WO2006035695A1 - Hexavalent chromium-free surface treating method and hexavalent chromium-free lead-containing copper-base metal material - Google Patents

Hexavalent chromium-free surface treating method and hexavalent chromium-free lead-containing copper-base metal material Download PDF

Info

Publication number
WO2006035695A1
WO2006035695A1 PCT/JP2005/017597 JP2005017597W WO2006035695A1 WO 2006035695 A1 WO2006035695 A1 WO 2006035695A1 JP 2005017597 W JP2005017597 W JP 2005017597W WO 2006035695 A1 WO2006035695 A1 WO 2006035695A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
metal material
hexavalent chromium
containing copper
based metal
Prior art date
Application number
PCT/JP2005/017597
Other languages
French (fr)
Japanese (ja)
Inventor
Youji Hayakawa
Original Assignee
Hayakawa Valve Production Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Valve Production Co., Ltd. filed Critical Hayakawa Valve Production Co., Ltd.
Priority to JP2006537709A priority Critical patent/JP4463278B2/en
Publication of WO2006035695A1 publication Critical patent/WO2006035695A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance

Definitions

  • the present invention relates to a hexavalent chromium-free surface treatment method for various metal materials including lead-containing copper-based metal materials or other base materials, and a hexavalent chromium-free bell-containing copper-based metal material.
  • Brackets 'joints' Lead-containing copper-based metal materials such as free-cutting brass (pure copper and various copper alloys) used as materials for plumbing and other water supply products, and surface treatment during the surface treatment of chrome-plated copper-based metal materials
  • the hexavalent chromium-free surface treatment method for various metal materials such as lead-containing copper-based metal materials and other base materials that can completely remove the hexavalent chromium remaining on the surface and also enable surface modification thereof, and It relates to a copper-based metal material containing a chromium-free bell.
  • water supply fittings such as faucet fittings, joints, and piping parts are generally manufactured by forging or forging a copper alloy such as bronze or brass, and shaping it into a desired shape by cutting, polishing, etc.
  • Patent Document 1 there is a technique described in Patent Document 1 as a document related to NPb surface treatment.
  • Patent Document 1 JP 2000-96269
  • Patent Document 1 discloses a treatment method for preventing lead elution by performing chromate treatment on the surface of a lead-containing copper alloy material and forming a chromate film.
  • the lead-containing copper alloy is immersed in a chromate solution to which phosphoric acid has been added.
  • lead-containing copper is produced by the synergistic effect of chromic acid and phosphoric acid contained in the chromate solution.
  • the chemical reaction that dissolves the alloy and the chemical reaction that forms the chromate film occur, and the lead remaining on the surface of the lead-containing copper alloy material is also dissolved and removed. If the lead-containing copper alloy material surface after the removal of lead is protected, corrosion of the lead-containing copper alloy due to long-term water corrosion does not cause internal lead to dissolve, and lead elution can be reduced over a long period of time. Has been.
  • This chromate film is a gel-like complex hydrated oxide film (XCr O -YCrO ⁇ ⁇ ⁇ ) mainly composed of hexavalent chromium (C +) and trivalent chromium (Cr 3+ ).
  • Hexavalent chromium is incorporated into the film as it is hexavalent, and has both anti-fouling and self-healing capabilities.
  • hexavalent chromium is an environmentally hazardous substance and is harmful to the human body, such as suspected carcinogenicity
  • Japan has a strong alternative film or surface treatment to replace the chromate film mainly in Europe and the United States.
  • Various alternative technologies have been proposed.
  • Hexavalent chromium, like lead, is designated as a specified hazardous substance by the Restriction of Use of Specific Hazardous Substances (RoHS) Directive that is enforced on July 1, 2006. Therefore, the development of surface treatment technology without elution of the final product strength hexavalent chromium is desired.
  • RoHS Specific Hazardous Substances
  • NiCr nickel-chrome
  • Cr industrial chromium
  • chromate treatment may be performed for the purpose of improving corrosion resistance and preventing discoloration (anticorrosion).
  • Patent Document 2 JP 2004-60051
  • Patent Document 2 discloses a steel plate that can be widely applied to household appliances 'building materials' for automobiles, etc., has excellent corrosion resistance after heating, and has zero elution of hexavalent chromium, which is an environmentally hazardous substance. It is disclosed.
  • partially reduced chromic acid, phosphoric acid compound, and nitric acid compound are essential components, and there is a predetermined relationship between the chromium reduction rate (X) of partially reduced chromic acid and the concentration of each component in the bath.
  • the composition is applied to the steel plate and dried.
  • the chromate treatment using trivalent chromium including the technique of Patent Document 2 has a problem that the cost is higher and the corrosion resistance is lower than that of the hexavalent chromate treatment.
  • an all-trivalent chromium film is formed on the surface. Over time, the trivalent chromium constituting the film becomes hexavalent chromium by reaction with the outside. The possibility of alteration cannot be denied.
  • the technology described in Patent Document 2 relates to the surface treatment for steel materials, and in particular, the elution of lead, which is also an environmentally hazardous substance, in the surface treatment of lead-containing copper-based metals prior to the elution of hexavalent chromium. There is no disclosure or suggestion about the point to prevent this.
  • the surface treatment equipment and processes that have been used up to now cannot be used as they are, and the capital investment is very expensive.
  • a water faucet device such as a mixing faucet or a single lever faucet or various valve devices, etc., which has a complicated internal structure combining a number of parts, A large number of small gaps (small gaps) and complex-shaped gaps (complex shape gaps) are formed. Also, there are many small cracks on the inner surface, and small pins There are holes. Therefore, there is a high possibility that the eluted chromium remains in these minute gaps, complicated gaps, cracks, pinholes, and the like. Therefore, unless these remaining hexavalent chromium is completely removed, hexavalent chromium may be eluted or leached with the use of the faucet device.
  • the present invention relates to various metals that use nickel chrome (NiCr) plating and industrial chromium (Cr) plating, or hexavalent chromium of various metals such as lead-containing metals and plastics (various grease) materials.
  • lead-containing metal materials can reliably prevent the elution of lead after commercialization, and in all cases, the elution amount of hexavalent chromium should be zero.
  • metal materials such as copper-based metal materials
  • various metal materials such as lead-containing copper-based metal materials and other base materials that improve surface corrosion resistance and can reliably prevent discoloration, etc.
  • a hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 1 includes a chromic acid treatment step of treating the surface of the lead-containing metal material with chromic acid and eluting and removing lead on the surface portion; A hexavalent chromium removing step for completely removing hexavalent chromium as a film component formed on the surface of the lead-containing metal material in the chromic acid treatment step with a reducing aqueous solution containing an acid reducing agent; A surface modification treatment step for modifying the surface of the lead-containing metal material from which the valent chromium has been removed.
  • the surface of the lead-containing metal material includes not only its outer surface but also its inner surface.
  • the chromic acid etching is applied not only to the external surface but also to the internal surface or the exposed internal surface. The process of the process, the process of the hexavalent chromium removal process, and the process of the surface modification process are performed.
  • the internal surface of the lead-containing metal material also includes minute gaps, complex-shaped gaps, cracks, pinholes, etc.
  • the chromic acid etching is also applied to such minute gaps, complex-shaped gaps, cracks, pinholes, etc.
  • the process of the process and the process of the hexavalent chromium removing process are performed by the process of the surface modification process.
  • a hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 2 is characterized in that, in the configuration of claim 1, the hexavalent chromium removing step includes the step of containing the lead in an aqueous solution of a reducing agent for chromic acid. The surface of the lead-containing metal material is reduced by immersing the metal material for a predetermined time.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 3 is characterized in that, in the configuration of claim 1 or 2, the hexavalent chromium removing process power is added to the aqueous solution of the reducing agent for chromic acid.
  • the hexavalent chromium on the surface of the lead-containing metal material is reduced to trivalent chromium by immersing the contained metal material for a predetermined time. Further, the hexavalent chromium removing step and the surface modification treatment step are performed. In the meantime, a water washing step of completely separating and removing trivalent chromium remaining on the surface of the lead-containing metal material by water washing is provided.
  • the hexavalent chromium-free treatment method for a lead-containing metal material according to claim 4 is the method according to any one of claims 1 to 3, wherein the reducing agent for chromic acid is sodium hyposulfite or sodium nitrite. , Sodium thiosulfate, sodium sulfite, or a mixture thereof.
  • a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 5 is the structure according to any one of claims 1 to 4, wherein the surface modification treatment step comprises phosphoric acid and nitric acid.
  • the surface modification treatment step comprises phosphoric acid and nitric acid.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material includes etching the surface of the base material of the lead-containing copper-based metal material with chromic acid, Hexavalent chromium as a coating component formed on the base surface of the lead-containing copper-based metal material in the chromic acid etching step by an chromic acid etching step for eluting and removing lead from the surface portion and an aqueous solution of a reducing agent for chromic acid A hexavalent chromium removing step that completely removes hexavalent chromium, and a surface modifying treatment step that modifies the substrate surface of the lead-containing copper-based metal material from which hexavalent chromium has been removed.
  • the surface of the lead-containing copper-based metal material includes the internal surface in addition to the external surface in the case of a metal material having a space or an exposed portion inside such as a tube material.
  • a metal material having a space or an exposed portion inside such as a tube material.
  • lead-containing copper When metal faucets such as brass fittings or water pipe parts are used as the metal material, not only the external surface but also the internal surface or the exposed internal surface are treated with the chromic acid etching process or the The hexavalent chromium removal process and the surface modification process are performed.
  • a hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 7 is the configuration according to claim 6, wherein the hexavalent chromium removing step includes the lead-containing metal material in an aqueous solution of a reducing agent for chromic acid.
  • the base surface of the lead-containing copper-based metal material is reduced by immersing the copper-based metal material for a predetermined time.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 8 is characterized in that, in the configuration of claim 6 or 7, the hexavalent chromium-removing step force is contained in an aqueous solution of a reducing agent for chromic acid.
  • a hexavalent chromium on the surface of the lead-containing copper-based metal material is reduced to trivalent chromium by immersing the contained copper-based metal material for a predetermined time, and further, the hexavalent chromium removing step and the surface
  • a water washing step is provided between the reforming treatment step and the trivalent chromium remaining on the surface of the lead-containing metal material completely separated by water washing.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 9 includes a chromium plating step for forming a chromium plating layer on the lead-containing copper-based metal material, and a product interior of the lead-containing copper-based metal material.
  • a coating formed on the surface of the lead-containing copper-based metal material in the chromic acid etching step or the chrome plating step by a chromic acid etching step for eluting and removing lead from the exposed internal metal portion and an aqueous solution of a reducing agent for chromic acid
  • the chrome plating step and the chromic acid etching step are usually performed simultaneously. That is, the lead-containing copper-based metal material as the object to be processed is subjected to a chrome plating process and at the same time an etching process using chromic acid.
  • the surface of the lead-containing copper-based metal material includes the inner surface in addition to the outer surface in the case of a metal material having a space or an exposed portion inside such as a pipe material. For example, when a faucet fitting made of brass or the like or a water pipe component is used as a lead-containing copper-based metal material, nickel plating and chromium plating are formed only on the outer surface, and the inner surface (inside the product) Internal metal exposure with exposed brass substrate Part.
  • the treatment of the chromic acid etching step is performed on the exposed internal surface portion to prevent the elution of lead from the inside or the exposed internal surface portion of the lead-containing copper-based metal material.
  • the hexavalent chromium removing step is performed not only on the outer surface of the lead-containing copper-based metal material, but also on the inner surface thereof, that is, the inside of the product or the exposed portion of the inner metal. That is, a hexavalent chromium film is formed inside the product of the lead-containing copper-based metal material or in the exposed internal metal part due to the chromium plating treatment or the chromic acid etching treatment.
  • This treatment is applied not only to the external surface (plated surface) of the lead-containing copper-based metal material but also to the inside of the product or the exposed internal surface (base surface). Furthermore, the treatment in the surface modification treatment step is performed not only on the outer surface (plated surface) of the lead-containing copper-based metal material but also on the inside of the product or the exposed inner surface (base surface).
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 10 is characterized in that, in the configuration of claim 9, the hexavalent chromium-removing process power is contained in an aqueous solution of a reducing agent for chromic acid.
  • the surface of the lead-containing copper-based metal material is reduced by immersing the copper-based metal material for a predetermined time.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 11 is characterized in that, in the configuration of claim 9 or 10, the hexavalent chromium removing step force is contained in an aqueous solution of a reducing agent for chromic acid.
  • the hexavalent chromium on the surface of the lead-containing copper-based metal material is reduced to trivalent chromium.
  • the hexavalent chromium removing step and the surface A water washing step for completely separating and removing trivalent chromium remaining on the surface of the lead-containing metal material by water washing between the reforming treatment step, whereby the surface of the lead-containing copper-based metal material is
  • the surface of the chromium plating layer should be a zero-valent chromium surface, such as a chromium plating layer.
  • a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 12 is the structure of claim 11, wherein the hexavalent chromium removing step is maintained at a predetermined temperature and a predetermined concentration.
  • the hexavalent chromium removing step is maintained at a predetermined temperature and a predetermined concentration.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 13 is characterized in that the claim 6 Alternatively, in the configuration of 9, the hexavalent chromium on the surface of the lead-containing copper-based metal material is immersed in the aqueous solution of the reducing agent for chromic acid for a predetermined time in the hexavalent chromium removing step. Chromium is reduced to trivalent chromium, separated from the surface strength of the lead-containing copper-based metal material, and released or released into the aqueous solution. On the other hand, between the hexavalent chromium removal step and the surface modification treatment step, A water washing step is provided for completely separating and removing trivalent chromium remaining on the surface of the lead-containing copper-based metal material by water washing.
  • a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 14 is the structure according to any one of claims 6 to 13, wherein the reducing agent for chromic acid is sodium hyposulfite or nithion.
  • the reducing agent for chromic acid is sodium hyposulfite or nithion.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 15 is the structure according to any one of claims 6 to 14, wherein the surface modification treatment step comprises phosphoric acid and nitric acid.
  • the lead-containing copper-based metal material is formed on the surface of the lead-containing copper-based metal material by immersing the lead-containing copper-based metal material for a predetermined time in a chemical conversion treatment tank storing an aqueous solution of mixed acid contained as a main material. .
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 16 is the structure according to any one of claims 6 to 14, wherein the surface modification treatment step includes phosphoric acid at a concentration of about 2.
  • the surface modification treatment step includes phosphoric acid at a concentration of about 2.
  • the lead-containing copper-based metal material according to claim 17 is a hexavalent chromium-free lead-containing copper-based metal material that is used without being subjected to plating. After elution and removal by the chromic acid etching treatment, hexavalent chromium formed on the surface of the lead-containing copper-based metal material by the chromic acid etching treatment is completely removed by a reduction treatment with a reducing agent aqueous solution for chromic acid. The phosphoric acid film is formed on the surface of the lead-containing copper-based metal material.
  • the surface of the lead-containing copper-based metal material includes the inner surface in addition to the outer surface in the case of a metal material having a space or an exposed portion inside, such as a tube material.
  • a metal material having a space or an exposed portion inside such as a tube material.
  • lead-containing copper When metal faucet fittings or parts for water pipes are used as the metal material, not only the outer surface but also the inner surface or exposed portion of the inner surface, the chromate etching treatment and the hexavalent Chromium removal treatment is performed, and the phosphoric acid film is formed.
  • the lead-containing copper-based metal material according to claim 18 is a hexavalent chromium-free lead-containing copper-based metal material that is used with a texture, and is an exposed internal surface portion or product of the lead-containing copper-based metal material
  • the lead inside is eluted and removed by the chromic acid etching process, and hexavalent chromium formed on the plating surface of the lead-containing copper-based metal material by the chromic acid etching process is reduced by an aqueous reducing agent solution for chromic acid. After complete removal, a phosphoric acid film is formed on the plating surface of the lead-containing copper-based metal material.
  • the surface of the lead-containing copper-based metal material includes the internal surface in addition to the external surface in the case of a metal material having a space or an exposed portion inside such as a tube material.
  • a metal material having a space or an exposed portion inside such as a tube material.
  • the two-inch Kelmeki or chrome plating is formed only on the outer surface and the inner surface (product The internal chromic acid etching process is applied to the internal surface exposed part to expose the internal or internal surface of the lead-containing copper-based metal material.
  • the hexavalent chromium removal treatment is applied not only to the external surface of the lead-containing copper-based metal material, but also to its internal surface, that is, the internal part of the product or the internal metal exposed part.
  • a hexavalent chromium film is formed inside the product of the lead-containing copper-based metal material or in the exposed internal metal part in accordance with the chromium plating treatment or the chromic acid etching treatment.
  • the removal treatment is applied not only to the external surface (plated surface) of the lead-containing copper-based metal material, but also to the inside of the product or the exposed internal surface (base surface). In addition to the external surface (plated surface) of lead-containing copper-based metal materials, it is also applied to the inside of the product or the exposed internal surface (base surface).
  • the hexavalent chromium-free surface treatment method according to claim 19 is a hexavalent chromium-free surface treatment method for a base material on which a hexavalent chromium film is formed by surface treatment using chromium.
  • a hexavalent chromium film is formed on the surface by the reducing agent aqueous solution containing the reducing agent for chromic acid. The hexavalent chromium film on the surface of the substrate is completely removed.
  • the surface of the base material includes the internal surface in addition to the external surface.
  • the hexavalent chromium is removed not only on the outer surface but also on the inner surface or the exposed inner surface. Will be given.
  • any substrate can be used as long as a hexavalent chromium film is formed on the surface by a surface treatment using chromium.
  • a metal material such as an iron-based metal material or a copper-based metal material on which a hexavalent chromium film is formed on the surface by a surface treatment such as chromic acid etching treatment, chromate treatment, or chromium plating treatment may be used. it can.
  • the metal material use a metal material as it is (that is, a non-metal product that does not have a metal surface), or a metal product that has a metal surface such as hard chrome or nickel chrome metal. Can do.
  • a non-metal material such as a resin material such as a thermoplastic synthetic resin or a thermosetting synthetic resin, or leather can be used. That is, the present invention can be applied to leather products and plastic products to which chrome plating is applied. Alternatively, as a base material, a coated product can be used in addition to the metal product. Furthermore, the present invention can be applied to various products such as faucet fittings and water supplies as well as automobile parts.
  • the hexavalent chromium-free surface treatment method according to claim 20 is a hexavalent chromium-free surface treatment method for a base material on which a hexavalent chromium film is formed by surface treatment using chromium.
  • a surface modification treatment step for modifying the surface of the base material from which is removed.
  • the surface of the base material includes not only its external surface but also its internal surface.
  • the hexavalent chromium removing process is performed not only on the outer surface but also on the inner surface or the exposed inner surface.
  • the treatment and the surface modification treatment step are performed.
  • any material can be used as long as a hexavalent chromium film is formed on the surface by a surface treatment using chromium.
  • a metal material such as an iron-based metal material or a copper-based metal material on which a hexavalent chromium film is formed on the surface by a surface treatment such as chromic acid etching treatment, chromate treatment, or chromium plating treatment may be used. it can.
  • a metal material as it is (that is, a non-metal product that does not have a metal surface), or a metal product that has a metal surface such as hard chrome or nickel chrome metal. Can do.
  • a non-metal material such as a resin material such as a thermoplastic synthetic resin or a thermosetting synthetic resin, or leather can be used.
  • the present invention can be applied to leather products and plastic products to which chrome plating is applied.
  • a coated product can be used in addition to the metal product.
  • the present invention can be applied to various products such as faucet fittings and water supplies as well as automobile parts.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 1 is configured as described above, in a product using lead-containing metal as a raw material, the elution of lead after commercialization is ensured. It can be prevented, and the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the surface can be improved to prevent discoloration and the like.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 2 includes, in addition to the effect of claim 1, a hexavalent chromium removal step! By completely removing chromium, the elution amount of hexavalent chromium can be reduced to zero.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 3 is based on the effect of claim 1 or 2, and the surface of the lead-containing metal material is removed during the hexavalent chromium removal step.
  • hexavalent chromium becomes trivalent chromium.
  • trivalent chromium adhering to the surface of the lead-containing metal material is further separated and removed from the surface of the lead-containing metal material by washing with water in the water-washing process, so that the elution amount of hexavalent chromium is zero. be able to.
  • the hexavalent chromium-free method for treating a lead-containing metal material according to claim 4 is more effective in the hexavalent chromium removing step. Reduction processing can be performed.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 5 is based on the effect of any one of claims 1 to 4, and the lead-containing metal material in the surface modification treatment step. A strong phosphoric acid film can be reliably formed on the surface.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 6 is configured as described above, in a green product made of lead-containing copper-based metal, Elution can be prevented with certainty, and the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the substrate surface can be improved to prevent discoloration and the like.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 7 is based on the effect of claim 6, and the lead-containing copper-based metal material is used in the hexavalent chromium removal step.
  • the elution amount of hexavalent chromium can be made zero.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 8 is based on the effect of claim 6 or 7, and the lead-containing copper-based metal material is used in the hexavalent chromium removal step.
  • the lead-containing copper-based metal material is used in the hexavalent chromium removal step.
  • hexavalent chromium becomes trivalent chromium.
  • trivalent chromium force adhering to the substrate surface of lead-containing copper-based metal materials is completely separated and removed by washing in the water washing process, so that the elution amount of hexavalent chromium Can be set to zero.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 9 is configured as described above, in a plating product made of lead-containing copper-based metal, Elution can be prevented with certainty, and the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the plating surface can be improved to prevent discoloration and the like.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 10 is based on the effect of claim 9, and the lead-containing copper-based metal material is used in the hexavalent chromium removal step.
  • the elution amount of hexavalent chromium can be made zero.
  • the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 11 adds the hexavalent surface of the lead-containing copper-based metal material in the hexavalent chromium removal step.
  • hexavalent chromium becomes trivalent chromium.
  • the trivalent chromium force adhering to the surface of the lead-containing copper-based metal material.
  • the surface force of the lead-containing copper-based metal material is completely separated and removed by rinsing in the water washing process, thereby reducing the elution amount of hexavalent chromium. Can be zero wear.
  • the hexavalent chromium-free surface treatment method according to claim 12 completely removes hexavalent chromium from the surface of the lead-containing copper-based metal material in the hexavalent chromium removal step.
  • the elution amount of hexavalent chromium can be made zero by making the surface of the lead-containing copper-based metal material a chromium surface.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 13 is based on the effect of claim 6 or 9, and the lead-containing copper-based metal is used in the hexavalent chromium removal step.
  • the elution amount of hexavalent chromium can be made zero.
  • the trivalent chromium adhering to the surface of the lead-containing copper-based metal material is completely separated and removed by the water washing process, and the surface of the lead-containing copper-based metal material is made of only chromium plating and has no hexavalent chromium or trivalent chromium. It can be a perfect chrome surface, ie a zero-valent chrome surface.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 14 is based on the effect of any one of claims 6 to 13, and is more effective in the hexavalent chromium removal step. Hexavalent chromium can be reduced.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 15 is based on the effect of any one of claims 6 to 14, and the lead-containing copper-based metal material in the surface modification treatment step.
  • a strong phosphoric acid film can be reliably formed on the surface of the metal material.
  • a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 16 is based on the effect of any one of claims 6 to 14, and the lead-containing copper-based metal material in the surface modification treatment step.
  • a strong phosphoric acid film can be more reliably formed on the surface of the metal material.
  • the lead-containing copper-based metal material according to claim 17 is configured as described above, the lead-containing copper-based metal material is used for products made of lead-containing copper-based metal (boron) that is used without being plated.
  • the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the substrate surface can be improved to prevent discoloration and the like. .
  • the lead-containing copper-based metal material according to claim 18 is configured as described above, in a product made of lead-containing copper-based metal (mesh product) used as a material, Elution of lead can be reliably prevented, and the elution amount of hexavalent chromium can be reduced to zero. It is possible to improve the corrosion resistance of the plating surface and reliably prevent discoloration and the like.
  • the hexavalent chromium-free surface treatment method according to claim 19 is configured as described above, in a product made of a base material having a hexavalent chromium film formed on the surface by a surface treatment using chromium.
  • the elution amount of hexavalent chromium after commercialization can be made zero.
  • the hexavalent chromium-free surface treatment method according to claim 20 is configured as described above, in a product made of a base material having a hexavalent chromium film formed on the surface by a surface treatment using chromium.
  • the elution amount of hexavalent chromium after commercialization can be made zero, and the corrosion resistance of the surface can be improved to prevent discoloration and the like.
  • FIG. 1 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material by the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 1 of the present invention.
  • a) shows a state in which a hexavalent chromium film is formed on the surface of the tin-containing copper-based metal material in the chromic acid etching process
  • (b) shows a surface of the lead-containing copper-based metal material in the hexavalent chromium removal process.
  • C shows the surface strength of the lead-containing copper-based metal material in the water washing process after the hexavalent chromium removal process.
  • D) shows a state in which a phosphate film is formed on the surface of the base material of the lead-containing copper-based metal material in the surface modification treatment step.
  • FIG. 3 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material according to the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 2 of the present invention. a) shows the state of the super bright nickel plating formed on the surface of the lead-containing copper-based metal material in the ultra-bright nickel plating process, and (b) shows the super-bright nickel plating of the lead-containing copper-based metal material in the bright nickel plating process. (C) shows a state in which a bright nickel plating is formed on the surface.
  • Hexavalent chromium film (D) shows the state in which the hexavalent chromium film on the plating surface of the lead-containing copper-based metal material has been reduced in the hexavalent chromium removal process, and (e) shows the state after the hexavalent chromium removal process.
  • the chromium plating surface strength of lead-containing copper-based metal materials in the water-washing process The state in which trivalent chromium was washed with water and became a zero-valent chromium surface. The state where the phosphoric acid film was formed on the chrome plating surface is shown.
  • S1 Alkali cleaner ultrasonic cleaning process
  • S2 First water cleaning process after alkaline cleaner ultrasonic cleaning
  • S5 First recovery process
  • S6 Second recovery process
  • S8 Hexavalent chromium removal process
  • Chromic acid activation treatment process (chromic acid treatment process)
  • Embodiment 1 substrate surface treatment
  • FIG. 1 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material according to the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 1 of the present invention.
  • (B) shows a hexavalent chromium film on the surface of the lead-containing copper-based metal material in the hexavalent chromium removal process.
  • (C) shows a state in which the trivalent chromium is washed with water in the water washing process after the hexavalent chromium removal process. Shows a state in which a phosphoric acid film was formed on the surface of the lead-containing copper-based metal material in the surface modification process.
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 includes a lead-containing copper-based metal material formed into a predetermined shape by forging or the like, for example, a free-cutting brass flush fitting
  • a lead-containing copper-based metal material formed into a predetermined shape by forging or the like, for example, a free-cutting brass flush fitting
  • it also prevents the elution of hexavalent chromium from the surface of the base material, making it free of hexavalent chromium,
  • a film is formed to improve corrosion resistance (discoloration prevention function, etc.).
  • the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 1 is performed as shown in FIG. 1 in the alkaline cleaner ultrasonic cleaning step Sl and after the alkaline cleaner ultrasonic cleaning.
  • the lead-containing copper-based metal material is cleaned of the substrate surface (including the exposed internal surface) by ultrasonic cleaning with an alkaline cleaner in the alkaline cleaner ultrasonic cleaning step S1.
  • an alkaline cleaner in the alkaline cleaner ultrasonic cleaning step S1 since the lead component contained in the base surface portion of the lead-containing copper-based metal material dissolves in both alkali and acid, the alkali-cleaner in this alkaline cleaner ultrasonic cleaning process performs the lead-containing copper-based metal material. Most of the lead components present on the surface of the material are eluted and removed.
  • the lead-containing copper-based metallic material is subjected to the alkaline cleaner ultrasonic cleaning process S1 in the alkaline cleaner ultrasonic cleaning process S1, then pulled up from the alkaline cleaner ultrasonic cleaning tank, and the first time after the alkaline cleaner ultrasonic cleaning. It is sent to the water washing step S2, and after being immersed in the first water washing tank for a predetermined time, it is pulled up, and further sent to the second water washing step S3 after the alkaline cleaner ultrasonic washing, and the second water washing tank. After being dipped in a predetermined time, it is pulled up.
  • the surface of the substrate is contained in the alkaline cleaner ultrasonic cleaning liquid adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) or the alkaline cleaner ultrasonic cleaning liquid.
  • the elution lead components adhering to (including) are sequentially removed by rinsing to clean the surface of the lead-containing copper-based metal material.
  • the lead-containing copper-based metal material is immersed in a chromic acid etching tank storing a chromic acid etching solution (aqueous solution) at a predetermined temperature for a predetermined time in the chromic acid etching process S4 as the chromic acid treatment process.
  • a chromic acid etching solution aqueous solution
  • CrO 2 chromic anhydride
  • the bath composition of the etchant is, for example, that only chromic anhydride (CrO) is added to water (H 2 O).
  • H 2 SO 4 can be mixed at a predetermined ratio.
  • step S4 other chromic acid etching solutions for copper and copper alloys (for example, dichromate aqueous solution, fluorine compound, etc.) can also be used.
  • the chromic acid aqueous solution contained in the chromic acid etching solution is strongly acidic, the entire surface of the lead-containing copper-based metal material (including the exposed internal surface) is dissolved and contained in the surface. It also dissolves lead components. As a result, the remainder of the lead component existing on the base surface portion of the lead-containing copper-based metal material is eluted and removed in the chromic acid etching solution.
  • the lead-containing copper-based metal material is lifted from the chromic acid etching tank, sent to the next first collection step S5, and immersed in the first collection water tank for a predetermined time. Pulled up, sent to the next second recovery step S6, crushed for a predetermined time in the second recovery tank, and then lifted.
  • the chromic acid etching solution including chromic acid
  • adhering to the surface of the lead-containing copper-based metal material is sequentially recovered in the first recovery water tank and the second recovery water tank, The substrate surface of the lead-containing copper-based metal material is completely cleaned.
  • a gel-like hexavalent chromium film containing hexavalent chromium (Cr 6+ ) is inevitably formed on the substrate surface of the lead-containing metal material (the outer substrate surface and the inner substrate surface).
  • the hexavalent chromium film is formed on the surface of the lead-containing copper-based metal material by the following reaction formula, for example.
  • the lead-containing copper-based metal material is sent to the water washing step S7, crushed in the water washing tank for a predetermined time, and then pulled up.
  • the chromic acid etching solution and other deposits remaining on the surface of the lead-containing copper-based metal material are removed by washing with a water-washing tank, and the surface of the lead-containing copper-based metal material is removed. Furthermore, it is completely cleaned.
  • the water washing step S7 can be omitted as necessary.
  • the reducing tank that stores the reducing agent aqueous solution at a predetermined temperature ( Dipped in a reducing bath) for a predetermined time.
  • the reducing agent for chromic acid in the reducing bath of the hexavalent chromium removal step S8 include sodium hyposulfite (Na 2 S 2 O 3) and sodium nitrite (
  • Na S O sodium thiosulfate
  • Na SO sodium sulfite
  • sodium hyposulfite Na S O
  • Daito Chemical Co., Ltd. Daito Chemical Co., Ltd.
  • S O is, for example, the product name Hydrosulfite Conk of Guangei Chemical Industry Co., Ltd.
  • a sodium sulfite aqueous solution having a predetermined concentration in which seeds or more are dissolved can be prepared to make a reducing bath.
  • an aqueous reducing agent solution can be prepared by stirring and dissolving sodium nitrite at a rate of about 5 to 10 gZl in water.
  • the concentration of the reducing agent in the reducing bath can be in the range of several gZi to several lOgZi, and is preferably determined as appropriate depending on the combination of components to be used.
  • the reducing agent concentration in the reducing bath is in the range of about 2-5%, more preferably in the range of about 3-5%.
  • the reducing agent concentration in the reducing bath is preferably about 5 to 10 gZl.
  • the temperature of the reducing bath can be room temperature, but it is preferable to adjust the temperature appropriately depending on the reaction rate.
  • the immersion time of the lead-containing copper-based metal material in the reduction bath can be in the range of about 20 to 30 seconds, but it is preferable to adjust the temperature appropriately depending on the reaction rate.
  • the reducing bath is neutral p
  • the lead-containing copper-based metal material is immersed in the reducing bath in the hexavalent chromium removing step S8, the lead-containing copper-based metal material is formed on the substrate surface (including the exposed surface inside) in the chromic acid etching step S4. Hexavalent chromium as a film component is completely removed. Specifically, when a lead-containing copper-based metal material is immersed in a reducing bath, the hexavalent chromium (Cr 6+ ) film on the surface of the lead-containing copper-based metal material is caused by the reducing agent for chromic acid in the reducing bath.
  • trivalent chromium (Cr 3+ ) It is reduced to trivalent chromium (Cr 3+ ), and the surface force of the lead-containing copper-based metal material is separated and released into the reduction bath.
  • the trivalent chromium (Cr 3+ ) released from the surface strength of the lead-containing copper-based metal material and released into the reduction bath is finally adjusted to a neutral pH range with the reducing agent aqueous solution in the reduction bath. Etc., it can be recovered by precipitation in the reducing agent aqueous solution in the reducing bath.
  • the film is reduced with a reducing agent for chromic acid in the hexavalent chromium removing step S7, and trivalent chromium (Cr (O), and is presumed to be attached to the surface of the lead-containing copper-based metal (Cu).
  • the lead-containing copper-based metal material is reduced in the hexavalent chromium removal step S8, then pulled up from the reduction tank, and immediately sent to the water washing step S9 after the hexavalent chromium removal, to the water washing tank for a predetermined time. It is pulled up after being immersed.
  • sodium hyposulfite Na 2 S 2 O 3
  • sodium hyposulfite Na 2 S 2 O 3
  • hexavalent chromium is present in the water in the recovery tank.
  • trivalent chromium is present in the reducing agent aqueous solution in the reducing tank.
  • washing step S9 trivalent chromium exists in the water of the washing tank. Therefore, although not shown, a wastewater treatment process is required for the drainage of the recovery tank, reduction tank, and washing tank.
  • hexavalent chromium is contained in the water, so the reducing agent such as sodium hyposulfite is added to the waste water to make it water-soluble, and the hexavalent chromium is reduced to trivalent chromium.
  • the reducing agent such as sodium hyposulfite
  • the hexavalent chromium is reduced to trivalent chromium.
  • NaOH sodium hydroxide
  • the supernatant portion of the wastewater does not contain trivalent chromium !, clean water
  • the precipitate portion are separated and taken out for reuse or disposal.
  • the lead-containing copper-based alloy material is sent to the surface modification treatment step S10,
  • the acid film treatment the base surface (including the exposed internal surface) of the lead-containing copper-based metal material from which hexavalent chromium has been removed is modified.
  • the lead-containing copper-based alloy material is immersed in a chemical conversion treatment tank that stores a mixed acid aqueous solution at a predetermined temperature for a predetermined time.
  • the mixed acid aqueous solution of the chemical conversion treatment layer in the surface modification treatment step S10 for example, a mixed acid aqueous solution in which phosphoric acid to orthophosphoric acid (H 3 PO 4) and nitric acid (HNO 3) are dissolved as main materials is used.
  • the concentration of phosphoric acid is preferably in the range of about 2 to 5%.
  • the nitric acid concentration is preferably in the range of about 0.5 to 2%. That is, nitric acid in a mixed acid aqueous solution is used for the purpose of promoting or promoting the formation of a phosphoric acid film on the surface of a lead-containing copper-based metal by phosphoric acid by exerting a chemical polishing function or the like.
  • the concentration of nitric acid is less than about 0.5, it will not be able to perform its full function.On the other hand, if the nitric acid concentration exceeds about 2%, it may affect the appearance of the final product of lead-containing copper-based metals. is there. Furthermore, if the concentration of phosphoric acid and mixed acid is set within the above range, not only the lead-containing copper-based metal material is not subjected to plating, but also a phosphoric acid film is applied to the surface of the substrate, and the lead-containing copper-based metal material is nickel-coated.
  • the temperature of the chemical conversion bath may be, for example, in the range of about 40-60 ° C or about 40-80 ° C.
  • the immersion time of the lead-containing copper-based metal material in the chemical conversion bath can be, for example, in the range of about 20 seconds to 3 minutes or about 30 seconds to 3 minutes. The temperature of the chemical conversion treatment bath and the immersion time of the lead-containing copper-based metal material are determined relative to each other.
  • the immersion time of the lead-containing copper-based metal material is set short.
  • the temperature of the chemical conversion treatment bath is set low, it is preferable to set the immersion time of the lead-containing copper-based metal material long.
  • the immersion time can be about 3 minutes, and when the temperature of the chemical conversion treatment layer is about 60 ° C., the immersion time can be about 20 seconds.
  • the lead-containing copper-based metal material By immersing the lead-containing copper-based metal material in the chemical conversion treatment tank storing an aqueous solution of a mixed acid containing phosphoric acid (orthophosphoric acid) and nitric acid at a predetermined concentration, the lead-containing metal material is immersed on the surface of the substrate. A phosphate film with a predetermined thickness is formed, and the desired functions such as anti-corrosion and discoloration prevention functions are exhibited.
  • the mixed acid aqueous solution in the chemical conversion treatment tank contains phosphoric acid and In addition to nitric acid, an inorganic dispersion such as silica may be added as an additive.
  • the substrate surface of the lead-containing copper-based metal material (Cu) (six It is presumed that the lead-containing copper-based metal (Cu) and phosphoric acid react with each other to form a predetermined phosphoric acid coating (H PO) on the base surface where no valent chromium or trivalent chromium exists.
  • H PO phosphoric acid coating
  • the surface modification treatment (i-formation treatment) of the copper or copper alloy in the surface modification treatment step S10 is performed as follows. First, as a first step, the surface of copper or copper alloy is melted by nitric acid contained in the mixed acid aqueous solution, and immediately after that, an oxide film is formed on the surface of copper or copper alloy. This acid film is considered to be acid cuprous (Cu 2 O).
  • reaction at this time is considered to proceed as shown in the following reaction formula.
  • reaction with phosphoric acid proceeds on the surface of copper or copper alloy.
  • the details of the reaction with phosphoric acid are unknown, it is considered that some of the phosphate trihydrate is formed, and the reaction proceeds as shown in the following reaction formula.
  • the lead-containing copper-based metal material is subjected to a phosphoric acid film treatment in the surface modification treatment step S10, then lifted from the chemical conversion treatment tank, and sent to the first water washing step S11 after the surface modification treatment step S10. Then, after being soaked in the washing tank for a predetermined time, it is pulled up, and further, sent to the second washing step S12 after the surface modification treatment step S10, and after being immersed in the washing tank for a predetermined time, it is pulled up.
  • the mixed acid components adhering to the surface of the lead-containing copper-based metal material are sequentially removed by water washing in the water washing tank of the water washing step S11 and the water washing tank of the water washing step S12. The surface of the lead-containing copper-based metal material is cleaned.
  • the lead-containing copper-based metal material is sent to the discoloration prevention treatment step S13 after the faucet steps S11 and S12, and stored in a discoloration prevention treatment tank storing a discoloration prevention agent such as an antifungal aqueous solution for a predetermined time.
  • a discoloration prevention agent such as an antifungal aqueous solution for a predetermined time.
  • the substrate surface including the exposed internal surface
  • the antifungal agent or corrosion 'anti-discoloration agent at this time include, for example, benzotriazole (CH
  • This benzotriazole reacts with copper or copper alloys.
  • the discoloration prevention treatment step S13 is omitted as necessary.
  • the lead-containing copper-based metallic material is pulled up from the discoloration prevention treatment tank after the discoloration prevention treatment step S13, sent to the water washing step S14, and then pulled up after being immersed in the washing bath for a predetermined time.
  • the discoloration inhibitor component adhering to the surface of the lead-containing copper-based metal material is removed by washing in the water-washing tank, and the surface of the lead-containing copper-based metal material is cleaned.
  • the water washing step S14 can be omitted when necessary, such as when the discoloration preventing treatment step S13 is omitted.
  • the lead-containing copper-based metal material was also washed out after the water washing step S14 after the discoloration prevention treatment step S13, and the color change prevention treatment tank was also lifted, sent to the hot water washing step S15, and immersed in the water washing bath for a predetermined time. Raised later.
  • the discoloration inhibitor component adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) is completely removed by washing in the water-washing tank, and the surface of the lead-containing copper-based metal material is completely removed. To be cleaned.
  • the lead-containing copper-based metal material is washed in the hot water washing step S15, it is lifted from the hot water washing tank, sent to the drying step S16, and forcedly dried by hot air or the like.
  • hexavalent chromium exists in the form of stable ions, both acidic and alkaline. Focusing on the properties, in the hexavalent chromium removal step S8, the lead-containing copper-based metal material is immersed in the reducing agent aqueous solution in the reduction tank, and the hexavalent chromium on the substrate surface is reduced to trivalent chromium and dissolved in the reduction tank. The hexavalent chromium on the surface of the lead-containing copper-based metal material is selectively dissolved and removed by making it come out.
  • the base surface of the lead-containing copper-based metal material after removal of hexavalent chromium remains unchanged
  • the lead-containing copper-based metal material is immersed in a mixed acid aqueous solution in the chemical conversion treatment tank to form a phosphate film on the substrate surface.
  • the hexavalent chromium-free surface treatment method for lead-containing copper-based metal materials according to Embodiment 1 can reliably prevent elution of lead after commercialization in a base product made of lead-containing copper-based metal materials.
  • the elution amount of hexavalent chromium can be made zero, and the corrosion resistance of the substrate surface (including the internal exposed surface) can be improved to prevent discoloration and the like.
  • pinholes and cracks that exist on the surface of internal substrates such as faucet fittings that contain lead-containing metal materials, or small gaps (micro gaps) that exist between internal parts, etc.
  • the faucet that is the lead-containing similar metal material of this embodiment
  • the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 can completely remove hexavalent chromium, which is an environmentally hazardous substance, and has excellent corrosion resistance. It can be suitably used as a surface treatment method for alloys and the like.
  • a conventional surface treatment plant for water supplies can be used as it is, and the cost is not increased.
  • Embodiment 2 Metal surface treatment
  • FIG. 3 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material by the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 2 of the present invention.
  • (B) shows the state of super bright nickel plating formed on the surface of the lead-containing copper-based metal material in the bright nickel plating process.
  • (C) shows the state where the nickel plating is formed.
  • the nickel plating is also formed on the surface of the chromium plating.
  • Hexavalent chromium film formed shows the state in which the hexavalent chromium film on the plating surface of the lead-containing copper-based metal material has been reduced in the hexavalent chromium removal process, and ( e ) shows the lead content in the water washing process after the hexavalent chromium removal process.
  • (F) shows the state in which the trivalent chromium was washed with water from the chrome plating surface of the copper-based metal material and became a zero-valent chrome surface. The state where the film is formed is shown.
  • a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 includes a lead-containing copper-based metal material formed into a predetermined shape by forging or the like, for example, a free-cutting brass flush fitting In nickel-chromium plating products, lead elution is prevented from the chromium plating surface to make it lead-free, and hexavalent chromium from the chromium plating surface is also prevented from elution, making it hexavalent chromium-free. An acid film is formed to improve corrosion resistance (discoloration prevention function, etc.).
  • the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 2 is performed as shown in FIG. 3 in the alkaline cleaner ultrasonic cleaning step S21, the first after the alkaline cleaner ultrasonic cleaning.
  • Electrolytic degreasing process S24 (+) Electrolytic degreasing process S25, 1st water washing process after electrolytic degreasing S26, electrolysis 2nd water washing process S27 after degreasing, 1st active acid treatment process S28, 1st water washing process after active acid treatment S29, super bright nickel plating process S 30, first after super bright nickel plating Second recovery process S31, second recovery process after super bright nickel plating S32, bright nickel plating process S33, recovery process after bright nickel plating S34, first water washing process S35 after bright nickel plating, Second after bright nickel plating Water washing step S36 for the second, acid treatment step S37 for the second time, water washing step S38 after the second active acid treatment, chromic acid activation treatment step S39 for the chromic acid treatment step, chrome plating step S40, after chrome plating First recovery step S41, second recovery step after chromium plating S
  • the lead-containing copper-based metal material is first treated with an alkali cleaner ultrasonic cleaning step S21.
  • the substrate surface (including the exposed internal surface) is cleaned by ultrasonic cleaning with a force recleaner.
  • the alkali-cleaner in this alkaline cleaner ultrasonic cleaning process performs the lead-containing copper-based metal material. Most of the lead components present on the surface of the material are eluted and removed.
  • the lead-containing copper-based metal material is subjected to the alkaline cleaner ultrasonic cleaning process in the alkaline cleaner ultrasonic cleaning step S21, and then sent to the first water cleaning step S22 after the ultrasonic cleaning of the alkali cleaner, in the first water washing tank. Then, it is pulled up after being soaked for a predetermined time, and further sent to the second water washing step S23 after ultrasonic cleaning of the alkali cleaner, and after being soaked in the second water washing tank for a predetermined time, it is pulled up.
  • the surface of the lead-containing copper-based metal material is cleaned in the tank and the second washing tank.
  • the lead-containing copper-based metal material is subjected to electrolytic degreasing treatment in order in (1) electrolytic degreasing step S24 and (+) electrolytic degreasing step S25.
  • the lead-containing copper-based metal material is immersed in the third and 34th water rinsing tanks in the first water washing step S26 and the second water washing step S27 after electrolytic degreasing, and the substrate surface is sequentially washed.
  • the lead-containing copper-based metal material is subjected to an acid activation treatment with an active acid to remove smut and the like on the substrate surface.
  • the lead-containing copper-based metal material is immersed in a fifth washing tank in the washing step S29 after the first active acid treatment, and the substrate surface is washed.
  • the lead-containing copper-based metallic material in the super bright nickel plating process S30, as shown in FIG. 4 (a), super bright nickel plating is formed on the substrate surface (only the outer surface).
  • the lead-containing copper-based metallic material is sent to the first recovery step S31 after the super bright nickel plating, dipped in the first recovery water tank for a predetermined time and then pulled up, and then the second recovery step. S3 2 and then pulled up after being immersed in the second recovery water tank for a predetermined time.
  • the plating bath components adhering to the plating surface of the lead-containing copper-based metal material are sequentially recovered in the first recovery water tank and the second recovery water tank, and the plating surface of the lead-containing copper-based metal material is completely cleaned.
  • the lead-containing copper-based metal material is sent to the bright nickel plating step S33, and as shown in FIG. 4 (b), a bright nickel plating is formed on the surface of the super bright nickel plating.
  • the lead-containing copper-based metal material is sent to the recovery step S34 after bright nickel plating, and after being immersed in the third recovery tank for a predetermined time, it is pulled up to clean the surface of the bright nickel plating. Is done.
  • the lead-containing copper-based metal material is sent to the first water washing step S35 and the second water washing step S36 after bright nickel plating, and is sequentially immersed in the sixth and seventh water washing tanks to produce light.
  • the surface of the nickel plating is cleaned and completely cleaned.
  • the lead-containing copper-based metal material is sent to the second active acid treatment step S37, where the surface of the bright nickel plating is subjected to an acid activation treatment with the active acid, and the organic matter adsorbed on the bright nickel plating surface, etc. Is removed.
  • the lead-containing copper-based metal material is dipped in the eighth washing tank in the second washing step S38 after the active acid treatment, and the plating surface (outer surface) and the inner surface (non-sticking element). The ground) is washed.
  • the lead-containing copper-based metal material is subjected to a chromic acid activation treatment in the chromic acid activation treatment step S39, and the surface of the lead-containing copper-based metal material (the outer plating surface and the inner substrate surface) is treated by nickel plating. The attached oxide film and organic impurities are removed, and the surface (the outer surface and the inner surface) is cleaned.
  • the lead-containing copper-based metal material is subjected to a chrome plating process in a chrome plating process S40, and at the same time, a chromic acid etching process using a chromic acid etching solution (aqueous solution) at a predetermined temperature (for example, room temperature).
  • the chromium plating process S40 includes a chromic acid etching process.
  • the chromic acid aqueous solution contained in the chromic acid etching treatment solution is strongly oxidizable, the plating part of the lead-containing copper-based metal material (the plating part on the outer surface) or the base material of the lead-containing copper-based metal material While dissolving the entire surface part (internal substrate surface part), the lead component contained in the plating part and substrate surface part is also dissolved.
  • the plating part of the lead-containing copper-based metal material and the substrate surface part Or the remainder of the lead component present on the inner surface of the product and the exposed internal metal is eluted and removed in the chromic acid etching solution.
  • the lead-containing copper-based metal material is subjected to chromium plating on the surface of the bright nickel plating by the chromium plating process S40.
  • the lead-containing copper-based metal material is sent to the first recovery process S41 after the chrome plating, and is sent to the fourth recovery tank for a predetermined time. It is pulled up after being immersed, sent to the next second collection step S42, and after being immersed in a fifth recovery water tank for a predetermined time, it is pulled up.
  • the chromic acid activation treatment liquid (including chromic acid) or the chromic acid etching treatment liquid force (including chromic acid) adhering to the outer plating surface and the inner substrate surface of the lead-containing copper-based metal material is added to the fourth recovery water tank and the fifth recovery water tank.
  • the outer plating surface and the inner substrate surface of the lead-containing copper-based metal material are completely cleaned.
  • a gel-like hexavalent chromium film containing hexavalent chromium (Cr 6+ ) is inevitably formed on the outer plating surface and the inner substrate surface of the lead-containing metal material.
  • the chromic acid etching solution remaining on the surface of the surface and the inner substrate is removed in the recovery tank and released into water in the recovery steps S41 and S42.
  • the hexavalent chromium film is formed by, for example, lead-containing copper-based gold by the following reaction formula: It can also be considered that it is generated on the surface of the metallic material.
  • the lead-containing copper-based metal material is sent to the water washing step S43, and after being sunk in the ninth water washing tank for a predetermined time, it is pulled up.
  • the chromic acid etching solution and other deposits remaining on the outer plating surface and the inner substrate surface (internally exposed surface) of the lead-containing copper-based metal material are washed away by the ninth water-washing tank and lead-containing.
  • the surface of the copper-based metal material is more thoroughly cleaned.
  • the water washing step S43 can be omitted if necessary.
  • the lead-containing copper-based metal material is pulled up in the ninth washing tank power, and in the hexavalent chromium removal step S44, a reducing tank that stores a reducing agent aqueous solution at a predetermined temperature ( Dipped in a reducing bath) for a predetermined time.
  • a reducing agent for chromic acid in the reduction bath of the hexavalent chromium removal step S44 for example, the same one as in Embodiment 1 can be used, and one or more of them can be dissolved.
  • a sodium sulfite aqueous solution having a concentration can be prepared as a reducing bath.
  • Various conditions such as the concentration of the reducing agent in the reduction bath, the temperature of the reduction bath, and the immersion time can be the same as in the first embodiment.
  • the lead-containing copper-based metal material is immersed in the reducing bath in the hexavalent chromium removal step S44, the lead-containing copper-based metal material is treated in the chromic acid activation treatment step S39 and the chromium plating step (chromic acid etching step) S40. Hexavalent chromium as a film component formed on the outer plating surface and the inner substrate surface (inner exposed surface) is completely removed. Specifically, when a lead-containing copper-based metal material is immersed in a reducing bath, a hexavalent chromium (Cr 6+ ) film is formed on the outer plating surface and inner substrate surface (inner exposed surface) of the lead-containing copper-based metal material.
  • a hexavalent chromium (Cr 6+ ) film is formed on the outer plating surface and inner substrate surface (inner exposed surface) of the lead-containing copper-based metal material.
  • zero-valent chromium (Cr Q ) or metallic chromium does not contain hexavalent chromium at all, and the outer plating surface and internal substrate surface (internally exposed surface) of lead-containing copper-based metallic materials are completely hexavalent chromium. It is free.
  • the trivalent chromium (Cr 3+ ) released from the outer plating surface and the inner substrate surface (internally exposed surface) of the lead-containing copper-based metal material and released into the reduction bath is finally reduced in the reduction bath.
  • the film is reduced by the reducing agent for chromic acid in the hexavalent chromium removal step S42 to form trivalent chromium (C r O), and the outer plating surface and inner substrate surface of the lead-containing copper-based metal material (Cu).
  • hexavalent chromium does not exist at all on the outer plating surface and internal substrate surface (internally exposed surface) of the lead-containing copper-based metal material (Cu), and the lead-containing copper-based metal material (Cu) It can be said that hexavalent chromium was completely removed from the outer plating surface and the inner substrate surface (inner exposed surface).
  • hexavalent chromium that tends to remain in pinholes and cracks existing on the surface of the inner substrate, or small gaps (micro gaps) or complex gaps (complex shape gaps) existing between internal parts.
  • hexavalent chromium is used in conjunction with the faucet device made of the lead-containing similar metal material of this embodiment. Can be completely prevented from leaching or leaching.
  • the lead-containing copper-based metal material is reduced in the hexavalent chromium removal step S44, then lifted from the reduction tank, and immediately sent to the water washing step S45 after the hexavalent chromium removal, and then passed to the tenth water washing tank for a predetermined time. Raised after being crushed.
  • Trivalent chromium ( cr 3+ ) for example, acid chromium (Cr 2 O 3 ) adhering to the plating surface and internal exposed surface (substrate surface), is removed by rinsing in the tenth rinsing tank, and lead-containing copper-based metal
  • the outer surface of the material and the exposed internal surface (base surface) are cleaned.
  • the changes in the outer plating surface and internal exposed surface (substrate surface) of the lead-containing copper-based metal material (Cu) due to the reaction at this time can be explained schematically as shown in Fig. 4 (e). All the trivalent chromium (Cr 2 O 3) adhering to the outer surface of the material (Cu) and the exposed internal surface (base surface)
  • the lead-containing copper-based metal (Cu) is completely separated from the outer plating surface and the inner exposed surface (substrate surface) and released into water. That is, at this time, not only hexavalent chromium is present on the outer plating surface and the internally exposed surface (base surface) of the lead-containing copper-based metal material (Cu), but all trivalent chromium is also removed and completely present. It will be in a state that does not. In particular, at this time, trivalent chromium that tends to remain in pinholes and cracks existing on the surface of the inner substrate, or small gaps (micro gaps) or complex gaps (complex shape gaps) existing between internal parts, etc.
  • sodium hyposulfite Na 2 S 2 O 3
  • sodium hyposulfite Na 2 S 2 O 3
  • hexavalent chromium is present in the water in the recovery tank.
  • trivalent chromium is present in the reducing agent aqueous solution in the reducing tank.
  • washing step S45 trivalent chromium is present in the water of the washing tank. Therefore, although not shown, the wastewater treatment process as described in the first embodiment is required for the drainage of the recovery tank, the reduction tank, and the washing tank.
  • the lead-containing copper-based alloy material is sent to the surface modification treatment step S46, where the outer metal surface and internal exposure of the lead-containing copper-based metal material from which hexavalent chromium has been removed by the phosphoric acid film treatment.
  • the surface (base surface) is modified.
  • the lead-containing copper-based alloy material is immersed in a chemical conversion treatment tank in which a mixed acid aqueous solution having a predetermined temperature is stored for a predetermined time.
  • the mixed acid aqueous solution in the chemical conversion treatment layer in the surface modification treatment step S46 for example, the same solution as in Embodiment 1 can be used.
  • Various conditions such as the concentration of phosphoric acid and nitric acid in the mixed acid aqueous solution, the bath temperature, and the immersion time can be the same as in the first embodiment.
  • the lead-containing copper-based metal material By immersing the lead-containing copper-based metal material in the chemical conversion treatment tank storing an aqueous solution of a mixed acid containing phosphoric acid (orthophosphoric acid) and nitric acid at a predetermined concentration, the lead-containing metal material A phosphoric acid film with a predetermined film thickness is formed on the surface of the plating, and exhibits the expected functions such as anti-corrosion function and anti-discoloration function.
  • the changes in the outer plating surface and the internal exposed surface (substrate surface) of the lead-containing copper-based metal material (Cu) due to the reaction at this time can be explained schematically as shown in Fig. 4 (f).
  • the chromium plating reacts with phosphoric acid to form a predetermined phosphoric acid film (H PO). It is guessed.
  • a predetermined phosphate film is also applied to the internal exposed surface or substrate surface (internally exposed surface or substrate surface in which hexavalent chromium and trivalent chromium are not present at all).
  • the phosphoric acid film is formed on the surface of the lead-containing copper-based metal material by, for example, the following reaction formula. When it is done, you can ignore it.
  • the zero-valent chromium film on the outer surface of the lead-containing copper-based metal material reacts with phosphoric acid, and finally the lead-containing copper-based metal material It is thought that a chromium phosphate (CrPO) and orthophosphoric acid (HPO) film is formed on the outer surface of (Cu).
  • the surface modification treatment (i-formation treatment) of the copper or copper alloy in the surface modification treatment step S46 is performed as the following reaction formula as described in the first embodiment. You can also do this. (l) 4Cu + 4HNO ⁇ 4Cu 2+ + 2H O + 30 + 4NO ⁇ ⁇
  • the lead-containing copper-based metal material is subjected to a phosphoric acid film treatment in the surface modification treatment step S46, then lifted from the chemical conversion treatment tank, and sent to the first water washing step S47 after the surface modification treatment step S46. After being soaked in the eleventh rinsing tank for a predetermined time and then pulled up, it is further sent to the second rinsing step S48 after the surface modification process S46 and after being soaked in the twelfth rinsing tank for a predetermined time. Be raised.
  • the mixed acid component force adhering to the plating surface and internally exposed surface (base surface) of the lead-containing copper-based metal material is removed by sequential water-washing in the two water-washing steps S47 and S48, and the lead-containing copper-based metal material The plating surface and internal exposed surface (base surface) are cleaned.
  • the lead-containing copper-based metal material is sent to the discoloration prevention treatment step S49, where it is stored in a discoloration prevention treatment tank storing a discoloration prevention agent such as an antifungal aqueous solution.
  • a discoloration prevention agent such as an antifungal aqueous solution.
  • the plating surface and the internal exposed surface (base surface) are treated to prevent or discolor.
  • an antifungal agent or a corrosion / discoloration inhibitor at this time for example, benzotriazole (CHN) can be used as in the first embodiment.
  • Discoloration prevention treatment Step S49 can be omitted as necessary.
  • the lead-containing copper-based metal material is pulled up from the discoloration prevention treatment tank after the discoloration prevention treatment step S49, sent to the water washing step S50, and after being immersed in the water washing tank for a predetermined time, it is pulled up.
  • the discoloration inhibitor component adhering to the plating surface and internal exposed surface (base surface) of the lead-containing copper-based metal material is removed by washing in a water washing tank, and the plating surface and internal exposed surface of the lead-containing copper-based metal material are removed.
  • the substrate surface is cleaned.
  • the water washing step S50 can be omitted when necessary, such as when the anti-discoloration treatment step S49 is omitted.
  • the lead-containing copper-based metal material is lifted from the discoloration prevention treatment tank after the water washing step S50 after the discoloration prevention treatment step S49, and sent to the hot water washing step S51 and rinsed with water in the same manner as in the first embodiment. Then, it is sent to the drying step S52 and forcedly dried with hot air or the like. As a result, the discoloration inhibitor component, etc. adhering to the outer skinned surface and the internal exposed surface (base surface) is removed in the hot water bath, and the outer plating surface and the internal exposed surface (base surface) are completely removed. To be cleaned.
  • hexavalent chromium-free surface treatment method for lead-containing copper-based metallic materials according to Embodiment 2, hexavalent chromium exists in the form of stable ions, both acidic and alkaline. Focusing on the properties, in the hexavalent chromium removal step S44, the lead-containing copper-based metal material is immersed in the reducing agent aqueous solution in the reduction tank, and the hexavalent chromium on the outer plating surface and the internal exposed surface (base surface) is trivalent chromium.
  • the hexavalent chromium is selectively dissolved and removed from the outer plating surface and the inner exposed surface (substrate surface) of the lead-containing copper-based metal material by reducing it to elution in the reduction tank. Furthermore, in the surface modification treatment step S45, a lead-containing copper-based metal material is immersed in a mixed acid aqueous solution in a chemical conversion treatment tank to form a phosphate film on the outer plating surface and the inner exposed surface (substrate surface). Further improve the corrosion resistance (discoloration resistance) of the outer plating surface and internal exposed surface (base surface) of the lead-containing copper-based metal material after removal.
  • the hexavalent chromium-free surface treatment method for lead-containing copper-based metal materials according to Embodiment 2 reliably prevents lead elution after commercialization in metal products made of lead-containing copper-based metal materials.
  • the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the outer plating surface and the inner exposed surface (base surface) can be further improved to prevent discoloration and the like.
  • pinholes and cracks that exist on the surface of internal substrates such as faucet fittings that are lead-containing, similar metal materials, or small gaps (micro gaps) that exist between internal parts, etc.
  • the hexavalent chromium film that tends to remain on the pinholes, cracks, smile gaps and complex shape gap force is completely removed. As a result, it is possible to completely prevent the possibility of elution or leaching of hexavalent chromium.
  • the embodiment
  • the hexavalent chromium-free surface treatment method for lead-containing copper-based metallic materials according to No. 2 can completely remove hexavalent chromium, which is an environmentally hazardous substance, and also provides a surface treatment method for environmentally-adapted copper alloys that have excellent corrosion resistance. Can be suitably used. In addition, conventional surface treatment plants for water supplies can be used as they are, and costs do not increase.
  • the present invention can be widely applied to surface treatment applications for materials such as automobile parts-building materials 'home appliances' hardware, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

A product made from a lead-containing metal material wherein dissolution of lead from the finished product is surely prevented while suppressing dissolution of hexavalent chromium to zero and improving the corrosion resistance of the surface, thereby surely preventing discoloration or the like. Specifically disclosed is a hexavalent chromium-free surface treating method comprising a chromic acid treatment step wherein the surface of a lead-containing metal material is treated with a chromic acid for dissolving and removing lead in the surface; a hexavalent chromium-removing step for completely removing hexavalent chromium as a coating over the surface of the lead-containing metal material which is formed in the previous chromic acid treatment step by using a reduction aqueous solution containing a reducing agent for the chromic acid; and a surface-modifying step for modifying the surface of the lead-containing metal material from which hexavalent chromium has been removed. This surface treating method can be applied to nickel-chromium (NiCr) plating or industrial chromium (Cr) plating for various metals other than lead-containing metal materials and plastic (various resin) materials, or products for various uses which are made from materials subjected to various surface treatments using hexavalent chromium.

Description

明 細 書  Specification
六価クロムフリー表面処理方法及び六価クロムフリー鉛含有銅系金属材 技術分野  Hexavalent chromium-free surface treatment method and hexavalent chromium-free lead-containing copper-based metal material
[0001] 本発明は、鉛含有銅系金属材を初めとする各種金属材またはその他の基材の六 価クロムフリー表面処理方法及び六価クロムフリー鈴含有銅系金属材に関し、特に、 水栓金具'継手 '配管部品等の水道用品の素材として使用される快削黄銅等の鉛含 有銅系金属材 (純銅及び各種銅合金)や、クロムメツキした銅系金属材の表面処理 過程でその表面に残留する六価クロムを完全に除去すると共に、その表面改質をも 可能にする鉛含有銅系金属材を初めとする各種金属材またはその他の基材の六価 クロムフリー表面処理方法及び六価クロムフリー鈴含有銅系金属材に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a hexavalent chromium-free surface treatment method for various metal materials including lead-containing copper-based metal materials or other base materials, and a hexavalent chromium-free bell-containing copper-based metal material. Brackets 'joints' Lead-containing copper-based metal materials such as free-cutting brass (pure copper and various copper alloys) used as materials for plumbing and other water supply products, and surface treatment during the surface treatment of chrome-plated copper-based metal materials The hexavalent chromium-free surface treatment method for various metal materials such as lead-containing copper-based metal materials and other base materials that can completely remove the hexavalent chromium remaining on the surface and also enable surface modification thereof, and It relates to a copper-based metal material containing a chromium-free bell. Background art
[0002] 従来から、水栓金具'継手,配管部品等の水道用品は、一般に、青銅、黄銅等の銅 合金を铸造又は鍛造し、切削加工、研磨加工等で所望形状に整形し、整形後の铸 造品若しくは鍛造品、または、整形後の铸造品若しくは鍛造品にニッケルクロムメツキ を施したクロムメツキ铸造品若しくはクロムメツキ鍛造品として提供されている。  [0002] Conventionally, water supply fittings such as faucet fittings, joints, and piping parts are generally manufactured by forging or forging a copper alloy such as bronze or brass, and shaping it into a desired shape by cutting, polishing, etc. Forged products or forged products, or chrome plated forged products or chrome plated forged products in which nickel chrome plating is applied to a shaped or forged product after shaping.
[0003] また、水道用品の銅合金としては、製造過程中の切削加工の際に銅合金の切削性 を向上させるために、銅合金 (特に黄銅)中に鉛を添加した鉛含有銅合金 (特に快削 黄銅)が使用されている。しかし、昨今の環境規制の動向から、製品化後の水道用品 力 の鉛の溶出が問題視されるようになり、水道用品から鉛を除去する鉛除去乃至 鉛フリー (NPb)表面処理技術が開発されている。  [0003] In addition, as a copper alloy for water supplies, a lead-containing copper alloy in which lead is added to a copper alloy (especially brass) in order to improve the machinability of the copper alloy during cutting during the manufacturing process ( In particular, free-cutting brass) is used. However, due to recent trends in environmental regulations, the elution of lead in water supplies after commercialization has become a problem, and lead removal or lead-free (NPb) surface treatment technology has been developed to remove lead from water supplies. Has been.
力かる NPb表面処理に関する文献としては、例えば、特許文献 1に記載の技術が ある。  For example, there is a technique described in Patent Document 1 as a document related to NPb surface treatment.
特許文献 1:特開 2000— 96269  Patent Document 1: JP 2000-96269
[0004] 特許文献 1には、鉛含有銅合金素材の表面にクロメート処理を行 ヽ、クロメート皮膜 を形成することによって鉛溶出を防止する処理方法が開示されている。この処理方法 によれば、鉛含有銅合金を、リン酸を添加したクロメート液に浸漬している。この処理 方法によれば、クロメート液に含まれるクロム酸とリン酸の相乗効果により、鉛含有銅 合金が溶解する化学反応と、クロメート被膜を形成する化学反応が生じて鉛含有銅 合金素材表面に僅かに残った鉛も溶解除去され、しかも鉛を除去した鉛含有銅合金 材表面がクロメート被膜で保護されて、鉛除去後の鉛含有銅合金材表面が長期間の 通水による腐食で内部の鉛が溶け出したりせず、長期間に渉って鉛の溶出を低減す ることができるとされている。 [0004] Patent Document 1 discloses a treatment method for preventing lead elution by performing chromate treatment on the surface of a lead-containing copper alloy material and forming a chromate film. According to this treatment method, the lead-containing copper alloy is immersed in a chromate solution to which phosphoric acid has been added. According to this treatment method, lead-containing copper is produced by the synergistic effect of chromic acid and phosphoric acid contained in the chromate solution. The chemical reaction that dissolves the alloy and the chemical reaction that forms the chromate film occur, and the lead remaining on the surface of the lead-containing copper alloy material is also dissolved and removed. If the lead-containing copper alloy material surface after the removal of lead is protected, corrosion of the lead-containing copper alloy due to long-term water corrosion does not cause internal lead to dissolve, and lead elution can be reduced over a long period of time. Has been.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、特許文献 1に記載の技術では、 NPb処理により銅合金表面の鉛を除 去し、製品化力 の鉛の溶出を低減することは可能になる一方、製品表面にクロメー ト皮膜を形成することになる。このクロメート皮膜は、六価クロム (C +)と三価クロム( Cr3+)とを主成分とするゲル状の複合水和酸化物皮膜 (XCr O -YCrO ·ΖΗ Ο)で [0005] However, with the technology described in Patent Document 1, it is possible to remove lead on the surface of the copper alloy by NPb treatment and reduce the elution of lead due to productization power. A chromate film will be formed. This chromate film is a gel-like complex hydrated oxide film (XCr O -YCrO · ΖΗ Ο) mainly composed of hexavalent chromium (C +) and trivalent chromium (Cr 3+ ).
2 3 3 2 あり、優れた防食性能を発揮すると共に、六価クロムの一部は六価のまま皮膜に取り 込まれ、防鲭力と自己修復力を併せ持つ特徴を持つ。しかし、六価クロムは、環境負 荷物質であり、発癌性の疑いがあるなど人体に有害であるとの理由から、日本ゃ欧 米を中心にクロメート皮膜に代わる代替皮膜乃至代替表面処理が強く要望され、各 種の代替技術が提案されている。また、六価クロムは、鉛と同様、 2006年 7月 1日に 施行される電子 ·電子機器に含まれる特定有害物質の使用制限 (RoHS)指令により 特定有害物質に指定されており、このことからも、最終製品力 六価クロムを溶出させ ることのな 、表面処理技術の開発が望まれて 、る。  2 3 3 2 With excellent anti-corrosion performance, part of hexavalent chromium is incorporated into the film as it is hexavalent, and has both anti-fouling and self-healing capabilities. However, because hexavalent chromium is an environmentally hazardous substance and is harmful to the human body, such as suspected carcinogenicity, Japan has a strong alternative film or surface treatment to replace the chromate film mainly in Europe and the United States. Various alternative technologies have been proposed. Hexavalent chromium, like lead, is designated as a specified hazardous substance by the Restriction of Use of Specific Hazardous Substances (RoHS) Directive that is enforced on July 1, 2006. Therefore, the development of surface treatment technology without elution of the final product strength hexavalent chromium is desired.
[0006] なお、水道用品以外にも、自動車 ·建築材料 ·家具,金物等に用いられる各種金属 及びプラスチック(各種榭脂)材のニッケルクロム (NiCr)メツキ及び工業用クロム(Cr )メツキ、または、六価クロムを使用する各種表面処理においては、耐食性の向上、変 色防止(防食)等を目的としてクロメート処理を行う場合がある。し力しながら、上記の ように、昨今の環境問題への関心の高まりや国内外の法規制、特に、 2006年 7月か ら適用される欧州連合 (EU)の有害物質規制、電気 ·電子機器に使われる特定有害 物質の使用制限 (RoHS)指令、それに伴っての自主規制等により、これらの分野に おいても、最終製品からの環境負荷物質である六価クロムが溶出することのない表面 処理技術の開発が早急に求められている。 [0007] 現在、六価クロムによるクロメート処理の代替技術としては、(1)三価クロムを使用し たクロメート処理、 (2)三価クロムを使用したクロメート層に追加コーティング層を施す 処理、(3)無機系ノンクロメート処理、(4)有機系ノンクロメート処理等が提案されてい る。このうち無機系ノンクロメート処理については、チタン系、ジルコニウム系、モリブ デン系、マンガン系、セリウム系の各表面処理が、また、有機系ノンクロメート処理で は、シランカップリング剤を主剤とした表面処理が提案されて 、る。 [0006] In addition to water supplies, nickel-chrome (NiCr) plating and industrial chromium (Cr) plating for various metals and plastics (various grease) used in automobiles, building materials, furniture, hardware, etc., or In various surface treatments using hexavalent chromium, chromate treatment may be performed for the purpose of improving corrosion resistance and preventing discoloration (anticorrosion). However, as mentioned above, there has been a growing interest in environmental issues in recent years, domestic and overseas laws and regulations, especially the European Union (EU) hazardous substance regulations applied from July 2006, electrical and electronic Due to the Restriction on the Use of Specific Hazardous Substances Used in Equipment (RoHS) Directive and accompanying voluntary regulations, hexavalent chromium, which is an environmentally hazardous substance from the final product, will not be eluted in these fields. The development of surface treatment technology is urgently required. [0007] Currently, alternative technologies for chromate treatment with hexavalent chromium include (1) chromate treatment using trivalent chromium, (2) treatment for applying an additional coating layer to the chromate layer using trivalent chromium, ( 3) Inorganic non-chromate treatment, (4) Organic non-chromate treatment, etc. have been proposed. Of these, inorganic nonchromate treatments include titanium, zirconium, molybdenum, manganese, and cerium surface treatments, and organic nonchromate treatments use silane coupling agents as the main component. Processing is proposed.
[0008] ここで、三価クロムを使用したクロメート処理技術として、例えば、特許文献 2に記載 の技術がある。  [0008] Here, as a chromate treatment technique using trivalent chromium, for example, there is a technique described in Patent Document 2.
特許文献 2:特開 2004 -60051  Patent Document 2: JP 2004-60051
[0009] 特許文献 2には、家電 '建材'自動車等の用途に広く適用可能で、加熱後の耐食 性に優れ、かつ環境負荷物質である 6価クロムの溶出がゼロであるめつき鋼材が開 示されている。この技術は、部分還元クロム酸、リン酸化合物、硝酸化合物を必須成 分とし、かつ、部分還元クロム酸のクロム還元率 (X)と各成分の浴中濃度の間に、所 定の関係を有する組成物をめつき鋼材に塗布、乾燥する。  [0009] Patent Document 2 discloses a steel plate that can be widely applied to household appliances 'building materials' for automobiles, etc., has excellent corrosion resistance after heating, and has zero elution of hexavalent chromium, which is an environmentally hazardous substance. It is disclosed. In this technology, partially reduced chromic acid, phosphoric acid compound, and nitric acid compound are essential components, and there is a predetermined relationship between the chromium reduction rate (X) of partially reduced chromic acid and the concentration of each component in the bath. The composition is applied to the steel plate and dried.
[0010] しカゝしながら、特許文献 2の技術を含め、三価クロムを使用したクロメート処理は、六 価クロメート処理と比較して、コストが高ぐ耐食性が低くなるという問題がある。また、 特許文献 2に記載の技術は、表面にオール三価クロムの皮膜が形成されて 、るが、 時間の経過と共に、皮膜を構成する三価クロムが外部との反応等により六価クロムに 変質する可能性を否定できない。更に、特許文献 2に記載の技術は、鋼材用表面処 理に関するもので、特に、鉛含有銅系金属の表面処理において、六価クロムの溶出 防止に先立ち、同じく環境負荷物質である鉛の溶出を防止する点については開示も 示唆もない。一方、その他の代替技術、即ち、ノンクロメート処理技術では、現在まで 使用していた表面処理装置や工程をそのまま利用することができず、設備投資に多 大なコストがかかる。  [0010] However, the chromate treatment using trivalent chromium including the technique of Patent Document 2 has a problem that the cost is higher and the corrosion resistance is lower than that of the hexavalent chromate treatment. In the technique described in Patent Document 2, an all-trivalent chromium film is formed on the surface. Over time, the trivalent chromium constituting the film becomes hexavalent chromium by reaction with the outside. The possibility of alteration cannot be denied. Furthermore, the technology described in Patent Document 2 relates to the surface treatment for steel materials, and in particular, the elution of lead, which is also an environmentally hazardous substance, in the surface treatment of lead-containing copper-based metals prior to the elution of hexavalent chromium. There is no disclosure or suggestion about the point to prevent this. On the other hand, with other alternative technologies, that is, non-chromate treatment technology, the surface treatment equipment and processes that have been used up to now cannot be used as they are, and the capital investment is very expensive.
[0011] 特に、給水器具である混合水栓やシングルレバー水栓等の水栓装置や各種弁装 置等は、多数の部品を組み合わせた複雑な内部構造を有しており、内部の部品間 等に小さい隙間 (微小間隙)や複雑形状の隙間 (複雑形状間隙)が多数形成される。 また、内部表面に小さなクラックが多数存在したり、鉛の溶出除去箇所に小さなピン ホールが存在したりする。よって、これらの微小間隙や複雑間隙、または、クラックや ピンホール等に、溶出したクロムが残存する可能性が高い。よって、これらの残存す る六価クロムを完全に除去しないと、水栓装置の使用に伴い、六価クロムが溶出また は浸出する可能性がある。 [0011] In particular, a water faucet device such as a mixing faucet or a single lever faucet or various valve devices, etc., which has a complicated internal structure combining a number of parts, A large number of small gaps (small gaps) and complex-shaped gaps (complex shape gaps) are formed. Also, there are many small cracks on the inner surface, and small pins There are holes. Therefore, there is a high possibility that the eluted chromium remains in these minute gaps, complicated gaps, cracks, pinholes, and the like. Therefore, unless these remaining hexavalent chromium is completely removed, hexavalent chromium may be eluted or leached with the use of the faucet device.
[0012] そこで、本発明は、鉛含有金属等の各種金属及びプラスチック (各種榭脂)材の- ッケルクロム (NiCr)メツキ及び工業用クロム(Cr)メツキ、または、六価クロムを使用す る各種表面処理を実施した素材力 なる各種用途の製品において、鉛含有金属材 においては製品化後の鉛の溶出を確実に防止できると共に、全ての場合において 六価クロムの溶出量をゼロとすることができ、かつ、銅系金属材等の金属材の場合は 表面の耐食性を向上して変色等を確実に防止することができる鉛含有銅系金属材を 初めとする各種金属材またはその他の基材の六価クロムフリー表面処理方法及び六 価クロムフリー鈴含有銅系金属材の提供を課題とする。 課題を解決するための手段  [0012] Therefore, the present invention relates to various metals that use nickel chrome (NiCr) plating and industrial chromium (Cr) plating, or hexavalent chromium of various metals such as lead-containing metals and plastics (various grease) materials. In products of various uses that have surface treatment, lead-containing metal materials can reliably prevent the elution of lead after commercialization, and in all cases, the elution amount of hexavalent chromium should be zero. In the case of metal materials such as copper-based metal materials, various metal materials such as lead-containing copper-based metal materials and other base materials that improve surface corrosion resistance and can reliably prevent discoloration, etc. And providing a hexavalent chromium-free surface treatment method and a hexavalent chromium-free bell-containing copper-based metal material. Means for solving the problem
[0013] 請求項 1に係る鉛含有金属材の六価クロムフリー表面処理方法は、鉛含有金属材 の表面をクロム酸により処理し、表面部分の鉛を溶出除去するクロム酸処理工程と、 クロム酸用還元剤を含有する還元水溶液により、前記クロム酸処理工程で前記鉛含 有金属材の表面に形成された皮膜成分としての六価クロムを完全に除去する六価ク ロム除去工程と、六価クロムを除去した前記鉛含有金属材の表面を改質する表面改 質処理工程とを備える。  [0013] A hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 1 includes a chromic acid treatment step of treating the surface of the lead-containing metal material with chromic acid and eluting and removing lead on the surface portion; A hexavalent chromium removing step for completely removing hexavalent chromium as a film component formed on the surface of the lead-containing metal material in the chromic acid treatment step with a reducing aqueous solution containing an acid reducing agent; A surface modification treatment step for modifying the surface of the lead-containing metal material from which the valent chromium has been removed.
[0014] ここで、鉛含有金属材の表面とは、管材等、内部に空間または露出部を有する金 属材の場合、その外部表面以外にその内部表面をも含む。例えば、鉛含有金属材と して、黄銅等力 なる水栓金具や水道配管用部品等を使用した場合、その外部表面 のみならず、その内部表面若しくは内部表面露出部にも、前記クロム酸エッチングェ 程の処理や前記六価クロム除去工程の処理や前記表面改質処理工程の処理が施さ れることになる。また、鉛含有金属材の内部表面には、微小間隙や複雑形状間隙、ク ラックやピンホール等も含まれるが、かかる微小間隙や複雑形状間隙、クラックやピン ホール等にも、前記クロム酸エッチング工程の処理や前記六価クロム除去工程の処 理ゃ前記表面改質処理工程の処理が施されることになる。 [0015] 請求項 2に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 1の構 成において、前記六価クロム除去工程が、クロム酸用還元剤の水溶液中に前記鉛含 有金属材を所定時間浸漬することにより、前記鉛含有金属材表面を還元するもので ある。 [0014] Here, in the case of a metal material having a space or an exposed portion inside, such as a pipe material, the surface of the lead-containing metal material includes not only its outer surface but also its inner surface. For example, in the case of using brass faucet fittings or water pipe parts as lead-containing metal materials, the chromic acid etching is applied not only to the external surface but also to the internal surface or the exposed internal surface. The process of the process, the process of the hexavalent chromium removal process, and the process of the surface modification process are performed. In addition, the internal surface of the lead-containing metal material also includes minute gaps, complex-shaped gaps, cracks, pinholes, etc., and the chromic acid etching is also applied to such minute gaps, complex-shaped gaps, cracks, pinholes, etc. The process of the process and the process of the hexavalent chromium removing process are performed by the process of the surface modification process. [0015] A hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 2 is characterized in that, in the configuration of claim 1, the hexavalent chromium removing step includes the step of containing the lead in an aqueous solution of a reducing agent for chromic acid. The surface of the lead-containing metal material is reduced by immersing the metal material for a predetermined time.
[0016] 請求項 3に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 1または 2の構成において、前記六価クロム除去工程力 クロム酸用還元剤の水溶液中に前 記鉛含有金属材を所定時間浸漬することにより、前記鉛含有金属材表面の六価クロ ムを三価クロムに還元するものであり、更に、前記六価クロム除去工程と前記表面改 質処理工程との間に、前記鉛含有金属材の表面に残留する三価クロムを水洗により 完全に分離除去する水洗工程を備える。  [0016] The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 3 is characterized in that, in the configuration of claim 1 or 2, the hexavalent chromium removing process power is added to the aqueous solution of the reducing agent for chromic acid. The hexavalent chromium on the surface of the lead-containing metal material is reduced to trivalent chromium by immersing the contained metal material for a predetermined time. Further, the hexavalent chromium removing step and the surface modification treatment step are performed. In the meantime, a water washing step of completely separating and removing trivalent chromium remaining on the surface of the lead-containing metal material by water washing is provided.
[0017] 請求項 4に係る鉛含有金属材の六価クロムフリー処理方法は、請求項 1乃至 3のい ずれかの構成において、前記クロム酸用還元剤が、次亜硫酸ナトリウム、亜ニチオン 酸ナトリウム、チォ硫酸ナトリウム、亜硫酸ナトリウムのいずれか一つまたはこれらの混 合物からなる。  [0017] The hexavalent chromium-free treatment method for a lead-containing metal material according to claim 4 is the method according to any one of claims 1 to 3, wherein the reducing agent for chromic acid is sodium hyposulfite or sodium nitrite. , Sodium thiosulfate, sodium sulfite, or a mixture thereof.
[0018] 請求項 5に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 1 乃至 4のいずれかの構成において、前記表面改質処理工程が、リン酸と硝酸とを主 材として含有する混酸の水溶液を貯留した化成処理槽に前記鉛含有金属材を所定 時間浸漬することにより、前記鉛含有金属材の表面にリン酸皮膜を形成するものであ る。  [0018] A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 5 is the structure according to any one of claims 1 to 4, wherein the surface modification treatment step comprises phosphoric acid and nitric acid. By immersing the lead-containing metal material for a predetermined time in a chemical conversion treatment tank storing a mixed acid aqueous solution contained as a main material, a phosphate film is formed on the surface of the lead-containing metal material.
[0019] 請求項 6に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、鉛含有銅 系金属材の素地表面をクロム酸によりエッチング処理し、前記鉛含有銅系金属材の 素地表面部分の鉛を溶出除去するクロム酸エッチング工程と、クロム酸用還元剤の 水溶液により、前記クロム酸エッチング工程で前記鉛含有銅系金属材の素地表面に 形成された皮膜成分としての六価クロムを完全に除去する六価クロム除去工程と、六 価クロムを除去した前記鉛含有銅系金属材の素地表面を改質する表面改質処理工 程とを備える。  [0019] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 6 includes etching the surface of the base material of the lead-containing copper-based metal material with chromic acid, Hexavalent chromium as a coating component formed on the base surface of the lead-containing copper-based metal material in the chromic acid etching step by an chromic acid etching step for eluting and removing lead from the surface portion and an aqueous solution of a reducing agent for chromic acid A hexavalent chromium removing step that completely removes hexavalent chromium, and a surface modifying treatment step that modifies the substrate surface of the lead-containing copper-based metal material from which hexavalent chromium has been removed.
[0020] ここで、鉛含有銅系金属材の表面とは、管材等、内部に空間または露出部を有す る金属材の場合、その外部表面以外にその内部表面をも含む。例えば、鉛含有銅系 金属材として、黄銅等力 なる水栓金具や水道配管用部品等を使用した場合、その 外部表面のみならず、その内部表面若しくは内部表面露出部にも、前記クロム酸ェ ツチング工程の処理や前記六価クロム除去工程の処理や前記表面改質処理工程の 処理が施されることになる。 [0020] Here, the surface of the lead-containing copper-based metal material includes the internal surface in addition to the external surface in the case of a metal material having a space or an exposed portion inside such as a tube material. For example, lead-containing copper When metal faucets such as brass fittings or water pipe parts are used as the metal material, not only the external surface but also the internal surface or the exposed internal surface are treated with the chromic acid etching process or the The hexavalent chromium removal process and the surface modification process are performed.
[0021] 請求項 7に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 6の構 成において、前記六価クロム除去工程が、クロム酸用還元剤の水溶液中に前記鉛含 有銅系金属材を所定時間浸漬することにより、前記鉛含有銅系金属材の素地表面を 還元するものである。  [0021] A hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 7 is the configuration according to claim 6, wherein the hexavalent chromium removing step includes the lead-containing metal material in an aqueous solution of a reducing agent for chromic acid. The base surface of the lead-containing copper-based metal material is reduced by immersing the copper-based metal material for a predetermined time.
[0022] 請求項 8に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 6または 7の構成において、前記六価クロム除去工程力 クロム酸用還元剤の水溶液中に前 記鉛含有銅系金属材を所定時間浸漬することにより、前記鉛含有銅系金属材の素 地表面の六価クロムを三価クロムに還元するものであり、更に、前記六価クロム除去 工程と前記表面改質処理工程との間に、前記鉛含有金属材の素地表面に残留する 三価クロムを水洗により完全に分離除去する水洗工程を備える。  [0022] The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 8 is characterized in that, in the configuration of claim 6 or 7, the hexavalent chromium-removing step force is contained in an aqueous solution of a reducing agent for chromic acid. A hexavalent chromium on the surface of the lead-containing copper-based metal material is reduced to trivalent chromium by immersing the contained copper-based metal material for a predetermined time, and further, the hexavalent chromium removing step and the surface A water washing step is provided between the reforming treatment step and the trivalent chromium remaining on the surface of the lead-containing metal material completely separated by water washing.
[0023] 請求項 9に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、鉛含有銅 系金属材にクロムメツキ層を形成するクロムメッキエ程と、前記鉛含有銅系金属材の 製品内部または内部金属露出部の鉛を溶出除去するクロム酸エッチング工程と、ク ロム酸用還元剤の水溶液により、前記クロム酸エッチング工程またはクロムメツキ工程 で前記鉛含有銅系金属材の表面に形成された皮膜成分としての六価クロムを完全 に除去する六価クロム除去工程と、六価クロムを除去した前記鉛含有銅系金属材の 表面を改質する表面改質処理工程とを備える。  [0023] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 9 includes a chromium plating step for forming a chromium plating layer on the lead-containing copper-based metal material, and a product interior of the lead-containing copper-based metal material. Alternatively, a coating formed on the surface of the lead-containing copper-based metal material in the chromic acid etching step or the chrome plating step by a chromic acid etching step for eluting and removing lead from the exposed internal metal portion and an aqueous solution of a reducing agent for chromic acid A hexavalent chromium removing step for completely removing hexavalent chromium as a component, and a surface modifying treatment step for modifying the surface of the lead-containing copper-based metal material from which hexavalent chromium has been removed.
[0024] ここで、前記クロムメツキ工程と前記クロム酸エッチング工程とは、通常、同時に実施 される。即ち、被処理体としての鉛含有銅系金属材にクロムメツキ処理を施すと同時 に、クロム酸によるエッチング処理を施す。また、鉛含有銅系金属材の表面とは、管 材等、内部に空間または露出部を有する金属材の場合、その外部表面以外にその 内部表面をも含む。例えば、鉛含有銅系金属材として、黄銅等からなる水栓金具や 水道配管用部品等を使用した場合、ニッケルメツキやクロムメツキは前記外部表面に のみ形成され、その内部表面 (製品内部)は、黄銅の素地が露出する内部金属露出 部となる。よって、前記クロム酸エッチング工程の処理は、前記内部表面露出部に施 されて、鉛含有銅系金属材の製品内部または内部表面露出部からの鉛の溶出を防 止する。更に、前記六価クロム除去工程は、鉛含有銅系金属材の外部表面のみなら ず、その内部表面、即ち、製品内部または内部金属露出部にも施される。即ち、鉛含 有銅系金属材の製品内部または内部金属露出部にも、クロムメツキ処理やクロム酸 エッチング処理に伴って六価クロム皮膜が形成されることになるため、前記六価クロ ム除去工程の処理は、鉛含有銅系金属材の外部表面 (メツキ表面)のみならず、製 品内部または内部表面露出部(素地表面)にも施されることになる。更にまた、前記 表面改質処理工程の処理は、鉛含有銅系金属材の外部表面 (メツキ表面)のみなら ず、製品内部または内部表面露出部(素地表面)にも施されることになる。 [0024] Here, the chrome plating step and the chromic acid etching step are usually performed simultaneously. That is, the lead-containing copper-based metal material as the object to be processed is subjected to a chrome plating process and at the same time an etching process using chromic acid. In addition, the surface of the lead-containing copper-based metal material includes the inner surface in addition to the outer surface in the case of a metal material having a space or an exposed portion inside such as a pipe material. For example, when a faucet fitting made of brass or the like or a water pipe component is used as a lead-containing copper-based metal material, nickel plating and chromium plating are formed only on the outer surface, and the inner surface (inside the product) Internal metal exposure with exposed brass substrate Part. Therefore, the treatment of the chromic acid etching step is performed on the exposed internal surface portion to prevent the elution of lead from the inside or the exposed internal surface portion of the lead-containing copper-based metal material. Furthermore, the hexavalent chromium removing step is performed not only on the outer surface of the lead-containing copper-based metal material, but also on the inner surface thereof, that is, the inside of the product or the exposed portion of the inner metal. That is, a hexavalent chromium film is formed inside the product of the lead-containing copper-based metal material or in the exposed internal metal part due to the chromium plating treatment or the chromic acid etching treatment. This treatment is applied not only to the external surface (plated surface) of the lead-containing copper-based metal material but also to the inside of the product or the exposed internal surface (base surface). Furthermore, the treatment in the surface modification treatment step is performed not only on the outer surface (plated surface) of the lead-containing copper-based metal material but also on the inside of the product or the exposed inner surface (base surface).
[0025] 請求項 10に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 9 の構成において、前記六価クロム除去工程力 クロム酸用還元剤の水溶液中に前記 鉛含有銅系金属材を所定時間浸漬することにより、前記鉛含有銅系金属材の表面を 還元するものである。  [0025] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 10 is characterized in that, in the configuration of claim 9, the hexavalent chromium-removing process power is contained in an aqueous solution of a reducing agent for chromic acid. The surface of the lead-containing copper-based metal material is reduced by immersing the copper-based metal material for a predetermined time.
[0026] 請求項 11に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 9 または 10の構成において、前記六価クロム除去工程力 クロム酸用還元剤の水溶液 中に前記鉛含有銅系金属材を所定時間浸漬することにより、前記鉛含有銅系金属 材の表面の六価クロムを三価クロムに還元するものであり、更に、前記六価クロム除 去工程と前記表面改質処理工程との間に、前記鉛含有金属材の表面に残留する三 価クロムを水洗により完全に分離除去する水洗工程を備え、これにより、前記鉛含有 銅系金属材の表面を、前記クロムメツキ層のクロムメツキカゝらなる零価のクロム表面に する。  [0026] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 11 is characterized in that, in the configuration of claim 9 or 10, the hexavalent chromium removing step force is contained in an aqueous solution of a reducing agent for chromic acid. By immersing the lead-containing copper-based metal material for a predetermined time, the hexavalent chromium on the surface of the lead-containing copper-based metal material is reduced to trivalent chromium. Further, the hexavalent chromium removing step and the surface A water washing step for completely separating and removing trivalent chromium remaining on the surface of the lead-containing metal material by water washing between the reforming treatment step, whereby the surface of the lead-containing copper-based metal material is The surface of the chromium plating layer should be a zero-valent chromium surface, such as a chromium plating layer.
[0027] 請求項 12に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 1 1の構成において、前記六価クロム除去工程が、所定温度及び所定濃度に維持した クロム酸用還元剤の水溶液中に前記鉛含有銅系金属材を所定時間浸漬すること〖こ より、前記鉛含有銅系金属材表面の六価クロムを完全に除去して零価のクロム表面 にするものである。  [0027] A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 12 is the structure of claim 11, wherein the hexavalent chromium removing step is maintained at a predetermined temperature and a predetermined concentration. By immersing the lead-containing copper-based metal material in an aqueous solution of a reducing agent for a predetermined time, the hexavalent chromium on the surface of the lead-containing copper-based metal material is completely removed to obtain a zero-valent chromium surface. It is.
[0028] 請求項 13に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 または 9の構成において、前記六価クロム除去工程において、クロム酸用還元剤の水 溶液中に前記鉛含有銅系金属材を所定時間浸漬することにより、前記鉛含有銅系 金属材表面の六価クロムを三価クロムに還元して前記鉛含有銅系金属材表面力 分 離し、前記水溶液中に放出または溶放させる一方、前記六価クロム除去工程と前記 表面改質処理工程との間に、前記鉛含有銅系金属材表面に残留する三価クロムを 水洗により完全に分離除去する水洗工程を備える。 [0028] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 13 is characterized in that the claim 6 Alternatively, in the configuration of 9, the hexavalent chromium on the surface of the lead-containing copper-based metal material is immersed in the aqueous solution of the reducing agent for chromic acid for a predetermined time in the hexavalent chromium removing step. Chromium is reduced to trivalent chromium, separated from the surface strength of the lead-containing copper-based metal material, and released or released into the aqueous solution. On the other hand, between the hexavalent chromium removal step and the surface modification treatment step, A water washing step is provided for completely separating and removing trivalent chromium remaining on the surface of the lead-containing copper-based metal material by water washing.
[0029] 請求項 14に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 乃至 13のいずれかの構成において、前記クロム酸用還元剤が、次亜硫酸ナトリウム 、亜ニチオン酸ナトリウム、チォ硫酸ナトリウム、亜硫酸ナトリウムのいずれか一つまた はこれらの混合物力 なる。  [0029] A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 14 is the structure according to any one of claims 6 to 13, wherein the reducing agent for chromic acid is sodium hyposulfite or nithion. One of sodium acid, sodium thiosulfate, sodium sulfite, or a mixture thereof.
[0030] 請求項 15に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 乃至 14のいずれかの構成において、前記表面改質処理工程が、リン酸と硝酸とを主 材として含有する混酸の水溶液を貯留した化成処理槽に前記鉛含有銅系金属材を 所定時間浸漬することにより、前記鉛含有銅系金属材の表面にリン酸皮膜を形成す るものである。  [0030] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 15 is the structure according to any one of claims 6 to 14, wherein the surface modification treatment step comprises phosphoric acid and nitric acid. The lead-containing copper-based metal material is formed on the surface of the lead-containing copper-based metal material by immersing the lead-containing copper-based metal material for a predetermined time in a chemical conversion treatment tank storing an aqueous solution of mixed acid contained as a main material. .
[0031] 請求項 16に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 乃至 14のいずれかの構成において、前記表面改質処理工程が、リン酸が濃度約 2 〜5%、硝酸が濃度約 0. 5〜2%となるよう、前記リン酸と前記硝酸とを主材として含 有する混酸の水溶液中に前記鉛含有銅系金属材を所定時間浸漬することにより、前 記鉛含有銅系金属の表面にリン酸皮膜を形成するものである。  [0031] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 16 is the structure according to any one of claims 6 to 14, wherein the surface modification treatment step includes phosphoric acid at a concentration of about 2. By immersing the lead-containing copper-based metal material for a predetermined time in an aqueous solution of mixed acid containing phosphoric acid and nitric acid as main materials so that the concentration of nitric acid is about 0.5 to 2%. The phosphoric acid film is formed on the surface of the lead-containing copper-based metal.
[0032] 請求項 17に係る鉛含有銅系金属材は、メツキを施すことなく使用される六価クロム フリー鉛含有銅系金属材であって、鉛含有銅系金属材の表面部分の鉛をクロム酸ェ ツチング処理により溶出除去すると共に、前記クロム酸エッチング処理により前記鉛 含有銅系金属材の表面に形成された六価クロムを、クロム酸用還元剤水溶液による 還元処理により完全に除去した後、前記鉛含有銅系金属材の表面にリン酸皮膜を形 成してなる。  [0032] The lead-containing copper-based metal material according to claim 17 is a hexavalent chromium-free lead-containing copper-based metal material that is used without being subjected to plating. After elution and removal by the chromic acid etching treatment, hexavalent chromium formed on the surface of the lead-containing copper-based metal material by the chromic acid etching treatment is completely removed by a reduction treatment with a reducing agent aqueous solution for chromic acid. The phosphoric acid film is formed on the surface of the lead-containing copper-based metal material.
[0033] なお、鉛含有銅系金属材の表面とは、管材等、内部に空間または露出部を有する 金属材の場合、その外部表面以外にその内部表面をも含む。例えば、鉛含有銅系 金属材として、黄銅等力 なる水栓金具や水道配管用部品等を使用した場合、その 外部表面のみならず、その内部表面若しくは内部表面露出部にも、前記クロム酸ェ ツチング処理や前記六価クロムの除去処理が施され、前記リン酸皮膜が形成されるこ とになる。 [0033] The surface of the lead-containing copper-based metal material includes the inner surface in addition to the outer surface in the case of a metal material having a space or an exposed portion inside, such as a tube material. For example, lead-containing copper When metal faucet fittings or parts for water pipes are used as the metal material, not only the outer surface but also the inner surface or exposed portion of the inner surface, the chromate etching treatment and the hexavalent Chromium removal treatment is performed, and the phosphoric acid film is formed.
[0034] 請求項 18に係る鉛含有銅系金属材は、メツキを施して使用される六価クロムフリー 鉛含有銅系金属材であって、鉛含有銅系金属材の内部表面露出部または製品内部 の鉛をクロム酸エッチング処理により溶出除去すると共に、前記クロム酸エッチング処 理により前記鉛含有銅系金属材のメツキ表面に形成された六価クロムを、クロム酸用 還元剤水溶液による還元処理により完全に除去した後、前記鉛含有銅系金属材のメ ツキ表面にリン酸皮膜を形成してなる。  [0034] The lead-containing copper-based metal material according to claim 18 is a hexavalent chromium-free lead-containing copper-based metal material that is used with a texture, and is an exposed internal surface portion or product of the lead-containing copper-based metal material The lead inside is eluted and removed by the chromic acid etching process, and hexavalent chromium formed on the plating surface of the lead-containing copper-based metal material by the chromic acid etching process is reduced by an aqueous reducing agent solution for chromic acid. After complete removal, a phosphoric acid film is formed on the plating surface of the lead-containing copper-based metal material.
[0035] ここで、鉛含有銅系金属材の表面とは、管材等、内部に空間または露出部を有す る金属材の場合、その外部表面以外にその内部表面をも含む。例えば、鉛含有銅系 金属材として、黄銅等力 なる水栓金具や水道配管用部品等を使用した場合、二" ケルメツキやクロムメツキ等のメツキは前記外部表面にのみ形成され、その内部表面( 製品内部)は、黄銅の素地が露出する内部金属露出部となる。よって、前記クロム酸 エッチング処理は、前記内部表面露出部に施されて、鉛含有銅系金属材の製品内 部または内部表面露出部からの鉛の溶出を防止する。また、前記六価クロムの除去 処理は、鉛含有銅系金属材の外部表面のみならず、その内部表面、即ち、製品内 部または内部金属露出部にも施される。即ち、鉛含有銅系金属材の製品内部または 内部金属露出部にも、クロムメツキ処理やクロム酸エッチング処理に伴って六価クロム 皮膜が形成されることになるため、前記六価クロムの除去処理は、鉛含有銅系金属 材の外部表面 (メツキ表面)のみならず、製品内部または内部表面露出部(素地表面 )にも施されることになる。更に、前記リン酸皮膜の形成は、鉛含有銅系金属材の外 部表面 (メツキ表面)のみならず、製品内部または内部表面露出部(素地表面)にも 行なわれることになる。  [0035] Here, the surface of the lead-containing copper-based metal material includes the internal surface in addition to the external surface in the case of a metal material having a space or an exposed portion inside such as a tube material. For example, when brass-equipped faucets and water pipe parts are used as lead-containing copper-based metallic materials, the two-inch Kelmeki or chrome plating is formed only on the outer surface and the inner surface (product The internal chromic acid etching process is applied to the internal surface exposed part to expose the internal or internal surface of the lead-containing copper-based metal material. In addition, the hexavalent chromium removal treatment is applied not only to the external surface of the lead-containing copper-based metal material, but also to its internal surface, that is, the internal part of the product or the internal metal exposed part. In other words, a hexavalent chromium film is formed inside the product of the lead-containing copper-based metal material or in the exposed internal metal part in accordance with the chromium plating treatment or the chromic acid etching treatment. The removal treatment is applied not only to the external surface (plated surface) of the lead-containing copper-based metal material, but also to the inside of the product or the exposed internal surface (base surface). In addition to the external surface (plated surface) of lead-containing copper-based metal materials, it is also applied to the inside of the product or the exposed internal surface (base surface).
[0036] 請求項 19に係る六価クロムフリー表面処理方法は、クロムを使用した表面処理によ り六価クロム皮膜が表面に形成された基材の六価クロムフリー表面処理方法であって 、クロム酸用還元剤を含有する還元剤水溶液により、六価クロム皮膜が表面に形成さ れた基材の表面の前記六価クロム皮膜を完全に除去する。 [0036] The hexavalent chromium-free surface treatment method according to claim 19 is a hexavalent chromium-free surface treatment method for a base material on which a hexavalent chromium film is formed by surface treatment using chromium. A hexavalent chromium film is formed on the surface by the reducing agent aqueous solution containing the reducing agent for chromic acid. The hexavalent chromium film on the surface of the substrate is completely removed.
[0037] ここで、基材の表面とは、管材等、内部に空間または露出部を有する基材の場合、 その外部表面以外にその内部表面をも含む。例えば、基材として、黄銅等からなる 水栓金具や水道配管用部品等を使用した場合、その外部表面のみならず、その内 部表面若しくは内部表面露出部にも、前記六価クロムの除去処理が施されることにな る。  [0037] Here, in the case of a base material having a space or an exposed portion inside, such as a tube material, the surface of the base material includes the internal surface in addition to the external surface. For example, when faucet fittings or parts for water pipes made of brass or the like are used as the base material, the hexavalent chromium is removed not only on the outer surface but also on the inner surface or the exposed inner surface. Will be given.
[0038] また、前記基材としては、クロムを使用した表面処理により六価クロム皮膜が表面に 形成されるものであれば、任意のものを使用することができる。例えば、基材としては 、クロム酸エッチング処理、クロメート処理、クロムメツキ処理等の表面処理により六価 クロム皮膜が表面に形成される鉄系金属材ゃ銅系金属材等の金属材を使用すること ができる。金属材としては、素地のままの金属材 (即ち、素地金属表面にメツキを施さ ない非メツキ品)、素地金属表面に硬質クロムメツキやニッケルクロムメツキ等のメツキ を施したメツキ品等を使用することができる。また、前記基材としては、金属材以外に 、熱可塑性合成樹脂や熱硬化性合成樹脂等の榭脂材や皮革等の非金属材を使用 することもできる。即ち、クロムメツキを施した皮革製品やプラスチック製品に本発明を 適用することができる。或いは、基材としては、メツキ品以外にも、塗装品を使用する こともできる。更に、本発明は、水栓金具や水道用品等の他、自動車用部品等、各種 製品に適用することができる。  [0038] As the substrate, any substrate can be used as long as a hexavalent chromium film is formed on the surface by a surface treatment using chromium. For example, as a base material, a metal material such as an iron-based metal material or a copper-based metal material on which a hexavalent chromium film is formed on the surface by a surface treatment such as chromic acid etching treatment, chromate treatment, or chromium plating treatment may be used. it can. As the metal material, use a metal material as it is (that is, a non-metal product that does not have a metal surface), or a metal product that has a metal surface such as hard chrome or nickel chrome metal. Can do. Further, as the base material, in addition to the metal material, a non-metal material such as a resin material such as a thermoplastic synthetic resin or a thermosetting synthetic resin, or leather can be used. That is, the present invention can be applied to leather products and plastic products to which chrome plating is applied. Alternatively, as a base material, a coated product can be used in addition to the metal product. Furthermore, the present invention can be applied to various products such as faucet fittings and water supplies as well as automobile parts.
[0039] 請求項 20に係る六価クロムフリー表面処理方法は、クロムを使用した表面処理によ り六価クロム皮膜が表面に形成された基材の六価クロムフリー表面処理方法であって 、クロム酸用還元剤を含有する還元剤水溶液により、六価クロム皮膜が表面に形成さ れた基材の表面の前記六価クロム皮膜を完全に除去する六価クロム除去工程と、六 価クロム皮膜を除去した前記基材の表面を改質する表面改質処理工程とを備える。  [0039] The hexavalent chromium-free surface treatment method according to claim 20 is a hexavalent chromium-free surface treatment method for a base material on which a hexavalent chromium film is formed by surface treatment using chromium. A hexavalent chromium removal step of completely removing the hexavalent chromium film on the surface of the base material on which the hexavalent chromium film is formed by a reducing agent aqueous solution containing a reducing agent for chromic acid; And a surface modification treatment step for modifying the surface of the base material from which is removed.
[0040] ここで、基材の表面とは、管材等、内部に空間または露出部を有する基材の場合、 その外部表面以外にその内部表面をも含む。例えば、基材として、黄銅等からなる 水栓金具や水道配管用部品等を使用した場合、その外部表面のみならず、その内 部表面若しくは内部表面露出部にも、前記六価クロム除去工程の処理や前記表面 改質処理工程の処理が施されることになる。 [0041] また、前記基材としては、クロムを使用した表面処理により六価クロム皮膜が表面に 形成されるものであれば、任意のものを使用することができる。例えば、基材としては 、クロム酸エッチング処理、クロメート処理、クロムメツキ処理等の表面処理により六価 クロム皮膜が表面に形成される鉄系金属材ゃ銅系金属材等の金属材を使用すること ができる。金属材としては、素地のままの金属材 (即ち、素地金属表面にメツキを施さ ない非メツキ品)、素地金属表面に硬質クロムメツキやニッケルクロムメツキ等のメツキ を施したメツキ品等を使用することができる。また、前記基材としては、金属材以外に 、熱可塑性合成樹脂や熱硬化性合成樹脂等の榭脂材や皮革等の非金属材を使用 することもできる。即ち、クロムメツキを施した皮革製品やプラスチック製品に本発明を 適用することができる。或いは、基材としては、メツキ品以外にも、塗装品を使用する こともできる。更に、本発明は、水栓金具や水道用品等の他、自動車用部品等、各種 製品に適用することができる。 [0040] Here, in the case of a base material having a space or an exposed portion inside, such as a tube material, the surface of the base material includes not only its external surface but also its internal surface. For example, when faucet fittings or parts for water pipes made of brass or the like are used as the base material, the hexavalent chromium removing process is performed not only on the outer surface but also on the inner surface or the exposed inner surface. The treatment and the surface modification treatment step are performed. [0041] As the base material, any material can be used as long as a hexavalent chromium film is formed on the surface by a surface treatment using chromium. For example, as a base material, a metal material such as an iron-based metal material or a copper-based metal material on which a hexavalent chromium film is formed on the surface by a surface treatment such as chromic acid etching treatment, chromate treatment, or chromium plating treatment may be used. it can. As the metal material, use a metal material as it is (that is, a non-metal product that does not have a metal surface), or a metal product that has a metal surface such as hard chrome or nickel chrome metal. Can do. Further, as the base material, in addition to the metal material, a non-metal material such as a resin material such as a thermoplastic synthetic resin or a thermosetting synthetic resin, or leather can be used. That is, the present invention can be applied to leather products and plastic products to which chrome plating is applied. Alternatively, as a base material, a coated product can be used in addition to the metal product. Furthermore, the present invention can be applied to various products such as faucet fittings and water supplies as well as automobile parts.
発明の効果  The invention's effect
[0042] 請求項 1に係る鉛含有金属材の六価クロムフリー表面処理方法は、上記のように構 成したため、鉛含有金属を素材とする製品において、製品化後の鉛の溶出を確実に 防止できると共に、六価クロムの溶出量をゼロとすることができ、かつ、表面の耐食性 を向上して変色等を確実に防止することができる。  [0042] Since the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 1 is configured as described above, in a product using lead-containing metal as a raw material, the elution of lead after commercialization is ensured. It can be prevented, and the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the surface can be improved to prevent discoloration and the like.
[0043] 請求項 2に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 1の効 果に加え、六価クロム除去工程にお!、て鉛含有金属材の表面の六価クロムを完全に 除去することにより、六価クロムの溶出量をゼロとすることができる。  [0043] The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 2 includes, in addition to the effect of claim 1, a hexavalent chromium removal step! By completely removing chromium, the elution amount of hexavalent chromium can be reduced to zero.
[0044] 請求項 3に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 1または 2の効果にカ卩え、六価クロム除去工程にぉ 、て鉛含有金属材の表面の六価クロムを 還元することにより、六価クロムが三価クロムとなる。また、鉛含有金属材の表面に付 着する三価クロムが、更に、水洗工程で水洗により完全に鉛含有金属材の表面から 分離除去されることにより、六価クロムの溶出量をゼロとすることができる。  [0044] The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 3 is based on the effect of claim 1 or 2, and the surface of the lead-containing metal material is removed during the hexavalent chromium removal step. By reducing hexavalent chromium, hexavalent chromium becomes trivalent chromium. In addition, trivalent chromium adhering to the surface of the lead-containing metal material is further separated and removed from the surface of the lead-containing metal material by washing with water in the water-washing process, so that the elution amount of hexavalent chromium is zero. be able to.
[0045] 請求項 4に係る鉛含有金属材の六価クロムフリー処理方法は、請求項 1乃至 3のい ずれかの効果に加え、六価クロム除去工程において、より効果的に六価クロムの還 元処理を行うことができる。 [0046] 請求項 5に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 1 乃至 4のいずれかの効果にカ卩え、表面改質処理工程において、鉛含有金属材の表 面に強固なリン酸皮膜を確実に形成することができる。 [0045] In addition to the effect of any one of claims 1 to 3, the hexavalent chromium-free method for treating a lead-containing metal material according to claim 4 is more effective in the hexavalent chromium removing step. Reduction processing can be performed. [0046] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 5 is based on the effect of any one of claims 1 to 4, and the lead-containing metal material in the surface modification treatment step. A strong phosphoric acid film can be reliably formed on the surface.
[0047] 請求項 6に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、上記のよう に構成したため、鉛含有銅系金属を素材とする素地製品において、製品化後の鉛の 溶出を確実に防止できると共に、六価クロムの溶出量をゼロとすることができ、かつ、 素地表面の耐食性を向上して変色等を確実に防止することができる。  [0047] Since the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 6 is configured as described above, in a green product made of lead-containing copper-based metal, Elution can be prevented with certainty, and the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the substrate surface can be improved to prevent discoloration and the like.
[0048] 請求項 7に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 の効果にカ卩え、六価クロム除去工程にぉ 、て鉛含有銅系金属材の素地表面の六価 クロムを完全に除去することにより、六価クロムの溶出量をゼロとすることができる。  [0048] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 7 is based on the effect of claim 6, and the lead-containing copper-based metal material is used in the hexavalent chromium removal step. By completely removing hexavalent chromium from the substrate surface, the elution amount of hexavalent chromium can be made zero.
[0049] 請求項 8に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 6または 7の効果にカ卩え、六価クロム除去工程にぉ 、て鉛含有銅系金属材の素地表面の六 価クロムを還元することにより、六価クロムが三価クロムとなる。また、鉛含有銅系金属 材の素地表面に付着する三価クロム力 更に、水洗工程で水洗により完全に鉛含有 銅系金属材の素地表面力 分離除去されることにより、六価クロムの溶出量をゼロと することができる。  [0049] The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 8 is based on the effect of claim 6 or 7, and the lead-containing copper-based metal material is used in the hexavalent chromium removal step. By reducing hexavalent chromium on the substrate surface, hexavalent chromium becomes trivalent chromium. In addition, trivalent chromium force adhering to the substrate surface of lead-containing copper-based metal materials. Further, the surface force of the lead-containing copper-based metal material is completely separated and removed by washing in the water washing process, so that the elution amount of hexavalent chromium Can be set to zero.
[0050] 請求項 9に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、上記のよう に構成したため、鉛含有銅系金属を素材とするメツキ製品において、製品化後の鉛 の溶出を確実に防止できると共に、六価クロムの溶出量をゼロとすることができ、かつ 、メツキ表面の耐食性を向上して変色等を確実に防止することができる。  [0050] Since the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 9 is configured as described above, in a plating product made of lead-containing copper-based metal, Elution can be prevented with certainty, and the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the plating surface can be improved to prevent discoloration and the like.
[0051] 請求項 10に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 9 の効果にカ卩え、六価クロム除去工程にぉ 、て鉛含有銅系金属材の表面の六価クロム を完全に除去することにより、六価クロムの溶出量をゼロとすることができる。  [0051] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 10 is based on the effect of claim 9, and the lead-containing copper-based metal material is used in the hexavalent chromium removal step. By completely removing the hexavalent chromium on the surface, the elution amount of hexavalent chromium can be made zero.
[0052] 請求項 11に係る鉛含有金属材の六価クロムフリー表面処理方法は、請求項 9また は 10の効果に加え、六価クロム除去工程において鉛含有銅系金属材の表面の六価 クロムを還元することにより、六価クロムが三価クロムとなる。また、鉛含有銅系金属材 の表面に付着する三価クロム力 更に、水洗工程で水洗により完全に鉛含有銅系金 属材の表面力 分離除去されることにより、六価クロムの溶出量をゼロとすることがで きる。 [0052] In addition to the effect of claim 9 or 10, the hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 11 adds the hexavalent surface of the lead-containing copper-based metal material in the hexavalent chromium removal step. By reducing chromium, hexavalent chromium becomes trivalent chromium. In addition, the trivalent chromium force adhering to the surface of the lead-containing copper-based metal material. Furthermore, the surface force of the lead-containing copper-based metal material is completely separated and removed by rinsing in the water washing process, thereby reducing the elution amount of hexavalent chromium. Can be zero wear.
[0053] 請求項 12に係る六価クロムフリー表面処理方法は、請求項 11の効果に加え、六価 クロム除去工程にぉ 、て鉛含有銅系金属材の表面の六価クロムを完全に除去し、鉛 含有銅系金属材の表面をクロム表面とすることにより、六価クロムの溶出量をゼロとす ることがでさる。  [0053] In addition to the effect of claim 11, the hexavalent chromium-free surface treatment method according to claim 12 completely removes hexavalent chromium from the surface of the lead-containing copper-based metal material in the hexavalent chromium removal step. However, the elution amount of hexavalent chromium can be made zero by making the surface of the lead-containing copper-based metal material a chromium surface.
[0054] 請求項 13に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 または 9の効果にカ卩え、六価クロム除去工程にぉ 、て鉛含有銅系金属材の表面の六 価クロムを完全に除去し、鉛含有銅系金属材の表面をクロム表面とすることにより、六 価クロムの溶出量をゼロとすることができる。即ち、鉛含有銅系金属材の表面に付着 する三価クロムが水洗工程により完全に分離除去され、鉛含有銅系金属材の表面を クロムメツキのみからなり六価クロムや三価クロムを全く有しな 、完全なクロム表面、即 ち、零価のクロム表面とすることができる。  [0054] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 13 is based on the effect of claim 6 or 9, and the lead-containing copper-based metal is used in the hexavalent chromium removal step. By completely removing hexavalent chromium from the surface of the material and making the surface of the lead-containing copper-based metal material a chromium surface, the elution amount of hexavalent chromium can be made zero. That is, the trivalent chromium adhering to the surface of the lead-containing copper-based metal material is completely separated and removed by the water washing process, and the surface of the lead-containing copper-based metal material is made of only chromium plating and has no hexavalent chromium or trivalent chromium. It can be a perfect chrome surface, ie a zero-valent chrome surface.
[0055] 請求項 14に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 乃至 13のいずれかの効果にカ卩え、六価クロム除去工程において、より効果的に六価 クロムの還元処理を行うことができる。  [0055] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 14 is based on the effect of any one of claims 6 to 13, and is more effective in the hexavalent chromium removal step. Hexavalent chromium can be reduced.
[0056] 請求項 15に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 乃至 14のいずれかの効果にカ卩え、表面改質処理工程において、鉛含有銅系金属 材の表面に強固なリン酸皮膜を確実に形成することができる。  [0056] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 15 is based on the effect of any one of claims 6 to 14, and the lead-containing copper-based metal material in the surface modification treatment step. A strong phosphoric acid film can be reliably formed on the surface of the metal material.
[0057] 請求項 16に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、請求項 6 乃至 14のいずれかの効果にカ卩え、表面改質処理工程において、鉛含有銅系金属 材の表面に強固なリン酸皮膜を一層確実に形成することができる。  [0057] A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 16 is based on the effect of any one of claims 6 to 14, and the lead-containing copper-based metal material in the surface modification treatment step. A strong phosphoric acid film can be more reliably formed on the surface of the metal material.
[0058] 請求項 17に係る鉛含有銅系金属材は、上記のように構成したため、メツキを施すこ となく使用される鉛含有銅系金属 (ホウ金)を素材とする製品にお 、て、製品化後の 鉛の溶出を確実に防止できると共に、六価クロムの溶出量をゼロとすることができ、か つ、素地表面の耐食性を向上して変色等を確実に防止することができる。  [0058] Since the lead-containing copper-based metal material according to claim 17 is configured as described above, the lead-containing copper-based metal material is used for products made of lead-containing copper-based metal (boron) that is used without being plated. In addition to being able to reliably prevent the elution of lead after commercialization, the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the substrate surface can be improved to prevent discoloration and the like. .
[0059] 請求項 18に係る鉛含有銅系金属材は、上記のように構成したため、メツキを施して 使用される鉛含有銅系金属 (メツキ品)を素材とする製品において、製品化後の鉛の 溶出を確実に防止できると共に、六価クロムの溶出量をゼロとすることができ、かつ、 メツキ表面の耐食性を向上して変色等を確実に防止することができる。 [0059] Since the lead-containing copper-based metal material according to claim 18 is configured as described above, in a product made of lead-containing copper-based metal (mesh product) used as a material, Elution of lead can be reliably prevented, and the elution amount of hexavalent chromium can be reduced to zero. It is possible to improve the corrosion resistance of the plating surface and reliably prevent discoloration and the like.
[0060] 請求項 19に係る六価クロムフリー表面処理方法は、上記のように構成したため、ク ロムを使用した表面処理により六価クロム皮膜が表面に形成された基材を素材とする 製品において、製品化後の六価クロムの溶出量をゼロとすることができる。  [0060] Since the hexavalent chromium-free surface treatment method according to claim 19 is configured as described above, in a product made of a base material having a hexavalent chromium film formed on the surface by a surface treatment using chromium. The elution amount of hexavalent chromium after commercialization can be made zero.
[0061] 請求項 20に係る六価クロムフリー表面処理方法は、上記のように構成したため、ク ロムを使用した表面処理により六価クロム皮膜が表面に形成された基材を素材とする 製品において、製品化後の六価クロムの溶出量をゼロとすることができ、かつ、表面 の耐食性を向上して変色等を確実に防止することができる。  [0061] Since the hexavalent chromium-free surface treatment method according to claim 20 is configured as described above, in a product made of a base material having a hexavalent chromium film formed on the surface by a surface treatment using chromium. Thus, the elution amount of hexavalent chromium after commercialization can be made zero, and the corrosion resistance of the surface can be improved to prevent discoloration and the like.
図面の簡単な説明  Brief Description of Drawings
[0062] [図 1]図 1は本発明の実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面 処理方法の一連の工程を示す工程図である。  FIG. 1 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面 処理方法による鉛含有銅系金属材の表面状態の変化を示す模式図であり、 (a)はク ロム酸エッチング工程において鈴含有銅系金属材の素地表面に六価クロム皮膜が 形成された状態を、 (b)は六価クロム除去工程において鉛含有銅系金属材の素地表 面の六価クロム皮膜が三価クロムに還元された状態を、 (c)は六価クロム除去工程後 の水洗工程において鉛含有銅系金属材の素地表面力 三価クロムが水洗された状 態を、 (d)は表面改質処理工程において鉛含有銅系金属材の素地表面にリン酸皮 膜が形成された状態を示す。  [FIG. 2] FIG. 2 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material by the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 1 of the present invention. a) shows a state in which a hexavalent chromium film is formed on the surface of the tin-containing copper-based metal material in the chromic acid etching process, and (b) shows a surface of the lead-containing copper-based metal material in the hexavalent chromium removal process. (C) shows the surface strength of the lead-containing copper-based metal material in the water washing process after the hexavalent chromium removal process. (D) shows a state in which a phosphate film is formed on the surface of the base material of the lead-containing copper-based metal material in the surface modification treatment step.
[図 3]図 3は本発明の実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面 処理方法の一連の工程を示す工程図である。  FIG. 3 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 of the present invention.
[図 4]図 4は本発明の実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面 処理方法による鉛含有銅系金属材の表面状態の変化を示す模式図であり、 (a)は超 光沢ニッケルメツキ工程において鉛含有銅系金属材の素地表面に超光沢ニッケルメ ツキが形成された状態を、 (b)は光沢ニッケルメツキ工程において鉛含有銅系金属材 の超光沢ニッケルメツキ表面に光沢ニッケルメツキが形成された状態を、(c)はクロム メツキ工程において鉛含有銅系金属材の光沢ニッケルメツキ表面にクロムメツキが形 成されると共に、クロム酸エッチング工程にぉ 、てクロムメツキ表面に六価クロム皮膜 が形成された状態を、 (d)は六価クロム除去工程において鉛含有銅系金属材のメッ キ表面の六価クロム皮膜が還元された状態を、 (e)は六価クロム除去工程後の水洗 工程において鉛含有銅系金属材のクロムメツキ表面力 三価クロムが水洗される共 に零価のクロム表面となった状態を、 (f)は表面改質処理工程において鉛含有銅系 金属材のクロムメツキ表面にリン酸皮膜が形成された状態を示す。 [FIG. 4] FIG. 4 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material according to the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 2 of the present invention. a) shows the state of the super bright nickel plating formed on the surface of the lead-containing copper-based metal material in the ultra-bright nickel plating process, and (b) shows the super-bright nickel plating of the lead-containing copper-based metal material in the bright nickel plating process. (C) shows a state in which a bright nickel plating is formed on the surface. In the chromium plating process, a chromium plating is formed on the bright nickel plating surface of the lead-containing copper-based metal material, and in the chromium etching process, the chromium plating surface is formed. Hexavalent chromium film (D) shows the state in which the hexavalent chromium film on the plating surface of the lead-containing copper-based metal material has been reduced in the hexavalent chromium removal process, and (e) shows the state after the hexavalent chromium removal process. The chromium plating surface strength of lead-containing copper-based metal materials in the water-washing process The state in which trivalent chromium was washed with water and became a zero-valent chromium surface. The state where the phosphoric acid film was formed on the chrome plating surface is shown.
符号の説明 Explanation of symbols
S1 :アルカリクリーナ超音波洗浄工程、 S2 :アルカリクリーナ超音波洗浄後の第 1回 目の水洗工程  S1: Alkali cleaner ultrasonic cleaning process, S2: First water cleaning process after alkaline cleaner ultrasonic cleaning
53:アルカリクリーナ超音波洗浄後の第 2回目の水洗工程  53: Second water washing process after ultrasonic cleaning of alkaline cleaner
54:クロム酸エッチング工程 (クロム酸処理工程)  54: Chromic acid etching process (chromic acid treatment process)
S5 :第 1回目の回収工程、 S6 :第 2回目の回収工程、 S8 :六価クロム除去工程 S5: First recovery process, S6: Second recovery process, S8: Hexavalent chromium removal process
S9 :六価クロム除去後の水洗工程、 S 10 :表面改質処理工程 S9: Water washing process after hexavalent chromium removal, S 10: Surface modification treatment process
S11:表面改質処理工程後の第 1回目の水洗工程  S11: First water washing process after the surface modification treatment process
S12 :表面改質処理工程後の第 2回目の水洗工程  S12: Second water washing process after the surface modification process
S15 :湯洗工程、 S16 :乾燥工程  S15: Hot water washing process, S16: Drying process
S21:アルカリクリーナ超音波洗浄工程  S21: Alkaline cleaner ultrasonic cleaning process
522:アルカリクリーナ超音波洗浄後の第 1回目の水洗工程 S22  522: First water washing process after ultrasonic cleaning of alkaline cleaner S22
523:アルカリクリーナ超音波洗浄後の第 2回目の水洗工程  523: Second water washing process after ultrasonic cleaning of alkaline cleaner
S24 : (一)電解脱脂工程、 S25 : ( + )電解脱脂工程  S24: (1) Electrolytic degreasing process, S25: (+) Electrolytic degreasing process
S26:電解脱脂後の第 1回目の水洗工程、 S27:電解脱脂後の第 2回目の水洗ェ 程  S26: First washing process after electrolytic degreasing, S27: Second washing process after electrolytic degreasing
S28:第 1回目の活性酸処理工程  S28: First active acid treatment process
S29 :第 1回目の活性酸処理後の水洗工程、 S 30 :超光沢ニッケルメツキ工程 S29: Washing process after the first active acid treatment, S30: Super bright nickel plating process
S31:超光沢ニッケルメツキ後の第 1回目の回収工程 S31: First recovery process after super bright nickel plating
S32 :超光沢ニッケルメツキ後の第 2回目の回収工程  S32: Second recovery process after super bright nickel plating
S33:光沢ニッケルメツキ工程、 S34:光沢ニッケルメツキ後の回収工程  S33: Bright nickel plating process, S34: Recovery process after bright nickel plating
535:光沢ニッケルメツキ後の第 1回目の水洗工程  535: First water washing process after bright nickel plating
536:光沢ニッケルメツキ後の第 2回目の水洗工程 S37:第 2回目の活性酸処理工程、 S38:第 2回目の活性酸処理後の水洗工程536: 2nd water washing process after bright nickel plating S37: Second active acid treatment step, S38: Water washing step after second active acid treatment
539:クロム酸活性処理工程 (クロム酸処理工程) 539: Chromic acid activation treatment process (chromic acid treatment process)
540:クロムメツキ工程(クロム酸エッチング工程)  540: Chrome plating process (chromic acid etching process)
S41:クロムメツキ後の第 1回目の回収工程  S41: First recovery process after chrome plating
S42:クロムメツキ後の第 2回目の回収工程  S42: Second recovery process after chrome plating
S44 :六価クロム除去工程、 S45 :六価クロム除去後の水洗工程  S44: Hexavalent chromium removal process, S45: Water washing process after hexavalent chromium removal
S46 :表面改質処理工程  S46: Surface modification process
547:表面改質処理工程後の第 1回目の水洗工程  547: First water washing process after the surface modification process
548:表面改質処理工程後の第 2回目の水洗工程  548: Second water washing process after surface modification treatment process
S50 :湯洗工程、 S52 :乾燥工程  S50: Hot water washing process, S52: Drying process
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0064] 以下、本発明を実施するための最良の形態 (以下、実施の形態という)を説明する。  Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described.
なお、各実施の形態を通じ、同一の部材、要素または部分には同一の符号を付して 、その説明を省略する。  Throughout the embodiments, the same members, elements or parts are denoted by the same reference numerals, and the description thereof is omitted.
[0065] 実施の形態 1 (素地表面処理)  [0065] Embodiment 1 (substrate surface treatment)
以下、本発明の実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面処 理方法について説明する。図 1は本発明の実施の形態 1に係る鉛含有銅系金属材 の六価クロムフリー表面処理方法の一連の工程を示す工程図である。図 2は本発明 の実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面処理方法による鉛 含有銅系金属材の表面状態の変化を示す模式図であり、 (a)はクロム酸エッチング 工程において鉛含有銅系金属材の素地表面に六価クロム皮膜が形成された状態を 、 (b)は六価クロム除去工程において鉛含有銅系金属材の素地表面の六価クロム皮 膜が三価クロムに還元された状態を、(c)は六価クロム除去工程後の水洗工程にお いて鉛含有銅系金属材の素地表面力も三価クロムが水洗された状態を、 (d)は表面 改質処理工程において鉛含有銅系金属材の素地表面にリン酸皮膜が形成された状 態を示す。  Hereinafter, a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 of the present invention will be described. FIG. 1 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material according to the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 1 of the present invention. (B) shows a hexavalent chromium film on the surface of the lead-containing copper-based metal material in the hexavalent chromium removal process. (C) shows a state in which the trivalent chromium is washed with water in the water washing process after the hexavalent chromium removal process. Shows a state in which a phosphoric acid film was formed on the surface of the lead-containing copper-based metal material in the surface modification process.
[0066] 実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、铸造 等により所定形状に成形された鉛含有銅系金属材、例えば、快削黄銅の水洗金具 の铸造品の素地表面からの鉛の溶出を防止して鉛フリーとすると共に、素地表面か らの六価クロムの溶出をも防止して六価クロムフリーとし、かつ、素地表面にリン酸皮 膜を形成して耐食性 (変色防止機能等)を向上するものである。詳細には、実施の形 態 1に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、図 1に示すように 、アルカリクリーナ超音波洗浄工程 Sl、アルカリクリーナ超音波洗浄後の第 1回目の 水洗工程 S2、アルカリクリーナ超音波洗浄後の第 2回目の水洗工程 S3、クロム酸処 理工程としてのクロム酸エッチング工程 S4、第 1回目の回収工程 S5、第 2回目の回 収工程 S6、六価クロム除去工程 S7、六価クロム除去後の水洗工程 S8、表面改質処 理工程 S9、表面改質処理工程 S9後の第 1回目の水洗工程 S 10、表面改質処理工 程 S9後の第 2回目の水洗工程 Sl l、湯洗工程 SI 2及び乾燥工程 SI 3からなる。以 下、各工程について説明する。 [0066] The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 includes a lead-containing copper-based metal material formed into a predetermined shape by forging or the like, for example, a free-cutting brass flush fitting In addition to preventing the elution of lead from the surface of the fabricated product's base material and making it lead-free, it also prevents the elution of hexavalent chromium from the surface of the base material, making it free of hexavalent chromium, A film is formed to improve corrosion resistance (discoloration prevention function, etc.). Specifically, the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 1 is performed as shown in FIG. 1 in the alkaline cleaner ultrasonic cleaning step Sl and after the alkaline cleaner ultrasonic cleaning. 1st water washing process S2, 2nd water washing process S3 after alkali cleaner ultrasonic cleaning, chromic acid etching process S4 as chromic acid treatment process, 1st recovery process S5, 2nd collection process S6, hexavalent chromium removal process S7, water washing process after hexavalent chromium removal S8, surface modification treatment process S9, surface modification treatment process S1 first water washing process after S9 S10, surface modification treatment process It consists of the second water washing step Sl 1 after S9, the hot water washing step SI 2 and the drying step SI 3. Hereinafter, each process will be described.
[0067] [アルカリクリーナ超音波洗浄工程]  [0067] [Alkaline cleaner ultrasonic cleaning process]
鉛含有銅系金属材は、まず、アルカリクリーナ超音波洗浄工程 S1において、アル 力リクリーナによる超音波洗浄により、その素地表面(内部の露出表面含む)が洗浄さ れる。このとき、鉛含有銅系金属材の素地表面部分に含有される鉛成分は、アルカリ 及び酸のいずれにも溶解するため、このアルカリクリーナ超音波洗浄処理におけるァ ルカリクリーナにより、鉛含有銅系金属材の素地表面部分に存在する鉛成分の大部 分が溶出して除去される。  First, the lead-containing copper-based metal material is cleaned of the substrate surface (including the exposed internal surface) by ultrasonic cleaning with an alkaline cleaner in the alkaline cleaner ultrasonic cleaning step S1. At this time, since the lead component contained in the base surface portion of the lead-containing copper-based metal material dissolves in both alkali and acid, the alkali-cleaner in this alkaline cleaner ultrasonic cleaning process performs the lead-containing copper-based metal material. Most of the lead components present on the surface of the material are eluted and removed.
[0068] [水洗工程]  [0068] [Washing process]
鉛含有銅系金属材は、アルカリクリーナ超音波洗浄工程 S1でアルカリクリーナ超音 波洗浄処理された後、アルカリクリーナ超音波洗浄槽から引き上げられ、アルカリタリ ーナ超音波洗浄後の第 1回目の水洗工程 S2に送られて、第 1の水洗槽に所定時間 浸漬された後引き上げられて、更に、アルカリクリーナ超音波洗浄後の第 2回目の水 洗工程 S3に送られ、第 2の水洗槽に所定時間浸漬された後引き上げられる。これに より、鉛含有銅系金属材の素地表面(内部の露出表面含む)に付着したアルカリタリ ーナ超音波洗浄液や、アルカリクリーナ超音波洗浄液に含有される形で素地表面( 内部の露出表面含む)に付着する溶出鉛成分等が、第 1の水洗槽及び第 2の水洗槽 において順次水洗により除去され、鉛含有銅系金属材の素地表面が清浄化される。 [0069] [クロム酸エッチング工程 (クロム酸処理工程) ] The lead-containing copper-based metallic material is subjected to the alkaline cleaner ultrasonic cleaning process S1 in the alkaline cleaner ultrasonic cleaning process S1, then pulled up from the alkaline cleaner ultrasonic cleaning tank, and the first time after the alkaline cleaner ultrasonic cleaning. It is sent to the water washing step S2, and after being immersed in the first water washing tank for a predetermined time, it is pulled up, and further sent to the second water washing step S3 after the alkaline cleaner ultrasonic washing, and the second water washing tank. After being dipped in a predetermined time, it is pulled up. As a result, the surface of the substrate (internally exposed surface) is contained in the alkaline cleaner ultrasonic cleaning liquid adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) or the alkaline cleaner ultrasonic cleaning liquid. In the first and second rinsing tanks, the elution lead components adhering to (including) are sequentially removed by rinsing to clean the surface of the lead-containing copper-based metal material. [0069] [chromic acid etching process (chromic acid treatment process)]
鉛含有銅系金属材は、次に、クロム酸処理工程としてのクロム酸エッチング工程 S4 にお 、て、所定温度のクロム酸エッチング液 (水溶液)を貯留したクロム酸エッチング 槽に所定時間浸漬される。具体的には、クロム酸エッチング工程 S4のクロム酸エッチ ング液としては、例えば、無水クロム酸 (CrO )の水溶液を使用する。なお、クロム酸  Next, the lead-containing copper-based metal material is immersed in a chromic acid etching tank storing a chromic acid etching solution (aqueous solution) at a predetermined temperature for a predetermined time in the chromic acid etching process S4 as the chromic acid treatment process. . Specifically, as the chromic acid etching solution in the chromic acid etching step S4, for example, an aqueous solution of chromic anhydride (CrO 2) is used. Chromic acid
3  Three
エッチング液の浴組成は、例えば、水(H O)に対して無水クロム酸 (CrO )のみを所  The bath composition of the etchant is, for example, that only chromic anhydride (CrO) is added to water (H 2 O).
2 3 定割合で混合したもの、若しくは、水 (H O)に対して無水クロム酸 (CrO )及び硫酸(  2 3 Mixed at a fixed ratio, or chromic anhydride (CrO) and sulfuric acid (water)
2 3  twenty three
H SO )を所定割合で混合したものとすることができる。或いは、クロム酸エッチング H 2 SO 4) can be mixed at a predetermined ratio. Or chromic acid etching
2 4 twenty four
工程 S4で、その他の銅及び銅合金用のクロム酸エッチング液 (例えば、重クロム酸力 リウム水溶液、フッ素化合物等)を使用することもできる。このとき、クロム酸エッチング 液に含まれるクロム酸水溶液は強酸ィ匕性であるため、鉛含有銅系金属材の素地表 面(内部の露出表面含む)部分を全体溶解しながらその表面部分に含有される鉛成 分をも溶解する。これにより、鉛含有銅系金属材の素地表面部分に存在する鉛成分 の残部がクロム酸エッチング液中に溶出して除去される。  In step S4, other chromic acid etching solutions for copper and copper alloys (for example, dichromate aqueous solution, fluorine compound, etc.) can also be used. At this time, since the chromic acid aqueous solution contained in the chromic acid etching solution is strongly acidic, the entire surface of the lead-containing copper-based metal material (including the exposed internal surface) is dissolved and contained in the surface. It also dissolves lead components. As a result, the remainder of the lead component existing on the base surface portion of the lead-containing copper-based metal material is eluted and removed in the chromic acid etching solution.
[0070] [回収工程] [0070] [Recovery process]
クロム酸エッチング工程 S4の後、鉛含有銅系金属材は、クロム酸エッチング槽から 引き上げられ、次の第 1回目の回収工程 S5に送られて、第 1の回収水槽に所定時間 浸漬された後引き上げられ、次の第 2回目の回収工程 S6に送られて、第 2の回収水 槽に所定時間浸潰された後引き上げられる。これにより、鉛含有銅系金属材の素地 表面(内部の露出表面含む)に付着する(クロム酸を含む)クロム酸エッチング液が、 第 1の回収水槽及び第 2の回収水槽に順次回収され、鉛含有銅系金属材の素地表 面が完全に清浄化される。このとき、鉛含有金属材の素地表面 (外側素地表面及び 内部素地表面)には、必然的に、六価クロム (Cr6+)を含有するゲル状の六価クロム皮 膜が形成される。 After the chromic acid etching step S4, the lead-containing copper-based metal material is lifted from the chromic acid etching tank, sent to the next first collection step S5, and immersed in the first collection water tank for a predetermined time. Pulled up, sent to the next second recovery step S6, crushed for a predetermined time in the second recovery tank, and then lifted. As a result, the chromic acid etching solution (including chromic acid) adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) is sequentially recovered in the first recovery water tank and the second recovery water tank, The substrate surface of the lead-containing copper-based metal material is completely cleaned. At this time, a gel-like hexavalent chromium film containing hexavalent chromium (Cr 6+ ) is inevitably formed on the substrate surface of the lead-containing metal material (the outer substrate surface and the inner substrate surface).
[0071] このときの反応による鉛含有銅系金属材 (Cu)の素地表面の変化を模式的に説明 すると、図 2 (a)に示すように、クロム酸エッチング工程 S4から回収工程 S5, S6にお いて、鉛含有銅系金属材 (Cu)の素地表面には、ゲル状の複合水和酸化物皮膜 (X Cr O -YCrO ·ΖΗ Ο)の皮膜が形成される。なお、クロム酸エッチング工程 S4後、ク ロム酸エッチング槽力 引き上げられた鈴含有銅系金属材 (Cu)の素地表面には、 多量のクロム酸エッチング液が付着している。しかし、鉛含有銅系金属材 (Cu)の素 地表面に付着したクロム酸エッチング液は、第 1回目及び第 2回目の回収工程 S5及 び S6において第 1及び第 2の回収水槽内で除去されて水中に放出される。 [0071] The change of the base surface of the lead-containing copper-based metal material (Cu) due to the reaction at this time is schematically explained. As shown in Fig. 2 (a), the chromic acid etching process S4 to the recovery processes S5, S6 In this case, a gel-like composite hydrated oxide film (XCrO—YCrO · ΖΗΖΗ) is formed on the surface of the lead-containing copper-based metal material (Cu). Note that after the chromic acid etching step S4, Romic acid etching tank power A large amount of chromic acid etching solution adheres to the surface of the raised tin-containing copper-based metal (Cu). However, the chromic acid etchant adhering to the substrate surface of lead-containing copper-based metal (Cu) is removed in the first and second recovery tanks in the first and second recovery steps S5 and S6. And released into the water.
[0072] [反応式] [0072] [Reaction Formula]
或いは、このとき、六価クロム皮膜は、例えば、以下の反応式により、鉛含有銅系金 属材の素地表面に生成されると考えることもできる。  Alternatively, at this time, it can be considered that the hexavalent chromium film is formed on the surface of the lead-containing copper-based metal material by the following reaction formula, for example.
(1) CrO +H O H CrO  (1) CrO + H O H CrO
3 2 2 4  3 2 2 4
(2) 2H CrO H Cr O +H O  (2) 2H CrO H Cr O + H O
2 4 2 2 7 2  2 4 2 2 7 2
(3) Cr O 2— + 14H++ 3Cu 2Cr3++ 3Cu2++ 7H O (3) Cr O 2 — + 14H ++ 3Cu 2Cr 3+ + 3Cu 2+ + 7H O
2 7 2  2 7 2
(4) Cr3+ + 3H O Cr (OH) + 3H+ (4) Cr 3+ + 3H O Cr (OH) + 3H +
2 3  twenty three
(5) 2Cr (OH) +CrO 2— + 2H+ Cr (OH) +Cr (OH) -CrO -H O (5) 2Cr (OH) + CrO 2 — + 2H + Cr (OH) + Cr (OH) -CrO -HO
3 4 3 4 2  3 4 3 4 2
[0073] [水洗工程]  [0073] [Washing process]
2回の回収工程 S5, S6の後、鉛含有銅系金属材は、水洗工程 S7に送られて、水 洗槽に所定時間浸潰された後引き上げられる。これにより、鉛含有銅系金属材の素 地表面(内部の露出表面含む)に残留するクロム酸エッチング液やその他の付着物 力 水洗槽により水洗除去され、鉛含有銅系金属材の素地表面が更に完全に清浄 化される。なお、水洗工程 S7は、必要に応じて、省略することもできる。  After the two recovery steps S5 and S6, the lead-containing copper-based metal material is sent to the water washing step S7, crushed in the water washing tank for a predetermined time, and then pulled up. As a result, the chromic acid etching solution and other deposits remaining on the surface of the lead-containing copper-based metal material (including the exposed surface inside) are removed by washing with a water-washing tank, and the surface of the lead-containing copper-based metal material is removed. Furthermore, it is completely cleaned. The water washing step S7 can be omitted as necessary.
[0074] [六価クロム除去工程]  [0074] [Hexavalent chromium removal process]
回収工程 S5, S6後の水洗工程 S7の後、鉛含有銅系金属材は、水洗槽から引き上 げられ、六価クロム除去工程 S8において、所定温度の還元剤水溶液を貯留した還 元槽 (還元浴)に所定時間浸漬される。六価クロム除去工程 S8の還元浴のクロム酸 用還元剤としては、例えば、次亜硫酸ナトリウム (Na S O )、亜ニチオン酸ナトリウム(  After the recovery process S5, S6, the water washing process S7, the lead-containing copper-based metal material is pulled up from the water washing tank, and in the hexavalent chromium removal process S8, the reducing tank that stores the reducing agent aqueous solution at a predetermined temperature ( Dipped in a reducing bath) for a predetermined time. Examples of the reducing agent for chromic acid in the reducing bath of the hexavalent chromium removal step S8 include sodium hyposulfite (Na 2 S 2 O 3) and sodium nitrite (
2 2 5  2 2 5
Na S O )、チォ硫酸ナトリウム (Na S O )、亜硫酸ナトリウム(Na SO )等を使用す Na S O), sodium thiosulfate (Na S O), sodium sulfite (Na SO), etc.
2 2 4 2 2 3 2 3 2 2 4 2 2 3 2 3
ることができる。なお、次亜硫酸ナトリウム (Na S O )としては、例えば、大東化学株  Can. In addition, as sodium hyposulfite (Na S O), for example, Daito Chemical Co., Ltd.
2 2 5  2 2 5
式会社の製品名ソービスを使用することができる。また、亜ニチオン酸ナトリウム (Na  You can use the product name Sorbis of the formula company. In addition, sodium nitrite (Na
2 2
S O )としては、例えば、広栄化学工業株式会社の製品名ハイドロサルファイトコンクS O) is, for example, the product name Hydrosulfite Conk of Guangei Chemical Industry Co., Ltd.
2 4 twenty four
を使用することができる。そして、次亜硫酸ナトリウム、亜ニチオン酸ナトリウム等の 1 種またはそれ以上を溶解した所定濃度の亜硫酸ナトリウム水溶液を調製して還元浴 とすることができる。例えば、亜ニチオン酸ナトリウムを約 5〜10gZlの割合で水中に 攪拌溶解して還元剤水溶液を調製することができる。なお、還元浴中における還元 剤濃度は、数 gZi〜数 lOgZiの範囲内で可能であり、使用する成分の組合せにより 適宜判断することが好ましい。好ましくは、還元浴中における還元剤濃度は、約 2〜5 %の範囲とし、より好ましくは、約 3〜5%の範囲とする。或いは、上記のように、還元 浴中における還元剤濃度は、約 5〜10gZlとすることが好ましい。また、還元浴の温 度は、常温とすることができるが、反応速度により適宜温度調節することが好ましい。 更に、還元浴への鉛含有銅系金属材の浸漬時間は、約 20〜30秒の範囲の時間と することができるが、反応速度により適宜温度調節することが好ましい。ここで、還元 浴の pH調整を行うことも好ましぐ例えば、次亜硫酸ナトリウム (Na S O )の場合、還 Can be used. And sodium hyposulfite, sodium dithionite, etc. 1 A sodium sulfite aqueous solution having a predetermined concentration in which seeds or more are dissolved can be prepared to make a reducing bath. For example, an aqueous reducing agent solution can be prepared by stirring and dissolving sodium nitrite at a rate of about 5 to 10 gZl in water. Note that the concentration of the reducing agent in the reducing bath can be in the range of several gZi to several lOgZi, and is preferably determined as appropriate depending on the combination of components to be used. Preferably, the reducing agent concentration in the reducing bath is in the range of about 2-5%, more preferably in the range of about 3-5%. Alternatively, as described above, the reducing agent concentration in the reducing bath is preferably about 5 to 10 gZl. The temperature of the reducing bath can be room temperature, but it is preferable to adjust the temperature appropriately depending on the reaction rate. Furthermore, the immersion time of the lead-containing copper-based metal material in the reduction bath can be in the range of about 20 to 30 seconds, but it is preferable to adjust the temperature appropriately depending on the reaction rate. Here, it is also preferable to adjust the pH of the reducing bath.For example, in the case of sodium hyposulfite (Na 2 SO 4),
2 2 5  2 2 5
元浴中に硫酸 (H SO )を添カ卩して、 pH2〜3の範囲となるよう pH調整することが好  Add sulfuric acid (H 2 SO 4) to the original bath and adjust the pH so that the pH is in the range of 2 to 3.
2 4  twenty four
ましい。或いは、例えば、亜ニチオン酸ナトリウム (Na S O )の場合、還元浴を中性 p  Good. Alternatively, for example, in the case of sodium dithionite (Na 2 S 2 O 3), the reducing bath is neutral p
2 2 4  2 2 4
Hとして還元力を発揮させることができる力 還元浴をアルカリ性となるよう pH調整し て、その還元力を強力に発揮させることもできる。  Power capable of exerting reducing power as H It is also possible to adjust the pH of the reducing bath to be alkaline so that the reducing power can be exerted strongly.
[0075] 六価クロム除去工程 S8で、上記還元浴に鉛含有銅系金属材を浸漬すると、クロム 酸エッチング工程 S4で前記鉛含有銅系金属材の素地表面(内部の露出表面含む) に形成された皮膜成分としての六価クロムが完全に除去される。具体的には、還元 浴に鉛含有銅系金属材を浸漬すると、鉛含有銅系金属材の素地表面の六価クロム( Cr6+)の皮膜が、還元浴中のクロム酸用還元剤により還元されて三価クロム (Cr3+)とな り、鉛含有銅系金属材の素地表面力 分離して還元浴中に放出される。なお、鉛含 有銅系金属材の素地表面力 離脱して還元浴中に放出された三価クロム (Cr3+)は、 最終的に、還元浴の還元剤水溶液を中性域に pH調整等することにより、還元浴の 還元剤水溶液中に沈殿させて回収等することができる。 [0075] When the lead-containing copper-based metal material is immersed in the reducing bath in the hexavalent chromium removing step S8, the lead-containing copper-based metal material is formed on the substrate surface (including the exposed surface inside) in the chromic acid etching step S4. Hexavalent chromium as a film component is completely removed. Specifically, when a lead-containing copper-based metal material is immersed in a reducing bath, the hexavalent chromium (Cr 6+ ) film on the surface of the lead-containing copper-based metal material is caused by the reducing agent for chromic acid in the reducing bath. It is reduced to trivalent chromium (Cr 3+ ), and the surface force of the lead-containing copper-based metal material is separated and released into the reduction bath. The trivalent chromium (Cr 3+ ) released from the surface strength of the lead-containing copper-based metal material and released into the reduction bath is finally adjusted to a neutral pH range with the reducing agent aqueous solution in the reduction bath. Etc., it can be recovered by precipitation in the reducing agent aqueous solution in the reducing bath.
[0076] このときの反応による鉛含有銅系金属材 (Cu)の素地表面の変化を模式的に説明 すると、図 2 (b)に示すように、鉛含有銅系金属材 (Cu)の素地表面に形成されたゲ ル状の複合水和酸化物皮膜 (XCr O -YCrO ·ΖΗ Ο)の皮膜、即ち、六価クロムの  [0076] The change of the substrate surface of the lead-containing copper-based metal material (Cu) due to the reaction at this time is schematically explained. As shown in Fig. 2 (b), the substrate of the lead-containing copper-based metal material (Cu) Gel-like composite hydrated oxide film (XCr O -YCrO · ΖΗ Ο) formed on the surface, that is, hexavalent chromium
2 3 3 2  2 3 3 2
皮膜は、六価クロム除去工程 S7でクロム酸用還元剤により還元され、三価クロム(Cr O )となった状態で、鉛含有銅系金属材 (Cu)の素地表面に付着していると推察されThe film is reduced with a reducing agent for chromic acid in the hexavalent chromium removing step S7, and trivalent chromium (Cr (O), and is presumed to be attached to the surface of the lead-containing copper-based metal (Cu).
3 Three
る。即ち、このとき、鉛含有銅系金属材 (Cu)の素地表面には、六価クロムは全く存在 せず、鉛含有銅系金属材 (Cu)の素地表面力 六価クロムが完全に除去されたと!/、 える。  The That is, at this time, there is no hexavalent chromium on the surface of the lead-containing copper-based metal material (Cu), and the surface force of the lead-containing copper-based metal material (Cu) is completely removed. And!
[0077] [水洗工程]  [0077] [Washing process]
鉛含有銅系金属材は、六価クロム除去工程 S8で還元処理された後、還元槽から引 き上げられ、ただちに六価クロム除去後の水洗工程 S9に送られて、水洗槽に所定時 間浸漬された後引き上げられる。これにより、鉛含有銅系金属材の素地表面(内部の 露出表面含む)に付着した三価クロム (Cr3+)、例えば、酸ィ匕クロム (Cr O )力 水洗 The lead-containing copper-based metal material is reduced in the hexavalent chromium removal step S8, then pulled up from the reduction tank, and immediately sent to the water washing step S9 after the hexavalent chromium removal, to the water washing tank for a predetermined time. It is pulled up after being immersed. As a result, trivalent chromium (Cr 3+ ) attached to the surface of the lead-containing copper-based metal material (including the exposed internal surface), for example, acid chrome (Cr 2 O 3)
2 3 槽において除去され、鉛含有銅系金属材の素地表面が清浄化される。このときの反 応による鉛含有銅系金属材 (Cu)の素地表面の変化を模式的に説明すると、図 2 (c) に示すように、鉛含有銅系金属材 (Cu)の素地表面に付着した三価クロム (Cr O )は  2 3 It is removed in the tank and the base surface of the lead-containing copper-based metal material is cleaned. The changes in the surface of the lead-containing copper-based metal material (Cu) due to the reaction at this time can be schematically explained as shown in Fig. 2 (c). The adhering trivalent chromium (Cr 2 O 3)
2 3 twenty three
、全て、水洗工程 S9での水洗槽内における水洗により、鉛含有銅系金属材 (Cu)の 素地表面力 完全に分離除去されて水中に放出される。即ち、鉛含有銅系金属材( Cu)の素地表面には、六価クロムが全く存在しないのみならず、三価クロムも全て除 去されて全く存在しない状態となる。 All of the surface strength of the lead-containing copper-based metal material (Cu) is completely separated and released into the water by washing in the washing tank in the washing step S9. That is, not only hexavalent chromium does not exist at all on the surface of the lead-containing copper-based metal material (Cu), but also all trivalent chromium is removed and no longer exists.
[0078] [反応式] [0078] [Reaction Formula]
なお、上記六価クロム除去工程 S8で、還元剤として次亜硫酸ナトリウム (Na S O )  In the hexavalent chromium removal step S8, sodium hyposulfite (Na 2 S 2 O 3) as a reducing agent
2 2 5 を使用した場合、次亜硫酸ナトリウム (Na S O )が水中で亜硫酸水素ナトリウム (Na  When 2 2 5 is used, sodium bisulfite (Na S O)
2 2 5  2 2 5
HSO )となり、例えば、以下の反応式により、鉛含有銅系金属材の素地表面の六価 HSO), for example, by the following reaction formula:
3 Three
クロム(4CrO 2または 4H CrO )が三価クロム(2Cr (SO ) )に還元されると考えるこ It is assumed that chromium (4CrO 2 or 4H CrO) is reduced to trivalent chromium (2Cr (SO)).
4 2 4 4 3  4 2 4 4 3
とちでさる。  Tochidaru.
4CrO 2— +6NaHSO + 3H SO 2Cr (SO ) + 3Na SO + 10H O 4CrO 2 — + 6NaHSO + 3H SO 2Cr (SO) + 3Na SO + 10H O
4 3 2 4 4 3 2 4 2  4 3 2 4 4 3 2 4 2
[0079] また、六価クロム除去工程 S8で、還元剤として次亜硫酸ナトリウム (Na S O )をそ  [0079] Further, in the hexavalent chromium removing step S8, sodium hyposulfite (Na 2 S 2 O 3) is used as a reducing agent.
2 2 5 のまま還元槽の水溶液中に投入した場合、例えば、以下の反応式により、鉛含有銅 系金属材の素地表面の六価クロム(4CrO 2または 4H CrO )が三価クロム(2Cr (S When it is put into the aqueous solution in the reduction tank as it is, the hexavalent chromium (4CrO 2 or 4H CrO) on the surface of the lead-containing copper-based metal material is converted to trivalent chromium (2Cr ( S
4 2 4  4 2 4
o ) )に還元されると考えることもできる。  o) It can be thought that it will be reduced to).
4 3  4 3
4H CrO + 3Na S O + 3H SO 2Cr (SO ) + 3Na SO + 7H O [0080] このとき、六価クロム(Crb+)は、還元浴中で亜硫酸水素ナトリウム (NaHSO )に硫 4H CrO + 3Na SO + 3H SO 2Cr (SO) + 3Na SO + 7H O [0080] At this time, hexavalent chromium (Cr b + ) was sulfated into sodium hydrogen sulfite (NaHSO) in a reduction bath.
3 酸 (H SO )を添カ卩して pHを pH2〜3の間に調製しても、上記反応が進むにつれて 3 Even if acid (H 2 SO 4) is added to adjust the pH to between 2 and 3, as the above reaction proceeds
2 4 twenty four
還元浴中の pHが上昇し、中性付近で反応が止まることがある。これは、硫酸 (H SO  The pH in the reducing bath increases and the reaction may stop near neutrality. This is sulfuric acid (H SO
2 4 twenty four
)は還元剤水溶液中では 2H+と SO 2とに解離し、プロトン (H+)を供給するため、反応 ) Dissociates into 2H + and SO 2 in the reducing agent aqueous solution and supplies protons (H +).
4  Four
は右方向に進み (→;)、プロトンの供給が終わると反応が停止するためと考えられる。よ つて、この場合、還元浴の pHをモニターし、 pHを pH2〜3の間に維持するよう、定期 的に硫酸を追加することが好ま 、。  Proceeds to the right (→;), and the reaction stops when the supply of protons ends. Therefore, in this case, it is preferable to monitor the pH of the reducing bath and periodically add sulfuric acid to maintain the pH between pH 2-3.
[0081] 水処理工程] [0081] Water treatment process
上記回収工程 S5及び S6では、回収槽内の水中に六価クロムが存在している。また 、六価クロム除去工程 S8では、還元槽の還元剤水溶液中に三価クロムが存在してい る。更に、水洗工程 S9では、水洗槽の水中に三価クロムが存在している。よって、図 示はしないが、回収槽、還元槽及び水洗槽の排水には排水処理工程が必要となる。 即ち、回収槽の場合、水中に六価クロムが含有されるため、排水に上記次亜硫酸ナ トリウム等の還元剤を添加して水溶し、六価クロムを三価クロムに還元処理する。その 後、排水に水酸ィ匕ナトリウム (NaOH)を添加して排水の pHを中性域に調整したり、 排水に凝集剤等を添加したりして、排水中の三価クロムを凝集沈殿させる。そして、 排水の上澄み部分 (三価クロムを含有しな!、清浄水)と沈殿部分とを分離して取り出 し、再利用'廃棄処理等する。また、前記還元槽及び水洗槽の場合、還元剤水溶液 中及び水中には三価クロムが含有されるため、排水に水酸ィ匕ナトリウム(NaOH)を 添加して排水の pHを中性域に調整したり、排水に凝集剤等を添加したりして、排水 中の三価クロムを凝集沈殿させる。そして、排水の上澄み部分 (三価クロムを含有し ない清浄水)と沈殿部分とを分離して取り出し、再利用'廃棄処理等する。例えば、上 記反応式 (a)または (b)の場合、還元剤水溶液中に溶解した硫酸クロム(2Cr (SO )  In the recovery steps S5 and S6, hexavalent chromium is present in the water in the recovery tank. In the hexavalent chromium removing step S8, trivalent chromium is present in the reducing agent aqueous solution in the reducing tank. Furthermore, in the washing step S9, trivalent chromium exists in the water of the washing tank. Therefore, although not shown, a wastewater treatment process is required for the drainage of the recovery tank, reduction tank, and washing tank. That is, in the case of the recovery tank, hexavalent chromium is contained in the water, so the reducing agent such as sodium hyposulfite is added to the waste water to make it water-soluble, and the hexavalent chromium is reduced to trivalent chromium. Then, add sodium hydroxide (NaOH) to the wastewater to adjust the pH of the wastewater to a neutral range, or add a flocculant etc. to the wastewater to coagulate and precipitate trivalent chromium in the wastewater. Let Then, the supernatant portion of the wastewater (does not contain trivalent chromium !, clean water) and the precipitate portion are separated and taken out for reuse or disposal. In the case of the reducing tank and water washing tank, trivalent chromium is contained in the reducing agent aqueous solution and in the water. Therefore, sodium hydroxide (NaOH) is added to the wastewater to make the pH of the wastewater neutral. Adjust or add a coagulant to the wastewater to coagulate and precipitate the trivalent chromium in the wastewater. Then, the supernatant part of the wastewater (clean water not containing trivalent chromium) and the precipitate part are separated and taken out and reused or discarded. For example, in the case of the above reaction formula (a) or (b), chromium sulfate dissolved in an aqueous reducing agent solution (2Cr (SO 2)
4 3 4 3
)を水酸ィ匕ナトリウム (NaOH)等により中和し、水酸ィ匕クロムとして溶液中に沈殿させ た後、濾別し、その濾液を排水処理すると共に、沈殿物(水酸化クロム)は脱水処理 などを行う等して、廃棄物として処分することができる。 ) Is neutralized with sodium hydroxide (NaOH), etc., and precipitated in solution as sodium hydroxide, and then filtered off. The filtrate is drained and the precipitate (chromium hydroxide) It can be disposed of as waste, such as by dehydration.
[0082] [表面改質処理工程] [0082] [Surface modification treatment step]
水洗工程 S9の後、鉛含有銅系合金材は、表面改質処理工程 S 10に送られ、リン 酸皮膜処理により、六価クロムを除去した前記鉛含有銅系金属材の素地表面(内部 の露出表面含む)が改質される。具体的には、表面改質処理工程 S 10では、鉛含有 銅系合金材は、所定温度の混酸水溶液を貯留した化成処理槽に所定時間浸漬され る。表面改質処理工程 S 10の化成処理層の混酸水溶液としては、例えば、リン酸乃 至オルトリン酸 (H PO )と硝酸 (HNO )とを主材として溶解した混酸水溶液を使用す After the water washing step S9, the lead-containing copper-based alloy material is sent to the surface modification treatment step S10, By the acid film treatment, the base surface (including the exposed internal surface) of the lead-containing copper-based metal material from which hexavalent chromium has been removed is modified. Specifically, in the surface modification treatment step S10, the lead-containing copper-based alloy material is immersed in a chemical conversion treatment tank that stores a mixed acid aqueous solution at a predetermined temperature for a predetermined time. As the mixed acid aqueous solution of the chemical conversion treatment layer in the surface modification treatment step S10, for example, a mixed acid aqueous solution in which phosphoric acid to orthophosphoric acid (H 3 PO 4) and nitric acid (HNO 3) are dissolved as main materials is used.
3 4 3  3 4 3
ることができる。リン酸皮膜の良好な形成の観点から、リン酸の濃度は約 2〜5%の範 囲とすることが好ましい。また、硝酸の濃度は約 0. 5〜2%の範囲とすることが好まし い。即ち、混酸水溶液における硝酸は、化学研磨機能等を発揮することにより、リン 酸による鉛含有銅系金属表面へのリン酸皮膜の形成を促進または助長する等の目 的で使用されるが、硝酸の濃度は約 0. 5未満では力かる機能を十分に発揮できず、 一方、硝酸の濃度が約 2%を越えると、鉛含有銅系金属の最終製品の外観等に影響 を与える可能性がある。更に、リン酸及び混酸の濃度を上記範囲の設定とすると、鉛 含有銅系金属材にメツキを施さずにその素地表面にリン酸皮膜を施す場合のみなら ず、鉛含有銅系金属材にニッケルメツキやニッケルクロムメツキ等を施してそのメツキ 表面にリン酸皮膜を施す場合でも、表面に良好なリン酸皮膜を施し、かつ、最終製品 の外観等を良好に維持することができる。一方、化成処理浴の温度は、例えば、約 4 0〜60°Cまたは約 40〜80°Cの範囲とすることができる。更に、化成処理浴への鉛含 有銅系金属材の浸漬時間は、例えば、約 20秒〜 3分または約 30秒〜 3分の範囲と することができる。なお、化成処理浴の温度と鉛含有銅系金属材の浸漬時間とは相 対的に決定し、化成処理浴の温度を高く設定した場合、鉛含有銅系金属材の浸漬 時間を短く設定し、化成処理浴の温度を低く設定した場合、鉛含有銅系金属材の浸 漬時間を長く設定することが好ましい。例えば、化成処理槽の温度が約 40°Cの場合 は浸漬時間を約 3分間とし、化成処理層の温度が約 60°Cの場合は浸漬時間を約 20 秒間とすることができる。 Can. From the viewpoint of good formation of a phosphoric acid film, the concentration of phosphoric acid is preferably in the range of about 2 to 5%. The nitric acid concentration is preferably in the range of about 0.5 to 2%. That is, nitric acid in a mixed acid aqueous solution is used for the purpose of promoting or promoting the formation of a phosphoric acid film on the surface of a lead-containing copper-based metal by phosphoric acid by exerting a chemical polishing function or the like. However, if the concentration of nitric acid is less than about 0.5, it will not be able to perform its full function.On the other hand, if the nitric acid concentration exceeds about 2%, it may affect the appearance of the final product of lead-containing copper-based metals. is there. Furthermore, if the concentration of phosphoric acid and mixed acid is set within the above range, not only the lead-containing copper-based metal material is not subjected to plating, but also a phosphoric acid film is applied to the surface of the substrate, and the lead-containing copper-based metal material is nickel-coated. Even when a plating or nickel chrome plating is applied to form a phosphoric acid coating on the surface of the plating, a good phosphoric acid coating can be applied to the surface and the appearance of the final product can be maintained well. On the other hand, the temperature of the chemical conversion bath may be, for example, in the range of about 40-60 ° C or about 40-80 ° C. Furthermore, the immersion time of the lead-containing copper-based metal material in the chemical conversion bath can be, for example, in the range of about 20 seconds to 3 minutes or about 30 seconds to 3 minutes. The temperature of the chemical conversion treatment bath and the immersion time of the lead-containing copper-based metal material are determined relative to each other. When the temperature of the chemical conversion treatment bath is set high, the immersion time of the lead-containing copper-based metal material is set short. When the temperature of the chemical conversion treatment bath is set low, it is preferable to set the immersion time of the lead-containing copper-based metal material long. For example, when the temperature of the chemical conversion treatment tank is about 40 ° C., the immersion time can be about 3 minutes, and when the temperature of the chemical conversion treatment layer is about 60 ° C., the immersion time can be about 20 seconds.
上記所定濃度のリン酸 (オルトリン酸)と硝酸とを含有する混酸の水溶液を貯留した 化成処理槽に前記鉛含有銅系金属材を上記所定時間浸漬することにより、鉛含有 金属材の素地表面に所定膜厚のリン酸皮膜が形成され、防食機能及び変色防止機 能等の所期の機能を発揮する。なお、前記化成処理槽の混酸水溶液には、リン酸及 び硝酸の他、シリカ等の無機分散体等を添加剤として加えてもよい。このときの反応 による鉛含有銅系金属材 (Cu)の素地表面の変化を模式的に説明すると、図 2 (d)に 示すように、鉛含有銅系金属材 (Cu)の素地表面(六価クロム及び三価クロムが全く 存在しない素地表面)では、鉛含有銅系金属材 (Cu)とリン酸とが反応して、所定のリ ン酸皮膜 (H PO )が形成されると推察される。 By immersing the lead-containing copper-based metal material in the chemical conversion treatment tank storing an aqueous solution of a mixed acid containing phosphoric acid (orthophosphoric acid) and nitric acid at a predetermined concentration, the lead-containing metal material is immersed on the surface of the substrate. A phosphate film with a predetermined thickness is formed, and the desired functions such as anti-corrosion and discoloration prevention functions are exhibited. Note that the mixed acid aqueous solution in the chemical conversion treatment tank contains phosphoric acid and In addition to nitric acid, an inorganic dispersion such as silica may be added as an additive. The change in the substrate surface of the lead-containing copper-based metal material (Cu) due to the reaction at this time is schematically explained. As shown in Fig. 2 (d), the substrate surface of the lead-containing copper-based metal material (Cu) (six It is presumed that the lead-containing copper-based metal (Cu) and phosphoric acid react with each other to form a predetermined phosphoric acid coating (H PO) on the base surface where no valent chromium or trivalent chromium exists. The
3 4  3 4
[0084] 或いは、表面改質処理工程 S10における銅または銅合金の表面の改質処理 (ィ匕成 処理)は、以下のように行われると考えることもできる。まず、第一段階として、混酸水 溶液に含有される硝酸により、銅または銅合金の表面が溶け、その直後、銅または銅 合金の表面に酸化膜が形成される。この酸ィ匕膜は、酸ィ匕第一銅 (Cu O)と考えられ  Alternatively, it may be considered that the surface modification treatment (i-formation treatment) of the copper or copper alloy in the surface modification treatment step S10 is performed as follows. First, as a first step, the surface of copper or copper alloy is melted by nitric acid contained in the mixed acid aqueous solution, and immediately after that, an oxide film is formed on the surface of copper or copper alloy. This acid film is considered to be acid cuprous (Cu 2 O).
2  2
る。また、このときの反応は以下の反応式のように進行すると考えられる。  The Further, the reaction at this time is considered to proceed as shown in the following reaction formula.
4Cu+4HNO→ 4Cu2++ 2H O + 30 +4NO† → 4Cu + 4HNO → 4Cu 2+ + 2H O + 30 + 4NO † →
3 2 2  3 2 2
2Cu 0 + 2H 0 + 20 +4NO†  2Cu 0 + 2H 0 + 20 + 4NO †
2 2 2  2 2 2
次に、第二段階として、銅または銅合金の表面でリン酸による反応が進行する。こ の燐酸による反応の詳細は不明であるが、一部カ^ン酸塩三水和物となると考えられ 、以下のような反応式のように反応が進行すると考えられる。  Next, as a second stage, reaction with phosphoric acid proceeds on the surface of copper or copper alloy. Although the details of the reaction with phosphoric acid are unknown, it is considered that some of the phosphate trihydrate is formed, and the reaction proceeds as shown in the following reaction formula.
6Cu+4H PO + 30→ 2Cu (PO ) +6H O →  6Cu + 4H PO + 30 → 2Cu (PO) + 6H O →
3 4 2 3 4 2 2  3 4 2 3 4 2 2
2 (Cu (PO ) · 6Η O)  2 (Cu (PO) 6Η O)
3 4 2 2  3 4 2 2
[0085] [水洗工程]  [0085] [Washing process]
鉛含有銅系金属材は、表面改質処理工程 S10でリン酸皮膜処理された後、化成処 理槽から引き上げられ、表面改質処理工程 S10後の第 1回目の水洗工程 S11に送 られて、水洗槽に所定時間浸潰された後引き上げられ、更に、表面改質処理工程 S 10後の第 2回目の水洗工程 S12に送られ、水洗槽に所定時間浸漬された後引き上 げられる。これにより、鉛含有銅系金属材の表面(内部の露出表面含む)に付着した 混酸成分が、水洗工程 S 11の水洗槽及び水洗工程 S 12の水洗槽にお ヽて順次水 洗により除去され、鉛含有銅系金属材の表面が清浄化される。  The lead-containing copper-based metal material is subjected to a phosphoric acid film treatment in the surface modification treatment step S10, then lifted from the chemical conversion treatment tank, and sent to the first water washing step S11 after the surface modification treatment step S10. Then, after being soaked in the washing tank for a predetermined time, it is pulled up, and further, sent to the second washing step S12 after the surface modification treatment step S10, and after being immersed in the washing tank for a predetermined time, it is pulled up. As a result, the mixed acid components adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) are sequentially removed by water washing in the water washing tank of the water washing step S11 and the water washing tank of the water washing step S12. The surface of the lead-containing copper-based metal material is cleaned.
[0086] [変色防止処理工程]  [0086] [Discoloration prevention treatment process]
次に、鉛含有銅系金属材は、水栓工程 S11及び S12の後、変色防止処理工程 S1 3に送られ、防鲭剤水溶液等の変色防止剤を貯留した変色防止処理槽に所定時間 浸漬されて、素地表面(内部の露出表面含む)が防鲭'腐食 ·変色防止処理される。 このときの防鲭剤乃至腐食'変色防止剤としては、例えば、ベンゾトリアゾール (C H Next, the lead-containing copper-based metal material is sent to the discoloration prevention treatment step S13 after the faucet steps S11 and S12, and stored in a discoloration prevention treatment tank storing a discoloration prevention agent such as an antifungal aqueous solution for a predetermined time. After being immersed, the substrate surface (including the exposed internal surface) is treated with anti-corrosion and discoloration. Examples of the antifungal agent or corrosion 'anti-discoloration agent at this time include, for example, benzotriazole (CH
6 5 6 5
N )を使用することができる。このべンゾトリアゾールは、銅または銅合金との反応でN) can be used. This benzotriazole reacts with copper or copper alloys.
3 Three
は、不溶性の Cu—べンゾトリァゾール錯重合体になっている。ここで、 Cuのべンゾト リアゾールの構造式は CuC H Nとなり、 Cu +のべンゾトリアゾールの構造式は Cu (  Has become an insoluble Cu-benzotriazole complex. Here, the structural formula of Cu benzotriazole is CuC H N, and the structural formula of Cu + benzotriazole is Cu (
6 4 3  6 4 3
C H N )となると推察される。なお、変色防止処理工程 S13は、必要に応じて省略 C H N). The discoloration prevention treatment step S13 is omitted as necessary.
6 3 3 2 6 3 3 2
することちでさる。  I'll do it for you.
[0087] [水洗工程]  [0087] [Washing process]
鉛含有銅系金属材は、前記変色防止処理工程 S13の後、変色防止処理槽から引 き上げられ、水洗工程 S14に送られて、水洗槽に所定時間浸漬された後引き上げら れる。これにより、鉛含有銅系金属材の表面(内部の露出表面含む)に付着した変色 防止剤成分が、水洗槽において水洗により除去され、鉛含有銅系金属材の表面が 清浄化される。なお、水洗工程 S 14は、変色防止処理工程 S 13を省略したとき等、必 要時には省略することもできる。  The lead-containing copper-based metallic material is pulled up from the discoloration prevention treatment tank after the discoloration prevention treatment step S13, sent to the water washing step S14, and then pulled up after being immersed in the washing bath for a predetermined time. As a result, the discoloration inhibitor component adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) is removed by washing in the water-washing tank, and the surface of the lead-containing copper-based metal material is cleaned. The water washing step S14 can be omitted when necessary, such as when the discoloration preventing treatment step S13 is omitted.
[0088] [湯洗工程及び乾燥工程]  [0088] [Hot water washing process and drying process]
鉛含有銅系金属材は、前記変色防止処理工程 S13後の水洗工程 S14の後、変色 防止処理槽カも引き上げられ、湯洗工程 S15に送られて、湯洗槽に所定時間浸漬さ れた後引き上げられる。これにより、鉛含有銅系金属材の表面(内部の露出表面含 む)に付着した変色防止剤成分が、湯洗槽において湯洗により完全に除去され、鉛 含有銅系金属材の表面が完全に清浄化される。更に、鉛含有銅系金属材は、湯洗 工程 S15で湯洗された後、湯洗槽から引き上げられ、乾燥工程 S 16に送られて熱風 等により強制乾燥される。  The lead-containing copper-based metal material was also washed out after the water washing step S14 after the discoloration prevention treatment step S13, and the color change prevention treatment tank was also lifted, sent to the hot water washing step S15, and immersed in the water washing bath for a predetermined time. Raised later. As a result, the discoloration inhibitor component adhering to the surface of the lead-containing copper-based metal material (including the exposed internal surface) is completely removed by washing in the water-washing tank, and the surface of the lead-containing copper-based metal material is completely removed. To be cleaned. Furthermore, after the lead-containing copper-based metal material is washed in the hot water washing step S15, it is lifted from the hot water washing tank, sent to the drying step S16, and forcedly dried by hot air or the like.
[0089] このように、実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面処理方 法は、六価クロムが、酸性及びアルカリ性のどちらでも安定したイオンの形で存在す る性質に着目し、六価クロム除去工程 S8で、鉛含有銅系金属材を還元槽の還元剤 水溶液に浸漬し、その素地表面の六価クロムを三価クロムに還元して還元槽中に溶 出等させることにより、鉛含有銅系金属材の素地表面の六価クロムを選択的に溶解 及び除去する。更に、六価クロム除去後の鉛含有銅系金属材の素地表面はそのまま では変色しやすいため、表面改質処理工程 S10で、鉛含有銅系金属材を化成処理 槽の混酸水溶液に浸漬して素地表面にリン酸皮膜を形成する。 [0089] Thus, in the hexavalent chromium-free surface treatment method for lead-containing copper-based metallic materials according to Embodiment 1, hexavalent chromium exists in the form of stable ions, both acidic and alkaline. Focusing on the properties, in the hexavalent chromium removal step S8, the lead-containing copper-based metal material is immersed in the reducing agent aqueous solution in the reduction tank, and the hexavalent chromium on the substrate surface is reduced to trivalent chromium and dissolved in the reduction tank. The hexavalent chromium on the surface of the lead-containing copper-based metal material is selectively dissolved and removed by making it come out. Furthermore, the base surface of the lead-containing copper-based metal material after removal of hexavalent chromium remains unchanged In the surface modification treatment step S10, the lead-containing copper-based metal material is immersed in a mixed acid aqueous solution in the chemical conversion treatment tank to form a phosphate film on the substrate surface.
[0090] [効果]  [0090] [Effect]
実施の形態 1に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、鉛含 有銅系金属材を素材とする素地製品において、製品化後の鉛の溶出を確実に防止 できると共に、六価クロムの溶出量をゼロとすることができ、かつ、素地表面(内部露 出表面含む)の耐食性を向上して変色等を確実に防止することができる。特に、鉛含 有同系金属材カ なる水栓金具等の内部素地表面に存在するピンホールやクラック 、或いは、内部の部品間等に存在する小さい隙間 (微小間隙)や複雑形状の隙間( 複雑形状間隙)に残留しやすい六価クロムの皮膜が、力かるピンホールやクラックま たは微笑間隙や複雑形状間隙力 完全に除去されるため、本実施の形態の鉛含有 同系金属材カ なる水栓装置等の使用に伴い、六価クロムが溶出または浸出する可 能性を完全に防止することができる。また、特に、実施の形態 1に係る鉛含有銅系金 属材の六価クロムフリー表面処理方法は、環境負荷物質である六価クロムを完全に 除去できると共に、耐食性に優れた環境適応型銅合金等の表面処理方法として好 適に使用することができる。また、従来の水道用品の表面処理プラント等をそのまま の形で使用でき、コストの増大を招くことがない。  The hexavalent chromium-free surface treatment method for lead-containing copper-based metal materials according to Embodiment 1 can reliably prevent elution of lead after commercialization in a base product made of lead-containing copper-based metal materials. In addition, the elution amount of hexavalent chromium can be made zero, and the corrosion resistance of the substrate surface (including the internal exposed surface) can be improved to prevent discoloration and the like. In particular, pinholes and cracks that exist on the surface of internal substrates such as faucet fittings that contain lead-containing metal materials, or small gaps (micro gaps) that exist between internal parts, etc. Since the hexavalent chromium film that tends to remain in the gaps is completely removed by powerful pinholes, cracks, smile gaps, and complex shape gap forces, the faucet that is the lead-containing similar metal material of this embodiment The possibility of elution or leaching of hexavalent chromium with the use of equipment, etc. can be completely prevented. In particular, the hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 1 can completely remove hexavalent chromium, which is an environmentally hazardous substance, and has excellent corrosion resistance. It can be suitably used as a surface treatment method for alloys and the like. In addition, a conventional surface treatment plant for water supplies can be used as it is, and the cost is not increased.
[0091] 実施の形態 2 (メツキ表面処理) [0091] Embodiment 2 (Metsuki surface treatment)
以下、本発明の実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面処 理方法について説明する。図 3は本発明の実施の形態 2に係る鉛含有銅系金属材 の六価クロムフリー表面処理方法の一連の工程を示す工程図である。図 4は本発明 の実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面処理方法による鉛 含有銅系金属材の表面状態の変化を示す模式図であり、 (a)は超光沢ニッケルメッ キエ程において鉛含有銅系金属材の素地表面に超光沢ニッケルメツキが形成され た状態を、 (b)は光沢ニッケルメツキ工程において鉛含有銅系金属材の超光沢-ッ ケルメツキ表面に光沢ニッケルメツキが形成された状態を、(c)はクロムメツキ工程に おいて鉛含有銅系金属材の光沢ニッケルメツキ表面にクロムメツキが形成されると共 に、クロム酸エッチング工程にぉ 、てクロムメツキ表面に六価クロム皮膜が形成された 状態を、 (d)は六価クロム除去工程において鉛含有銅系金属材のメツキ表面の六価 クロム皮膜が還元された状態を、 (e)は六価クロム除去工程後の水洗工程において 鉛含有銅系金属材のクロムメツキ表面から三価クロムが水洗される共に零価のクロム 表面となった状態を、 (f)は表面改質処理工程において鉛含有銅系金属材のクロム メツキ表面にリン酸皮膜が形成された状態を示す。 Hereinafter, a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 of the present invention will be described. FIG. 3 is a process diagram showing a series of steps of a hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 of the present invention. FIG. 4 is a schematic diagram showing changes in the surface state of the lead-containing copper-based metal material by the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 2 of the present invention. (B) shows the state of super bright nickel plating formed on the surface of the lead-containing copper-based metal material in the bright nickel plating process. (C) shows the state where the nickel plating is formed. In the chromium plating process, when the chromium plating is formed on the surface of the bright nickel plating of the lead-containing copper-based metal material, the nickel plating is also formed on the surface of the chromium plating. Hexavalent chromium film formed (D) shows the state in which the hexavalent chromium film on the plating surface of the lead-containing copper-based metal material has been reduced in the hexavalent chromium removal process, and ( e ) shows the lead content in the water washing process after the hexavalent chromium removal process. (F) shows the state in which the trivalent chromium was washed with water from the chrome plating surface of the copper-based metal material and became a zero-valent chrome surface. The state where the film is formed is shown.
[0092] 実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、铸造 等により所定形状に成形された鉛含有銅系金属材、例えば、快削黄銅の水洗金具 のニッケルクロムメツキ品において、そのクロムメツキ表面からの鉛の溶出を防止して 鉛フリーとすると共に、クロムメツキ表面からの六価クロムの溶出をも防止して六価クロ ムフリーとし、かつ、クロムメツキ表面にリン酸皮膜を形成して耐食性 (変色防止機能 等)を向上するものである。詳細には、実施の形態 2に係る鉛含有銅系金属材の六 価クロムフリー表面処理方法は、図 3に示すように、アルカリクリーナ超音波洗浄工程 S21、アルカリクリーナ超音波洗浄後の第 1回目の水洗工程 S22、アルカリクリーナ 超音波洗浄後の第 2回目の水洗工程 S23、(―)電解脱脂工程 S24、( + )電解脱脂 工程 S25、電解脱脂後の第 1回目の水洗工程 S26、電解脱脂後の第 2回目の水洗 工程 S27、第 1回目の活性酸処理工程 S28、第 1回目の活性酸処理後の水洗工程 S29、超光沢ニッケルメツキ工程 S 30、超光沢ニッケルメツキ後の第 1回目の回収ェ 程 S31、超光沢ニッケルメツキ後の第 2回目の回収工程 S32、光沢ニッケルメッキエ 程 S33、光沢ニッケルメツキ後の回収工程 S34、光沢ニッケルメツキ後の第 1回目の 水洗工程 S35、光沢ニッケルメツキ後の第 2回目の水洗工程 S36、第 2回目の活性 酸処理工程 S37、第 2回目の活性酸処理後の水洗工程 S38、クロム酸処理工程とし てのクロム酸活性処理工程 S39、クロムメツキ工程 S40、クロムメツキ後の第 1回目の 回収工程 S41、クロムメツキ後の第 2回目の回収工程 S42、六価クロム除去工程 S43 、六価クロム除去後の水洗工程 S44、表面改質処理工程 S45、表面改質処理工程 S 45後の第 1回目の水洗工程 S46、表面改質処理工程 S45後の第 2回目の水洗工程 S47、湯洗工程 S48及び乾燥工程 S49からなる。 [0092] A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to Embodiment 2 includes a lead-containing copper-based metal material formed into a predetermined shape by forging or the like, for example, a free-cutting brass flush fitting In nickel-chromium plating products, lead elution is prevented from the chromium plating surface to make it lead-free, and hexavalent chromium from the chromium plating surface is also prevented from elution, making it hexavalent chromium-free. An acid film is formed to improve corrosion resistance (discoloration prevention function, etc.). Specifically, the hexavalent chromium-free surface treatment method for the lead-containing copper-based metal material according to Embodiment 2 is performed as shown in FIG. 3 in the alkaline cleaner ultrasonic cleaning step S21, the first after the alkaline cleaner ultrasonic cleaning. 2nd water washing process S22, alkaline cleaner 2nd water washing process after ultrasonic cleaning S23, (-) Electrolytic degreasing process S24, (+) Electrolytic degreasing process S25, 1st water washing process after electrolytic degreasing S26, electrolysis 2nd water washing process S27 after degreasing, 1st active acid treatment process S28, 1st water washing process after active acid treatment S29, super bright nickel plating process S 30, first after super bright nickel plating Second recovery process S31, second recovery process after super bright nickel plating S32, bright nickel plating process S33, recovery process after bright nickel plating S34, first water washing process S35 after bright nickel plating, Second after bright nickel plating Water washing step S36 for the second, acid treatment step S37 for the second time, water washing step S38 after the second active acid treatment, chromic acid activation treatment step S39 for the chromic acid treatment step, chrome plating step S40, after chrome plating First recovery step S41, second recovery step after chromium plating S42, hexavalent chromium removal step S43, water washing step after hexavalent chromium removal S44, surface modification treatment step S45, surface modification treatment step S 45 It consists of a subsequent first water washing step S46, a surface modification treatment step S45, a second water washing step S47, a hot water washing step S48, and a drying step S49.
[0093] [アルカリクリーナ超音波洗浄工程] [0093] [Alkali cleaner ultrasonic cleaning process]
鉛含有銅系金属材は、まず、アルカリクリーナ超音波洗浄工程 S21において、アル 力リクリーナによる超音波洗浄により、その素地表面(内部の露出表面含む)が洗浄さ れる。このとき、鉛含有銅系金属材の素地表面部分に含有される鉛成分は、アルカリ 及び酸のいずれにも溶解するため、このアルカリクリーナ超音波洗浄処理におけるァ ルカリクリーナにより、鉛含有銅系金属材の素地表面部分に存在する鉛成分の大部 分が溶出して除去される。 The lead-containing copper-based metal material is first treated with an alkali cleaner ultrasonic cleaning step S21. The substrate surface (including the exposed internal surface) is cleaned by ultrasonic cleaning with a force recleaner. At this time, since the lead component contained in the base surface portion of the lead-containing copper-based metal material dissolves in both alkali and acid, the alkali-cleaner in this alkaline cleaner ultrasonic cleaning process performs the lead-containing copper-based metal material. Most of the lead components present on the surface of the material are eluted and removed.
[0094] [水洗工程]  [0094] [Washing process]
鉛含有銅系金属材は、アルカリクリーナ超音波洗浄工程 S21でアルカリクリーナ超 音波洗浄処理された後、アルカリクリーナ超音波洗浄後の第 1回目の水洗工程 S22 に送られて、第 1の水洗槽に所定時間浸漬された後引き上げられて、更に、アルカリ クリーナ超音波洗浄後の第 2回目の水洗工程 S23に送られ、第 2の水洗槽に所定時 間浸漬された後引き上げられる。これにより、鉛含有銅系金属材の素地表面(内部の 露出表面含む)に付着したアルカリクリーナ成分や、アルカリクリーナに含有される形 で素地表面に付着する溶出鉛成分等が、第 1の水洗槽及び第 2の水洗槽において 順次水洗により除去され、鉛含有銅系金属材の素地表面が清浄化される。  The lead-containing copper-based metal material is subjected to the alkaline cleaner ultrasonic cleaning process in the alkaline cleaner ultrasonic cleaning step S21, and then sent to the first water cleaning step S22 after the ultrasonic cleaning of the alkali cleaner, in the first water washing tank. Then, it is pulled up after being soaked for a predetermined time, and further sent to the second water washing step S23 after ultrasonic cleaning of the alkali cleaner, and after being soaked in the second water washing tank for a predetermined time, it is pulled up. As a result, alkaline cleaner components adhering to the substrate surface (including the exposed internal surface) of the lead-containing copper-based metal material, and elution lead components adhering to the substrate surface in the form contained in the alkaline cleaner, etc. The surface of the lead-containing copper-based metal material is cleaned in the tank and the second washing tank.
[0095] [電解脱脂工程〜活性酸処理工程〜水洗工程]  [0095] [Electrolytic degreasing step-active acid treatment step-water washing step]
鉛含有銅系金属材は、次に、(一)電解脱脂工程 S24及び(+ )電解脱脂工程 S25 において、順次、その素地表面(内部の露出表面含む)が電解脱脂処理される。次 に、鉛含有銅系金属材は、電解脱脂後の第 1回目の水洗工程 S26及び第 2回目の 水洗工程 S27において、第 3及び第 34の水洗槽に浸漬され、素地表面が順次洗浄 される。次に、鉛含有銅系金属材は、第 1回目の活性酸処理工程 S28において、素 地表面が活性酸により酸活性処理されて、素地表面の鲭ゃスマット等が除去される。 次に、鉛含有銅系金属材は、第 1回目の活性酸処理後の水洗工程 S29において、 第 5の水洗槽に浸漬され、素地表面が洗浄される。  Next, the lead-containing copper-based metal material is subjected to electrolytic degreasing treatment in order in (1) electrolytic degreasing step S24 and (+) electrolytic degreasing step S25. Next, the lead-containing copper-based metal material is immersed in the third and 34th water rinsing tanks in the first water washing step S26 and the second water washing step S27 after electrolytic degreasing, and the substrate surface is sequentially washed. The Next, in the first active acid treatment step S28, the lead-containing copper-based metal material is subjected to an acid activation treatment with an active acid to remove smut and the like on the substrate surface. Next, the lead-containing copper-based metal material is immersed in a fifth washing tank in the washing step S29 after the first active acid treatment, and the substrate surface is washed.
[0096] [超光沢ニッケルメツキ工程〜第 2回目の活性酸処理工程〜水洗工程]  [0096] [Super bright nickel plating process-second active acid treatment process-water washing process]
鉛含有銅系金属材は、次に、超光沢ニッケルメツキ工程 S30において、図 4 (a)に 示すように、素地表面 (外側表面のみ)に超光沢ニッケルメツキが形成される。次に、 鉛含有銅系金属材は、超光沢ニッケルメツキ後の第 1回目の回収工程 S31に送られ て、第 1の回収水槽に所定時間浸漬された後引き上げられ、第 2回目の回収工程 S3 2に送られて、第 2の回収水槽に所定時間浸漬された後引き上げられる。これにより、 鉛含有銅系金属材のメツキ表面に付着するメツキ浴成分が、第 1の回収水槽及び第 2の回収水槽に順次回収され、鉛含有銅系金属材のメツキ表面が完全に清浄ィヒされ る。次に、鉛含有銅系金属材は、光沢ニッケルメツキ工程 S33に送られ、図 4 (b)に示 すように、超光沢ニッケルメツキ表面に光沢ニッケルメツキが形成される。次に、鉛含 有銅系金属材は、光沢ニッケルメツキ後の回収工程 S34に送られて、第 3の回収水 槽に所定時間浸潰された後引き上げられて、光沢ニッケルメツキ表面が清浄化される 。更に、鉛含有銅系金属材は、光沢ニッケルメツキ後の第 1回目の水洗工程 S35及 び第 2回目の水洗工程 S36に送られ、第 6及び第 7の水洗槽に順次浸漬されて、光 沢ニッケルメツキ表面が洗净されて完全に清净ィ匕される。次に、鉛含有銅系金属材 は、第 2回目の活性酸処理工程 S37に送られ、光沢ニッケルメツキ表面が活性酸に より酸活性処理されて、光沢ニッケルメツキ表面に吸着されている有機物等が除去さ れる。次に、鉛含有銅系金属材は、第 2回目の活性酸処理後の水洗工程 S38にお いて、第 8の水洗槽に浸漬され、めっき表面 (外側表面)及び内部表面 (非めつきの 素地面)が洗浄される。 Next, in the lead-containing copper-based metallic material, in the super bright nickel plating process S30, as shown in FIG. 4 (a), super bright nickel plating is formed on the substrate surface (only the outer surface). Next, the lead-containing copper-based metallic material is sent to the first recovery step S31 after the super bright nickel plating, dipped in the first recovery water tank for a predetermined time and then pulled up, and then the second recovery step. S3 2 and then pulled up after being immersed in the second recovery water tank for a predetermined time. As a result, the plating bath components adhering to the plating surface of the lead-containing copper-based metal material are sequentially recovered in the first recovery water tank and the second recovery water tank, and the plating surface of the lead-containing copper-based metal material is completely cleaned. It is Next, the lead-containing copper-based metal material is sent to the bright nickel plating step S33, and as shown in FIG. 4 (b), a bright nickel plating is formed on the surface of the super bright nickel plating. Next, the lead-containing copper-based metal material is sent to the recovery step S34 after bright nickel plating, and after being immersed in the third recovery tank for a predetermined time, it is pulled up to clean the surface of the bright nickel plating. Is done. Furthermore, the lead-containing copper-based metal material is sent to the first water washing step S35 and the second water washing step S36 after bright nickel plating, and is sequentially immersed in the sixth and seventh water washing tanks to produce light. The surface of the nickel plating is cleaned and completely cleaned. Next, the lead-containing copper-based metal material is sent to the second active acid treatment step S37, where the surface of the bright nickel plating is subjected to an acid activation treatment with the active acid, and the organic matter adsorbed on the bright nickel plating surface, etc. Is removed. Next, the lead-containing copper-based metal material is dipped in the eighth washing tank in the second washing step S38 after the active acid treatment, and the plating surface (outer surface) and the inner surface (non-sticking element). The ground) is washed.
[クロム酸活性処理工程〜クロムメツキ工程 ·クロム酸エッチング処理工程 (クロム酸 処理工程) ]  [Chromic acid activation treatment process to chrome plating process · chromic acid etching treatment process (chromic acid treatment process)]
鉛含有銅系金属材は、次に、クロム酸活性処理工程 S39において、クロム酸活性 処理を受け、ニッケルメツキ処理により鉛含有銅系金属材の表面 (外側のめっき表面 及び内部の素地表面)に付着した酸化膜や有機不純物が除去され、表面 (外側のめ つき部分及び内部の素地表面部分)が清浄化される。次に、鉛含有銅系金属材は、 クロムメツキ工程 S40によりクロムメツキ処理されると同時に、所定温度 (例えば、常温 )のクロム酸エッチング処理液 (水溶液)によりクロム酸エッチング処理される。即ち、ク ロムメツキ工程 S40は、クロム酸エッチング工程を包含する。このとき、クロム酸エッチ ング処理液に含まれるクロム酸水溶液は強酸化性であるため、鉛含有銅系金属材の メツキ部分 (外側表面のメツキ部分)、或いは、鉛含有銅系金属材の素地表面部分( 内部の素地表面部分)をも全体溶解しながら、メツキ部分や素地表面部分に含有さ れる鉛成分をも溶解する。これにより、鉛含有銅系金属材のメツキ部分や素地表面部 分、或いは、製品内面や内部金属露出部に存在する鉛成分の残部がクロム酸エッチ ング液中に溶出して除去される。これと同時に、鉛含有銅系金属材は、クロムメッキエ 程 S40により、光沢ニッケルメツキ表面にクロムメツキが施される。 Next, the lead-containing copper-based metal material is subjected to a chromic acid activation treatment in the chromic acid activation treatment step S39, and the surface of the lead-containing copper-based metal material (the outer plating surface and the inner substrate surface) is treated by nickel plating. The attached oxide film and organic impurities are removed, and the surface (the outer surface and the inner surface) is cleaned. Next, the lead-containing copper-based metal material is subjected to a chrome plating process in a chrome plating process S40, and at the same time, a chromic acid etching process using a chromic acid etching solution (aqueous solution) at a predetermined temperature (for example, room temperature). That is, the chromium plating process S40 includes a chromic acid etching process. At this time, since the chromic acid aqueous solution contained in the chromic acid etching treatment solution is strongly oxidizable, the plating part of the lead-containing copper-based metal material (the plating part on the outer surface) or the base material of the lead-containing copper-based metal material While dissolving the entire surface part (internal substrate surface part), the lead component contained in the plating part and substrate surface part is also dissolved. As a result, the plating part of the lead-containing copper-based metal material and the substrate surface part Or the remainder of the lead component present on the inner surface of the product and the exposed internal metal is eluted and removed in the chromic acid etching solution. At the same time, the lead-containing copper-based metal material is subjected to chromium plating on the surface of the bright nickel plating by the chromium plating process S40.
[0098] [回収工程] [0098] [Recovery process]
クロム酸活性処理工程 S39及びクロムメツキ工程(クロム酸エッチング工程) S40の 後、鉛含有銅系金属材は、クロムメツキ後の第 1回目の回収工程 S41に送られて、第 4の回収水槽に所定時間浸漬された後引き上げられ、次の第 2回目の回収工程 S42 に送られて、第 5の回収水槽に所定時間浸漬された後引き上げられる。これにより、 鉛含有銅系金属材の外側メツキ表面及び内部素地表面に付着する(クロム酸を含む )クロム酸活性処理液またはクロム酸エッチング処理液力 第 4の回収水槽及び第 5 の回収水槽に順次回収され、鉛含有銅系金属材の外側メツキ表面及び内部素地表 面が完全に清浄ィ匕される。このとき、鉛含有金属材の外側メツキ表面及び内部素地 表面には、必然的に、六価クロム (Cr6+)を含有するゲル状の六価クロム皮膜が形成さ れる。 After the chromic acid activation treatment process S39 and the chrome plating process (chromic acid etching process) S40, the lead-containing copper-based metal material is sent to the first recovery process S41 after the chrome plating, and is sent to the fourth recovery tank for a predetermined time. It is pulled up after being immersed, sent to the next second collection step S42, and after being immersed in a fifth recovery water tank for a predetermined time, it is pulled up. As a result, the chromic acid activation treatment liquid (including chromic acid) or the chromic acid etching treatment liquid force (including chromic acid) adhering to the outer plating surface and the inner substrate surface of the lead-containing copper-based metal material is added to the fourth recovery water tank and the fifth recovery water tank. Sequentially recovered, the outer plating surface and the inner substrate surface of the lead-containing copper-based metal material are completely cleaned. At this time, a gel-like hexavalent chromium film containing hexavalent chromium (Cr 6+ ) is inevitably formed on the outer plating surface and the inner substrate surface of the lead-containing metal material.
[0099] このときの反応による鉛含有銅系金属材 (Cu)の外側メツキ表面及び内部素地表面 の変化を模式的に説明すると、図 4 (c)に示すように、クロム酸活性処理工程 S39か らクロムメツキ工程 (クロム酸エッチング工程) S40を経た鉛含有銅系金属材 (Cu)の 外側メツキ表面には、クロムメツキ (Cr)層が形成される。また、回収工程 S41, S42時 点で、鉛含有銅系金属材 (Cu)の外側メツキ表面としてのクロムメツキ (Cr)表面と内 部表面としての内部素地表面には、ゲル状の複合水和酸化物皮膜 (XCr O -YCrO  [0099] The changes in the outer plating surface and the inner substrate surface of the lead-containing copper-based metallic material (Cu) due to the reaction at this time are schematically explained. As shown in FIG. 4 (c), the chromic acid activation treatment step S39 From the chrome plating process (chromic acid etching process), a chromium plating (Cr) layer is formed on the outer plating surface of the lead-containing copper-based metal material (Cu) that has undergone S40. In addition, at the time of the recovery steps S41 and S42, the chrome plating (Cr) surface as the outer plating surface of the lead-containing copper-based metallic material (Cu) and the inner substrate surface as the inner surface are subjected to gel-like complex hydration oxidation. Physical coating (XCr O -YCrO
2 3 twenty three
•ZH O)の皮膜が形成されている。特に、内部素地表面に存在するピンホールゃク• ZH O) film is formed. In particular, pinholes on the inner substrate surface
3 2 3 2
ラック、或いは、内部の部品間等に存在する小さい隙間 (微小間隙)や複雑形状の隙 間 (複雑形状間隙)には、力かるゲル状の複合水和酸ィ匕物皮膜 (XCr O ·ΥΟτΟ ·Ζ  For small gaps (micro gaps) or complex gaps (complex gaps) existing between racks or internal parts, etc., a strong gel-like complex hydrated oxide film (XCr O · ΥΟτΟ · Ζ
2 3 3 2 3 3
Η Ο)の皮膜が形成され、残留しやすい。なお、鉛含有銅系金属材 (Cu)の外側メッ皮膜 Ο) film is formed and tends to remain. In addition, the outer metal of lead-containing copper-based metal (Cu).
2 2
キ表面及び内部素地表面に残留付着したクロム酸エッチング液等は、回収工程 S41 及び S42にお 、てそれぞれ回収水槽内で除去されて水中に放出される。  The chromic acid etching solution remaining on the surface of the surface and the inner substrate is removed in the recovery tank and released into water in the recovery steps S41 and S42.
[0100] [反応式] [0100] [Reaction formula]
或いは、このとき、六価クロム皮膜は、例えば、以下の反応式により、鉛含有銅系金 属材のメツキ表面に生成されると考えることもできる。 Alternatively, at this time, the hexavalent chromium film is formed by, for example, lead-containing copper-based gold by the following reaction formula: It can also be considered that it is generated on the surface of the metallic material.
(11) CrO +H O H CrO  (11) CrO + H O H CrO
3 2 2 4  3 2 2 4
(12) 2H CrO H Cr O +H O  (12) 2H CrO H Cr O + H O
2 4 2 2 7 2  2 4 2 2 7 2
( 13) Cr O 2— + 14H+ + 3Cu^2Cr3+ + 3Cu2+ + 7H O (13) Cr O 2 — + 14H + + 3Cu ^ 2Cr 3+ + 3Cu 2+ + 7H O
2 7 2  2 7 2
(14) Cr3++ 3H O Cr (OH) + 3H+ (14) Cr 3+ + 3H O Cr (OH) + 3H +
2 3  twenty three
(15) 2Cr (OH) + CrO 2" + 2H+^Cr (OH) +Cr (OH) -CrO -H O (15) 2Cr (OH) + CrO 2 "+ 2H + ^ Cr (OH) + Cr (OH) -CrO -HO
3 4 3 4 2  3 4 3 4 2
[0101] [水洗工程]  [0101] [Washing process]
2回の回収工程 S41, S42の後、鉛含有銅系金属材は、水洗工程 S43に送られて 、第 9の水洗槽に所定時間浸潰された後引き上げられる。これにより、鉛含有銅系金 属材の外側メツキ表面及び内部素地表面(内部露出表面)に残留するクロム酸エツ チング液やその他の付着物が、第 9の水洗槽により水洗除去され、鉛含有銅系金属 材の素地表面が更に完全に清浄ィ匕される。なお、水洗工程 S43は、必要に応じて、 省略することちできる。  After the two recovery steps S41 and S42, the lead-containing copper-based metal material is sent to the water washing step S43, and after being sunk in the ninth water washing tank for a predetermined time, it is pulled up. As a result, the chromic acid etching solution and other deposits remaining on the outer plating surface and the inner substrate surface (internally exposed surface) of the lead-containing copper-based metal material are washed away by the ninth water-washing tank and lead-containing. The surface of the copper-based metal material is more thoroughly cleaned. The water washing step S43 can be omitted if necessary.
[0102] [六価クロム除去工程]  [0102] [Hexavalent chromium removal process]
回収工程 S41, S42後の水洗工程 S43の後、鉛含有銅系金属材は、第 9の水洗槽 力 引き上げられ、六価クロム除去工程 S44において、所定温度の還元剤水溶液を 貯留した還元槽 (還元浴)に所定時間浸漬される。六価クロム除去工程 S44の還元 浴のクロム酸用還元剤としては、例えば、実施の形態 1と同様のものを使用することが でき、また、これらのうちの 1種またはそれ以上を溶解した所定濃度の亜硫酸ナトリウ ム水溶液を調製して還元浴とすることができる。なお、還元浴中における還元剤濃度 、還元浴の温度、浸漬時間等の諸条件も、実施の形態 1と同様とすることができる。  After the washing step S41, S42 in the recovery step S43, the lead-containing copper-based metal material is pulled up in the ninth washing tank power, and in the hexavalent chromium removal step S44, a reducing tank that stores a reducing agent aqueous solution at a predetermined temperature ( Dipped in a reducing bath) for a predetermined time. As the reducing agent for chromic acid in the reduction bath of the hexavalent chromium removal step S44, for example, the same one as in Embodiment 1 can be used, and one or more of them can be dissolved. A sodium sulfite aqueous solution having a concentration can be prepared as a reducing bath. Various conditions such as the concentration of the reducing agent in the reduction bath, the temperature of the reduction bath, and the immersion time can be the same as in the first embodiment.
[0103] 六価クロム除去工程 S44で、上記還元浴に鉛含有銅系金属材を浸漬すると、クロム 酸活性処理工程 S39及びクロムメツキ工程 (クロム酸エッチング工程) S40で前記鉛 含有銅系金属材の外側メツキ表面及び内部素地表面(内部露出表面)に形成された 皮膜成分としての六価クロムが完全に除去される。具体的には、還元浴に鉛含有銅 系金属材を浸漬すると、鉛含有銅系金属材の外側メツキ表面及び内部素地表面(内 部露出表面)の六価クロム(Cr6+)の皮膜が、還元浴中のクロム酸用還元剤により還元 されて三価クロム (Cr3+)となり、鉛含有銅系金属材の外側メツキ表面及び内部素地表 面(内部露出表面)から分離して還元浴中に放出される。これにより、鉛含有銅系金 属材の外側メツキ表面及び内部素地表面(内部露出表面)には、ゼロ価のクロム (CrQ )からなるクロム皮膜、即ち、金属クロムのクロムメツキ皮膜 (Cr)が形成されている。無 論、ゼロ価のクロム(CrQ)乃至金属クロムには六価クロムは全く含有されず、鉛含有銅 系金属材の外側メツキ表面及び内部素地表面(内部露出表面)は完全な六価クロム フリーとなっている。なお、鉛含有銅系金属材の外側メツキ表面及び内部素地表面( 内部露出表面)から離脱して還元浴中に放出された三価クロム (Cr3+)は、最終的に、 還元浴の還元剤水溶液を中性域に pH調整等することにより、還元浴の還元剤水溶 液中に沈殿させて回収等することができる。 [0103] When the lead-containing copper-based metal material is immersed in the reducing bath in the hexavalent chromium removal step S44, the lead-containing copper-based metal material is treated in the chromic acid activation treatment step S39 and the chromium plating step (chromic acid etching step) S40. Hexavalent chromium as a film component formed on the outer plating surface and the inner substrate surface (inner exposed surface) is completely removed. Specifically, when a lead-containing copper-based metal material is immersed in a reducing bath, a hexavalent chromium (Cr 6+ ) film is formed on the outer plating surface and inner substrate surface (inner exposed surface) of the lead-containing copper-based metal material. , Reduced by the reducing agent for chromic acid in the reducing bath to become trivalent chromium (Cr 3+ ), and the outer plating surface and inner surface of the lead-containing copper-based metal material Separated from the surface (internally exposed surface) and released into the reduction bath. As a result, a chromium film composed of zero-valent chromium (Cr Q ), that is, a chromium plating film of metallic chromium (Cr), is formed on the outer plating surface and inner substrate surface (internally exposed surface) of the lead-containing copper-based metal material. Is formed. Of course, zero-valent chromium (Cr Q ) or metallic chromium does not contain hexavalent chromium at all, and the outer plating surface and internal substrate surface (internally exposed surface) of lead-containing copper-based metallic materials are completely hexavalent chromium. It is free. The trivalent chromium (Cr 3+ ) released from the outer plating surface and the inner substrate surface (internally exposed surface) of the lead-containing copper-based metal material and released into the reduction bath is finally reduced in the reduction bath. By adjusting the pH of the aqueous solution to a neutral range, it can be recovered by precipitation in the reducing agent aqueous solution in the reducing bath.
[0104] このときの反応による鉛含有銅系金属材 (Cu)の外側メツキ表面及び内部素地表面 [0104] Outer plating surface and inner substrate surface of lead-containing copper-based metallic material (Cu) by reaction at this time
(内部露出表面)の変化を模式的に説明すると、図 4 (d)に示すように、鉛含有銅系 金属材 (Cu)の外側メツキ表面及び内部素地表面(内部露出表面)に形成されたゲ ル状の複合水和酸化物皮膜 (XCr O -YCrO ·ΖΗ Ο)の皮膜、即ち、六価クロムの  When the change of (externally exposed surface) is schematically explained, as shown in Fig. 4 (d), it was formed on the outer plating surface of lead-containing copper-based metal (Cu) and on the internal substrate surface (internally exposed surface). Gel-like composite hydrated oxide film (XCr O -YCrO · ΖΗ Ο), that is, hexavalent chromium
2 3 3 2  2 3 3 2
皮膜は、六価クロム除去工程 S42でクロム酸用還元剤により還元され、三価クロム (C r O )となった状態で、鉛含有銅系金属材 (Cu)の外側メツキ表面及び内部素地表面 The film is reduced by the reducing agent for chromic acid in the hexavalent chromium removal step S42 to form trivalent chromium (C r O), and the outer plating surface and inner substrate surface of the lead-containing copper-based metal material (Cu).
2 3 twenty three
(内部露出表面)に付着していると推察される。即ち、このとき、鉛含有銅系金属材 (C u)の外側メツキ表面及び内部素地表面(内部露出表面)には、六価クロムは全く存在 せず、鉛含有銅系金属材 (Cu)の外側メツキ表面及び内部素地表面(内部露出表面 )から六価クロムが完全に除去されたといえる。特に、このとき、内部素地表面に存在 するピンホールやクラック、或いは、内部の部品間等に存在する小さい隙間(微小間 隙)や複雑形状の隙間 (複雑形状間隙)に残留しやすい六価クロムの皮膜が、力かる ピンホールやクラックまたは微笑間隙や複雑形状間隙力 完全に除去されるため、 本実施の形態の鉛含有同系金属材からなる水栓装置等の使用に伴 、、六価クロム が溶出または浸出する可能性を完全に防止することができる。  Presumably attached to the (externally exposed surface). That is, at this time, hexavalent chromium does not exist at all on the outer plating surface and internal substrate surface (internally exposed surface) of the lead-containing copper-based metal material (Cu), and the lead-containing copper-based metal material (Cu) It can be said that hexavalent chromium was completely removed from the outer plating surface and the inner substrate surface (inner exposed surface). In particular, at this time, hexavalent chromium that tends to remain in pinholes and cracks existing on the surface of the inner substrate, or small gaps (micro gaps) or complex gaps (complex shape gaps) existing between internal parts. As the coating of the pinhole, crack, smile gap or complex shape gap force is completely removed, hexavalent chromium is used in conjunction with the faucet device made of the lead-containing similar metal material of this embodiment. Can be completely prevented from leaching or leaching.
[0105] [水洗工程] [0105] [Washing process]
鉛含有銅系金属材は、六価クロム除去工程 S44で還元処理された後、還元槽から 引き上げられ、ただちに六価クロム除去後の水洗工程 S45に送られて、第 10の水洗 槽に所定時間浸潰された後引き上げられる。これにより、鉛含有銅系金属材の外側 メツキ表面及び内部露出表面 (素地表面)に付着した三価クロム (cr 3+)、例えば、酸 ィ匕クロム (Cr O )が、第 10の水洗槽において水洗により除去され、鉛含有銅系金属 The lead-containing copper-based metal material is reduced in the hexavalent chromium removal step S44, then lifted from the reduction tank, and immediately sent to the water washing step S45 after the hexavalent chromium removal, and then passed to the tenth water washing tank for a predetermined time. Raised after being crushed. As a result, the outside of the lead-containing copper-based metal material Trivalent chromium ( cr 3+ ), for example, acid chromium (Cr 2 O 3 ) adhering to the plating surface and internal exposed surface (substrate surface), is removed by rinsing in the tenth rinsing tank, and lead-containing copper-based metal
2 3  twenty three
材の外側メツキ表面及び内部露出表面 (素地表面)が清浄化される。このときの反応 による鉛含有銅系金属材 (Cu)の外側メツキ表面及び内部露出表面 (素地表面)の 変化を模式的に説明すると、図 4 (e)に示すように、鉛含有銅系金属材 (Cu)の外側 メツキ表面及び内部露出表面(素地表面)に付着した三価クロム(Cr O )は、全て、  The outer surface of the material and the exposed internal surface (base surface) are cleaned. The changes in the outer plating surface and internal exposed surface (substrate surface) of the lead-containing copper-based metal material (Cu) due to the reaction at this time can be explained schematically as shown in Fig. 4 (e). All the trivalent chromium (Cr 2 O 3) adhering to the outer surface of the material (Cu) and the exposed internal surface (base surface)
2 3  twenty three
水洗工程 S45での水洗槽内における水洗により、鉛含有銅系金属材 (Cu)の外側メ ツキ表面及び内部露出表面 (素地表面)から完全に分離除去されて水中に放出され る。即ち、このとき、鉛含有銅系金属材 (Cu)の外側メツキ表面及び内部露出表面( 素地表面)には、六価クロムが全く存在しないのみならず、三価クロムも全て除去され て全く存在しない状態となる。特に、このとき、内部素地表面に存在するピンホール やクラック、或いは、内部の部品間等に存在する小さい隙間 (微小間隙)や複雑形状 の隙間 (複雑形状間隙)に残留しやすい三価クロムが、力かるピンホールやクラックま たは微笑間隙や複雑形状間隙力 完全に除去されるため、本実施の形態の鉛含有 同系金属材カ なる水栓装置等の使用に伴い、三価クロムが溶出または浸出する可 能性をも完全に防止することができる。  Washing process By washing in the washing tank in S45, the lead-containing copper-based metal (Cu) is completely separated from the outer plating surface and the inner exposed surface (substrate surface) and released into water. That is, at this time, not only hexavalent chromium is present on the outer plating surface and the internally exposed surface (base surface) of the lead-containing copper-based metal material (Cu), but all trivalent chromium is also removed and completely present. It will be in a state that does not. In particular, at this time, trivalent chromium that tends to remain in pinholes and cracks existing on the surface of the inner substrate, or small gaps (micro gaps) or complex gaps (complex shape gaps) existing between internal parts, etc. , Powerful pinholes, cracks, smile gaps and complex shape gap forces are completely removed, so trivalent chromium is eluted with the use of the faucet device that is a lead-containing similar metal material of this embodiment. Or the possibility of leaching can be completely prevented.
[0106] [反応式] [0106] [Reaction Formula]
なお、上記六価クロム除去工程 S44で、還元剤として次亜硫酸ナトリウム (Na S O  In the hexavalent chromium removal step S44, sodium hyposulfite (Na S O
2 2 5 2 2 5
)を使用した場合、次亜硫酸ナトリウム (Na S O )が水中で亜硫酸水素ナトリウム (Na ) Sodium hyposulfite (Na S O)
2 2 5  2 2 5
HSO )となり、例えば、以下の反応式により、鉛含有銅系金属材のメツキ表面の六価 HSO), for example, according to the following reaction formula:
3 Three
クロム(4CrO 2または 4H CrO )が三価クロム(2Cr (SO ) )に還元されると考えるこ It is assumed that chromium (4CrO 2 or 4H CrO) is reduced to trivalent chromium (2Cr (SO)).
4 2 4 4 3  4 2 4 4 3
とちでさる。  Tochidaru.
4CrO 2— +6NaHSO + 3H SO 2Cr (SO ) + 3Na SO + 10H O 4CrO 2 — + 6NaHSO + 3H SO 2Cr (SO) + 3Na SO + 10H O
4 3 2 4 4 3 2 4 2  4 3 2 4 4 3 2 4 2
[0107] また、六価クロム除去工程 S43で、還元剤として次亜硫酸ナトリウム (Na S O )をそ  [0107] In the hexavalent chromium removing step S43, sodium hyposulfite (Na 2 S 2 O 3) is used as a reducing agent.
2 2 5 のまま還元槽の水溶液中に投入した場合、例えば、以下の反応式により、鉛含有銅 系金属材のメツキ表面の六価クロム(4CrO 2または 4H CrO )が三価クロム(2Cr(S When it is put into the aqueous solution in the reduction tank as it is, the hexavalent chromium (4CrO 2 or 4H CrO) on the plating surface of the lead-containing copper-based metal material is converted to trivalent chromium (2Cr ( S
4 2 4  4 2 4
o ) )に還元されると考えることもできる。  o) It can be thought that it will be reduced to).
4 3  4 3
4H CrO + 3Na S O + 3H SO 2Cr (SO ) + 3Na SO + 7H O [0108] 水処理工程] 4H CrO + 3Na SO + 3H SO 2Cr (SO) + 3Na SO + 7H O [0108] Water treatment process]
上記回収工程 S41及び S42では、回収槽内の水中に六価クロムが存在している。 また、六価クロム除去工程 S44では、還元槽の還元剤水溶液中に三価クロムが存在 している。更に、水洗工程 S45では、水洗槽の水中に三価クロムが存在している。よ つて、図示はしないが、回収槽、還元槽及び水洗槽の排水には、実施の形態 1で述 ベたような排水処理工程が必要となる。  In the recovery steps S41 and S42, hexavalent chromium is present in the water in the recovery tank. In the hexavalent chromium removing step S44, trivalent chromium is present in the reducing agent aqueous solution in the reducing tank. Furthermore, in the washing step S45, trivalent chromium is present in the water of the washing tank. Therefore, although not shown, the wastewater treatment process as described in the first embodiment is required for the drainage of the recovery tank, the reduction tank, and the washing tank.
[0109] [表面改質処理工程]  [Surface modification treatment process]
水洗工程 S45の後、鉛含有銅系合金材は、表面改質処理工程 S46に送られ、リン 酸皮膜処理により、六価クロムを除去した前記鉛含有銅系金属材の外側メツキ表面 及び内部露出表面(素地表面)が改質される。具体的には、表面改質処理工程 S46 では、鉛含有銅系合金材は、所定温度の混酸水溶液を貯留した化成処理槽に所定 時間浸漬される。表面改質処理工程 S46の化成処理層の混酸水溶液としては、例え ば、実施の形態 1と同様のものを使用するができる。また、混酸水溶液中におけるリン 酸や硝酸の濃度、浴温度、浸漬時間等の諸条件も、実施の形態 1と同様とすることが できる。  After the water washing step S45, the lead-containing copper-based alloy material is sent to the surface modification treatment step S46, where the outer metal surface and internal exposure of the lead-containing copper-based metal material from which hexavalent chromium has been removed by the phosphoric acid film treatment. The surface (base surface) is modified. Specifically, in the surface modification treatment step S46, the lead-containing copper-based alloy material is immersed in a chemical conversion treatment tank in which a mixed acid aqueous solution having a predetermined temperature is stored for a predetermined time. As the mixed acid aqueous solution in the chemical conversion treatment layer in the surface modification treatment step S46, for example, the same solution as in Embodiment 1 can be used. Various conditions such as the concentration of phosphoric acid and nitric acid in the mixed acid aqueous solution, the bath temperature, and the immersion time can be the same as in the first embodiment.
[0110] 上記所定濃度のリン酸 (オルトリン酸)と硝酸とを含有する混酸の水溶液を貯留した 化成処理槽に前記鉛含有銅系金属材を上記所定時間浸漬することにより、鉛含有 金属材のメツキ表面に所定膜厚のリン酸皮膜が形成され、防食機能及び変色防止 機能等の所期の機能を発揮する。このときの反応による鉛含有銅系金属材 (Cu)の 外側メツキ表面及び内部露出表面 (素地表面)の変化を模式的に説明すると、図 4 (f )に示すように、鉛含有銅系金属材 (Cu)の外側メツキ表面(六価クロム及び三価クロ ムが全く存在しない外側メツキ表面)では、クロムメツキとリン酸とが反応して、所定のリ ン酸皮膜 (H PO )が形成されると推察される。同様に、鉛含有銅系金属材 (Cu)の  [0110] By immersing the lead-containing copper-based metal material in the chemical conversion treatment tank storing an aqueous solution of a mixed acid containing phosphoric acid (orthophosphoric acid) and nitric acid at a predetermined concentration, the lead-containing metal material A phosphoric acid film with a predetermined film thickness is formed on the surface of the plating, and exhibits the expected functions such as anti-corrosion function and anti-discoloration function. The changes in the outer plating surface and the internal exposed surface (substrate surface) of the lead-containing copper-based metal material (Cu) due to the reaction at this time can be explained schematically as shown in Fig. 4 (f). On the outer plating surface of the material (Cu) (the outer plating surface where there is no hexavalent chromium and trivalent chromium), the chromium plating reacts with phosphoric acid to form a predetermined phosphoric acid film (H PO). It is guessed. Similarly, lead-containing copper-based metal (Cu)
3 4  3 4
内部露出表面乃至素地表面(六価クロム及び三価クロムが全く存在しない内部露出 表面乃至素地表面)にも、実施の形態 1で述べたようにして、所定のリン酸皮膜 (H P  As described in Embodiment 1, a predetermined phosphate film (HP) is also applied to the internal exposed surface or substrate surface (internally exposed surface or substrate surface in which hexavalent chromium and trivalent chromium are not present at all).
3 Three
O )が形成される。 O) is formed.
4  Four
[0111] [反応式]  [0111] [Reaction formula]
なお、リン酸皮膜は、例えば、以下の反応式により、鉛含有銅系金属材の表面に生 成されると考免ることちでさる。 The phosphoric acid film is formed on the surface of the lead-containing copper-based metal material by, for example, the following reaction formula. When it is done, you can ignore it.
(16) 6H PO + 2Cr^2Cr (H PO ) + 3H  (16) 6H PO + 2Cr ^ 2Cr (H PO) + 3H
3 4 2 4 3 2  3 4 2 4 3 2
(17) Cr (H PO ) CrPO + 2H PO  (17) Cr (H PO) CrPO + 2H PO
2 4 3 4 3 4  2 4 3 4 3 4
[0112] 上記反応式(16)〜(17)によれば、鉛含有銅系金属材の外側メツキ表面の零価の クロム皮膜がリン酸と反応し、最終的に、鉛含有銅系金属材 (Cu)の外側メツキ表面 には、リン酸クロム (CrPO )及びオルトリン酸 (H PO )の皮膜が形成されると考えるこ  [0112] According to the above reaction formulas (16) to (17), the zero-valent chromium film on the outer surface of the lead-containing copper-based metal material reacts with phosphoric acid, and finally the lead-containing copper-based metal material It is thought that a chromium phosphate (CrPO) and orthophosphoric acid (HPO) film is formed on the outer surface of (Cu).
4 3 4  4 3 4
とちでさる。  Tochidaru.
[0113] 或いは、表面改質処理工程 S46における銅または銅合金の表面の改質処理 (ィ匕成 処理)は、実施の形態 1で述べたようにして、以下の反応式として行われると考えるこ ともできる。 (l) 4Cu+4HNO→ 4Cu2++ 2H O + 30 +4NO† → [0113] Alternatively, it is considered that the surface modification treatment (i-formation treatment) of the copper or copper alloy in the surface modification treatment step S46 is performed as the following reaction formula as described in the first embodiment. You can also do this. (l) 4Cu + 4HNO → 4Cu 2+ + 2H O + 30 + 4NO † →
3 2 2  3 2 2
2Cu 0 + 2H 0 + 20 +4NO†  2Cu 0 + 2H 0 + 20 + 4NO †
2 2 2  2 2 2
(2) 6Cu+4H PO + 30→ 2Cu (PO ) +6H O →  (2) 6Cu + 4H PO + 30 → 2Cu (PO) + 6H O →
3 4 2 3 4 2 2  3 4 2 3 4 2 2
2 (Cu (PO ) - 6H O)  2 (Cu (PO)-6H O)
3 4 2 2  3 4 2 2
[0114] [水洗工程]  [0114] [Washing process]
鉛含有銅系金属材は、表面改質処理工程 S46でリン酸皮膜処理された後、化成処 理槽から引き上げ、表面改質処理工程 S46後の第 1回目の水洗工程 S47に送られ て、第 11の水洗槽に所定時間浸潰された後引き上げられ、更に、表面改質処理工 程 S46後の第 2回目の水洗工程 S48に送られ、第 12の水洗槽に所定時間浸漬され た後引き上げられる。これにより、鉛含有銅系金属材のメツキ表面及び内部露出表面 (素地表面)に付着した混酸成分力 2つの水洗工程 S47, S48の水洗槽において 順次水洗により除去され、鉛含有銅系金属材のメツキ表面及び内部露出表面(素地 表面)が清浄化される。  The lead-containing copper-based metal material is subjected to a phosphoric acid film treatment in the surface modification treatment step S46, then lifted from the chemical conversion treatment tank, and sent to the first water washing step S47 after the surface modification treatment step S46. After being soaked in the eleventh rinsing tank for a predetermined time and then pulled up, it is further sent to the second rinsing step S48 after the surface modification process S46 and after being soaked in the twelfth rinsing tank for a predetermined time. Be raised. As a result, the mixed acid component force adhering to the plating surface and internally exposed surface (base surface) of the lead-containing copper-based metal material is removed by sequential water-washing in the two water-washing steps S47 and S48, and the lead-containing copper-based metal material The plating surface and internal exposed surface (base surface) are cleaned.
[0115] [変色防止処理工程]  [0115] [Discoloration prevention treatment process]
次に、鉛含有銅系金属材は、これら 2つの水栓工程 S47, S48の後、変色防止処 理工程 S49に送られ、防鲭剤水溶液等の変色防止剤を貯留した変色防止処理槽に 所定時間浸潰されて、メツキ表面及び内部露出表面 (素地表面)が防鲭'変色防止 処理される。このときの防鲭剤乃至腐食'変色防止剤としては、例えば、実施の形態 1と同様、ベンゾトリアゾール (C H N )を使用することができる。なお、変色防止処理 工程 S49は、必要に応じて省略することもできる。 Next, after these two faucet steps S47, S48, the lead-containing copper-based metal material is sent to the discoloration prevention treatment step S49, where it is stored in a discoloration prevention treatment tank storing a discoloration prevention agent such as an antifungal aqueous solution. After immersing for a predetermined time, the plating surface and the internal exposed surface (base surface) are treated to prevent or discolor. As an antifungal agent or a corrosion / discoloration inhibitor at this time, for example, benzotriazole (CHN) can be used as in the first embodiment. Discoloration prevention treatment Step S49 can be omitted as necessary.
[0116] [水洗工程]  [0116] [Washing process]
鉛含有銅系金属材は、前記変色防止処理工程 S49の後、変色防止処理槽から引 き上げられ、水洗工程 S50に送られて、水洗槽に所定時間浸漬された後引き上げら れる。これにより、鉛含有銅系金属材のメツキ表面及び内部露出表面 (素地表面)に 付着した変色防止剤成分が、水洗槽において水洗により除去され、鉛含有銅系金属 材のメツキ表面及び内部露出表面(素地表面)が清浄ィ匕される。なお、水洗工程 S50 は、変色防止処理工程 S49を省略したとき等、必要時には省略することもできる。  The lead-containing copper-based metal material is pulled up from the discoloration prevention treatment tank after the discoloration prevention treatment step S49, sent to the water washing step S50, and after being immersed in the water washing tank for a predetermined time, it is pulled up. As a result, the discoloration inhibitor component adhering to the plating surface and internal exposed surface (base surface) of the lead-containing copper-based metal material is removed by washing in a water washing tank, and the plating surface and internal exposed surface of the lead-containing copper-based metal material are removed. The substrate surface is cleaned. The water washing step S50 can be omitted when necessary, such as when the anti-discoloration treatment step S49 is omitted.
[0117] [湯洗工程及び乾燥工程]  [0117] [Washing and drying process]
鉛含有銅系金属材は、前記変色防止処理工程 S49後の水洗工程 S50の後、変色 防止処理槽から引き上げられ、実施の形態 1と同様にして、湯洗工程 S51に送られ て湯洗された後、乾燥工程 S52に送られて熱風等により強制乾燥される。これにより 、外側めつき表面及び内部露出表面 (素地表面)に付着した変色防止剤成分等が湯 洗槽にお 1、て湯洗除去され、外側メツキ表面及び内部露出表面 (素地表面)が完全 に清浄化される。  The lead-containing copper-based metal material is lifted from the discoloration prevention treatment tank after the water washing step S50 after the discoloration prevention treatment step S49, and sent to the hot water washing step S51 and rinsed with water in the same manner as in the first embodiment. Then, it is sent to the drying step S52 and forcedly dried with hot air or the like. As a result, the discoloration inhibitor component, etc. adhering to the outer skinned surface and the internal exposed surface (base surface) is removed in the hot water bath, and the outer plating surface and the internal exposed surface (base surface) are completely removed. To be cleaned.
[0118] このように、実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面処理方 法は、六価クロムが、酸性及びアルカリ性のどちらでも安定したイオンの形で存在す る性質に着目し、六価クロム除去工程 S44で、鉛含有銅系金属材を還元槽の還元剤 水溶液に浸漬し、その外側メツキ表面及び内部露出表面 (素地表面)の六価クロムを 三価クロムに還元して還元槽中に溶出等させることにより、鉛含有銅系金属材の外側 メツキ表面及び内部露出表面 (素地表面)の六価クロムを選択的に溶解及び除去す る。更に、表面改質処理工程 S45で、鉛含有銅系金属材を化成処理槽の混酸水溶 液に浸漬して外側メツキ表面及び内部露出表面 (素地表面)にリン酸皮膜を形成し、 六価クロム除去後の鉛含有銅系金属材の外側メツキ表面及び内部露出表面 (素地 表面)の耐食性 (耐変色性)等を更に向上する。  [0118] Thus, in the hexavalent chromium-free surface treatment method for lead-containing copper-based metallic materials according to Embodiment 2, hexavalent chromium exists in the form of stable ions, both acidic and alkaline. Focusing on the properties, in the hexavalent chromium removal step S44, the lead-containing copper-based metal material is immersed in the reducing agent aqueous solution in the reduction tank, and the hexavalent chromium on the outer plating surface and the internal exposed surface (base surface) is trivalent chromium. The hexavalent chromium is selectively dissolved and removed from the outer plating surface and the inner exposed surface (substrate surface) of the lead-containing copper-based metal material by reducing it to elution in the reduction tank. Furthermore, in the surface modification treatment step S45, a lead-containing copper-based metal material is immersed in a mixed acid aqueous solution in a chemical conversion treatment tank to form a phosphate film on the outer plating surface and the inner exposed surface (substrate surface). Further improve the corrosion resistance (discoloration resistance) of the outer plating surface and internal exposed surface (base surface) of the lead-containing copper-based metal material after removal.
[0119] [効果]  [0119] [Effect]
実施の形態 2に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、鉛含 有銅系金属材を素材とするメツキ製品において、製品化後の鉛の溶出を確実に防止 できると共に、六価クロムの溶出量をゼロとすることができ、かつ、外側メツキ表面及 び内部露出表面(素地表面)の耐食性を更に向上して変色等を確実に防止すること ができる。特に、鉛含有同系金属材カ なる水栓金具等の内部素地表面に存在する ピンホールやクラック、或いは、内部の部品間等に存在する小さい隙間(微小間隙) や複雑形状の隙間 (複雑形状間隙)に残留しやすい六価クロムの皮膜が、かかるピ ンホールやクラックまたは微笑間隙や複雑形状間隙力 完全に除去されるため、本 実施の形態の鉛含有同系金属材からなる水栓装置等の使用に伴 、、六価クロムが 溶出または浸出する可能性を完全に防止することができる。また、特に、実施の形態The hexavalent chromium-free surface treatment method for lead-containing copper-based metal materials according to Embodiment 2 reliably prevents lead elution after commercialization in metal products made of lead-containing copper-based metal materials. In addition, the elution amount of hexavalent chromium can be reduced to zero, and the corrosion resistance of the outer plating surface and the inner exposed surface (base surface) can be further improved to prevent discoloration and the like. In particular, pinholes and cracks that exist on the surface of internal substrates such as faucet fittings that are lead-containing, similar metal materials, or small gaps (micro gaps) that exist between internal parts, etc. The hexavalent chromium film that tends to remain on the pinholes, cracks, smile gaps and complex shape gap force is completely removed. As a result, it is possible to completely prevent the possibility of elution or leaching of hexavalent chromium. In particular, the embodiment
2に係る鉛含有銅系金属材の六価クロムフリー表面処理方法は、環境負荷物質であ る六価クロムを完全に除去できると共に、耐食性に優れた環境適応型銅合金等の表 面処理方法として好適に使用することができる。また、従来の水道用品の表面処理プ ラント等をそのままの形で使用でき、コストの増大を招くことがない。 The hexavalent chromium-free surface treatment method for lead-containing copper-based metallic materials according to No. 2 can completely remove hexavalent chromium, which is an environmentally hazardous substance, and also provides a surface treatment method for environmentally-adapted copper alloys that have excellent corrosion resistance. Can be suitably used. In addition, conventional surface treatment plants for water supplies can be used as they are, and costs do not increase.
産業上の利用可能性 Industrial applicability
本発明は、水栓金具 ·継手*配管部品等の素材以外にも、例えば、自動車用部品- 建築材料'家電製品'金物等の素材の表面処理用途に広く適用可能である。  In addition to materials such as faucet fittings / joints * pipe parts, the present invention can be widely applied to surface treatment applications for materials such as automobile parts-building materials 'home appliances' hardware, and the like.

Claims

請求の範囲 The scope of the claims
[1] 鉛含有金属材の表面をクロム酸により処理し、表面部分の鉛を溶出除去するクロム 酸処理工程と、  [1] A chromic acid treatment process in which the surface of a lead-containing metal material is treated with chromic acid, and lead on the surface is eluted and removed.
クロム酸用還元剤を含有する還元剤水溶液により、前記クロム酸処理工程で前記 鉛含有金属材の表面に形成された皮膜成分としての六価クロムを完全に除去する六 価クロム除去工程と、  A hexavalent chromium removing step of completely removing hexavalent chromium as a film component formed on the surface of the lead-containing metal material in the chromic acid treatment step with a reducing agent aqueous solution containing a reducing agent for chromic acid;
六価クロムを除去した前記鉛含有金属材の表面を改質する表面改質処理工程と を備えることを特徴とする鉛含有金属材の六価クロムフリー表面処理方法。  And a surface modification treatment step of modifying the surface of the lead-containing metal material from which hexavalent chromium has been removed.
[2] 前記六価クロム除去工程は、クロム酸用還元剤の水溶液中に前記鉛含有金属材を 所定時間浸漬することにより、前記鉛含有金属材表面を還元するものであることを特 徴とする請求項 1記載の鉛含有金属材の六価クロムフリー表面処理方法。  [2] The hexavalent chromium removing step is characterized in that the lead-containing metal material surface is reduced by immersing the lead-containing metal material in an aqueous solution of a reducing agent for chromic acid for a predetermined time. The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 1.
[3] 前記六価クロム除去工程は、クロム酸用還元剤の水溶液中に前記鉛含有金属材を 所定時間浸漬することにより、前記鉛含有金属材表面の六価クロムを三価クロムに還 元するものであり、  [3] The hexavalent chromium removing step reduces the hexavalent chromium on the surface of the lead-containing metal material to trivalent chromium by immersing the lead-containing metal material in an aqueous solution of a chromic acid reducing agent for a predetermined time. Is what
更に、前記六価クロム除去工程と前記表面改質処理工程との間に、前記鉛含有金 属材表面に残留する三価クロムを水洗により完全に分離除去する水洗工程を備える ことを特徴とする請求項 1または 2記載の鉛含有金属材の六価クロムフリー表面処理 方法。  Furthermore, a water washing step for completely separating and removing trivalent chromium remaining on the surface of the lead-containing metal material by water washing is provided between the hexavalent chromium removing step and the surface modification treatment step. 3. A hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 1 or 2.
[4] 前記クロム酸用還元剤が、次亜硫酸ナトリウム、亜ニチオン酸ナトリウム、チォ硫酸 ナトリウム、亜硫酸ナトリウムの 、ずれか一つまたはこれらの混合物からなることを特 徴とする請求項 1乃至 3のいずれ力 1項記載の鉛含有金属材の六価クロムフリー処理 方法。  [4] The reducing agent for chromic acid according to any one of claims 1 to 3, wherein the reducing agent comprises one or a mixture of sodium hyposulfite, sodium thionite, sodium thiosulfate, and sodium sulfite. Any method of hexavalent chromium-free treatment of lead-containing metal materials as described in item 1.
[5] 前記表面改質処理工程は、リン酸と硝酸とを主材として含有する混酸の水溶液を 貯留した化成処理槽に前記鉛含有金属材を所定時間浸漬することにより、前記鉛含 有金属材の表面にリン酸皮膜を形成するものであることを特徴とする請求項 1乃至 4 のいずれか 1項記載の鉛含有金属材の六価クロムフリー表面処理方法。  [5] In the surface modification treatment step, the lead-containing metal material is immersed in a chemical conversion treatment tank storing a mixed acid aqueous solution containing phosphoric acid and nitric acid as main materials for a predetermined time. The hexavalent chromium-free surface treatment method for a lead-containing metal material according to any one of claims 1 to 4, wherein a phosphoric acid film is formed on the surface of the material.
[6] 鉛含有銅系金属材の素地表面をクロム酸によりエッチング処理し、前記鉛含有銅 系金属材の素地表面部分の鉛を溶出除去するクロム酸エッチング工程と、 クロム酸用還元剤の水溶液により、前記クロム酸エッチング工程で前記鉛含有銅系 金属材の素地表面に形成された皮膜成分としての六価クロムを完全に除去する六価 クロム除去工程と、 [6] A chromic acid etching process in which the base surface of the lead-containing copper-based metal material is etched with chromic acid, and lead is eluted and removed from the base surface portion of the lead-containing copper-based metal material; A hexavalent chromium removing step of completely removing hexavalent chromium as a film component formed on the substrate surface of the lead-containing copper-based metal material in the chromic acid etching step with an aqueous solution of a reducing agent for chromic acid;
六価クロムを除去した前記鉛含有銅系金属材の素地表面を改質する表面改質処 理工程と  A surface modification treatment process for modifying the base surface of the lead-containing copper-based metal material from which hexavalent chromium has been removed;
を備えることを特徴とする鉛含有銅系金属材の六価クロムフリー表面処理方法。  A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material.
[7] 前記六価クロム除去工程は、クロム酸用還元剤の水溶液中に前記鉛含有銅系金 属材を所定時間浸漬することにより、前記鉛含有銅系金属材の素地表面を還元する ものであることを特徴とする請求項 6記載の鉛含有金属材の六価クロムフリー表面処 理方法。 [7] The hexavalent chromium removing step reduces the base surface of the lead-containing copper-based metal material by immersing the lead-containing copper-based metal material in an aqueous solution of a reducing agent for chromic acid for a predetermined time. The method for treating a hexavalent chromium-free surface of a lead-containing metal material according to claim 6, wherein:
[8] 前記六価クロム除去工程は、クロム酸用還元剤の水溶液中に前記鉛含有銅系金 属材を所定時間浸漬することにより、前記鉛含有銅系金属材の素地表面の六価クロ ムを三価クロムに還元するものであり、  [8] The hexavalent chromium removing step includes immersing the lead-containing copper-based metal material in an aqueous solution of a reducing agent for chromic acid for a predetermined time, whereby the hexavalent chromium on the base surface of the lead-containing copper-based metal material is obtained. Is reduced to trivalent chromium,
更に、前記六価クロム除去工程と前記表面改質処理工程との間に、前記鉛含有金 属材の素地表面に残留する三価クロムを水洗により完全に分離除去する水洗工程を 備えることを特徴とする請求項 6または 7記載の鉛含有金属材の六価クロムフリー表 面処理方法。  Furthermore, a water washing step is provided between the hexavalent chromium removal step and the surface modification treatment step, in which the trivalent chromium remaining on the surface of the lead-containing metal material is completely separated and removed by washing. The method for treating a hexavalent chromium-free surface of a lead-containing metal material according to claim 6 or 7.
[9] 鉛含有銅系金属材にクロムメツキ層を形成するクロムメッキエ程と、  [9] A chromium plating process for forming a chromium plating layer on a lead-containing copper-based metal material,
前記鉛含有銅系金属材の製品内部または内部金属露出部の鉛を溶出除去するク ロム酸エッチング工程と、  A chromic acid etching step for eluting and removing lead in the product of the lead-containing copper-based metal material or the exposed portion of the internal metal;
クロム酸用還元剤の水溶液により、前記クロム酸エッチング工程またはクロムメツキ 工程で前記鉛含有銅系金属材の表面に形成された皮膜成分としての六価クロムを 完全に除去する六価クロム除去工程と、  A hexavalent chromium removing step of completely removing hexavalent chromium as a film component formed on the surface of the lead-containing copper-based metal material in the chromic acid etching step or the chromium plating step with an aqueous solution of a reducing agent for chromic acid;
六価クロムを除去した前記鉛含有銅系金属材の表面を改質する表面改質処理工 程と  A surface modification process for modifying the surface of the lead-containing copper-based metal material from which hexavalent chromium has been removed;
を備えることを特徴とする鉛含有銅系金属材の六価クロムフリー表面処理方法。  A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material.
[10] 前記六価クロム除去工程は、クロム酸用還元剤の水溶液中に前記鉛含有銅系金 属材を所定時間浸漬することにより、前記鉛含有銅系金属材の表面を還元するもの であることを特徴とする請求項 9記載の鉛含有金属材の六価クロムフリー表面処理方 法。 [10] The hexavalent chromium removing step reduces the surface of the lead-containing copper-based metal material by immersing the lead-containing copper-based metal material in an aqueous solution of a reducing agent for chromic acid for a predetermined time. 10. The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 9, wherein:
[11] 前記六価クロム除去工程は、クロム酸用還元剤の水溶液中に前記鉛含有銅系金 属材を所定時間浸漬することにより、前記鉛含有銅系金属材の表面の六価クロムを 三価クロムに還元するものであり、  [11] The hexavalent chromium removing step includes immersing the lead-containing copper-based metal material in an aqueous solution of a reducing agent for chromic acid for a predetermined time, thereby removing hexavalent chromium on the surface of the lead-containing copper-based metal material. Which is reduced to trivalent chromium,
更に、前記六価クロム除去工程と前記表面改質処理工程との間に、前記鉛含有金 属材の表面に残留する三価クロムを水洗により完全に分離除去する水洗工程を備え これにより、前記鉛含有銅系金属材の表面を、前記クロムメツキ層のクロムメツキから なる零価のクロム表面にすることを特徴とする請求項 9または 10記載の鉛含有金属 材の六価クロムフリー表面処理方法。  Furthermore, a water washing step for completely separating and removing trivalent chromium remaining on the surface of the lead-containing metal material by water washing is provided between the hexavalent chromium removing step and the surface modification treatment step. 11. The hexavalent chromium-free surface treatment method for a lead-containing metal material according to claim 9 or 10, wherein the surface of the lead-containing copper-based metal material is a zero-valent chromium surface made of chromium plating of the chromium plating layer.
[12] 前記六価クロム除去工程は、所定温度及び所定濃度に維持したクロム酸用還元剤 の水溶液中に前記鉛含有銅系金属材を所定時間浸漬することにより、前記鉛含有 銅系金属材の表面の六価クロムを完全に除去して零価のクロム表面にするものであ ることを特徴とする請求項 11記載の鉛含有銅系金属材の六価クロムフリー表面処理 方法。 [12] The hexavalent chromium removing step includes immersing the lead-containing copper-based metal material for a predetermined time in an aqueous solution of a reducing agent for chromic acid maintained at a predetermined temperature and a predetermined concentration. 12. The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 11, wherein the hexavalent chromium on the surface of the metal is completely removed to obtain a zero-valent chromium surface.
[13] 前記六価クロム除去工程において、クロム酸用還元剤の水溶液中に前記鉛含有銅 系金属材を所定時間浸漬することにより、前記鉛含有銅系金属材表面の六価クロム を三価クロムに還元して前記鉛含有銅系金属材表面から分離し、前記水溶液中に 放出または溶放させる一方、  [13] In the hexavalent chromium removing step, the hexavalent chromium on the surface of the lead-containing copper-based metal material is trivalent by immersing the lead-containing copper-based metal material in an aqueous solution of a reducing agent for chromic acid for a predetermined time. While reduced to chromium and separated from the lead-containing copper-based metal material surface, it is released or released into the aqueous solution,
前記六価クロム除去工程と前記表面改質処理工程との間に、前記鉛含有銅系金 属材表面に残留する三価クロムを水洗により完全に分離除去する水洗工程を備える ことを特徴とする請求項 6または 9記載の鉛含有銅系金属材の六価クロムフリー表面 処理方法。  A water washing step is provided between the hexavalent chromium removal step and the surface modification treatment step to completely separate and remove trivalent chromium remaining on the surface of the lead-containing copper-based metal material by water washing. 10. A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 6 or 9.
[14] 前記クロム酸用還元剤が、次亜硫酸ナトリウム、亜ニチオン酸ナトリウム、チォ硫酸 ナトリウム、亜硫酸ナトリウムの 、ずれか一つまたはこれらの混合物からなることを特 徴とする請求項 6乃至 13のいずれか 1項記載の鉛含有銅系金属材の六価クロムフリ 一処理方法。 [14] The reducing agent for chromic acid according to any one of claims 6 to 13, wherein the reducing agent comprises one or a mixture of sodium hyposulfite, sodium thionite, sodium thiosulfate, and sodium sulfite. The hexavalent chromium free treatment method for a lead-containing copper-based metal material according to any one of the above.
[15] 前記表面改質処理工程は、リン酸と硝酸とを主材として含有する混酸の水溶液を 貯留した化成処理槽に前記鉛含有銅系金属材を所定時間浸漬することにより、前記 鉛含有銅系金属材の表面にリン酸皮膜を形成するものであることを特徴とする請求 項 6乃至 14のいずれか 1項記載の鉛含有銅系金属材の六価クロムフリー表面処理 方法。 [15] The surface modification treatment step includes immersing the lead-containing copper-based metal material for a predetermined time in a chemical conversion treatment tank storing a mixed acid aqueous solution containing phosphoric acid and nitric acid as main materials. The hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to any one of claims 6 to 14, wherein a phosphoric acid film is formed on the surface of the copper-based metal material.
[16] 前記表面改質処理工程は、リン酸が濃度約 2〜5%、硝酸が濃度約 0. 5〜2%とな るよう、前記リン酸と前記硝酸とを主材として含有する混酸の水溶液中に前記鉛含有 銅系金属材を所定時間浸漬することにより、前記鉛含有銅系金属の表面にリン酸皮 膜を形成するものであることを特徴とする請求項 6乃至 14のいずれか 1項記載の鉛 含有銅系金属材の六価クロムフリー表面処理方法。  [16] The surface modification treatment step is a mixed acid containing phosphoric acid and nitric acid as main materials so that phosphoric acid has a concentration of about 2 to 5% and nitric acid has a concentration of about 0.5 to 2%. 15. The phosphate film is formed on the surface of the lead-containing copper-based metal by immersing the lead-containing copper-based metal material in an aqueous solution for a predetermined time. 2. A hexavalent chromium-free surface treatment method for a lead-containing copper-based metal material according to claim 1.
[17] メツキを施すことなく使用される六価クロムフリー鉛含有銅系金属材であって、 鉛含有銅系金属材の素地表面部分の鉛をクロム酸エッチング処理により溶出除去 すると共に、前記クロム酸エッチング処理により前記鉛含有銅系金属材の素地表面 に形成された六価クロムを、クロム酸用還元剤水溶液による還元処理により完全に除 去した後、前記鉛含有銅系金属材の素地表面にリン酸皮膜を形成してなることを特 徴とする六価クロムフリー鉛含有銅系金属材。  [17] A hexavalent chromium-free lead-containing copper-based metal material that is used without plating, wherein the lead on the surface of the lead-containing copper-based metal material is eluted and removed by chromic acid etching treatment, and the chromium The hexavalent chromium formed on the base surface of the lead-containing copper-based metal material by acid etching treatment is completely removed by reduction treatment with a reducing agent aqueous solution for chromic acid, and then the base surface of the lead-containing copper-based metal material A hexavalent chromium-free lead-containing copper-based metal material characterized by forming a phosphate film on the surface.
[18] メツキを施して使用される六価クロムフリー鉛含有銅系金属材であって、  [18] A hexavalent chromium-free lead-containing copper-based metal material that is used with a coating,
鉛含有銅系金属材の内部表面露出部または製品内部の鉛をクロム酸エッチング処 理により溶出除去すると共に、前記クロム酸エッチング処理により前記鉛含有銅系金 属材のメツキ表面に形成された六価クロムを、クロム酸用還元剤水溶液による還元処 理により完全に除去した後、前記鉛含有銅系金属材のメツキ表面にリン酸皮膜を形 成してなることを特徴とする六価クロムフリー鉛含有銅系金属材。  The inner surface exposed part of lead-containing copper-based metal material or lead in the product is eluted and removed by chromic acid etching treatment, and the lead-containing copper-based metal material formed on the plating surface of the lead-containing copper-based metal material by the chromic acid etching treatment. Hexavalent chromium-free, characterized by forming a phosphate film on the plating surface of the lead-containing copper-based metal material after completely removing chromium by reduction treatment with a reducing agent aqueous solution for chromic acid Lead-containing copper-based metal material.
[19] クロムを使用した表面処理により六価クロム皮膜が表面に形成された基材の六価ク ロムフリー表面処理方法であって、  [19] A hexavalent chromium-free surface treatment method for a base material on which a hexavalent chromium film is formed by surface treatment using chromium,
クロム酸用還元剤を含有する還元剤水溶液により、六価クロム皮膜が表面に形成さ れた基材の表面の前記六価クロム皮膜を完全に除去することを特徴とする六価クロ ムフリー表面処理方法。  A hexavalent chromium-free surface treatment characterized by completely removing the hexavalent chromium film on the surface of the base material on which the hexavalent chromium film is formed by a reducing agent aqueous solution containing a reducing agent for chromic acid. Method.
[20] クロムを使用した表面処理により六価クロム皮膜が表面に形成された基材の六価ク ロムフリー表面処理方法であって、 [20] Hexavalent coating of a base material on which a hexavalent chromium film is formed by surface treatment using chromium Rom-free surface treatment method,
クロム酸用還元剤を含有する還元剤水溶液により、六価クロム皮膜が表面に形成さ れた基材の表面の前記六価クロム皮膜を完全に除去する六価クロム除去工程と、 六価クロム皮膜を除去した前記基材の表面を改質する表面改質処理工程と を備えることを特徴とする六価クロムフリー表面処理方法。  A hexavalent chromium film removing step for completely removing the hexavalent chromium film on the surface of the base material on which the hexavalent chromium film is formed by a reducing agent aqueous solution containing a reducing agent for chromic acid; And a surface modification treatment step of modifying the surface of the base material from which the iron has been removed.
PCT/JP2005/017597 2004-09-28 2005-09-26 Hexavalent chromium-free surface treating method and hexavalent chromium-free lead-containing copper-base metal material WO2006035695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537709A JP4463278B2 (en) 2004-09-28 2005-09-26 Hexavalent chromium-free surface treatment method and hexavalent chromium-free lead-containing copper-based metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-280809 2004-09-28
JP2004280809 2004-09-28

Publications (1)

Publication Number Publication Date
WO2006035695A1 true WO2006035695A1 (en) 2006-04-06

Family

ID=36118841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017597 WO2006035695A1 (en) 2004-09-28 2005-09-26 Hexavalent chromium-free surface treating method and hexavalent chromium-free lead-containing copper-base metal material

Country Status (2)

Country Link
JP (1) JP4463278B2 (en)
WO (1) WO2006035695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320805A (en) * 2005-05-18 2006-11-30 Hideo Yoshida Extraction method of hexavalent chromium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152293A (en) * 1992-09-08 1996-06-11 Ind Piemontese Radiatori Automobili Spa Corrosion-resistant improving method of radiator made of copper or copper alloy and radiator thereby
WO1999028536A1 (en) * 1997-12-03 1999-06-10 Toto Ltd. Method of reducing elution of lead in lead-containing copper alloy, and city water service fittings made of lead-containing copper alloy
WO2004024987A1 (en) * 2002-08-30 2004-03-25 Toto Ltd. Method of treatment for reducing elution of lead from lead containing copper alloy and waterwork utensils made from lead containing copper alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152293A (en) * 1992-09-08 1996-06-11 Ind Piemontese Radiatori Automobili Spa Corrosion-resistant improving method of radiator made of copper or copper alloy and radiator thereby
WO1999028536A1 (en) * 1997-12-03 1999-06-10 Toto Ltd. Method of reducing elution of lead in lead-containing copper alloy, and city water service fittings made of lead-containing copper alloy
WO2004024987A1 (en) * 2002-08-30 2004-03-25 Toto Ltd. Method of treatment for reducing elution of lead from lead containing copper alloy and waterwork utensils made from lead containing copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320805A (en) * 2005-05-18 2006-11-30 Hideo Yoshida Extraction method of hexavalent chromium

Also Published As

Publication number Publication date
JP4463278B2 (en) 2010-05-19
JPWO2006035695A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
KR101726470B1 (en) Process for forming corrosion protection layers on metal surfaces
AU711992B2 (en) Low lead release plumbing components made of copper based alloys containing lead, and a method for obtaining the same
KR20060126752A (en) Chrome-free passivating solution
WO2006134868A1 (en) Surface treated copper foil, process for producing surface treated copper foil, and surface treated copper foil with very thin primer resin layer
TW200831283A (en) Surface treated copper foil, surface treated copper foil with very thin primer resin layer, method for manufacturing the surface treated copper foil, and method for manufacturing the surface treated copper foil with very thin primer resin layer
WO2009007208A1 (en) Methods for reducing hexavalent chromium in trivalent chromate conversion coatings
JP3182765B2 (en) Lead elution reduction treatment method for lead-containing copper alloy, lead elution reduction plating method for lead-containing copper alloy, and lead-containing copper alloy water supply device
WO2014042412A1 (en) Method for surface-treating copper foil and copper foil surface-treated thereby
CN101413127B (en) Method for preventing elution of lead and/or nickel from copper alloy piping material such as valve or pipe joint and copper alloy piping material
JP4463278B2 (en) Hexavalent chromium-free surface treatment method and hexavalent chromium-free lead-containing copper-based metal material
CN101748353B (en) Method for antiseptic treatment of marine climate resistant engineering component
WO2002036856A1 (en) Method for removing lead from plated cylindrical article made of lead-containing copper alloy and metal fitting for hydrant, and method for preventing leaching of lead from article made of lead-containing copper alloy and metal fitting for hydrant
JPWO2004024987A1 (en) Lead elution reduction processing method for lead-containing copper alloy and lead-containing copper alloy water supply device
AU2002352012A1 (en) Method for the production of dark protective layers on flat objects made from titanium zinc
JP2008214744A (en) Black rust prevention treatment liquid on galvanized or galvannealed metal surface, and black rust prevention film treatment method
JP2005325413A (en) Lead-free white copper alloy, and ingot and product using this alloy
DE102009017702B4 (en) Process for the formation of corrosion protection layers on metal surfaces
CN111074259A (en) Metal plate surface passivation treatment method
JP2002155391A (en) Method of treatment to lessen elution of nickel from water feed appliance made of copper or copper alloy, and the water feed appliance
JP2004277793A (en) Method for manufacturing appliance for aqueduct made of lead-containing copper alloy, cast de-leaded appliance for aqueduct, and appliance for aqueduct
KR101277940B1 (en) Blackened steel stheet with high adhesion property of blackened layer and surface appearance, and method for manufacturing the same
CN107354490B (en) A kind of production technology of the wear-resisting enhanced tap of low cost
WO2005001160A1 (en) Method for manufacturing water appliance made from copper alloy containing lead
JP2005008900A (en) Method for reducing nickel elution from water supply equipment made of copper or copper alloy and the water supply equipment
JP2001348679A (en) Method for plating water supply fitting made of copper or copper alloy and its plated product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537709

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785320

Country of ref document: EP

Kind code of ref document: A1