WO2006035522A1 - Gas turbine apparatus, low calorie content gas feeding apparatus, and method of suppressing rise of calorie content of the gas - Google Patents

Gas turbine apparatus, low calorie content gas feeding apparatus, and method of suppressing rise of calorie content of the gas Download PDF

Info

Publication number
WO2006035522A1
WO2006035522A1 PCT/JP2005/004101 JP2005004101W WO2006035522A1 WO 2006035522 A1 WO2006035522 A1 WO 2006035522A1 JP 2005004101 W JP2005004101 W JP 2005004101W WO 2006035522 A1 WO2006035522 A1 WO 2006035522A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas supply
low
low calorie
calorie
Prior art date
Application number
PCT/JP2005/004101
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Sako
Hideaki Ota
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to BRPI0515692-0A priority Critical patent/BRPI0515692A/en
Priority to CN2005800314332A priority patent/CN101023255B/en
Priority to JP2006537631A priority patent/JP4546482B2/en
Publication of WO2006035522A1 publication Critical patent/WO2006035522A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels

Definitions

  • Gas turbine equipment low calorie gas supply equipment, and method for suppressing calorie rise of the gas
  • the present invention relates to a gas turbine facility, a low calorie gas supply facility, and a calorie increase suppressing method for the gas. More specifically, in detail, a low calorie gas supply facility that supplies gas turbines with low calorie gas as fuel for the gas turbine, a gas turbine facility equipped with the low calorie gas supply facility, and a low calorie gas for the gas turbine fuel It is related with the method of suppressing the raise of the calorific value (it is also called force Lori) of the.
  • BFG Blast Furnace Gas
  • BFG contains 2-10 g / Nm 3 of dust. After removing this to about 0. Olg / Nm with a dust remover, hot air is used as fuel gas with a calorific value of about 800 kcal / Nm 3. Used in furnaces, coke ovens, heating furnaces, boilers, etc.
  • gas turbines have also been able to burn low calorie gas due to improvements in technology, and there are an increasing number of cases where BFG is used as gas turbine fuel to generate electricity.
  • the low calorie gas here is defined as a gas whose calorific value is about 12 MJ / Nm 3 or less. As will be described later, the low calorie gas is not limited to blast furnace gas (BFG), but includes many other types of gases such as converter gas (LDG) and mixed gases thereof.
  • Patent Document 1 JP 2002-155762 A
  • Patent Document 2 JP-A-9-317499
  • the present invention has been made in order to solve the problem to be solved, and the supply of low calorie gas capable of mitigating the calorie rise of the low calorie fuel gas for gas turbines is low in equipment cost and operation cost.
  • An object of the present invention is to provide a facility, a gas turbine facility equipped with this low calorie gas supply facility, and a method for suppressing an increase in the calorific value of low calorie gas for gas turbine fuel. Means for solving the problem
  • the low-calorie gas supply facility of the present invention comprises:
  • a low-calorie gas supply passage for supplying low-calorie gas as fuel gas to the gas turbine;
  • An exhaust gas supply passage connected to the low calorie gas supply passage for supplying exhaust gas generated by the combustion facility to the low-power regas supply passage;
  • a calorific value detection device for detecting the calorific value in the gas disposed in the low calorie gas supply passage
  • control device capable of controlling the exhaust gas supply operation by the exhaust gas supply passage based on the detection result of the calorific value detection device.
  • non-combustible gas such as N, carbon dioxide (CO) is included (flammable
  • the calorific value detection device includes not only a device that directly measures the calorific value of gas (for example, a so-called calorimeter) but also a device that measures the content of combustible components in the gas.
  • the control device supplies exhaust gas from the exhaust gas supply passage when the maximum allowable calorie value of the fuel gas of the gas turbine is set and the caloric value of the low calorie gas exceeds the maximum allowable calorie set value.
  • An oxygen concentration detection device is disposed in a portion of the low calorie gas supply passage downstream of the connection portion with the exhaust gas supply passage, and the control device is based on the detection result of the oxygen concentration detection device. Therefore, low calorie gas supply equipment configured to control the exhaust gas supply operation through the exhaust gas supply passage is preferred. This is because the mixing of the exhaust gas containing oxygen with respect to the low calorie gas can be controlled based on the oxygen content of the mixture to prevent ignition of the mixture of low calorie gas and exhaust gas.
  • the facility equipped with this oxygen concentration detection device has an allowable mixed volume ratio of exhaust gas set based on the low calorific gas flammability limit information obtained by the control device from the mixing ratio of low calorie gas and exhaust gas.
  • the amount of exhaust gas supplied through the exhaust gas supply passage can be controlled based on the above.
  • the above-mentioned control device may allow air to be set based on low calorific gas flammability limit information obtained from the mixing ratio of low calorie gas and air.
  • the exhaust gas supply amount through the exhaust gas supply passage can be controlled based on the allowable mixed volume ratio of the exhaust gas calculated based on the oxygen content ratio from the mixing volume ratio.
  • an inert gas supply passage for supplying an inert gas is connected to the low calorie gas supply passage, and the control device is a device for the oxygen concentration detection device. It is preferable that the inert gas supply operation by the inert gas supply passage is controlled based on the detection result. For example, when the exhaust gas supply is restricted and thus the calorie rise of the low calorie gas is insufficiently suppressed, the supply of the inert gas can compensate for the calorie fluctuation suppressing effect. Note that a portion of the inert gas supply passage leading to the mixing section may constitute a common passage with the exhaust gas supply passage.
  • An inert gas supply passage for supplying an inert gas is connected to the low calorie gas supply passage, and the control device supplies exhaust gas to the low calorie gas supply passage through the exhaust gas supply passage.
  • a low-power regas supply facility configured to control the inert gas supply operation through the inert gas supply passage based on the detection result of the calorific value detection device is preferable. This is because if the calorie rise of low calorie gas due to exhaust gas is insufficiently suppressed, it can be compensated by inert gas.
  • a first tank for temporarily storing low calorie gas is disposed in the low calorie gas supply passage, and the first tank has an inlet and an outlet. It is preferable that the upstream side of the low calorie gas supply passage is connected to the inlet, and the downstream side of the low calorie gas supply passage is connected to the outlet. All of the low caloric gas supplied through the low caloric gas supply passage is temporarily stored in the first tank and mixed in it, thereby reducing the width of the caloric fluctuation and reducing the caloric fluctuation. This is because the speed is reduced, and calorie leveling control by dilution with exhaust gas downstream of the first tank outlet becomes easier.
  • the calorific value detection device described above is installed in the low calorie gas supply passage, and the first tank and the second tank described later are installed in the low calorie gas supply passage.
  • this tank since this tank also constitutes a low calorie gas supply passage, it also includes attaching a calorific value detection device to the tank.
  • a second tank for temporarily storing low calorie gas is disposed in the low calorie gas supply passage, and low calorie gas is supplied between the low calorie gas supply passage and the second tank.
  • Passage force A gas inlet passage for feeding into the second tank and an outlet passage for returning the low calorie gas to the second tank force low calorie gas supply passage are provided, and the low calorie gas is supplied to the second tank in the inlet passage.
  • a low-calorie gas supply facility in which a first gas pumping device that pumps the gas toward is preferable. This is because the same action as that of the first tank is performed.
  • both the first tank and the second tank described above may be fixed-type tanks whose internal volume does not change, and the supply and demand tolerance of gas in the conventional gas turbine equipment, etc. It may be an internal volume variation type tank used as a monitoring device (gas holder).
  • the internal volume variation type tank is a tank having an airtightly attached lid member that can move up and down according to the tank internal pressure, and the balance member is maximized by positively moving the lid member up and down by a driving device.
  • a tank or the like that can select an available tank volume.
  • a return passage for returning a part of the low calorie gas to be supplied to the upstream side of the low calorie gas supply passage is provided in the low calorie gas supply passage, and the low calorie gas is supplied to the low calorie gas supply passage in the return passage.
  • a low calorie gas supply facility in which a second gas pumping device for pumping upstream is disposed is preferable. They are the same as those of the first tank.
  • Low-calorie gas supply comprising an exhaust gas blocking device arranged in the exhaust gas supply channel and capable of blocking and opening the passage, and an exhaust gas discharge device arranged upstream of the exhaust gas blocking device Facilities are preferred.
  • a stop valve or a flow control valve can be used as the exhaust gas shut-off device.
  • An inert gas blocking device disposed in the inert gas supply passage and capable of blocking and opening the passage, and an inert gas discharge device disposed upstream of the inert gas blocking device.
  • a low-calorie gas supply facility equipped with For example, a stop valve or a flow control valve can be used as the inert gas shut-off device. Inert gas reaching the low calorie gas supply passage When a part of the gas supply passage constitutes a passage common with the exhaust gas supply passage and an exhaust gas cutoff device and an exhaust gas discharge device are provided, the inert gas cutoff device and the exhaust gas cutoff are provided.
  • a single shut-off device that also serves as a device may be provided, or a single discharge device that serves as both an inert gas discharge device and an exhaust gas discharge device may be provided.
  • exhaust gas for dilution of the combustion facility exhaust gas that also generates the gas turbine force, which is a target to which the low calorie gas supply facility supplies fuel, can be used.
  • this exhaust gas in addition to using the exhaust gas generated by the gas turbine car directly, it also includes using this exhaust gas as a dilution gas after it is used in a heat recovery boiler.
  • exhaust gas generated from the boiler of the steam power generation facility can be used as the exhaust gas of the combustion facility. Since the exhaust gas generated from boiler boilers in steam power generation facilities has a lower oxygen content than the gas turbine exhaust gas, the mixing ratio can be increased.
  • the gas turbine equipment of the present invention comprises:
  • this low-calorie gas supply facility is one of the above-mentioned low-calorie gas supply facilities.
  • a gas turbine facility a plurality of gas turbines are installed, and each gas turbine is provided with a low calorie gas supply facility, and the above combustion facilities of the low calorie gas supply facility are compatible.
  • a gas turbine other than the gas turbine may be used. That is, gas generated from a gas turbine other than the gas turbine corresponding to the low calorie gas supply facility may be employed as the exhaust gas for dilution for the low calorie gas supply facility.
  • the low calorie gas calorie rise suppressing method for gas turbine fuel of the present invention includes:
  • the exhaust gas mixing step includes the step of measuring the oxygen concentration of the mixture of low calorie gas and exhaust gas, and the measurement result exceeds the set allowable exhaust gas content obtained from the low calorie gas flammability limit information. Including the step of adjusting the amount of exhaust gas mixed, A rise suppression method is preferred.
  • the method further includes a step of mixing an inert gas into the low caloric gas, Preferred method.
  • the calorie increase suppressing method including the step of adjusting the exhaust gas mixing amount, if the exhaust gas mixing amount is decreased, the calorific value of the air-fuel mixture exceeds the set allowable caloric value and increases.
  • the low calorie gas supply passage upstream of the tank and the low calorie gas supply downstream of the tank A return passage can be connected to the passage, and a gas pumping device that pumps fuel gas toward the low calorie gas supply passage upstream of the tank can be installed in the return passage.
  • a return passage is connected between the downstream side from the connection point with the outlet passage in the low calorie gas supply passage and the upstream side from the connection point with the inlet passage in the low calorie gas supply passage, and fuel gas is supplied to the return passage. It is possible to install a gas pressure feeding device that pumps toward the upstream low calorie gas supply passage.
  • the facility for supplying the gas turbine with the low calorie gas that can change the calorie, such as the process by-product gas is realized by the low facility cost and the operation cost.
  • the caloric rise of low calorie gas that can be used as fuel gas In order to suppress the caloric rise of low calorie gas that can be used as fuel gas,
  • FIG. 1 is a piping diagram showing an outline of a gas turbine power generation facility including a low calorie gas supply facility according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the flammability limit of a mixture of low calorie gas and air, with the horizontal axis representing the volume ratio of low calorie gas and the vertical axis representing temperature.
  • FIG. 3 is a graph showing an example of a state in which the calorie fluctuation of low calorie gas is mitigated by passing through the buffer tank in FIG.
  • FIG. 4 is a graph showing another example of the state where the calorie fluctuation of the low calorie gas is mitigated by passing through the koffa tank.
  • FIG. 5 is a graph showing still another example of the state where the calorie fluctuation of the low calorie gas is mitigated by passing through the koffa tank.
  • FIG. 6 is a piping diagram showing another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 7 is a piping diagram showing yet another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 8 is a piping diagram showing still another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 9 is a graph showing an example of a state where fluctuations in the power calorie of low calorie gas are alleviated by passing through the buffer tank of FIG. 7 or FIG.
  • FIG. 10 is a piping diagram showing another example of a calorie fluctuation suppressing means that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 11 is a piping diagram showing another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 12 is a piping diagram showing still another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 13 is a piping diagram showing still another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 14 is a piping diagram showing yet another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG. 1. Explanation of symbols
  • FIG. 1 is a piping diagram showing an outline of a gas turbine facility including a low calorie gas supply facility 1 according to an embodiment of the present invention.
  • a gas turbine power generation facility is shown as an example of the gas turbine facility.
  • low calorie gas is defined as a gas whose calorific value is about 12MjZNm 3 or less. Low calorie gas often changes its calorie characteristics.
  • the low-calorie gas supply facility 1 includes a low-calorie gas supply pipe 3 that supplies by-product gas (hereinafter referred to as low-power regas) generated directly in the reduced iron facility S to the gas turbine 2 as fuel, An exhaust gas supply pipe 4 for supplying combustion exhaust gas to the low calorie gas supply pipe 3 for diluting the caloric gas, and an inert gas supply pipe 5 for supplying an inert gas to the low calorie gas supply pipe 3 are provided. Speak.
  • the reason for mixing combustion exhaust gas to dilute low calorie gas and suppress its rise in calories is because the exhaust gas contains a large amount of non-flammable gases (N, CO, etc.)
  • a control device 100 In order to control the operation of the low calorie gas supply facility 1, a control device 100 is provided.
  • nitrogen gas (N) is used as the inert gas.
  • the reactive gas supply pipe is called N supply pipe 5.
  • the inert gas is not limited to N, but CO
  • the exhaust gas supply pipe 4 and the N supply pipe 5 are connected to the second mixer 7.
  • This common pipe is called dilution gas supply pipe 8.
  • This dilution gas supply pipe 8 The first mixer 6 is connected to the low calorie gas supply facility 1.
  • the exhaust gas supply pipe 4 and the N supply pipe 5 may be directly connected to the first mixer 6 without merging the 4 and 5 respectively.
  • the tubes may be connected directly. However, in order to improve the mixing property of the by-product gas and the dilution gas in the first mixer 6, a mixed gas obtained by uniformly mixing the exhaust gas for dilution and N in advance is used.
  • a dust collector 9 for removing dust from the low calorie gas sent directly from the reduced iron facility S, and a low calorie gas are primarily used.
  • the koffa tank 10 has a relatively large capacity, and low-calorie gas that is stationed while constantly changing in calories is mixed inside the buffer tank 10. The effect will be described later.
  • a calorific value detector 11 for detecting the calorific value of the low-strength regas and a flow meter 12 for measuring the flow rate are installed on the downstream side of the notch tank 10.
  • the installation position of the flow meter 12 is not limited to the upstream side of the first mixer 6. It may be downstream of the first mixer 6. For example, it may be between the high-pressure compressor 17 and the combustor 19 described later.
  • the installation position of the heat generation amount detection device 11 is not limited to the downstream side of the buffer tank 10.
  • the calorific value detection device can be directly attached to the buffer tank 10.
  • Another calorific value detection device may be attached to the buffer tank 10 in addition to the calorific value detection device 11 in the low calorie gas supply pipe 3.
  • the calorific value detection device 11 is a so-called calorimeter that directly measures the calorific value of gas.
  • a device that measures the content (concentration) of combustible components is used.
  • the calorific value detection device 11 can be directly attached to the buffer tank 10.
  • another calorific value detector may be attached to the buffer tank 10. If importance is attached to the detection speed, it is currently preferred to use a combustible gas concentration detector.
  • the type of combustible component contained in the low calorie gas applied and the concentration of the combustible component (for example, carbon monoxide and carbon dioxide as a by-product gas in the direct reduced iron method) are detected.
  • a concentration detector may be used.
  • these calorific value detection devices are collectively referred to as “calorimeters”.
  • the portion of the low-calorie gas supply pipe 3 downstream from the first mixer 6 may be sent to the gas turbine 2 in a state where it is mixed with the low-calorie gas power S exhaust gas N.
  • the pipe is called mixed gas supply pipe 13.
  • the mixed gas supply pipe 13 is provided with a calorimeter 14 and an oxygen concentration meter 15 for measuring the oxygen concentration in the mixed gas.
  • a low-pressure fuel gas compressor (hereinafter referred to as a low-pressure compressor) 16 and a high-pressure fuel gas compressor (hereinafter referred to as a high-pressure compressor) 17 of the gas turbine 2 are installed on the downstream side of the oxygen concentration meter 15 in that order.
  • a cooler 18 is provided between the compressors 16 and 17 for cooling the mixed gas, which is a fuel gas.
  • a flow rate adjusting valve (hereinafter referred to as a flow control valve) 20 for adjusting the turbine output is installed in the fuel pipe 13a connected from the high pressure compressor 17 to the combustor 19 of the gas turbine 2.
  • Reference numeral 21 denotes a filter installed in a pipe for supplying exhaust gas to the combustor 19.
  • a generator 22 is connected to the gas turbine 2.
  • FIG. 1 shows a type in which both the compressors 16 and 17 are rotationally driven by the turbine 2.
  • the present invention is not limited to this, and both the compressors 16 and 17 are coaxial with the turbine 2. Instead of being connected, it may be configured to be driven by a dedicated motor.
  • an exhaust heat recovery boiler 51 using the exhaust gas of the gas turbine 2 may be installed in the gas turbine power generation facility.
  • the steam obtained from the exhaust heat recovery boiler 51 can be used as process steam.
  • a steam turbine for generating electric power with this steam may be installed.
  • the exhaust heat recovery boiler 51 is provided with a chimney 52 for releasing the exhaust gas.
  • This exhaust gas is used not only to dissipate, but also to dilute the low calorie gas that is the fuel of the gas turbine 2 as follows.
  • Exhaust gas supply equipment will be described.
  • An exhaust gas introduction pipe 53 for sending exhaust gas from the exhaust heat recovery boiler 51 is connected to the exhaust gas supply pipe 4.
  • the exhaust gas introduction pipe 53 is provided with a cooler 54 so that the exhaust gas can be cooled to an appropriate temperature for mixing with low-calorie gas, and moisture in the exhaust gas is removed as much as possible through the drain pipe 55. It is good to do.
  • the exhaust gas supplied as the dilution gas to the low calorie gas supply pipe 3 is a force that is the exhaust gas of the gas turbine 2 to which the low calorie gas supply pipe 3 supplies low calorie gas.
  • the exhaust gas from the boiler of this equipment can be used.
  • the exhaust gas from other gas turbines is used as the dilution gas. It can be used as This is because the gas turbine is not stopped even if an abnormality occurs in the exhaust gas introduction pipe 53 or the cooler 54 and the exhaust gas cannot be supplied. In this way, even when other gas turbines introduce exhaust gas from a boiler, they are sent to the exhaust gas supply pipe 4.
  • the exhaust gas supply pipe 4 connected to the exhaust gas introduction pipe 53 is branched, and the fan 24 for sucking the exhaust gas from the exhaust gas introduction pipe 5 3 and pumping it in the exhaust gas supply pipe 4 is convenient for maintenance and the like.
  • Two machines are installed in parallel.
  • a check valve 25 is disposed downstream of each fan 24 to prevent backflow to the fan 24 side.
  • the exhaust gas supply pipe 4 is integrated again on the downstream side of the both check valves 25.
  • a stop valve 26, a flow meter 27, a flow control valve 28, and an oxygen concentration meter 56 are installed in that order in the downstream portion, and are connected to the second mixer 7.
  • an exhaust gas discharge pipe 29 for releasing the exhaust gas to the atmosphere is disposed between the stop valve 26 and the flow meter 27 of the exhaust gas supply pipe 4, an exhaust gas discharge pipe 29 for releasing the exhaust gas to the atmosphere is disposed.
  • the exhaust gas discharge pipe 29 is provided with a flow control valve 30.
  • N supply equipment will be described. N Supply piping 5 is stopped in order from the upstream side.
  • the dilution gas supply pipe 8 from the second mixer 7 to the first mixer 6 is provided with a stop valve 34 and a check valve 35 in order of the upstream force.
  • Check valve 35 is supplied with low-calorie gas as dilution gas This is to prevent backflow into pipe 8.
  • Tube 36 is connected.
  • the communication pipe 36 is provided with a flow meter 37 and a flow control valve 38.
  • Exhaust gas supply pipe 4 and N supply pipe 5 are separate pipes and extend to the first mixer 6 respectively.
  • stop valve 31 and flow meter 3 in N supply pipe 5 If installed, a stop valve and a check valve will be installed in each pipe 4 and 5, and the connecting pipe 36 will be deleted. Instead, stop valve 31 and flow meter 3 in N supply pipe 5
  • an N discharge pipe equipped with a flow control valve is installed.
  • the low calorie gas is pumped toward the gas turbine 2 while monitoring the calorimeter 11 and the flow meter 12 of the low calorie gas supply pipe 3.
  • the stop valve 26 is opened, the flow control valve 28 is closed, the flow control valve 38 of the communication pipe 36 is closed, and the flow control valve 30 of the exhaust gas discharge pipe 29 is opened.
  • 24 is working. That is, the exhaust gas is sucked and discharged from the exhaust gas discharge pipe 29 to the atmosphere through a chimney (not shown).
  • N Flow control of supply pipe 5
  • Valve 33 is closed.
  • the other stop valves 31, 34 are both open.
  • an allowable calorie range for use of the fuel gas of each gas turbine 2 is set. That is, the reference calorie value (for example, 1600 kcalZNm 3 ) and the fluctuation range (for example, ⁇ 10% of the reference calorie value).
  • the calorific value of the low caloric gas exceeds the upper limit caloric value of this allowable variation (for example, + 10%, 1760 kcal / Nm 3 )
  • the exhaust gas supply pipe 4 has the flow control valve 28 opened so that the exhaust gas Adjust flow control valve 30 of discharge pipe 29 in the valve closing direction.
  • the exhaust gas is mixed with the low calorie gas to lower the calorie value within the allowable range.
  • the calorimeter 14 of the mixed gas supply pipe 13 is monitored in order to determine the appropriateness of the final caloric value.
  • the oxygen concentration of the fuel gas is monitored by the oxygen concentration meter 15 of the low calorie gas supply pipe 3 as described later.
  • the flow rate of the N supply pipe 5 N is mixed with low calorie gas by adjusting the flow control valve 33 to open while monitoring a total of 32.
  • the caloric value is lowered within the allowable range.
  • the flow control valve 30 of the exhaust gas discharge pipe 29 is adjusted in the valve opening direction to release the exhaust gas and reduce the mixing amount. As described above, the calorie of low calorie gas is prevented from exceeding the allowable upper limit.
  • the amount of dilution gas is normally controlled by flow control valves 28, 33. If the detection value of the calorimeter 11 in the low calorie gas supply pipe 3 decreases rapidly, the control by the flow control valves 28 and 33 may cause a problem in response. In such a case, a part of the dilution gas is released to the atmosphere by the flow control valve 38 of the communication pipe 36, so that the supply amount of the dilution gas is drastically reduced to cope with a sudden decrease in the calorie value.
  • the oxygen content (oxygen concentration) of the mixed gas increases if the exhaust gas is mixed with low calorie gas. If a certain percentage of oxygen is contained in the combustible gas, the combustible gas will theoretically enter the combustible range at the predetermined temperature. Before falling into this situation, exhaust gas supply must be limited. At that time, when it is necessary to lower the calorific value of the low calorie gas, N is supplied and mixed while reducing the amount of exhaust gas mixed into the low calorie gas as described above.
  • the oxygen content varies depending on the type of exhaust gas.
  • the oxygen content (volume ratio) is about 10-13%, but the boiler exhaust gas used for steam power generation has about 3-6% oxygen. Does not contain power. Therefore, for each exhaust gas to be used, the flammability limit of the mixed gas of the exhaust gas and low calorie gas is obtained by the volume ratio of low calorie gas or exhaust gas, and based on this data, the maximum allowable mixture ratio of exhaust gas is determined. It may be set.
  • the flammability limit of the mixture of air and low calorie gas is calculated for the volume ratio of low calorie gas or air. It is convenient to set the maximum allowable mixing ratio of air and calculate and set the maximum allowable mixing ratio of exhaust gas based on this data and the ratio of oxygen content. The For example, the maximum allowable mixing ratio of air is multiplied by the ratio between the oxygen content of air (21%) and the oxygen content of the exhaust gas used (approximately 10-13% for gas turbine combustion gases). This will be described below.
  • FIG. 2 shows the flammability limit of the mixed gas of low calorie gas and air in relation to the volume ratio of low calorie gas and the temperature.
  • the curve with black circles on the left in the figure shows the minimum volume ratio of low calorie gas (maximum volume ratio of air) in the combustible range of the mixed gas.
  • the curve with the black square mark on the right shows the maximum volume ratio of low calorie gas (minimum volume ratio of air) in the combustible range of the mixed gas.
  • the range between the two curves is the combustible range. Since the caloric value of low calorie gas fluctuates, both the above curves also fluctuate.
  • the maximum allowable mixing volume ratio of air is set in the control device 100 in consideration of the safety factor based on such data. For example, as shown in Fig. 2, the volume ratio of air is 20% (volume ratio of low calorie gas is 80%). Connected to the black square mark on the right side, the ratio is set to a smaller ratio (20%) than the minimum volume ratio of air shown by the elliptic curve. However, this figure is an example.
  • the ratio of the oxygen content of air and gas turbine exhaust gas is 21Z13.
  • the oxygen content of the exhaust gas is 13% for safety.
  • the maximum allowable mixing volume ratio of air is 20%
  • the maximum allowable mixing volume ratio of these exhaust gases is set in the control device 100, which is the maximum allowable mixing volume ratio derived from the combustible limit of the mixed gas. For example, if the volume ratio of gas turbine exhaust gas is slightly smaller than the upper limit (32%), for example, exceeds 25%, the amount of exhaust gas mixed is reduced as described above, and N is supplied as necessary. This control is a low calorie gas supply
  • the buffer tank 10 has an inlet 10a to which the low-calorie gas supply pipe 3 on the upstream side is connected, An outlet 10b to which the low-calorie gas supply pipe 3 on the downstream side is connected is formed. Therefore, all of the low caloric gas that has been sent flows into the buffer tank 10.
  • the inlet 10a and the outlet 10b are formed in the vicinity of the lower end of the tank peripheral wall, but are not particularly limited to these formation positions, for example, the middle part of the tank peripheral wall, the upper part, the bottom part of the tank, etc. You may form in.
  • the buffer tank has a large volume, for example, a low calorie gas supply pipe 3 having a diameter of about 2-3 m, and a volume of about 20000-200000 m 3 is installed.
  • the low calorie gas sent with the calorie changing from time to time is mixed in the buffer tank.
  • mixing of gas in a tank means mixing of time differences. That is, the low calorie gas that has flowed into the buffer tank 10 at the same time is distributed to a portion where the partial force flowing out from the outlet 10b stays in the buffer tank 10 until late.
  • time difference mixing since new gas continuously flows in from the inlet 10a, the gas that has flowed in the past and the gas that has flowed in are continuously mixed. This is called time difference mixing.
  • Fig. 3 shows the relaxation (suppression) of calorie fluctuation when low calorie gas that fluctuates in calorie is supplied at a flow rate of 500000 Nm 3 / hr when the volume of buffer tank 10 in Fig. 1 is 200000 m 3. It is a graph which shows the simulation result of a state. The horizontal axis represents time (minutes), and the vertical axis represents the gas calorie value (kcal / Nm 3 ), which is the calorific value of low calorie gas. In addition, the curve indicated by the broken line in the figure indicates the calorie fluctuation (original fluctuation) of the low calorie gas sent to the buffer tank 10. This is an actually measured sample.
  • the curve represented by the solid line comes out of the buffer tank 10 and shows the calorie fluctuation (after-suppression fluctuation) of low calorific gas.
  • the calorie of the low calorific gas before entering the buffer tank 10 varies from about 1530 kcal / Nm 3 force to about 2360 kcal ZNm 3 .
  • it has a fluctuation range of about ⁇ 21% of the average value of these two values (hereinafter simply referred to as the average value) (1945kcalZNm 3 ).
  • FIG. 4 shows the state of attenuation of calorie fluctuation when the volume of the low-calorie gas is 500000 Nm 3 Zhr and the volume of the buffer tank 10 is 100000 m 3 which is half of the above.
  • the calorie fluctuation in this case is also suppressed by buffer tank 10 to the range of 1700 kcal / Nm 3 force up to 2 040 kcal / Nm 3 , and the fluctuation range is about ⁇ 9% of the average value (1970 kcalZNm 3 ).
  • FIG. 5 shows a decay state of calorie fluctuation when the volume of the buffer tank 10 is set to 50000 m 3 in the facility in which low calorie gas is supplied at a flow rate of 200,000 Nm 3 Zhr. Calorie variance in this case also is suppressed in a range of up to 1740KcalZNm 3 Power et 2010KcalZNm 3 by the buffer tank 10, the variation width of about ⁇ 7. 2% of the average value (1875kcalZNm 3).
  • the fluctuation width is an average value (1875 kcal ZNm 3 ) of about ⁇ 12%.
  • the calorie fluctuation of the low calorie gas is greatly suppressed without the active control only by providing the notch tank.
  • control for mixing exhaust gas and inert gas downstream is very easy.
  • the calorie fluctuation width of the fuel gas of gas turbine 2 is set to 10% of the standard calorie value (average value)
  • the average value of the fluctuating calorie downstream of the noffer tank is The reference calorie value set for gas turbine 2
  • FIG. 7 shows another buffer tank 42.
  • This buffer tank 42 is sometimes used in conventional gas turbine equipment, and is included in the device 40 for monitoring the gas amount balance.
  • This gas amount balance monitoring device 40 is for balancing the amount of low calorie gas sent from the upstream side with the amount of gas consumed required by the gas turbine.
  • This gas amount balance monitoring device 40 has a tank 42 connected to the low calorie gas supply pipe 3 by a communication pipe 41, and an upper end opening of the tank 42 is hermetically closed and can be moved up and down in the tank.
  • a lid member 43 is provided, and an adjustment weight 44 is provided on the lid member 43, for example.
  • the lid member 43 moves up and down in the tank by a balance between the total weight of its own weight, the weight of the weight 44 and the push-down force due to atmospheric pressure, and the push-up force caused by the internal pressure of the tank 42. Accordingly, the lid member 43 moves up and down in accordance with a change in the balance between the supply amount and consumption amount of low calorie gas. While monitoring the vertical movement of the lid member 43, measures such as atmospheric gas diffusion and turbine load reduction are taken.
  • the gas amount balance monitoring device 40 is used for suppressing calorie fluctuation.
  • This tank 42 is an inlet that communicates with the low-calorie gas supply pipe 3 in addition to the communication pipe 41 described above. Piping 45 is connected.
  • the inlet pipe 45 is provided with a fan 39 for sending low calorie gas into the tank 42. Since the inlet pipe 45 is connected to the upstream side of the low calorie gas supply pipe 3 from the communication pipe 41, the fan 39 can be omitted by piping design taking pressure loss into consideration. The same applies to the upstream side inlet pipe 45 shown in FIGS.
  • the communication pipe 41 can also be called an outlet pipe.
  • the buffer tank 42 is connected to an inlet pipe 45 and an outlet pipe 41 constituting a bypass pipe of the low calorie gas supply pipe 3, so to speak, it is installed in parallel to the low calorie gas supply pipe 3.
  • FIG. 8 shows another gas amount balance monitoring device 46 that can be used as calorie fluctuation suppressing means.
  • the gas amount balance monitoring device 46 has a more economical configuration, and has an airtight tank 46 a that is connected to the low calorie gas supply pipe 3 by a communication pipe 41.
  • a pressure detector 47 is installed in the tank 46a, and the internal pressure of the tank 46a is constantly monitored. When the detected pressure reaches the upper limit, the control device 100 issues a command to increase the gas consumption in the facility, and balances the gas supply and demand.
  • the other structure is the same as that of the above-mentioned device 40 (Fig. 7), and can be fully used as a calorie fluctuation suppressing means.
  • FIG. 9 is Oite to the facilities low calorie gas varying calorific is supplied at a flow rate 500,000 nm 3 / hr, the volume of the tank 42 (46a) in FIG. 7 or 8 and 200000M 3, by the fan 39
  • the curve shown with a broken line in the figure shows the calorie fluctuation (original fluctuation) of the low calorie gas sent directly from the reduced iron facility S! This is the actual measurement sample described above.
  • the curve represented by the two-dot chain line shows the simulation result of the calorie fluctuation (transient fluctuation) of the low calorie gas leaving the tank 42 and passing through the communication pipe 41.
  • the curve shown by the solid line shows the calorie fluctuation (the fluctuation after suppression) of the gas that reaches the first mixer 6 through the low calorie gas supply pipe 3 downstream of the communication pipe 41.
  • the calorific value of the low caloric gas before entering tank 42 (46a) which is the same as described above, has a fluctuation range of about ⁇ 21% of the average value (1945kcalZNm 3 ). However, the tank 42 (46a) force is also low in calorie through the communication pipe 41.
  • Calorie variance of gas after merging into the gas supply pipe 3 is from 1690KcalZNm 3 to 2100kc al / Nm 3, the fluctuation range is suppressed to about ⁇ 11% of the average value (1895kcalZNm 3). This number is an example.
  • the inlet pipe 45 for feeding the low calorie gas into the tank 42 (46a) is connected to the upstream side of the outlet pipe 41 in the low calorie gas supply pipe 3.
  • the pipe 41 may be connected downstream.
  • a plurality of both pipes 41 and 45 may be provided.
  • FIG. 10 shows another calorie fluctuation suppressing means.
  • This means is a return pipe 48 arranged in the low calorie gas supply pipe 3 for returning a part of the low calorie gas to the upstream side of the low calorie gas supply pipe 3.
  • the return pipe 48 is provided with a fan 39 for pumping low calorie gas upstream.
  • the return pipe 48 shown in the drawing is configured so that the suction force at one power point is also branched into a plurality of branch pipes 48a and is configured to return to the original low calorie gas supply pipe 3. Good. Further, a single return pipe may be provided at each of a plurality of different parts of the low calorie gas supply pipe 3.
  • the low calorie gas is mixed with the new low calorie gas when it is returned to the upstream of the low-strength regas supply pipe 3, and the calorie fluctuation is reduced.
  • the same buffer tank 42 for the gas amount balance monitoring device 40 as shown in FIG. 7 may be replaced with the fixed internal volume type buffer tank in FIG. That is, the notch tank 42 in FIG. 7 is connected to the inlet pipe 45 and the communication pipe 41 that constitute the binos pipe of the low calorie gas supply pipe 3. You may connect directly. Specifically, the upstream side of the low calorie gas supply pipe 3 may be directly connected to the inlet formed in the nota tank 42, and the upstream side of the low calorie gas supply pipe 3 may be directly connected to the outlet.
  • FIG. 11 shows a piping mode substantially the same as the piping mode as described above.
  • the buffer tank 42 in FIG. 11 is the same as that for the gas amount balance monitoring device 40 shown in FIG. Fattank 42.
  • the difference is the mode of piping connecting the low calorie gas supply piping 3.
  • the low-calorie gas supply pipe 3 of FIG. 7 is removed from the connection part with the inlet pipe 45 to the connection part with the communication pipe 41, and the fan 39 on the inlet pipe 45 is further removed. It has been removed. That is, the low-calorie gas supply pipe 3 on the upstream side is connected to the inlet 42a, and the low-calorie gas supply pipe 3 on the downstream side is connected to the outlet 42b.
  • the buffer tank 10 shown in FIG. 1 is replaced with the tank 42 for the gas amount balance monitoring device 40.
  • Such a pipe is a mode that can be easily modified when the existing gas amount balance monitoring device 40 is also used as a gas calorie fluctuation suppressing device.
  • a stirring device 57 such as a fan may be installed inside the tank 42 to stir the gas. This is to promote gas mixing in the tank and thereby achieve more effective calorie fluctuation suppression.
  • the force near the outlet 42b of the tank is installed in the vicinity of the outlet 42b so that the gas can flow toward the inside of the tank.
  • the stirring device 57 is not limited to the tank 42 in FIG. 11, but can be installed in the tanks 10, 42, and 46a shown in other drawings and other tanks that can exert a calorie suppressing effect.
  • the electric motor 57a, etc., serving as the rotational drive unit of the stirring device 57 is installed outside the tank.
  • FIG. 12 also shows a buffer tank 42 installed in parallel to the low calorie gas supply pipe 3 as in the tank of FIG.
  • an outlet pipe 41 is connected between the outlet 42b of the tank 42 and the low calorie gas supply pipe 3, and the upstream side of the connection of the inlet 42a of the tank 42 and the outlet pipe 41 in the low calorie gas supply pipe 3
  • An inlet pipe 45 is connected between the two. Therefore, this inlet pipe 45 is referred to as an upstream side inlet pipe 45.
  • a further inlet 50a is formed in the tank 42, and an inlet pipe 50 connected to the downstream side of the connection portion with the outlet pipe 41 in the low calorie gas supply pipe 3 is connected to the inlet 50a.
  • This inlet pipe 50 is referred to as a downstream inlet pipe 50.
  • Both inlet pipes 45 and 50 are provided with a fan 39 for sending low calorie gas to the tank 42.
  • the upstream inlet pipe 45 and the downstream inlet pipe 50 are connected to the tank 42 at the connection positions (the inlets 42a and 50a).
  • a part of the low calorie gas is pumped into the tank 42 from the upstream side of the low calorie gas supply pipe 3 through the upstream side inlet pipe 45 and at the same time downstream from the downstream side of the low calorie gas supply pipe 3.
  • a part of the low calorie gas is pumped through the inlet pipe 50, mixed and flows out from the outlet 42b to the outlet pipe 41.
  • the downstream inlet pipe 50 is a force connected to the inlet 50a of the tank 4 2 from the downstream side of the low calorie gas supply pipe 3.From the downstream side, upstream from the connection with the upstream inlet pipe 45 of the low calorie gas supply pipe 3 You can connect to the side.
  • FIG. 13 also shows a buffer tank 42 installed in parallel to the low calorie gas supply pipe 3. Between the tank 42 and the low calorie gas supply pipe 3 as shown in the figure, the communication pipe 41 and the downstream side inlet pipe 50 as the outlet pipe are connected. The downstream inlet pipe 50 is provided with a fan 39 for sending low calorie gas to the tank 42.
  • the low calorie gas is downstream from the fan 39. It is fed into the tank 42 through, mixed and flows out from the outlet 42b to the outlet pipe 41. In other words, effective mixing is achieved because a part of the low calorie gas with suppressed calorie fluctuation circulates.
  • the tank 42 shown in FIG. 14 has two types of inlets 42a and 49a.
  • One inlet 42a is connected to the upstream low calorie gas supply pipe 3, the outlet 42b is connected to the downstream low calorie gas supply pipe 3, and the other inlet 49a is connected to the downstream low calorie gas supply pipe 3.
  • Return pipe 49 is connected.
  • the two inlets 42a and 49a are formed close to each other.
  • the return pipe 49 is provided with a fan 39 for sending low calorie gas into the tank.
  • Low calorie gas includes blast furnace gas (BFG), converter gas (LDG), coal bed gas (Coal mine gas, expressed as CMG), by-product gas generated by smelting reduction ironmaking, General gas, including Tail gas generated in Gas-to-Liquid (GTL) process, by-product gas generated by oil refining process from oil sand, gas generated by incineration using plasma, and garbage Low-calorie gas such as by-product gas generated by the chemical reaction of methane gas (Landfill gas) generated during fermentation and decomposition of waste in its landfill and other similar raw materials included.
  • BFG blast furnace gas
  • LDG converter gas
  • CMG coal bed gas
  • GTL Gas-to-Liquid
  • garbage Low-calorie gas such as by-product gas generated by the chemical reaction of methane gas (Landfill gas) generated during fermentation and decomposition of waste in its landfill and other similar raw materials included.
  • a gas whose calorific value is less than about 12 MJ / Nm 3 as a result of mixing a plurality
  • stable combustion is achieved by suppressing an abnormal increase in combustion temperature by diluting a large amount of low-calorie gas whose calorie changes from time to time with low-oxygen concentration exhaust gas that is easy to collect. Can be continued.
  • the above-mentioned effects can be obtained by low equipment costs and operation costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

A gas turbine apparatus, a low calorie content gas feeding apparatus capable of feeding a low calorie content gas as a fuel for gas turbine stabilized by suppressing the sudden rise of its calorie content, and a method of suppressing the rise of calorie content of the gas. The low calorie content gas feeding apparatus comprises a low calorie content gas feed pipe (3) feeding the low calorie content gas to a gas turbine (2), an exhaust gas feed pipe (4) feeding exhaust gas to the low calorie content gas feed pipe (3), a first mixer (6) disposed in a connection part between the low calorie content gas feed pipe (3) and the exhaust gas feed pipe (4), a calorimeter (11) disposed in the low calorie content gas feed pipe (3) and detecting a heated value in the gas, an oxygen analyzer (15) installed on the downstream side of the first mixer (6) in the low calorie content gas feed pipe (3), and a controller (100). The controller (100) feeds the exhaust gas from the exhaust gas feed pipe (4) when the detection value of the calorimeter (11) exceeds a reference value, and based on the detected results of the oxygen analyzer (15), controls an exhaust gas mixing ratio so that it does not come into the inflammable limit of the low calorie content gas.

Description

明 細 書  Specification
ガスタービン設備、低カロリガス供給設備および当該ガスのカロリ上昇抑 制方法  Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
技術分野  Technical field
[0001] 本発明はガスタービン設備、低カロリガス供給設備および当該ガスのカロリ上昇抑 制方法に関する。さら〖こ詳しくは、低カロリガスをガスタービンの燃料として使用し得る 状態でガスタービンに供給する低カロリガス供給設備、この低カロリガス供給設備を 備えたガスタービン設備、および、このガスタービン燃料用低カロリガスの発熱量 (力 ロリともいう)の上昇を抑制する方法に関する。  [0001] The present invention relates to a gas turbine facility, a low calorie gas supply facility, and a calorie increase suppressing method for the gas. More specifically, in detail, a low calorie gas supply facility that supplies gas turbines with low calorie gas as fuel for the gas turbine, a gas turbine facility equipped with the low calorie gas supply facility, and a low calorie gas for the gas turbine fuel It is related with the method of suppressing the raise of the calorific value (it is also called force Lori) of the.
背景技術  Background art
[0002] 製鉄分野にお!、て、たとえば高炉法で銑鉄を生産する場合、高炉から炉頂ガス ( Blast Furnace Gasであり、以下 BFGと記す)が副生ガスとして発生する。 BFGの総 発熱量は使用したコータスの発熱量の約半分にも達するので、製銑原価低減のため に BFGは製鉄所内において多方面に利用されている。 BFGは投入コータス 1トン当 たり 3000Nm3程度発生し、その組成は二酸ィ匕炭素(CO )が 10— 18容積% (以下 [0002] In the field of iron making, for example, when pig iron is produced by the blast furnace method, a top gas (Blast Furnace Gas, hereinafter referred to as BFG) is generated as a by-product gas from the blast furnace. Since the total calorific value of BFG reaches about half of the calorific value of the used Kotas, BFG is widely used in steelworks to reduce the cost of ironmaking. BFG is generated about 3000Nm 3 per ton of input cortas, and its composition is 10-18% by volume of carbon dioxide (CO)
2  2
、単に%と記す)、一酸ィ匕炭素(CO)が 22— 30%、窒素(N )が 52— 60%、水素(H  , Simply referred to as%), carbon monoxide (CO) is 22-30%, nitrogen (N) is 52-60%, hydrogen (H
2  2
)が 0. 5— 4%、メタン(CH )が 0. 5— 3%程度とされている。  ) Is about 0.5-4%, and methane (CH) is about 0.5-3%.
2 4  twenty four
[0003] BFGはこれ以外に煙塵を 2— 10g/Nm3含んでいるので、これを除塵器で 0. Olg /Nm 程度まで除去した後、発熱量 800kcal/Nm3程度の燃料ガスとして、熱風 炉、コークス炉、加熱炉、ボイラ等に利用されている。近年、ガスタービンにおいても、 その技術の向上により低カロリガスの燃焼が可能となり、 BFGをガスタービン燃料とし て用いて発電する事例が増加している。ここで言う低カロリガスとは、その発熱量が約 12MJ/Nm3以下のガスと定義している。低カロリガスとしては、後述するように、高 炉ガス(BFG)には限らず、転炉ガス(LDG)などの多くの他の種類のガスやそれらの 混合ガスが含まれる。 [0003] In addition to this, BFG contains 2-10 g / Nm 3 of dust. After removing this to about 0. Olg / Nm with a dust remover, hot air is used as fuel gas with a calorific value of about 800 kcal / Nm 3. Used in furnaces, coke ovens, heating furnaces, boilers, etc. In recent years, gas turbines have also been able to burn low calorie gas due to improvements in technology, and there are an increasing number of cases where BFG is used as gas turbine fuel to generate electricity. The low calorie gas here is defined as a gas whose calorific value is about 12 MJ / Nm 3 or less. As will be described later, the low calorie gas is not limited to blast furnace gas (BFG), but includes many other types of gases such as converter gas (LDG) and mixed gases thereof.
[0004] 一方で、近年、高炉法以外の新 U、製鉄プロセス(たとえば FINEXや COREX等 の直接還元鉄法)が開発されつつあり、こうした新プロセス力 発生する副生ガスの 有効利用に対しても適用できる燃焼方式の開発が待たれて 、る。 、ずれの製鉄プロ セスであれ、発生する副生ガスの特性 (ガス組成やカロリ)は設備や操業内容によつ て異なる。同一設備であっても各原料の特性や反応過程に応じて時々刻々変化し、 一定することがない。 [0004] On the other hand, in recent years, new U and iron manufacturing processes other than the blast furnace method (for example, direct reduction iron methods such as FINEX and COREX) are being developed. The development of a combustion method that can be applied to effective use is awaited. Even if the steel manufacturing process is different, the characteristics (gas composition and calorie) of the by-product gas generated will vary depending on the equipment and operation. Even with the same equipment, it changes from moment to moment according to the characteristics of each raw material and the reaction process, and does not become constant.
[0005] 副生ガスをガスタービンの燃料として使用する場合の最も重要な特性であるカロリ について見てみると、各ガスタービンが固有するカロリの許容変動幅の上限 (たとえ ば平均カロリ値の約 + 10%)を超えた場合、つまりカロリが急激に大きくなつた場合、 ガスタービンの燃焼器内での燃焼温度が急激に異常な高温となることがある。これに 起因してパーナ部分、タービンの静翼および動翼が損傷を受けて短命化したりする 弊害が発生する可能性がある。この場合、ガスタービン設備の経済的な連続運転が 困難になる。  [0005] Looking at calorie, which is the most important characteristic when using by-product gas as fuel for gas turbines, the upper limit of the allowable fluctuation range of calories inherent in each gas turbine (for example, about the average calorie value). + 10%), that is, when the calorific value suddenly increases, the combustion temperature in the combustor of the gas turbine may suddenly become abnormally high. As a result, the PANA portion, turbine stationary blades and rotor blades may be damaged, resulting in a short life. In this case, economical continuous operation of the gas turbine equipment becomes difficult.
[0006] 副生ガスの変動するカロリを抑制するために窒素ガス (N )によって希釈する技術  [0006] Technology for diluting with nitrogen gas (N) to suppress the fluctuating calories of by-product gas
2  2
は公知である(たとえば特許文献 1および特許文献 2を参照)。しかしながら、 Nのみ  Are known (see, for example, Patent Document 1 and Patent Document 2). However, only N
2 によって副生ガスを希釈する場合、カロリの変動値によっては N等の高価な不活性  When diluting the by-product gas by 2, depending on the variation of calories, expensive inert such as N
2  2
ガスを大量に使用せざるを得ない。また、不活性ガスを連続して大量に確保すること は特殊な産業分野を除いて非常に困難である。さらに、大量の不活性ガスの貯蔵設 備ゃ、配管を含むガス供給のための各種機器設備等を配設する必要がある。これら の理由により、不活性ガスを使用する方法はガスタービン発電の経済性を低下させ、 高効率を標榜するガスタービンの技術的優位性を阻害する。  I have to use a lot of gas. Moreover, it is very difficult to secure a large amount of inert gas continuously except for special industrial fields. Furthermore, it is necessary to install a large amount of inert gas storage equipment and various equipment for gas supply including piping. For these reasons, the use of inert gas reduces the economics of gas turbine power generation and hinders the technical advantages of gas turbines that advocate high efficiency.
特許文献 1:特開 2002-155762号公報  Patent Document 1: JP 2002-155762 A
特許文献 2 :特開平 9— 317499号公報  Patent Document 2: JP-A-9-317499
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明はカゝかる課題を解決するためになされたものであり、設備コストおよび運転コ ストが低廉な、ガスタービン用低カロリ燃料ガスのカロリ上昇を緩和することのできる 低カロリガス供給設備、この低カロリガス供給設備を備えたガスタービン設備、および 、ガスタービン燃料用低カロリガスの発熱量の上昇を抑制する方法を提供することを 目的としている。 課題を解決するための手段 [0007] The present invention has been made in order to solve the problem to be solved, and the supply of low calorie gas capable of mitigating the calorie rise of the low calorie fuel gas for gas turbines is low in equipment cost and operation cost. An object of the present invention is to provide a facility, a gas turbine facility equipped with this low calorie gas supply facility, and a method for suppressing an increase in the calorific value of low calorie gas for gas turbine fuel. Means for solving the problem
[0008] 上記目的のために本発明の低カロリガス供給設備は、  [0008] For the above purpose, the low-calorie gas supply facility of the present invention comprises:
低カロリガスを燃料ガスとしてガスタービンに供給するための低カロリガス供給通路 と、  A low-calorie gas supply passage for supplying low-calorie gas as fuel gas to the gas turbine;
この低カロリガス供給通路に接続された、燃焼設備にぉ 、て発生する排ガスを低力 口リガス供給通路に供給するための排ガス供給通路と、  An exhaust gas supply passage connected to the low calorie gas supply passage for supplying exhaust gas generated by the combustion facility to the low-power regas supply passage;
上記低カロリガス供給通路に配設された、ガス中の発熱量を検出するための発熱 量検出装置と、  A calorific value detection device for detecting the calorific value in the gas disposed in the low calorie gas supply passage;
この発熱量検出装置の検出結果に基づいて排ガス供給通路による排ガス供給動 作を制御しうる制御装置とを備えて 、る。  And a control device capable of controlling the exhaust gas supply operation by the exhaust gas supply passage based on the detection result of the calorific value detection device.
[0009] この発明によれば、 N、二酸化炭素 (CO )等の不燃性ガスを大量に含み (可燃性 [0009] According to the present invention, a large amount of non-combustible gas such as N, carbon dioxide (CO) is included (flammable
2 2  twenty two
ガスを含まず)且つ調達がきわめて容易な燃焼設備カゝらの排ガスを混合して低カロリ ガスを希釈することにより、低カロリガスのカロリ上昇を抑制することができる。ここで、 発熱量検出装置とは、ガスの発熱量を直接計測する装置 (たとえば、所謂カロリメ一 タ)はもとより、ガス中の可燃成分の含有率を計測する装置をも含む。  Mixing the exhaust gas from combustion equipment that does not contain gas and is extremely easy to procure can be used to dilute the low calorie gas, thereby suppressing the calorie rise of the low calorie gas. Here, the calorific value detection device includes not only a device that directly measures the calorific value of gas (for example, a so-called calorimeter) but also a device that measures the content of combustible components in the gas.
[0010] 上記制御装置は、ガスタービンの燃料ガスの最大許容カロリ値が設定され、低カロ リガスのカロリ値がこの最大許容カロリ設定値を超えているときに、排ガス供給通路か ら排ガスを供給するように構成することができる。  [0010] The control device supplies exhaust gas from the exhaust gas supply passage when the maximum allowable calorie value of the fuel gas of the gas turbine is set and the caloric value of the low calorie gas exceeds the maximum allowable calorie set value. Can be configured to.
[0011] 上記低カロリガス供給通路における排ガス供給通路との接続部より下流側の部位 に酸素濃度検出装置が配設されており、上記制御装置が、酸素濃度検出装置の検 出結果に基づ ヽて排ガス供給通路による排ガス供給動作を制御するように構成され て ヽる低カロリガス供給設備が好ま Uヽ。低カロリガスと排ガスとの混合気の発火を防 止するために、酸素を含有する排ガスの低カロリガスに対する混合を、上記混合気の 酸素含有率に基づいて制御することができるからである。  [0011] An oxygen concentration detection device is disposed in a portion of the low calorie gas supply passage downstream of the connection portion with the exhaust gas supply passage, and the control device is based on the detection result of the oxygen concentration detection device. Therefore, low calorie gas supply equipment configured to control the exhaust gas supply operation through the exhaust gas supply passage is preferred. This is because the mixing of the exhaust gas containing oxygen with respect to the low calorie gas can be controlled based on the oxygen content of the mixture to prevent ignition of the mixture of low calorie gas and exhaust gas.
[0012] この酸素濃度検出装置を備えた設備は、上記制御装置が、低カロリガスと排ガスと の混合比カゝら得られる低カロリガスの可燃限界情報に基づいて設定された排ガスの 許容混合容積比率を基準に、排ガス供給通路による排ガスの供給量を制御するよう に構成することができる。 [0013] または、この酸素濃度検出装置を備えた設備は、上記制御装置が、低カロリガスと 空気との混合比カゝら得られる低カロリガスの可燃限界情報に基づいて設定された空 気の許容混合容積比率から、酸素含有率の比に基づいて算出された排ガスの許容 混合容積比率を基準に、排ガス供給通路による排ガスの供給量を制御するように構 成することができる。 [0012] The facility equipped with this oxygen concentration detection device has an allowable mixed volume ratio of exhaust gas set based on the low calorific gas flammability limit information obtained by the control device from the mixing ratio of low calorie gas and exhaust gas. The amount of exhaust gas supplied through the exhaust gas supply passage can be controlled based on the above. [0013] Alternatively, in the equipment equipped with this oxygen concentration detection device, the above-mentioned control device may allow air to be set based on low calorific gas flammability limit information obtained from the mixing ratio of low calorie gas and air. The exhaust gas supply amount through the exhaust gas supply passage can be controlled based on the allowable mixed volume ratio of the exhaust gas calculated based on the oxygen content ratio from the mixing volume ratio.
[0014] この酸素濃度検出装置を備えた設備において、上記低カロリガス供給通路に、不 活性ガスを供給するための不活性ガス供給通路が接続されており、上記制御装置が 、酸素濃度検出装置の検出結果に基づいて不活性ガス供給通路による不活性ガス 供給動作を制御するように構成されて ヽるのが好ま ヽ。たとえば排ガス供給を制限 することによって低カロリガスのカロリ上昇の抑制が不十分になった場合には、不活 性ガスの供給によってカロリ変動の抑制作用を補うことができるからである。なお、上 記混合部に至る不活性ガス供給通路の一部分が上記排ガス供給通路と共通の通路 を構成していてもよい。  [0014] In the equipment provided with the oxygen concentration detection device, an inert gas supply passage for supplying an inert gas is connected to the low calorie gas supply passage, and the control device is a device for the oxygen concentration detection device. It is preferable that the inert gas supply operation by the inert gas supply passage is controlled based on the detection result. For example, when the exhaust gas supply is restricted and thus the calorie rise of the low calorie gas is insufficiently suppressed, the supply of the inert gas can compensate for the calorie fluctuation suppressing effect. Note that a portion of the inert gas supply passage leading to the mixing section may constitute a common passage with the exhaust gas supply passage.
[0015] 上記低カロリガス供給通路に、不活性ガスを供給するための不活性ガス供給通路 が接続されており、上記制御装置が、排ガス供給通路による低カロリガス供給通路へ の排ガス供給をしている状態において、発熱量検出装置の検出結果に基づいて不 活性ガス供給通路による不活性ガス供給動作を制御するように構成されて ヽる低力 口リガス供給設備が好ましい。仮に排ガスによる低カロリガスのカロリ上昇の抑制が不 十分な場合には、不活性ガスによって補うことができるからである。  [0015] An inert gas supply passage for supplying an inert gas is connected to the low calorie gas supply passage, and the control device supplies exhaust gas to the low calorie gas supply passage through the exhaust gas supply passage. In this state, a low-power regas supply facility configured to control the inert gas supply operation through the inert gas supply passage based on the detection result of the calorific value detection device is preferable. This is because if the calorie rise of low calorie gas due to exhaust gas is insufficiently suppressed, it can be compensated by inert gas.
[0016] 以上の各設備において、上記低カロリガス供給通路に、低カロリガスを一時的に貯 留する第一のタンクが配設されており、この第一のタンクが入口と出口とを有しており 、入口には低カロリガス供給通路の上流側が接続されており、出口には低カロリガス 供給通路の下流側が接続されているのが好ましい。低カロリガス供給通路を通して供 給されてくる低カロリガスの全てが第一のタンク内に一時的に貯留され、その中で混 合されることにより、そのカロリ変動の幅が減少され、且つ、カロリ変動速度が緩和さ れるため、第一のタンク出口の下流部での排ガスを用いた希釈によるカロリ平準化制 御が一層容易となるからである。前述した発熱量検出装置は低カロリガス供給通路に 設置されるが、低カロリガス供給通路に上記第一のタンクや後述の第二のタンクが設 置される設備においては、このタンクも低カロリガス供給通路を構成するので、発熱 量検出装置を上記タンクに取り付けることをも含む。 In each of the above facilities, a first tank for temporarily storing low calorie gas is disposed in the low calorie gas supply passage, and the first tank has an inlet and an outlet. It is preferable that the upstream side of the low calorie gas supply passage is connected to the inlet, and the downstream side of the low calorie gas supply passage is connected to the outlet. All of the low caloric gas supplied through the low caloric gas supply passage is temporarily stored in the first tank and mixed in it, thereby reducing the width of the caloric fluctuation and reducing the caloric fluctuation. This is because the speed is reduced, and calorie leveling control by dilution with exhaust gas downstream of the first tank outlet becomes easier. The calorific value detection device described above is installed in the low calorie gas supply passage, and the first tank and the second tank described later are installed in the low calorie gas supply passage. In the installed equipment, since this tank also constitutes a low calorie gas supply passage, it also includes attaching a calorific value detection device to the tank.
[0017] 上記低カロリガス供給通路に、低カロリガスを一時的に貯留する第二のタンクが配 設されており、低カロリガス供給通路と上記第二のタンクとの間に、低カロリガスを低 カロリガス供給通路力 第二のタンクに送り込むガス入口通路と、低カロリガスを第二 のタンク力 低カロリガス供給通路へ戻す出口通路とが配設されており、上記入口通 路に低カロリガスを第二のタンクに向けて圧送する第一ガス圧送装置が配設されて いる低カロリガス供給設備が好ましい。上記第一のタンクによる作用と同様な作用が なされるからである。  [0017] A second tank for temporarily storing low calorie gas is disposed in the low calorie gas supply passage, and low calorie gas is supplied between the low calorie gas supply passage and the second tank. Passage force A gas inlet passage for feeding into the second tank and an outlet passage for returning the low calorie gas to the second tank force low calorie gas supply passage are provided, and the low calorie gas is supplied to the second tank in the inlet passage. A low-calorie gas supply facility in which a first gas pumping device that pumps the gas toward is preferable. This is because the same action as that of the first tank is performed.
[0018] なお、前述した第一のタンクおよび第二のタンクはともに、内容積が変化しない固 定形式のタンクであってもよぐまた、従来のガスタービン設備等においてガスの需給 ノ ランスを監視する装置 (ガスホルダ)として用いられる内容積変動形式のタンクであ つてもよい。内容積変動形式のタンクとは、タンク内圧に応じて上下動しうる気密に装 着された蓋部材を有するタンク、駆動装置によって蓋部材を積極的に上下動させるこ とによりバランス効果を最大にしうるタンク容積を選定できるタンク等である。  [0018] It should be noted that both the first tank and the second tank described above may be fixed-type tanks whose internal volume does not change, and the supply and demand tolerance of gas in the conventional gas turbine equipment, etc. It may be an internal volume variation type tank used as a monitoring device (gas holder). The internal volume variation type tank is a tank having an airtightly attached lid member that can move up and down according to the tank internal pressure, and the balance member is maximized by positively moving the lid member up and down by a driving device. A tank or the like that can select an available tank volume.
[0019] 上記低カロリガス供給通路に、供給する低カロリガスの一部をこの低カロリガス供給 通路の上流側へ戻す戻し通路が配設されており、この戻し通路に、低カロリガスを低 カロリガス供給通路の上流側に向けて圧送する第二ガス圧送装置が配設されている 低カロリガス供給設備が好ましい。上記第一のタンクによる作用と同様な作用がなさ れるカゝらである。  [0019] A return passage for returning a part of the low calorie gas to be supplied to the upstream side of the low calorie gas supply passage is provided in the low calorie gas supply passage, and the low calorie gas is supplied to the low calorie gas supply passage in the return passage. A low calorie gas supply facility in which a second gas pumping device for pumping upstream is disposed is preferable. They are the same as those of the first tank.
[0020] 上記排ガス供給通路に配設された、この通路を遮断および開放しうる排ガス遮断装 置と、この排ガス遮断装置の上流側に配設された排ガス放出装置とを備えている低 カロリガス供給設備が好ま 、。排ガス遮断装置としてはたとえば止め弁や流調弁な どが採用されうる。  [0020] Low-calorie gas supply comprising an exhaust gas blocking device arranged in the exhaust gas supply channel and capable of blocking and opening the passage, and an exhaust gas discharge device arranged upstream of the exhaust gas blocking device Facilities are preferred. For example, a stop valve or a flow control valve can be used as the exhaust gas shut-off device.
[0021] 上記不活性ガス供給通路に配設された、この通路を遮断および開放しうる不活性 ガス遮断装置と、この不活性ガス遮断装置の上流側に配設された不活性ガス放出装 置とを備えて ヽる低カロリガス供給設備が好ま ヽ。不活性ガス遮断装置としてはた とえば止め弁や流調弁などを採用しうる。上記低カロリガス供給通路に至る不活性ガ ス供給通路の一部分が上記排ガス供給通路と共通の通路を構成しており、且つ、排 ガス遮断装置と排ガス放出装置とが配設されて ヽる場合には、不活性ガス遮断装置 と排ガス遮断装置とを兼用した一つの遮断装置を備えてもよぐまた、不活性ガス放 出装置と排ガス放出装置とを兼用した一つの放出装置を備えてもよい。 [0021] An inert gas blocking device disposed in the inert gas supply passage and capable of blocking and opening the passage, and an inert gas discharge device disposed upstream of the inert gas blocking device. A low-calorie gas supply facility equipped with For example, a stop valve or a flow control valve can be used as the inert gas shut-off device. Inert gas reaching the low calorie gas supply passage When a part of the gas supply passage constitutes a passage common with the exhaust gas supply passage and an exhaust gas cutoff device and an exhaust gas discharge device are provided, the inert gas cutoff device and the exhaust gas cutoff are provided. A single shut-off device that also serves as a device may be provided, or a single discharge device that serves as both an inert gas discharge device and an exhaust gas discharge device may be provided.
[0022] 上記燃焼設備の希釈用排ガスとして、この低カロリガス供給設備が燃料を供給する 対象である上記ガスタービン力も発生する排ガスを利用することができる。なお、上記 ガスタービンカゝら発生する排ガスを直接利用することはもとより、この排ガスをー且排 熱回収ボイラ等で利用した後に希釈用ガスとして利用することも含む。  [0022] As the exhaust gas for dilution of the combustion facility, exhaust gas that also generates the gas turbine force, which is a target to which the low calorie gas supply facility supplies fuel, can be used. In addition to using the exhaust gas generated by the gas turbine car directly, it also includes using this exhaust gas as a dilution gas after it is used in a heat recovery boiler.
[0023] または、燃焼設備の排ガスとして、汽カ発電設備のボイラから発生する排ガスを利 用することもできる。汽カ発電設備のボイラカゝら発生する排ガスはガスタービンの排ガ スに比べて酸素含有率が低 、ので、その混合比率を増大することができる。  [0023] Alternatively, exhaust gas generated from the boiler of the steam power generation facility can be used as the exhaust gas of the combustion facility. Since the exhaust gas generated from boiler boilers in steam power generation facilities has a lower oxygen content than the gas turbine exhaust gas, the mixing ratio can be increased.
[0024] 本発明のガスタービン設備は、  [0024] The gas turbine equipment of the present invention comprises:
ガスタービンと、このガスタービンに燃料ガスとして低カロリガスを供給するための低 カロリガス供給設備とを備えており、この低カロリガス供給設備が、前述したうちのい ずれか一の低カロリガス供給設備である。  It is equipped with a gas turbine and a low-calorie gas supply facility for supplying low-calorie gas as fuel gas to the gas turbine, and this low-calorie gas supply facility is one of the above-mentioned low-calorie gas supply facilities. .
[0025] かかるガスタービン設備にお!ヽて、ガスタービンが複数機設置されており、各ガスタ 一ビンに低カロリガス供給設備が併設されており、低カロリガス供給設備の上記燃焼 設備が、対応するガスタービン以外のガスタービンであってもよい。すなわち、低カロ リガス供給設備用の希釈用の排ガスとして、当該低カロリガス供給設備に対応するガ スタービン以外のガスタービンから発生する ガスを採用してもよ 、。  [0025] In such a gas turbine facility, a plurality of gas turbines are installed, and each gas turbine is provided with a low calorie gas supply facility, and the above combustion facilities of the low calorie gas supply facility are compatible. A gas turbine other than the gas turbine may be used. That is, gas generated from a gas turbine other than the gas turbine corresponding to the low calorie gas supply facility may be employed as the exhaust gas for dilution for the low calorie gas supply facility.
[0026] 本発明のガスタービン燃料用低カロリガスのカロリ上昇抑制方法は、  [0026] The low calorie gas calorie rise suppressing method for gas turbine fuel of the present invention includes:
燃料ガスとしてガスタービンに供給する低カロリガスの発熱量を計測するカロリ計測 ステップと、  A calorie measurement step for measuring the calorific value of the low calorie gas supplied to the gas turbine as fuel gas;
この計測結果が設定許容カロリ値を超えているときに、燃焼設備から採取した希釈 用の排ガスを上記低カロリガスに混入する排ガス混入ステップとを含んでいる。  An exhaust gas mixing step of mixing the exhaust gas for dilution collected from the combustion equipment into the low calorie gas when the measurement result exceeds the set allowable caloric value.
[0027] 上記排ガス混入ステップが、低カロリガスと排ガスとの混合気の酸素濃度を計測す るステップと、この計測結果が、低カロリガスの可燃限界情報カゝら得られる設定許容 排ガス含有率を超えな 、ように排ガス混入量を調整するステップを含んで 、るカロリ 上昇抑制方法が好ましい。 [0027] The exhaust gas mixing step includes the step of measuring the oxygen concentration of the mixture of low calorie gas and exhaust gas, and the measurement result exceeds the set allowable exhaust gas content obtained from the low calorie gas flammability limit information. Including the step of adjusting the amount of exhaust gas mixed, A rise suppression method is preferred.
[0028] また、最大限の排ガス供給によっても上記発熱量計測結果が設定許容カロリ値を 下回らないと判断したときに、不活性ガスを低カロリガスに混入するステップをさらに 含んで 、るカロリ上昇抑制方法が好ま 、。  [0028] Further, when it is determined that the calorific value measurement result does not fall below the set allowable caloric value even with the maximum exhaust gas supply, the method further includes a step of mixing an inert gas into the low caloric gas, Preferred method.
[0029] そして、排ガス混入量を調整するステップを含むカロリ上昇抑制方法にぉ 、て、排 ガス混入量を減少させれば上記混合気の発熱量が設定許容カロリ値を超え、増大さ せれば設定許容排ガス含有率を超えると判断したときに、排ガス混入量を減少させる とともに、不活性ガスを低力口リガスに供給するステップをさらに含んで!/ヽるのが好ま しい。  [0029] Then, according to the calorie increase suppressing method including the step of adjusting the exhaust gas mixing amount, if the exhaust gas mixing amount is decreased, the calorific value of the air-fuel mixture exceeds the set allowable caloric value and increases. When it is determined that the set allowable exhaust gas content is exceeded, it is preferable to further include a step of reducing the amount of exhaust gas mixed and supplying an inert gas to the low-strength regas.
[0030] 上記タンクの入口および出口にそれぞれ低カロリガス供給通路の上流側および下 流側が接続された低カロリガス供給設備において、タンクより上流側の低カロリガス供 給通路とタンクより下流側の低カロリガス供給通路との間に戻し通路を接続し、この戻 し通路に、燃料ガスをタンクより上流側の低カロリガス供給通路に向けて圧送するガ ス圧送装置を設置することができる。  [0030] In the low calorie gas supply facility in which the upstream side and the downstream side of the low calorie gas supply passage are connected to the inlet and outlet of the tank, respectively, the low calorie gas supply passage upstream of the tank and the low calorie gas supply downstream of the tank A return passage can be connected to the passage, and a gas pumping device that pumps fuel gas toward the low calorie gas supply passage upstream of the tank can be installed in the return passage.
[0031] 上記した低カロリガス供給通路とタンクとを接続する入口通路および出口通路を有 する低カロリガス供給設備において、  [0031] In the low calorie gas supply facility having the inlet passage and the outlet passage connecting the low calorie gas supply passage and the tank,
上記低カロリガス供給通路における出口通路との接続点より下流側と、低カロリガス 供給通路における入口通路との接続点より上流側と、の間に戻し通路を接続し、この 戻し通路に、燃料ガスを上流側低カロリガス供給通路に向けて圧送するガス圧送装 置を設置することができる。  A return passage is connected between the downstream side from the connection point with the outlet passage in the low calorie gas supply passage and the upstream side from the connection point with the inlet passage in the low calorie gas supply passage, and fuel gas is supplied to the return passage. It is possible to install a gas pressure feeding device that pumps toward the upstream low calorie gas supply passage.
[0032] 上記タンクの内部にガスを撹拌するための撹拌装置を設置するのが好ましい。  [0032] It is preferable to install a stirring device for stirring the gas inside the tank.
発明の効果  The invention's effect
[0033] 本発明によれば、プロセス副生ガスのようにカロリ変動しうる低カロリガスをガスター ビンに供給する設備が、低廉な設備コストおよび運転コストによって実現する。燃料 ガスとして利用できる低カロリガスのカロリ上昇を抑制するために、 N、CO を始めと  [0033] According to the present invention, the facility for supplying the gas turbine with the low calorie gas that can change the calorie, such as the process by-product gas, is realized by the low facility cost and the operation cost. In order to suppress the caloric rise of low calorie gas that can be used as fuel gas,
2 2 する不燃性ガスを大量に含む排ガスを容易に且つ大量に入手することができるから である。  This is because it is possible to easily obtain a large amount of exhaust gas containing a large amount of non-combustible gas.
図面の簡単な説明 [図 1]図 1は、本発明の一実施形態である低カロリガス供給設備を含んだガスタービ ン発電設備の概略を示す配管図である。 Brief Description of Drawings FIG. 1 is a piping diagram showing an outline of a gas turbine power generation facility including a low calorie gas supply facility according to an embodiment of the present invention.
[図 2]図 2は、低カロリガスと空気との混合気の可燃限界を、横軸に低カロリガスの容 積比率を取り、縦軸に温度を取って表したグラフである。  [FIG. 2] FIG. 2 is a graph showing the flammability limit of a mixture of low calorie gas and air, with the horizontal axis representing the volume ratio of low calorie gas and the vertical axis representing temperature.
[図 3]図 3は、図 1におけるバッファタンクを通過することによって低カロリガスのカロリ 変動が緩和される状態の一例を示したグラフである。  [FIG. 3] FIG. 3 is a graph showing an example of a state in which the calorie fluctuation of low calorie gas is mitigated by passing through the buffer tank in FIG.
[図 4]図 4は、ノ ッファタンクを通過することによって低カロリガスのカロリ変動が緩和さ れる状態の他の例を示したグラフである。  [FIG. 4] FIG. 4 is a graph showing another example of the state where the calorie fluctuation of the low calorie gas is mitigated by passing through the koffa tank.
[図 5]図 5は、ノ ッファタンクを通過することによって低カロリガスのカロリ変動が緩和さ れる状態のさらに他の例を示したグラフである。  [FIG. 5] FIG. 5 is a graph showing still another example of the state where the calorie fluctuation of the low calorie gas is mitigated by passing through the koffa tank.
[図 6]図 6は、図 1のガスタービン発電設備において設置されうるバッファタンクの他の 例を示す配管図である。  FIG. 6 is a piping diagram showing another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
[図 7]図 7は、図 1のガスタービン発電設備において設置されうるバッファタンクのさら に他の例を示す配管図である。  FIG. 7 is a piping diagram showing yet another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
[図 8]図 8は、図 1のガスタービン発電設備において設置されうるバッファタンクのさら に他の例を示す配管図である。  FIG. 8 is a piping diagram showing still another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
[図 9]図 9は、図 7または図 8のバッファタンクを通過することによって低カロリガスの力 ロリ変動が緩和される状態の一例を示したグラフである。  [FIG. 9] FIG. 9 is a graph showing an example of a state where fluctuations in the power calorie of low calorie gas are alleviated by passing through the buffer tank of FIG. 7 or FIG.
[図 10]図 10は、図 1のガスタービン発電設備において設置されうるカロリ変動抑制手 段の他の例を示す配管図である。  FIG. 10 is a piping diagram showing another example of a calorie fluctuation suppressing means that can be installed in the gas turbine power generation facility of FIG.
[図 11]図 11は、図 1のガスタービン発電設備にぉ 、て設置されうるバッファタンクのさ らに他の例を示す配管図である。  FIG. 11 is a piping diagram showing another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG. 1.
[図 12]図 12は、図 1のガスタービン発電設備において設置されうるバッファタンクのさ らに他の例を示す配管図である。  FIG. 12 is a piping diagram showing still another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG.
[図 13]図 13は、図 1のガスタービン発電設備において設置されうるバッファタンクのさ らに他の例を示す配管図である。  FIG. 13 is a piping diagram showing still another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG. 1.
[図 14]図 14は、図 1のガスタービン発電設備において設置されうるバッファタンクのさ らに他の例を示す配管図である。 符号の説明 FIG. 14 is a piping diagram showing yet another example of a buffer tank that can be installed in the gas turbine power generation facility of FIG. 1. Explanation of symbols
1·· ··低カロリガス供給設備 1 ····· Low calorie gas supply equipment
2" ··ガスタービン 2 "··· Gas turbine
3·· ··低カロリガス供給配管 3 ···· Low calorie gas supply piping
4" --排ガス供給配管4 "--exhaust gas supply piping
5·· ••N供給配管 5 ••• N supply piping
2  2
6·· ··第一混合器  6 ····· First Mixer
7·· ··第二混合器  7 ... Second mixer
8·· ··希釈ガス供給配管 8 ···· Dilution gas supply piping
9·· • '集塵装置9 ·· 'Dust collector
10·· . .ノ ッファタンク10 ... The Nota Tank
11·· ··カロリメータ 11 ... calorimeter
12·· • ·流直 g十 12 ···
13·· ··混合ガス供給配管13 ... Mixed gas supply piping
14·· ··カロリメータ 14 ... calorimeter
15·· ··酸素濃度計  15 ... Oxygen concentration meter
16·· ··低圧圧縮機  16 ······ Low pressure compressor
17·· ··高圧圧縮機  17 ... High pressure compressor
18·· ··冷却器 18 ... Cooler
19·· ··燃焼器19 ... combustor
20·· ··流調弁20 ... Flow control valve
21·· "フィルタ21 ·· “Filter
22·· "発電機 22 ·· “Generator
23·· "フィルタ 23 ·· “Filter
24·· ··ファン 24 .. Fan
25·· ··逆止弁  25 ... Check valve
26·· ··止め弁  26 ... Stop valve
27·· • ·流直十 28····流調弁 27 28 ... Flow control valve
29····排ガス放出管  29 ... Exhaust gas discharge pipe
30· · · ·流調弁  30 ...
31····止め弁  31 ... Stop valve
32···,流量計  32..Flow meter
63··· .流調弁  63 ... Flow control
34····止め弁  34 ... Stop valve
35····逆止弁  35 ... Check valve
36····連絡管  36 ···· Communication tube
ό7· · · ·¾¾里計 ό7 ··· ¾¾ milestone
ο8· · · ·ί¾Β/ϊ|开 ο8 · · · · ί¾Β / ϊ | Open
39··· 'ファン 3 9 ... 'Fan
40··· 'ガス量バランス監視装置40 ... 'Gas quantity balance monitoring device
41····連通管(出口配管)41 ···· Communication pipe (exit pipe)
42·—タンク 42 · —Tank
43····蓋部材  43..Cover member
44····調整用おもり  44 ... Adjustment weight
45···· (上流側)入口配管 6··· 'ガス量バランス監視装置 6a' "タンク 45 ··· (Upstream side) Inlet piping 6 ··· 'Gas quantity balance monitoring device 6a' "tank
7····圧力検出装置 7 ... Pressure detection device
8····戻し配管 8 ... Return piping
9····戻し配管  9 ···· Return piping
50···· (下流側)入口配管 50 (Downstream side) Inlet piping
51····排熱回収ボイラ51 .. Waste heat recovery boiler
52···,煙突 52 ... Chimney
53····排ガス導入配管 53 ... Exhaust gas introduction piping
54·…冷却器 55 · · · ·ドレン配管 54 ... Cooler 55 Drain piping
56 · · · ·酸素濃度計  56 · · · · Oxygen analyzer
57· · · ·撹拌装置 5 7
100· ·,制御装置  100 · · · Control device
ε · · · ·直接還元鉄設備  ε · · · · Direct reduced iron equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 添付の図面を参照しながら本発明の低カロリガス供給設備、それを備えたガスター ビン設備、および、ガスタービン燃料用低カロリガスの発熱量の上昇を抑制する方法 の実施形態を説明する。  [0036] Embodiments of a low calorie gas supply facility, a gas turbine facility including the same, and a method for suppressing an increase in calorific value of low calorie gas for gas turbine fuel will be described with reference to the accompanying drawings.
[0037] 図 1は本発明の一実施形態である低カロリガス供給設備 1を含んだガスタービン設 備の概略を示す配管図である。ガスタービン設備としてはガスタービン発電設備を例 示している。前述したように、低カロリガスをその発熱量が約 12MjZNm3以下のガ スと定義する。低カロリガスはそのカロリ等の特性が変動するものが多 、。 FIG. 1 is a piping diagram showing an outline of a gas turbine facility including a low calorie gas supply facility 1 according to an embodiment of the present invention. A gas turbine power generation facility is shown as an example of the gas turbine facility. As mentioned above, low calorie gas is defined as a gas whose calorific value is about 12MjZNm 3 or less. Low calorie gas often changes its calorie characteristics.
[0038] この低カロリガス供給設備 1は、直接還元鉄設備 Sで発生した副生ガス (以下、低力 口リガスと呼ぶ)をガスタービン 2に燃料として供給する低カロリガス供給配管 3と、この 低カロリガスを希釈するために低カロリガス供給配管 3に燃焼排ガスを供給するため の排ガス供給配管 4と、低カロリガス供給配管 3に不活性ガスを供給するための不活 性ガス供給配管 5とを備えて ヽる。低カロリガスを希釈してそのカロリ上昇を抑えるた めに燃焼排ガスを混合する理由は、排ガスは大量の不燃性ガス (N 、CO等)を含  [0038] The low-calorie gas supply facility 1 includes a low-calorie gas supply pipe 3 that supplies by-product gas (hereinafter referred to as low-power regas) generated directly in the reduced iron facility S to the gas turbine 2 as fuel, An exhaust gas supply pipe 4 for supplying combustion exhaust gas to the low calorie gas supply pipe 3 for diluting the caloric gas, and an inert gas supply pipe 5 for supplying an inert gas to the low calorie gas supply pipe 3 are provided. Speak. The reason for mixing combustion exhaust gas to dilute low calorie gas and suppress its rise in calories is because the exhaust gas contains a large amount of non-flammable gases (N, CO, etc.)
2 2 む一方、可燃性ガスは殆ど含んでいないからである。排ガスは温度が高いので、低力 口リガス供給配管 3における混合位置の選択自由度が高くなる。  2 2 On the other hand, it contains almost no combustible gas. Since the temperature of the exhaust gas is high, the degree of freedom in selecting the mixing position in the low-pressure regas supply pipe 3 is increased.
[0039] この低カロリガス供給設備 1の作動を制御するために制御装置 100が配設されてい る。本実施形態では不活性ガスとして窒素ガス (N )を使用しているため、この不活 [0039] In order to control the operation of the low calorie gas supply facility 1, a control device 100 is provided. In this embodiment, nitrogen gas (N) is used as the inert gas.
2  2
性ガス供給配管を N供給配管 5と呼ぶ。不活性ガスとしては N に限定されず、 CO  The reactive gas supply pipe is called N supply pipe 5. The inert gas is not limited to N, but CO
2 2 2 やヘリウム (He)等であってもよ 、。  2 2 2 or helium (He).
[0040] 本実施形態では排ガス供給配管 4および N供給配管 5が第二混合器 7に接続して In the present embodiment, the exhaust gas supply pipe 4 and the N supply pipe 5 are connected to the second mixer 7.
2  2
おり、第二混合器 7から低カロリガス供給配管 3までは排ガスと Nの共通の配管が接  From the second mixer 7 to the low calorie gas supply pipe 3, a common pipe for exhaust gas and N is connected.
2  2
続されている。この共通配管を希釈ガス供給配管 8と呼ぶ。この希釈ガス供給配管 8 は第一混合器 6によって低カロリガス供給設備 1に接続されている。排ガス供給配管 4と N供給配管 5とを合流させずにそれぞれ 4、 5を直接第一混合器 6に接続してもよIt has been continued. This common pipe is called dilution gas supply pipe 8. This dilution gas supply pipe 8 The first mixer 6 is connected to the low calorie gas supply facility 1. The exhaust gas supply pipe 4 and the N supply pipe 5 may be directly connected to the first mixer 6 without merging the 4 and 5 respectively.
2 2
いが、設備コストの低減のためには図示のごとく両者 4、 5を予め接続しておくのが好 ましい。また、第二混合器 7を用いずに排ガス供給配管 4および N供給配管 5の配  However, in order to reduce the equipment cost, it is preferable to connect both 4 and 5 in advance as shown in the figure. Also, the exhaust gas supply pipe 4 and the N supply pipe 5 are arranged without using the second mixer 7.
2  2
管同士を直接接続してもよい。しかし、第一混合器 6における副生ガスと希釈ガスと の混合性を良くするため、前もって希釈用排ガスと N とを均一に混合した混合ガスを  The tubes may be connected directly. However, in order to improve the mixing property of the by-product gas and the dilution gas in the first mixer 6, a mixed gas obtained by uniformly mixing the exhaust gas for dilution and N in advance is used.
2  2
第一混合器 6に送ることが好ましいので、第二混合器 7を介して接続するのが好まし い。  Since it is preferable to send to the first mixer 6, it is preferable to connect via the second mixer 7.
[0041] 上記低カロリガス供給配管 3の第一混合器 6より上流部分には、直接還元鉄設備 S カゝら送られてくる低カロリガスを除塵するための集塵装置 9と、低カロリガスを一次貯 留するためのバッファタンク 10とが設置されている。ノ ッファタンク 10は比較的大容 量であり、時々刻々とカロリ変動しつつ駐留されていく低カロリガスがこのバッファタン ク 10の内部で混合される。その効果については後述する。ノ ッファタンク 10の下流 側には低力口リガスの発熱量を検出するための発熱量検出装置 11と流量を計測する ための流量計 12とが設置されている。この流量計 12の設置位置は第一混合器 6の 上流側に限定されない。第一混合器 6の下流側でもよい。たとえば後述する高圧圧 縮機 17と燃焼器 19との間でもよい。  [0041] In a portion upstream of the first mixer 6 of the low calorie gas supply pipe 3, a dust collector 9 for removing dust from the low calorie gas sent directly from the reduced iron facility S, and a low calorie gas are primarily used. There is a buffer tank 10 for storage. The koffa tank 10 has a relatively large capacity, and low-calorie gas that is stationed while constantly changing in calories is mixed inside the buffer tank 10. The effect will be described later. A calorific value detector 11 for detecting the calorific value of the low-strength regas and a flow meter 12 for measuring the flow rate are installed on the downstream side of the notch tank 10. The installation position of the flow meter 12 is not limited to the upstream side of the first mixer 6. It may be downstream of the first mixer 6. For example, it may be between the high-pressure compressor 17 and the combustor 19 described later.
[0042] 発熱量検出装置 11の設置位置は、バッファタンク 10の下流側には限定されない。  The installation position of the heat generation amount detection device 11 is not limited to the downstream side of the buffer tank 10.
たとえばバッファタンク 10の上流側であってもよい。バッファタンク 10の上流側でガス のカロリ変動を事前に検知することにより、第一混合器 6を使用した発熱量制御をより 確実に行うことができる。さらに、ノ ッファタンク 10の上流側とともに下流側にも発熱 量検出装置を設置し、両発熱量検出装置によってバッファタンク 10のガスカロリ変動 抑制効果を監視することにより、ノ ッファタンク 10におけるガス混合作用を併用した力 ロリ変動の抑制システムの総合的性能を把握することができる。当該発熱量検出装 置はバッファタンク 10に直接取り付けることも可能である。低カロリガス供給配管 3に おける上記発熱量検出装置 11にカ卩えてバッファタンク 10に別の発熱量検出装置を 取り付けてもよい。  For example, it may be upstream of the buffer tank 10. By detecting the gas calorie fluctuation upstream of the buffer tank 10, the heat generation control using the first mixer 6 can be performed more reliably. In addition, a calorific value detector is installed on both the upstream side and downstream side of the noffer tank 10 and the gas calorific fluctuation suppression effect of the buffer tank 10 is monitored by both calorific value detectors. It is possible to grasp the overall performance of the system that suppresses fluctuations in roll force. The calorific value detection device can be directly attached to the buffer tank 10. Another calorific value detection device may be attached to the buffer tank 10 in addition to the calorific value detection device 11 in the low calorie gas supply pipe 3.
[0043] ここで、発熱量検出装置 11としては、ガスの発熱量を直接計測する所謂カロリメ一 タ、可燃成分の含有率 (濃度)を計測する装置などが用いられる。上記発熱量検出装 置 11はバッファタンク 10に直接取り付けることも可能である。低カロリガス供給配管 3 上の発熱量検出装置 11に加えてバッファタンク 10に別の発熱量検出装置を取り付 けてもよい。検出速度を重視する場合は現在では可燃性ガス濃度検出器を用いるの が好ましい。適用される低カロリガスが主に含む可燃成分の種類や主たる濃度変動 が生じる可燃成分 (たとえば、直接還元鉄法における副生ガスでは一酸ィ匕炭素)に応 じて、その成分の濃度を検出する濃度検出器を用いても良い。本明細書ではこれら 発熱量検出装置全体を代表して「カロリメータ」と呼ぶ。 Here, the calorific value detection device 11 is a so-called calorimeter that directly measures the calorific value of gas. A device that measures the content (concentration) of combustible components is used. The calorific value detection device 11 can be directly attached to the buffer tank 10. In addition to the calorific value detector 11 on the low calorie gas supply pipe 3, another calorific value detector may be attached to the buffer tank 10. If importance is attached to the detection speed, it is currently preferred to use a combustible gas concentration detector. The type of combustible component contained in the low calorie gas applied and the concentration of the combustible component (for example, carbon monoxide and carbon dioxide as a by-product gas in the direct reduced iron method) are detected. A concentration detector may be used. In this specification, these calorific value detection devices are collectively referred to as “calorimeters”.
[0044] 低カロリガス供給配管 3の第一混合器 6より下流部分は、そこを低カロリガス力 S排ガ スゃ Nと混合された状態でガスタービン 2まで送られることがあるので、この範囲の配[0044] The portion of the low-calorie gas supply pipe 3 downstream from the first mixer 6 may be sent to the gas turbine 2 in a state where it is mixed with the low-calorie gas power S exhaust gas N. Arrangement
2 2
管を混合ガス供給配管 13と呼ぶ。混合ガス供給配管 13にはカロリメータ 14と混合ガ ス中の酸素濃度を計測するための酸素濃度計 15とが設置されている。酸素濃度計 1 5の下流側にはガスタービン 2の低圧燃料ガス圧縮機 (以下、低圧圧縮機と呼ぶ) 16 と高圧燃料ガス圧縮機 (以下、高圧圧縮機と呼ぶ) 17とがその順に設置されている。 両圧縮機 16、 17の間には燃料ガスである混合ガスを冷却するための冷却器 18が配 設されている。高圧圧縮機 17からガスタービン 2の燃焼器 19に接続された燃料配管 13aにはタービン出力を調整するための流量調整弁(以下、流調弁という) 20が設置 されている。符号 21は燃焼器 19へ排ガスを供給する配管に設置されたフィルタであ る。ガスタービン 2には発電機 22が連結されている。  The pipe is called mixed gas supply pipe 13. The mixed gas supply pipe 13 is provided with a calorimeter 14 and an oxygen concentration meter 15 for measuring the oxygen concentration in the mixed gas. A low-pressure fuel gas compressor (hereinafter referred to as a low-pressure compressor) 16 and a high-pressure fuel gas compressor (hereinafter referred to as a high-pressure compressor) 17 of the gas turbine 2 are installed on the downstream side of the oxygen concentration meter 15 in that order. Has been. A cooler 18 is provided between the compressors 16 and 17 for cooling the mixed gas, which is a fuel gas. A flow rate adjusting valve (hereinafter referred to as a flow control valve) 20 for adjusting the turbine output is installed in the fuel pipe 13a connected from the high pressure compressor 17 to the combustor 19 of the gas turbine 2. Reference numeral 21 denotes a filter installed in a pipe for supplying exhaust gas to the combustor 19. A generator 22 is connected to the gas turbine 2.
[0045] 図 1は、両圧縮機 16、 17ともにタービン 2によって回転駆動されるタイプのものを示 しているが、これに限定されずに、両圧縮機 16、 17がタービン 2と同軸に連結されず 、専用のモータによって駆動されるように構成してもよい。また、このガスタービン発電 設備には、図示のごとくガスタービン 2の排ガスを利用した排熱回収ボイラ 51を設置 してもよい。この排熱回収ボイラ 51で得られる水蒸気はプロセス蒸気として使用する ことができる。また、図示しないが、この水蒸気によって発電するための蒸気タービン を設置してもよい。排熱回収ボイラ 51には、排ガスを放散するための煙突 52が設置 されている。この排ガスは、放散するだけではなぐ以下のとおりガスタービン 2の燃 料である低カロリガスを希釈するためにも利用される。 [0046] 排ガスの供給設備につ!ヽて説明する。排ガス供給配管 4には、上記排熱回収ボイ ラ 51から排ガスを送り込むための排ガス導入配管 53が接続されている。この排ガス 導入配管 53には冷却器 54が配設されており、排ガスを低カロリガスに混合するのに 適度な温度まで冷却できるようにするとともに、ドレン配管 55を通して排ガス中の湿 分をできる限り除去するのがよい。本実施形態では低カロリガス供給配管 3に希釈用 ガスとして供給する排ガスは、当該低カロリガス供給配管 3が低カロリガスを供給する 対象であるガスタービン 2の排ガスである力 本発明は力かる構成に限定されるもの ではない。たとえば、汽カ発電設備が近隣に設置されている場合等では、この設備 のボイラの排ガスを利用することもできる。さら〖こ、図 1に示すような低カロリガス供給 設備 1とガスタービン 2とが組合わさったガスタービン発電設備が複数系統配設され ているとき、他の系統のガスタービンの排ガスを希釈用ガスとして利用することができ る。これは、仮に排ガス導入配管 53や冷却器 54に異常が発生し、排ガスを供給でき なくなった場合でもガスタービンを停止させな 、ため等の場合である。このように他の ガスタービンゃボイラ力ゝら排ガスを導入する場合でも、上記排ガス供給配管 4に送り 込む。 FIG. 1 shows a type in which both the compressors 16 and 17 are rotationally driven by the turbine 2. However, the present invention is not limited to this, and both the compressors 16 and 17 are coaxial with the turbine 2. Instead of being connected, it may be configured to be driven by a dedicated motor. Further, as shown in the figure, an exhaust heat recovery boiler 51 using the exhaust gas of the gas turbine 2 may be installed in the gas turbine power generation facility. The steam obtained from the exhaust heat recovery boiler 51 can be used as process steam. Further, although not shown, a steam turbine for generating electric power with this steam may be installed. The exhaust heat recovery boiler 51 is provided with a chimney 52 for releasing the exhaust gas. This exhaust gas is used not only to dissipate, but also to dilute the low calorie gas that is the fuel of the gas turbine 2 as follows. [0046] Exhaust gas supply equipment will be described. An exhaust gas introduction pipe 53 for sending exhaust gas from the exhaust heat recovery boiler 51 is connected to the exhaust gas supply pipe 4. The exhaust gas introduction pipe 53 is provided with a cooler 54 so that the exhaust gas can be cooled to an appropriate temperature for mixing with low-calorie gas, and moisture in the exhaust gas is removed as much as possible through the drain pipe 55. It is good to do. In the present embodiment, the exhaust gas supplied as the dilution gas to the low calorie gas supply pipe 3 is a force that is the exhaust gas of the gas turbine 2 to which the low calorie gas supply pipe 3 supplies low calorie gas. It is not done. For example, when steam power generation equipment is installed nearby, the exhaust gas from the boiler of this equipment can be used. Furthermore, when there are multiple systems of gas turbine power generation facilities that combine low-calorie gas supply facility 1 and gas turbine 2 as shown in Fig. 1, the exhaust gas from other gas turbines is used as the dilution gas. It can be used as This is because the gas turbine is not stopped even if an abnormality occurs in the exhaust gas introduction pipe 53 or the cooler 54 and the exhaust gas cannot be supplied. In this way, even when other gas turbines introduce exhaust gas from a boiler, they are sent to the exhaust gas supply pipe 4.
[0047] 排ガス導入配管 53に接続された排ガス供給配管 4は分岐され、排ガス導入配管 5 3から排ガスを吸引して排ガス供給配管 4内を圧送するためのファン 24がメンテナン ス時等の便宜のために並列に二機設置されている。各ファン 24の下流側にはファン 24側への逆流防止のために逆止弁 25が配設されている。排ガス供給配管 4は、両 逆止弁 25の下流側で再度一本に統合されている。その下流の部分には止め弁 26、 流量計 27、流調弁 28および酸素濃度計 56がその順に設置され、第二混合器 7に接 続されている。排ガス供給配管 4の上記止め弁 26と流量計 27との間には、排ガスを 大気放出するための排ガス放出配管 29が配設されている。この排ガス放出配管 29 には流調弁 30が設置されて 、る。  [0047] The exhaust gas supply pipe 4 connected to the exhaust gas introduction pipe 53 is branched, and the fan 24 for sucking the exhaust gas from the exhaust gas introduction pipe 5 3 and pumping it in the exhaust gas supply pipe 4 is convenient for maintenance and the like. Two machines are installed in parallel. A check valve 25 is disposed downstream of each fan 24 to prevent backflow to the fan 24 side. The exhaust gas supply pipe 4 is integrated again on the downstream side of the both check valves 25. A stop valve 26, a flow meter 27, a flow control valve 28, and an oxygen concentration meter 56 are installed in that order in the downstream portion, and are connected to the second mixer 7. Between the stop valve 26 and the flow meter 27 of the exhaust gas supply pipe 4, an exhaust gas discharge pipe 29 for releasing the exhaust gas to the atmosphere is disposed. The exhaust gas discharge pipe 29 is provided with a flow control valve 30.
[0048] つぎに、 N の供給設備について説明する。 N供給配管 5は、上流側から順に止め  [0048] Next, N supply equipment will be described. N Supply piping 5 is stopped in order from the upstream side.
2 2  twenty two
弁 31、流量計 32および流調弁 33を有しており、第二混合器 7に接続されている。第 二混合器 7から第一混合器 6に至る希釈ガス供給配管 8には、その上流側力も順に 止め弁 34と逆止弁 35とが設置されている。逆止弁 35は低カロリガスが希釈ガス供給 配管 8に逆流することを防止するためのものである。この希釈ガス供給配管 8の止め 弁 34の上流側部分と、上記排ガス放出配管 29の流調弁 30の下流側部分との間に は、排ガスと Nとの混合器を排ガス放出配管 29を通して大気放出するために連絡 It has a valve 31, a flow meter 32 and a flow control valve 33, and is connected to the second mixer 7. The dilution gas supply pipe 8 from the second mixer 7 to the first mixer 6 is provided with a stop valve 34 and a check valve 35 in order of the upstream force. Check valve 35 is supplied with low-calorie gas as dilution gas This is to prevent backflow into pipe 8. Between the upstream part of the stop valve 34 of the dilution gas supply pipe 8 and the downstream part of the flow control valve 30 of the exhaust gas discharge pipe 29, a mixture of exhaust gas and N is passed through the exhaust gas discharge pipe 29 to the atmosphere. Contact to release
2  2
管 36が接続されている。この連絡管 36には流量計 37と流調弁 38とが設置されてい る。排ガス供給配管 4および N供給配管 5が別配管でそれぞれ第一混合器 6まで延  Tube 36 is connected. The communication pipe 36 is provided with a flow meter 37 and a flow control valve 38. Exhaust gas supply pipe 4 and N supply pipe 5 are separate pipes and extend to the first mixer 6 respectively.
2  2
設されている場合は、各配管 4、 5に止め弁と逆止弁とがそれぞれ設置されることにな り、連絡管 36は削除される。その代わり、 N供給配管 5における止め弁 31と流量計 3  If installed, a stop valve and a check valve will be installed in each pipe 4 and 5, and the connecting pipe 36 will be deleted. Instead, stop valve 31 and flow meter 3 in N supply pipe 5
2  2
2との間に、流調弁を備えた N放出配管が設置される。  Between the two, an N discharge pipe equipped with a flow control valve is installed.
2  2
[0049] つぎに、制御装置 100によるこの設備の運転制御の一例を説明する。まず、低カロ リガス供給配管 3のカロリメータ 11と流量計 12とを監視しつつ低カロリガスをガスター ビン 2に向けて圧送する。このとき、すでに排ガス供給配管 4ではその止め弁 26を開 いて流調弁 28を閉じ、連絡管 36の流調弁 38とを閉じ、排ガス放出配管 29の流調弁 30を開いた状態でファン 24が作動している。つまり、排ガスが吸引されて排ガス放出 配管 29から図示しない煙突を通して大気に放出されている。 N供給配管 5の流調  [0049] Next, an example of operation control of this facility by the control device 100 will be described. First, the low calorie gas is pumped toward the gas turbine 2 while monitoring the calorimeter 11 and the flow meter 12 of the low calorie gas supply pipe 3. At this time, in the exhaust gas supply pipe 4, the stop valve 26 is opened, the flow control valve 28 is closed, the flow control valve 38 of the communication pipe 36 is closed, and the flow control valve 30 of the exhaust gas discharge pipe 29 is opened. 24 is working. That is, the exhaust gas is sucked and discharged from the exhaust gas discharge pipe 29 to the atmosphere through a chimney (not shown). N Flow control of supply pipe 5
2  2
弁 33は閉じられている。他の止め弁 31、 34はともに開いている。  Valve 33 is closed. The other stop valves 31, 34 are both open.
[0050] 制御装置 100には、各ガスタービン 2の燃料ガスの使用上の許容カロリ範囲が設定 されている。すなわち、基準カロリ値 (たとえば 1600kcalZNm3 )と変動幅 (たとえば 基準カロリ値の ± 10%)である。そして、上記低カロリガスのカロリ値がこの許容変動 の上限カロリ値(たとえば + 10%であり、 1760kcal/Nm3 )を超えているときには、 排ガス供給配管 4の流調弁 28が開くように、排ガス放出配管 29の流調弁 30を閉弁 方向に調整する。これによつて低カロリガスに排ガスを混合してカロリ値を許容範囲 内に下げる。排ガスを供給するときおよび後述の Nを供給するときは、上記カロリメ [0050] In the control device 100, an allowable calorie range for use of the fuel gas of each gas turbine 2 is set. That is, the reference calorie value (for example, 1600 kcalZNm 3 ) and the fluctuation range (for example, ± 10% of the reference calorie value). When the calorific value of the low caloric gas exceeds the upper limit caloric value of this allowable variation (for example, + 10%, 1760 kcal / Nm 3 ), the exhaust gas supply pipe 4 has the flow control valve 28 opened so that the exhaust gas Adjust flow control valve 30 of discharge pipe 29 in the valve closing direction. As a result, the exhaust gas is mixed with the low calorie gas to lower the calorie value within the allowable range. When supplying exhaust gas and when supplying N described later,
2  2
ータ 11および流量計 12の監視とともに、最終的なカロリ値の適正を判断するために 混合ガス供給配管 13のカロリメータ 14を監視する。排ガスを供給するときには、後述 するように低カロリガス供給配管 3の酸素濃度計 15によって燃料ガスの酸素濃度を 監視する。  In addition to monitoring the data 11 and the flow meter 12, the calorimeter 14 of the mixed gas supply pipe 13 is monitored in order to determine the appropriateness of the final caloric value. When supplying the exhaust gas, the oxygen concentration of the fuel gas is monitored by the oxygen concentration meter 15 of the low calorie gas supply pipe 3 as described later.
[0051] 混合ガス供給配管 13のカロリメータ 14の計測結果から、最大限の排ガス供給によ つてもなおカロリ値が許容範囲に入らないと判断したときには、 N供給配管 5の流量 計 32を監視しつつ、流調弁 33を開くように調整することにより Nを低カロリガスに混 [0051] If it is determined from the measurement result of the calorimeter 14 of the mixed gas supply pipe 13 that the calorie value still does not fall within the allowable range even with the maximum exhaust gas supply, the flow rate of the N supply pipe 5 N is mixed with low calorie gas by adjusting the flow control valve 33 to open while monitoring a total of 32.
2  2
合してカロリ値を許容範囲内に下げる。このときは、混合ガス供給配管 13の流量計 1 5をも監視しつつ排ガス放出配管 29の流調弁 30を開弁方向に調整して排ガスを放 出してその混合量を減少させる。以上のごとくして低カロリガスのカロリが許容上限値 を超えることを防止する。  At the same time, the caloric value is lowered within the allowable range. At this time, while monitoring the flow meter 15 of the mixed gas supply pipe 13, the flow control valve 30 of the exhaust gas discharge pipe 29 is adjusted in the valve opening direction to release the exhaust gas and reduce the mixing amount. As described above, the calorie of low calorie gas is prevented from exceeding the allowable upper limit.
[0052] つぎに、希釈ガス供給配管 8から排ガス放出配管 29に連絡管 36を接続して Nま [0052] Next, connecting the connecting pipe 36 from the dilution gas supply pipe 8 to the exhaust gas discharge pipe 29,
2 たは N と排ガスとの混合気 (希釈ガス)を大気放出しうる構成にした点について説明 2 or explanation of the point that the mixture (diluted gas) of N and exhaust gas can be released into the atmosphere.
2 2
する。希釈ガスの量は通常流調弁 28、 33によって制御される。低カロリガス供給配 管 3のカロリメータ 11の検出値が急激に減少した場合、この流調弁 28、 33による制 御ではその応答性に問題が生じる可能性もある。このような場合、連絡管 36の流調 弁 38によって希釈ガスの一部を大気放散することにより、希釈ガスの供給量を急激 に減少させてカロリ値の急減に対応する。  To do. The amount of dilution gas is normally controlled by flow control valves 28, 33. If the detection value of the calorimeter 11 in the low calorie gas supply pipe 3 decreases rapidly, the control by the flow control valves 28 and 33 may cause a problem in response. In such a case, a part of the dilution gas is released to the atmosphere by the flow control valve 38 of the communication pipe 36, so that the supply amount of the dilution gas is drastically reduced to cope with a sudden decrease in the calorie value.
[0053] ガスタービン 2の排ガスには約 10— 13%の酸素が含まれているので、排ガスを低 カロリガスに混合すればこの混合ガスの酸素含有量 (酸素濃度)が上昇する。可燃ガ ス中に所定割合の酸素が含まれた場合、理論的には所定温度で当該可燃ガスが可 燃範囲内に入る。このような状況に陥る前には排ガスの供給量を制限しなければなら ない。そのときになお、低カロリガスのカロリ値を下げる必要があるときには、前述のご とぐ低カロリガスへの排ガス混合量を減少させつつ Nを供給して混合させる。 [0053] Since the exhaust gas of the gas turbine 2 contains about 10-13% oxygen, the oxygen content (oxygen concentration) of the mixed gas increases if the exhaust gas is mixed with low calorie gas. If a certain percentage of oxygen is contained in the combustible gas, the combustible gas will theoretically enter the combustible range at the predetermined temperature. Before falling into this situation, exhaust gas supply must be limited. At that time, when it is necessary to lower the calorific value of the low calorie gas, N is supplied and mixed while reducing the amount of exhaust gas mixed into the low calorie gas as described above.
2  2
[0054] なお、排ガスの種類によって酸素含有率は異なる。低カロリガスを燃料としたガスタ 一ビンの燃焼ガスではその酸素含有率 (容積比率)は約 10— 13%であるが、汽カ発 電に用いられるボイラの排ガスは約 3— 6%の酸素し力含んでいない。したがって、使 用する排ガスごとに、当該排ガスと低カロリガスとの混合ガスの可燃限界を低カロリガ スまたは排ガスの容積比率にっ 、て求め、このデータに基づ 、て排ガスの最大許容 混合比率を設定してもよい。  [0054] The oxygen content varies depending on the type of exhaust gas. In the combustion gas of gas turbines using low calorie gas as fuel, the oxygen content (volume ratio) is about 10-13%, but the boiler exhaust gas used for steam power generation has about 3-6% oxygen. Does not contain power. Therefore, for each exhaust gas to be used, the flammability limit of the mixed gas of the exhaust gas and low calorie gas is obtained by the volume ratio of low calorie gas or exhaust gas, and based on this data, the maximum allowable mixture ratio of exhaust gas is determined. It may be set.
[0055] 一方、空気には一定容積比率 (約 21%で不変)の酸素が含まれているので、空気 と低カロリガスとの混合気の可燃限界を低カロリガスまたは空気の容積比率について 求め、これから空気の許容最大混合比率を設定しておき、このデータおよび酸素含 有率の比に基づいて排ガスの最大許容混合比率を算出し、設定するのが便利であ る。たとえば、空気の許容最大混合比率に、空気の酸素含有率 (21%)と採用する排 ガスの酸素含有率 (ガスタービンの燃焼ガスでは約 10— 13%)との比を乗じるのであ る。以下、説明する。 [0055] On the other hand, since air contains oxygen at a constant volume ratio (invariable at about 21%), the flammability limit of the mixture of air and low calorie gas is calculated for the volume ratio of low calorie gas or air. It is convenient to set the maximum allowable mixing ratio of air and calculate and set the maximum allowable mixing ratio of exhaust gas based on this data and the ratio of oxygen content. The For example, the maximum allowable mixing ratio of air is multiplied by the ratio between the oxygen content of air (21%) and the oxygen content of the exhaust gas used (approximately 10-13% for gas turbine combustion gases). This will be described below.
[0056] 図 2には、低カロリガスと空気との混合ガスについて、その可燃限界を低カロリガス の容積比率と温度との関係で示している。図中左側の黒丸印をつないだ曲線は、混 合ガスの可燃範囲のうち、低カロリガスの最小容積比率 (空気の最大容積比率)を示 す。右側の黒四角印をつないだ曲線は、混合ガスの可燃範囲のうち、低カロリガスの 最大容積比率 (空気の最小容積比率)を示す。両曲線で挟まれた範囲が可燃範囲 である。低カロリガスのカロリ値は変動するので上記両曲線も変動する。したがって、 制御装置 100には、このようなデータに基づき、安全率を考慮したうえで空気の最大 許容混合容積率が設定されている。たとえば図 2中に示す、空気の容積比率 20% ( 低カロリガスの容積比率 80%)である。右側の黒四角印をつな 、だ曲線で示す空気 の最小容積比率よりもさらに小さい比率(20%)に設定されている。ただし、この数値 は一例である。  [0056] FIG. 2 shows the flammability limit of the mixed gas of low calorie gas and air in relation to the volume ratio of low calorie gas and the temperature. The curve with black circles on the left in the figure shows the minimum volume ratio of low calorie gas (maximum volume ratio of air) in the combustible range of the mixed gas. The curve with the black square mark on the right shows the maximum volume ratio of low calorie gas (minimum volume ratio of air) in the combustible range of the mixed gas. The range between the two curves is the combustible range. Since the caloric value of low calorie gas fluctuates, both the above curves also fluctuate. Therefore, the maximum allowable mixing volume ratio of air is set in the control device 100 in consideration of the safety factor based on such data. For example, as shown in Fig. 2, the volume ratio of air is 20% (volume ratio of low calorie gas is 80%). Connected to the black square mark on the right side, the ratio is set to a smaller ratio (20%) than the minimum volume ratio of air shown by the elliptic curve. However, this figure is an example.
[0057] 空気とガスタービン排ガスとの酸素含有率の比は、 21Z13である。排ガスの酸素 含有率は安全側をとつて 13%として 、る。空気の最大許容混合容積率が 20%であ るので、排ガスの最大許容混合容積率は、 20% X 21/13 = 32%となる。ボイラ の排ガスの最大許容混合容積率は、 20% X 21/6 = 70%となる。制御装置 100 にこれら排ガスの最大許容混合容積率が設定されるが、これらは混合ガスの可燃限 界カゝら導かれる最大許容混合容積率である。ガスタービン排ガスの容積比率がたと えば上限値(32%)よりわずかに小さい、たとえば 25%を超えると、前述のとおり排ガ スの混合量を減少させ、必要に応じて Nを供給する。この制御は低カロリガス供給  [0057] The ratio of the oxygen content of air and gas turbine exhaust gas is 21Z13. The oxygen content of the exhaust gas is 13% for safety. Since the maximum allowable mixing volume ratio of air is 20%, the maximum allowable mixing volume ratio of exhaust gas is 20% X 21/13 = 32%. The maximum allowable mixing volume ratio of boiler exhaust gas is 20% X 21/6 = 70%. The maximum allowable mixing volume ratio of these exhaust gases is set in the control device 100, which is the maximum allowable mixing volume ratio derived from the combustible limit of the mixed gas. For example, if the volume ratio of gas turbine exhaust gas is slightly smaller than the upper limit (32%), for example, exceeds 25%, the amount of exhaust gas mixed is reduced as described above, and N is supplied as necessary. This control is a low calorie gas supply
2  2
配管 3の流量計 12および排ガス供給配管 4の流量計 27の検出結果に基づいて行わ れる。さらに、上記酸素濃度計 15、 56によって混合ガスの酸素濃度および排ガスの 酸素濃度はともに常時監視される。予期せぬ酸素濃度の変動に対処するためである  This is based on the detection results of the flow meter 12 in the pipe 3 and the flow meter 27 in the exhaust gas supply pipe 4. Furthermore, both the oxygen concentration of the mixed gas and the oxygen concentration of the exhaust gas are constantly monitored by the oxygen concentration meters 15 and 56. This is to cope with unexpected fluctuations in oxygen concentration
[0058] つぎに、図 1中のバッファタンク 10の作用効果について説明する。図示のごとぐこ のバッファタンク 10には、上流側の低カロリガス供給配管 3が接続される入口 10aと、 下流側の低カロリガス供給配管 3が接続される出口 10bとが形成されている。したが つて、送られてきた低カロリガスの全部がこのバッファタンク 10に流入する。図 1のバ ッファタンク 10では、その入口 10aおよび出口 10bはタンク周壁の下端近傍に形成さ れているが、とくにこれらの形成位置に限定されず、たとえばタンク周壁の中部、上部 、タンクの底部等に形成してもよい。 Next, the function and effect of the buffer tank 10 in FIG. 1 will be described. As shown in the figure, the buffer tank 10 has an inlet 10a to which the low-calorie gas supply pipe 3 on the upstream side is connected, An outlet 10b to which the low-calorie gas supply pipe 3 on the downstream side is connected is formed. Therefore, all of the low caloric gas that has been sent flows into the buffer tank 10. In the buffer tank 10 of FIG. 1, the inlet 10a and the outlet 10b are formed in the vicinity of the lower end of the tank peripheral wall, but are not particularly limited to these formation positions, for example, the middle part of the tank peripheral wall, the upper part, the bottom part of the tank, etc. You may form in.
[0059] このバッファタンクの容積は大きぐたとえば直径が 2— 3m程度の低カロリガス供給 配管 3に対して容積が通常 20000— 200000m3程度のものが設置される。時々刻 々カロリが変動しつつ送られてきた低カロリガスはバッファタンク内で混合される。この 明細書でいうタンク内でのガスの混合とは、いわば時間差の混合を意味する。すなわ ち、同時にバッファタンク 10に流入した低カロリガスは、比較的早く出口 10bから流出 する部分力も遅くまでバッファタンク 10内に滞留する部分まで分布している。一方、 入口 10aからは連続して新たなガスが流入してくるので、過去に流入したガスと新た に流入したガスとが絶えず混合されている。このことを時間差混合と言う。この時間差 混合の結果、ノ ッファタンク 10の出口 10bから出ていく低カロリガスのカロリの変動幅 は縮小され、変動速度は低下させられる。すなわち、カロリ変動が大きく緩和 (抑制) される。このようにカロリ変動が事前に緩和されると、下流において排ガス等の希釈に よるカロリ上昇の抑制制御が非常に容易となる。以上の現象を図 3—図 8、図 11一図 14を参照しつつ説明する。 [0059] The buffer tank has a large volume, for example, a low calorie gas supply pipe 3 having a diameter of about 2-3 m, and a volume of about 20000-200000 m 3 is installed. The low calorie gas sent with the calorie changing from time to time is mixed in the buffer tank. In this specification, mixing of gas in a tank means mixing of time differences. That is, the low calorie gas that has flowed into the buffer tank 10 at the same time is distributed to a portion where the partial force flowing out from the outlet 10b stays in the buffer tank 10 until late. On the other hand, since new gas continuously flows in from the inlet 10a, the gas that has flowed in the past and the gas that has flowed in are continuously mixed. This is called time difference mixing. As a result of this time difference mixing, the fluctuation range of the calorie of the low calorie gas exiting from the outlet 10b of the notfer tank 10 is reduced, and the fluctuation speed is reduced. That is, calorie fluctuation is greatly reduced (suppressed). If calorie fluctuations are mitigated in advance in this way, it becomes very easy to control the rise in calorie by dilution of exhaust gas etc. downstream. The above phenomenon will be described with reference to FIGS. 3 to 8, FIG. 11 and FIG.
[0060] 図 3は、図 1中のバッファタンク 10の容積を 200000m3としたときに、カロリ変動す る低カロリガスが流量 500000Nm3 /hrで供給された場合のカロリ変動の緩和(抑 制)状態のシミュレーション結果を示すグラフである。横軸は時間(分)を示し、縦軸は 低カロリガスの発熱量であるガスカロリ値 (kcal/Nm3 )を示している。また、図中に 破線で表す曲線はバッファタンク 10に送られてきた低カロリガスのカロリ変動 (オリジ ナル変動)を示している。これは実測した一サンプルである。実線で表す曲線はバッ ファタンク 10から出て 、く低カロリガスのカロリ変動(抑制後変動)を示して 、る。図示 のごとく、バッファタンク 10に入る前の低カロリガスのカロリは約 1530kcal/Nm3力 ら約 2360kcalZNm3まで変動している。つまり、これら二値の平均値(以下、単に 平均値という)(1945kcalZNm3 )の約 ± 21%の変動幅を持っている。バッファタン ク 10から出ていく低カロリガスのカロリ変動を理論計算した結果によれば、 1780kcal /Nm3力 1960kcalZNm3までであり、変動幅は平均値(1870kcalZNm3 )の 約士 5%まで抑制されて 、る。図示のごとく変動周期につ 、ても短周期成分および中 周期成分が大幅に抑制されている。この効果は低カロリガスの供給流量に対してバッ ファタンクの容積が大きいほど顕著になる傾向がある。オリジナル変動の変動幅が小 さい場合は経済性の見地からバッファタンクの容積を小さくしても効果がある。 [0060] Fig. 3 shows the relaxation (suppression) of calorie fluctuation when low calorie gas that fluctuates in calorie is supplied at a flow rate of 500000 Nm 3 / hr when the volume of buffer tank 10 in Fig. 1 is 200000 m 3. It is a graph which shows the simulation result of a state. The horizontal axis represents time (minutes), and the vertical axis represents the gas calorie value (kcal / Nm 3 ), which is the calorific value of low calorie gas. In addition, the curve indicated by the broken line in the figure indicates the calorie fluctuation (original fluctuation) of the low calorie gas sent to the buffer tank 10. This is an actually measured sample. The curve represented by the solid line comes out of the buffer tank 10 and shows the calorie fluctuation (after-suppression fluctuation) of low calorific gas. As shown in the figure, the calorie of the low calorific gas before entering the buffer tank 10 varies from about 1530 kcal / Nm 3 force to about 2360 kcal ZNm 3 . In other words, it has a fluctuation range of about ± 21% of the average value of these two values (hereinafter simply referred to as the average value) (1945kcalZNm 3 ). Bufftan According to the result of theoretical calculation of caloric fluctuation of low calorie gas coming out of K 10, it is 1780kcal / Nm 3 force 1960kcalZNm 3 and the fluctuation range is suppressed to about 5% of the average value (1870kcalZNm 3 ), The As shown in the figure, even for the fluctuation period, the short period component and the medium period component are greatly suppressed. This effect tends to become more prominent as the volume of the buffer tank increases with respect to the low calorie gas supply flow rate. If the fluctuation range of the original fluctuation is small, it is effective to reduce the volume of the buffer tank from the economic point of view.
[0061] 図 4には、低カロリガスが流量は 500000Nm3 Zhrとしたままで、バッファタンク 10 の容積を上記のものの半分の 100000m3としたときのカロリ変動の減衰状態が示さ れている。この場合のカロリ変動もバッファタンク 10によって 1700kcal/Nm3力も 2 040kcal/Nm3までの範囲に抑制されており、変動幅は平均値(1970kcalZNm3 )の約 ± 9%である。 [0061] FIG. 4 shows the state of attenuation of calorie fluctuation when the volume of the low-calorie gas is 500000 Nm 3 Zhr and the volume of the buffer tank 10 is 100000 m 3 which is half of the above. The calorie fluctuation in this case is also suppressed by buffer tank 10 to the range of 1700 kcal / Nm 3 force up to 2 040 kcal / Nm 3 , and the fluctuation range is about ± 9% of the average value (1970 kcalZNm 3 ).
[0062] 図 5は、低カロリガスが流量 200000Nm3 Zhrで供給される設備においてバッファ タンク 10の容積を 50000m3としたときの、カロリ変動の減衰状態を示している。この 場合のカロリ変動もバッファタンク 10によって 1740kcalZNm3力ら 2010kcalZNm 3までの範囲に抑制されており、変動幅は平均値(1875kcalZNm3 )の約 ± 7. 2% である。 [0062] FIG. 5 shows a decay state of calorie fluctuation when the volume of the buffer tank 10 is set to 50000 m 3 in the facility in which low calorie gas is supplied at a flow rate of 200,000 Nm 3 Zhr. Calorie variance in this case also is suppressed in a range of up to 1740KcalZNm 3 Power et 2010KcalZNm 3 by the buffer tank 10, the variation width of about ± 7. 2% of the average value (1875kcalZNm 3).
[0063] 図示しないが、低カロリガスが上記と同様に流量 200000Nm3 Zhrで供給される 設備において、ノ ッファタンク 10の容積を上記の半分の 25000m3としたときは、変 動幅は平均値(1875kcalZNm3 )の約 ± 12%となる。 [0063] Although not shown in the drawing, in a facility where low calorie gas is supplied at a flow rate of 200,000 Nm 3 Zhr, if the volume of the koffa tank 10 is 25000 m 3 , half of the above, the fluctuation width is an average value (1875 kcal ZNm 3 ) of about ± 12%.
[0064] 図 6に示すように、低カロリガスが流量 200000Nm3 Zhrで供給される設備におい て、容積が 25000m3のバッファタンク 10を並列に二台設置しておき、通常運転時に は二台とも使用し、定期点検や作動不良時等の非定常事態にのみ片方のタンクの みを使用するという工夫もできる。 [0064] As shown in FIG. 6, in a facility where low calorie gas is supplied at a flow rate of 200,000 Nm 3 Zhr, two buffer tanks 10 with a volume of 25000 m 3 are installed in parallel, and both units are in normal operation. It can be used to use only one tank only for unsteady situations such as periodic inspections and malfunctions.
[0065] このように、ノ ッファタンクを備えるだけで、積極的な制御をすることなく低カロリガス のカロリ変動が大きく抑制される。その結果、下流において排ガスや不活性ガスを混 合する制御が非常に容易になされる。たとえば、ガスタービン 2の燃料ガスのカロリ変 動幅が基準カロリ値 (平均値)の士 10%と設定されて 、る場合であれば、ノ ッファタン クの下流では変動するカロリの平均値を、ガスタービン 2に設定された基準カロリ値と 一致させるために、その仕様に適合させうる容積のバッファタンクを備え、一定比率 の排ガスを下流側で供給するだけで良くなる。排ガスの供給動作に関しては低カロリ ガスのカロリ変動の様態を考慮する必要が無くなる。 [0065] As described above, the calorie fluctuation of the low calorie gas is greatly suppressed without the active control only by providing the notch tank. As a result, control for mixing exhaust gas and inert gas downstream is very easy. For example, if the calorie fluctuation width of the fuel gas of gas turbine 2 is set to 10% of the standard calorie value (average value), the average value of the fluctuating calorie downstream of the noffer tank is The reference calorie value set for gas turbine 2 In order to match, it is only necessary to provide a buffer tank with a volume that can meet the specifications and supply a certain ratio of exhaust gas downstream. With regard to the operation of supplying exhaust gas, it is not necessary to consider the state of calorie fluctuation of low calorie gas.
[0066] 極端な場合、ノ ッファタンク 10を通過した後の低カロリガスの変動するカロリの平均 値力 ガスタービン 2に設定された基準カロリ値とほぼ一致しているなら、排ガス供給 設備や不活性ガス供給設備は必要無くなる。両設備が設けられて ヽる場合であって も、図 1の希釈ガス供給配管 8の止め弁 34を閉止した状態で設備を運転すれば良い 。当然ながら、発生した低カロリガスのカロリ変動がもともと大きくない場合は、ノ ッファ タンクの設置は必要でなぐ排ガス供給設備や不活性ガス供給設備のみで十分に対 応可能である。  [0066] In an extreme case, if the average calorific value of the calorie fluctuating after passing through the notch tank 10 is almost the same as the reference calorie value set in the gas turbine 2, the exhaust gas supply equipment and inert gas Supply equipment is no longer needed. Even if both facilities are provided, the facility may be operated with the stop valve 34 of the dilution gas supply pipe 8 in FIG. 1 closed. Of course, if the calorie fluctuation of the generated low calorie gas is not large, it is possible to cope with only the exhaust gas supply equipment and the inert gas supply equipment that does not require the installation of a nota tank.
[0067] 図 7には他のバッファタンク 42が示されている。このバッファタンク 42は従来のガス タービン設備に使用されることのあるもので、ガス量バランスを監視する装置 40に含 まれるものである。このガス量バランス監視装置 40は、上流側から送られてくる低カロ リガスの量とガスタービンで必要とする消費ガス量とのバランスを取るためのものであ る。供給ガス量の変動やガスタービンの負荷変動がある場合、供給量と消費量との 間でバランスを取る必要がある。供給量が予想外に過剰となったときには大気に放散 するなどし、供給不足となったときにはガスタービンの負荷を低下させたり、一部の運 転を停止したりする。  FIG. 7 shows another buffer tank 42. This buffer tank 42 is sometimes used in conventional gas turbine equipment, and is included in the device 40 for monitoring the gas amount balance. This gas amount balance monitoring device 40 is for balancing the amount of low calorie gas sent from the upstream side with the amount of gas consumed required by the gas turbine. When there are fluctuations in the amount of gas supplied or load fluctuations in the gas turbine, it is necessary to balance supply and consumption. When the supply is unexpectedly excessive, it is released into the atmosphere. When the supply is insufficient, the load on the gas turbine is reduced or some operations are stopped.
[0068] このガス量バランス監視装置 40は、連通管 41によって低カロリガス供給配管 3と接 続されたタンク 42と、タンク 42の上端開口を気密に閉止し且つタンク内を上下動可 能に配設された蓋部材 43と、たとえば蓋部材 43に設置された調整用おもり 44とを備 えている。蓋部材 43は、自重と上記おもり 44の重量と大気圧による押し下げ力との 総計と、タンク 42の内圧による押し上げ力とのバランスによってタンク内を上下動する 。したがって、低カロリガスの供給量と消費量とのバランスの変化に応じて蓋部材 43 が上下動する。この蓋部材 43の上下動を監視しつつガスの大気放散やタービン負 荷の低下等の措置をとる。  [0068] This gas amount balance monitoring device 40 has a tank 42 connected to the low calorie gas supply pipe 3 by a communication pipe 41, and an upper end opening of the tank 42 is hermetically closed and can be moved up and down in the tank. A lid member 43 is provided, and an adjustment weight 44 is provided on the lid member 43, for example. The lid member 43 moves up and down in the tank by a balance between the total weight of its own weight, the weight of the weight 44 and the push-down force due to atmospheric pressure, and the push-up force caused by the internal pressure of the tank 42. Accordingly, the lid member 43 moves up and down in accordance with a change in the balance between the supply amount and consumption amount of low calorie gas. While monitoring the vertical movement of the lid member 43, measures such as atmospheric gas diffusion and turbine load reduction are taken.
[0069] このガス量バランス監視装置 40をカロリ変動抑制のために利用するのである。この タンク 42〖こは、上記連通管 41の他に新たに低カロリガス供給配管 3と連通する入口 配管 45が接続されている。この入口配管 45には低カロリガスをタンク 42に送り込む ファン 39が設置されている。入口配管 45は連通管 41より低カロリガス供給配管 3の 上流側に接続されているので、圧力損失を考慮した配管設計によって上記ファン 39 を省略することもできる。これは図 8および図 12に示す上流側入口配管 45について も同様である。供給される低カロリガスの一部は入口配管 45を通ってタンク 42に流入 し、タンク 42内で低カロリガスが混合し、同量のガスが上記連通管 41を通ってタンク 4 2から低カロリガス供給配管 3に戻る。この場合は上記連通管 41は出口配管とも呼べ る。このバッファタンク 42は低カロリガス供給配管 3のバイパス配管を構成する入口配 管 45と出口配管 41とに接続されており、いわば低カロリガス供給配管 3に対して並列 に設置されている。 [0069] The gas amount balance monitoring device 40 is used for suppressing calorie fluctuation. This tank 42 is an inlet that communicates with the low-calorie gas supply pipe 3 in addition to the communication pipe 41 described above. Piping 45 is connected. The inlet pipe 45 is provided with a fan 39 for sending low calorie gas into the tank 42. Since the inlet pipe 45 is connected to the upstream side of the low calorie gas supply pipe 3 from the communication pipe 41, the fan 39 can be omitted by piping design taking pressure loss into consideration. The same applies to the upstream side inlet pipe 45 shown in FIGS. A part of the low caloric gas supplied flows into the tank 42 through the inlet pipe 45, the low caloric gas is mixed in the tank 42, and the same amount of gas passes through the communication pipe 41 to supply low caloric gas from the tank 42. Return to piping 3. In this case, the communication pipe 41 can also be called an outlet pipe. The buffer tank 42 is connected to an inlet pipe 45 and an outlet pipe 41 constituting a bypass pipe of the low calorie gas supply pipe 3, so to speak, it is installed in parallel to the low calorie gas supply pipe 3.
[0070] 図 8には、カロリ変動抑制手段として利用しうる他のガス量バランス監視装置 46が 示されている。このガス量バランス監視装置 46は、さらに経済的な構成をとつており、 連通管 41によって低カロリガス供給配管 3と連通された気密構造のタンク 46aを有し ている。タンク 46aには圧力検出装置 47が設置され、タンク 46aの内圧が常時監視さ れる。制御装置 100は、検出圧力が上限域に達すると設備内のガス消費量を増加す る指令を出し、ガスの需給バランスをとる。その他の構造は前述の装置 40 (図 7)と同 じであり、カロリ変動抑制手段として十分に利用可能である。  FIG. 8 shows another gas amount balance monitoring device 46 that can be used as calorie fluctuation suppressing means. The gas amount balance monitoring device 46 has a more economical configuration, and has an airtight tank 46 a that is connected to the low calorie gas supply pipe 3 by a communication pipe 41. A pressure detector 47 is installed in the tank 46a, and the internal pressure of the tank 46a is constantly monitored. When the detected pressure reaches the upper limit, the control device 100 issues a command to increase the gas consumption in the facility, and balances the gas supply and demand. The other structure is the same as that of the above-mentioned device 40 (Fig. 7), and can be fully used as a calorie fluctuation suppressing means.
[0071] 図 9は、カロリ変動する低カロリガスが流量 500000Nm3 /hrで供給される設備に おいて、図 7または図 8中のタンク 42 (46a)の容積を 200000m3とし、上記ファン 39 によって 500000Nm3 Zhrの流量のうち 200000Nm3 Zhrのガスをタンク 42 (46a )に送り込む場合のカロリ変動の緩和状態を示す。図中に破線で表す曲線は直接還 元鉄設備 Sから送られてくる低カロリガスのカロリ変動 (オリジナル変動)を示して!/、る 。これは前述の実測サンプルである。二点鎖線で表す曲線はタンク 42を出て上記連 通管 41を通る低カロリガスのカロリ変動 (過渡変動)のシミュレーション結果を示して いる。実線で示す曲線は、連通管 41より下流の低カロリガス供給配管 3部分を通って 第一混合器 6に至るガスのカロリ変動 (抑制後変動)を示している。前述と同じぐタン ク 42 (46a)に入る前の低カロリガスのカロリは平均値(1945kcalZNm3 )の約 ± 21 %の変動幅を持っている。ところが、タンク 42 (46a)力も連通管 41を通って低カロリ ガス供給配管 3に合流した後のガスのカロリ変動は、 1690kcalZNm3から 2100kc al/Nm3までであり、変動幅は平均値(1895kcalZNm3 )の約 ± 11%まで抑制さ れている。この数値は一例である。 [0071] FIG. 9 is Oite to the facilities low calorie gas varying calorific is supplied at a flow rate 500,000 nm 3 / hr, the volume of the tank 42 (46a) in FIG. 7 or 8 and 200000M 3, by the fan 39 This shows the state of mitigation of calorie fluctuation when 200000 Nm 3 Zhr of the flow of 500000 Nm 3 Zhr is sent to tank 42 (46a). The curve shown with a broken line in the figure shows the calorie fluctuation (original fluctuation) of the low calorie gas sent directly from the reduced iron facility S! This is the actual measurement sample described above. The curve represented by the two-dot chain line shows the simulation result of the calorie fluctuation (transient fluctuation) of the low calorie gas leaving the tank 42 and passing through the communication pipe 41. The curve shown by the solid line shows the calorie fluctuation (the fluctuation after suppression) of the gas that reaches the first mixer 6 through the low calorie gas supply pipe 3 downstream of the communication pipe 41. The calorific value of the low caloric gas before entering tank 42 (46a), which is the same as described above, has a fluctuation range of about ± 21% of the average value (1945kcalZNm 3 ). However, the tank 42 (46a) force is also low in calorie through the communication pipe 41. Calorie variance of gas after merging into the gas supply pipe 3 is from 1690KcalZNm 3 to 2100kc al / Nm 3, the fluctuation range is suppressed to about ± 11% of the average value (1895kcalZNm 3). This number is an example.
[0072] このように、タンク 42 (46a)を有する既設の設備を利用してガスカロリの変動を抑制 することも可能である。そして、下流において排ガスによる低カロリガスの希釈を容易 に行うことができるようになる。図 7および図 8では、低カロリガスをタンク 42 (46a)に 送り込む入口配管 45が、低カロリガス供給配管 3における出口配管 41より上流側に 接続されているが、とくにこの構成に限定されず、出口配管 41より下流側に接続して もよい。また、両管 41、 45ともに複数本設けてもよい。  [0072] As described above, it is also possible to suppress the change in gas calorie using the existing equipment having the tank 42 (46a). Further, the low calorie gas can be easily diluted with the exhaust gas downstream. In FIG. 7 and FIG. 8, the inlet pipe 45 for feeding the low calorie gas into the tank 42 (46a) is connected to the upstream side of the outlet pipe 41 in the low calorie gas supply pipe 3. The pipe 41 may be connected downstream. A plurality of both pipes 41 and 45 may be provided.
[0073] 図 10には、他のカロリ変動抑制手段が示されている。この手段は、低カロリガス供 給配管 3に配設された、低カロリガスの一部を低カロリガス供給配管 3の上流側へ戻 すための戻し配管 48である。この戻し配管 48には低カロリガスを上流側へ圧送する ファン 39が設置されている。図示の戻し配管 48は一力所の吸引部力も複数本の枝 管 48aに分岐してもとの低カロリガス供給配管 3に戻すように構成されている力 一本 の戻し配管力も構成してもよい。また、低カロリガス供給配管 3の異なる複数部位にそ れぞれ一本の戻し配管を配設してもよい。カゝかる手段によっても、低カロリガスは低力 口リガス供給配管 3の上流へ戻されたときに新しい低カロリガスと混合し、カロリ変動が 緩和される。この作用を増大するには、戻し配管 48を長さを長くし、供給ガス量に対 する戻しガス量の容積割合を大きくすればょ 、。  [0073] FIG. 10 shows another calorie fluctuation suppressing means. This means is a return pipe 48 arranged in the low calorie gas supply pipe 3 for returning a part of the low calorie gas to the upstream side of the low calorie gas supply pipe 3. The return pipe 48 is provided with a fan 39 for pumping low calorie gas upstream. The return pipe 48 shown in the drawing is configured so that the suction force at one power point is also branched into a plurality of branch pipes 48a and is configured to return to the original low calorie gas supply pipe 3. Good. Further, a single return pipe may be provided at each of a plurality of different parts of the low calorie gas supply pipe 3. The low calorie gas is mixed with the new low calorie gas when it is returned to the upstream of the low-strength regas supply pipe 3, and the calorie fluctuation is reduced. To increase this effect, lengthen the return pipe 48 and increase the volume ratio of the return gas volume to the supply gas volume.
[0074] 図示しないが、図 7に示すのと同じガス量バランス監視装置 40用のバッファタンク 4 2を図 1における内容積固定型のノ ッファタンクと取り替えた態様にしてもよい。すな わち、図 7のノ ッファタンク 42は低カロリガス供給配管 3のバイノス配管を構成する入 口配管 45と連通管 41とに接続されている力 このノ ッファタンク 42を低カロリガス供 給配管 3に直接接続してもよい。具体的には、ノ ッファタンク 42に形成された入口に 低カロリガス供給配管 3の上流側を直接接続し、出口に低カロリガス供給配管 3の上 流側を直接接続してもよい。  Although not shown, the same buffer tank 42 for the gas amount balance monitoring device 40 as shown in FIG. 7 may be replaced with the fixed internal volume type buffer tank in FIG. That is, the notch tank 42 in FIG. 7 is connected to the inlet pipe 45 and the communication pipe 41 that constitute the binos pipe of the low calorie gas supply pipe 3. You may connect directly. Specifically, the upstream side of the low calorie gas supply pipe 3 may be directly connected to the inlet formed in the nota tank 42, and the upstream side of the low calorie gas supply pipe 3 may be directly connected to the outlet.
[0075] 図 11には、上記のような配管態様と実質的に同一の配管の態様が示されている。  FIG. 11 shows a piping mode substantially the same as the piping mode as described above.
図 11のバッファタンク 42は図 7に示すのと同じガス量バランス監視装置 40用のバッ ファタンク 42である。相違点は低カロリガス供給配管 3とを接続する配管の態様であ る。図 11の配管態様は、図 7の低カロリガス供給配管 3における、入口配管 45との接 続部から連通管 41との接続部までの部分を取り除き、さらに、入口配管 45上のファ ン 39を取り除いたものである。すなわち、入口 42aに上流側の低カロリガス供給配管 3が接続され、出口 42bに下流側の低カロリガス供給配管 3が接続されている。換言 すれば、図 1に示すバッファタンク 10をガス量バランス監視装置 40用のタンク 42に取 り替えたものである。かかる配管は、既存のガス量バランス監視装置 40をガスカロリの 変動抑制装置として兼用するに際して容易に改造し得る態様である。 The buffer tank 42 in FIG. 11 is the same as that for the gas amount balance monitoring device 40 shown in FIG. Fattank 42. The difference is the mode of piping connecting the low calorie gas supply piping 3. In the piping mode of FIG. 11, the low-calorie gas supply pipe 3 of FIG. 7 is removed from the connection part with the inlet pipe 45 to the connection part with the communication pipe 41, and the fan 39 on the inlet pipe 45 is further removed. It has been removed. That is, the low-calorie gas supply pipe 3 on the upstream side is connected to the inlet 42a, and the low-calorie gas supply pipe 3 on the downstream side is connected to the outlet 42b. In other words, the buffer tank 10 shown in FIG. 1 is replaced with the tank 42 for the gas amount balance monitoring device 40. Such a pipe is a mode that can be easily modified when the existing gas amount balance monitoring device 40 is also used as a gas calorie fluctuation suppressing device.
[0076] さらに、図示のごとぐこのタンク 42の内部にはガスを撹拌するためにファン等の撹 拌装置 57を設置してもよい。タンク内でのガスの混合を促進し、それによつてより効 果的なカロリ変動抑制を実現するためである。撹拌装置 57の設置形態としては、タン クの出口 42bの近傍力 ガスをタンクの内方へ向けて流しうる姿勢で出口 42bの近傍 に設置するのが、ガスの効果的な混合という観点力も好ましい。この撹拌装置 57を、 図 11のタンク 42に限定されず、他の図面に示すタンク 10、 42、 46aや、カロリ抑制 効果を発揮しうる他のタンクに対しても設置することが可能である。なお、撹拌装置 5 7の回転駆動機としての電動モータ 57a等はタンクの外部に設置しておくのが好まし い。 Further, as shown in the figure, a stirring device 57 such as a fan may be installed inside the tank 42 to stir the gas. This is to promote gas mixing in the tank and thereby achieve more effective calorie fluctuation suppression. As a form of installation of the stirring device 57, it is preferable that the force near the outlet 42b of the tank is installed in the vicinity of the outlet 42b so that the gas can flow toward the inside of the tank. . The stirring device 57 is not limited to the tank 42 in FIG. 11, but can be installed in the tanks 10, 42, and 46a shown in other drawings and other tanks that can exert a calorie suppressing effect. . It is preferable that the electric motor 57a, etc., serving as the rotational drive unit of the stirring device 57 is installed outside the tank.
[0077] 図 12にも図 7のタンクと同様に低カロリガス供給配管 3に対して並列に設置された バッファタンク 42が示されている。図示のごとぐタンク 42の出口 42bと低カロリガス供 給配管 3との間には出口配管 41が接続され、タンク 42の入口 42aと低カロリガス供給 配管 3における出口配管 41の接続部より上流側との間には入口配管 45が接続され ている。したがって、この入口配管 45を上流側入口配管 45と呼ぶ。一方、このタンク 42にはさらなる入口 50aが形成され、この入口 50aに、低カロリガス供給配管 3にお ける出口配管 41との接続部より下流側に接続された入口配管 50が接続されている。 この入口配管 50を下流側入口配管 50と呼ぶ。両入口配管 45、 50には低カロリガス をタンク 42に送り込むファン 39が設置されている。図示のごとぐ上流側入口配管 45 および下流側入口配管 50のタンク 42への接続位置 (入口 42a、 50a)は互いに近接 している。 [0078] この構成によれば、タンク 42には低カロリガス供給配管 3の上流側から上流側入口 配管 45を通して低カロリガスの一部が圧送され、同時に低カロリガス供給配管 3の下 流側から下流側入口配管 50を通して低カロリガスの一部が圧送され、混合して出口 42bから出口配管 41へと流出する。つまり、カロリ変動が抑制された低カロリガスの一 部が循環するので、タンク内で長時間に渡る混合が実現される。下流側入口配管 50 の長さを長くするほど、混合されるガスの滞留時間が長くなり、一層好ましい混合が 実現される。上記下流側入口配管 50は低カロリガス供給配管 3の下流側からタンク 4 2の入口 50aに接続されている力 下流側から、低カロリガス供給配管 3の上流側入 口配管 45との接続部より上流側に接続してもよ 、。 FIG. 12 also shows a buffer tank 42 installed in parallel to the low calorie gas supply pipe 3 as in the tank of FIG. As shown in the figure, an outlet pipe 41 is connected between the outlet 42b of the tank 42 and the low calorie gas supply pipe 3, and the upstream side of the connection of the inlet 42a of the tank 42 and the outlet pipe 41 in the low calorie gas supply pipe 3 An inlet pipe 45 is connected between the two. Therefore, this inlet pipe 45 is referred to as an upstream side inlet pipe 45. On the other hand, a further inlet 50a is formed in the tank 42, and an inlet pipe 50 connected to the downstream side of the connection portion with the outlet pipe 41 in the low calorie gas supply pipe 3 is connected to the inlet 50a. This inlet pipe 50 is referred to as a downstream inlet pipe 50. Both inlet pipes 45 and 50 are provided with a fan 39 for sending low calorie gas to the tank 42. As shown in the figure, the upstream inlet pipe 45 and the downstream inlet pipe 50 are connected to the tank 42 at the connection positions (the inlets 42a and 50a). According to this configuration, a part of the low calorie gas is pumped into the tank 42 from the upstream side of the low calorie gas supply pipe 3 through the upstream side inlet pipe 45 and at the same time downstream from the downstream side of the low calorie gas supply pipe 3. A part of the low calorie gas is pumped through the inlet pipe 50, mixed and flows out from the outlet 42b to the outlet pipe 41. In other words, since a part of the low calorie gas in which the calorie fluctuation is suppressed circulates, mixing for a long time is realized in the tank. The longer the length of the downstream inlet pipe 50, the longer the residence time of the mixed gas, and the more preferable mixing is realized. The downstream inlet pipe 50 is a force connected to the inlet 50a of the tank 4 2 from the downstream side of the low calorie gas supply pipe 3.From the downstream side, upstream from the connection with the upstream inlet pipe 45 of the low calorie gas supply pipe 3 You can connect to the side.
[0079] 図 13にも低カロリガス供給配管 3に対して並列に設置されたバッファタンク 42が示 されている。図示のごとぐタンク 42と低カロリガス供給配管 3との間には、出口配管と しての上記連通管 41と下流側入口配管 50とが接続されて 、る。この下流側入口配 管 50には低カロリガスをタンク 42に送り込むファン 39が設置されている。  FIG. 13 also shows a buffer tank 42 installed in parallel to the low calorie gas supply pipe 3. Between the tank 42 and the low calorie gas supply pipe 3 as shown in the figure, the communication pipe 41 and the downstream side inlet pipe 50 as the outlet pipe are connected. The downstream inlet pipe 50 is provided with a fan 39 for sending low calorie gas to the tank 42.
[0080] 力かる構成によれば、下流側入口配管 50が低カロリガス供給配管 3における出口 配管 41との接続部より下流側に接続されていても、低カロリガスはファン 39より下流 側入口配管 50を通してタンク 42内へ送り込まれ、混合して出口 42bから出口配管 4 1へと流出する。つまり、カロリ変動が抑制された低カロリガスの一部が循環するので 効果的な混合がなされる。そして、上記下流側入口配管 50の長さを長くするほど、タ ンク内でより長時間に渡る混合が実現される。  [0080] According to the configuration, even if the downstream inlet pipe 50 is connected to the downstream side from the connection with the outlet pipe 41 in the low calorie gas supply pipe 3, the low calorie gas is downstream from the fan 39. It is fed into the tank 42 through, mixed and flows out from the outlet 42b to the outlet pipe 41. In other words, effective mixing is achieved because a part of the low calorie gas with suppressed calorie fluctuation circulates. The longer the length of the downstream inlet pipe 50, the longer the mixing in the tank is realized.
[0081] 図 14に示すタンク 42は二種類の入口 42a、 49aを有している。一方の入口 42aに は上流側低カロリガス供給配管 3が接続され、出口 42bには下流側低カロリガス供給 配管 3が接続され、さらに、他方の入口 49aには下流側低カロリガス供給配管 3と接 続された戻し配管 49が接続されている。二つの入口 42a、 49aは近接して形成され ている。戻し配管 49には低カロリガスをタンクに送り込むためのファン 39が設置され ている。  [0081] The tank 42 shown in FIG. 14 has two types of inlets 42a and 49a. One inlet 42a is connected to the upstream low calorie gas supply pipe 3, the outlet 42b is connected to the downstream low calorie gas supply pipe 3, and the other inlet 49a is connected to the downstream low calorie gas supply pipe 3. Return pipe 49 is connected. The two inlets 42a and 49a are formed close to each other. The return pipe 49 is provided with a fan 39 for sending low calorie gas into the tank.
[0082] 力かる構成によれば、タンク 42でカロリ変動が抑制された低カロリガスの一部は再 度タンク 42へ戻されて再度混合するので、一層好ましい混合が実現される。戻し配 管 49の長さを長くするほど混合されるガスの滞留時間が長くなる。上記戻し配管 49 は低カロリガス供給配管 3の下流側からタンク 42の入口 49aに接続されている力 下 流側から、低カロリガス供給配管 3におけるタンクより上流側に接続してもよい。 [0082] According to the powerful configuration, a part of the low calorie gas whose calorie fluctuation is suppressed in the tank 42 is returned to the tank 42 and mixed again, so that more preferable mixing is realized. The longer the length of the return pipe 49, the longer the residence time of the mixed gas. Above return pipe 49 May be connected from the downstream side of the low-calorie gas supply pipe 3 to the upstream side of the tank in the low-calorie gas supply pipe 3 from the downstream side connected to the inlet 49a of the tank 42.
[0083] 以上説明した実施形態では、使用する低カロリガスとして直接還元製鉄法によって 発生する副生ガスを例示した力 これに限定されない。低カロリガスとしては、高炉ガ ス(BFG)、転炉ガス (LDG)、石炭層に含まれる石炭層ガス (Coal mine gasであり、 CMGと表す)、溶融還元製鉄法によって発生する副生ガス、 GTL (Gas-to-Liquid ) プロセスにおいて発生するティルガス(Tail gas)、オイルサンドからオイル精製プロセ スに伴って発生する副生ガス、プラズマを用いたゴミ焼却によって発生するガス、生 ゴミを含む一般廃棄物がその埋め立て地において発酵、分解する過程で生じるメタ ンガス(Landfill gas)、および、その他の類似の原料をィ匕学反応させることに伴って発 生する副生ガス等の低カロリガス等が含まれる。もちろん、上記ガスを単独はもとより 、 BFGと LDGとの混合ガスのように、複数の異種ガスを混合した結果その発熱量が 約 12MJ/Nm3以下となったガスをも含む。 In the embodiment described above, the force exemplifying by-product gas generated by the direct reduction iron-making method as the low calorie gas to be used is not limited to this. Low calorie gas includes blast furnace gas (BFG), converter gas (LDG), coal bed gas (Coal mine gas, expressed as CMG), by-product gas generated by smelting reduction ironmaking, General gas, including Tail gas generated in Gas-to-Liquid (GTL) process, by-product gas generated by oil refining process from oil sand, gas generated by incineration using plasma, and garbage Low-calorie gas such as by-product gas generated by the chemical reaction of methane gas (Landfill gas) generated during fermentation and decomposition of waste in its landfill and other similar raw materials included. Of course, not only the above gas but also a gas whose calorific value is less than about 12 MJ / Nm 3 as a result of mixing a plurality of different gases, such as a mixed gas of BFG and LDG.
産業上の利用可能性  Industrial applicability
[0084] 本発明によれば、そのカロリが時々刻々変化する低カロリガスを大量に存在し且つ 採取容易である低酸素濃度な排ガスによって希釈することにより、燃焼温度の異常な 上昇を抑えて安定燃焼を継続させることができる。すなわち、低廉な設備コストおよび 運転コストによって上記効果が得られる。 [0084] According to the present invention, stable combustion is achieved by suppressing an abnormal increase in combustion temperature by diluting a large amount of low-calorie gas whose calorie changes from time to time with low-oxygen concentration exhaust gas that is easy to collect. Can be continued. In other words, the above-mentioned effects can be obtained by low equipment costs and operation costs.

Claims

請求の範囲 The scope of the claims
[1] 低カロリガスを燃料ガスとしてガスタービンに供給するための低カロリガス供給通路 と、  [1] a low calorie gas supply passage for supplying low calorie gas as fuel gas to the gas turbine;
該低カロリガス供給通路に接続された、燃焼設備にぉ ヽて発生する排ガスを低カロ リガス供給通路に供給するための排ガス供給通路と、  An exhaust gas supply passage connected to the low calorie gas supply passage for supplying exhaust gas generated in the combustion facility to the low calorie gas supply passage;
上記低カロリガス供給通路に配設された、ガス中の発熱量を検出するための発熱 量検出装置と、  A calorific value detection device for detecting the calorific value in the gas disposed in the low calorie gas supply passage;
該発熱量検出装置の検出結果に基づいて排ガス供給通路による排ガス供給動作 を制御しうる制御装置とを備えてなる低カロリガス供給設備。  A low calorie gas supply facility comprising a control device capable of controlling an exhaust gas supply operation through the exhaust gas supply passage based on a detection result of the calorific value detection device.
[2] 上記制御装置が、ガスタービンの燃料ガスの最大許容カロリ値を設定しており、低 カロリガスのカロリ値が該最大許容カロリ設定値を超えているときに、排ガス供給通路 力ゝら排ガスを供給するように構成されてなる請求項 1記載の低カロリガス供給設備。  [2] When the control device sets the maximum allowable calorie value of the fuel gas of the gas turbine, and the caloric value of the low calorie gas exceeds the maximum allowable calorie setting value, the exhaust gas supply passage power and the exhaust gas 2. The low calorie gas supply facility according to claim 1, wherein the low calorie gas supply facility is configured to supply gas.
[3] 上記低カロリガス供給通路における、排ガス供給通路との接続部より下流側の部位 に酸素濃度検出装置が配設されており、  [3] In the low calorie gas supply passage, an oxygen concentration detection device is disposed at a site downstream of the connection with the exhaust gas supply passage.
上記制御装置が、酸素濃度検出装置の検出結果に基づいて排ガス供給通路によ る排ガス供給動作を制御するように構成されてなる請求項 1記載の低カロリガス供給 設備。  2. The low calorie gas supply facility according to claim 1, wherein the control device is configured to control an exhaust gas supply operation by the exhaust gas supply passage based on a detection result of the oxygen concentration detection device.
[4] 上記制御装置が、低カロリガスと排ガスとの混合比から得られる低カロリガスの可燃 限界情報に基づ 、て設定された排ガスの許容混合容積比率を基準に、排ガス供給 通路による排ガスの供給量を制御するように構成されてなる請求項 3記載の低カロリ ガス供給設備。  [4] The above control device supplies exhaust gas through the exhaust gas supply passage based on the allowable mixing volume ratio of the exhaust gas based on the low calorie gas flammability limit information obtained from the mixture ratio of low calorie gas and exhaust gas. 4. The low calorie gas supply facility according to claim 3, wherein the low calorie gas supply facility is configured to control the amount.
[5] 上記制御装置が、低カロリガスと空気との混合比カゝら得られる低カロリガスの可燃限 界情報に基づいて設定された空気の許容混合容積比率から、酸素含有率の比に基 づいて算出された排ガスの許容混合容積比率を基準に、排ガス供給通路による排ガ スの供給量を制御するように構成されてなる請求項 3記載の低カロリガス供給設備。  [5] Based on the ratio of oxygen content from the allowable mixing volume ratio of air set based on the low calorific gas flammability limit information obtained from the low calorific gas and air mixing ratio 4. The low calorie gas supply facility according to claim 3, wherein the supply amount of exhaust gas through the exhaust gas supply passage is controlled based on the allowable mixing volume ratio of the exhaust gas calculated in the above.
[6] 上記低カロリガス供給通路に、不活性ガスを供給するための不活性ガス供給通路 が接続されており、  [6] An inert gas supply passage for supplying an inert gas is connected to the low calorie gas supply passage,
上記制御装置が、酸素濃度検出装置の検出結果に基づいて不活性ガス供給通路 による不活性ガス供給動作を制御するように構成されてなる請求項 3から 5のうちのい ずれか一の項に記載の低カロリガス供給設備。 The control device is configured to provide an inert gas supply passage based on the detection result of the oxygen concentration detection device. The low-calorie gas supply facility according to any one of claims 3 to 5, wherein the low-calorie gas supply facility is configured to control an inert gas supply operation by the gas generator.
[7] 上記低カロリガス供給通路に、不活性ガスを供給するための不活性ガス供給通路 が接続されており、 [7] An inert gas supply passage for supplying an inert gas is connected to the low calorie gas supply passage,
上記制御装置が、排ガス供給通路による低カロリガス供給通路への排ガス供給をし ている状態において、発熱量検出装置の検出結果に基づいて不活性ガス供給通路 による不活性ガス供給動作を制御するように構成されてなる請求項 1記載の低カロリ ガス供給設備。  The control device controls the inert gas supply operation by the inert gas supply passage based on the detection result of the calorific value detection device when the exhaust gas is supplied to the low calorie gas supply passage by the exhaust gas supply passage. 2. The low calorie gas supply facility according to claim 1, wherein the facility is configured.
[8] 上記低カロリガス供給通路に、低カロリガスを一時的に貯留する第一のタンクが配 設されており、  [8] A first tank for temporarily storing low calorie gas is disposed in the low calorie gas supply passage,
該第一のタンクが入口と出口とを有しており、入口には低カロリガス供給通路の上 流側が接続されており、出口には低カロリガス供給通路の下流側が接続されてなる 請求項 1記載の低カロリガス供給設備。  2. The first tank has an inlet and an outlet, the upstream side of the low calorie gas supply passage is connected to the inlet, and the downstream side of the low calorie gas supply passage is connected to the outlet. Low calorie gas supply equipment.
[9] 上記低カロリガス供給通路に、低カロリガスを一時的に貯留する第二のタンクが配 設されており、 [9] A second tank for temporarily storing low calorie gas is installed in the low calorie gas supply passage,
低カロリガス供給通路と上記第二のタンクとの間に、低カロリガスを低カロリガス供給 通路力 第二のタンクに送り込むガス入口通路と、低カロリガスを第二のタンク力 低 カロリガス供給通路へ戻す出口通路とが配設されており、  Between the low-calorie gas supply passage and the second tank, the low-calorie gas is supplied to the low-calorie gas supply passage, the gas inlet passage for feeding the second tank, and the low-calorie gas is returned to the second tank force at the low-calorie gas supply passage. And are arranged,
上記入口通路に低カロリガスを第二のタンクに向けて圧送する第一ガス圧送装置 が配設されてなる請求項 1記載の低カロリガス供給設備。  2. The low calorie gas supply facility according to claim 1, wherein a first gas pumping device for pumping low calorie gas toward the second tank is disposed in the inlet passage.
[10] 上記低カロリガス供給通路に、供給する低カロリガスの一部を該低カロリガス供給通 路の上流側へ戻す戻し通路が配設されており、該戻し通路に、低カロリガスを低カロ リガス供給通路の上流側に向けて圧送する第二ガス圧送装置が配設されてなる請求 項 1記載の低カロリガス供給設備。 [10] The low-calorie gas supply passage is provided with a return passage for returning a part of the low-calorie gas to be supplied to the upstream side of the low-calorie gas supply passage, and the low-calorie gas is supplied into the return passage. The low-calorie gas supply facility according to claim 1, further comprising a second gas pumping device for pumping toward the upstream side of the passage.
[11] 上記排ガス供給通路に配設された、該通路を遮断および開放しうる排ガス遮断装 置と、該排ガス遮断装置の上流側に配設された排ガス放出装置とを備えてなる請求 項 1記載の低カロリガス供給設備。 11. An exhaust gas blocking device that is disposed in the exhaust gas supply passage and that can block and open the passage, and an exhaust gas discharge device that is disposed upstream of the exhaust gas blocking device. The low calorie gas supply facility described.
[12] 上記不活性ガス供給通路に配設された、該通路を遮断および開放しうる不活性ガ ス遮断装置と、該不活性ガス遮断装置の上流側に配設された不活性ガス放出装置と を備えてなる請求項 6記載の低カロリガス供給設備。 [12] An inert gas disposed in the inert gas supply passage and capable of blocking and opening the passage. 7. A low calorie gas supply facility according to claim 6, further comprising: a gas shut-off device; and an inert gas discharge device disposed upstream of the inert gas shut-off device.
[13] 上記燃焼設備が、上記タービンである請求項 1記載の低カロリガス供給設備。 13. The low calorie gas supply facility according to claim 1, wherein the combustion facility is the turbine.
[14] 上記燃焼設備が、汽カ発電設備のボイラである請求項 1記載の低カロリガス供給設 備。 [14] The low calorie gas supply facility according to claim 1, wherein the combustion facility is a boiler of a steam power generation facility.
[15] ガスタービンと、  [15] gas turbine,
該ガスタービンに燃料ガスとして低カロリガスを供給するための低カロリガス供給設 備とを備えており、  A low-calorie gas supply facility for supplying low-calorie gas as fuel gas to the gas turbine,
該低カロリガス供給設備が、請求項 1一 14のうちのいずれか一の項に記載の低力 口リガス供給設備であるガスタービン設備。  15. A gas turbine facility, wherein the low calorie gas supply facility is the low power regas supply facility according to any one of claims 1 to 14.
[16] ガスタービンが複数機設置されており、各ガスタービンに低カロリガス供給設備が併 設されており、低カロリガス供給設備の上記燃焼設備が、対応するガスタービン以外 のガスタービンである請求項 15記載のガスタービン設備。 16. A plurality of gas turbines are installed, each gas turbine is provided with a low calorie gas supply facility, and the combustion facility of the low calorie gas supply facility is a gas turbine other than the corresponding gas turbine. 15. The gas turbine equipment according to 15.
[17] 燃料ガスとしてガスタービンに供給する低カロリガスの発熱量を計測するカロリ計測 ステップと、 [17] a calorie measurement step for measuring the calorific value of the low calorie gas supplied to the gas turbine as fuel gas;
この計測結果が設定許容カロリ値を超えているときに、燃焼設備から採取した希釈 用の排ガスを上記低カロリガスに混入する排ガス混入ステップとを含んでなるガスタ 一ビン燃料用低カロリガスのカロリ上昇抑制方法。  When the measurement result exceeds the set allowable caloric value, the calorie rise suppression of the low calorific gas for gas turbine fuel comprising the step of mixing the exhaust gas for dilution collected from the combustion equipment into the low calorie gas Method.
[18] 上記排ガス混入ステップが、低カロリガスと排ガスとの混合気の酸素濃度を計測す るステップと、この計測結果が、低カロリガスの可燃限界情報カゝら得られる設定許容 排ガス含有率を超えな ヽように排ガス混入量を調整するステップを含んでなる請求項 17記載のカロリ上昇抑制方法。  [18] The above exhaust gas mixing step measures the oxygen concentration of the mixture of low calorie gas and exhaust gas, and the measurement result exceeds the set allowable exhaust gas content obtained from the low calorie gas flammability limit information. 18. The calorie increase suppressing method according to claim 17, further comprising a step of adjusting the amount of mixed exhaust gas.
[19] 最大限の排ガス供給によっても上記発熱量計測結果が設定許容カロリ値を下回ら な ヽと判断したときに、不活性ガスを低カロリガスに混入するステップをさらに含んで なる請求項 17記載のカロリ上昇抑制方法。  [19] The method according to claim 17, further comprising the step of mixing an inert gas into the low calorie gas when it is determined that the calorific value measurement result is less than a set allowable caloric value even with the maximum exhaust gas supply. Calorie rise suppression method.
[20] 排ガス混入量を減少させれば上記混合気の発熱量が設定許容カロリ値を超え、増 大させれば設定許容排ガス含有率を超えると判断したときに、排ガス混入量を減少さ せるとともに、不活性ガスを低カロリガスに供給するステップをさらに含んでなる請求 項 18記載のカロリ上昇抑制方法。 [20] Decrease the amount of exhaust gas mixed when it is determined that the amount of heat generated by the mixture exceeds the set allowable caloric value if the amount of exhaust gas mixed is reduced, and if the amount exceeds the set allowable exhaust gas content if increased And further comprising the step of supplying an inert gas to the low calorie gas. Item 18. The method for suppressing caloric elevation according to Item 18.
[21] 上記タンクより上流側の低カロリガス供給通路とタンクより下流側の低カロリガス供給 通路との間に戻し通路が接続されており、 [21] A return passage is connected between the low calorie gas supply passage upstream of the tank and the low calorie gas supply passage downstream of the tank,
該戻し通路に、燃料ガスをタンクより上流側の低カロリガス供給通路に向けて圧送 するガス圧送装置が設置されてなる請求項 8記載の低カロリガス供給設備。  9. The low calorie gas supply facility according to claim 8, wherein a gas pressure feeding device for pressure-feeding fuel gas toward the low calorie gas supply passage upstream of the tank is installed in the return passage.
[22] 上記低カロリガス供給通路における出口通路との接続点より下流側と、低カロリガス 供給通路における入口通路との接続点より上流側と、の間に戻し通路が接続されて おり、 [22] A return passage is connected between the downstream side from the connection point to the outlet passage in the low calorie gas supply passage and the upstream side from the connection point to the inlet passage in the low calorie gas supply passage.
該戻し通路に、燃料ガスを上流側低カロリガス供給通路に向けて圧送するガス圧 送装置が設置されてなる請求項 9記載の低カロリガス供給設備。  10. The low calorie gas supply facility according to claim 9, wherein a gas pumping device for pumping fuel gas toward the upstream low calorie gas supply passage is installed in the return passage.
[23] 上記タンクの内部にガスを撹拌するための撹拌装置が設置されてなる請求項 8また は 9記載の低カロリガス供給設備。 [23] The low calorie gas supply facility according to [8] or [9], wherein a stirring device for stirring gas is installed in the tank.
PCT/JP2005/004101 2004-09-29 2005-03-09 Gas turbine apparatus, low calorie content gas feeding apparatus, and method of suppressing rise of calorie content of the gas WO2006035522A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0515692-0A BRPI0515692A (en) 2004-09-29 2005-03-09 low calorie gas supply system, gas turbine system and method to suppress increase in low calorie gas calorie
CN2005800314332A CN101023255B (en) 2004-09-29 2005-03-09 Gas turbine apparatus, low calorie content gas feeding apparatus, and method of suppressing rise of calorie content of the gas
JP2006537631A JP4546482B2 (en) 2004-09-29 2005-03-09 Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-283711 2004-09-29
JP2004283711 2004-09-29

Publications (1)

Publication Number Publication Date
WO2006035522A1 true WO2006035522A1 (en) 2006-04-06

Family

ID=36118674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004101 WO2006035522A1 (en) 2004-09-29 2005-03-09 Gas turbine apparatus, low calorie content gas feeding apparatus, and method of suppressing rise of calorie content of the gas

Country Status (6)

Country Link
JP (1) JP4546482B2 (en)
KR (1) KR100807924B1 (en)
CN (1) CN101023255B (en)
BR (1) BRPI0515692A (en)
TW (1) TWI263734B (en)
WO (1) WO2006035522A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106857A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp By-product gas holder
JP2014169825A (en) * 2013-03-04 2014-09-18 Nippon Steel & Sumitomo Metal Fuel control method under blast furnace open ceiling in blast furnace gas-fired boiler and fuel control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076941B (en) * 2008-10-01 2013-11-06 三菱重工业株式会社 Gas turbine device
US8437941B2 (en) * 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
JP6742778B2 (en) * 2016-03-29 2020-08-19 三菱重工業株式会社 Gas turbine and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817295A (en) * 1981-07-23 1983-02-01 Fuji Koki Seisakusho:Kk Gas filling into temperature-sensitive cylinder
JPH0216040Y2 (en) * 1986-07-10 1990-05-01
JPH06264763A (en) * 1993-03-11 1994-09-20 Hitachi Ltd Combined plant system
JPH0893409A (en) * 1994-09-21 1996-04-09 Mitsubishi Heavy Ind Ltd Operation switching method and apparatus for combined plant
JP2000314326A (en) * 1999-04-30 2000-11-14 Nippon Steel Corp Gas turbine system
JP2002309987A (en) * 2001-02-05 2002-10-23 Komatsu Ltd EXHAUST NOx REMOVAL EQUIPMENT FOR ENGINE
JP2004027975A (en) * 2002-06-26 2004-01-29 Jfe Steel Kk Power generating method and equipment using by-product gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03175207A (en) * 1989-12-04 1991-07-30 Kawasaki Steel Corp Control of calorific value of coke oven gas
JP3664919B2 (en) * 1999-08-16 2005-06-29 株式会社東芝 Gas engine system
JP2001055930A (en) * 1999-08-16 2001-02-27 Toshiba Corp Gas engine system
JP2001107743A (en) * 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Gas turbine system, and combined plant equipped with the system
JP2002155762A (en) * 2000-11-17 2002-05-31 Kawasaki Steel Corp Gas turbine generation facility and control method therefor
JP2004239515A (en) * 2003-02-06 2004-08-26 Jfe Steel Kk Utilization method of gasification fusion furnace gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817295A (en) * 1981-07-23 1983-02-01 Fuji Koki Seisakusho:Kk Gas filling into temperature-sensitive cylinder
JPH0216040Y2 (en) * 1986-07-10 1990-05-01
JPH06264763A (en) * 1993-03-11 1994-09-20 Hitachi Ltd Combined plant system
JPH0893409A (en) * 1994-09-21 1996-04-09 Mitsubishi Heavy Ind Ltd Operation switching method and apparatus for combined plant
JP2000314326A (en) * 1999-04-30 2000-11-14 Nippon Steel Corp Gas turbine system
JP2002309987A (en) * 2001-02-05 2002-10-23 Komatsu Ltd EXHAUST NOx REMOVAL EQUIPMENT FOR ENGINE
JP2004027975A (en) * 2002-06-26 2004-01-29 Jfe Steel Kk Power generating method and equipment using by-product gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106857A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp By-product gas holder
JP2014169825A (en) * 2013-03-04 2014-09-18 Nippon Steel & Sumitomo Metal Fuel control method under blast furnace open ceiling in blast furnace gas-fired boiler and fuel control device

Also Published As

Publication number Publication date
KR100807924B1 (en) 2008-03-03
TW200610882A (en) 2006-04-01
JPWO2006035522A1 (en) 2008-05-15
CN101023255B (en) 2010-05-05
KR20070041616A (en) 2007-04-18
BRPI0515692A (en) 2008-07-29
TWI263734B (en) 2006-10-11
CN101023255A (en) 2007-08-22
JP4546482B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
EP2228524B1 (en) Low heating value fuel gas blending control
JP4611373B2 (en) Gas turbine equipment, fuel gas supply equipment, and fuel gas calorie increase suppressing method
JP4642630B2 (en) Gas turbine control system and control method
JP4503612B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
JP4546482B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
JP4011572B2 (en) Gas reforming equipment
WO2006080054A1 (en) Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility
KR100912148B1 (en) Gas turbine apparatus, apparatus for supplying fuel gas and method for suppressing calorie elevation of fuel gas
JP2007170245A (en) Gas turbine facility, low calory gas feeding facility, and method of suppressing rise of calory of gas
JP4326566B2 (en) Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
KR100906267B1 (en) Gas turbine apparatus, apparatus for supplying fuel gas and method for suppressing calorie elevation of fuel gas
JPH0988631A (en) Gas fuel burning gas turbine misfire preventing method
JP2007113541A (en) Heat reducing facility and heat reducing method for gas turbine fuel gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537631

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 615/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077005369

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580031433.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05720373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0515692

Country of ref document: BR