitrile, pyridine, 2, 4, 6-collidine, dimethyl sulfoxide, N,N-dimethylacetamide, N,N- dimethylformamide, l-methyl-2-pyrrolidinone (NMP
  • Examples of the basic compound include inorganic bases including metal carbonates such as sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate, metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, sodium hydride, potassium, sodium, sodium amide, and metal alcoholates such as sodium methylate and sodium ethylate; and organic bases including pyridine, 2, 4, 6-collidine, N- ethyldiisopropylamine, dimethylaminopyridine, triethylamine, 1, 5-diazabicyclo [4.3.0] nonene-5 (DBN), 1, 8-diazabicyclo[5.4.0]undecene-7 (DBU), and 1,4- diazabicyclo [2.2.2] octane (DABCO) .
  • metal carbonates such as sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate
  • metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, sodium
  • the basic compound is preferably used in an amount of typically 1 to 5 moles per mol of the compound (8) .
  • the compound (9) is preferably used in an amount of typically at least about 1 mol, and preferably about 1 to 5 moles per mol of the compound (8) .
  • the above-described reaction is carried out typically at about -50 to 200°C, and preferably at about -50 to 15O 0 C.
  • the reaction time is typically about 1 to 30 hours.
  • An alkali metal halide or the like such as sodium iodide may be added to the reaction system of this reaction.
  • the reaction of the compound (8) with the compound (9), wherein X 2 represents a lower alkoxy group preferably employs acids including sulfonic acids such as camphorsulfonic acid, methansulfonic acid, and p-toluenesulfonic acid in place of the basic compound in the above-described reaction conditions. Of these, methansulfonic acid is preferable.
  • the acid is preferably used typically in a catalytic amount, and preferably in an amount of 0.01 to 0.2 mol per mol of the compound (8) .
  • P 2 O 5 may be present in the reaction system.
  • the reaction of converting the compound (10) into the compound (7) is carried out in an appropriate solvent in the presence of a reducing agent.
  • Examples of the reducing agent used include metal sulfites such as sodium sulfite and sodium bisulfite; and hydride reducing agents including tetra- lower alkyl-ammonium borohydrides such as tetramethylammonium borohydride, tetraethylammonium borohydride, tetra-n-butylammonium borohydride, and tetra-n-butylammonium cyanoborohydride, sodium cyanoborohydride, lithium cyanoborohydride, sodium borohydride, and diborane.
  • metal sulfites such as sodium sulfite and sodium bisulfite
  • hydride reducing agents including tetra- lower alkyl-ammonium borohydrides such as tetramethylammonium borohydride, tetraethylammonium borohydride, tetra-n-butylammonium borohydride, and tetra
  • solvent used examples include water; lower alcohols such as methanol, ethanol, and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dimethoxy ethane, tetrahydrofuran, diisopropyl ether, diglyme, and 1,4- dioxane; aromatic hydrocarbons such as benzene, toluene, and xylene; nitriles such as acetonitrile and propionitrile; dimethyl sulfoxide, N,N- dimethylformamide, N,N-dimethylacetamide, NMP, and a mixed solvent thereof.
  • lower alcohols such as methanol, ethanol, and isopropanol
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as diethyl ether, dimethoxy ethane, tetrahydrofuran, diiso
  • an anhydrous solvent is preferably used.
  • the reducing agent is preferably used in an amount of typically at least 1 mol, and preferably 1 to 10 moles per mol of the compound (10) .
  • the above-described reaction is carried out typically at about 0 to 150°C, and preferably about 0 to 12O 0 C, and is generally completed in about 1 to 30 hours.
  • the reaction of converting the compound (10) into the compound (7) may be carried out in an appropriate solvent in the presence of, for example, a catalytic hydrogen reducing agent such as palladium, palladium-black, palladium-carbon, palladium hydroxide- carbon, rhodium-alumina, platinum, platinum oxide, copper chromite, Raney nickel, or palladium acetate, and a fatty acid, fatty acid ammonium salt, or fatty acid alkali metal salt such as formic acid, sodium formate, ammonium formate, or sodium acetate.
  • a catalytic hydrogen reducing agent such as palladium, palladium-black, palladium-carbon, palladium hydroxide- carbon, rhodium-alumina, platinum, platinum oxide, copper chromite, Raney nickel, or palladium acetate
  • a fatty acid, fatty acid ammonium salt, or fatty acid alkali metal salt such as formic acid, sodium formate, ammonium formate,
  • any solvent used in a reaction using the above-described hydride reducing agent may be employed.
  • the catalytic hydrogen reducing agent is used in an amount of typically about 0.001 to 0.4 times, and preferably about 0.001 to 0.2 times of the compound (10) on a weight basis.
  • the fatty acid, fatty acid ammonium salt, or fatty acid alkali metal salt is used in an amount of typically at least about 1 mol, and preferably about 1 to 20 moles per mol of the compound (10) .
  • the reaction suitably proceeds typically at about room temperature to 200°C, and preferably about room temperature to 150°C, and is generally completed in about 1 to 30 hours.
  • An amine such as triethylamine, a phosphorus compound such as tri-o-tolylphosphine, or the like may be added to the reaction system.
  • the reaction of converting the compound (10) into the compound (7) may also be carried out in an appropriate solvent in the presence of a catalytic hydrogen reducing agent.
  • catalytic hydrogen reducing agent examples include palladium, palladium acetate, palladium- black, palladium-carbon, palladium hydroxide-carbon, rhodium-alumina, platinum, platinum oxide, copper chromite, and Raney nickel.
  • Such a catalytic hydrogen reducing agent is used in an amount of typically about 0.02 to 1 times of the compound (4) on a weight basis.
  • Examples of the solvent used include water; fatty acids such as acetic acid; alcohols such as methanol, ethanol, and isopropanol; aliphatic hydrocarbons such as n-hexane; alicyclic hydrocarbons such as cyclohexane; ethers such as 1,4-dioxane, dimethoxyethane, tetrahydrofuran, diethyl ether, monoglyme, and diglyme; esters such as methyl acetate, ethyl acetate, and butyl acetate; aprotic polar solvents such as N,N-dimethylformamide, N,N- dimethylacetamide, and NMP; and a mixed solvent thereof.
  • fatty acids such as acetic acid
  • alcohols such as methanol, ethanol, and isopropanol
  • aliphatic hydrocarbons such as n-hexane
  • alicyclic hydrocarbons such as cyclohexan
  • the reaction suitably proceeds typically at about -20 to 100°C, and preferably about 0 to 8O 0 C, and is generally completed in about 0.5 to 20 hours.
  • the hydrogen pressure is preferably about 1 to 10 atm, typically.
  • An amine such as triethylamine is preferably added to the reaction system.
  • the above-described reaction advantageously proceeds by the addition of an amine.
  • the reaction of converting the compound (10) into the compound (7) may also be carried out in an appropriate solvent in the presence of a catalyst.
  • a solvent any solvent used in a reaction using the above-described hydride reducing agent may be employed.
  • Examples of the catalyst that can be used include palladium compounds such as palladium acetate- triphenylphosphine and tetrakis (triphenylphosphine)palladium.
  • Such a catalyst is used in an amount of typically about 0.01 to 5 moles, and preferably about 0.01 to 1 mol per mol of the compound (10) .
  • the reaction suitably proceeds typically at about room temperature to 200°C, and preferably about room temperature to 150°C, and is generally completed in about 1 to 10 hours.
  • An alkylsilane compound such as triethylsilane is preferably added to the reaction system.
  • the above-described reaction advantageously proceeds by the addition of an alkylsilane compound.
  • selective dehalogenation occurs at the 5- position on the imidazole ring, so that the desired compound of the general formula (7) can be obtained.
  • the target compound obtained by the process of the present invention is easily isolated from a reaction mixture and purified by common isolation and purification means.
  • high- yield and high-purity 2-chloro-4-nitroimidazole can be produced by a simple operation in a safer manner involving a low risk of explosion or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention provides a process for production of 2-chloro-4-nitroimidazole in a high yield and at a high purity by a simple operation in a safer manner involving a low risk of explosion or the like. The present invention provides a process for production of 2-chloro-4-nitroimidazole represented by the formula (1): comprising a reaction of a 1-alkoxyalkyl-2-bromo-4-nitroimidazole compound represented by the general formula (7): wherein R1 represents a lower alkyl group, and n represents an integer of 1 to 3, with hydrogen chloride.

Description

DESCRIPTION PROCESS FOR PRODUCTION OF 2-CHLORO-4-NITROIMIDAZOLE
TECHNICAL FIELD
The present invention relates to a process for production of 2-chloro-4-nitroimidazole.
BACKGROUND ART 2-Chloro-4-nitroimidazole represented by the formula (1) is a compound useful as an intermediate for synthesis of various medicines, pesticides, etc., in particular, as an intermediate for production of an antituberculous agent.
Figure imgf000002_0001
As a process for production of 2-chloro-4- nitroimidazole, processes shown in the following reaction formula-1 and reaction formula-2 have been conventionally known, for example (Jerzy SUWINSKI, Ewa SALWINSKA, Jan WATRAS and Maria WIDEL, Polish Journal of Chemistry, 56, 1261-1272 (1982)) . Reaction formula-1
Figure imgf000003_0001
(2) (3)
Nitric acid/ acetic anhydride
Figure imgf000003_0002
Figure imgf000003_0003
Figure imgf000003_0004
(4) (5)
Chlorination
Figure imgf000003_0005
Figure imgf000003_0006
(1)
Reaction formula-2
Figure imgf000003_0008
Nitric acid
Figure imgf000003_0007
Sulfuric acid (6) (1)
However, these processes have various drawbacks and are inappropriate as an industrial production process.
For example, in the process shown in the reaction formula-1, the compounds (4) and (5) as reaction intermediates are chemically unstable compounds, and are at risk of being exploded due to an impact by fall, friction, etc. Further, an industrial mass production of the target compound involves a high risk, because conversion of compound (4) into compound (5) by heating (at about 1300C) is carried out at above TNR (Temperature of No Return: about 60 to 70°C, the maximum temperature which allows the compound to be handled with safety in an apparatus in a chemical process) of compound (4) .
The process shown in the reaction formula-2 is a reaction of nitration of the compound (6) . This nitration gives the compound (1) only in a low yield, and is industrially disadvantageous.
DISCLOSURE OF INVENTION
An object of the present invention is to provide a process for production of high-yield and high-purity 2-chloro-4-nitroimidazole by a simple operation in a safer manner involving a low risk of explosion or the like.
As a result of conducting extensive studies for a safer and easier process for production of 2- chloro-4-nitroimidazole in order to achieve the above- described object, the present inventors have found that the object can be achieved by reacting a 1-alkoxyalkyl- 2-bromo-4-nitroimidazole compound represented by the following general formula (7) with hydrogen chloride. The present invention has been accomplished based on such a finding.
The present invention provides a process for production of 2-chloro-4-nitroimidazole represented by the formula (1) :
Figure imgf000005_0001
comprising a reaction of l-alkoxyalkyl-2~bromo-4- nitroimidazole represented by the general formula (7) :
Figure imgf000005_0002
wherein R1 represents a lower alkyl group, and n represents an integer of 1 to 3, with hydrogen chloride.
In the present invention, examples of the lower alkyl group include linear or branched alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, and n-hexyl group.
Process for production of 2-chloro-4-nitroimidazole
The reaction of converting the compound represented by the general formula (7) into 2-chloro-4- nitroimidazole is carried out in an appropriate solvent or without a solvent in the presence of hydrogen chloride.
Although the amount of hydrogen chloride used in the above-described reaction is not specifically limited, hydrogen chloride is used typically in an amount of at least 2 moles, and preferably in a large excess amount per mol of the compound of the general formula (7) .
Examples of the solvent used include water; lower alcohols such as methanol, ethanol, and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as ethyl ether, dimethoxyethane, dioxane, tetrahydrofuran, and ethylene glycol dimethyl ether; fatty acids such as acetic acid and formic acid; esters such as methyl acetate and butyl acetate; N,N- dimethylacetamide, N-methylpyrrolidone, and a mixed solvent thereof.
The above-described reaction suitably proceeds typically at about 0 to 150°C, and preferably about room temperature to 1000C, and is generally completed in about 5 minutes to 40 hours.
The compound of the general formula (7) used as a starting compound in the present invention is produced by the following process, for example.
Reaction formula-4
Figure imgf000007_0001
(8) (10)
Figure imgf000007_0002
(7)
In the formula, R1 and n are the same as above, X1 represents a halogen atom, and X2 represents a halogen atom or a lower alkoxy group.
Examples of the lower alkoxy group herein include linear or branched alkoxy groups having 1 to 6 carbon atoms such as methoxy group, ethoxy group, n- propoxy group, isopropoxy group, n-butoxy group, tert- butoxy group, n-pentyloxy group, and n-hexyloxy group.
The reaction of the compound (8) with the compound (9), wherein X2 represents a halogen atom, is generally carried out in an appropriate solvent in the presence or absence of a basic compound.
Examples of the solvent used include aromatic hydrocarbons such as benzene, toluene, and xylene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran, dioxane, and diethylene glycol dimethyl ether; halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, and carbon tetrachloride; lower alcohols such as methanol, ethanol, isopropanol, butanol, and tert-butanol; acetic acid; esters such as ethyl acetate, methyl acetate, and butyl acetate; ketones such as acetone and methyl ethyl ketone; acetonitrile, pyridine, 2, 4, 6-collidine, dimethyl sulfoxide, N,N-dimethylacetamide, N,N- dimethylformamide, l-methyl-2-pyrrolidinone (NMP) , hexamethylphosphoric triamide, and a mixed solvent thereof.
Examples of the basic compound include inorganic bases including metal carbonates such as sodium carbonate, potassium carbonate, sodium bicarbonate, and potassium bicarbonate, metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, sodium hydride, potassium, sodium, sodium amide, and metal alcoholates such as sodium methylate and sodium ethylate; and organic bases including pyridine, 2, 4, 6-collidine, N- ethyldiisopropylamine, dimethylaminopyridine, triethylamine, 1, 5-diazabicyclo [4.3.0] nonene-5 (DBN), 1, 8-diazabicyclo[5.4.0]undecene-7 (DBU), and 1,4- diazabicyclo [2.2.2] octane (DABCO) .
The basic compound is preferably used in an amount of typically 1 to 5 moles per mol of the compound (8) . The compound (9) is preferably used in an amount of typically at least about 1 mol, and preferably about 1 to 5 moles per mol of the compound (8) .
The above-described reaction is carried out typically at about -50 to 200°C, and preferably at about -50 to 15O0C. The reaction time is typically about 1 to 30 hours.
An alkali metal halide or the like such as sodium iodide may be added to the reaction system of this reaction.
The reaction of the compound (8) with the compound (9), wherein X2 represents a lower alkoxy group, preferably employs acids including sulfonic acids such as camphorsulfonic acid, methansulfonic acid, and p-toluenesulfonic acid in place of the basic compound in the above-described reaction conditions. Of these, methansulfonic acid is preferable.
The acid is preferably used typically in a catalytic amount, and preferably in an amount of 0.01 to 0.2 mol per mol of the compound (8) .
Further, P2O5 may be present in the reaction system.
The reaction of converting the compound (10) into the compound (7) is carried out in an appropriate solvent in the presence of a reducing agent.
Examples of the reducing agent used include metal sulfites such as sodium sulfite and sodium bisulfite; and hydride reducing agents including tetra- lower alkyl-ammonium borohydrides such as tetramethylammonium borohydride, tetraethylammonium borohydride, tetra-n-butylammonium borohydride, and tetra-n-butylammonium cyanoborohydride, sodium cyanoborohydride, lithium cyanoborohydride, sodium borohydride, and diborane.
Examples of the solvent used include water; lower alcohols such as methanol, ethanol, and isopropanol; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dimethoxy ethane, tetrahydrofuran, diisopropyl ether, diglyme, and 1,4- dioxane; aromatic hydrocarbons such as benzene, toluene, and xylene; nitriles such as acetonitrile and propionitrile; dimethyl sulfoxide, N,N- dimethylformamide, N,N-dimethylacetamide, NMP, and a mixed solvent thereof.
When diborane or the like is used as the reducing agent, an anhydrous solvent is preferably used. The reducing agent is preferably used in an amount of typically at least 1 mol, and preferably 1 to 10 moles per mol of the compound (10) .
The above-described reaction is carried out typically at about 0 to 150°C, and preferably about 0 to 12O0C, and is generally completed in about 1 to 30 hours.
The reaction of converting the compound (10) into the compound (7) may be carried out in an appropriate solvent in the presence of, for example, a catalytic hydrogen reducing agent such as palladium, palladium-black, palladium-carbon, palladium hydroxide- carbon, rhodium-alumina, platinum, platinum oxide, copper chromite, Raney nickel, or palladium acetate, and a fatty acid, fatty acid ammonium salt, or fatty acid alkali metal salt such as formic acid, sodium formate, ammonium formate, or sodium acetate.
As the solvent, any solvent used in a reaction using the above-described hydride reducing agent may be employed.
The catalytic hydrogen reducing agent is used in an amount of typically about 0.001 to 0.4 times, and preferably about 0.001 to 0.2 times of the compound (10) on a weight basis. The fatty acid, fatty acid ammonium salt, or fatty acid alkali metal salt is used in an amount of typically at least about 1 mol, and preferably about 1 to 20 moles per mol of the compound (10) . The reaction suitably proceeds typically at about room temperature to 200°C, and preferably about room temperature to 150°C, and is generally completed in about 1 to 30 hours. An amine such as triethylamine, a phosphorus compound such as tri-o-tolylphosphine, or the like may be added to the reaction system.
The reaction of converting the compound (10) into the compound (7) may also be carried out in an appropriate solvent in the presence of a catalytic hydrogen reducing agent.
Examples of the catalytic hydrogen reducing agent include palladium, palladium acetate, palladium- black, palladium-carbon, palladium hydroxide-carbon, rhodium-alumina, platinum, platinum oxide, copper chromite, and Raney nickel. Such a catalytic hydrogen reducing agent is used in an amount of typically about 0.02 to 1 times of the compound (4) on a weight basis. Examples of the solvent used include water; fatty acids such as acetic acid; alcohols such as methanol, ethanol, and isopropanol; aliphatic hydrocarbons such as n-hexane; alicyclic hydrocarbons such as cyclohexane; ethers such as 1,4-dioxane, dimethoxyethane, tetrahydrofuran, diethyl ether, monoglyme, and diglyme; esters such as methyl acetate, ethyl acetate, and butyl acetate; aprotic polar solvents such as N,N-dimethylformamide, N,N- dimethylacetamide, and NMP; and a mixed solvent thereof.
The reaction suitably proceeds typically at about -20 to 100°C, and preferably about 0 to 8O0C, and is generally completed in about 0.5 to 20 hours. The hydrogen pressure is preferably about 1 to 10 atm, typically.
An amine such as triethylamine is preferably added to the reaction system. The above-described reaction advantageously proceeds by the addition of an amine.
The reaction of converting the compound (10) into the compound (7) may also be carried out in an appropriate solvent in the presence of a catalyst. As the solvent, any solvent used in a reaction using the above-described hydride reducing agent may be employed.
Examples of the catalyst that can be used include palladium compounds such as palladium acetate- triphenylphosphine and tetrakis (triphenylphosphine)palladium. Such a catalyst is used in an amount of typically about 0.01 to 5 moles, and preferably about 0.01 to 1 mol per mol of the compound (10) . The reaction suitably proceeds typically at about room temperature to 200°C, and preferably about room temperature to 150°C, and is generally completed in about 1 to 10 hours.
An alkylsilane compound such as triethylsilane is preferably added to the reaction system. The above-described reaction advantageously proceeds by the addition of an alkylsilane compound. In each of the above-described reduction reactions, selective dehalogenation occurs at the 5- position on the imidazole ring, so that the desired compound of the general formula (7) can be obtained.
The target compound obtained by the process of the present invention is easily isolated from a reaction mixture and purified by common isolation and purification means.
According to the present invention, high- yield and high-purity 2-chloro-4-nitroimidazole can be produced by a simple operation in a safer manner involving a low risk of explosion or the like.
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be explained in more detail below with reference to examples and reference examples.
Reference Example 1
Synthesis of l-ethoxymethyl-2, 5-dibromo-4- nitroimidazole
A mixture of 2, 5-dibromo-4-nitroimidazole (20.0 g, 73.8 mmol) , ethylal (100 ml), and methanesulfonic acid (1.42 g, 14.8 mmol) was stirred under heating (bath temperature: 65 to 70°C, internal temperature: 60°C, 1.5 hours) . Further, the reaction mixture was evaporated under reduced pressure for two hours (fractional distillation column was used) . The residue was allowed to cool to room temperature, and then ice water (200 g) was added, and the mixture was stirred for 10 minutes. The filtered crystals were washed with cold water and then air-dried (room temperature, 3 days) . Thus, l-ethoxymethyl-2, 5- dibromo-4-nitroimidazole was produced. Yield: 23.5g (96.8%) IR spectrum (KBr) :
1532, 1491, 1464, 1397, 1365, 1344, 1315, 1273, 1248, 1127, 1106, 1054, 1020, 830, 740cm"1 1H-NMR spectrum (CDCl3) δppm:
1.25 (t, J=7.0Hz, 3H), 3.64 (q, J=7.0Hz, 2H), 5.50 (s, 2H) .
Reference Example 2
Synthesis of l-methoxymethyl-2, 5-dibromo-4- nitroimidazole
A mixture of 2, 5-dibromo-4-nitroimidazole (20.0 g, 73.8 mmol) , methylal (100 ml), and methanesulfonic acid (1.42 g, 14.8 mmol) was stirred under water-cooling, and P2O5 (21.0 g, 148 mmol) was added to the mixture at below 42°C. Further, the mixture was suspended and refluxed under heating (43°C, 3 hours) . The reaction mixture was evaporated under reduced pressure. The residue was allowed to cool to room temperature, and then ice water (200 g) was added, and the mixture was stirred for 10 minutes. The precipitated crystals were filtered, dispersed and washed (cold water 100 ml, 0.5 hour), and air-dried (room temperature, 3 days) . Thus, l-methoxymethyl-2, 5- dibromo-4-nitroimidazole was produced. Yield: 21.8g (93.8%) IR spectrum (KBr) : 1543, 1530, 1486, 1458, 1439, 1367, 1318, 1260, 1194, 1119, 1104, 1053, 1013, 912, 833, 743cm"1 1H-NMR spectrum (CDCl3) δppm: 3.46 (s, 3H) , 5.46 (s, 2H) .
Reference Example 3 Synthesis of l-methoxymethyl-2-bromo-4-nitroimidazole l-Methoxymethyl-2, 5-dibromo-4-nitroimidazole (12.5 g, 39.7 mmol) was dissolved in dimethylformamide (100 ml), and the solution was stirred under ice- cooling (12°C) . Further, water (50 ml) and sodium sulfite (10.0 g, 79.3 mmol) were added, and the mixture was stirred at room temperature (23 to 24°C) for 72 hours. 5% Sodium bicarbonate aqueous solution (50 ml) and cold water (250 ml) were added, and the organic layer was extracted with ethyl acetate (250 ml, twice) . The organic layer was washed with aqueous 5% sodium chloride solution (250 ml, twice) , and then dried (MgSO4) and evaporated (crystallization) . Thus, 1- methoxymethyl-2-bromo-4-nitroimidazole was produced. Yield: 8.17g (87.2%) Pale yellow crystals HPLC 99.69% IR spectrum (KBr) : 3138, 1543, 1504, 1455, 1405, 1354, 1338, 1272, 1192, 1146, 1108, 1087, 1035, 989, 915, 824, 739, 668, 538cm"1 1H-NMR spectrum (CDCl3) δppm:
3.42 (s, 3H), 5.34 (s, 2H), 7.93 (s, IH)
Reference Example 4
Synthesis of l-ethoxymethyl-2-bromo-4-nitroimidazole l-Ethoxymethyl-2, 5-dibromo-4-nitroimidazole (13.1 g, 39.7 mmol) was dissolved in dimethylformamide (100 ml), and the solution was stirred under ice- cooling (12°C) . Further, water (50 ml) and sodium sulfite (10.0 g, 79.3 mmol) were added, and the mixture was stirred at room temperature (23 to 24°C) for 72 hours. 5% sodium bicarbonate aqueous solution (50 ml) and cold water (250 ml) were added, and the organic layer was extracted with ethyl acetate (250 ml, twice; 100 ml, once) . The organic layer was washed with a 5% sodium chloride aqueous solution (250 ml, twice) , and then dried (MgSO4) and evaporated. Thus, 1- ethoxymethyl-2-bromo-4-nitroimidazole was produced. Yield: 8.74g (88.0%)
Slightly yellow crystals
HPLC 98.51%
IR spectrum (KBr) :
3139, 2983, 1540, 1507, 1455, 1400, 1340, 1279, 1264, 1163, 1138, 1096, 1038, 1009, 991, 828, 813, 741,
671 cm"1
1H-NMR spectrum (CDCl3) δppm: 1 . 25 (t , J=7 . 0Hz , 3H) , 3 . 60 (q, J=7 . 0Hz , 2H) , 5 . 37 ( s , 2H) , 7 . 92 ( s , IH) .
Example 1
Synthesis of 2-chloro-4-nitroimidazole (one-pot process from N-protected compound)
A mixture of l-methoxymethyl-2-bromo-4- nitroimidazole (1.41 g, 5.96 mmol) , concentrated hydrochloric acid (7.0 ml, concentration: 35%), and water (7.0 ml) was stirred under heating (at a bath temperature of 95 to 100°C for 15 hours) . The reaction mixture was evaporated under reduced pressure while maintaining the mixture at a temperature of 50°C. Water (8.4 ml) was added to the residue, and the mixture was stirred under cooling (at 5°C for 1 hour) . The crystals were filtered and dried by blowing air (at 60°C for 15 hours) to obtain 0.641 g of the target 2-chloro-4- nitroimidazole (yield: 72.9%) .
1H-NMR spectrum (DMSO-d6) δppm:
8.43 (s, IH), 14.1 (br.s, IH) .
Example 2
Synthesis of 2-chloro-4-nitroimidazole (one-pot process from N-protected compound)
A mixture of l-ethoxymethyl-2-bromo-4- nitroimidazole (4.05 g, 16.2 mmol), concentrated hydrochloric acid (20.3 ml, concentration: 35%), and water (20.3 ml) was stirred under heating (at a bath temperature of 97 to 102°C for 12 hours) . The reaction mixture was evaporated under reduced pressure while maintaining the mixture at a temperature of 70°C. Water (20 ml) was added to the residue, and the mixture was evaporated under reduced pressure. Further, water (20 ml) was added to the residue, and the mixture was stirred under cooling (at 5°C for 1 hour) . The precipitated crystals were filtered and then dried (at 600C for 16 hours) to obtain 1.41 g of the target 2- chloro-4-nitroimidazole (yield: 59.0%) . 1H-NMR spectrum (DMSO-d6) δppm: 8.43 (s, IH) , 14.1 (br.s, IH) .
Further, the filtrate was concentrated to obtain 0.186 g of 2-chloro-4-nitroimidazole (yield: 7.8%) .
Total yield: 66.8%

Claims

1. A process for production of 2-chloro-4- nitroimidazole represented by the formula:
Figure imgf000020_0001
comprising a reaction of l-alkoxyalkyl-2-bromo-4- nitroimidazole represented by the general formula:
Figure imgf000020_0002
wherein R1 represents a lower alkyl group, and n represents an integer of 1 to 3, with hydrogen chloride.
PCT/JP2005/018230 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole WO2006035960A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002580139A CA2580139A1 (en) 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole
AU2005288086A AU2005288086A1 (en) 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole
MX2007003257A MX2007003257A (en) 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole.
BRPI0516009-0A BRPI0516009A (en) 2004-09-27 2005-09-27 process for the production of 2-chloro-4-nitroimidazole
EP05787645A EP1794132A2 (en) 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole
US11/663,724 US20090082575A1 (en) 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole
IL182134A IL182134A0 (en) 2004-09-27 2007-03-22 Process for production of 2-chloro-4-nitroimidazole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-278974 2004-09-27
JP2004278974 2004-09-27

Publications (2)

Publication Number Publication Date
WO2006035960A2 true WO2006035960A2 (en) 2006-04-06
WO2006035960A3 WO2006035960A3 (en) 2006-05-11

Family

ID=35967026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018230 WO2006035960A2 (en) 2004-09-27 2005-09-27 Process for production of 2-chloro-4-nitroimidazole

Country Status (14)

Country Link
US (1) US20090082575A1 (en)
EP (1) EP1794132A2 (en)
KR (1) KR20070056105A (en)
CN (1) CN101027287A (en)
AR (1) AR053972A1 (en)
AU (1) AU2005288086A1 (en)
BR (1) BRPI0516009A (en)
CA (1) CA2580139A1 (en)
IL (1) IL182134A0 (en)
MX (1) MX2007003257A (en)
RU (1) RU2007115892A (en)
TW (1) TW200624422A (en)
WO (1) WO2006035960A2 (en)
ZA (1) ZA200702426B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500183A (en) * 2008-08-21 2012-01-05 デイナミート ノーベル ゲゼルシャフト ミット ベシュレンクテル ハフツング エクスプロジーフシュトッフ− ウント ジステームテヒニク Process for producing 2-halo-4-nitroimidazole and its intermediate
WO2019146113A1 (en) 2018-01-29 2019-08-01 Otsuka Pharmaceutical Co., Ltd. Process for production of 2-chloro-4-nitroimidazole derivatives

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103396369B (en) * 2013-08-14 2016-03-23 盐城工学院 A kind of method preparing the chloro-4-nitroimidazole of 2-

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2494710A1 (en) * 2002-10-15 2004-04-29 Otsuka Pharmaceutical Co., Ltd. 1-substituted-4-nitroimidazole compound and method for preparing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI300409B (en) * 2004-02-18 2008-09-01 Otsuka Pharma Co Ltd Method for producing 4-nitroimidazole compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2494710A1 (en) * 2002-10-15 2004-04-29 Otsuka Pharmaceutical Co., Ltd. 1-substituted-4-nitroimidazole compound and method for preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUWINSKI J ET AL: "NITROIMIDAZOLES . PART V. CHLORONITROIMIDAZOLES FROM DINITROIMIDAZOLES, A REINVESTIGATION" POLISH JOURNAL OF CHEMISTRY, POLISH CHEMICAL SOCIETY, vol. 56, no. 10 - 12, 1982, pages 1261-1272, XP009048285 cited in the application *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500183A (en) * 2008-08-21 2012-01-05 デイナミート ノーベル ゲゼルシャフト ミット ベシュレンクテル ハフツング エクスプロジーフシュトッフ− ウント ジステームテヒニク Process for producing 2-halo-4-nitroimidazole and its intermediate
US8558005B2 (en) 2008-08-21 2013-10-15 Dynamit Nobel Gmbh Explosivstoff-Und Systemtechnik Methods for the production of 2-halo-4-nitroimidazole and intermediates thereof
WO2019146113A1 (en) 2018-01-29 2019-08-01 Otsuka Pharmaceutical Co., Ltd. Process for production of 2-chloro-4-nitroimidazole derivatives
US11104650B2 (en) 2018-01-29 2021-08-31 Otsuka Pharmaceutical Co., Ltd. Process for production of 2-chloro-4-nitroimidazole derivatives

Also Published As

Publication number Publication date
CA2580139A1 (en) 2006-04-06
CN101027287A (en) 2007-08-29
BRPI0516009A (en) 2008-08-19
AU2005288086A1 (en) 2006-04-06
EP1794132A2 (en) 2007-06-13
ZA200702426B (en) 2008-08-27
RU2007115892A (en) 2008-11-10
KR20070056105A (en) 2007-05-31
WO2006035960A3 (en) 2006-05-11
IL182134A0 (en) 2007-07-24
AR053972A1 (en) 2007-05-30
TW200624422A (en) 2006-07-16
MX2007003257A (en) 2007-05-23
US20090082575A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
CA2954167C (en) Process for the preparation of 4-alkoxy-3-hydroxypicolinic acids
CN110878084A (en) Preparation method of nicosulfuron original drug
EP1794132A2 (en) Process for production of 2-chloro-4-nitroimidazole
EP4313954A1 (en) Preparation of 2-chloro-4-fluoro-5-nitrobenzoic acid
KR101653025B1 (en) Method for producing 2-amino-4-(trifluoromethyl)pyridine
JP4849855B2 (en) Method for producing 2-chloro-4-nitroimidazole
KR20030074607A (en) Process for producing substituted aniline compound
JP4356111B2 (en) Process for producing N- (2-amino-1,2-dicyanovinyl) formamidine
CN115197086B (en) Preparation method of difluoromethoxy-containing m-diamide compound
US6310206B1 (en) Method for the production of N-(5-amino-2-cyano-4-fluoro-phenyl)-sulphonamides and new intermediate products
US20240208976A1 (en) Process for the preparation of 7-(4-chlorobenzyl)-1-(3-hydroxypropyl)-3-methyl-8-(3-(trifluoromethoxy)-phenoxy)-3,7-dihydro-1h-purine-2,6-dione
CN110655491B (en) Simple preparation method of 2-aminopyrimidine-5-formic ether
EP2004650A2 (en) Process for the preparation of zaleplon and an intermediate thereof
JP2003506312A (en) Meta-nitrophenol derivative and method for producing the same
JP4561197B2 (en) Process for producing 5- (4-tetrahydropyranyl) hydantoin and its intermediate
AU1081801A (en) Process to prepare aryltriazolinones and novel intermediates thereto
JPH0588213B2 (en)
KR100580940B1 (en) Process for preparing 2-amino-4-chloro-5-nitro-61H-pyrimidinone
CN115477653A (en) Preparation method of Trasipride key intermediate and Trirasilide
CN114671810A (en) Preparation method of imidocarb
CN103497125B (en) Preparation method of ethylidene hydrazinoformate
JPS61225155A (en) Production of 3,4'-diaminodiphenyl ether
JP2017206453A (en) Manufacturing method of pyrazole derivative and intermediate products thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005288086

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2580139

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 904/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12007500609

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/003257

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020077006460

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 182134

Country of ref document: IL

Ref document number: 2005787645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580032612.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005288086

Country of ref document: AU

Date of ref document: 20050927

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005288086

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007115892

Country of ref document: RU

Ref document number: A20070483

Country of ref document: BY

WWP Wipo information: published in national office

Ref document number: 2005787645

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11663724

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0516009

Country of ref document: BR