WO2006035724A1 - Vertical shaft centrifugal pump, rotor for the pump, and air conditioner - Google Patents

Vertical shaft centrifugal pump, rotor for the pump, and air conditioner Download PDF

Info

Publication number
WO2006035724A1
WO2006035724A1 PCT/JP2005/017641 JP2005017641W WO2006035724A1 WO 2006035724 A1 WO2006035724 A1 WO 2006035724A1 JP 2005017641 W JP2005017641 W JP 2005017641W WO 2006035724 A1 WO2006035724 A1 WO 2006035724A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
main plate
pump
casing
rotor shaft
Prior art date
Application number
PCT/JP2005/017641
Other languages
French (fr)
Japanese (ja)
Inventor
Akinori Furukori
Masahiko Yoshida
Michiaki Ohno
Original Assignee
Kabushiki Kaisha Saginomiya Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Saginomiya Seisakusho filed Critical Kabushiki Kaisha Saginomiya Seisakusho
Priority to JP2006537728A priority Critical patent/JP4680922B2/en
Publication of WO2006035724A1 publication Critical patent/WO2006035724A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/14Pumps raising fluids by centrifugal force within a conical rotary bowl with vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/20Mounting rotors on shafts

Definitions

  • the present invention relates to a vertical shaft centrifugal pump and a pump port used for the vertical shaft centrifugal pump, and is particularly suitable for application to a drain pump incorporated in an air conditioner requiring quietness.
  • a vertical shaft centrifugal pump In a vertical shaft centrifugal pump, a liquid body intervening in a casing is rotated by the rotation of an impeller, and the liquid is discharged out of the casing by utilizing a centrifugal force generated thereby. Further, a new liquid is sucked into the casing along with the liquid discharging operation.
  • This vertical shaft centrifugal pump is used, for example, as a drainage pump of an air conditioner.
  • An impeller that constitutes a main part of a drainage pump together with a casing includes an impeller shaft connected to a motor, the impeller shaft, and a plurality of impeller plates that project radially around the impeller shaft. It has.
  • This conventional vane plate is used to rotate the liquid in the pump chamber. It is common to have a wide surface that is almost perpendicular to the direction of rotation of the slats!
  • Patent Document 3 The blades disclosed in Patent Document 3 are basically the same as Patent Document 1 and Patent Document 2.
  • Patent Document 3 a through hole is provided in a disk portion between an impeller shaft and a blade outer peripheral wall portion to prevent noise caused by axial vibration. Even if such a through hole is applied to Patent Document 1 and Patent Document 2, it cannot be said that the noise generated when the blades drain water is not sufficiently reduced.
  • the difference in pressure generated between the surface facing the rotational direction of the impeller blade rotating around the axis of the impeller shaft and the surface positioned on the opposite side is the circumference of the impeller. It increases in proportion to the square of speed. For this reason, in particular, at the outer peripheral edge of the impeller blade plate that rotates about the axis of the impeller shaft, it is easy for vibration to occur on the surface opposite to the rotation direction of the impeller blade. This is one of the major causes. In addition, when the impeller rotates, the liquid level force of the liquid that the upper end of the impeller rotates around in the pump chamber begins to be exposed. When getting over the edge, noise is generated by entraining the air in the pump chamber.
  • the impeller blade plate in the conventional drainage pump has a wide surface that is substantially orthogonal to the rotation direction of the impeller in order to promote the circulation of the liquid intervening in the pump chamber. This contributes to the generation of noise as described above.
  • the drainage pump incorporated in the air conditioner has the characteristic that its deadline is lower than other pumps and its load is essentially small. Considering these characteristics, it can be said that the conventional vane plate having a wide and substantially perpendicular surface to the direction of rotation of the impeller is unsuitable for a drainage pump incorporated in an air conditioner. Like.
  • Patent Document 1 Utility Model Registration No. 2593986
  • Patent Document 2 Japanese Patent No. 3282772
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-242885
  • An object of the present invention has been made in view of the problem to be solved, and is a vertical shaft centrifugal pump excellent in quietness, a rotor incorporated in the vertical shaft centrifugal pump, and the vertical shaft centrifugal pump as a drainage pump. It is in providing the air conditioning apparatus incorporated as.
  • a first aspect of the present invention includes a rotor, a casing, a cover that is attached to the casing and forms a pump chamber in which the rotor is accommodated, and is protruded from the casing.
  • a vertical-shaft centrifugal pump having a suction pipe that forms a suction passage that communicates with a lower central portion of the pump chamber, and a discharge port that is formed in the casing and communicates with the pump chamber
  • the rotor includes the cover A rotor shaft whose upper end is connected to the drive motor from outside, a main plate concentrically and integrally connected to the rotor shaft, and a plurality of protrusions protruding substantially parallel to the axis of the rotor shaft from the main plate It comprises a book pin and a pressure equalizing section communicating with the front surface side and the back surface side of the main plate.
  • the liquid As the liquid is discharged, the liquid is sucked into the pump from the suction passage communicating with the central portion of the pump chamber.
  • the pin that rotates in the pump chamber around the axis of the rotor moves so as to wrap around the liquid in the surroundings in a laminar flow state.
  • the pin rotating in the pump chamber around the rotor shaft center is arranged in a laminar flow state with respect to the liquid intervening around the pin. Move to wrap around backwards. This creates a pressure difference between the top and bottom of the main plate, and the water flow rises from the pressure equalization section. Noise due to entrainment is suppressed.
  • a stirring member whose one end force projects along the axis of the rotor shaft can be disposed in the suction passage of the suction pipe.
  • the axial force of the rotor shaft may be a plurality of blade members protruding radially.
  • a partition wall can be formed on the cover so as to protrude downward from here to surround the rotor and to form an annular gap with the inner wall of the casing.
  • the partition wall is preferably positioned so as to face and block the discharge port formed in the casing.
  • the pump chamber can always be maintained at atmospheric pressure, the liquid can be efficiently discharged from the discharge port to the outside of the pump chamber by effectively using the centrifugal force.
  • the main plate may have an annular shape, and an annular space formed between the inner peripheral surface of the main plate and the outer peripheral surface of the rotor shaft may function as a pressure equalizing unit.
  • the main plate and the rotor shaft can be integrally connected via a plurality of stays crossing the gap. As a result, the surface of the liquid sucked up into the pump chamber can be rapidly formed into a parabolic shape.
  • a first array group in which pins and communication holes are arrayed in a first direction substantially along the circumferential direction of the main plate and a direction orthogonal thereto, and inclined by 45 degrees with respect to the first direction
  • the second array group in which the pins and the communication holes are arrayed in the direction and the direction orthogonal thereto can be alternately arrayed along the circumferential direction. This allows the first and second The direction and flow velocity of the swirl flow of the liquid obtained by each array group can be slightly changed, and bubbles generated between individual pins and the liquid can be efficiently removed.
  • each pin projected onto a plane perpendicular to the rotation direction of the main plate can be set so that the pin located on the radially inner side of the rotor shaft becomes smaller.
  • noise can be suppressed by suppressing air entrainment around the pin located on the inner side in the radial direction.
  • the kinetic energy of the pin located radially outside can be effectively applied to the liquid to improve the deadline lifting height.
  • a similar effect can be obtained by setting the protruding length of each pin to be shorter toward the inner side in the radial direction of the rotor shaft.
  • the same effect can be obtained by setting the width dimension of the distal end portion along the radial direction of the rotor shaft of the pin located radially inside the rotor shaft to be smaller than that of the proximal end portion. .
  • the same effect can be obtained by increasing the distance between the pins located on the radially inner side of the rotor shaft to the same force or wider than the distance on the outer side.
  • each pin in a plane perpendicular to the axis of the rotor shaft a circular shape, an elliptical shape, a polygonal shape such as a rectangle, or an asymmetrical shape such as an airfoil shape can be appropriately employed.
  • the maximum length of the pin along the rotation direction of the main plate can be set to the same force as or more than the maximum width dimension of the pin along the radial direction of the rotor shaft.
  • a drive motor a DC brushless motor that has less vibration than an AC motor, is small and light, and is easy to control can be employed.
  • a second aspect of the present invention is a rotor shaft, a main plate concentrically and integrally connected to the rotor shaft, and a plurality of main plate forces projecting substantially parallel to the axis of the rotor shaft. And a pressure equalizing portion that communicates the front side and the back side of the main plate.
  • This pump rotor is suitable as a rotor in the vertical shaft centrifugal pump according to the first embodiment of the present invention.
  • a third aspect of the present invention resides in an air conditioner characterized by incorporating the vertical shaft centrifugal pump according to the first aspect of the present invention as a drain pump.
  • Fig. 1 shows a vertical centrifugal pump according to the present invention as a drainage pump unit for an air conditioner. It is a conceptual diagram showing the attachment condition of one Embodiment applied to.
  • FIG. 2 is an extracted enlarged cross-sectional view of section II in FIG.
  • FIG. 3 is a longitudinal sectional view showing a schematic structure of the drainage pump unit in the embodiment shown in FIG. 1.
  • FIG. 4 is a plan view of the drainage pump unit shown in FIG.
  • FIG. 5 is a bottom view of the drainage pump unit shown in FIG.
  • FIG. 6 is a bottom view of the cover portion of the drainage pump unit shown in FIG.
  • FIG. 7 is a sectional view taken along arrow VII-VII in FIG.
  • FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG.
  • Fig. 9 is a three-dimensional projection view showing the appearance of the rotor in the drainage pump unit shown in Fig. 3.
  • FIG. 10 is a rear view of the rotor shown in FIG. 9.
  • FIG. 11 is a conceptual diagram schematically showing the flow direction of the fluid by the first arrangement group in the rotor shown in FIG. 9 together with FIG.
  • FIG. 12 is a conceptual diagram schematically showing the flow direction of the fluid by the second arrangement group in the rotor shown in FIG. 9 together with FIG.
  • FIG. 13 is a plan view of another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
  • FIG. 14 is a bottom view of the rotor shown in FIG.
  • FIG. 15 is a longitudinal sectional view of another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
  • FIG. 16 is a longitudinal sectional view of still another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
  • FIG. 17 is a longitudinal sectional view of still another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
  • FIG. 18 is a longitudinal sectional view showing a schematic structure of another embodiment in which the vertical shaft centrifugal pump according to the present invention is applied to the drainage pump unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the state of attachment of the drainage pump unit in the present embodiment, and FIG. That is, the drainage pump unit 10 in the present embodiment is attached to the fixing portion 13 formed on the housing partition wall 12 of the air conditioner via the bracket 11.
  • a gasket 14 having both an anti-vibration function and a sealing function is sandwiched between the fixed portion 13 and the bracket 11 having a rectangular plate shape.
  • the mounting portion 11 a of the bracket 11 is screwed to the fixing portion 13 of the housing partition wall 12 by the mounting screw 15 screwed into the fixing portion 13.
  • the drive motor 16 is mounted on the connecting portion l ib of the bracket 11 so that the drive motor 16 for driving the rotor, which will be described later, is located outside the housing partition wall 12.
  • a control panel 17 for controlling the operation of the drive motor 16 is installed outside the housing partition wall 12, and the control panel 17 and a connector 18 attached to the drive motor 16 are connected via a cable 19.
  • the connector 18 of the drive motor 16 in the present embodiment can be disposed at a position as shown by a two-dot chain line in FIG. It can be appropriately selected in consideration of interference with the parts.
  • the bracket 11 in the present embodiment is formed of a nonmagnetic material such as austenitic stainless steel or aluminum that does not adversely affect the operation of the drive motor 16 described later.
  • FIG. 3 The internal structure of the main part of the drainage pump unit 10 is shown in FIG. 3, its planar shape and bottom face shape are shown in FIGS. 4 and 5, respectively, and the bottom face shape of the cover part is shown in FIG.
  • the cross-sectional structures taken along arrows VII-VII and VIII-VIII in Fig. 3 are shown in Figs. 7 and 8, respectively, and the appearance of the rotor is shown in Fig. 9, and the bottom shape is shown in Fig. 10. That is, the drainage pump unit 10 in the present embodiment has a cylindrical side wall portion 20a and a conical bottom wall portion 20b.
  • a casing 20 and a cover 22 connected to the upper end of the side wall 20a of the casing 20 and forming a pump chamber 21 with the casing 20 are provided.
  • the drainage pump unit 10 is also assembled between a rotor 23 housed in the pump chamber 21, a drive motor 16 connected to the rotor 23 and rotating the rotor 23, and a cover 22 and the drive motor 16. It further comprises the aforementioned bracket 11 for partitioning these.
  • the bracket 11 is arranged to separate the drive motor 16 disposed outside the housing partition wall 12 of the air conditioner, the cover 22 and the casing 20 disposed inside the housing partition wall 12. It is attached to 12 fixed parts 13. For this reason, it is not necessary to provide a drain plate for protecting the bearing portion of the drive motor 16 between the cover 22 and the drive motor 16. However, even if a drive motor with different capacities is used, the drainage pump unit 10 may simply replace the drive motor 16. As a result, there is an advantage that the bracket 11 and the like need not be replaced at all.
  • a DC brushless motor is employed as the drive motor 16, which can be much smaller and lighter than an AC motor with large vibrations, and its drive control is easy.
  • High-frequency vibration which is a drawback of the DC motor, can be reliably cut off by interposing the gasket 14 described above between the housing partition wall 12 of the air conditioner and the mounting part 11a of the bracket 11.
  • the bottom wall portion 20b of the casing 20 is set in a conical shape with the central portion recessed downward, but the bottom wall portion 20b is set in a slightly flat bottom shape parallel to the horizontal plane.
  • the casing 20 is formed with a suction pipe 25 that protrudes downward from the center of the bottom wall portion 20b and forms a suction passage 24 communicating with the pump chamber 21.
  • the casing 20 is also integrally formed with a discharge pipe 27 that protrudes radially outward of the rotor 23 from the side wall portion 20a and opens a discharge port 26 that faces the pump chamber 21.
  • the suction pipe 25 is positioned in the drain pan 28 of the air conditioner indicated by a two-dot chain line in FIG. 3, and is almost immersed in the condensed water accumulated in the drain pan 28.
  • the discharge pipe 27 is connected to the base end of a drain pipe 29 whose leading end is led out of the casing partition wall 12 of the air conditioner.
  • the inner diameter of the discharge pipe 27 is increased toward the downstream side so as to face the pump chamber 21. Force that keeps the discharge port 26 constricted Consideration is given to ensure the workability when fitting the drain pipe 29 with a constant outer diameter of the discharge pipe 27 and the sealing performance between them. For this reason, the thickness of the discharge pipe 27 becomes thicker toward the base end side.
  • the outer peripheral portion of the discharge pipe 27 is subjected to a thinning process, thereby reducing the rigidity and weight of the discharge pipe 27. Is also achieved at the same time.
  • the shape and shape of the lightening formed on the outer periphery of the discharge pipe 27 is not limited. Moyo.
  • a plurality (four in the illustrated example) of locking claws 30 projecting outward in the radial direction upward are equidistantly spaced along the circumferential direction on the outer periphery of the lower part of the cover 22 which is a molded resin product. Formed.
  • a claw holder 31 having a frame shape that can be elastically deformed in the radial direction and capable of locking the locking claws 30 is provided on the outer periphery of the side wall portion 20a of the casing 20. Therefore, the locking claw 30 can be snapped to the claw holder 31 by pushing the cover 22 into the casing 20 with an upward force.
  • the casing 20 and the cover 22 can be integrated extremely easily, and the relative rotational position of the casing 20 relative to the cover 22 can be selected. That is, as shown by a two-dot chain line in FIG. 5, the direction of the discharge pipe 27 can be changed to any one of the four directions in accordance with the arrangement of other members.
  • the rotation of the cover 22 relative to the casing 20 can be restricted in a state where the locking claw 30 is locked to the claw holder 31. Therefore, as long as the claw holder 31 is slightly elastically deformed in the radial direction, the casing 20 and the claw holder 31 can be formed from a hard composite grease material mixed with glass fiber or inorganic whisker. 20 can be designed with high strength.
  • a plurality of (four in the illustrated example) connecting pins 32 projecting through the connecting portion l ib of the bracket 11 and the mounting flange 16a formed on the drive motor 16 are provided. It has been.
  • the forceps 32a formed at the upper end of the connecting pin 32 can utilize a technique such as ultrasonic welding, and the shape of the drive motor 16 and the bracket 11 is sufficient. It only has to be a shape that does not come off easily.
  • a boss portion 34 having a cylindrical cross section with its upper surface closed is formed upward, and a pair of spacers 35 having a semicircular arc shape surrounding the boss portion 34 are formed. Projected.
  • the boss 34 is located at the center of the hole 34a through which the spindle 16b of the drive motor 16 passes, and a plurality of bosses 34 are provided on the outer periphery of the boss 34 to maintain the inside of the pump chamber 21 at atmospheric pressure (four in the illustrated example). ) Slit 34b.
  • the upper end of the spacer 35 comes into contact with the connecting part l ib of the bracket 11.
  • a gap 35a between adjacent spacers 35 forms an air communication path together with a gap 22a having a pair of labyrinth structures formed on the outer peripheral edge of the cover 22.
  • the rotational phase between the gap 35a between the adjacent spacers 35 and the pair of gaps 22a formed at the outer peripheral edge of the cover 22 is shifted by approximately 90 degrees.
  • the air communication path that leads from the pump chamber 21 to the outside of the drainage pump unit 10 through the slit 34b and the gaps 35a and 22a can be greatly bent.
  • the slit 34b is formed in the boss portion 34 in the direction opposite to the rotation direction of the rotor 23 (left rotation direction in FIG. 7), that is, in the clockwise tangential direction in FIG. The amount of drainage overflowing from the slit 34b can be reduced.
  • a cylindrical partition wall 37 that forms an annular gap 36 with the side wall 20a of the casing 20 is a bottom wall of the casing 20. Projecting downwards toward part 20b. Therefore, the condensed water located at the upper peripheral edge of the pump chamber 21 flows downward due to the presence of the partition wall 37 and passes through the gap 38 between the lower end of the partition wall 37 and the bottom wall portion 20b of the casing 20 to form an annular shape. It is guided from the gap 36 into the discharge port 26. As a result, it is possible to prevent bubbles present on the upper peripheral edge of the pump chamber 21 from flowing into the discharge port 26 side.
  • the partition wall 37 in the present embodiment is for suppressing air bubbles present on the upper peripheral edge of the pump chamber 21 from flowing into the discharge port 26 side. It is necessary to form around the entire circumference Absent. However, when the partition wall 37 is formed only at a position facing the discharge port 26, the upstream side of the partition wall 37 from the discharge port 26 needs to be close to the inner peripheral surface of the side wall portion 20a of the casing 20. There is. Thereby, it is possible to prevent the condensed water containing bubbles flowing in the pump chamber 21 from directly flowing into the annular gap 36. Further, it is preferable that the lower end portion of the partition wall 37 is formed in a curved surface such as a semicircular shape so that the smooth flow of the condensed water is not hindered.
  • An O-ring 39 is mounted between the casing 20 and the partition wall 37 of the cover 22, and the fitting part force of the casing 20 and the cover 22 is also considered so that the condensed water does not leak outside. Yes.
  • the rotor 23 in the present embodiment includes a rotor shaft 40 having a cylindrical connection portion 40a to which the spindle 16b of the drive motor 16 is coupled at the upper end, and a plurality of radially extending projections (see FIG. In the example shown, there are four stays 41).
  • the rotor 23 includes an annular main plate 42 that is integrally connected to the rotor shaft 40 via a stage 41, and a surface of the main plate 42, that is, substantially parallel to the axis of the rotor shaft 40 from the upper surface side. And a number of pins 43 projecting from each other.
  • the rotor 23 is formed from the bottom end of the rotor shaft 40 and a large number of communication holes 44 that are formed on the front surface side and the back surface, that is, the lower surface side.
  • a stirring member 45 protruding along the axis of the rotor shaft 40 and located in the suction passage 24 is further provided.
  • the main plate 42 is concentric with the rotor shaft 40, and functions as a pressure equalizing portion of the present invention together with the communication hole 44 described above between the inner peripheral surface of the main plate 42 and the outer peripheral surface of the rotor shaft 40.
  • a void 46 is formed.
  • the stay 41 described above crosses the gap 46 and connects the rotor shaft 40 and the main plate 42.
  • four sets of the first array group A and the second array group B are alternately formed along the circumferential direction of the main plate 42.
  • the pins 43 and the communication holes 44 are alternately arranged in a first direction (in the left-right direction in FIG. 8) substantially along the circumferential direction of the main plate 42 and in a direction perpendicular thereto.
  • the pins 43 and the communication holes 44 are alternately arranged in a direction inclined by 45 degrees with respect to the first direction and in a direction perpendicular thereto.
  • Each pin 43 has a substantially square cross-section cut by a plane perpendicular to the axis of the rotor shaft 40. In order to minimize the watering noise, the square corners of the corners are rounded.
  • the stirring member 45 has four blades 45a whose cross-sectional shape perpendicular to the axis of the rotor shaft 40 has a cross shape.
  • the condensed water entering the pump chamber 21 is swirled at a higher speed by the main plate 42 and the pin 43 of the rotating rotor 23.
  • a part of the condensed water is discharged from the annular gap 36 to the discharge port 26 through the gap between the bottom wall portion 20b of the casing 20 and the lower end of the partition wall 37 of the cover 22.
  • new condensed water in the drain pan 28 is sucked into the suction passage 24, and the condensed water in the drain pan 28 is continuously discharged from the discharge port 26 to the outside through the drain pipe 29. .
  • the drainage height of the drainage pump unit 10 is also It is decided by itself.
  • the amount of drainage depends on the area of the pin 43 projected on a plane perpendicular to the rotation direction of the main plate 42.
  • the pin 43 of the rotor 23 rotates at a speed higher than the swirling speed of the condensed water. For this reason, the condensed water present in the surroundings is compared by rolling the outer periphery of the pin 43 when it is considered that the condensed water is swirling in the pump chamber 21 with respect to the stationary pin 43. It will be in a state where it flows smoothly backward.
  • a highly resistive vane plate having a wide surface substantially perpendicular to the rotation direction of the vane wheel is not used, so even the pin 43 located on the outermost peripheral side of the rotor 23 However, there is almost no cavitation behind the turning direction.
  • the flow direction of the condensed water formed by the first array group A of the pins 43 and the communication holes 44 is in the radial direction as shown in FIG. 11 schematically showing the flow state. Tilted almost 45 degrees Direction. This flow direction gives relatively large kinetic energy to the condensed water.
  • the flow direction of the condensed water formed by the second arrangement group B is substantially the circumferential direction of the main plate 42 as shown in FIG. 12, which schematically shows the flow state. On the other hand, it gives a relatively small kinetic energy. As a result, the defoaming effect can be further enhanced by the flow of these two types of condensed water.
  • the swirling circumferential speed of the condensed water in the suction pipe 25 is considerably slower than the swirling circumferential speed of the condensed water in the pump chamber 21, even if the stirring member 45 is the blade 45a having a large resistance, There is no such problem that a cavity is generated here.
  • the presence of the partition wall 37 formed on the cover 22 can prevent bubbles from being mixed into the condensed water discharged to the discharge port 26 side. it can. It is also possible to eliminate noise when bubbles are discharged to the discharge port 26 side.
  • FIGS. 13 and 14 show the planar shape and bottom shape of another embodiment of the rotor 23 according to the present invention, respectively. As shown in FIGS. 13 and 14, the outer peripheral surface of the main plate 42 can be formed into an irregular gear.
  • a pin 43 having an elliptical cross-sectional shape cut by a plane perpendicular to the axis of the rotor shaft 40 is adopted, and the major axis direction thereof is arranged along the circumferential direction of the main plate 42. It is also possible. In this case, the concave and convex portions formed on the outer peripheral surface of the main plate 42 enhance the stirring action on the condensed water and improve the capacity as a drainage pump.
  • elements having the same functions as those in the previous embodiment are denoted by the same reference numerals.
  • FIG. 15 shows a cross-sectional structure of the main part of another embodiment of the rotor 23 according to the present invention. As can be seen from FIG. 15, depending on the height of the swirling water surface of the condensate formed in the pump chamber 21 (indicated by a two-dot chain line in the figure).
  • the pin 43 closer to the rotor shaft 4027 can be formed in a tapered shape such that its taper angle ⁇ increases.
  • FIG. 18 shows a schematic structure of another embodiment of the drainage pump unit 10 according to the present invention in which the pin 43 protrudes downward from the back surface of the main plate 42.
  • the same reference numeral is used for this, and duplicate explanations are omitted.
  • the rotor 23 in the present embodiment is formed with a main plate 42 so as to be close to the bottom plate 33 of the cover 22, and the back surface force of the main plate 42 also has a large number of pins 43 protruding toward the bottom wall portion 20 b of the casing 20. .
  • the lower end of each pin 43 is closer to the bottom wall portion 20b of the casing 20 at approximately the same distance so that the pin 43 located on the radially inner side of the rotor 23 has a longer protruding length from the main plate 42. It is set.
  • a larger rectifying effect can be obtained for the condensed water sucked into the pump chamber 21 by the main plate 42 disposed in the vicinity of the bottom plate 33 of the cover 22.
  • a cylindrical portion 11 c surrounding the drive motor 16 is formed between the mounting portion 11 a of the bracket 11 and the connecting portion l ib, thereby transmitting the noise generated by the drive motor 16.
  • the direction can be regulated.
  • the pins 43 and the communication holes 44 can be randomly formed on the main plate 42 without being aligned as in the arrangement groups A and B as in the above-described embodiment. Alternatively, it is possible to cause the pin 43 to protrude on both sides of the main plate 42. In any case, it is desirable to appropriately adjust the quantity, layout, etc., in order to secure the required amount of drainage for the drainage pump unit 10 and reduce vibration and noise.
  • the main plate 42 may be formed in a conical shape so as to be parallel to the conical bottom wall portion 20b of the casing 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

In a conventional water discharge pump assembled in an air conditioner, the rotation of a blade wheel produces cavitation to cause a problem with quietness. A vertical shaft water discharge pump of the invention has a rotor (23), a casing (20), a cover (22) that forms, together with the casing (20), a pump chamber (21) in which the rotor (23) is received, a suction pipe (25) forming a suction path (24) communicating with a lower end central portion of the pump chamber (21), and a discharge port (26) communicating with the pump chamber (21). The rotor (23) has a rotor shaft (40) connected at its upper end section to a drive motor (16), a circular main plate (42) cocentrically integrally connected to the rotor shaft (40), pins (43) projecting from the main plate (42) substantially in parallel to the axis of the rotor shaft (40), and uniformly pressing sections (44, 46) formed in the main plate (42) and communicating between the front surface side and the back surface side of the main plate (42).

Description

明 細 書  Specification
立軸形遠心ポンプおよびそのロータならびに空気調和装置  Vertical shaft centrifugal pump and its rotor and air conditioner
技術分野  Technical field
[0001] 本発明は立軸形遠心ポンプおよびこの立軸形遠心ポンプに用いられるポンプ用口 ータに関し、特に静寂性が求められる空気調和装置に組み込まれる排水ポンプに応 用して好適である。  [0001] The present invention relates to a vertical shaft centrifugal pump and a pump port used for the vertical shaft centrifugal pump, and is particularly suitable for application to a drain pump incorporated in an air conditioner requiring quietness.
背景技術  Background art
[0002] 立軸形遠心ポンプにおいては、羽根車の回転によってケーシング内に介在する液 体を連れ回りさせ、これによつて発生する遠心力を利用してケーシング外に液体が吐 出される。また、この液体の吐出動作に伴って新たな液体がケーシング内に吸い込ま れる。この立軸形遠心ポンプは、例えば空気調和装置の排水ポンプなどとして利用さ れる。  [0002] In a vertical shaft centrifugal pump, a liquid body intervening in a casing is rotated by the rotation of an impeller, and the liquid is discharged out of the casing by utilizing a centrifugal force generated thereby. Further, a new liquid is sucked into the casing along with the liquid discharging operation. This vertical shaft centrifugal pump is used, for example, as a drainage pump of an air conditioner.
[0003] 空気調和装置においては、冷房運転中に発生する空気中の凝縮水を室外に排出 するため、これをドレンパンに一時的に溜め、ここ力も排水ポンプを用いて室外に排 出することが一般的に行われて 、る。  [0003] In an air conditioner, in-air condensed water generated during cooling operation is discharged to the outside of the room. Therefore, the condensed water is temporarily stored in a drain pan, and this force can also be discharged to the outside using a drain pump. Generally done.
[0004] このような排水ポンプとしては、特許文献 1や特許文献 2に開示されたものが知られ ている。これらに開示された排水ポンプにおいては、カバーとケーシングとで囲まれ たポンプ室内に羽根車を収容し、この羽根車の羽根車軸にモータを連結している。こ のモータを駆動することによってポンプ室内で羽根車を回転させ、ポンプ室内に介在 する水などの液体を羽根車と共に連れ回りさせることができる。つまり、ポンプ室内の 液体を羽根車と共に連れ回りさせることにより、液体に発生する遠心力を利用してポ ンプ室の外周部に連通する吐出管からポンプ室の外に液体が排出される。また、こ のポンプ室からの液体の排出に伴って、ポンプ室の下端中央部に連通する吸込管 力もポンプ室に新たな液体が吸い込まれる。  [0004] As such drainage pumps, those disclosed in Patent Document 1 and Patent Document 2 are known. In the drainage pumps disclosed therein, an impeller is accommodated in a pump chamber surrounded by a cover and a casing, and a motor is connected to the impeller shaft of the impeller. By driving this motor, the impeller can be rotated in the pump chamber, and a liquid such as water intervening in the pump chamber can be rotated together with the impeller. That is, by rotating the liquid in the pump chamber together with the impeller, the liquid is discharged out of the pump chamber from the discharge pipe communicating with the outer peripheral portion of the pump chamber using the centrifugal force generated in the liquid. As the liquid is discharged from the pump chamber, the suction pipe force communicating with the center of the lower end of the pump chamber also draws new liquid into the pump chamber.
[0005] ケーシングと共に排水ポンプの主要部を構成する羽根車は、モータに連結される 羽根車軸と、この羽根車軸と、この羽根車軸の周囲に放射状に突設される複数枚の 羽根板とを具えている。従来のこの羽根板は、ポンプ室内に介在する液体の連れ回 りを促進するため、羽根板の回転方向に対してほぼ直交する広 、面をもって!/、るの が普通である。 [0005] An impeller that constitutes a main part of a drainage pump together with a casing includes an impeller shaft connected to a motor, the impeller shaft, and a plurality of impeller plates that project radially around the impeller shaft. It has. This conventional vane plate is used to rotate the liquid in the pump chamber. It is common to have a wide surface that is almost perpendicular to the direction of rotation of the slats!
[0006] 特許文献 3に開示された羽根も、基本的には特許文献 1および特許文献 2とほぼ同 様なものである。この特許文献 3においては、羽根車軸と羽根外周壁部との間の円板 部に貫通穴を設け、軸方向の振動に伴う騒音を防止している。このような貫通穴を特 許文献 1や特許文献 2に適用しても、羽根板が水をかくときに発生する騒音の低減は 充分とは言えない。  [0006] The blades disclosed in Patent Document 3 are basically the same as Patent Document 1 and Patent Document 2. In Patent Document 3, a through hole is provided in a disk portion between an impeller shaft and a blade outer peripheral wall portion to prevent noise caused by axial vibration. Even if such a through hole is applied to Patent Document 1 and Patent Document 2, it cannot be said that the noise generated when the blades drain water is not sufficiently reduced.
[0007] 近年、空気調和機における運転音の低減ィヒが求められており、この空気調和機装 置に組み込まれた排水ポンプの作動音およびこれに伴って発生する各種騒音の類 も低減させることが求められている。例えば、排水ポンプの作動によって発生する僅 かな水力き音ですら問題となっているほどである。  [0007] In recent years, there has been a demand for a reduction in operating noise in an air conditioner, and it is also possible to reduce the operating noise of a drainage pump incorporated in the air conditioner apparatus and various types of noise generated thereby. It is demanded. For example, even a slight hydraulic noise generated by the operation of a drain pump is problematic.
[0008] 周知のように羽根車軸の軸線を中心に回転する羽根車の羽根板の回転方向側を 向く面とその反対側に位置する面とではそれぞれ発生する圧力の差は、羽根板の周 速度の二乗に比例して大きくなる。このため、羽根車軸の軸線を中心に回転する羽 根車の羽根板の特に外周端縁部において、羽根板の回転方向と反対側の面にキヤ ビテーシヨンが発生し易ぐこのキヤビテーシヨンは上述した騒音の大きな原因の 1つ となる。しかも、羽根車の回転によって羽根板の上端部がポンプ室内で連れ回る液 体の液面力 露出し始めた状態となっている箇所では、羽根板の周囲に介在する液 体が羽根板の上端縁を乗り越える際、ポンプ室内に介在する空気を巻き込んで騒音 が発生する。  [0008] As is well known, the difference in pressure generated between the surface facing the rotational direction of the impeller blade rotating around the axis of the impeller shaft and the surface positioned on the opposite side is the circumference of the impeller. It increases in proportion to the square of speed. For this reason, in particular, at the outer peripheral edge of the impeller blade plate that rotates about the axis of the impeller shaft, it is easy for vibration to occur on the surface opposite to the rotation direction of the impeller blade. This is one of the major causes. In addition, when the impeller rotates, the liquid level force of the liquid that the upper end of the impeller rotates around in the pump chamber begins to be exposed. When getting over the edge, noise is generated by entraining the air in the pump chamber.
[0009] 従来の排水ポンプにおける羽根車の羽根板は、ポンプ室内に介在する液体の連 れ回りを促進するため、羽根車の回転方向に対してほぼ直交する広い面を持ってお り、これが上述したような騒音発生の一因となっている。しかしながら、空気調和装置 に組み込まれる排水ポンプは、締切揚程が他のポンプと比べて低ぐその負荷が本 質的に小さいという特性を有している。このような特性を考慮すると、羽根車の回転方 向に対してほぼ直交する広 、面を持った従来の羽根板は、空気調和装置に組み込 まれる排水ポンプとしては不適当な形状と言えよう。  [0009] The impeller blade plate in the conventional drainage pump has a wide surface that is substantially orthogonal to the rotation direction of the impeller in order to promote the circulation of the liquid intervening in the pump chamber. This contributes to the generation of noise as described above. However, the drainage pump incorporated in the air conditioner has the characteristic that its deadline is lower than other pumps and its load is essentially small. Considering these characteristics, it can be said that the conventional vane plate having a wide and substantially perpendicular surface to the direction of rotation of the impeller is unsuitable for a drainage pump incorporated in an air conditioner. Like.
[0010] 特許文献 1 :実用新案登録第 2593986号公報 特許文献 2:特許第 3282772号公報 [0010] Patent Document 1: Utility Model Registration No. 2593986 Patent Document 2: Japanese Patent No. 3282772
特許文献 3:特開 2002 - 242885号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-242885
発明の開示  Disclosure of the invention
[0011] 本発明の目的は、カゝかる課題に鑑みてなされたものであり、静粛性に優れた立軸 形遠心ポンプおよびこの立軸形遠心ポンプに組み込まれるロータならびにこの立軸 形遠心ポンプを排水ポンプとして組み込んだ空気調和装置を提供することにある。  An object of the present invention has been made in view of the problem to be solved, and is a vertical shaft centrifugal pump excellent in quietness, a rotor incorporated in the vertical shaft centrifugal pump, and the vertical shaft centrifugal pump as a drainage pump. It is in providing the air conditioning apparatus incorporated as.
[0012] 本発明の第 1の形態は、ロータと、ケーシングと、このケーシングに装着されて当該 ケーシングとで前記ロータが収容されるポンプ室を形成するカバーと、前記ケーシン グに突設されて前記ポンプ室の下端中央部に連通する吸込通路を形成する吸込管 と、前記ケーシングに形成されて前記ポンプ室に連通する吐出ポートとを有する立軸 形遠心ポンプであって、前記ロータは、前記カバーの外から駆動モータに上端部が 連結されるロータ軸と、このロータ軸に同心状をなして一体的に連結される主板と、こ の主板から前記ロータ軸の軸線とほぼ平行に突出する複数本のピンと、前記主板の 表面側と裏面側とに連通する均圧部とを具えていることを特徴とするものである。  [0012] A first aspect of the present invention includes a rotor, a casing, a cover that is attached to the casing and forms a pump chamber in which the rotor is accommodated, and is protruded from the casing. A vertical-shaft centrifugal pump having a suction pipe that forms a suction passage that communicates with a lower central portion of the pump chamber, and a discharge port that is formed in the casing and communicates with the pump chamber, wherein the rotor includes the cover A rotor shaft whose upper end is connected to the drive motor from outside, a main plate concentrically and integrally connected to the rotor shaft, and a plurality of protrusions protruding substantially parallel to the axis of the rotor shaft from the main plate It comprises a book pin and a pressure equalizing section communicating with the front surface side and the back surface side of the main plate.
[0013] 本発明においては、ロータ軸の上端部に連結される駆動モータが作動すると、水な どの液体が介在するポンプ室内でロータが回転する。このため、ロータの主板力も突 出するピンが液体内にて回転するのに伴い、ポンプ室内の液体がその粘性によって 次第にロータと共に連れ回りし始める。このようにして、ポンプ室内に介在する液体の 連れ回りに伴う遠心力が発生し、この遠心力によりポンプ室内に介在する液体の表 面が放物面状に変形し、液体がポンプ室力 その外周部に連通する吐出ポートに吐 出される。また、この液体の吐出動作に伴ってポンプ室の中央部に連通する吸込み 通路から液体がポンプ内に吸い込まれる。ロータの軸心を中心としてポンプ室内で 旋回するピンは、その周囲に介在する液体に対し、これをほぼ層流状態で後方へと 回り込ませるように移動する。  [0013] In the present invention, when the drive motor connected to the upper end of the rotor shaft is operated, the rotor rotates in the pump chamber in which liquid such as water is interposed. For this reason, as the pin that also projects the main plate force of the rotor rotates in the liquid, the liquid in the pump chamber gradually starts to rotate with the rotor due to its viscosity. In this way, a centrifugal force is generated accompanying the rotation of the liquid intervening in the pump chamber, and this centrifugal force deforms the surface of the liquid intervening in the pump chamber into a parabolic surface, so that the liquid can It is discharged to the discharge port communicating with the outer periphery. As the liquid is discharged, the liquid is sucked into the pump from the suction passage communicating with the central portion of the pump chamber. The pin that rotates in the pump chamber around the axis of the rotor moves so as to wrap around the liquid in the surroundings in a laminar flow state.
[0014] 本発明の第 1の形態の立軸形遠心ポンプによると、ロータの軸心を中心としてボン プ室内で旋回するピンが、その周囲に介在する液体に対し、これをほぼ層流状態で 後方へと回り込ませるように移動する。これにより、主板の上下で圧力差が発生し、均 圧部から水流が上昇してくるため、ピンの周囲でのキヤビテーシヨンの発生や空気の 巻き込みによる騒音が抑制される。 [0014] According to the vertical shaft centrifugal pump of the first aspect of the present invention, the pin rotating in the pump chamber around the rotor shaft center is arranged in a laminar flow state with respect to the liquid intervening around the pin. Move to wrap around backwards. This creates a pressure difference between the top and bottom of the main plate, and the water flow rises from the pressure equalization section. Noise due to entrainment is suppressed.
[0015] 本発明の第 1の形態による立軸形遠心ポンプにおいて、ロータ軸の軸線に沿って その一端部力も突出する攪拌部材を吸込管の吸込通路内に配することができ、この 攪拌部材はロータ軸の軸線力 放射状に突出する複数枚の羽根部材であってよい。 ロータ軸の軸線に沿ってその一端部から突出する攪拌部材を吸込管の吸込通路内 に配した場合、吸込通路力 ポンプ室内へと吸い込まれる液体に旋回流を与えること ができ、ポンプ効率をさらに向上させることが可能となる。  [0015] In the vertical shaft centrifugal pump according to the first aspect of the present invention, a stirring member whose one end force projects along the axis of the rotor shaft can be disposed in the suction passage of the suction pipe. The axial force of the rotor shaft may be a plurality of blade members protruding radially. When a stirring member protruding from one end of the rotor shaft along the axis of the rotor shaft is arranged in the suction passage of the suction pipe, the suction passage force can provide a swirling flow to the liquid sucked into the pump chamber, further increasing the pump efficiency. It becomes possible to improve.
[0016] カバーには、ここからロータの周囲を囲むように下向きに突出してケーシングの内壁 との間に環状の空隙を形成する仕切り壁を形成することができる。この仕切り壁は、ケ 一シングに形成された吐出ポートと対向してこれをさえぎるように位置していることが 好ましい。これにより、ポンプ室内に介在する空気が吐出ポート側に流れ込むのを阻 止して気泡がポンプ室から吐出ポートへと移動する際に発生していた騒音を無くすこ とがでさる。  [0016] A partition wall can be formed on the cover so as to protrude downward from here to surround the rotor and to form an annular gap with the inner wall of the casing. The partition wall is preferably positioned so as to face and block the discharge port formed in the casing. As a result, the air intervening in the pump chamber is prevented from flowing to the discharge port side, and noise generated when the bubbles move from the pump chamber to the discharge port can be eliminated.
[0017] ポンプ室内と外部とを連通する大気連通路をカバーに形成することも可能である。  [0017] It is also possible to form in the cover an atmosphere communication path that communicates between the pump chamber and the outside.
この場合、ポンプ室内を常に大気圧に保つことができるため、遠心力を有効に利用し て液体を効率よく吐出ポートからポンプ室外へ排出させることができる。  In this case, since the pump chamber can always be maintained at atmospheric pressure, the liquid can be efficiently discharged from the discharge port to the outside of the pump chamber by effectively using the centrifugal force.
[0018] 主板が環状をなし、その内周面とロータ軸の外周面との間に形成される環状の空 隙を均圧部として機能させることも可能である。この場合、主板とロータ軸とをこの空 隙を横切る複数本のステーを介して一体的に連結することができる。これにより、ボン プ室内に吸い上げられる液体の表面を迅速に放物面状に形成することが可能となる  [0018] The main plate may have an annular shape, and an annular space formed between the inner peripheral surface of the main plate and the outer peripheral surface of the rotor shaft may function as a pressure equalizing unit. In this case, the main plate and the rotor shaft can be integrally connected via a plurality of stays crossing the gap. As a result, the surface of the liquid sucked up into the pump chamber can be rapidly formed into a parabolic shape.
[0019] 主板の表面側と裏面側とを連通する複数の連通孔を形成し、これら連通孔を均圧 部として機能させることも有効であり、主板の裏面外周側直下に介在する気泡を連通 孔カ その表面側へと逃がして吐出ポート側に流れ込まないようにすることができる。 この場合、主板の円周方向にほぼ沿った第 1の方向およびこれと直交する方向にピ ンおよび連通孔を配列した第 1の配列グループと、第 1の方向に対して 45度傾斜し た方向およびこれと直交する方向にピンおよび連通孔を配列した第 2の配列グルー プとを円周方向に沿って交互に配列することができる。これにより、第 1のおよび第 2 の配列グループによってそれぞれ得られる液体の旋回流の方向および流速を微妙 に異ならせることができ、個々のピンと液体との間に発生する気泡を効率よく消泡す ることがでさる。 [0019] It is also effective to form a plurality of communication holes that connect the front surface side and the back surface side of the main plate, and to function these communication holes as a pressure equalizing portion, and to communicate bubbles that are interposed directly under the outer peripheral side of the back surface of the main plate. The hole can be prevented from escaping to the surface side and flowing into the discharge port side. In this case, a first array group in which pins and communication holes are arrayed in a first direction substantially along the circumferential direction of the main plate and a direction orthogonal thereto, and inclined by 45 degrees with respect to the first direction The second array group in which the pins and the communication holes are arrayed in the direction and the direction orthogonal thereto can be alternately arrayed along the circumferential direction. This allows the first and second The direction and flow velocity of the swirl flow of the liquid obtained by each array group can be slightly changed, and bubbles generated between individual pins and the liquid can be efficiently removed.
[0020] 主板の回転方向に対して垂直な面に投影した個々のピンの面積がロータ軸の半径 方向内側に位置するピンほど小さくなるように設定することができる。これによつて、半 径方向内側に位置するピンの周囲における空気の巻き込みを抑えて騒音を抑制す ることができる。また、半径方向外側に位置するピンの運動エネルギーを有効に液体 に作用させて締切揚程を改善することができる。個々のピンの突出長さをロータ軸の 半径方向内側ほど短く設定することによつても同様な効果を得ることができる。また、 ロータ軸の半径方向内側に位置するピンのロータ軸の半径方向に沿った先端部の 幅寸法を基端部のそれより小さくする設定することによつても同様な効果を得ることが できる。あるいは、ロータ軸の半径方向内側に位置するピンの間隔を同外側の間隔と 同じ力もしくは広くすることによつても同様な効果を得ることができる。  [0020] The area of each pin projected onto a plane perpendicular to the rotation direction of the main plate can be set so that the pin located on the radially inner side of the rotor shaft becomes smaller. As a result, noise can be suppressed by suppressing air entrainment around the pin located on the inner side in the radial direction. Also, the kinetic energy of the pin located radially outside can be effectively applied to the liquid to improve the deadline lifting height. A similar effect can be obtained by setting the protruding length of each pin to be shorter toward the inner side in the radial direction of the rotor shaft. Further, the same effect can be obtained by setting the width dimension of the distal end portion along the radial direction of the rotor shaft of the pin located radially inside the rotor shaft to be smaller than that of the proximal end portion. . Alternatively, the same effect can be obtained by increasing the distance between the pins located on the radially inner side of the rotor shaft to the same force or wider than the distance on the outer side.
[0021] ロータ軸の軸線に対して垂直な面における個々のピンの断面形状は、円形,楕円 形,矩形などの多角形,あるいは翼形などの非対称形状を適宜採用することができる 。この場合、主板の回転方向に沿ったピンの最大長さは、ロータ軸の半径方向に沿 つたピンの最大幅寸法と同じ力 あるいはそれ以上に設定することができる。  [0021] As a cross-sectional shape of each pin in a plane perpendicular to the axis of the rotor shaft, a circular shape, an elliptical shape, a polygonal shape such as a rectangle, or an asymmetrical shape such as an airfoil shape can be appropriately employed. In this case, the maximum length of the pin along the rotation direction of the main plate can be set to the same force as or more than the maximum width dimension of the pin along the radial direction of the rotor shaft.
[0022] 駆動モータとして ACモータよりも振動が少なぐかつ小型軽量であって制御も容易 な DCブラシレスモータを採用することができる。  [0022] As a drive motor, a DC brushless motor that has less vibration than an AC motor, is small and light, and is easy to control can be employed.
[0023] 本発明の第 2の形態は、ロータ軸と、このロータ軸に同心状をなして一体的に連結 される主板と、この主板力 前記ロータ軸の軸線とほぼ平行に突出する複数本のピン と、前記主板の表面側と裏面側とを連通する均圧部とを具えたことを特徴とするボン プ用ロータにある。このポンプ用ロータは、本発明の第 1の形態による立軸形遠心ポ ンプにおけるロータとして好適である。  [0023] A second aspect of the present invention is a rotor shaft, a main plate concentrically and integrally connected to the rotor shaft, and a plurality of main plate forces projecting substantially parallel to the axis of the rotor shaft. And a pressure equalizing portion that communicates the front side and the back side of the main plate. This pump rotor is suitable as a rotor in the vertical shaft centrifugal pump according to the first embodiment of the present invention.
[0024] 本発明の第 3の形態は、本発明の第 1の形態による立軸形遠心ポンプを排水ボン プとして組み込んだことを特徴とする空気調和装置にある。  [0024] A third aspect of the present invention resides in an air conditioner characterized by incorporating the vertical shaft centrifugal pump according to the first aspect of the present invention as a drain pump.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]図 1は、本発明による立軸形遠心ポンプを空気調和装置用排水ポンプユニット に応用した一実施形態の取り付け状況を表す概念図である。 [0025] [Fig. 1] Fig. 1 shows a vertical centrifugal pump according to the present invention as a drainage pump unit for an air conditioner. It is a conceptual diagram showing the attachment condition of one Embodiment applied to.
[図 2]図 2は、図 1中の矢視 II部の抽出拡大断面図である。  [FIG. 2] FIG. 2 is an extracted enlarged cross-sectional view of section II in FIG.
[図 3]図 3は、図 1に示した実施形態における排水ポンプユニットの概略構造を表す 縦断面図である。  FIG. 3 is a longitudinal sectional view showing a schematic structure of the drainage pump unit in the embodiment shown in FIG. 1.
[図 4]図 4は、図 3に示した排水ポンプユニットの平面図である。  FIG. 4 is a plan view of the drainage pump unit shown in FIG.
[図 5]図 5は、図 3に示した排水ポンプユニットの底面図である。 FIG. 5 is a bottom view of the drainage pump unit shown in FIG.
[図 6]図 6は、図 3に示した排水ポンプユニットにおけるカバーの部分の底面図である FIG. 6 is a bottom view of the cover portion of the drainage pump unit shown in FIG.
[図 7]図 7は、図 3中の VII— VII矢視断面図である。 FIG. 7 is a sectional view taken along arrow VII-VII in FIG.
[図 8]図 8は、図 3中の VIII— VIII矢視断面図である。 FIG. 8 is a cross-sectional view taken along arrow VIII-VIII in FIG.
[図 9]図 9は、図 3に示した排水ポンプユニットにおけるロータの外観を表す立体投影 図である。  [Fig. 9] Fig. 9 is a three-dimensional projection view showing the appearance of the rotor in the drainage pump unit shown in Fig. 3.
[図 10]図 10は、図 9に示したロータの裏面図である。  FIG. 10 is a rear view of the rotor shown in FIG. 9.
[図 11]図 11は、図 12と共に図 9に示したロータにおける第 1の配列グループによる流 体の流動方向を模式的に示す概念図である。  FIG. 11 is a conceptual diagram schematically showing the flow direction of the fluid by the first arrangement group in the rotor shown in FIG. 9 together with FIG.
[図 12]図 12は、図 11と共に図 9に示したロータにおける第 2の配列グループによる流 体の流動方向を模式的に示す概念図である。  FIG. 12 is a conceptual diagram schematically showing the flow direction of the fluid by the second arrangement group in the rotor shown in FIG. 9 together with FIG.
[図 13]図 13は、本発明によるロータを図 3に示した排水ポンプユニットのロータに応 用した他の実施形態における平面図である。  FIG. 13 is a plan view of another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
[図 14]図 14は、図 13に示したロータの底面図である。  FIG. 14 is a bottom view of the rotor shown in FIG.
[図 15]図 15は、本発明によるロータを図 3に示した排水ポンプユニットのロータに応 用した別な実施形態の縦断面図である。  FIG. 15 is a longitudinal sectional view of another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
[図 16]図 16は、本発明によるロータを図 3に示した排水ポンプユニットのロータに応 用したさらに他の実施形態の縦断面図である。  FIG. 16 is a longitudinal sectional view of still another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
[図 17]図 17は、本発明によるロータを図 3に示した排水ポンプユニットのロータに応 用したさらに別な実施形態の縦断面図である。  FIG. 17 is a longitudinal sectional view of still another embodiment in which the rotor according to the present invention is applied to the rotor of the drainage pump unit shown in FIG.
[図 18]図 18は、本発明による立軸形遠心ポンプを図 3に示す排水ポンプユニットに 応用した他の実施形態の概略構造を表す縦断面図である。 発明を実施するための最良の形態 FIG. 18 is a longitudinal sectional view showing a schematic structure of another embodiment in which the vertical shaft centrifugal pump according to the present invention is applied to the drainage pump unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明による立軸形遠心ポンプを空気調和装置に組み込まれる排水ポンプュ-ッ トに応用した実施形態について、図 1〜図 18を参照にしながら詳細に説明する。本 発明はこれらの実施形態のみに限らず、これらをさらに組み合わせたり、この明細書 の特許請求の範囲に記載された本発明の概念に包含されるあらゆる変更や修正が 可能である。従って、本発明はその精神に帰属する他の任意の技術にも当然応用す ることがでさる。  [0026] An embodiment in which a vertical shaft centrifugal pump according to the present invention is applied to a drainage pump unit incorporated in an air conditioner will be described in detail with reference to Figs. The present invention is not limited to these embodiments, and can be further combined with each other or can be modified or modified within the concept of the present invention described in the claims of this specification. Therefore, the present invention can naturally be applied to any other technology belonging to the spirit.
[0027] 本実施形態における排水ポンプユニットの取り付け状況を図 1に示し、その矢視 II 部を図 2に抽出拡大して図 2に示す。すなわち、本実施形態における排水ポンプュ ニット 10は、そのブラケット 11を介して空気調和装置の筐体隔壁 12に形成された固 定部 13に取り付けられて 、る。固定部 13と矩形の板状をなすブラケット 11との間に は、防振機能とシール機能とを併せ持つガスケット 14が挟み込まれている。固定部 1 3にねじ込まれる取り付けねじ 15によってブラケット 11の取り付け部 11aが筐体隔壁 12の固定部 13にねじ止めされた状態となって 、る。後述するロータを駆動するため の駆動モータ 16が筐体隔壁 12の外側に位置するように、駆動モータ 16がブラケット 11の連結部 l ibに搭載されている。駆動モータ 16の作動を制御するための制御盤 17が筐体隔壁 12の外側に設置され、この制御盤 17と駆動モータ 16に取り付けられ たコネクタ 18とがケーブル 19を介して連結されている。  [0027] FIG. 1 shows the state of attachment of the drainage pump unit in the present embodiment, and FIG. That is, the drainage pump unit 10 in the present embodiment is attached to the fixing portion 13 formed on the housing partition wall 12 of the air conditioner via the bracket 11. A gasket 14 having both an anti-vibration function and a sealing function is sandwiched between the fixed portion 13 and the bracket 11 having a rectangular plate shape. The mounting portion 11 a of the bracket 11 is screwed to the fixing portion 13 of the housing partition wall 12 by the mounting screw 15 screwed into the fixing portion 13. The drive motor 16 is mounted on the connecting portion l ib of the bracket 11 so that the drive motor 16 for driving the rotor, which will be described later, is located outside the housing partition wall 12. A control panel 17 for controlling the operation of the drive motor 16 is installed outside the housing partition wall 12, and the control panel 17 and a connector 18 attached to the drive motor 16 are connected via a cable 19.
[0028] なお、本実施形態における駆動モータ 16のコネクタ 18は、図 4中の二点鎖線で示 すような位置に配置することも可能となっており、ケーブル 19の接続作業性や他の部 材との干渉を考慮して適宜選択することができる。また、本実施形態におけるブラケッ ト 11は、後述する駆動モータ 16の作動に悪影響を与えな 、オーステナイト系ステン レス鋼やアルミニウムなどの非磁性体にて形成されている。  [0028] It should be noted that the connector 18 of the drive motor 16 in the present embodiment can be disposed at a position as shown by a two-dot chain line in FIG. It can be appropriately selected in consideration of interference with the parts. The bracket 11 in the present embodiment is formed of a nonmagnetic material such as austenitic stainless steel or aluminum that does not adversely affect the operation of the drive motor 16 described later.
[0029] この排水ポンプユニット 10の主要部分の内部構造を図 3に示し、その平面形状,底 面形状をそれぞれ図 4,図 5に示し、そのカバーの部分の底面形状を図 6に示す。ま た、図 3中の VII— VII, VIII— VIII矢視断面構造をそれぞれ図 7,図 8に示し、ロータの 部分の外観を図 9に示し、その底面形状を図 10に示す。すなわち、本実施形態にお ける排水ポンプユニット 10は、筒状の側壁部 20aと円錐状の底壁部 20bとを有するケ 一シング 20と、このケーシング 20の側壁部 20aの上端部に連結されて当該ケーシン グ 20とでポンプ室 21を形成するカバー 22とを具えている。この排水ポンプユニット 1 0はまた、ポンプ室 21内に収容されるロータ 23と、このロータ 23に連結されてこれを 回転させる駆動モータ 16と、カバー 22と駆動モータ 16との間に組み込まれてこれら を仕切る前述のブラケット 11とをさらに具えて 、る。本実施形態では空気調和装置の 筐体隔壁 12の外側に配される駆動モータ 16と、筐体隔壁 12の内側に配されるカバ 一 22およびケーシング 20を仕切るように、ブラケット 11が筐体隔壁 12の固定部 13に 取り付けられている。このため、カバー 22と駆動モータ 16との間に駆動モータ 16の 軸受部分を保護するための水切板を設ける必要がなくなる。し力も、能力が異なる駆 動モータを使用するような場合であっても、排水ポンプユニット 10としては単に駆動 モータ 16を交換するだけで良い。この結果、ブラケット 11などの交換が全く不要とな る利点をも有する。 [0029] The internal structure of the main part of the drainage pump unit 10 is shown in FIG. 3, its planar shape and bottom face shape are shown in FIGS. 4 and 5, respectively, and the bottom face shape of the cover part is shown in FIG. The cross-sectional structures taken along arrows VII-VII and VIII-VIII in Fig. 3 are shown in Figs. 7 and 8, respectively, and the appearance of the rotor is shown in Fig. 9, and the bottom shape is shown in Fig. 10. That is, the drainage pump unit 10 in the present embodiment has a cylindrical side wall portion 20a and a conical bottom wall portion 20b. A casing 20 and a cover 22 connected to the upper end of the side wall 20a of the casing 20 and forming a pump chamber 21 with the casing 20 are provided. The drainage pump unit 10 is also assembled between a rotor 23 housed in the pump chamber 21, a drive motor 16 connected to the rotor 23 and rotating the rotor 23, and a cover 22 and the drive motor 16. It further comprises the aforementioned bracket 11 for partitioning these. In the present embodiment, the bracket 11 is arranged to separate the drive motor 16 disposed outside the housing partition wall 12 of the air conditioner, the cover 22 and the casing 20 disposed inside the housing partition wall 12. It is attached to 12 fixed parts 13. For this reason, it is not necessary to provide a drain plate for protecting the bearing portion of the drive motor 16 between the cover 22 and the drive motor 16. However, even if a drive motor with different capacities is used, the drainage pump unit 10 may simply replace the drive motor 16. As a result, there is an advantage that the bracket 11 and the like need not be replaced at all.
[0030] なお、本実施形態では DCブラシレスモータを駆動モータ 16として採用しており、振 動の大きな ACモータよりも大幅な小型軽量ィヒが可能であり、その駆動制御も容易で ある。 DCモータの欠点である高周波振動は、空気調和装置の筐体隔壁 12とブラケ ット 11の取り付け部 11aとの間に上述したガスケット 14を介装することにより確実に遮 断することができる。  In the present embodiment, a DC brushless motor is employed as the drive motor 16, which can be much smaller and lighter than an AC motor with large vibrations, and its drive control is easy. High-frequency vibration, which is a drawback of the DC motor, can be reliably cut off by interposing the gasket 14 described above between the housing partition wall 12 of the air conditioner and the mounting part 11a of the bracket 11.
[0031] 本実施形態では、ケーシング 20の底壁部 20bを中央部が下向きに窪んだ円錐状 に設定して 、るが、底壁部 20bを水平面と平行な 、わゆる平底状に設定しても何ら 問題はない。このケーシング 20には、底壁部 20bの中央から下向きに突出し、ポンプ 室 21内に連通する吸込通路 24を形成する吸込管 25がー体的に形成されている。ま た、このケーシング 20には、側壁部 20aからロータ 23の半径方向外側に突出し、ポ ンプ室 21内に臨む吐出ポート 26が開口する吐出管 27も一体的に形成されて 、る。 吸込管 25は、図 3中、二点鎖線で示す空気調和装置のドレンパン 28内に位置決め され、このドレンパン 28内に溜まる凝縮水の中にほぼ没する状態となる。また、吐出 管 27には先端部が空気調和装置の筐体隔壁 12の外に導き出されるドレン管 29の 基端部が連結されている。  [0031] In the present embodiment, the bottom wall portion 20b of the casing 20 is set in a conical shape with the central portion recessed downward, but the bottom wall portion 20b is set in a slightly flat bottom shape parallel to the horizontal plane. There is no problem. The casing 20 is formed with a suction pipe 25 that protrudes downward from the center of the bottom wall portion 20b and forms a suction passage 24 communicating with the pump chamber 21. The casing 20 is also integrally formed with a discharge pipe 27 that protrudes radially outward of the rotor 23 from the side wall portion 20a and opens a discharge port 26 that faces the pump chamber 21. The suction pipe 25 is positioned in the drain pan 28 of the air conditioner indicated by a two-dot chain line in FIG. 3, and is almost immersed in the condensed water accumulated in the drain pan 28. Further, the discharge pipe 27 is connected to the base end of a drain pipe 29 whose leading end is led out of the casing partition wall 12 of the air conditioner.
[0032] なお、本実施形態では吐出管 27の内径を下流側ほど太くしてポンプ室 21に臨む 吐出ポート 26を絞った状態にしている力 吐出管 27の外径を一定にしてドレン管 29 を嵌合する際の作業性およびこれらの間でのシール性を確保できるように配慮して いる。このため、吐出管 27の肉厚が基端側ほど厚くなるけれども、本実施形態では 吐出管 27の外周部に肉抜き処理を施し、これによつて吐出管 27の高剛性ィ匕および 軽量化も同時に達成している。吐出管 27に対するドレン管 29の嵌合の容易性およ びシール性を確保することができさえすれば、吐出管 27の外周に形成される肉抜き は、どのような形態および形状であってもよ 、。 In the present embodiment, the inner diameter of the discharge pipe 27 is increased toward the downstream side so as to face the pump chamber 21. Force that keeps the discharge port 26 constricted Consideration is given to ensure the workability when fitting the drain pipe 29 with a constant outer diameter of the discharge pipe 27 and the sealing performance between them. For this reason, the thickness of the discharge pipe 27 becomes thicker toward the base end side. However, in this embodiment, the outer peripheral portion of the discharge pipe 27 is subjected to a thinning process, thereby reducing the rigidity and weight of the discharge pipe 27. Is also achieved at the same time. As long as the ease of fitting and sealing of the drain pipe 29 to the discharge pipe 27 can be ensured, the shape and shape of the lightening formed on the outer periphery of the discharge pipe 27 is not limited. Moyo.
[0033] 榭脂の成形品であるカバー 22の下部外周には、上向きに半径方向外側へと突出 する複数(図示例では 4個)の係止爪 30が円周方向に沿って等間隔に形成されて 、 る。これらの係止爪 30をそれぞれ係止し得る半径方向に弾性変形可能な枠状をな す爪ホルダ 31がケーシング 20の側壁部 20aの外周に設けられている。従って、ケー シング 20に対してカバー 22を上方力も押し込むことにより、係止爪 30を爪ホルダ 31 に対してスナップ止めすることができる。このため、ケーシング 20とカバー 22とを極め て容易に一体ィ匕することができ、し力もカバー 22に対するケーシング 20の相対回転 位置を選択することが可能である。つまり、図 5中の二点鎖線で示すように、他の部材 の配置などに合わせて吐出管 27の向きを 4方向の何れかに変更することができる。 本実施形態では、爪ホルダ 31を枠状に形成することにより、係止爪 30が爪ホルダ 31 に対して係止した状態においてケーシング 20に対するカバー 22の回転を拘束する ことが可能である。このため、爪ホルダ 31が半径方向に僅かに弾性変形しさえすれ ば、ガラス繊維や無機物のウイスカなどを混入した硬質複合榭脂材料にてケーシング 20および爪ホルダ 31を成形することができ、ケーシング 20を高強度に設計すること ができる。 [0033] A plurality (four in the illustrated example) of locking claws 30 projecting outward in the radial direction upward are equidistantly spaced along the circumferential direction on the outer periphery of the lower part of the cover 22 which is a molded resin product. Formed. A claw holder 31 having a frame shape that can be elastically deformed in the radial direction and capable of locking the locking claws 30 is provided on the outer periphery of the side wall portion 20a of the casing 20. Therefore, the locking claw 30 can be snapped to the claw holder 31 by pushing the cover 22 into the casing 20 with an upward force. For this reason, the casing 20 and the cover 22 can be integrated extremely easily, and the relative rotational position of the casing 20 relative to the cover 22 can be selected. That is, as shown by a two-dot chain line in FIG. 5, the direction of the discharge pipe 27 can be changed to any one of the four directions in accordance with the arrangement of other members. In the present embodiment, by forming the claw holder 31 in a frame shape, the rotation of the cover 22 relative to the casing 20 can be restricted in a state where the locking claw 30 is locked to the claw holder 31. Therefore, as long as the claw holder 31 is slightly elastically deformed in the radial direction, the casing 20 and the claw holder 31 can be formed from a hard composite grease material mixed with glass fiber or inorganic whisker. 20 can be designed with high strength.
[0034] カバー 22の上端外周には、ブラケット 11の連結部 l ibおよび駆動モータ 16に形成 された取り付けフランジ 16aをそれぞれ貫通する複数本(図示例では 4本)の連結ピ ン 32が突設されて 、る。この連結ピン 32の上端を溶融して力しめ部 32aを形成する ことにより、カバー 22とブラケット 11の連結部 l ibおよび駆動モータ 16とを一体的に 接合している。連結ピン 32の上端に形成される力しめ部 32aは、超音波溶着などの 技術を利用することが可能であり、その形状は駆動モータ 16およびブラケット 11が容 易に抜け外れな 、ような形状でありさえすれば良 、。 [0034] On the outer periphery of the upper end of the cover 22, a plurality of (four in the illustrated example) connecting pins 32 projecting through the connecting portion l ib of the bracket 11 and the mounting flange 16a formed on the drive motor 16 are provided. It has been. By melting the upper end of the connecting pin 32 to form a force-applying portion 32a, the cover 22, the connecting portion ib of the bracket 11 and the drive motor 16 are integrally joined. The forceps 32a formed at the upper end of the connecting pin 32 can utilize a technique such as ultrasonic welding, and the shape of the drive motor 16 and the bracket 11 is sufficient. It only has to be a shape that does not come off easily.
[0035] カバー 22の底板 33中央には、上面が塞がった円筒形断面を有するボス部 34が上 向きに形成され、さらにこのボス部 34を囲む半円弧状をなす一対のスぺーサ 35が突 設されている。ボス部 34は、その中央に位置して駆動モータ 16のスピンドル 16bが 貫通する穴 34aと、その外周部に位置してポンプ室 21内を大気圧に保っための複 数(図示例では 4つ)のスリット 34bとが形成されている。スぺーサ 35の上端はブラケ ット 11の連結部 l ibに当接する。隣接するスぺーサ 35の間の空隙 35aは、カバー 22 の外周縁に形成された一対のラビリンス構造を有する空隙 22aと共に大気連通路を 形成する。本実施形態では、隣接するスぺーサ 35の間の空隙 35aとカバー 22の外 周縁に形成された一対の空隙 22aとの回転位相をほぼ 90度ずらしている。これにより 、ポンプ室 21からスリット 34bおよび空隙 35a, 22aを介して排水ポンプユニット 10の 外につながる大気連通路を大きく屈曲させることができる。この結果、ポンプ室 21内 で発生する直進性の高い高周波(1000Hz以上)の騒音に対して大きな消音効果を 得ることができる。  [0035] At the center of the bottom plate 33 of the cover 22, a boss portion 34 having a cylindrical cross section with its upper surface closed is formed upward, and a pair of spacers 35 having a semicircular arc shape surrounding the boss portion 34 are formed. Projected. The boss 34 is located at the center of the hole 34a through which the spindle 16b of the drive motor 16 passes, and a plurality of bosses 34 are provided on the outer periphery of the boss 34 to maintain the inside of the pump chamber 21 at atmospheric pressure (four in the illustrated example). ) Slit 34b. The upper end of the spacer 35 comes into contact with the connecting part l ib of the bracket 11. A gap 35a between adjacent spacers 35 forms an air communication path together with a gap 22a having a pair of labyrinth structures formed on the outer peripheral edge of the cover 22. In the present embodiment, the rotational phase between the gap 35a between the adjacent spacers 35 and the pair of gaps 22a formed at the outer peripheral edge of the cover 22 is shifted by approximately 90 degrees. As a result, the air communication path that leads from the pump chamber 21 to the outside of the drainage pump unit 10 through the slit 34b and the gaps 35a and 22a can be greatly bent. As a result, it is possible to obtain a great silencing effect against high-frequency (1000 Hz or higher) noise that occurs in the pump chamber 21 and has high straightness.
[0036] なお、駆動モータ 16を停止した場合、ドレン管 29から吐出ポート 26を介してポンプ 室 21側に逆流する排水の一部がスリット 34bから溢流する場合がある。しかしながら 、本実施形態ではロータ 23の回転方向(図 7中、左回転方向)とは逆向き、つまり図 7 中、時計回りの接線方向に沿ってスリット 34bをボス部 34に形成しているため、スリツ ト 34bから溢れ出る排水の量を低減させることができる。  [0036] When the drive motor 16 is stopped, a part of the drainage that flows backward from the drain pipe 29 to the pump chamber 21 via the discharge port 26 may overflow from the slit 34b. However, in the present embodiment, the slit 34b is formed in the boss portion 34 in the direction opposite to the rotation direction of the rotor 23 (left rotation direction in FIG. 7), that is, in the clockwise tangential direction in FIG. The amount of drainage overflowing from the slit 34b can be reduced.
[0037] ポンプ室 21側に臨むカバー 22の底板 33の外周縁部には、ケーシング 20の側壁 部 20aとの間に環状の空隙 36を形成する筒状の仕切り壁 37がケーシング 20の底壁 部 20bに向けて下向きに突設されている。従って、ポンプ室 21の上部周縁に位置す る凝縮水は仕切り壁 37の存在によって下向きに流れ、仕切り壁 37の下端とケーシン グ 20の底壁部 20bとの間の隙間 38を通って環状の空隙 36から吐出ポート 26内へ 導かれる。この結果、ポンプ室 21の上部周縁に介在する気泡が吐出ポート 26側に 流れ込むのを阻止することができる。つまり、本実施形態における仕切り壁 37は、ポ ンプ室 21の上部周縁に介在する気泡が吐出ポート 26側に流れ込むのを抑制するた めのものであるので、本実施形態のようにカバー 22の全周を亙って形成する必要は ない。しかしながら、吐出ポート 26と対向する位置にのみ仕切り壁 37を形成した場合 には、この仕切り壁 37の吐出ポート 26よりも上流側をケーシング 20の側壁部 20aの 内周面に近接させておく必要がある。これによつて、ポンプ室 21内を流動する気泡を 含む凝縮水が環状の空隙 36内に直接流入しないようにすることができる。また、この 仕切り壁 37の下端部は凝縮水の円滑な流れを妨げないように、その断面形状が半 円状などの曲面にて形成されていることが好ましい。 [0037] At the outer peripheral edge of the bottom plate 33 of the cover 22 facing the pump chamber 21 side, a cylindrical partition wall 37 that forms an annular gap 36 with the side wall 20a of the casing 20 is a bottom wall of the casing 20. Projecting downwards toward part 20b. Therefore, the condensed water located at the upper peripheral edge of the pump chamber 21 flows downward due to the presence of the partition wall 37 and passes through the gap 38 between the lower end of the partition wall 37 and the bottom wall portion 20b of the casing 20 to form an annular shape. It is guided from the gap 36 into the discharge port 26. As a result, it is possible to prevent bubbles present on the upper peripheral edge of the pump chamber 21 from flowing into the discharge port 26 side. That is, the partition wall 37 in the present embodiment is for suppressing air bubbles present on the upper peripheral edge of the pump chamber 21 from flowing into the discharge port 26 side. It is necessary to form around the entire circumference Absent. However, when the partition wall 37 is formed only at a position facing the discharge port 26, the upstream side of the partition wall 37 from the discharge port 26 needs to be close to the inner peripheral surface of the side wall portion 20a of the casing 20. There is. Thereby, it is possible to prevent the condensed water containing bubbles flowing in the pump chamber 21 from directly flowing into the annular gap 36. Further, it is preferable that the lower end portion of the partition wall 37 is formed in a curved surface such as a semicircular shape so that the smooth flow of the condensed water is not hindered.
[0038] なお、ケーシング 20とカバー 22の仕切り壁 37との間には Oリング 39が装着され、ケ 一シング 20およびカバー 22の嵌合部分力も凝縮水が外部に漏出しないように配慮 している。 [0038] An O-ring 39 is mounted between the casing 20 and the partition wall 37 of the cover 22, and the fitting part force of the casing 20 and the cover 22 is also considered so that the condensed water does not leak outside. Yes.
[0039] 本実施形態におけるロータ 23は、駆動モータ 16のスピンドル 16bが連結される筒 状の接続部 40aを上端部に有するロータ軸 40と、このロータ軸 40から放射状に突出 する複数本(図示例では 4本)のステー 41とを具えている。また、このロータ 23は、ス テー 41を介してロータ軸 40に対して一体的に連結される円環状をなす主板 42と、 主板 42の表面、つまり上面側からロータ軸 40の軸線とほぼ平行に突出する多数本 のピン 43とをさらに具えている。さら〖こ、ロータ 23は、ピン 43と共〖こ主板 42〖こ形成さ れてその表面側と裏面、つまり下面側とを連通する多数個の連通孔 44と、ロータ軸 4 0の下端から当該ロータ軸 40の軸線に沿って突出し、吸込通路 24内に位置する攪 拌部材 45とをさらに具えている。  [0039] The rotor 23 in the present embodiment includes a rotor shaft 40 having a cylindrical connection portion 40a to which the spindle 16b of the drive motor 16 is coupled at the upper end, and a plurality of radially extending projections (see FIG. In the example shown, there are four stays 41). The rotor 23 includes an annular main plate 42 that is integrally connected to the rotor shaft 40 via a stage 41, and a surface of the main plate 42, that is, substantially parallel to the axis of the rotor shaft 40 from the upper surface side. And a number of pins 43 projecting from each other. Further, the rotor 23 is formed from the bottom end of the rotor shaft 40 and a large number of communication holes 44 that are formed on the front surface side and the back surface, that is, the lower surface side. A stirring member 45 protruding along the axis of the rotor shaft 40 and located in the suction passage 24 is further provided.
[0040] 主板 42はロータ軸 40に対して同心状をなしており、その内周面とロータ軸 40の外 周面との間に上述した連通孔 44と共に本発明の均圧部として機能する空隙 46が形 成されている。上述したステー 41は、この空隙 46を横切った状態となってロータ軸 4 0と主板 42とを連結している。また、本実施形態では第 1の配列グループ Aと、第 2の 配列グループ Bとを主板 42の円周方向に沿って交互に 4組ずつ形成している。第 1 の配列グループ Aは、主板 42の円周方向にほぼ沿った第 1の方向(図 8中、左右方 向)およびこれと直交する方向にピン 43および連通孔 44がそれぞれ交互に配列す る。また、第 2の配列グループ Bは、第 1の方向に対して 45度傾斜した方向およびこ れと直交する方向にピン 43および連通孔 44がそれぞれ交互に配列する。個々のピ ン 43は、ロータ軸 40の軸線に対して垂直な平面で切った断面形状がほぼ正方形と なる正四角柱状をなし、その四隅の稜部に丸みを持たせることにより、水搔き音が極 力少なくなるように配慮している。さらに、攪拌部材 45は、ロータ軸 40の軸線に対し て垂直な断面形状が十文字状となるような 4枚の羽根板 45aを有する。 [0040] The main plate 42 is concentric with the rotor shaft 40, and functions as a pressure equalizing portion of the present invention together with the communication hole 44 described above between the inner peripheral surface of the main plate 42 and the outer peripheral surface of the rotor shaft 40. A void 46 is formed. The stay 41 described above crosses the gap 46 and connects the rotor shaft 40 and the main plate 42. In the present embodiment, four sets of the first array group A and the second array group B are alternately formed along the circumferential direction of the main plate 42. In the first arrangement group A, the pins 43 and the communication holes 44 are alternately arranged in a first direction (in the left-right direction in FIG. 8) substantially along the circumferential direction of the main plate 42 and in a direction perpendicular thereto. The In the second arrangement group B, the pins 43 and the communication holes 44 are alternately arranged in a direction inclined by 45 degrees with respect to the first direction and in a direction perpendicular thereto. Each pin 43 has a substantially square cross-section cut by a plane perpendicular to the axis of the rotor shaft 40. In order to minimize the watering noise, the square corners of the corners are rounded. Furthermore, the stirring member 45 has four blades 45a whose cross-sectional shape perpendicular to the axis of the rotor shaft 40 has a cross shape.
[0041] このような構成を持つ排水ポンプユニット 10の駆動モータ 16が作動を始めると、吸 込通路 24内に介在する凝縮水が攪拌部材 45の回転によって攪拌され、その粘性に よって次第に攪拌部材 45と共に吸込通路 24内で旋回し始める。吸込通路 24内での 凝縮水の旋回に伴って発生する遠心力により、その水面が凹状の立体放物曲面を 描きながら吸込通路 24の上端を越えてポンプ室 21の底壁部 20bへとせり上がり、さ らに主板 42およびピン 43が凝縮水で浸された状態となる。このようにしてポンプ室 2 1内に入って来る凝縮水は、回転するロータ 23の主板 42およびピン 43によってさら に高速で旋回する。そして、凝縮水の一部がケーシング 20の底壁部 20bとカバー 22 の仕切り壁 37の下端との隙間を通って環状の空隙 36から吐出ポート 26へと排出さ れる。この凝縮水の排出に伴ってドレンパン 28内の新たな凝縮水が吸込通路 24内 に吸い込まれ、連続的にドレンパン 28内の凝縮水が吐出ポート 26からドレン管 29を 介して外部に排出される。この場合、ロータ 23の回転数とその最大径、つまり主板 42 の外径とによってロータ 23の径方向中心側と径方向外側端との圧力差が決まるため 、この排水ポンプユニット 10の締切揚程も自ずと決まる。し力しながら、その排水量は 主板 42の回転方向に対して垂直な面に投影したピン 43の面積によって左右される。  [0041] When the drive motor 16 of the drainage pump unit 10 having such a configuration starts to operate, the condensed water intervening in the suction passage 24 is stirred by the rotation of the stirring member 45, and gradually the stirring member due to its viscosity. Begins swirling in suction passage 24 with 45. The centrifugal force generated with the swirling of the condensed water in the suction passage 24 causes the water surface to draw a concave three-dimensional parabolic curved surface, and passes over the upper end of the suction passage 24 to the bottom wall portion 20b of the pump chamber 21. Then, the main plate 42 and the pin 43 are immersed in the condensed water. In this way, the condensed water entering the pump chamber 21 is swirled at a higher speed by the main plate 42 and the pin 43 of the rotating rotor 23. A part of the condensed water is discharged from the annular gap 36 to the discharge port 26 through the gap between the bottom wall portion 20b of the casing 20 and the lower end of the partition wall 37 of the cover 22. As the condensed water is discharged, new condensed water in the drain pan 28 is sucked into the suction passage 24, and the condensed water in the drain pan 28 is continuously discharged from the discharge port 26 to the outside through the drain pipe 29. . In this case, since the pressure difference between the radial center side of the rotor 23 and the radial outer end is determined by the rotational speed of the rotor 23 and its maximum diameter, that is, the outer diameter of the main plate 42, the drainage height of the drainage pump unit 10 is also It is decided by itself. However, the amount of drainage depends on the area of the pin 43 projected on a plane perpendicular to the rotation direction of the main plate 42.
[0042] 排水ポンプユニット 10の作動中においては、ロータ 23のピン 43が凝縮水の旋回速 度よりも高速で回転している。このため、その周囲に介在する凝縮水は、静止中のピ ン 43に対して凝縮水がポンプ室 21内を旋回していると見なした場合、ピン 43の外周 を卷くようにして比較的滑らかに後方に流下する状態となる。つまり、従来のように羽 根車の回転方向に対してほぼ直交する広い面を持った抵抗の大きな羽根板を使用 していないため、たとえロータ 23の最外周側に位置するピン 43であっても、その旋回 方向の後側にはキヤビテーシヨンがほとんど発生しない。この結果、キヤビテーシヨン に起因する騒音を大幅に低減させることができる。特に、本実施形態ではピン 43およ び連通孔 44の第 1の配列グループ Aによって形成される凝縮水の流動方向は、その 流動状態を模式的に表す図 11に示すように、半径方向に対してほぼ 45度傾斜した 方向となる。この流動方向は、比較的大きな運動エネルギーを凝縮水に与える。これ に対し、第 2の配列グループ Bによって形成される凝縮水の流動方向は、その流動状 態を模式的に表す図 12に示すように、ほぼ主板 42の円周方向となって凝縮水に対 し比較的小さな運動エネルギーを与える。この結果、これら 2種類の凝縮水の流動に よって消泡効果をより一層高めることができる。また、吸込管 25内での凝縮水の旋回 周速度は、ポンプ室 21内での凝縮水の旋回周速度よりも相当遅いため、攪拌部材 4 5が抵抗の大きな羽根板 45aであっても、ここでキヤビテーシヨンが発生するような不 具合は生じない。また、排水ポンプユニット 10の始動時および低揚程時においても、 カバー 22に形成された仕切り壁 37の存在により、吐出ポート 26側に排出される凝縮 水に気泡が混入するのを阻止することができる。また、気泡が吐出ポート 26側に排出 される際の騒音をなくすことも可能である。 [0042] During the operation of the drainage pump unit 10, the pin 43 of the rotor 23 rotates at a speed higher than the swirling speed of the condensed water. For this reason, the condensed water present in the surroundings is compared by rolling the outer periphery of the pin 43 when it is considered that the condensed water is swirling in the pump chamber 21 with respect to the stationary pin 43. It will be in a state where it flows smoothly backward. In other words, unlike the conventional case, a highly resistive vane plate having a wide surface substantially perpendicular to the rotation direction of the vane wheel is not used, so even the pin 43 located on the outermost peripheral side of the rotor 23 However, there is almost no cavitation behind the turning direction. As a result, it is possible to greatly reduce the noise caused by the cavity. In particular, in this embodiment, the flow direction of the condensed water formed by the first array group A of the pins 43 and the communication holes 44 is in the radial direction as shown in FIG. 11 schematically showing the flow state. Tilted almost 45 degrees Direction. This flow direction gives relatively large kinetic energy to the condensed water. On the other hand, the flow direction of the condensed water formed by the second arrangement group B is substantially the circumferential direction of the main plate 42 as shown in FIG. 12, which schematically shows the flow state. On the other hand, it gives a relatively small kinetic energy. As a result, the defoaming effect can be further enhanced by the flow of these two types of condensed water. Further, since the swirling circumferential speed of the condensed water in the suction pipe 25 is considerably slower than the swirling circumferential speed of the condensed water in the pump chamber 21, even if the stirring member 45 is the blade 45a having a large resistance, There is no such problem that a cavity is generated here. In addition, even when the drain pump unit 10 is started and at the low head, the presence of the partition wall 37 formed on the cover 22 can prevent bubbles from being mixed into the condensed water discharged to the discharge port 26 side. it can. It is also possible to eliminate noise when bubbles are discharged to the discharge port 26 side.
[0043] 主板 42の外周をロータ軸 40の軸線を中心とする完全な円形にする必要はなぐま たロータ軸 40の軸線に対して垂直な面で切ったピン 43の断面形状が上述した実施 形態の如き略正方形状以外、種々の形状のものを採用することが可能である。例え ば、本発明によるロータ 23の別な実施形態の平面形状,底面形状をそれぞれを図 1 3,図 14に示す。図 13,図 14に示すように、主板 42の外周面を不定形の歯車状に することができる。あるいは、ロータ軸 40の軸線に対して垂直な平面で切った断面形 状が楕円形となるようなピン 43を採用し、その長径方向が主板 42の円周方向に沿う ように配列させるようなことも可能である。この場合、主板 42の外周面に形成された凹 凸部分により、凝縮水に対する攪拌作用が高まり、排水ポンプとしての能力を向上さ せることができる。なお、図 13,図 14において、先の実施形態と同一機能の要素に はこれと同一符号を記してある。  [0043] It is necessary to make the outer periphery of the main plate 42 into a complete circle centered on the axis of the rotor shaft 40. The cross-sectional shape of the pin 43 cut along a plane perpendicular to the axis of the rotor shaft 40 is the above-described implementation. Various shapes other than the substantially square shape can be adopted. For example, FIGS. 13 and 14 show the planar shape and bottom shape of another embodiment of the rotor 23 according to the present invention, respectively. As shown in FIGS. 13 and 14, the outer peripheral surface of the main plate 42 can be formed into an irregular gear. Alternatively, a pin 43 having an elliptical cross-sectional shape cut by a plane perpendicular to the axis of the rotor shaft 40 is adopted, and the major axis direction thereof is arranged along the circumferential direction of the main plate 42. It is also possible. In this case, the concave and convex portions formed on the outer peripheral surface of the main plate 42 enhance the stirring action on the condensed water and improve the capacity as a drainage pump. In FIGS. 13 and 14, elements having the same functions as those in the previous embodiment are denoted by the same reference numerals.
[0044] 上述した実施形態では、個々のピン 43の上端が同一水平面上に位置するように、 個々のピン 43の高さを設定している。このため、ロータ 23の回転中においてはポン プ室 21内の凝縮水の水面がすり鉢状に変位し、ロータ軸 40に近い内周側のピン 43 の上部が水面力も露出して凝縮水を攪拌できなくなる。そこで、本発明によるロータ 2 3の別な実施形態の主要部の断面構造を図 15に示す。図 15から明らかなように、ポ ンプ室 21内に形成される凝縮水の旋回水面(図中、二点鎖線で示す)の高さに応じ てロータ軸 40から遠いピン 43ほどその高さを高く設定し、半径方向に配列するピン 4 3の機能を最大限に発揮させることが有効である。あるいは、同じような効果を得るた め、主板 42の回転方向に対して垂直な面に投影したピン 43の面積がロータ軸 40の 半径方向内側に位置するピン 43ほど小さく設定することによつても対処可能である。 具体的には、例えば図 16に示すように、ロータ軸 4027に近いピン 43ほどそのテー パ角 Θが大きくなるような先細りのテーパ状に形成することなどが可能である。 In the embodiment described above, the height of each pin 43 is set so that the upper end of each pin 43 is positioned on the same horizontal plane. For this reason, the water level of the condensed water in the pump chamber 21 is displaced in a mortar shape while the rotor 23 is rotating, and the upper surface of the pin 43 on the inner peripheral side close to the rotor shaft 40 also exposes the water surface force to stir the condensed water. become unable. Therefore, FIG. 15 shows a cross-sectional structure of the main part of another embodiment of the rotor 23 according to the present invention. As can be seen from FIG. 15, depending on the height of the swirling water surface of the condensate formed in the pump chamber 21 (indicated by a two-dot chain line in the figure). Therefore, it is effective to set the height of the pin 43 farther from the rotor shaft 40 to the maximum so that the function of the pins 43 arranged in the radial direction can be maximized. Alternatively, in order to obtain the same effect, the area of the pin 43 projected onto the plane perpendicular to the rotation direction of the main plate 42 is set to be as small as the pin 43 positioned radially inward of the rotor shaft 40. Can also be dealt with. Specifically, for example, as shown in FIG. 16, the pin 43 closer to the rotor shaft 4027 can be formed in a tapered shape such that its taper angle Θ increases.
[0045] 上述した実施形態では、ピン 43を主板 42の表面側から上方に突出させているが、 図 17に示すように主板 42の裏面力もピン 43を下向きに突出させるようにしてもよい。 図 17に示したロータ 23の場合、ロータ軸 40に近いピン 43ほど外径が小さくなるよう な小径部 43aを下端側に有する段付きに形成している。このように、主板 42の裏面か らピン 43を下向きに突出させた本発明による排水ポンプユニット 10の他の実施形態 の概略構造を図 18に示すが、先の実施形態と同一機能の要素にはこれと同一符号 を記すに止め、重複する説明は省略するものとする。すなわち、本実施形態における ロータ 23は、カバー 22の底板 33に近接するように主板 42が形成され、この主板 42 の裏面力も多数のピン 43がケーシング 20の底壁部 20bに向けて突出している。各ピ ン 43の下端は、ケーシング 20の底壁部 20bにほぼ等距離にて近接するように、ロー タ 23の径方向内周側に位置するピン 43ほど主板 42からの突出長さを長く設定して いる。本実施形態の場合、カバー 22の底板 33に近接して配された主板 42により、ポ ンプ室 21内に吸引される凝縮水に対してより大きな整流効果を得ることができる。本 実施形態では、ブラケット 11の取り付け部 11aと連結部 l ibとの間に駆動モータ 16を 囲む筒部 11 cが形成されており、これによつて駆動モータ 16にて発生する騒音の伝 播方向を規制することができる。  In the embodiment described above, the pin 43 protrudes upward from the front surface side of the main plate 42, but the back surface force of the main plate 42 may also protrude downward as shown in FIG. In the case of the rotor 23 shown in FIG. 17, a pin 43 closer to the rotor shaft 40 is formed with a step having a small diameter portion 43a on the lower end side so that the outer diameter becomes smaller. Thus, FIG. 18 shows a schematic structure of another embodiment of the drainage pump unit 10 according to the present invention in which the pin 43 protrudes downward from the back surface of the main plate 42. The same reference numeral is used for this, and duplicate explanations are omitted. That is, the rotor 23 in the present embodiment is formed with a main plate 42 so as to be close to the bottom plate 33 of the cover 22, and the back surface force of the main plate 42 also has a large number of pins 43 protruding toward the bottom wall portion 20 b of the casing 20. . The lower end of each pin 43 is closer to the bottom wall portion 20b of the casing 20 at approximately the same distance so that the pin 43 located on the radially inner side of the rotor 23 has a longer protruding length from the main plate 42. It is set. In the case of the present embodiment, a larger rectifying effect can be obtained for the condensed water sucked into the pump chamber 21 by the main plate 42 disposed in the vicinity of the bottom plate 33 of the cover 22. In the present embodiment, a cylindrical portion 11 c surrounding the drive motor 16 is formed between the mounting portion 11 a of the bracket 11 and the connecting portion l ib, thereby transmitting the noise generated by the drive motor 16. The direction can be regulated.
[0046] なお、ピン 43や連通孔 44を上述した実施形態のような配列グループ A, Bのように 整列させず、主板 42にランダムに形成することができる。あるいは、ピン 43を主板 42 の表裏両面力 突出させることも可能である。何れにおいても、排水ポンプユニット 1 0に要求される揚程ゃ排水量を確保すると同時に振動や騒音を少なくするため、これ らの数量やレイアウトなどを適宜調整することが望ましい。同様に、主板 42をケーシ ング 20の円錐状をなす底壁部 20bと平行となるように円錐状に形成してもよい。  Note that the pins 43 and the communication holes 44 can be randomly formed on the main plate 42 without being aligned as in the arrangement groups A and B as in the above-described embodiment. Alternatively, it is possible to cause the pin 43 to protrude on both sides of the main plate 42. In any case, it is desirable to appropriately adjust the quantity, layout, etc., in order to secure the required amount of drainage for the drainage pump unit 10 and reduce vibration and noise. Similarly, the main plate 42 may be formed in a conical shape so as to be parallel to the conical bottom wall portion 20b of the casing 20.

Claims

請求の範囲 The scope of the claims
[1] ロータと、ケーシングと、このケーシングに装着されて当該ケーシングとで前記ロー タが収容されるポンプ室を形成するカバーと、前記ケーシングに突設されて前記ボン プ室の下端中央部に連通する吸込通路を形成する吸込管と、前記ケーシングに形 成されて前記ポンプ室に連通する吐出ポートとを有する立軸形遠心ポンプであって、 前記ロータは、  [1] A rotor, a casing, a cover that is attached to the casing and forms a pump chamber in which the rotor is accommodated, and a casing that protrudes from the casing and is provided at the center of the lower end of the pump chamber. A vertical shaft centrifugal pump having a suction pipe that forms a suction passage that communicates with a discharge port that is formed in the casing and communicates with the pump chamber, wherein the rotor is
前記カバーの外力 駆動モータに上端部が連結されるロータ軸と、  A rotor shaft whose upper end is connected to the external force drive motor of the cover;
このロータ軸に同心状をなして一体的に連結される主板と、  A main plate concentrically connected to the rotor shaft integrally;
この主板力 前記ロータ軸の軸線とほぼ平行に突出する複数本のピンと、 前記主板の表面側と裏面側とに連通する均圧部と  The main plate force, a plurality of pins projecting substantially parallel to the axis of the rotor shaft, and a pressure equalizing portion communicating with the front side and the back side of the main plate
を具えて ヽることを特徴とする立軸形遠心ポンプ。  Vertical shaft centrifugal pump characterized by
[2] 前記ロータは、そのロータ軸の一端部から当該ロータ軸の軸線に沿って突出し、前 記吸込管の吸込通路内に位置する攪拌部材をさらに具えていることを特徴とする請 求項 1に記載の立軸形遠心ポンプ。  [2] The rotor is further provided with a stirring member that protrudes from one end of the rotor shaft along the axis of the rotor shaft and is located in the suction passage of the suction pipe. The vertical shaft centrifugal pump according to 1.
[3] 前記カバーは、前記ロータの周囲を囲むように下向きに突出して前記ケーシングの 内壁との間に環状の空隙を形成する仕切り壁を有することを特徴とする請求項 1また は請求項 2に記載の立軸形遠心ポンプ。 [3] The cover according to claim 1 or 2, wherein the cover has a partition wall that protrudes downward so as to surround the rotor and forms an annular gap with the inner wall of the casing. Vertical shaft centrifugal pump described in 1.
[4] 前記仕切り壁は、前記ケーシングに形成された吐出ポートと対向してこれを遮るよう に配されていることを特徴とする請求項 3に記載の立軸形遠心ポンプ。 4. The vertical shaft centrifugal pump according to claim 3, wherein the partition wall is arranged to face and block a discharge port formed in the casing.
[5] 前記カバーには、前記ポンプ室内と外部とを連通する大気連通路が形成されてい ることを特徴とする請求項 1から請求項 4の何れかに記載の立軸形遠心ポンプ。 [5] The vertical shaft centrifugal pump according to any one of claims 1 to 4, wherein the cover is formed with an air communication path communicating the pump chamber with the outside.
[6] 前記主板の表面側と裏面側とを連通する複数の連通孔を具え、これら連通孔が前 記均圧部として機能することを特徴とする請求項 1から請求項 5の何れかに記載の立 軸形遠心ポンプ。 [6] The apparatus according to any one of claims 1 to 5, wherein the main plate includes a plurality of communication holes that communicate between the front surface side and the back surface side, and the communication holes function as the pressure equalizing portion. Vertical shaft centrifugal pump as described.
[7] 前記ピンおよび連通孔は、第 1の配列グループと第 2の配列グループとが円周方向 に沿って交互に配列していることを特徴とする請求項 6に記載の立軸形遠心ポンプ。  7. The vertical shaft centrifugal pump according to claim 6, wherein in the pin and the communication hole, the first array group and the second array group are alternately arranged along the circumferential direction. .
[8] 前記第 1の配列グループは、前記主板の円周方向にほぼ沿った第 1の方向および これと直交する方向に前記ピンおよび連通孔が配列し、前記第 2の配列グループは 、前記第 1の方向に対して 45度傾斜した方向およびこれと直交する方向に前記ピン および連通孔が配列していることを特徴とする請求項 7に記載の立軸形遠心ポンプ。 [8] In the first arrangement group, the pins and the communication holes are arranged in a first direction substantially along a circumferential direction of the main plate and in a direction perpendicular thereto, and the second arrangement group is 8. The vertical shaft centrifugal pump according to claim 7, wherein the pin and the communication hole are arranged in a direction inclined by 45 degrees with respect to the first direction and in a direction perpendicular thereto.
[9] 前記主板の旋回方向に対して垂直な面に投影した個々の前記ピンの面積が前記 ロータ軸の半径方向内側に位置する前記ピンほど小さく設定されていることを特徴と する請求項 1から請求項 8の何れかに記載の立軸形遠心ポンプ。  [9] The area of each of the pins projected on a plane perpendicular to the turning direction of the main plate is set to be smaller as the pins located on the radially inner side of the rotor shaft. The vertical shaft centrifugal pump according to claim 8.
[10] ロータ軸と、  [10] rotor shaft,
このロータ軸に同心状をなして一体的に連結される主板と、  A main plate concentrically connected to the rotor shaft integrally;
この主板力 前記ロータ軸の軸線とほぼ平行に突出する複数本のピンと、 前記主板の表面側と裏面側とに連通する均圧部と  The main plate force, a plurality of pins projecting substantially parallel to the axis of the rotor shaft, and a pressure equalizing portion communicating with the front side and the back side of the main plate
を具えたことを特徴とするポンプ用ロータ。  A pump rotor characterized by comprising:
[11] 前記ロータ軸の一端部力 このロータ軸の軸線に沿って突出する攪拌部材をさらに 具えたことを特徴とする請求項 10に記載のポンプ用ロータ。 11. The pump rotor according to claim 10, further comprising a stirring member protruding along the axis of the rotor shaft.
[12] 前記主板の表面側と裏面側とを連通する複数の連通孔を具え、これら連通孔が前 記均圧部として機能することを特徴とする請求項 10または請求項 11に記載のポンプ 用ロータ。 [12] The pump according to claim 10 or 11, comprising a plurality of communication holes communicating the front surface side and the back surface side of the main plate, and these communication holes function as the pressure equalizing section. Rotor.
[13] 前記ピンおよび連通孔は、第 1の配列グループと第 2の配列グループとが円周方向 に沿って交互に配列していることを特徴とする請求項 12に記載のポンプ用ロータ。  13. The pump rotor according to claim 12, wherein in the pin and the communication hole, the first array group and the second array group are alternately arranged along the circumferential direction.
[14] 前記第 1の配列グループは、前記主板の円周方向にほぼ沿った第 1の方向および これと直交する方向に前記ピンおよび連通孔が配列し、前記第 2の配列グループは 、前記第 1の方向に対して 45度傾斜した方向およびこれと直交する方向に前記ピン および連通孔が配列していることを特徴とする請求項 13に記載のポンプ用ロータ。  [14] In the first arrangement group, the pins and the communication holes are arranged in a first direction substantially along a circumferential direction of the main plate and in a direction orthogonal thereto, and the second arrangement group includes the second arrangement group, 14. The pump rotor according to claim 13, wherein the pin and the communication hole are arranged in a direction inclined by 45 degrees with respect to the first direction and in a direction perpendicular thereto.
[15] 前記ロータ軸の回転方向に対して垂直な面に投影した個々の前記ピンの面積が前 記ロータ軸の半径方向内側に位置する前記ピンほど小さく設定されていることを特徴 とする請求項 10から請求項 14の何れかに記載のポンプ用ロータ。  [15] The area of each of the pins projected on a plane perpendicular to the rotation direction of the rotor shaft is set to be smaller as the pin located on the radially inner side of the rotor shaft. Item 15. The pump rotor according to any one of Items 10 to 14.
[16] 請求項 1から請求項 9の何れかに記載の立軸形遠心ポンプが排水ポンプとして組 み込まれて!/ゝることを特徴とする空気調和装置。  [16] An air conditioner characterized in that the vertical shaft centrifugal pump according to any one of claims 1 to 9 is incorporated as a drainage pump!
PCT/JP2005/017641 2004-09-30 2005-09-26 Vertical shaft centrifugal pump, rotor for the pump, and air conditioner WO2006035724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537728A JP4680922B2 (en) 2004-09-30 2005-09-26 Vertical shaft centrifugal pump and its rotor and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-288850 2004-09-30
JP2004288850 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006035724A1 true WO2006035724A1 (en) 2006-04-06

Family

ID=36118870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017641 WO2006035724A1 (en) 2004-09-30 2005-09-26 Vertical shaft centrifugal pump, rotor for the pump, and air conditioner

Country Status (4)

Country Link
JP (1) JP4680922B2 (en)
KR (1) KR100970822B1 (en)
CN (1) CN100451342C (en)
WO (1) WO2006035724A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055164A (en) * 2013-09-10 2015-03-23 株式会社鷺宮製作所 Drain pump
JP2018025188A (en) * 2016-08-09 2018-02-15 合利美股▲分▼有限公司 Drainage pump for air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686827B2 (en) * 2013-01-23 2015-03-18 株式会社鷺宮製作所 Centrifugal pump
WO2015000153A1 (en) * 2013-07-03 2015-01-08 Li Lin Conical rotor pump
JP6381451B2 (en) * 2015-01-17 2018-08-29 株式会社鷺宮製作所 Centrifugal pump
JP2017106388A (en) * 2015-12-10 2017-06-15 株式会社鷺宮製作所 Pump rotor and drain pump
JP6882959B2 (en) * 2017-08-30 2021-06-02 株式会社鷺宮製作所 Drainage pump and air conditioner
KR102405913B1 (en) * 2021-10-15 2022-06-07 권진형 Impeller preventing cavitation by a dummy protrusion, and a pump having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110445B1 (en) * 1970-03-03 1976-04-03
JPH08210289A (en) * 1995-02-06 1996-08-20 Fuji Koki Seisakusho:Kk Drainage pump
JP2925076B2 (en) * 1997-01-17 1999-07-26 太産工業株式会社 Drainage pump
JP2004353492A (en) * 2003-05-27 2004-12-16 Saginomiya Seisakusho Inc Vertical-shaft centrifugal pump and impeller for pump
JP2005188497A (en) * 2003-12-05 2005-07-14 Daikin Ind Ltd Drain pump and air conditioner with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012667B2 (en) * 2000-06-13 2007-11-21 日本電産サンキョー株式会社 Pump device
JP3511044B2 (en) * 2000-06-21 2004-03-29 株式会社鷺宮製作所 Drain drain pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110445B1 (en) * 1970-03-03 1976-04-03
JPH08210289A (en) * 1995-02-06 1996-08-20 Fuji Koki Seisakusho:Kk Drainage pump
JP2925076B2 (en) * 1997-01-17 1999-07-26 太産工業株式会社 Drainage pump
JP2004353492A (en) * 2003-05-27 2004-12-16 Saginomiya Seisakusho Inc Vertical-shaft centrifugal pump and impeller for pump
JP2005188497A (en) * 2003-12-05 2005-07-14 Daikin Ind Ltd Drain pump and air conditioner with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055164A (en) * 2013-09-10 2015-03-23 株式会社鷺宮製作所 Drain pump
JP2018025188A (en) * 2016-08-09 2018-02-15 合利美股▲分▼有限公司 Drainage pump for air conditioner

Also Published As

Publication number Publication date
JP4680922B2 (en) 2011-05-11
KR20070058489A (en) 2007-06-08
JPWO2006035724A1 (en) 2008-05-15
CN101031723A (en) 2007-09-05
CN100451342C (en) 2009-01-14
KR100970822B1 (en) 2010-07-16

Similar Documents

Publication Publication Date Title
WO2006035724A1 (en) Vertical shaft centrifugal pump, rotor for the pump, and air conditioner
JP5124124B2 (en) Axial fan motor
EP2287470B1 (en) Drain pump
WO2009070599A1 (en) Bi-directional cooling fan
US20040257764A1 (en) Bidirectional indraft type centrifugal fan and cooling apparatus for computer
JP4739748B2 (en) Vertical shaft centrifugal pump and air conditioner using the same
KR20130024729A (en) Drain pump
KR100716207B1 (en) Multi-blade blower
JP3723556B2 (en) Vertical shaft centrifugal pump and pump impeller
JP3897222B2 (en) Horizontal shaft pump with spiral wings
JP5117564B2 (en) Vertical shaft centrifugal pump and air conditioner using the same
JP2010270750A (en) Electric blower, vacuum cleaner mounted with the same, and method of manufacturing the same
JP4739722B2 (en) Pump unit and air conditioner
JP3658652B2 (en) Centrifugal pump for discharging dehumidified water from air conditioners
JP4675590B2 (en) Drainage pump
CN212079737U (en) Blade, impeller, fan and lampblack absorber
KR200332249Y1 (en) High efficiency and low noise type centrifugal fan
US11346358B2 (en) Impeller and centrifugal pump
CN219509873U (en) Impeller, drainage pump and air conditioner outdoor unit
JP7021688B2 (en) underwater pump
JP4158269B2 (en) Externally driven line pump
CN215171098U (en) Gas-liquid pump ESA
JP2011236915A (en) Impeller device for centrifugal pump and centrifugal pump with the same
CN210033892U (en) Diagonal fan
JP2001207987A (en) Drainage pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077005525

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006537728

Country of ref document: JP

Ref document number: 200580033315.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785976

Country of ref document: EP

Kind code of ref document: A1