WO2006035748A1 - Euv generator - Google Patents

Euv generator Download PDF

Info

Publication number
WO2006035748A1
WO2006035748A1 PCT/JP2005/017703 JP2005017703W WO2006035748A1 WO 2006035748 A1 WO2006035748 A1 WO 2006035748A1 JP 2005017703 W JP2005017703 W JP 2005017703W WO 2006035748 A1 WO2006035748 A1 WO 2006035748A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
chamber
electron beam
container
unit
Prior art date
Application number
PCT/JP2005/017703
Other languages
French (fr)
Japanese (ja)
Inventor
Gohta Niimi
Toshio Yokota
Original Assignee
Ushio Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki Kabushiki Kaisha filed Critical Ushio Denki Kabushiki Kaisha
Priority to JP2006537739A priority Critical patent/JPWO2006035748A1/en
Publication of WO2006035748A1 publication Critical patent/WO2006035748A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state

Definitions

  • the present invention relates to an EUV generating device for generating extreme ultraviolet (EUV) based on gas discharge.
  • EUV extreme ultraviolet
  • EUV extreme ultraviolet
  • Non-Patent Document 1 There are several known methods for generating the EUV. One of them is a method of generating a high-temperature and high-density plasma and taking out the EUV from the plasma cover (for example, see Non-Patent Document 1).
  • Figure 4 shows the schematic configuration of the EUV generator using the above plasma.
  • a gas for example, xenon Xe that causes discharge is introduced into the chamber 30 which is a discharge vessel from the gas inlet 10.
  • the introduced gas flows through the chamber 30 and is exhausted from the exhaust port 11 to which a vacuum pump (not shown) is attached.
  • the pressure of the high-temperature and high-density plasma generator 31 in the chamber 30 is adjusted to lPa to 20Pa.
  • An (anode) 2 is disposed via an insulating material 3.
  • the chamber 30 is composed of a first container 30a on the first main discharge electrode 1 side and a second container 30b on the main discharge electrode 2 side, which are made of a conductive material, and the first container 30a and the second container 30b.
  • the container 30b is separated and insulated by the insulating material 3.
  • the second container 30b and the discharge electrode 2 of the chamber 30 are grounded, and the discharge voltage application circuit 100 is connected to the second container 30a and the electrode 1.
  • a discharge voltage of about 5 kV to 20 kV is applied, and a high-temperature and high-density plasma discharge is generated in the high-temperature and high-density plasma generation section 31 between the ring-shaped electrodes 1 and 2, and EUV light is emitted from the plasma chamber. Radiated.
  • the emitted EUV light is reflected by the EUV collector mirror 4 provided on the electrode 2 side, The light is emitted to an irradiator (not shown) through the data generator 6.
  • the discharge voltage application circuit 100 applies a discharge voltage to the electrodes 1 and 2 and supplies a preliminary ionization pulse to the preliminary ionization unit 40.
  • the discharge voltage application circuit 100 is basically the same as a normal discharge circuit.
  • a pulsed voltage is supplied from the power supply 101 to the transformer TR1 via the capacitor CO.
  • the voltage generated on the next side is supplied to electrodes 1 and 2 via a magnetic pulse compression circuit comprising capacitor Cl, saturable rear tuttle L1, capacitor C2, and saturable rear tuttle L2.
  • a discharge voltage of ⁇ 20 kV is applied, and energy of about lOjZshot is applied to the electrodes 1 and 2 at a frequency of several kHz. Therefore, energy of several tens of kW is input to the discharge electrodes 1 and 2.
  • a transformer TR2 is connected in series to the secondary side of the transformer TR1 of the discharge voltage application circuit 100, and a preliminary ionization pulse is supplied from the transformer TR2 to the preliminary ionization unit 40.
  • the diameter of the electrode In order to suppress the heat generation of the electrode and extend its life, the diameter of the electrode must be expanded to about 10 mm and the capillaries must be thickened.
  • the initial gas force suitable for generating EUV from the high-temperature and high-density plasma generator 31 Under the low pressure of lPa to 20Pa as described above, stable discharge is less likely to occur when the electrode spacing is widened, and The output becomes unstable.
  • a preionization unit 40 is provided as shown in FIG.
  • a high voltage is applied to the preliminary ionization unit 40 from the discharge voltage application circuit 100 via the transformer TR2, as shown in FIG. 4, a slip discharge is generated and the ionization of the working gas is promoted.
  • Patent Document 1 An example in which a preionization unit is combined with an EUV generator is disclosed in Patent Document 1, for example.
  • the preionization unit 5 is provided in the chamber 1 of the EUV generator.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-218025
  • Non-Patent Document 1 Eiki Hotta “5. Current Status of Discharge-Generated Plasma Light Source 5.1 Discharge-Generated Plasma Light Source Research” J. Plasma Fusion Res. Vol. 79. No. 3, ⁇ 245-251, March 2003
  • the EUV generator equipped with the preliminary ionization unit 40 shown in FIG. 4 has the following problems.
  • the high-temperature and high-density plasma generating unit 31 in the chamber has a low pressure of lPa to 20Pa, and the preliminary ionization is not effective with the method using ultraviolet rays. For this reason, conventionally, as shown in FIG. 4, a preliminary ionization unit 40 is provided in the chamber 30 as shown in FIG.
  • the present invention has been made to solve the above-mentioned problems of the prior art. Contamination of the EUV generator with a substance scattered from the preliminary ionization unit, and a spare with a substance that also scatters the EUV generator as much as possible. It is an object to provide an EUV apparatus equipped with a preliminary ionization unit that can prevent contamination of the ionization unit, can be easily replaced and maintained, and can efficiently perform preliminary ionization. And
  • a chamber provided with a gas inlet and an exhaust port, and provided on the gas inlet side.
  • an EUV generator equipped with a mirror provided on the electrode side of the electrode, an electron beam generator is used as a preliminary ionization unit, which transmits electron beams but does not allow contaminants to pass through./ Through the chamber.
  • the gas inlet side and the exhaust port side of the chamber 1 are electrically isolated by the insulating material, and an opening is provided in the gas inlet side chamber 1, and the opening is provided through the transmission window.
  • a preionization unit for emitting an electron beam is provided in the chamber.
  • the transmission window, the gas introduction side chamber 1 and the first electrode are connected so as to be electrically at the same potential, and a high voltage is applied between the first electrode and the second electrode.
  • a first power source and apply a high voltage between the first electrode and the electron beam radiation source of the preionization unit or between the second electrode and the preionization unit Connect the second power supply.
  • the electron beam generator is used as the preionization unit, the electron beam can be used with high efficiency for preionization at low pressure.
  • an electron beam generator is attached to the opening as a preionization unit, and the opening force chamber is irradiated with an electron beam through the transmission window. Therefore, it is possible to easily replace the transmission window, replace the preionization unit, and perform maintenance and inspection.
  • the gas inlet side and the exhaust port side of the chamber 1 are electrically insulated by the insulating material, and an opening is provided in the chamber 1 on the gas inlet side.
  • the pre-ionization unit that radiates the electron beam is provided on the top, and the transmission window, the gas introduction side chamber, and the first electrode are connected to have the same potential. Can be prevented from occurring, and damage to the transmission window can be prevented.
  • a first power source for applying a high voltage is connected between the first electrode and the second electrode, and between the first electrode and the electron beam radiation source of the preliminary ionization unit, Alternatively, since the second power source for applying a high voltage is connected between the second electrode and the preionization unit, an electron beam can be effectively irradiated from the preionization unit into the chamber. Is possible.
  • FIG. 1 is a diagram showing a configuration of an EUV apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of an electron beam generator and a connection with a power supply circuit.
  • FIG. 3 is a view showing a modification of the embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration example of a conventional EUV apparatus having a preliminary ionization unit.
  • FIG. 1 shows a configuration of an EUV generator equipped with a preionization unit according to an embodiment of the present invention.
  • a ring-shaped main discharge electrode 1 and a main discharge electrode 2 are arranged through an insulating material 3 in a chamber 30 which is a discharge vessel.
  • the chamber 30 is composed of a first container 30a on the main discharge electrode 1 side and a second container 30b on the main discharge electrode 2 side made of a conductive material, and the first container 30a and the second container 30b are It is separated and insulated by the insulating material 3.
  • a gas inlet 10 is provided in the chamber 30, and a gas (for example, xenon Xe) that causes discharge is introduced from the gas inlet 10.
  • the introduced gas flows through the chamber 30 and is exhausted from the exhaust port 11 to which a vacuum pump (not shown) is attached.
  • a vacuum pump (not shown) is attached.
  • the high-temperature and high-density plasma generating unit 31 in the chamber 30 is exhausted.
  • the pressure is adjusted to lPa ⁇ 20Pa.
  • the second container 30b and the main discharge electrode 2 are grounded, and a discharge voltage application circuit 50 is connected between the second container 30a, the main discharge electrode 1, and the second container 30b.
  • the discharge voltage application circuit 50 includes a series circuit of a capacitor CO and a switch SW1 charged to the discharge voltage, and a parallel circuit force of a resistor R and a rear tuttle L connected in parallel to the series circuit. Note that a parallel circuit including only the resistor R may be used without using the rear tuttle L. Note that a circuit for charging the capacitor CO to a discharge voltage may be a circuit similar to the discharge voltage application circuit 100 shown in FIG. .
  • the switch SW1 When no discharge voltage is applied to the main discharge electrodes 1 and 2, the switch SW1 is open, and the first main discharge electrode 1 and the first vessel 30a are grounded via the resistor R and the rear tuttle L, It becomes a potential. In addition, when using only the resistance R without using the rear tuttle L, the value is close to the installation potential.
  • the switch SW1 When the switch SW1 is closed, a negative high voltage charged in the capacitor CO is applied to the main discharge electrode 1 and the first container 30a, and the first main discharge electrode 1 and the second main discharge electrode 2 are connected. A pulsed discharge voltage of several tens of kV is applied to. As a result, high-temperature and high-density plasma discharge is generated between the ring-shaped electrodes 1 and 2, and EUV light is emitted from the plasma cover.
  • the emitted EUV light is reflected and collected by an EUV collector mirror 4 provided on the main discharge electrode 2 side, and is emitted to an irradiation unit (not shown) through a filter 6.
  • the chamber 30 is divided into the first container 30a and the second container 30b by the insulating material 3, and these containers 30a and 30b are used as the conductive material, so that the main discharge electrode 1 and the first container 30 are used.
  • 30a is the same potential
  • the main discharge electrode 2 and the second container 30b are at ground potential. Therefore, no discharge occurs between the container 30a and the main discharge electrode 1 and between the container 30b and the main discharge electrode 2.
  • An opening 31 is provided on the first electrode 1 side of the chamber 30 and an electron beam is generated as the preliminary ionization unit 5 so that an electron beam can be irradiated into the chamber 30 from the opening 31.
  • a line generator is provided.
  • an electron beam generator for example, an electron beam generator described in JP-T-10-512092 can be used.
  • Fig. 2 shows a configuration example of the electron beam generator.
  • the electron beam generator is provided with a filament heater 5c, which is an electron beam source, and a force sword 5d in an insulating container 5a made of an insulating member such as glass, and the filament heater 5c.
  • the lead wire from the force sword 5d is led out to the outside through the introduction pins 5e, 5f and 5g.
  • a power source 120 is connected to the introduction pins 5e, 5f, and 5g.
  • the insulating container 5a is provided with an electron beam permeable film 5b that transmits an electron beam, the insulating container 5a is hermetically sealed, and the inside is kept in a vacuum.
  • the electron beam permeable film 5b is conductive.
  • a current is supplied from the filament power transformer 111 of the power supply 120 to the filament heater 5c through the introduction pins 5e and 5f to heat the filament heater, and the force sword 5d from the booster circuit 112 through the introduction pin 5g.
  • the electron beam transmission film 5b is passed through the electron beam transmission film 5b as shown by the dotted arrow in FIG. An electron beam is emitted.
  • silicon Si is used as the material of the electron beam permeable film 5b.
  • silicon nitride (SiN), aluminum (A1), titanium (Ti), beryllium (Be), or the like can be used as the material of the electron beam permeable film 5b.
  • the inside of the preionization unit 5 is usually set to a low pressure such as 1 X 10 " 4 Pa (l X 10" 6 Torr), so that the electrons emitted from the filament heater 5c are not absorbed! . Therefore, insulation between the electron beam permeable film 5b and the force sword 5d can be secured.
  • the electron beam generator is used as a preionization unit, even if the pressure in the chamber 30 without a preionization unit by slip discharge in the chamber as in the conventional example is low, it is effective. Preionization can be performed.
  • the preliminary ionization pulse generator 6 is used for sliding. Electricity is generated, and sliding discharge is described as generating high-speed charged particles (fast electrons) in addition to radiation from infrared radiation to X-ray radiation, which promotes ionization of working gas. It is thought that radiation generated mainly from ultraviolet radiation to X-ray radiation contributes little to the preionization of the high-speed charged particles.
  • the main discharge electrode 2 on the side where the EUV collector mirror 4 for taking out light is provided has a ground potential to prevent discharge from occurring between the EUV collector mirror 4 and the like. Therefore, a high voltage HV1 of several tens of kV is applied to the main discharge electrode 1 and the container 30a of the chamber 30.
  • the electron beam permeable membrane 5b is set to the ground potential and the electron beam generator can be attached to the container 30a of the chamber 30 through an insulating material.
  • the main discharge electrode 1 and the container 30a are negatively charged.
  • a discharge may occur between the main discharge electrode 1 or the container 30a and the electron beam transmissive film 5b.
  • the electron beam permeable film 5b may be damaged, causing troubles in the apparatus. If the main discharge electrode 1 and the container 30a have a negative high voltage, the electron beam transmitted through the electron beam transmission film 5b set at the ground potential is decelerated, and the electron beam is effectively irradiated into the chamber 30. Not.
  • the main discharge electrode 1 and the container 30a on the main discharge electrode 1 side and the electron beam transmission film 5b of the electron beam generator are set to the same potential to generate an electron beam.
  • the negative high voltage—higher voltage than HV1—HV2 (I HV1 I ⁇ I HV2
  • the configuration of the standby ionization power source 110 is the same as that shown in FIG.
  • a filament power transformer 111 for supplying a current to the irament heater 5c and a booster circuit 112 for applying a negative high voltage to the force sword are provided.
  • the chamber 30 can be irradiated with an electron beam.
  • the electron beam permeable membrane 5b of the electron beam generator is a force cathode that is normally used at a ground potential as described in FIG. 2 and Japanese Patent Application Laid-Open No. 10-512092. Since it is possible to apply up to approximately 60 kV to 5d, there is no problem even if the voltage applied to the force sword 5d is made larger than the negative high voltage applied to the main discharge electrode 1 to the negative side. Can be generated.
  • the EUV apparatus shown in Fig. 1 operates as follows.
  • Xenon is introduced from the gas inlet 10 and exhausted from the exhaust 11 by a vacuum pump. Xenon gas flows through the chamber 30 from the main discharge electrode 1 side to the main discharge electrode 2 side. The inside of the chamber 30 is depressurized by differential evacuation and set to a predetermined pressure.
  • HV2 high voltage
  • the switch SW1 of the discharge voltage application circuit 50 is open, and the first main discharge electrode 1 and the first container 30a are , Grounded through resistor R and rear tuttle L, and at ground potential.
  • a negative high voltage charged in the capacitor CO is applied to the main discharge electrode 1 and the first container 30a, and the first main discharge electrode 1 and the second main discharge electrode are applied. Between the two, a negative high voltage HV1, for example, 20 kV, which is a discharge voltage, is applied. Since the electron beam permeable membrane 5b of the preionization unit 5 is attached to the container 30a of the chamber 30, it has the same potential as the container 30a and the main discharge electrode 1.
  • the discharge space in the chamber 30 and the preionization unit 5 are separated from each other by the electron beam permeable film 5b, for example, a substance scattered from the main discharge electrodes 1 and 2 by sputtering is It does not enter the preionization unit 5 and the preionization unit is not contaminated. Conversely, contamination in the chamber due to the preionization unit 5 can be prevented, so that the life of the apparatus can be extended.
  • the preliminary ionization unit 5 is attached to the outside of the chamber 30, the replacement and maintenance of the preliminary ionization unit 5 can be easily performed.
  • FIG. 3 shows a modification of the above embodiment.
  • the preliminary ionization power source 110 is a power source that is electrically isolated from the discharge voltage application circuit 100, and 1 and the negative side of the discharge voltage application circuit 100 are connected, and the other configurations are the same as those in FIG.
  • the output voltage of the standby ionization power supply 110 can be made lower than in the case of FIG. 1.
  • the force preionization unit described for the case where the preionization unit 5 is attached to the outside of the chamber 1 30 may be incorporated in the chamber 1.
  • This configuration makes it difficult to replace and maintain the preionization unit compared to the case of Fig. 1.
  • an electron beam is irradiated into the chamber through the electron beam permeable membrane.
  • the electron beam generator described in JP-T-10-512092 is used has been described.
  • an electron beam generator having another configuration may be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • X-Ray Techniques (AREA)

Abstract

An EUV generator for generating EUV light by generating plasma discharge between a first electrode (1) and a second electrode (2) provided in a chamber (30), wherein an electron beam generator is used as a stand-by ionizing unit (5) to emit an electron beam into the chamber (30) via an electron beam transmitting membrane (5b). The chamber (30) is divided into a first container (30a) and a second container (30b) by an insulation material (3), the electron beam transmitting membrane (5b) is at the same potential as the first electrode (1) in the chamber (30) and the first container (30b), the second container (30b) and the second electrode are at the ground potential, a minus high voltage is applied to the first electrode (1) from a discharge voltage application circuit (50), and a minus high voltage is applied to the cathode of the stand-by ionizing unit (5) from a stand-by ionizing power supply (110).

Description

明 細 書  Specification
EUV発生装置  EUV generator
技術分野  Technical field
[0001] 本発明は、ガス放電に基づいて極紫外線 (EUV)を発生させるための EUV発生装 置に関する。  [0001] The present invention relates to an EUV generating device for generating extreme ultraviolet (EUV) based on gas discharge.
背景技術  Background art
[0002] 半導体集積回路の微細化のために、露光技術 (リソグラフィ)にお 、てはより短!、波 長の光が必要とされている。現在、極紫外線 (EUV)と呼ばれる波長 l l〜14nmの 光を放射する光源装置の開発が行なわれている。  [0002] Due to the miniaturization of semiconductor integrated circuits, the exposure technology (lithography) is shorter! Wavelength light is needed. Currently, a light source device that emits light with a wavelength of 11 to 14 nm, called extreme ultraviolet (EUV), is being developed.
上記 EUVを発生させる方法はいくつか知られている力 その内の一つに高温高密 度のプラズマを発生させ、該プラズマカゝら EUVを取り出す方法がある(例えば非特許 文献 1参照)。  There are several known methods for generating the EUV. One of them is a method of generating a high-temperature and high-density plasma and taking out the EUV from the plasma cover (for example, see Non-Patent Document 1).
図 4に、上記のプラズマを利用した EUV発生装置の概略構成を示す。  Figure 4 shows the schematic configuration of the EUV generator using the above plasma.
放電容器であるチャンバ一 30内に、ガス導入口 10から放電を生じさせる気体 (例 えばキセノン Xe)が導入される。導入された気体は、チャンバ一 30内を流れて、真空 ポンプ(図示せず)が取り付けられた排気口 11から排気される。チャンバ一 30内の高 温高密度プラズマ発生部 31の圧力は、 lPa〜20Paに調節される。  A gas (for example, xenon Xe) that causes discharge is introduced into the chamber 30 which is a discharge vessel from the gas inlet 10. The introduced gas flows through the chamber 30 and is exhausted from the exhaust port 11 to which a vacuum pump (not shown) is attached. The pressure of the high-temperature and high-density plasma generator 31 in the chamber 30 is adjusted to lPa to 20Pa.
[0003] チャンバ一 30内にはリング状の第 1の主放電電極 (力ソード) 1と第 2の主放電電極 [0003] Inside chamber 30 is a ring-shaped first main discharge electrode (force sword) 1 and a second main discharge electrode
(アノード) 2が絶縁材 3を介して配置される。チャンバ一 30は導電材で形成された第 1の主放電電極 1側の第 1の容器 30aと、主放電電極 2側の第 2の容器 30bから構成 され、第 1の容器 30aと第 2の容器 30bは、上記絶縁材 3により分離、絶縁されている チャンバ一 30の上記第 2の容器 30bと放電電極 2は接地され、上記第 2の容器 30a と電極 1には、放電電圧印加回路 100から、およそ 5kV〜一 20kVの放電電圧が 印加され、リング状の両電極 1, 2間の高温高密度プラズマ発生部 31には高温高密 度のプラズマ放電が発生し、該プラズマカゝら EUV光が放射される。  An (anode) 2 is disposed via an insulating material 3. The chamber 30 is composed of a first container 30a on the first main discharge electrode 1 side and a second container 30b on the main discharge electrode 2 side, which are made of a conductive material, and the first container 30a and the second container 30b. The container 30b is separated and insulated by the insulating material 3. The second container 30b and the discharge electrode 2 of the chamber 30 are grounded, and the discharge voltage application circuit 100 is connected to the second container 30a and the electrode 1. Therefore, a discharge voltage of about 5 kV to 20 kV is applied, and a high-temperature and high-density plasma discharge is generated in the high-temperature and high-density plasma generation section 31 between the ring-shaped electrodes 1 and 2, and EUV light is emitted from the plasma chamber. Radiated.
放射された EUV光は、電極 2側に設けられた EUV集光鏡 4により反射され、フィル タ 6を介して、照射部(図示せず)に出射する。 The emitted EUV light is reflected by the EUV collector mirror 4 provided on the electrode 2 side, The light is emitted to an irradiator (not shown) through the data generator 6.
[0004] 放電電圧印加回路 100は、上記電極 1および 2に放電電圧を印加するとともに、予 備電離ユニット 40に予備電離パルスを供給する。 The discharge voltage application circuit 100 applies a discharge voltage to the electrodes 1 and 2 and supplies a preliminary ionization pulse to the preliminary ionization unit 40.
放電電圧印加回路 100は、通常の放電回路と基本的に同じであり、スィッチ SW1 が開閉することにより、電源 101からコンデンサ COを介してトランス TR1にパルス状 の電圧が供給され、トランス TR1の二次側に発生する電圧がコンデンサ Cl、可飽和 リアタトル L1およびコンデンサ C2、可飽和リアタトル L2からなる磁気パルス圧縮回路 を介して、電極 1, 2に供給される。これにより、前記したように、— 20kVの放電電圧 が印加され、約 lOjZshotのエネルギーが数 kHzの周波数で電極 1, 2に与えられる 。したがって、放電電極 1, 2には数十 kWのエネルギーが入力される。また、上記放 電電圧印加回路 100のトランス TR1の 2次側には直列にトランス TR2が接続され、ト ランス TR2から上記予備電離ユニット 40に予備電離パルスが供給される。  The discharge voltage application circuit 100 is basically the same as a normal discharge circuit. When the switch SW1 is opened and closed, a pulsed voltage is supplied from the power supply 101 to the transformer TR1 via the capacitor CO. The voltage generated on the next side is supplied to electrodes 1 and 2 via a magnetic pulse compression circuit comprising capacitor Cl, saturable rear tuttle L1, capacitor C2, and saturable rear tuttle L2. Thereby, as described above, a discharge voltage of −20 kV is applied, and energy of about lOjZshot is applied to the electrodes 1 and 2 at a frequency of several kHz. Therefore, energy of several tens of kW is input to the discharge electrodes 1 and 2. A transformer TR2 is connected in series to the secondary side of the transformer TR1 of the discharge voltage application circuit 100, and a preliminary ionization pulse is supplied from the transformer TR2 to the preliminary ionization unit 40.
[0005] 従来、 EUVを発生させるための高温高密度のプラズマは、直径 Φ 5〜6mm程度の 細管(キヤピラリー)の中で発生され維持されており、したがって電極 1および 2の径も それに応じて 、た (キヤピラリーを使った放電方法にっ 、ては、上記非特許文献 1の P247等に説明されている)。 [0005] Conventionally, high-temperature and high-density plasma for generating EUV has been generated and maintained in a capillary (capillary) with a diameter of about Φ5-6mm, so the diameters of electrodes 1 and 2 are accordingly adjusted accordingly. (The discharge method using the capillary is described in P247 of Non-Patent Document 1 above).
し力し、上記したように電極には数十 kW電力が入力されるので、電極の径が現状 の Φ 5〜6πιπιのままでは、電極や絶縁材が激しく発熱し、実用に耐えられるほどの 長時間の寿命を保てない。  However, as mentioned above, tens of kW of power is input to the electrode, so if the electrode diameter remains the same as the current Φ5 to 6πιπι, the electrode and the insulating material generate intense heat and can withstand practical use. A long life cannot be maintained.
電極の発熱を抑え、長寿命化を図るためには、電極の径を Φ 10mm程度に広げキ ャピラリーを太くしなければならない。しかし、高温高密度プラズマ発生部 31から EU Vを発生させるのに適した初期ガス力 上記したような lPa〜20Paという低い圧力下 では、電極間隔が広くなると安定した放電が起きにくくなり、光の出力が不安定にな る。  In order to suppress the heat generation of the electrode and extend its life, the diameter of the electrode must be expanded to about 10 mm and the capillaries must be thickened. However, the initial gas force suitable for generating EUV from the high-temperature and high-density plasma generator 31 Under the low pressure of lPa to 20Pa as described above, stable discharge is less likely to occur when the electrode spacing is widened, and The output becomes unstable.
放電が起きにくい条件下で、安定した放電を生じさせるためには予備電離が必要 になる。このため、図 4に示すように、予備電離ユニット 40が設けられている。予備電 離ユニット 40に、放電電圧印加回路 100からトランス TR2を介して高電圧を印加する ことにより、図 4に示すように、滑り放電が発生し、作動ガスの電離を促進する。 EUV発生装置に予備電離ユニットを組み合せた例にっ ヽては、例えば特許文献 1 に開示されている。特許文献 1に記載のものにおいては、 EUV発生装置のチャンバ 一内に予備電離ユニット 5が設けられている。 Pre-ionization is required to generate a stable discharge under conditions where discharge is difficult to occur. For this reason, a preionization unit 40 is provided as shown in FIG. When a high voltage is applied to the preliminary ionization unit 40 from the discharge voltage application circuit 100 via the transformer TR2, as shown in FIG. 4, a slip discharge is generated and the ionization of the working gas is promoted. An example in which a preionization unit is combined with an EUV generator is disclosed in Patent Document 1, for example. In the device described in Patent Document 1, the preionization unit 5 is provided in the chamber 1 of the EUV generator.
特許文献 1 :特開 2003— 218025公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-218025
非特許文献 1 :堀田栄喜「5.放電生成プラズマ光源 5. 1放電生成プラズマ光源研 究の現状」 J.Plasma Fusion Res.Vol.79.No.3 , Ρ245- 251,2003年 3月  Non-Patent Document 1: Eiki Hotta “5. Current Status of Discharge-Generated Plasma Light Source 5.1 Discharge-Generated Plasma Light Source Research” J. Plasma Fusion Res. Vol. 79. No. 3, Ρ245-251, March 2003
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、前記図 4に示した予備電離ユニット 40を備えた EUV発生装置には、次のよ うな問題がある。 However, the EUV generator equipped with the preliminary ionization unit 40 shown in FIG. 4 has the following problems.
(0上記したように、チャンバ一内の高温高密度プラズマ発生部 31は lPa〜20Paと いう低い圧力であり、予備電離も紫外線を使う方法などでは効果が少なぐすべり放 電などを利用した予備電離ユニットが必要となる。このため、従来においては、図 4に 示したように、チャンバ一 30内に予備電離ユニット 40を設けて 、た。  (0 As described above, the high-temperature and high-density plasma generating unit 31 in the chamber has a low pressure of lPa to 20Pa, and the preliminary ionization is not effective with the method using ultraviolet rays. For this reason, conventionally, as shown in FIG. 4, a preliminary ionization unit 40 is provided in the chamber 30 as shown in FIG.
このため、予備電離ユニットの放電時に予備電離ユニットから飛散する物質による チャンバ一 30への汚染、また、主放電時の電極から生じる物質による予備電離ュ- ットへの汚染の心配がある。  For this reason, there is a risk of contamination of the chamber 30 by materials scattered from the preionization unit during discharge of the preionization unit, and contamination of the preionization unit by materials generated from the electrodes during main discharge.
(ii)予備電離ユニットがチャンバ一 30内に設けられているので、予備電離ユニットを簡 単に取り外すことができず、予備電離ユニットの交換、点検等を簡単に行なうことはで きない。  (ii) Since the preionization unit is provided in the chamber 30, the preionization unit cannot be easily removed, and the preionization unit cannot be easily replaced or inspected.
本発明は上記従来技術の問題点を解決するためになされたものであって、予備電 離ユニットから飛散する物質による EUV発生装置への汚染や、 EUV発生装置の電 極力も飛散する物質による予備電離ユニットへの汚染を防止することができ、また、 予備電離ユニットの交換、保守点検などが容易で、効率よく予備電離を行なうことが できる予備電離ユニットを備えた EUV装置を提供することを目的とする。  The present invention has been made to solve the above-mentioned problems of the prior art. Contamination of the EUV generator with a substance scattered from the preliminary ionization unit, and a spare with a substance that also scatters the EUV generator as much as possible. It is an object to provide an EUV apparatus equipped with a preliminary ionization unit that can prevent contamination of the ionization unit, can be easily replaced and maintained, and can efficiently perform preliminary ionization. And
課題を解決するための手段  Means for solving the problem
[0007] 本発明にお 、ては、上記課題を次のように解決する。 In the present invention, the above problems are solved as follows.
(1)気体の導入口と排気口とが設けられたチャンバ一と、気体の導入口側に設けら れた放電電圧が印加されるリング状の第 1の電極と、第 1の電極に対して絶縁材を介 し排気口側に設けられた接地されたリング状の第 2の電極と、第 2の電極側に設けら れたミラーとを備えた EUV発生装置にぉ ヽて、予備電離ユニットとして電子線発生 装置を用い、電子線は透過するが汚染物質を透過させな!/、透過窓を介してチャンバ 一内に電子線を放射する。 (1) A chamber provided with a gas inlet and an exhaust port, and provided on the gas inlet side. A ring-shaped first electrode to which the discharge voltage is applied, a grounded ring-shaped second electrode provided on the exhaust port side with an insulating material interposed between the first electrode and the second electrode, Using an EUV generator equipped with a mirror provided on the electrode side of the electrode, an electron beam generator is used as a preliminary ionization unit, which transmits electron beams but does not allow contaminants to pass through./ Through the chamber.
(2)上記チャンバ一の気体の導入口側と排気口側を、上記絶縁材により電気的に絶 縁し、上記気体導入側のチャンバ一に開口が設け、この開口に、上記透過窓を介し てチャンバ一内に電子線を放射する予備電離ユニットを設ける。  (2) The gas inlet side and the exhaust port side of the chamber 1 are electrically isolated by the insulating material, and an opening is provided in the gas inlet side chamber 1, and the opening is provided through the transmission window. A preionization unit for emitting an electron beam is provided in the chamber.
そして、上記透過窓と気体導入側のチャンバ一と第 1の電極を電気的に同電位に なるように接続し、上記第 1の電極と第 2の電極の間に高電圧を印加するための第 1 の電源を接続し、上記第 1の電極と上記予備電離ユニットの電子線放射源との間、も しくは、上記第 2の電極と予備電離ユニットの間に、高電圧を印加するための第 2の 電源を接続する。  The transmission window, the gas introduction side chamber 1 and the first electrode are connected so as to be electrically at the same potential, and a high voltage is applied between the first electrode and the second electrode. To connect a first power source and apply a high voltage between the first electrode and the electron beam radiation source of the preionization unit or between the second electrode and the preionization unit Connect the second power supply.
発明の効果 The invention's effect
本発明においては、以下の効果を得ることができる。  In the present invention, the following effects can be obtained.
(1)予備電離ユニットとして電子線発生装置を用いるので、低 、圧力における予備電 離のために効率の良 、電子線を利用することができる。  (1) Since the electron beam generator is used as the preionization unit, the electron beam can be used with high efficiency for preionization at low pressure.
(2) EUV発生装置の第 1、第 2の電極と、予備電離ユニットとの間に、電子線は透過 するが汚染物質を透過させな 、透過窓を設けて 、るので、互 、の汚染の影響がな!ヽ  (2) Between the first and second electrodes of the EUV generator and the preionization unit, there is a transmission window that transmits electron beams but does not transmit contaminants. The influence of!
(3)チャンバ一に開口を設けて、該開口部分に予備電離ユニットとして電子線発生 装置を取り付け、上記透過窓を介して、上記開口力 チャンバ一内に電子線を照射 するように構成したので、上記透過窓の交換や予備電離ユニットの交換、保守点検 を簡単に行なうことが可能となる。 (3) Since an opening is provided in the chamber, an electron beam generator is attached to the opening as a preionization unit, and the opening force chamber is irradiated with an electron beam through the transmission window. Therefore, it is possible to easily replace the transmission window, replace the preionization unit, and perform maintenance and inspection.
(4)チャンバ一の気体の導入口側と排気口側を、上記絶縁材により電気的に絶縁し 、上記気体導入側のチャンバ一に開口を設け、この開口に透過窓を介してチャンバ 一内に電子線を放射する予備電離ユニットを設け、上記透過窓と気体導入側のチヤ ンバーと第 1の電極を電気的に同電位になるように接続したので、放電電極と透過窓 との間に放電が発生するのを防ぐことができ、透過窓の破損を防ぐことができる。 また、上記第 1の電極と第 2の電極の間に高電圧を印加するための第 1の電源を接 続し、上記第 1の電極と上記予備電離ユニットの電子線放射源との間、もしくは、上 記第 2の電極と予備電離ユニットの間に、高電圧を印加するための第 2の電源が接 続したので、予備電離ユニットから効果的に電子線をチャンバ一内に照射することが できる。 (4) The gas inlet side and the exhaust port side of the chamber 1 are electrically insulated by the insulating material, and an opening is provided in the chamber 1 on the gas inlet side. The pre-ionization unit that radiates the electron beam is provided on the top, and the transmission window, the gas introduction side chamber, and the first electrode are connected to have the same potential. Can be prevented from occurring, and damage to the transmission window can be prevented. In addition, a first power source for applying a high voltage is connected between the first electrode and the second electrode, and between the first electrode and the electron beam radiation source of the preliminary ionization unit, Alternatively, since the second power source for applying a high voltage is connected between the second electrode and the preionization unit, an electron beam can be effectively irradiated from the preionization unit into the chamber. Is possible.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の実施例の EUV装置の構成を示す図である。 FIG. 1 is a diagram showing a configuration of an EUV apparatus according to an embodiment of the present invention.
[図 2]電子線発生装置の構成と電源回路との接続を示す図である。  FIG. 2 is a diagram showing a configuration of an electron beam generator and a connection with a power supply circuit.
[図 3]本発明の実施例の変形例を示す図である。  FIG. 3 is a view showing a modification of the embodiment of the present invention.
[図 4]予備電離ユニットを有する従来の EUV装置の構成例を示す図である。  FIG. 4 is a diagram showing a configuration example of a conventional EUV apparatus having a preliminary ionization unit.
符号の説明  Explanation of symbols
1, 2 主放電電極  1, 2 Main discharge electrode
3 絶縁材  3 Insulation material
4 EUV集光鏡  4 EUV collector mirror
6 フイノレタ  6 Huinoleta
5 予備電離ユニット  5 Pre-ionization unit
10 ガス導入口  10 Gas inlet
11 ガス排気口  11 Gas exhaust port
30 チャンバ一  30 chambers
30a 第 1の容器  30a first container
30b 第 2の容器  30b second container
31 高温高密度プラズマ発生部  31 High-temperature and high-density plasma generator
50 放電電圧印加回路  50 Discharge voltage application circuit
110 予備電離電源  110 Standby ionization power supply
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 図 1に、本発明の実施例の予備電離ユニットを備えた EUV発生装置の構成を示す 放電容器であるチャンバ一 30内にはリング状の主放電電極 1と主放電電極 2が絶 縁材 3を介して配置される。チャンバ一 30は導電材で形成された主放電電極 1側の 第 1の容器 30aと主放電電極 2側の第 2の容器 30bから構成され、第 1の容器 30aと 第 2の容器 30bは、上記絶縁材 3により分離、絶縁されている。 FIG. 1 shows a configuration of an EUV generator equipped with a preionization unit according to an embodiment of the present invention. A ring-shaped main discharge electrode 1 and a main discharge electrode 2 are arranged through an insulating material 3 in a chamber 30 which is a discharge vessel. The chamber 30 is composed of a first container 30a on the main discharge electrode 1 side and a second container 30b on the main discharge electrode 2 side made of a conductive material, and the first container 30a and the second container 30b are It is separated and insulated by the insulating material 3.
チャンバ一 30には、ガス導入口 10が設けられ、ガス導入口 10から放電を生じさせ る気体 (例えばキセノン Xe)が導入される。導入された気体は、チャンバ一 30内を流 れて、真空ポンプ(図示せず)が取り付けられた排気口 11から排気され、前記したよう にチャンバ一 30内の高温高密度プラズマ発生部 31の圧力は、 lPa〜20Paに調節 される。  A gas inlet 10 is provided in the chamber 30, and a gas (for example, xenon Xe) that causes discharge is introduced from the gas inlet 10. The introduced gas flows through the chamber 30 and is exhausted from the exhaust port 11 to which a vacuum pump (not shown) is attached. As described above, the high-temperature and high-density plasma generating unit 31 in the chamber 30 is exhausted. The pressure is adjusted to lPa ~ 20Pa.
上記第 2の容器 30bと主放電電極 2は接地され、上記第 2の容器 30a、主放電電極 1と、上記第 2の容器 30b間には、放電電圧印加回路 50が接続されている。  The second container 30b and the main discharge electrode 2 are grounded, and a discharge voltage application circuit 50 is connected between the second container 30a, the main discharge electrode 1, and the second container 30b.
放電電圧印加回路 50は、放電電圧に充電されるコンデンサ COとスィッチ SW1の 直列回路と、この直列回路に並列接続された抵抗 Rとリアタトル Lの並列回路力 構 成される。なお、リアタトル Lを用いず、抵抗 Rのみの並列回路でもよい。なお、上記コ ンデンサ COを放電電圧に充電する回路にっ 、ては、同図では図示して ヽな 、が、 前記図 4に示した放電電圧印加回路 100と同様の回路を用いることができる。  The discharge voltage application circuit 50 includes a series circuit of a capacitor CO and a switch SW1 charged to the discharge voltage, and a parallel circuit force of a resistor R and a rear tuttle L connected in parallel to the series circuit. Note that a parallel circuit including only the resistor R may be used without using the rear tuttle L. Note that a circuit for charging the capacitor CO to a discharge voltage may be a circuit similar to the discharge voltage application circuit 100 shown in FIG. .
主放電電極 1, 2に放電電圧を印加しないときは、上記スィッチ SW1は開いており、 第 1の主放電電極 1及び第 1の容器 30aは、抵抗 R,リアタトル Lを介して接地され、 接地電位となる。なお、リアタトル Lを用いず、抵抗 Rのみの場合は、設置電位に近い 値となる。スィッチ SW1が閉じると、上記コンデンサ COに充電されていたマイナスの 高電圧が上記主放電電極 1及び第 1の容器 30aに印加され、第 1の主放電電極 1と 第 2の主放電電極 2間には、 数十 kVのパルス状の放電電圧が印加される。これに より、リング状の両電極 1, 2間には高温高密度のプラズマ放電が発生し、該プラズマ カゝら EUV光が放射される。  When no discharge voltage is applied to the main discharge electrodes 1 and 2, the switch SW1 is open, and the first main discharge electrode 1 and the first vessel 30a are grounded via the resistor R and the rear tuttle L, It becomes a potential. In addition, when using only the resistance R without using the rear tuttle L, the value is close to the installation potential. When the switch SW1 is closed, a negative high voltage charged in the capacitor CO is applied to the main discharge electrode 1 and the first container 30a, and the first main discharge electrode 1 and the second main discharge electrode 2 are connected. A pulsed discharge voltage of several tens of kV is applied to. As a result, high-temperature and high-density plasma discharge is generated between the ring-shaped electrodes 1 and 2, and EUV light is emitted from the plasma cover.
放射された EUV光は、主放電電極 2側に設けられた EUV集光鏡 4により反射集光 され、フィルタ 6を介して、照射部(図示せず)に出射する。  The emitted EUV light is reflected and collected by an EUV collector mirror 4 provided on the main discharge electrode 2 side, and is emitted to an irradiation unit (not shown) through a filter 6.
上記のようにチャンバ一 30を絶縁材 3で第 1の容器 30aと第 2の容器 30bに分け、こ れらの容器 30a, 30bを導電材としたので、主放電電極 1と第 1の容器 30aは同電位 となり、また、主放電電極 2と第 2の容器 30bは接地電位となる。このため、容器 30aと 主放電電極 1及び容器 30bと主放電電極 2の間で放電が発生することはない。 As described above, the chamber 30 is divided into the first container 30a and the second container 30b by the insulating material 3, and these containers 30a and 30b are used as the conductive material, so that the main discharge electrode 1 and the first container 30 are used. 30a is the same potential In addition, the main discharge electrode 2 and the second container 30b are at ground potential. Therefore, no discharge occurs between the container 30a and the main discharge electrode 1 and between the container 30b and the main discharge electrode 2.
[0013] チャンバ一 30の第 1の電極 1側には開口 31が設けられ、この開口 31からチャンバ 一 30内に電子線が照射できるように、予備電離ユニット 5として、電子線を発生する 電子線発生装置が設けられる。 [0013] An opening 31 is provided on the first electrode 1 side of the chamber 30 and an electron beam is generated as the preliminary ionization unit 5 so that an electron beam can be irradiated into the chamber 30 from the opening 31. A line generator is provided.
このような電子線発生装置としては、例えば特表平 10— 512092号公報に記載さ れて 、る電子線発生装置を用いることができる。  As such an electron beam generator, for example, an electron beam generator described in JP-T-10-512092 can be used.
図 2に上記電子線発生装置の構成例を示す。  Fig. 2 shows a configuration example of the electron beam generator.
電子線発生装置は、図 2に示すように、ガラスなどの絶縁部材で構成された絶縁容 器 5a内に、電子線源であるフィラメントヒータ 5cと、力ソード 5dを設け、フィラメントヒー タ 5cと力ソード 5dからの引き出し線を導入ピン 5e, 5f, 5gを介して外部に導出したも のである。上記導入ピン 5e, 5f, 5gには、電源 120が接続される。  As shown in FIG. 2, the electron beam generator is provided with a filament heater 5c, which is an electron beam source, and a force sword 5d in an insulating container 5a made of an insulating member such as glass, and the filament heater 5c. The lead wire from the force sword 5d is led out to the outside through the introduction pins 5e, 5f and 5g. A power source 120 is connected to the introduction pins 5e, 5f, and 5g.
絶縁容器 5aには、電子線透過させる電子線透過膜 5bが設けられ、絶縁容器 5aは 密閉され、内部は真空に保たれる。上記電子線透過膜 5bは導電性である。  The insulating container 5a is provided with an electron beam permeable film 5b that transmits an electron beam, the insulating container 5a is hermetically sealed, and the inside is kept in a vacuum. The electron beam permeable film 5b is conductive.
[0014] 導入ピン 5e, 5fを介して、電源 120のフィラメント電源トランス 111から上記フィラメ ントヒータ 5cに電流を供給して、フィラメントヒータを加熱し、導入ピン 5gを介して昇圧 回路 112から力ソード 5dに― 30kV〜 - 60kV電圧のマイナスの高電圧を印加し、電 子線透過窓 5bを接地電位とすることより、上記電子線透過膜 5bを介して、同図の点 線矢印に示すように、電子線が放射される。 [0014] A current is supplied from the filament power transformer 111 of the power supply 120 to the filament heater 5c through the introduction pins 5e and 5f to heat the filament heater, and the force sword 5d from the booster circuit 112 through the introduction pin 5g. In addition, by applying a negative high voltage of −30 kV to −60 kV and setting the electron beam transmission window 5b to the ground potential, the electron beam transmission film 5b is passed through the electron beam transmission film 5b as shown by the dotted arrow in FIG. An electron beam is emitted.
上記電子線透過膜 5bの材質は、珪素 Siが使用されるが、他にも窒化珪素(SiN)、 アルミニウム (A1)、チタン (Ti)、ベリリウム (Be)などが使用できる。  As the material of the electron beam permeable film 5b, silicon Si is used. In addition, silicon nitride (SiN), aluminum (A1), titanium (Ti), beryllium (Be), or the like can be used.
予備電離ユニット 5の内部は、フィラメントヒータ 5cから放出された電子が吸収され な 、ように、通常例えば 1 X 10"4Pa (l X 10"6Torr)以下の低 、圧力に設定されて!、 る。したがって、電子線透過膜 5bと力ソード 5dとの絶縁も確保できる。 The inside of the preionization unit 5 is usually set to a low pressure such as 1 X 10 " 4 Pa (l X 10" 6 Torr), so that the electrons emitted from the filament heater 5c are not absorbed! . Therefore, insulation between the electron beam permeable film 5b and the force sword 5d can be secured.
[0015] 予備電離ユニットとして、上記電子線発生装置を用いれば、従来例のようチャンバ 一内にすべり放電による予備電離ユニットを設けることなぐチャンバ一 30内が低い 圧力であっても、効果的に予備電離を行なうことができる。 [0015] If the electron beam generator is used as a preionization unit, even if the pressure in the chamber 30 without a preionization unit by slip discharge in the chamber as in the conventional example is low, it is effective. Preionization can be performed.
なお、前記特許文献 1の段落 0033には、予備電離パルス発生装置 6により滑り放 電が発生し、滑り放電は、赤外線放射から X線放射までの放射線のほかに高速の荷 電粒子 (高速電子)が発生し、作動ガスの電離を促進すると記載されているが、滑り 放電により発生するのは主として紫外線放射から X線放射までの放射線であり、上記 高速の荷電粒子の予備電離への寄与は低 、ものと考えられる。 In paragraph 0033 of Patent Document 1, the preliminary ionization pulse generator 6 is used for sliding. Electricity is generated, and sliding discharge is described as generating high-speed charged particles (fast electrons) in addition to radiation from infrared radiation to X-ray radiation, which promotes ionization of working gas. It is thought that radiation generated mainly from ultraviolet radiation to X-ray radiation contributes little to the preionization of the high-speed charged particles.
[0016] ところで、図 2に示した電子線発生装置を、 EUV装置の予備電離ユニットとして使 用する場合、次のような次のような問題が生ずる。  By the way, when the electron beam generator shown in FIG. 2 is used as a preliminary ionization unit of an EUV apparatus, the following problems occur.
前記図 1にお 、て、光を取り出す EUV集光鏡 4が設けられる側の主放電電極 2は、 上記 EUV集光鏡 4等との間で放電が生じな 、ようにするため接地電位とするので、 主放電電極 1およびチャンバ一 30の容器 30aに 数十 kVの高電圧 HV1が印加 されること〖こなる。  In FIG. 1, the main discharge electrode 2 on the side where the EUV collector mirror 4 for taking out light is provided has a ground potential to prevent discharge from occurring between the EUV collector mirror 4 and the like. Therefore, a high voltage HV1 of several tens of kV is applied to the main discharge electrode 1 and the container 30a of the chamber 30.
このため、 EUV装置の予備電離ユニットとして、図 2に示した電子線発生装置を用 い、この電子線発生装置を予備電離ユニットとし、直接 EUV発生装置のチャンバ一 30に直接取り付けようとしても、チャンバ一 30の主放電電極 1側の容器 30aの電位 はマイナスの高電圧 HV1となるため、電子線発生装置の電子線透過膜 5bを図 2 に示すように接地電位に出来な 、。  For this reason, even if the electron beam generator shown in Fig. 2 is used as a preliminary ionization unit of an EUV device, and this electron beam generator is used as a preliminary ionization unit and is directly attached to the chamber 30 of the EUV generator, Since the potential of the container 30a on the side of the main discharge electrode 1 of the chamber 30 is a negative high voltage HV1, the electron beam transmission film 5b of the electron beam generator cannot be set to the ground potential as shown in FIG.
[0017] なお、電子線透過膜 5bを接地電位にし、絶縁材を介して電子線発生装置をチャン バー 30の容器 30aに取り付けることも考えられる力 この状態で主放電電極 1、容器 30aにマイナスの高電圧が印加されると、主放電電極 1または容器 30aと電子線透過 膜 5bとの間で放電が生ずることがある。特に、主放電電極 1と電子線透過膜 5bとの 間で放電が発生すると、電子線透過膜 5bが破損し、装置のトラブルを引き起こす場 合がある。 また、主放電電極 1、容器 30aがマイナスの高電圧であると、接地電位に 設定された電子線透過膜 5bを透過した電子線は減速され、チャンバ一 30内に効果 的に電子線が照射されな 、。  [0017] It should be noted that the electron beam permeable membrane 5b is set to the ground potential and the electron beam generator can be attached to the container 30a of the chamber 30 through an insulating material. In this state, the main discharge electrode 1 and the container 30a are negatively charged. When a high voltage is applied, a discharge may occur between the main discharge electrode 1 or the container 30a and the electron beam transmissive film 5b. In particular, when a discharge occurs between the main discharge electrode 1 and the electron beam permeable film 5b, the electron beam permeable film 5b may be damaged, causing troubles in the apparatus. If the main discharge electrode 1 and the container 30a have a negative high voltage, the electron beam transmitted through the electron beam transmission film 5b set at the ground potential is decelerated, and the electron beam is effectively irradiated into the chamber 30. Not.
[0018] そこで、本実施例では、図 1に示すように、主放電電極 1および主放電電極 1側の 容器 30aと、電子線発生装置の電子線透過膜 5bを同電位とし、電子線発生装置 (予 備電離ユニット 5)の力ソード 5dに予備電離電源 110の昇圧回路 112から上記マイナ スの高電圧— HV1よりマイナス側により高い電圧— HV2 ( I HV1 I < I HV2 | )を 印加した。なお、予備電離電源 110の構成は、前記図 2に示したものと同じであり、フ イラメントヒータ 5cに電流を供給するフィラメント電源トランス 111と、力ソードにマイナ スの高電圧を印加する昇圧回路 112を備えて 、る。 Therefore, in the present embodiment, as shown in FIG. 1, the main discharge electrode 1 and the container 30a on the main discharge electrode 1 side and the electron beam transmission film 5b of the electron beam generator are set to the same potential to generate an electron beam. The negative high voltage—higher voltage than HV1—HV2 (I HV1 I <I HV2 |) was applied to the force sword 5d of the device (preliminary ionization unit 5) from the booster circuit 112 of the preliminary ionization power supply 110 . The configuration of the standby ionization power source 110 is the same as that shown in FIG. A filament power transformer 111 for supplying a current to the irament heater 5c and a booster circuit 112 for applying a negative high voltage to the force sword are provided.
これにより、電子線透過膜 5bと、主放電電極 1および容器 30aとの間で放電が生じ るのを防ぐことができるとともに、電子線発生装置 (予備電離ユニット 5)から効果的に 、チャンバ一 30内に電子線を照射することができる。  As a result, it is possible to prevent discharge between the electron beam permeable membrane 5b, the main discharge electrode 1 and the container 30a, and effectively, from the electron beam generator (preliminary ionization unit 5), the chamber 30 can be irradiated with an electron beam.
なお、電子線発生装置の電子線透過膜 5bは、前記図 2や特表平 10— 512092号 公報に記載されているように、通常は接地電位にして使用されるものである力 カソ ード 5dには、およそ一 60kVまで印加することができるので、力ソード 5dに印加される 電圧を、主放電電極 1に印加されるマイナスの高電圧よりマイナス側に大きくしても、 問題なく電子線を発生させることができる。  The electron beam permeable membrane 5b of the electron beam generator is a force cathode that is normally used at a ground potential as described in FIG. 2 and Japanese Patent Application Laid-Open No. 10-512092. Since it is possible to apply up to approximately 60 kV to 5d, there is no problem even if the voltage applied to the force sword 5d is made larger than the negative high voltage applied to the main discharge electrode 1 to the negative side. Can be generated.
[0019] 図 1に示した EUV装置は次のように動作する。 [0019] The EUV apparatus shown in Fig. 1 operates as follows.
気体導入口 10から、キセノンが導入されるとともに、排気口 11から真空ポンプによ り排気される。キセノンガスは、チャンバ一 30内を、主放電電極 1側から主放電電極 2 側に向力つて流れる。差動排気によりチャンバ一 30の内部は減圧され、所定の圧力 に設定される。  Xenon is introduced from the gas inlet 10 and exhausted from the exhaust 11 by a vacuum pump. Xenon gas flows through the chamber 30 from the main discharge electrode 1 side to the main discharge electrode 2 side. The inside of the chamber 30 is depressurized by differential evacuation and set to a predetermined pressure.
予備電離ユニット 5 (電子線発生装置)の力ソード 5dにはマイナスの高電圧— HV2 、例えば— 60kVが印加され、電子線が、電子線透過膜 5bを透過してチャンバ一 30 内に照射される。また、前記したように、主放電電極 1, 2に放電電圧を印加しないと きは、放電電圧印加回路 50のスィッチ SW1は開いており、第 1の主放電電極 1及び 第 1の容器 30aは、抵抗 R,リアタトル Lを介して接地され、接地電位である。  A negative high voltage—HV2, for example—60 kV, is applied to the force sword 5d of the preionization unit 5 (electron beam generator), and the electron beam passes through the electron beam transmission film 5b and is irradiated into the chamber 30. The As described above, when no discharge voltage is applied to the main discharge electrodes 1 and 2, the switch SW1 of the discharge voltage application circuit 50 is open, and the first main discharge electrode 1 and the first container 30a are , Grounded through resistor R and rear tuttle L, and at ground potential.
上記スィッチ SW1が閉じると、上記コンデンサ COに充電されていたマイナスの高電 圧が上記主放電電極 1及び第 1の容器 30aに印加され、第 1の主放電電極 1と第 2の 主放電電極 2間には、放電電圧であるマイナスの高電圧 HV1、例えば 20kVが 印加される。予備電離ユニット 5の電子線透過膜 5bは、チャンバ一 30の容器 30aに 取り付けられているため、容器 30aおよび主放電電極 1と同電位になる。  When the switch SW1 is closed, a negative high voltage charged in the capacitor CO is applied to the main discharge electrode 1 and the first container 30a, and the first main discharge electrode 1 and the second main discharge electrode are applied. Between the two, a negative high voltage HV1, for example, 20 kV, which is a discharge voltage, is applied. Since the electron beam permeable membrane 5b of the preionization unit 5 is attached to the container 30a of the chamber 30, it has the same potential as the container 30a and the main discharge electrode 1.
[0020] チャンバ一 30内のキセノン力 予備電離ユニット 5から照射される電子線により予備 電離され、主放電電極 1と主放電電極 2にパルス状のマイナスの高電圧が印加される と、その間でプラズマ放電が発生し、 EUV光が放射される。 放射された EUV光は、 EUV集光鏡 4で集光され、フィルタ 6を介して照射部に出 射される。 [0020] When the xenon force in the chamber 30 is pre-ionized by the electron beam irradiated from the pre-ionization unit 5 and a pulsed negative high voltage is applied to the main discharge electrode 1 and the main discharge electrode 2, Plasma discharge occurs and EUV light is emitted. The emitted EUV light is collected by the EUV collector mirror 4 and emitted to the irradiation section through the filter 6.
なお、主放電電極 1にマイナスの高電圧が印加されると、予備電離ユニット 5のカソ ード 5dと電子線透過膜 5bとの間の電位差は小さくなり、チャンバ一 30内への電子線 の照射量は小さくなるが、電子により予備電離を起こさせるのは、主放電の立ち上が りの瞬間であり、主放電電極 1にマイナスの高電圧が印加されたとき、電子の照射量 が多少少なくなつても、問題は生じない。  When a negative high voltage is applied to the main discharge electrode 1, the potential difference between the cathode 5d of the preionization unit 5 and the electron beam permeable membrane 5b becomes small, and the electron beam into the chamber 30 is reduced. Although the irradiation dose is small, preionization is caused by electrons at the moment of the rise of the main discharge. When a negative high voltage is applied to the main discharge electrode 1, the electron irradiation amount is somewhat Even if it is less, there will be no problem.
本実施例によれば、チャンバ一 30内の放電空間と予備電離ユニット 5とが電子線 透過膜 5bにより隔てられているために、例えば、主放電電極 1, 2からスパッタにより 飛散する物質が、予備電離ユニット 5内に侵入せず、予備電離ユニットが汚染される ことがない。また、逆に、予備電離ユニット 5によるチャンバ一内の汚染も防ぐことがで きるので、装置の長寿命化を図ることができる。  According to this embodiment, since the discharge space in the chamber 30 and the preionization unit 5 are separated from each other by the electron beam permeable film 5b, for example, a substance scattered from the main discharge electrodes 1 and 2 by sputtering is It does not enter the preionization unit 5 and the preionization unit is not contaminated. Conversely, contamination in the chamber due to the preionization unit 5 can be prevented, so that the life of the apparatus can be extended.
また、予備電離ユニット 5がチャンバ一 30の外側に取り付けられているので、予備 電離ユニット 5の交換、保守点検を容易に行うことができる。  In addition, since the preliminary ionization unit 5 is attached to the outside of the chamber 30, the replacement and maintenance of the preliminary ionization unit 5 can be easily performed.
[0021] 図 3は、上記実施例の変形例であり、本実施例では、上記予備電離電源 110を放 電電圧印加回路 100とは電位的に切り離された電源とし、予備電離電源 110のブラ ス側と、放電電圧印加回路 100のマイナス側を接続したものであり、その他の構成は 、前記図 1と同じである。 FIG. 3 shows a modification of the above embodiment. In this embodiment, the preliminary ionization power source 110 is a power source that is electrically isolated from the discharge voltage application circuit 100, and 1 and the negative side of the discharge voltage application circuit 100 are connected, and the other configurations are the same as those in FIG.
上記構成とすることで、予備電離電源 110の出力電圧を、図 1の場合より低くするこ とができ、例えば、前記した図 1において HVl =— 20kV、 一HV2=—60kVとす る場合、図 3の構成とすることで、 HV1 =— 20kV、 一 HV2=— 40kVとすることが できる。  With the above configuration, the output voltage of the standby ionization power supply 110 can be made lower than in the case of FIG. 1. For example, in the case of HVl = −20 kV and one HV2 = −60 kV in FIG. With the configuration shown in Fig. 3, HV1 = -20 kV and one HV2 = -40 kV.
[0022] なお、上記実施例では、予備電離ユニット 5をチャンバ一 30の外側に取り付ける場 合について説明した力 予備電離ユニットをチャンバ一内に組み込んでもよい。この ように構成すると、図 1の場合より予備電離ユニットの交換、保守点検などは難しくな る力 図 1に示したように電子線透過膜を介して、チャンバ一内に電子線を照射する ように構成することで、図 1の実施例と同様に、予備電離ユニットの汚染、チャンバ一 内の汚染を防ぐことができる。 また、上記実施例では、特表平 10— 512092号公報に記載される電子線発生装 置を用いる場合について説明したが、その他の構成の電子線発生装置をもちいるこ とちでさる。 In the above embodiment, the force preionization unit described for the case where the preionization unit 5 is attached to the outside of the chamber 1 30 may be incorporated in the chamber 1. This configuration makes it difficult to replace and maintain the preionization unit compared to the case of Fig. 1. As shown in Fig. 1, an electron beam is irradiated into the chamber through the electron beam permeable membrane. With this configuration, it is possible to prevent the contamination of the preionization unit and the contamination in the chamber as in the embodiment of FIG. In the above-described embodiment, the case where the electron beam generator described in JP-T-10-512092 is used has been described. However, an electron beam generator having another configuration may be used.

Claims

請求の範囲 The scope of the claims
[1] 気体の導入口と排気口とが設けられたチャンバ一と、  [1] a chamber having a gas inlet and an exhaust port;
上記チャンバ一内であって、上記気体の導入口側に設けられた放電電圧が印加さ れるリング状の第 1の電極と、  A ring-shaped first electrode to which a discharge voltage is provided in the chamber and provided on the gas inlet side;
上記第 1の電極に対して絶縁材を介し排気口側に設けられた接地されたリング状の 第 2の電極と、  A grounded ring-shaped second electrode provided on the exhaust port side via an insulating material with respect to the first electrode;
上記第 2の電極側に設けられた集光鏡とを備えた EUV発生装置において、 上記第 1の電極側のチャンバ一に透過窓を介して電子線を放射する予備電離ュ- ットが設けられている  In the EUV generator provided with the condensing mirror provided on the second electrode side, a preliminary ionization unit that emits an electron beam through a transmission window is provided in the chamber on the first electrode side. Has been
ことを特徴とする EUV発生装置。  EUV generator characterized by that.
[2] 上記チャンバ一は、上記絶縁材により気体の導入口側と排気口側が電気的に絶縁さ れており、 [2] In the chamber 1, the gas inlet side and the exhaust side are electrically insulated by the insulating material,
上記気体導入側のチャンバ一に開口が設けられ、該開口に、透過窓を介してチヤ ンバー内に電子線を放射する予備電離ユニットが設けられ、  An opening is provided in the chamber on the gas introduction side, and a preionization unit that radiates an electron beam into the chamber through the transmission window is provided in the opening.
上記透過窓と気体導入側のチャンバ一と第 1の電極は電気的に同電位になるよう に接続され、上記第 1の電極と第 2の電極の間に高電圧を印加するための第 1の電 源が接続され、上記第 1の電極と上記予備電離ユニットの電子線放射源との間、もし くは、上記第 2の電極と予備電離ユニットの間に、高電圧を印加するための第 2の電 源が接続されている  The first window for applying a high voltage between the first electrode and the second electrode is connected so that the transmission window and the gas introduction side chamber 1 and the first electrode are electrically at the same potential. For applying a high voltage between the first electrode and the electron beam radiation source of the preionization unit, or between the second electrode and the preionization unit. The second power supply is connected
ことを特徴とする請求項 1記載の EUV発生装置。  The EUV generator according to claim 1, wherein:
PCT/JP2005/017703 2004-09-29 2005-09-27 Euv generator WO2006035748A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537739A JPWO2006035748A1 (en) 2004-09-29 2005-09-27 EUV generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-283527 2004-09-29
JP2004283527 2004-09-29

Publications (1)

Publication Number Publication Date
WO2006035748A1 true WO2006035748A1 (en) 2006-04-06

Family

ID=36118893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017703 WO2006035748A1 (en) 2004-09-29 2005-09-27 Euv generator

Country Status (4)

Country Link
JP (1) JPWO2006035748A1 (en)
KR (1) KR20070058385A (en)
TW (1) TW200613706A (en)
WO (1) WO2006035748A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484045A (en) * 2009-09-01 2012-05-30 株式会社Ihi Plasma light source system
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
CN112859547A (en) * 2021-03-22 2021-05-28 芶富均 Strong pulse extreme ultraviolet light source system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897947B2 (en) * 2007-07-13 2011-03-01 Cymer, Inc. Laser produced plasma EUV light source having a droplet stream produced using a modulated disturbance wave

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215721A (en) * 1999-11-18 2001-08-10 Cymer Inc Plasma converging light source having improved pulse power source system
JP2003051398A (en) * 2001-08-07 2003-02-21 Nikon Corp X-ray generator, device and method for exposure, and device manufacturing method
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215721A (en) * 1999-11-18 2001-08-10 Cymer Inc Plasma converging light source having improved pulse power source system
JP2004504706A (en) * 2000-07-04 2004-02-12 ランブダ フィジク アクチェンゲゼルシャフト Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
JP2003051398A (en) * 2001-08-07 2003-02-21 Nikon Corp X-ray generator, device and method for exposure, and device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484045A (en) * 2009-09-01 2012-05-30 株式会社Ihi Plasma light source system
EP2474997A1 (en) * 2009-09-01 2012-07-11 IHI Corporation Plasma light source system
EP2474997A4 (en) * 2009-09-01 2014-01-15 Ihi Corp Plasma light source system
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
CN112859547A (en) * 2021-03-22 2021-05-28 芶富均 Strong pulse extreme ultraviolet light source system

Also Published As

Publication number Publication date
KR20070058385A (en) 2007-06-08
JPWO2006035748A1 (en) 2008-05-15
TW200613706A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
JP3978385B2 (en) Apparatus and method for generating extreme ultraviolet radiation based on gas discharge
US5499282A (en) Efficient narrow spectral width soft-X-ray discharge sources
JP4880179B2 (en) Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
US8841641B2 (en) Extreme ultraviolet light source apparatus
US5247534A (en) Pulsed gas-discharge laser
EP0463815B1 (en) Vacuum ultraviolet light source
US4771447A (en) X-ray source
WO2006035748A1 (en) Euv generator
JP3810656B2 (en) X-ray source
JPH02248094A (en) X-ray pre-ionization pulse laser device
JP2934511B2 (en) Corona discharge light source cell and corona discharge light source device
US6654446B2 (en) Capillary discharge source
JPH0687408B2 (en) Plasma X-ray generator
JP4563807B2 (en) Gas discharge lamp
JP4696478B2 (en) Plasma X-ray generator
US7034322B2 (en) Fluid jet electric discharge source
JP2699894B2 (en) X-ray preionization discharge excitation gas laser apparatus and oscillation method thereof
JP2009032776A (en) Extreme ultraviolet light source equipment, and method of capturing high-speed particle in extreme ultraviolet light source equipment
WO2023188484A1 (en) Light source device
JP5659543B2 (en) Plasma light source and plasma light generation method
WO2002007484A2 (en) Method of producing short-wave radiation from a gas-discharge plasma and device for implementing it
JPH1145684A (en) Discharge lamp and treating device
JPS59163741A (en) X-ray generating equipment
Konovalov et al. Wide-aperture electric-discharge XeCl lasers
JPS6120332A (en) X-ray generating device and x-ray lithography equipment using same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537739

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067027610

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase