WO2006035088A1 - Viga estructural de la pala de un aerogenerador eólico y proceso de fabricación de la misma - Google Patents

Viga estructural de la pala de un aerogenerador eólico y proceso de fabricación de la misma Download PDF

Info

Publication number
WO2006035088A1
WO2006035088A1 PCT/ES2005/000496 ES2005000496W WO2006035088A1 WO 2006035088 A1 WO2006035088 A1 WO 2006035088A1 ES 2005000496 W ES2005000496 W ES 2005000496W WO 2006035088 A1 WO2006035088 A1 WO 2006035088A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
blade
wind turbine
synthetic resin
impregnated
Prior art date
Application number
PCT/ES2005/000496
Other languages
English (en)
French (fr)
Inventor
José Ignacio LLORENTE GONZÁLEZ
Sergio Vélez Oría
Original Assignee
Gamesa Eólica, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Eólica, S.A. filed Critical Gamesa Eólica, S.A.
Priority to EP05793538.9A priority Critical patent/EP1808598B1/en
Priority to ES05793538.9T priority patent/ES2459967T3/es
Priority to US11/662,850 priority patent/US8096778B2/en
Priority to PL05793538T priority patent/PL1808598T3/pl
Publication of WO2006035088A1 publication Critical patent/WO2006035088A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a structural beam made of composite material, based on fiberglass, carbon fiber and synthetic resin and more particularly to the structural beam of a wind turbine blade as well as the manufacturing process of Ia same.
  • the structural components of the wind turbine blades must be designed to withstand the stresses derived from their continuous working conditions, being desirable to have the lowest possible weight. This is why composite materials are being used for their manufacture.
  • PCT document WO 96/06776 describes a manufacturing process for forming a composite lining for the rotor blade of a helicopter. In this process the demoulding also occurs by applying pressure on an inflatable mandrel.
  • US 5632602 describes the process followed for the fiber reinforced synthetic resin coating of a rotor blade. This process is carried out by direct lamination without demolding.
  • JP 6074142 a manual method of fiber and resin embossing on a beam element is also described, to reinforce its resistance in the longitudinal direction.
  • US 4273601 describes a resin embossing method reinforced with fiber filaments, without demolding process.
  • the present invention proposes a specific design of the structural beam of a wind turbine blade and, in a second aspect, a. manufacturing process thereof capable of mechanization with a high degree of automation.
  • the proposed structural beam is formed, as in the technique known for a first body or root body with a first part close to the hub of the cylindrical wind turbine, a third part with the shape of a drawer and a second part with forms of transition and a second body, which we will call body-trunk.
  • this trunk-body which has a drawer shape of decreasing section towards the tip of the blade is constituted by several piles formed each of them by several layers of carbon fiber impregnated with synthetic resin located in its upper and lower areas interspersed between several layers of fiberglass impregnated with synthetic resin arranged along its entire perimeter, also including a layer of reinforcement material to bending in each of the lateral areas and a resin film that wraps the previous set.
  • the manufacturing process of that beam comprises the following steps: a) Preparation of a mold with the shape of the beam hollow provided with means to facilitate subsequent operations; b) Introduction of the root body in the mold; c) Successive application on the area of the mold corresponding to the body-trunk of: several layers of fiberglass impregnated with synthetic resin covering, as a bandage, the entire surface of the mold, forming an initial layer on which subsequently the carbon, - several layers of carbon fiber impregnated with synthetic resin on the upper face of the mold, several layers of fiberglass impregnated with synthetic resin covering, as a bandage, the entire surface of the mold and preventing the subsequent rotation of the carbon layers peel off and fall off; d) 180 ° rotation of the mold; e) Repeating stage c) with the lower face of the mold; f) Application of a layer of flexural reinforcement material in each of the lateral areas of the mold, after placing in these areas a few sheets of resin that fix them vertically, then wrapping it
  • Figure 1 schematically shows the different parts that make up a wind turbine blade.
  • Figure 2 represents a sectional section of a wind turbine blade.
  • Figure 3 schematically shows the configuration of the structural beam of the blade of a wind turbine according to the present invention.
  • Figure 4 schematically represents the components used in an embodiment of the manufacturing process of the structural beam of the blade of a wind turbine according to the present invention.
  • Figure 5 shows in diagram the mold used in an embodiment of the manufacturing process of the structural beam of the blade of a wind turbine according to the present invention.
  • Figure 6 shows the configuration of the fiberglass fabrics applied on the mold.
  • Figure 7 shows the configuration of the laminated carbon fiber fabrics on the upper and lower ends of the mold.
  • Figure 8 schematically shows the application process of the winder.
  • Figure 9 schematically represents a fiberglass winder useful for carrying out the manufacturing process of the structural beam of the blade of a wind turbine according to the present invention.
  • Figure 10 represents the elements used in the curing stage.
  • Figure 11 schematically shows the flow of hot air inside the mold during the curing process.
  • a wind turbine blade known in the art is constituted by a structural beam 1, an upper shell or extrados 44 and a lower or intrados shell 45.
  • the structural beam 1 is formed by a first body or root body 2 and a second body or trunk body 3.
  • the root body 2 is formed by a cylindrical first part 4, a second transition part 5 and a third part 6 in the form of a drawer.
  • the trunk body 3 is shaped like a drawer with a decreasing section towards the tip of the blade, having to support its upper face 7, which is in contact with the extrados 44, and its lower face 9, which is in contact with the intrados 45 , tensions higher than their lateral faces 11 and 13, during the life of the blade.
  • the structural beam 1 is formed by a root body 2 properly structured to fulfill the functions of fixing the blade to the wind turbine hub and supporting and transmitting the maximum loads to which the Ia is subjected blade by the action of the wind, and by a body-trunk 3 constituted, as shown in Figure 3, by several batteries 26 each formed by several layers of carbon fiber impregnated with synthetic resin 14 located in the upper areas 7 and lower 9 of the beam, interspersed between several layers of fiberglass impregnated with synthetic resin 15 arranged throughout its surface, as well as by a layer of reinforcing material 16 on each side of the beam, these reinforcing layers being fixed vertically to the beam by means of resin sheets, and then wrapping it with resin adhesive film.
  • a root body 2 properly structured to fulfill the functions of fixing the blade to the wind turbine hub and supporting and transmitting the maximum loads to which the Ia is subjected blade by the action of the wind
  • a body-trunk 3 constituted, as shown in Figure 3, by several batteries 26 each formed by several layers of carbon fiber impregnated
  • the surface of the mold 21 represented in Figure 5 is prepared, which will be used for the manufacture of the beam 1 with a treatment of mold release liquids that will facilitate the subsequent operation of extraction of the beam 1.
  • fixing elements 56 are placed that will serve as a connection with the systems of support 57, 58 and 59 of the mold 21.
  • These support systems are of the retractable type, so that they will allow the passage of a winder 47 in the winding process, as will be explained later.
  • the mold 21 In the rolling position the mold 21 will be supported in its end parts, by means of an articulated support 10 and a recessed support 13, both of which allow rotation in the axial direction of the mold.
  • the support of the mold 21 by the supports 57, 58 and 59 will be carried out by means of articulated supports.
  • the body 2 is introduced therein to its end 13, fixing it by means of a screw connection with threaded metal inserts to the element 18, which will be used for the demoulding operation at the end of the procedure.
  • the rolling of the beam 3 is carried out, that is to say the successive application of layers of carbon fiber and resin, 14, and layers of fiberglass and resin, 15.
  • the mold 21 To laminate the beam 3, the mold 21 must be resting on the three supports of retractable type 57, 58 and 59, and supported on the tip by a support called giraffe, 10, as shown in Ia
  • the start of the rolling process consists of winding several layers of fiberglass 15 on the mold 21 in the previous position, using a winder 47, which has a side fences 20.
  • the layers are formed by fabrics 8, overlapping each other longitudinally, between 10 and 20 mm, with the glass fibers oriented +/- 45 ° approximately with respect to axis 12 of beam 3.
  • the layers of carbon fiber 14 are laminated by means of an automatic laminating wrapping machine 24 provided with a head 22 and fed by a carbon deposit 23, until reaching the connection radius 37 with the parties sides 39 of the mold 21.
  • the layers 14 are formed by fabrics 49 that do not overlap each other.
  • the supports 57, 58 and 59 are removed, and the mold 21 is rotated 180 °, subsequently replacing the supports, placing another stack 26 on the surface 36 of the mold 21 (previously located in its lower part) .
  • a predefined number of batteries 26 must be placed depending on the stiffness that is to be achieved on the upper 7 and lower 9 faces of the beam 3.
  • the curing preparation operation consists of completely covering the beam 3 and the previous mold 21 with a closed vacuum bag, 31, which is connected to a vacuum pump, reaching, for this Concrete embodiment of the invention, a vacuum pressure of between -0.7 and -0.8 bar, a minimum pressure of -0.7 bar being maintained throughout the curing process.
  • a peelable film 28 is placed on the beam 3, which, when removed, will leave a clean and rough surface that will facilitate the subsequent adhesion of other elements (when forming the complete blade) and a vacuum bag 31
  • This vacuum bag 31 encloses: an aerator 30, formed by a spongy fabric that allows the passage of air, so that it distributes the vacuum evenly on the surface of the laminate; and a bleed 29, formed by a perforated plastic film, with a certain hole density, which facilitates the flow of resin to the outside, eliminating the air content within the laminate of composite material and also eliminating the excess resin contained in The fiber since, with exceptions, the prepreg always contains a surplus of resin.
  • the curing process consists of drying, by means of the application of a hot air flow, of the fabrics stacked on the mold 21 during the rolling process, so that they acquire the definitive morphology of the beam 3.
  • the curing is carried out both from the outside, by means of blown air in the curing stoves 25 that appear in Figure 4, as well as inside, as can be seen in Figure 11.
  • the interior of the beam 3 cures thanks to the internal channels that the mold 21 possesses, in which hot air 34 is introduced - with the optimum flow, pressure and temperature regimes for the correct curing of the beam 3 - from the system of heating 19 of Figure 3, through the discharge conduit 32 of the mold 21. Said conduit is drilled so that the hot curing air passes to the extraction conduits 33.
  • the beam 3 acquires its definitive form, so it is important to minimize its deflection during this part of the process.
  • the beam 3 cures in a position in which the support of the mold 21 during curing is carried out by means of two leveling screws that are screwed to the supports, located in areas of the mold prepared for said function. These leveling screws are anchored to the curing stoves 25, in their inner zone.
  • the demolding process consists in the extraction of beam 1 after having acquired its morphology and its final mechanical properties.
  • the curing stoves 25 to proceed with the demoulding, the curing stoves 25 must first be removed, and then two slings linked to a crane bridge must be placed. Then, the support of the pointed mold 10 is removed.
  • the body 2 of the beam is fixed in its circular end part by means of a screw connection with threaded metal inserts to the demoulding or extraction system 18 so that, while the body 2 is fixed to a movable flange, the mold 21 is fixed in its end 13 to a static flange.
  • the finished beam 1 is ejected, the movement of the slings of a standard crane bridge accompanying its movement.
  • a cooling station (not shown), in which it is ensured that its final shape is as desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Moulding By Coating Moulds (AREA)
  • Wind Motors (AREA)

Abstract

Viga estructural de la pala de un aerogenerador eólico constituida por cuerpo-raíz y un cuerpo-tronco con forma de cajón de sección decreciente hacia la punta de la pala, constituido por varias pilas formadas cada una de ellas por varias capas de fibra de carbono impregnadas con resina sintética, situadas en sus zonas superior e inferior, intercaladas entre varias capas de fibra de vidrio impregnadas con resina sintética dispuestas a lo largo de todo su perímetro, incluyendo al menos entre dos pilas una capa de material de refuerzo en cada una de las zonas laterales envuelta por un film adhesivo de resina. La invención también comprende un procedimiento para la fabricación de la viga estructural que, entre otras etapas, comprende la aplicación de las capas mencionadas sobre un molde y el curado de la viga.

Description

VIGA ESTRUCTURAL DE LA PALA DE UN AEROGENERADOR EÓL1CO Y PROCESO DE FABRICACIÓN DE LA MISMA
CAMPO DE LA INVENCIÓN
La presente invención se refiere a una viga estructural fabricada en material compuesto, a base de fibra de vidrio, fibra de carbono y resina sintética y más en particular a la viga estructural de una pala de un aerogenerador eólico así como al proceso de fabricación de Ia misma.
ANTECEDENTES DE LA INVENCIÓN
Los componentes estructurales de las palas de los aerogeneradores eólicos han de estar diseñados para soportar las tensiones derivadas de sus condiciones de trabajo continuo, siendo deseable que tengan el menor peso posible. Es por esto que se vienen utilizando materiales compuestos para su fabricación.
No se conocen sin embargo palas de aerogeneradores eólicos cuyo componente estructural esté específicamente diseñado para poder ser objeto de una fabricación mecanizada eficiente. En este sentido, se conocen antecedentes en el sector aeronáutico como los mencionados seguidamente . En el documento PCT WO 84/04905 se describe un proceso de fabricación para un revestimiento de un ala de avión en material compuesto, en el que el desmoldeo se realiza aplicando presión neumática en unas bolsas de aire previstas a tal efecto, quedando conformado el revestimiento final tras su curado previo a temperatura. La complejidad de este proceso y el control que es necesario realizar en Ia presión neumática del molde quedan resueltos con Ia presente invención, como se verá más adelante.
El documento PCT WO 96/06776 describe un proceso de fabricación para conformar un revestimiento de material compuesto para Ia pala del rotor de un helicóptero. En este proceso el desmoldeo se produce igualmente aplicando presión sobre un mandril inflable. El documento US 5632602 describe el proceso seguido para el recubrimiento de resina sintética reforzada con fibra de una pala de rotor. Este proceso se realiza mediante laminación directa sin desmoldeo.
En el documento JP 6074142 se describe asimismo un método manual de embandado de fibra y resina sobre un elemento viga, para reforzar Ia resistencia del mismo en Ia dirección longitudinal.
Finalmente, el documento US 4273601 describe un método de embandado de resina reforzada con filamentos de fibras, sin proceso de desmoldeo.
SUMARIO DE LA INVENCIÓN
En un primer aspecto, la presente invención propone un diseño específico de Ia viga estructural de una pala de un aerogenerador eólico y, en un segundo aspecto, un. procedimiento de fabricación de Ia misma susceptible de una mecanización con un alto grado de automatización.
La viga estructural que se propone está formada, al igual que en Ia técnica conocida por un primer cuerpo o cuerpo raíz con una primera parte próxima al buje del aerogenerador con forma cilindrica, una tercera parte con forma de cajón y una segunda parte con formas de transición y un segundo cuerpo, al que llamaremos cuerpo-tronco.
Según Ia presente invención, en su primer aspecto, este cuerpo-tronco que tiene forma de cajón de sección decreciente hacia Ia punta de Ia pala está constituido por varias pilas formadas cada una de ellas por varias capas de fibra de carbono impregnadas con resina sintética situadas en sus zonas superior e inferior intercaladas entre varias capas de fibra de vidrio impregnadas con resina sintética dispuestas a Io largo de todo su perímetro, incluyendo además una capa de material de refuerzo a Ia flexión en cada una de las zonas laterales y un film de resina que envuelve el conjunto anterior. Según Ia invención, en su segundo aspecto, el proceso de fabricación de esa viga comprende las siguientes etapas: a) Preparación de un molde con Ia forma del hueco de Ia viga dotado de medios para facilitar las operaciones subsiguientes; b) Introducción del cuerpo-raíz en el molde; c) Aplicación sucesiva sobre la zona del molde correspondiente al cuerpo- tronco de: varias capas de fibra de vidrio impregnadas con resina sintética recubriendo, a modo de vendaje, toda Ia superficie del molde, formando una capa inicial sobre Ia que posteriormente se aplicará el carbono, - varias capas de fibra de carbono impregnadas con resina sintética en Ia cara superior del molde, varias capas de fibra de vidrio impregnadas con resina sintética recubriendo, a modo de vendaje, toda Ia superficie del molde y evitando que con el posterior giro las capas de carbono se despeguen y caigan; d) Giro de 180° del molde; e) Repetición de Ia etapa c) con Ia cara inferior del molde; f) Aplicación de una capa de material de refuerzo a la flexión en cada una de las zonas laterales del molde, previa colocación en estas zonas de unas láminas de resina que las fijan verticalmente, envolviéndola posteriormente con film adhesivo de resina; g) Repetición de las etapas c) a e) una pluralidad de veces; h) Curado de Ia viga mediante Ia aplicación de flujos de aire caliente a las superficie exterior de Ia viga y al interior del molde; i) Enfriamiento hasta temperatura de desmoldeo, desmoldeo y enfriamiento de Ia viga hasta temperatura ambiente. Este proceso de fabricación, como se verá en mayor detalle más adelante, permite que Ia aplicación de las capas de los materiales compuestos mencionados pueda ser efectuada por máquinas especializadas, tales como bobinadoras de fibra de vidrio y máquinas de encintado automático para el material de fibra de carbono. Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan. DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra esquemáticamente las distintas partes que componen una pala de un aerogenerador eólico. La Figura 2 representa un corte en sección longitudinal de una pala de un aerogenerador eólico.
La Figura 3 muestra esquemáticamente Ia configuración de Ia viga estructural de Ia pala de un aerogenerador eólico según Ia presente invención.
La Figura 4 representa esquemáticamente los componentes utilizados en una realización del proceso de fabricación de Ia viga estructural de Ia pala de un aerogenerador eólico según Ia presente invención.
La Figura 5 muestra en esquema el molde utilizado en una realización del proceso de fabricación de la viga estructural de Ia pala de un aerogenerador eólico según Ia presente invención. La Figura 6 muestra Ia configuración de las telas de fibra de vidrio aplicadas sobre el molde.
La Figura 7 muestra Ia configuración de las telas de fibra de carbono laminadas sobre los extremos superior e inferior del molde.
La Figura 8 muestra esquemáticamente el proceso de aplicación de Ia bobinadora.
La Figura 9 representa esquemáticamente una bobinadora de fibra de vidrio de utilidad para Ia realización del proceso de fabricación de Ia viga estructural de Ia pala de un aerogenerador eólico según Ia presente invención. La Figura 10 representa los elementos utilizados en Ia etapa de curado. La Figura 11 muestra esquemáticamente el flujo de aire caliente en el interior del molde durante el proceso de curado.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Según se muestra en las Figuras 1 y 2 una pala de aerogenerador eólico conocida en Ia técnica está constituida por una viga estructural 1 , una concha superior o extradós 44 y una concha inferior o intradós 45. La viga estructural 1 está formada por un primer cuerpo ó cuerpo-raíz 2 y un segundo cuerpo o cuerpo-tronco 3.
El cuerpo-raíz 2 está formado por una primera parte 4 de forma cilindrica, una segunda parte 5 de transición y una tercera parte 6 con forma de cajón. El cuerpo tronco 3 tiene forma de cajón con una sección decreciente hacia la punta de Ia pala, teniendo que soportar su cara superior 7, que está en contacto con el extradós 44, y su cara inferior 9, que está en contacto con el intradós 45, tensiones superiores a sus caras laterales 11 y 13, durante Ia vida útil de Ia pala. Según Ia presente invención, Ia viga estructural 1 está formada por un cuerpo-raíz 2 estructurado de manera apropiada para cumplir las funciones de fijación de Ia pala al buje del aerogenerador y de soporte y transmisión de las cargas máximas a las que se ve sometida Ia pala por Ia acción del viento, y por un cuerpo-tronco 3 constituido, como se muestra en Ia Figura 3, por varias pilas 26 formadas cada una de ellas por varias capas de fibra de carbono impregnadas con resina sintética 14 situadas en las zonas superior 7 e inferior 9 de Ia viga, intercaladas entre varias capas de fibra de vidrio impregnadas con resina sintética 15 dispuestas en toda su superficie, así como por una capa de material de refuerzo 16 en cada lateral de Ia viga, estando fijadas estas capas de refuerzo verticalmente a la viga mediante unas láminas de resina, y envolviéndola posteriormente con film adhesivo de resina.
Pasamos seguidamente a describir las principales etapas que componen un procedimiento, según una realización de Ia presente invención, para Ia fabricación de Ia mencionada viga estructural.
1. Preparación del molde e introducción del cuerpo raíz
En esta primera parte del proceso se prepara Ia superficie del molde 21 representado en Ia Figura 5 que será utilizado para Ia fabricación de Ia viga 1 con un tratamiento de líquidos desmoldeantes que facilitarán Ia operación posterior de extracción de Ia viga 1. Tras esta operación, se colocan unos elementos de fijación 56 que servirán como conexión con los sistemas de suportación 57, 58 y 59 del molde 21. Estos sistemas de suportación son del tipo retráctil, de manera que permitirán el paso de una bobinadora 47 en el proceso de bobinado, como se explicará más adelante. En Ia posición de laminado el molde 21 se encontrará sustentado en sus partes extremas, mediante un apoyo articulado 10 y un apoyo empotrado 13, permitiendo ambos el giro en el sentido axial del molde. La sustentación del molde 21 por los soportes 57, 58 y 59 se realizará mediante apoyos articulados.
Una vez preparado el molde 21 se introduce en él el cuerpo 2 hasta su extremo 13, fijándolo mediante unión atornillada con insertos metálicos roscados al elemento 18, que se utilizará para Ia operación de desmoldeo al final del procedimiento.
2. Proceso de laminado
En esta etapa se procede a Ia laminación de Ia viga 3, es decir a Ia aplicación sucesiva de capas de fibra de carbono y resina, 14, y de capas de fibra de vidrio y resina, 15.
Para realizar el laminado de Ia viga 3, el molde 21 debe estar descansando sobre los tres apoyos de tipo retráctil 57, 58 y 59, y apoyado en Ia punta mediante un apoyo denominado jirafa, 10, tal como se muestra en Ia
Figura 5.
El inicio del proceso de laminado consiste en bobinar varias capas de fibra de vidrio 15 sobre el molde 21 en la posición anterior, utilizando una bobinadora 47, que lleva unas vallas laterales de protección 20. Como se muestra en la figura 6, las capas están formadas por telas 8, solapadas entre sí longitudinalmente, entre 10 y 20 mm, con las fibras de vidrio orientadas +/- 45° aproximadamente respecto al eje 12 de Ia viga 3.
A continuación, sobre Ia superficie superior 35 del molde 21 se laminan las capas de fibra de carbono 14 mediante una máquina de encintado automático de laminación 24 provista de un cabezal 22 y alimentada por un depósito de carbono 23, hasta alcanzar el radio de conexión 37 con las partes laterales 39 del molde 21. Según se muestra en Ia Figura 7, las capas 14 están formadas por telas 49 que no se solapan entre sí.
Seguidamente, se bobina sobre los laminados de carbono anteriores, y utilizando una bobinadora 47, una segunda capa de fibra de vidrio y resina. Los tres pasos anteriormente citados, a saber, bobinado de capas de fibra de vidrio, laminado de capas de fibra de carbono y segundo bobinado de fibra de vidrio y resina, constituyen Ia pila 26.
Tras este proceso, se retiran los soportes 57, 58 y 59, y se gira el molde 21 en 180°, volviéndose posteriormente a situar los soportes, colocándose otra pila 26 en Ia superficie 36 del molde 21 (antes situada en su parte inferior). Siguiendo este proceso, se deben colocar un numero predefinido de pilas 26 en función de Ia rigidez que se quiera alcanzar en las caras superior 7 e inferior 9 de Ia viga 3.
A continuación, y sin retirar los soportes 57, 58 y 59, se procede a colocar unas láminas de resina en cada una de las zonas laterales del molde 21 , que sujetarán las dos capas o núcleos de espuma 16 en cada uno de los laterales del molde 21 y se envuelve el conjunto con un film adhesivo de resina. Tras ello se vuelven a colocar una pluralidad de pilas 16, quedando una configuración simétrica con respecto a los núcleos de espuma 16. Como puede desprenderse de las Figuras 5 y 8, en el proceso de bobinado, los apoyos de tipo retráctil, 57, 58 y 59 se esconden al paso de Ia bobinadora 47 de Ia Figura 9.
3. Preparación del curado
Como puede apreciarse en Ia Figura 10, Ia operación de preparación del curado consiste en cubrir por completo Ia viga 3 y el molde 21 anteriores con una bolsa de vacío cerrada, 31 , Ia cual se conecta a una bomba de vacío, alcanzándose, para esta realización concreta de la invención, una presión de vacío de entre -0,7 y -0,8 bar, manteniéndose durante todo el proceso de curado una presión mínima de -0,7 bar. En Ia Figura 10 se puede apreciar que sobre la viga 3 se coloca una película pelable 28, que al ser retirada dejará una superficie limpia y rugosa que facilitará Ia posterior adhesión de otros elementos (al formar Ia pala completa) y una bolsa de vacío 31. Esta bolsa de vacío 31 encierra: un aireador 30, formado por un tejido esponjoso que permite el paso del aire, de manera que distribuye el vacío uniformemente en Ia superficie del laminado; y un sangrador 29, formado por una película perforada de plástico, con una determinada densidad de agujeros, que facilita el flujo de resina hacia el exterior, eliminando el contenido de aire dentro del laminado de material compuesto y eliminando igualmente el excedente de resina contenido en Ia fibra ya que, salvo excepciones, el prepreg siempre contiene un excedente de resina.
4. Proceso de curado
Según se observa en Ia Figura 11 , el proceso de curado consiste en el secado, mediante Ia aplicación de un flujo de aire caliente, de las telas empiladas sobre el molde 21 durante el proceso de laminación, de modo que adquieran Ia morfología definitiva de Ia viga 3.
El curado se realiza tanto desde el exterior, mediante aire soplado en las estufas de curado 25 que aparecen en Ia Figura 4, como por su interior, como puede observarse en Ia Figura 11.
El interior de Ia viga 3 cura gracias a los canales internos que posee el molde 21 , en los cuales se introduce aire caliente 34 - con los regímenes de caudal, presión y temperatura óptimos para el correcto curado de Ia viga 3 - desde el sistema de calentamiento 19 de Ia Figura 3, a través del conducto de impulsión 32 del molde 21. Dicho conducto está taladrado de modo que el aire caliente de curado pasa a los conductos de extracción 33.
Durante Ia operación de curado Ia viga 3 adquiere su forma definitiva, por Io que es importante minimizar su deflexión durante esta parte del proceso. Para ello, Ia viga 3 cura en una posición en Ia cual el apoyo del molde 21 durante el curado se realiza mediante dos tornillos niveladores que se atornillan a los soportes, situados en unas zonas del molde preparadas para dicha función. Estos tornillos niveladores están anclados a las estufas de curado 25, en su zona interna.
5. Proceso de desmoldeo
El proceso de desmoldeo consiste en Ia extracción de Ia viga 1 después de haber adquirido ésta su morfología y sus propiedades mecánicas finales. Según esta realización concreta de Ia presente invención, para proceder al desmoldeo se deben retirar primeramente las estufas de curado 25, y colocar posteriormente dos eslingas ligadas a un puente grúa. A continuación, se retira el apoyo del molde en punta 10.
El cuerpo 2 de Ia viga está fijado en su parte final circular mediante unión atornillada con insertos metálicos roscados al sistema de desmoldeo o extracción 18 de modo que, mientras que el cuerpo 2 está fijado a una brida móvil, el molde 21 está fijado en su extremo 13 a una brida estática.
Posteriormente, mediante accionamiento hidráulico del sistema de desmoldeo
18 en el sentido del eje del molde 21 , se expulsa Ia viga 1 ya terminada, acompañando su movimiento las eslingas de un puente-grúa estándar. Una vez que Ia viga 1 ha sido desmoldeada por completo, es llevada a unos puestos de enfriamiento (no mostrados), en los que se asegura que su forma final sea la deseada.
En Ia realización preferente que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Viga estructural (1) de Ia pala de un aerogenerador eólico constituida por un primer cuerpo ó cuerpo-raíz (2) realizado en un material compuesto con una primera parte (4), próxima al buje del aerogenerador, con forma cilindrica, una tercera parte (6) con forma de cajón y una segunda parte (5) con formas de transición entre las de Ia primera y Ia tercera parte, y un segundo cuerpo o cuerpo-tronco (3) con forma de cajón de sección decreciente hacia la punta de Ia pala, caracterizada porque el cuerpo-tronco (3) está constituido por varias pilas (26) formadas cada una de ellas por varias capas de fibra de carbono impregnadas con resina sintética (14), situadas en sus zonas superior (7) e inferior (9), intercaladas entre varias capas de fibra de vidrio impregnadas con resina sintética (15) dispuestas a Io largo de todo su perímetro, incluyendo al menos entre dos pilas (26) una capa de material de refuerzo (16) en cada una de las zonas laterales (11 , 13) envuelta por un film adhesivo de resina.
2. Viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 1 caracterizada porque las mencionadas capas de fibra de carbono impregnadas con resina sintética (14) están formadas por una pluralidad de telas (49) de fibra de carbono impregnadas con resina sintética dispuestas una al lado de otra, sin solapes entre ellas, con las fibras de carbono orientadas en la misma dirección del eje (12) de Ia viga (1)
3. Viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 1 caracterizada porque las mencionadas capas de fibra de vidrio impregnadas con resina sintética (15) están formadas por una pluralidad de telas (8) de fibra de vidrio impregnadas con resina sintética dispuestas una al lado de Ia otra, con una zona de solape entre ellas, con las fibras de vidrio orientadas en direcciones formando ángulos de +/- 45° con Ia dirección del eje (12) de la viga (1).
4. Procedimiento para Ia fabricación de una viga estructural (1) de Ia pala de un aerogenerador eólico constituida por un primer cuerpo ó cuerpo-raíz (2) realizado en un material compuesto con una primera parte (4), próxima al buje del aerogenerador, con forma cilindrica, una tercera parte (6) con forma de cajón y una segunda parte (5) con formas de transición entre las de la primera y Ia tercera parte, y un segundo cuerpo o cuerpo-tronco (3) con forma de cajón de sección decreciente hacia la punta de la pala, caracterizado porque comprende las etapas siguientes: a) Preparación de un molde (21), con Ia forma del hueco de Ia viga (1), dotado de medios de giro sobre su eje y de unos medios de apoyo en el suelo consistentes en unos soportes retráctiles (57, 58, 59) dispuestos espaciadamente respecto al cuerpo del molde (21) y un soporte (10) articulado al extremo del molde (21) correspondiente a Ia punta de Ia pala; b) Introducción del cuerpo-raíz (2) en el molde (21) y fijación empotrada del extremo (13) del molde correspondiente a Ia primera parte del cuerpo raíz al sistema de desmoldeo (18); c) Aplicación sucesiva sobre Ia zona del molde (21) correspondiente al cuerpo-tronco (3) de:
- varias capas de fibra de vidrio impregnadas con resina sintética (15) en toda Ia superficie del molde (21),
- varias capas de fibra de carbono impregnadas con resina sintética (14) en Ia cara superior del molde (21), - varias capas de fibra de vidrio impregnadas con resina sintética (15) en toda Ia superficie del molde (21); d) Giro de 180° del molde (21), previa retirada de los soportes retráctiles (57, 58, 59) ; e) Repetición de Ia etapa c) con Ia cara inferior del molde; f) Aplicación de una capa de material de refuerzo (16) sobre cada una de las zonas laterales del molde (21) previa colocación en estas zonas de unas láminas de resina que las fijan verticalmente y envoltura del conjunto con un film adhesivo de resina; g) Repetición de las etapas c) a e) una pluralidad de veces; h) Curado de Ia viga (3) mediante Ia aplicación de flujos de aire caliente a las superficie exterior de Ia viga y al interior del molde (21); i) Enfriamiento hasta temperatura de desmoldeo, desmoldeo y enfriamiento de Ia viga hasta temperatura ambiente.
5. Procedimiento para la fabricación de una viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 4 caracterizado porque el molde (21) lleva un tratamiento en su superficie en base a líquidos desmoldeantes, para facilitar Ia operación de desmoldeo de Ia viga (1).
6. Procedimiento para Ia fabricación de una viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 4 caracterizado porque los soportes retráctiles (57, 58, 59) del molde (21) permiten el paso de Ia bobinadora (47), ocultándose durante el proceso de bobinado.
7. Procedimiento para la fabricación de una viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 4 caracterizado porque Ia viga (3) y el molde (21) permanecen en una bolsa de vacío cerrada (31) conectada a una bomba de vacío durante Ia preparación del curado, alcanzándose en su interior una presión de vacío de entre -0,7 y -0,8 bar, manteniéndose durante todo el proceso de curado en una presión mínima de -0,7 bar.
8. Procedimiento para Ia fabricación de una viga estructural (1) de la pala de un aerogenerador eólico según Ia reivindicación 4 caracterizado porque el interior de Ia zona cuerpo-tronco (3) se cura gracias a unos canales internos que posee el molde (21), en los cuales se introduce aire caliente (34) a través de un conducto de impulsión (32) del molde (21), estando dicho conducto taladrado de modo que el aire caliente de curado pase a los conductos de extracción (33), calentando Ia superficie interior del cuerpo- tronco (3).
9. Procedimiento para Ia fabricación de una viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 4 caracterizado porque el interior de Ia zona cuerpo-tronco (3) se cura en una posición en la cual el apoyo del molde (21) se realiza mediante dos tornillos niveladores que se atornillan al molde, situados en unas zonas del molde preparadas para dicha función, estando dichos tornillos niveladores anclados a unas estufas de curado (25), en su zona, interna.
10. Procedimiento para Ia fabricación de una viga estructural (1) de Ia pala de un aerogenerador eólico según Ia reivindicación 4 caracterizado porque la viga (1), una vez ha sido desmoldeada por completo, es llevada a unos puestos de enfriamiento en los que se asegura que su forma final sea Ia deseada.
PCT/ES2005/000496 2004-09-14 2005-09-14 Viga estructural de la pala de un aerogenerador eólico y proceso de fabricación de la misma WO2006035088A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05793538.9A EP1808598B1 (en) 2004-09-14 2005-09-14 Structural beam for a wind generator blade and production method thereof
ES05793538.9T ES2459967T3 (es) 2004-09-14 2005-09-14 Viga estructural de la pala de un aerogenerador eólico y proceso de fabricación de la misma
US11/662,850 US8096778B2 (en) 2004-09-14 2005-09-14 Structural beam for a wind generator blade production method thereof
PL05793538T PL1808598T3 (pl) 2004-09-14 2005-09-14 Belka strukturalna dla łopaty generatora wiatrowego oraz sposób jej wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200402191A ES2249182B1 (es) 2004-09-14 2004-09-14 Viga estructural de la pala de un aerogenerador eolico y proceso de fabricacion de la misma.
ESP200402191 2004-09-14

Publications (1)

Publication Number Publication Date
WO2006035088A1 true WO2006035088A1 (es) 2006-04-06

Family

ID=36101264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000496 WO2006035088A1 (es) 2004-09-14 2005-09-14 Viga estructural de la pala de un aerogenerador eólico y proceso de fabricación de la misma

Country Status (6)

Country Link
US (1) US8096778B2 (es)
EP (1) EP1808598B1 (es)
CN (1) CN100529388C (es)
ES (2) ES2249182B1 (es)
PL (1) PL1808598T3 (es)
WO (1) WO2006035088A1 (es)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2274701B1 (es) * 2005-07-15 2008-05-01 GAMESA INNOVATION & TECHNOLOGY, S.L. Procedimiento de fabricacion de piezas huecas de grandes dimensiones a base de materiales compuestos.
EP2094967B1 (en) 2006-12-15 2012-10-24 Bladena ApS Reinforced aerodynamic profile
ES2302645B1 (es) * 2007-01-02 2009-02-01 Mateo Barbero Almaraz Estructura de pala eolica.
CN101611225B (zh) 2007-01-16 2012-05-23 丹麦技术大学 用于风力涡轮机的加强叶片
CN101589227B (zh) 2007-01-25 2014-11-26 布拉德纳公司 用于风力涡轮机的加强叶片
US20100068065A1 (en) * 2007-01-29 2010-03-18 Find Molholt Jensen Wind turbine blade
FR2912990B1 (fr) * 2007-02-23 2009-04-24 Eurocopter France Pale de giravion pourvue d'un troncon radial et d'au moins un troncon en fleche avant et/ou arriere
ES2319152B1 (es) * 2007-07-17 2010-01-11 Fco.Javier Garcia Castro Procedimiento para la fabricacion de palas eolicas.
DE102007044698B4 (de) * 2007-09-19 2010-04-15 Blohm + Voss Industries Gmbh Verfahren zur Herstellung von Flügelelementen
CN101903161A (zh) * 2007-12-20 2010-12-01 维斯塔斯风力系统集团公司 由树脂预浸渍纤维制造复合部件的方法
US20090196756A1 (en) * 2008-02-05 2009-08-06 General Electric Company Wind turbine blades and method for forming same
WO2009111568A1 (en) * 2008-03-04 2009-09-11 Karem Aircraft, Inc. Composite blade root stucture
CN102066747A (zh) * 2008-06-23 2011-05-18 丹麦技术大学 具有成角度的梁的风力涡轮机叶片
US8807953B2 (en) 2008-06-24 2014-08-19 Bladena Aps Reinforced wind turbine blade
DE102008045601A1 (de) 2008-06-27 2009-12-31 Repower Systems Ag Rotorblatt für eine Windenergieanlage und Verfahren und Fertigungform zu seiner Fertigung
ES2342998B1 (es) * 2009-01-19 2011-06-27 Manuel Torres Martinez Pala de aerogenerador.
ES2570459T3 (es) * 2009-02-16 2016-05-18 Vestas Wind Sys As Una pala de rotor para una turbina eólica y un procedimiento para fabricar la misma
CN101705922B (zh) * 2009-11-30 2011-10-26 天津南车风电叶片工程有限公司 大型复合材料风电叶片及其制备方法
EP2330294B1 (en) 2009-12-02 2013-01-16 Bladena ApS Reinforced airfoil shaped body
WO2011082709A1 (en) * 2010-01-08 2011-07-14 Vestas Wind Systems A/S Winding machine
US10137542B2 (en) 2010-01-14 2018-11-27 Senvion Gmbh Wind turbine rotor blade components and machine for making same
WO2011088372A1 (en) 2010-01-14 2011-07-21 Neptco, Inc. Wind turbine rotor blade components and methods of making same
CN102939458B (zh) * 2010-05-20 2015-09-02 泰克西斯先进技术及体系公司 风力发电机叶片及其制造方法
US8186964B2 (en) 2010-12-10 2012-05-29 General Electric Company Spar assembly for a wind turbine rotor blade
ES2388865B1 (es) * 2010-12-23 2013-09-06 Gamesa Innovation & Tech Sl Molde de conchas partido para palas de aerogenerador, metodo de fabricacion de dicho molde y metodo de fabricacion de pala empleando dicho molde.
ES2398553B1 (es) * 2011-02-24 2014-02-06 Gamesa Innovation & Technology S.L. Una pala de aerogenerador multi-panel mejorada.
ES2387432B1 (es) * 2011-02-25 2013-07-29 Francisco Javier Garcia Castro Procedimiento para la fabricación de palas eólicas, palas para hélices, alas o estructuras similares y estructura en forma de pala obtenida mediante dicho procedimiento
CN102179938B (zh) * 2011-04-08 2013-02-06 江苏中亚新材料股份有限公司 风电叶片后缘粘合补强工艺
EP2795105B1 (en) * 2011-12-22 2021-02-17 LM WP Patent Holding A/S Wind turbine blade assembled from inboard part and outboard part having different types of load carrying structures
CN103434148B (zh) * 2013-08-23 2015-11-18 河北科技大学 一种用于大型风机叶片成型过程中的中部支撑装置
US9605651B2 (en) 2013-12-04 2017-03-28 General Electric Company Spar assembly for a wind turbine rotor blade
US9790919B2 (en) 2014-02-25 2017-10-17 General Electric Company Joint assembly for rotor blade segments of a wind turbine
EP2963282B1 (en) * 2014-07-04 2018-10-24 Siemens Aktiengesellschaft Mounting ring arrangement for wind turbine blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
DK201570772A1 (en) * 2015-11-27 2016-12-19 Vestas Wind Sys As Tool and method for fabricating shear webs for a wind turbine blade
RU2636994C1 (ru) * 2016-11-16 2017-11-29 Виктор Степанович Ермоленко Способ формования из композитного материала пустотелых аэродинамических поверхностей - 2
US10738759B2 (en) 2017-02-09 2020-08-11 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10527023B2 (en) 2017-02-09 2020-01-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10563636B2 (en) 2017-08-07 2020-02-18 General Electric Company Joint assembly for a wind turbine rotor blade
US10677216B2 (en) 2017-10-24 2020-06-09 General Electric Company Wind turbine rotor blade components formed using pultruded rods
US11738530B2 (en) 2018-03-22 2023-08-29 General Electric Company Methods for manufacturing wind turbine rotor blade components
ES2851048B2 (es) 2020-02-05 2022-06-03 M Torres Disenos Ind S A Unipersonal Proceso de fabricacion de la pala de un aerogenerador y pala de aerogenerador asi obtenida
CN112297473A (zh) * 2020-10-10 2021-02-02 江西洪都航空工业集团有限责任公司 一种一侧有负角度的复合材料细长盒型梁的成型模具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264278A (en) * 1977-10-31 1981-04-28 Oscar Weingart Blade or spar
US4273601A (en) * 1977-10-31 1981-06-16 Structural Composites Industries, Inc. Method for the production of elongated resin impregnated filament composite structures
US4381960A (en) * 1981-12-28 1983-05-03 United Technologies Corporation Method of manufacturing a filament wound article
GB2112740A (en) * 1981-12-28 1983-07-27 United Technologies Corp Manufacturing a filament wound article
US5632602A (en) * 1993-10-15 1997-05-27 Deutsche Forschungsanstalt Fur Luft-Und Ramfarht E.V. Rotor blade
JP2001165033A (ja) * 1999-12-10 2001-06-19 Tenryu Ind Co Ltd 風力発電機用のプロペラブレードとその製造方法、及びプロペラブレード用の主桁とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2506992A (en) * 1945-02-26 1950-05-09 Curtiss Wright Corp Blade construction and propeller blade
US3691000A (en) * 1971-03-10 1972-09-12 Celanese Corp Glass fiber reinforced composite article exhibiting enhanced longitudinal tensile and compressive moduli
US4295790A (en) * 1979-06-21 1981-10-20 The Budd Company Blade structure for use in a windmill
US4728263A (en) * 1986-08-25 1988-03-01 Basso Robert J Wind turbine blade construction
US4909872A (en) * 1987-12-15 1990-03-20 United Technologies Corporation Process for making a fiber reinforced composite article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264278A (en) * 1977-10-31 1981-04-28 Oscar Weingart Blade or spar
US4273601A (en) * 1977-10-31 1981-06-16 Structural Composites Industries, Inc. Method for the production of elongated resin impregnated filament composite structures
US4381960A (en) * 1981-12-28 1983-05-03 United Technologies Corporation Method of manufacturing a filament wound article
GB2112740A (en) * 1981-12-28 1983-07-27 United Technologies Corp Manufacturing a filament wound article
US5632602A (en) * 1993-10-15 1997-05-27 Deutsche Forschungsanstalt Fur Luft-Und Ramfarht E.V. Rotor blade
JP2001165033A (ja) * 1999-12-10 2001-06-19 Tenryu Ind Co Ltd 風力発電機用のプロペラブレードとその製造方法、及びプロペラブレード用の主桁とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1808598A4 *

Also Published As

Publication number Publication date
US20080310964A1 (en) 2008-12-18
ES2459967T3 (es) 2014-05-13
CN100529388C (zh) 2009-08-19
CN101057073A (zh) 2007-10-17
PL1808598T3 (pl) 2015-05-29
EP1808598B1 (en) 2014-04-02
EP1808598A4 (en) 2012-08-22
ES2249182A1 (es) 2006-03-16
US8096778B2 (en) 2012-01-17
ES2249182B1 (es) 2007-05-01
EP1808598A1 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
ES2249182B1 (es) Viga estructural de la pala de un aerogenerador eolico y proceso de fabricacion de la misma.
ES2616704T3 (es) Método de producción de una estructura de revestimiento compuesto
ES2359655T3 (es) Procedimiento para fabricar un material compuesto.
ES2836525T3 (es) Procedimiento y dispositivo para fabricar un componente de un material compuesto de fibras
ES2444940T3 (es) Un procedimiento para reparar un miembro macizo compuesto de fibras
ES2274701A1 (es) Procedimiento de fabricacion de piezas huecas de grandes dimensiones a base de materiales de compuestos.
ES2959369T3 (es) Tiras pultruidas
ES2423186T3 (es) Estructura de plástico reforzado con fibra y método para producir la estructura de plástico reforzado con fibra
EP3103626A1 (en) Hybrid solid-inflatable mandrel for blade manufacturing and method of manufacturing a blade
US11396154B2 (en) Modular wind turbine blade and associated method of manufacture
ES2869238T3 (es) Palas de turbina eólica
US10179425B2 (en) Fibre preform for laying on a curved surface of a mould
ES2210787T3 (es) Grandes estructuras de nucleo compuesto formadas por un procedimiento de moldeo por transferencia de resina bajo vacio y metodo de fabricacion.
ES2861585T3 (es) Pala de turbina eólica con transición de fibra mejorada
EP2918399B1 (en) A method for manufacturing a rotor blade for a wind turbine
EP2772345B1 (en) Pressure tunable expandable mandrel for manufacturing a composite structure
ES2431602T3 (es) Pala de una turbina eólica
DK176418B1 (da) Fremgangsmåde til fremstilling af en fiberforstærket del til et vindenergianlæg
JP2001165033A (ja) 風力発電機用のプロペラブレードとその製造方法、及びプロペラブレード用の主桁とその製造方法
ES2279930T3 (es) Procedimiento de formacion de una estructura compuesta.
JP2007009926A (ja) 風力発電機用のプロペラブレード用の主桁とその製造方法
EP2918398B1 (en) A fiber-reinforced composite, a component and a method
ES2285483T3 (es) Metodo de fabricacion de un producto de plastico reforzado.
ES2194479T5 (es) Procedimiento para fabricar estructuras compuestas cerradas y aparato de moldeo a utilizar con dicho procedimiento
ES2927754T3 (es) Molde preliminar parcial giratorio para preforma

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580030674.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005793538

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005793538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11662850

Country of ref document: US