WO2006034654A1 - Procede de transmission adaptatif a debits multiples pour reseau local sans fil - Google Patents

Procede de transmission adaptatif a debits multiples pour reseau local sans fil Download PDF

Info

Publication number
WO2006034654A1
WO2006034654A1 PCT/CN2005/001617 CN2005001617W WO2006034654A1 WO 2006034654 A1 WO2006034654 A1 WO 2006034654A1 CN 2005001617 W CN2005001617 W CN 2005001617W WO 2006034654 A1 WO2006034654 A1 WO 2006034654A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
rate
transmission
current
transmission rate
Prior art date
Application number
PCT/CN2005/001617
Other languages
English (en)
French (fr)
Inventor
Feng Li
Fengguo Ma
Bo Sun
Yin Gao
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2006034654A1 publication Critical patent/WO2006034654A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to a data transmission technology for a wireless local area network, and more particularly to a method for multi-rate adaptive transmission of a wireless local area network.
  • the WLAN is usually based on the Carrier Sense Multiple Access Protocol (CSMA).
  • CSMA Carrier Sense Multiple Access Protocol
  • the improvements are as follows: split-channel reservation multiple access (SRMA), multiple access with collision avoidance (MACA) (multiple access with collision avoidance)
  • MACAW multiple access with collision avoidance
  • the improved collision avoidance multiple access protocol (MACAW), BAMA (floor acquisition multiple acess) and 802.11 protocols, etc., are generally based on the CSMA protocol.
  • the main issues that need to be addressed for multi-rate transmission in a WLAN are: transport class of service, channel quality estimation, and rate selection. Transmission services can be classified into delay-sensitive and non-delay-sensitive services according to the delay requirements.
  • the error-tolerant capability can be divided into fault-tolerant and non-error-tolerant services.
  • Channel quality estimation mainly uses the statistics of signal-to-noise ratio, signal strength, bit error rate, symbol error rate or frame error rate as the decision measure to measure the transmission quality of the channel.
  • the automatic rate stimuli protocol was proposed by Eddie Camoman et al.
  • the core idea is to adjust the transmission rate based on the success and failure times of previous transmissions. This is actually a rate adjustment system based on the frame error rate. After a certain number of successful transmissions between stations, the channel quality is considered to be reliable and the transmission rate is increased step by step. Conversely, if the transmission between stations fails, the channel quality is considered to be degraded. Reduce the transmission rate.
  • the transmission rate of each frame in the same transmission process is constant, so multi-rate transmission does not cause a change in duration, and is suitable when the channel change between stations is slow.
  • the receiver-based automatic rate protocol was proposed by Gavin. Holland, Natin Weidya and Pavlo Barr.
  • the core idea is to insert the transmission rate and frame of the frame in the duration subfield of the MAC frame header. long.
  • the transmission request for access is selected from the basic rate set to select the appropriate rate, and then the receiving station will estimate the channel quality information according to the received signal, adaptively adjust the transmission rate, and send the station and the acknowledgement frame returned by the receiving station.
  • the next data frame is transmitted at the same rate of transmission, and the station that does not participate in the communication corrects the network allocation vector in real time according to the data transmission rate and frame length included in the received signal.
  • the disadvantage of automatic rate strain protocol and receiver-based automatic rate protocol is that it cannot be in the network.
  • the choice of optimization rate when there are multiple services is not applicable to high-speed mobile wireless fading channels. Different types of services have different requirements for error characteristics and delays, and the length of the wireless channel and the transmitted data frame also change during transmission. Generally, the delay-sensitive service has high tolerance to errors, and the non-delay-sensitive service has higher requirements for error or frame error performance.
  • the above existing protocols do not comprehensively consider these factors related to the transmission rate.
  • the automatic rate-strain protocol is not applicable to the wireless mobile channel environment, because in the wireless mobile channel, the channel quality changes faster, the channel correlation time is short, and several successful or failed data transmission intervals are used as the channel quality statistical time window.
  • the receiver-based automatic rate protocol overcomes the shortcomings of the automatic rate-strain protocol that cannot adapt to the wireless mobile channel.
  • the protocol has a strong real-time rate change and is suitable for wireless mobile channels.
  • the main disadvantage of the protocol is that the sending station always sends the data frame at the sending rate of the acknowledgment frame returned by the receiving station.
  • the sending station or the receiving station cannot predetermine the transmission rate when sending the next frame, so it cannot be accurately set.
  • the duration field content has to be changed to the transmission rate and the transmission frame length so that the station does not participate in the communication corrects the network allocation vector.
  • wireless channels In addition to large-scale fading, wireless channels also have small-scale fading.
  • the channel state information of the physical channel changes rapidly.
  • a longer MAC Frames are often divided into small segments for transmission.
  • the network allocation vector correction method based on the receiver's automatic rate protocol is not only inferior to the existing protocol, but also because its duration field does not have the reservation effect on the next frame transmission channel and is not suitable for multi-segment transmission.
  • the frame length of the acknowledgement frame returned by the receiving station is usually much smaller than the data frame length sent by the transmitting station.
  • the frame error rate increases as the frame length increases, so that the receiving frame can reliably return the acknowledgement frame.
  • Sending data frames at the transmission rate is not statistically reliable. Therefore, the protocol is not applicable to wireless high-speed mobile channels and has poor compatibility.
  • the object of the present invention is to provide a method for multi-rate adaptive transmission of a wireless local area network, which solves the problem that the background technology cannot select multiple types of services in the network, and is not suitable for wireless channels, especially for wireless high-speed mobile.
  • the technical problem of the channel is to provide a method for multi-rate adaptive transmission of a wireless local area network, which solves the problem that the background technology cannot select multiple types of services in the network, and is not suitable for wireless channels, especially for wireless high-speed mobile.
  • a method for multi-rate adaptive transmission of a wireless local area network comprises: transmitting and receiving mutually exchanging transmission rate information or information related to a transmission rate in a communication process; according to the foregoing transmission rate information or information related to a transmission rate, Adjust the current transmission rate separately; and transmit the data at the adjusted current rate.
  • the transmission rate information includes: transmitting a current transmission frame rate, a transmission rate of a receiving end acknowledgement frame, and an estimated rate of a next transmission frame, or transmitting a current transmission frame rate and transmitting a confirmation frame of the receiving end rate.
  • the method wherein the process of adjusting a current transmission rate comprises: dividing a transmission rate For multiple levels, the higher the level, the faster the rate is, and the lowest rate is defined as the basic rate.
  • the station transmits data according to the current transmission frame rate, and the initial transmission current frame rate and the receiving end acknowledgement frame transmission rate are set and set. For the basic rate.
  • the transmission current frame rate and the transmission rate of the acknowledgment frame of the receiving end may not be equal, so as to be able to correctly transmit the first transmission frame and the return frame as Suitable for.
  • the receiving station sends the transmission rate value of the receiving end acknowledgement frame in the currently received transmission frame as the current frame transmission rate of the return frame, Transmit the current transmit frame rate to send a return frame.
  • the method wherein, in the data frame transmission, if the sending station still has a frame transmission, the receiving station performs statistics on the channel quality according to the received sending frame, and calculates a next sending frame length, and the receiving party is based on the current service category.
  • the quality of service requirements consider the channel quality, the next transmission frame length, the channel coding, and the modulation and demodulation method factors to estimate the transmission rate of the next transmission frame, and fill this value into the receiving end to acknowledge the transmission rate of the frame.
  • the method, wherein the adjusting of the transmission rate during the communication process is determined by the information related to the transmission rate includes: defining a rate factor, which is a combination of channel quality information and a current service category The statistical value obtained by the error characteristic of the current channel quality information, the length of the next transmission frame, and the corresponding return frame length, channel coding, and modulation and demodulation factors are used to determine the return frame corresponding to the next transmission frame.
  • a rate factor which is a combination of channel quality information and a current service category
  • the statistical value obtained by the error characteristic of the current channel quality information, the length of the next transmission frame, and the corresponding return frame length, channel coding, and modulation and demodulation factors are used to determine the return frame corresponding to the next transmission frame.
  • the receiving party may calculate the sending rate of the acknowledgement frame of the receiving end by the above algorithm, and fill in the estimated rate field of the next sending frame to notify the sending party by returning the frame, and the sender fills the estimated rate field value of the one sending frame into the current transmitting frame.
  • the receiving end confirms the sending rate of the frame; the sender may also calculate the sending rate of the acknowledgement frame at the receiving end by using the above algorithm on the premise of knowing the rate factor and This value is used as the transmission rate of the acknowledgement frame of the receiving end of the current transmission frame.
  • the rate factor is obtained by a statistical result, and the rate factor may be a recognized empirical value of the receiving and transmitting station before the beginning of the transmission process, and the information is not exchanged during the transmission; or the real-time statistics are received by the receiving station during the communication process.
  • the measured value, and the value is directly or implicitly implied in other parameters by the return frame to inform the sending station.
  • the method wherein the station that does not participate in communication does not interfere with ongoing communication, including: • a) duration setting;
  • the transmitting station transmits the return frame, the return frame of the next transmission frame, and the current transmission rate based on the transmission rate of the receiving end acknowledgement frame in the current transmission frame, considering the interframe space.
  • the time taken by the transmission frame rate to send the next transmission frame is set; if the last transmission frame is sent, the sending station sets the duration of the time taken to send the return frame at the transmission rate of the receiving end acknowledgement frame;
  • the receiving station calculates the next transmission frame according to the duration of the received current transmission frame, the current transmission frame rate, the transmission rate of the receiving end acknowledgement frame, and the return frame length. a frame length; in turn, the next transmission frame is transmitted according to the transmission rate of the receiving end acknowledgement frame in the current return frame, and the time taken to transmit the next return frame at the return frame rate corresponding to the next transmission frame is set; Is the last return frame and the duration is set to zero;
  • a station that does not participate in communication listens to the data frame being transmitted, adds the time at which the data frame is completely received, and the duration in the data frame to obtain a network allocation vector, and the station that does not participate in the communication uses the newly obtained network allocation.
  • the vector replaces the old network assignment vector.
  • the method wherein the data frame transmission includes requesting to send a frame, allowing transmission, data segmentation, and transmission of an acknowledgement frame.
  • the information related to the transmission rate includes: a currently transmitted service category, channel quality information, a next transmission frame length, and a corresponding return frame length, channel coding, and a modulation and demodulation method. information.
  • the channel quality is determined according to statistics of a signal to noise ratio, a signal strength, a bit error rate, a symbol error rate, and a frame error rate.
  • the invention provides a method for multi-rate adaptive transmission of a wireless local area network, wherein in the data transmission process, the information transmission rate can be adaptively changed according to the channel state according to the physical frame segment; therefore, the present invention is suitable for high-speed mobile wireless fading channel.
  • the transmission rate of the frame is not only related to the channel quality information, but also related to the transmission service and the transmission frame length.
  • the transmitting station not only knows the information rate of the currently transmitted frame. At the same time, it also knows the sending rate of the acknowledgement frame returned by the peer. Therefore, the present invention makes the probability of successful frame transmission of different frame lengths of the same service statistically equal, and different services can obtain an optimal transmission rate according to the requirements of the service quality, so that the network The overall performance of the network is improved.
  • FIG. 1 is a flow chart showing a method of transmitting data in a wireless local area network according to a preferred embodiment of the present invention
  • FIG. 2 is a detailed flowchart of a method of transmitting data in a wireless local area network according to the present invention
  • 3A and 3B are schematic views respectively showing a frame structure and a frame header structure of the method of the present invention.
  • FIG. 4 is a schematic diagram of a method for maintaining a network allocation vector of the method of the present invention.
  • a frame transmitted from a transmitting direction to a receiving side is referred to as a "transmission frame”
  • a frame returned from a receiving direction to a transmitting side is referred to as a "returning frame”
  • a frame structure is as shown in FIGS. 3A and 3B, including
  • the preamble, PLCP header information (PLCP Header), and the PLCP header information contain physical parameters related to data transmission. These parameters include: Signaling (SIGNAL), Service (SERVICE), Length of data to be transmitted (LENGTH), and 16-bit CRC.
  • SIGNAL Signaling
  • SEVSICE Service
  • LENGTH Length of data to be transmitted
  • 16-bit CRC 16-bit CRC
  • a method for multi-rate adaptive transmission of a wireless local area network includes: the transmitting and receiving parties exchange transmission rate and service category information or information related to the transmission rate in the communication process. Adjusting the current rate according to the above transmission rate and service class information or information related to the transmission rate; and transmitting data at the adjusted current rate, and the adjustment of the transmission rate during the communication is determined by the information related to the transmission rate, and does not participate The communicating site is guaranteed not to interfere with ongoing communications.
  • the above transmission rate and service information or information related to the transmission rate include: transmission current transmission frame rate (hereinafter referred to as RATE), transmission rate of the acknowledgement frame of the receiving end (hereinafter collectively referred to as rRATE), and estimated rate of the next transmission frame (eRATE) And transfer the current service category (SC).
  • RATE transmission current transmission frame rate
  • rRATE transmission rate of the acknowledgement frame of the receiving end
  • eRATE estimated rate of the next transmission frame
  • SC transfer the current service category
  • the eRATE implies a rate factor
  • the information related to the channel quality has a one-to-one correspondence with the transmission rate and the service information
  • the transmission rate and the service information exchange are equivalent to the information exchange related to the transmission rate.
  • the above adjustment of the current rate includes: dividing the transmission rate into ⁇ ⁇ levels, the higher the level, the faster the rate.
  • the VI has the lowest rate, defined as the base rate, and the highest Vp rate, which is the highest rate.
  • the station transmits data according to the current transmission frame rate, where the initial RATE and rRATE can be set to the base rate VI. If the sender has statistical information of the rate information, it can also select a rate higher than the basic rate according to the statistical information as the initial ATE and rRATE, and RATE and rRATE can Not waiting. However, the precondition is to fully guarantee that the first transmitted frame and the returned frame can be correctly transmitted with the initial RATE and rRATE.
  • the receiving station After receiving the transmission frame, the receiving station uses the rRATE value in the currently received transmission frame as the RATE of the return frame, and sends the return frame according to the RATE; if the transmitting station still has frame transmission, the receiving station according to the received transmission frame pair The channel quality is counted, the next transmission frame length is calculated, and the service quality requirement of the service for the error frame and the delay is obtained by the current delivery service category, and the receiver considers the channel quality according to the current service quality requirements.
  • the transmission frame length, channel coding, and modulation and demodulation factors estimate the transmission rate of the next transmission frame, and the value is filled in the rRATE notification transmission station.
  • the above adjustment of the transmission rate in the communication process is determined by the information related to the transmission rate, and the process includes: defining a rate factor 3, which is the channel quality information, and the error of the currently transmitted service class corresponding to the current channel quality information.
  • the statistical value obtained by the characteristics, the length of the next transmission frame, and the corresponding return frame length, channel coding, and modulation and demodulation factors.
  • the receiving site can be derived from the following algorithm: eRATE:
  • the receiving station directly informs the sender of the eRATE through the return frame, and the sender uses the eRATE value as the rRATE of the current transmitted frame;
  • the receiving station after the receiving station receives the return frame, if there is still a sending frame to be sent, the receiving station notifies the sending station of the rate factor a through the return frame, and the transmitting station receives the return frame after receiving the return frame.
  • the speed factor a can be obtained by statistical results.
  • the rate factor can be a recognized empirical value of the receiving and transmitting station before the transmission process starts, and the information is not exchanged during the transmission; or the measured value measured by the receiving station in real time during the communication process, and the The value is directly or implicitly notified in the other parameters (such as eRATE) by returning the frame to the sending station.
  • the above-mentioned sites that do not participate in communication can ensure that they do not interfere with ongoing communication, including: 1) duration setting;
  • the transmitting station If the last transmitted frame is not sent, the transmitting station considers the interframe space, and sets the duration of the return frame with rRATE, the return frame for the next transmitted frame, and the time for sending the next transmitted frame with RATE. ; if the last frame sent is sent, the sending station presses rRATE The time taken to send a return frame sets the duration.
  • the receiving station can calculate the frame length of the next transmission frame according to the duration, RATE, rRATE, and return frame length contained in the received current transmission frame. After the receiving station determines the return frame corresponding to the current transmission frame, the RATE and rRATE of the return frame are also determined, and the receiving station can learn the rate factor a, so the rRATE can be calculated according to the return frame. Corresponding return frame transmission rate, and further, taking into account the interframe space, the duration of time taken to transmit the next transmission frame and the return frame corresponding to the next transmission frame by rRATE of the return frame; The last acknowledgement frame sent is set to zero duration.
  • the transmitting station can accurately set the duration when transmitting the last transmission frame, and the receiving station can accurately set the duration when transmitting the last return frame.
  • Such a setting method can ensure the occupation of the channel by the receiving station, and release the occupation of the channel at the end of the communication.
  • a station that is not involved in communication can listen to the data frame being transmitted, add the time at which the data frame is completely received, and the duration in the data frame, and thereby obtain a network allocation vector.
  • a site that does not participate in communication replaces the old network allocation vector with the newly obtained network allocation vector.
  • the foregoing transmission rate information may use a physical frame header or a medium access control layer frame control field to transmit a current transmission frame rate and a transmission rate of a receiving end acknowledgement frame.
  • the above data frame transmission may include requesting to send a frame, allowing a transmission frame, data segmentation, and transmission of an acknowledgement frame.
  • the foregoing transmission rate related information includes: a currently transmitted service class, channel quality information, a next transmission frame frame length, and a corresponding return frame frame length, channel coding, and modulation and demodulation mode information.
  • the above channel quality can be determined based on statistics of signal to noise ratio, signal strength, bit error rate, symbol error rate, or frame error rate.
  • the specific implementation method of the present invention is:
  • Transmission Rate Information The method of the present invention establishes a RATE field and an rRATE field in a physical frame header or a control layer frame control field, respectively for transmitting the current transmission frame rate and the value of the transmission rate of the frame returned by the receiving end.
  • Rate change mode According to the method of the present invention, the rate is divided into V1 ⁇ Vp levels. The higher the level, the faster the rate, the lowest VI rate is the basic rate, and the highest Vp rate is the highest rate.
  • the RTS and CTS frames in the control frame are transmitted at an initial rate, and the subsequent data segments and corresponding return frames are related according to the transmission rate.
  • the information is adaptively adjusted between the minimum rate and the maximum rate; the information related to the transmission rate includes the currently transmitted service class, channel quality information, data frame length, channel coding, and modulation and demodulation mode information, wherein the channel quality may be based on Signal to noise ratio, signal strength, bit error rate, false symbol rate Or the statistics of the frame error rate to determine. It should be noted that when the data frame is not long, there is only one data segment in the data frame transmission.
  • the transmitting station in the data transmission process, not only knows the information rate of the currently transmitted frame, but also knows the transmission rate of the acknowledgement frame returned by the opposite end.
  • the first transmission frame in the data transmission, the current transmission frame rate field and the transmission rate field of the receiving end acknowledgement frame are transmitted at an initial rate, and the subsequent transmission frame transmission rate can adaptively follow the information related to the transmission rate. Change and change.
  • the receiving station After receiving the transmission frame, if the transmitting station still has data to send, the receiving station performs statistics on the channel quality according to the received transmission frame, calculates the next transmission frame length, and obtains the service error frame by the current delivery service category. And the service quality requirement of the delay, the receiver estimates the transmission speed of the next transmission frame according to the channel quality, the next transmission frame length, the channel coding, and the modulation and demodulation method according to the current service quality requirements; The value is sent to the site as rRATE notification.
  • the rRATE value in the currently received return frame is used as the RATE of the transmitted frame, and if there is eRATE in the current return frame, eRATE is taken as rRATE; If there is no eRATE in the current return frame, the receiving rate is calculated according to the rate factor a and the RATE of the current transmitted frame and filled with the rRATE value.
  • the calculation method of rRATE in the transmitting frame is as follows: rRATE estimated value a* RATE;
  • the sending station uniformly uses the information rate of the current transmitting frame to transmit the time duration corresponding to the receiving end acknowledgement frame, the next transmission frame, and the corresponding receiving end acknowledgement frame of the current transmission frame; The last frame, the sending station confirms the frame transmission rate according to the receiving end, and the receiving end confirms the frame frame length setting duration. It should be noted that since the current transmit frame rate and the peer acknowledgement frame rate in the transmit data frame of the transmitting station are always equal, that is, the transmission rate of the acknowledgement frame of the frame sent by the transmitting station and the frame returned by the receiving station are equal, The setting method can ensure the occupation of the channel by the transmitting station, and release the occupation of the channel at the end of the communication.
  • the receiving station can calculate the frame length of the next received frame according to the duration of the received frame, the information rate of the current transmitted frame, and the acknowledgement frame length of the receiving end, and then can be confirmed by the receiving end.
  • the transmission rate of the frame sends the time of the next received frame and the corresponding receiving end to confirm the frame. If the last acknowledgement frame is sent, the duration is set to zero.
  • the setting method can ensure the receiving site's occupation of the channel, and The end of communication releases the occupancy of the channel on time.
  • a station that is not involved in communication can listen to the data frame being transmitted, add the time at which the data frame is completely received, and the duration in the data frame, and thereby obtain a network allocation vector.
  • a site that does not participate in communication replaces the old network allocation vector with the newly obtained network allocation vector.
  • a sending frame is sent from a sending direction to a receiver at a current rate, where the frame includes a sending rate of the acknowledgement frame and a service class of the receiving end.
  • transmitting a frame in a wireless local area network may include: an RTS (Request To Send) frame, a data frame, etc.; respectively, corresponding to the transmitted frame, the return frame may include: CTS (Clear To Send) frame, ACK (acknowledgement) frame, etc.
  • the transmission rate of the return rate and the transmission rate of the next transmission frame return frame or the information related to the transmission rate and the rate factor a are transmitted from the reception direction in the reception direction of the reception side acknowledgment frame in the currently received transmission frame.
  • the receiver may receive the transmission frame sent by the sender, evaluate the channel quality according to the received result, and combine the description of the transmitted service class with the transmitted service class, the next transmission frame length, and the return frame frame length.
  • the method of the present invention is not particularly limited as to how to evaluate the channel quality and how to determine the optimum transmission rate according to the channel quality, and any method known to those skilled in the art can be employed. Some methods are exemplarily enumerated in the preferred embodiments of the invention described later, but the method of the invention is not limited to these specific embodiments.
  • the current rate is adjusted based on the returned information related to the transmission rate or the transmission rate. Specifically, corresponding to the step of returning information before, if the information related to the transmission rate is returned from the receiver, the sender further determines an optimal transmission rate according to the quality information to adjust the current rate; if from the receiver Returning information indicating the optimal transmission rate, the sender can directly update the current rate according to the information.
  • step 115 the next transmission frame is transmitted from the transmitting direction to the receiver at the adjusted current rate.
  • the method for transmitting data in the WLAN of the embodiment can transmit data at different rates according to the transmission service, the channel quality, and the transmission frame length, thereby adapting to the requirements of the transmission service and Changes in channel quality caused by movement or other causes.
  • FIG. 2 is a flow diagram showing a preferred embodiment of the method of the present invention.
  • an initial RATE, rRATE is set.
  • the transmission rate is divided into a plurality of stages V1 to VP, where VI is the basic rate (lowest rate) and VP is the highest rate.
  • the initial RATE, rRATE can be set to the base rate VI. If the sender has the channel quality statistics, a rate higher than the base rate can be selected as the initial current rate based on the statistics. However, the precondition is to fully guarantee that the first transmitted frame and the returned frame can be correctly transmitted at the initial current rate.
  • step 210 the RTS frame is transmitted from the transmitting direction to the receiver at the initial RATE.
  • a data transmission is typically initiated in the WLAN, first by the sender sending an RTS frame as a request.
  • the receiver after receiving the RTS request, the receiver returns a CTS frame with the initial rRATE in the RTS as the RATE. Specifically, the receiver receives the RTS frame sent by the sender, evaluates the channel quality according to the received result, and then determines an optimal combination of information such as the service class included in the RTS frame and the data frame length implied in its duration. a transmission rate such as V4 and a rate factor a, and including information indicating the optimal transmission rate and a transmission rate of the next transmission frame return frame or the information and rate factor of the optimal transmission rate in the CTS return frame returned to the sender a.
  • a transmission rate such as V4 and a rate factor a
  • step 220 the sender adjusts RATE, rRATE such as V4, V5 according to the optimal transmission rate information in the CTS frame and the transmission rate of the next transmission frame return frame or the information of the optimal transmission rate and the rate factor a.
  • step 225 a data frame is transmitted from the transmitting direction to the receiver with the adjusted RATE.
  • the sender returns an Ack frame from the receiving direction in the same manner as the adjusted RATE.
  • the receiver receives the data frame sent by the sender, evaluates the channel quality based on the received result, and then determines the next data frame length implied in the duration of the current transmission service category and the data frame.
  • the information determines an optimal transmission rate, an optimum transmission rate and rate factor a, and includes information indicating the optimal transmission rate and the transmission rate of the next transmission frame return frame in the Ack return frame returned to the sender. Or the information of the optimal transmission rate and the rate factor a.
  • step 235 it is determined whether there is still a data frame to be transmitted. If the determination is YES, proceed to step 240, according to rRATE, eRATE or rRATE and rate factor a in the ACK, the sender adjusts RATE, rRATE, which is the same as step 220 described above; then, returns to step 225 to repeat execution. Steps 225 to 240, until no data frames need to be transmitted.
  • step 235 If the decision at step 235 is "NO”, then the process ends at step 245.
  • the reserved time length information is stored in the RTS and CTS frames, and the RTS is 20 bytes.
  • the CTS is 14 bytes.
  • Other stations that do not participate in data transmission receive the RTS/CTS frame, update the NAV (network allocation vector) value after obtaining the duration information, and reserve the channel bandwidth for the data exchange between the sender and the receiver of the contention channel, such as Figure 4 shows.
  • the method of the present invention sets the duration for the transmission frame when transmitting each transmission frame from the transmitting direction to the receiving side, for example, steps 105 and 115 of Fig. 1 and steps 210 and 225 of Fig. 2, respectively.
  • the duration of the transmission frame is first calculated based on the time taken to transmit the return frame corresponding to the transmission frame, the next transmission frame, and the return frame corresponding to the next transmission frame at the current rate. Then, the calculated duration of the transmission frame is set in the duration field of the transmission frame.
  • the CTS return frame corresponding to the RTS is transmitted with the initial rRATE, and the next data transmission frame is transmitted with the initial RATE (to be transmitted in step 225).
  • the data frame) and the time taken to transmit the return frame corresponding to the next transmission frame in the initial rRATE should also include the interval time between these frames (SIFS).
  • the data is calculated in step 225 of FIG.
  • it should calculate the Ack return frame corresponding to the data transmission frame with the adjusted rRATE transmission, and transmit the next data transmission frame with the adjusted RATE (if any, the next loop executes step 225).
  • the processed data frame) and the time taken to transmit the Ack return frame corresponding to the next transmitted frame with the adjusted rRATE should also include the time interval between these frames (SIFS).
  • the duration is set for the return frame upon returning from the receiving direction to each of the return frames (e.g., in steps 215, 230 of Figure 2).
  • the frame length of the next transmission frame is calculated based on the received duration of the transmission frame corresponding to the return frame, RATE, rRATE, and the frame length of the return frame.
  • calculating the duration of the return frame the duration of the return frame corresponding to transmitting the next received frame according to the transmission rate indicated by the information related to the transmission rate or channel quality, and the return frame derived at the rate and rate factor The rate at which the rate is sent back to the return frame corresponding to the next transmitted frame.
  • the calculated duration of the return frame is set in the duration field of the return frame.
  • L2 (D1 - 3 * SIFS) * VI - 2 * L1 * V1/ V2.
  • other stations in the network that do not participate in the communication monitor each of the transmission frame and the return frame, and update the NAV value according to the duration recorded therein. In this way, even in the case of a change in the transmission rate, an accurate update of the NAV value of each node in the WLAN can be ensured, and further resources can be saved while avoiding collisions.
  • the information transmission rate can be adaptively changed according to the channel state according to the physical frame segment; therefore, the present invention is applicable to a high speed mobile wireless fading channel.
  • the method of the invention also adopts a rate information exchange technology, and the transmission rate of the frame is not only related to the channel quality information, but also related to the frame length, and the transmitting station not only knows the information rate of the currently transmitted frame, but also knows that the opposite end returns The transmission rate of the acknowledgment frame. Therefore, the present invention is not only compatible with the existing fixed rate transmission protocol, but also the probability of successful frame transmission of different frame lengths is statistically equal, so that the network performance is improved as a whole.
  • the method of the invention realizes the multi-speed ⁇ f special vehicle of the fully connected network by updating the network allocation vector in time.

Description

一种无线局域网多谏率自适应传输的方法
技术领域
本发明涉及无线局域网的数据传输技术, 尤其涉及一种无线局域网多速 率自适应传输的方法。
背景技术
无线局域网通常是基于载波侦听多址协议 CSMA的, 其改进方式有: 信道 分裂预约多址接入 SRMA (split-channel reservation multiple access) 、 冲突避免多址接入协议 MACA (multiple access with collision avoidance)、 改进的冲突避免多址接入协议 MACAW、 底部获取多址接入协议 FAMA (floor acquisition multiple acess)和 802. 11等协议, 本发明所指的无线局域网 一般都是基于 CSMA协议。在无线局域网中进行多速率传输需要解决的主要问 题是: 传输业务类别、 信道质量估计和速率选择。 传输业务按对时延要求通 常可以分为时延敏感和非时延敏感两大类业务, 按对耐错误能力通常可以分 为耐错和非耐错两大类业务。 信道质量估计主要是以信噪比、 信号强度、 误 比特率、 误符号率或误帧率的统计作为判决测度来衡量信道的传输质量。
在无线局域网中, 现行的速率选择方法目前主要有两种: 一种是 "自动 速率应变(Auto Rate Fallback)协议", 另一种是 "基于接收机的自动速 率 (Receiver Based Auto Rate)协议" 。 .
自动速率应变协议是由艾迪.卡莫曼等人提出的, 其核心思想是, 以前 面传输的成功和失败次数为依据来调整传输速率。这实际是一种依误帧率的 速率调整体制, 当站点间成功传输一定次数后, 认为信道质量可靠进而逐级 提高传输速率; 反之, 如果站点间传输失败, 则认为信道质量下降而逐级降 低传输速率。 根据该协议同一次传输过程中各帧的传输速率是不变的, 因此 多速率传输不会引起持续时间的变化,在站点间信道变化缓慢时,较为适用。
基于接收机的自动速率协议是由盖文.荷兰德、 奈廷.魏德亚和帕偌沃. 巴尔提出的, 其核心思想是在 MAC帧头的持续时间子域中插入该帧的发送速 率和帧长。 传输初始时, 用于接入的发送请求从基本速率集中选择合适的速 率发送, 随后接收站点将根据接收信号估计信道质量信息, 自适应地调整发 送速率, 发送站点以和接收站点返回的确认帧发送速率相同的速率发送下一 数据帧, 不参与通信的站点则根据接收信号中包含的数据发送率和帧长, 即 时修正网络分配矢量。
除了以上两种多速率传输协议, 无线局域网中还有一种双信道时隙 AL0HA多速率传输协议, 该协议采用独立的控制信道用于传输速率的设置, 由于占用信道资源过多, 故实际中很少使用。
自动速率应变协议和基于接收机的自动速率协议的缺点是, 不能在网络 中存在多种业务时优化速率的选择, 不适用于高速移动无线衰落信道。 不同 类别的业务对误码特性、 时延的要求是不同的, 传输过程中无线信道和传输 数据帧长也是变化的。 通常时延敏感业务对错误的容忍能力高, 非时延敏感 业务对误码或误帧性能要求比较高, 上述现有协议没有综合考虑这些与传输 速率相关的因素。 另外, 自动速率应变协议不适用于无线移动信道环境, 因 为在无线移动信道中, 信道质量的变化较快, 信道的相关时间短, 以数次成 功或失败的数据传输间隔作为信道质量统计时间窗时间太长, 从而使得信道 质量统计不可靠, 传输吞吐率下降。 基于接收机的自动速率协议克服了自动 速率应变协议不能适应无线移动信道的缺点, 该协议速率变化实时性强, 适 用于无线移动信道。 但该协议最主要的缺点是: 发送站点总是以接收站点返 回的确认帧的发送速率发送数据帧, 发送站点或接收站点都不能预先确定自 己发送下一帧时的传输速率, 因此不能准确设置到整个传输结束时的持续时 间, 不得不将持续时间字段内容改为发送速率和发送帧长以便不参与通信的 站点修正网络分配矢量。 无线信道除了有大尺度衰落, 同时还存在小尺度衰 落, 当站点高速移动时, 物理信道的信道状态信息变化较快, 为了可靠地通 信, 对传输帧长须有一定限制, 一个较长的 MAC帧往往要分成多个小段传输。 基于接收机的自动速率协议的网络分配矢量修正方法不仅和现有协议兼容 性差, 更因为其持续时间字段已不具备对下一帧传输信道占用的预约作用而 不适用于多段传输。 另外接收站点返回的确认帧帧长通常远小于发送站点发 送的数据帧长, 在相同误码率情况下, 误帧率随着帧长的加长而增高, 以接 收站点能可靠返回的确认帧的发送速率发送数据帧, 从统计意义上讲并不可 靠。 因此该协议不适用于无线高速移动信道, 兼容性差。
因此, 现有技术存在缺陷, 而有待于改进和发展。 发明内容
本发明的目的在于提供一种无线局域网多速率自适应传输的方法, 解决 了背景技术不能在网络中存在多种业务时优化速率的选择, 不适应于无线信 道, 尤其是不适应于无线高速移动信道的技术问题。
本发明的技术解决方案是:
一种无线局域网多速率自适应传输的方法, 其中, 该方法包括:收发双 方在通信过程中相互交换传输速率信息或与传输速率相关的信息; 根据上述 传输速率信息或与传输速率相关的信息, 分别调整当前传输速率; 以及以调 整后的当前速率传输数据。
所述的方法, 其中, 所述与传输速率信息包括: 传输当前发送帧速率、 接收端确认帧的发送速率和下一个发送帧的估计速率, 或传输当前发送帧速 率和接收端确认帧的发送速率。
所述的方法, 其中, 所述调整当前传输速率的过程包括: 将 输速率分 为多个等级,等级越高速率越快,定义最低速率为基本速率;数据帧传输中, 站点根据当前发送帧速率发送数据, 初始传输当前发送帧速率和接收端确认 帧的发送速率并被设置为基本速率。
所述的方法, 其中, 在所述调整当前传输速率的过程中, 如果在发送方 具有传输速率或与传输速率相关的信息的统计信息, 则根据该统计信息选择 髙于基本速率的速率作为初始传输当前发送帧速率和接收端确认帧的发送 速率和当前传输业务类别, 传输当前发送帧速率和接收端确认帧的发送速率 可以不相等, 以能够正确地传送第一个发送帧和返回帧为适合。
所述的方法, 其中, 在数据帧传输中, 接收站点在接收到发送帧后, 将 当前接收的发送帧中的接收端确认帧的发送速率值作为返回帧的传输当前 发送帧速率, 以该传输当前发送帧速率发送返回帧。
所述的方法, 其中, 所述数据帧传输中, 如果发送站点仍有帧发送, 所 述接收站点根据接收的发送帧对信道质量进行统计, 计算下一发送帧长, 接 收方依据当前业务类别对服务质量的要求综合考虑信道质量、下一发传输帧 长、 信道编码、 调制解调方式因素估计出下一发送帧的发送速率, 并将该值 填入接收端确认帧的发送速率通知发送站点。
所述的方法, 其中, 所述在通信过程中传输速率的调整由与传输速率相 关的信息确定的过程包括: 定义一速率因子, 该速率因子是综合了信道质量 信息、 当前传输的业务类别相应于当前信道质量信息的误码特性、 下一发送 帧帧长及与之相应的返回帧帧长、 信道编码、 调制解调方式因素得到的统计 值, 用于确定下一发送帧相应的返回帧的发送速率;
所述发送站点收到返回帧后, 如果仍有发送帧要发送, 则将当前接收的 返回帧中的接收端确认帧的发送速率值作为该发送帧的传输当前发送帧速 率, 发送发送帧; 根据速率因子计算并填入接收端确认帧的发送速率值然后 通知接收站点, 所述发送帧中接收端确认帧的发送速率的计算方法如下: 接收端确认帧的发送速率估计值 =速率因子 *传输当前发送帧速率; 其 中
若接收端确认帧的发送速率估计值 最高传输速率, 接收端确认帧的发 送速率 =最高传输速率;
若接收端确认帧的发送速率估计值 最低传输速率, 接收端确认帧的发 送速率 =最低传输速率;
其他情况, 则有接收端确认帧的发送速率 =速率因子 *传输当前发送帧 速率。
接收方可以上述算法计算出接收端确认帧的发送速率, 并填写在下一个 发送帧的估计速率字段通过返回帧通知发送方, 发送方将该一个发送帧的估 计速率字段值填入当前发送帧的接收端确认帧的发送速率; 也可以由发送方 在获知速率因子的前提下, 依靠上述算法计算出接收端确认帧的发送速率并 将该值作为当前发送帧的接收端确认帧的发送速率。
所述的方法, 其中, 所述速率因子通过统计结果得到, 速率因子可以是 传输过程开始以前收发站点公认的经验值, 无须在传输过程中交换该信息; 或者是通信过程中由接收站点实时统计的测量值, 并将该值直接或隐含在其 他参数中通过返回帧通知所述发送站点。
所述的方法,其中,所述不参与通信的站点不干扰正在进行的通信包括: • a)持续时间设置;
如果发送的不是最后一个发送帧, 发送站点在考虑了帧间间隔的基础 上, 按以当前发送帧中的接收端确认帧的发送速率发送返回帧、 下一发送帧 的返回帧以及以传输当前发送帧速率发送下一发送帧所花的时间设置持续 时间; 如果发送的是最后一个发送帧, 发送站点按以接收端确认帧的发送速 率发送返回帧所花时间设置持续时间;
如果发送的不是最后一个返回帧, 接收站点根据接收到的当前发送帧中 所含的持续时间、 传输当前发送帧速率、 接收端确认帧的发送速率、 返回帧 帧长计算出下一发送帧的帧长; 进而可以按当前返回帧中接收端确认帧的发 送速率发送下一发送帧和以与下一发送帧相应的返回帧速率发送该下一返 回帧所花时间设置持续时间; 如果发送的是最后一个返回帧则持续时间设为 零;
b ) 网络分配矢量的计算和更新;
没有参与通信的站点侦听到正在传输的数据帧, 将完整接收数据帧的那 一时刻和该数据帧中的持续时间相加, 得到网络分配矢量, 没有参与通信的 站点用新得到的网络分配矢量替换旧有的网络分配矢量。
所述的方法, 其中, 所述数据帧传输包括请求发送帧、 允许发送、 数据 分段及确认帧的发送。
所述的方法, 其中, 所述与传输速率相关的信息包括: 当前传输的业务 类别、信道质量信息、下一发送帧帧长及与之相应的返回帧帧长、信道编码、 调制解调方式信息。
所述的方法, 其中, 所述信道质量根据信噪比、 信号强度、 误比特率、 误符号率、 误帧率的统计来确定。
本发明所提供的一种无线局域网多速率自适应传输的方法, 由于在数据 传输过程中, 信息传输速率可根据信道状态依物理帧分段自适应地变化; 故 本发明适用于高速移动无线衰落信道。
同时采用了速率和业务信息和或与传输速率相关信息的交换技术, 帧的 发送速率不仅和信道质量信息有关, 还和传输业务、 传输帧长有关, 发送站 点不仅确知当前发送帧的信息速率, 同时还确知对端返回的确认帧的发送速 率。 因此本发明使得相同业务不同帧长的帧传输成功的概率在统计意义上是 平等的, 不同业务按其对服务质量的要求可以获得最优的传输速率, 使得网 络性能获得整体的提高。 附图概述
以下结合附图, 通过对本发明具体实施方式的详细说明, 将能够使人们 更好地了解本发明上述的特点、 优点和目的。
图 1示出的是本发明的较佳实施例的无线局域网中传输数据的方法的流 程图;
图 2是本发明的无线局域网中传输数据的方法的详细流程图;
图 3A和图 3B分别示出的是本发明方法的帧结构以及帧头结构的示意 图;
图 4为本发明方法的维护网络分配矢量的方法示意图。
本发明的最佳实施方式
下面就结合附图对本发明的各个优选实施例进行详细的说明。
在本发明中将从发送方向接收方发送的帧称为 "发送帧", 而从接收方 向发送方返回的帧称为 "返回帧", 帧结构如图 3A和图 3B所示的, 其中包括 前导码、 PLCP头信息 (PLCP Header) , PLCP头信息中包含了与数据传输相 关的物理参数。 这些参数包括: 信令 (SIGNAL) 、 业务 (SERVICE) 、 将要 传输的数据的长度 (LENGTH)和 16位的 CRC校验码。 接收机将按照这些参数 调整接收速率、 选择解码方式、 决定何时结束数据接收。
本发明的一种无线局域网多速率自适应传输的方法, 如图 1和图 2所示 的, 该方法包括:收发双方在通信过程中相互交换传输速率和业务类别信息 或与传输速率相关的信息; 根据上述传输速率和业务类别信息或与传输速率 相关的信息, 调整当前速率; 以及以调整后的当前速率传输数据, 在通信过 程中传输速率的调整由与传输速率相关的信息确定, 不参与通信的站点能够 保证不干扰正在进行的通信。
上述传输速率和业务信息或与传输速率相关的信息, 包括: 传输当前发送帧 速率(以下统称 RATE) 、 接收端确认帧的发送速率(以下统称 rRATE)、 下一 个发送帧的估计速率(eRATE)和传输当前业务类别 (SC) 。 需要说明的是, eRATE隐含了速率因子, 与信道质量有关的信息与传输速率和业务信息是一 一对应的, 传输速率和业务信息交换等同于与传输速率相关的信息交换。 上述调整当前速率包括:将传输速率分为 νι〜νΡ个等级,等级越高速率越快,
VI速率最低, 定义为基本速率, Vp速率最高, 为最高速率。在数据帧传输中, 站点根据当前发送帧速率发送数据, 在此, 初始 RATE和 rRATE可以被设置为 基本速率 VI。 如果在发送方具有速率信息的统计信息, 则也可以根据该统计 信息选择高于基本速率的速率作为初始 ATE和 rRATE,而且 RATE和 rRATE可以 不等。 但是, 前提条件是要充分保证以该初始 RATE和 rRATE能够正确地传送 第一个发送帧和返回帧。
所述接收站点在接收到发送帧后, 将当前接收的发送帧中的 rRATE值作 为返回帧的 RATE, 以该 RATE发送返回帧; 如果发送站点仍有帧发送, 接收站 点根据接收的发送帧对信道质量进行统计, 计算下一发送帧长, 并由当前传 递业务类别得到该业务对误帧和时延的服务质量要求, 接收方依据当前业务 对服务质量的要求综合考虑信道质量、 下一发传输帧长、 信道编码、 调制解 调方式因素估计出下一发送帧的发送速率, 将该值填入 rRATE通知发送站点。
上述在通信过程中传输速率的调整由与传输速率相关的信息确定, 的过 程包括: 定义一速率因子3, 速度因子 a是信道质量信息、 当前传输的业务类 别相应于当前信道质量信息的误码特性、下一发送帧帧长及与之相应的返回 帧帧长、 信道编码、 调制解调方式因素得到的统计值。 接收站点可以由下述 算法得出 eRATE:
eRATE = a氺 rRATE;
若 eRATE^Vp, rRATE = Vp;
若 eRATE Vl, rRATE = VI;
其他情况, 则有 eRATE = a* rRATE?
接收站点直接将 eRATE通过返回帧通知发送方, 发送方将该 eRATE值作为 当前发送帧的 rRATE;
本发明的另一个变形是, 所述发送站点在收到返回帧后, 如果仍有发送 帧要发送, 则接收站点将速率因子 a通过返回帧通知发送站点, 发送站点在 收到该返回帧后, 以其中的 rRATE值作为当前发送帧的 RATE, 以该 RATE发送 发送帧; 并根据当前速率因子 a和该 RATE计算并填入 rRATE值通知接收站点, 发送帧中 rRATE的计算方法如下: - rRATE估计值 = a* RATE;
若 rRATE估计值 Vp, rRATE 二 Vp;
若 rRATE估计值 VI, rRATE = VI;
其他情况, 则有 rRATE = a* RATE;
速度因子 a可以通过统计结果得到, 速率因子可以是传输过程开始以前 收发站点公认的经验值, 无须在传输过程中交换该信息; 或者是通信过程中 由接收站点实时统计的测量值, 并将该值直接或隐含在其他参数(如 eRATE) 中通过返回帧通知所述发送站点。
上述不参与通信的站点能够保证不干扰正在进行的通信, 其包括: 1)持续时间设置;
如果发送的不是最后一个发送帧, 发送站点在考虑了帧间间隔的基础 上, 按以 rRATE发送返回帧、 下一发送帧的返回帧以及以 RATE发送下一发送 帧所花的时间设置持续时间;如果发送的是最后一个帧,发送站点按以 rRATE 发送返回帧所花时间设置持续时间。
如果发送的不是最后一个返回帧, 接收站点可以根据接收到的当前发送 帧中所含的持续时间、 RATE、 rRATE、 返回帧帧长计算出下一发送帧的帧长。 接收站点确定了当前发送帧相对应的返回帧后, 该返回帧的 RATE和 rRATE也 就确定了, 同时接收站点能够获知速率因子 a, 因此根据该返回帧的 rRATE可 以计算出与下一发送帧对应的返回帧的发送速率, 进而在考虑了帧间间隔的 基础上, 按以该返回帧的 rRATE发送下一发送帧和发送与下一发送帧相应的 返回帧所花时间设置持续时间; 如果发送的是最后一个确认帧则持续时间设 为零。
需要说明的是, 依照本发明方法, 发送站点在发送最后一个发送帧时能 够准确地设置持续时间, 接收站点在发送最后一个返回帧时能够准确地设置 持续时间。 这样的设置方法可以保证接收站点对信道的占用, 并在通信结束 按时释放对信道的占用。
2) .网络分配矢量的计算和更新;
没有参与通信的站点能够侦听到正在传输的数据帧, 将完整接收数据帧 的那一时刻和该数据帧中的持续时间相加, 并由此得到网络分配矢量。 没有 参与通信的站点用新得到的网络分配矢量替换旧有的网络分配矢量。
上述传输速率信息可利用物理帧头或媒质接入控制层帧控制域传输当 前发送帧速率和接收端确认帧的发送速率。
上述数据帧传输可包括请求发送帧、 允许发送帧、 数据分段及确认帧的 发送。
上述传输速率相关的信息包括: 当前传输的业务类别、 信道质量信息、 下一发送帧帧长及与之相应的返回帧帧长、 信道编码、 调制解调方式信息。
上述信道质量可根据信噪比、 信号强度、 误比特率、 误符号率或误帧率 的统计来确定。
本发明的具体实现方法为:
1.速率信息交换
1) .传输速率信息: 本发明方法在物理帧头或控制层帧控制域中建立了 RATE字段和 rRATE字段,分别用来传输当前发送帧速率和接收端返回帧的发 送速率的值。
2) .速率变化方式: 根据本发明方法, 将速率分为 Vl〜Vp个等级, 等级 越高速率越快, VI速率最低设为基本速率, Vp速率最高, 为最高速率。 在数 据帧传输时, 以碰撞检测的载波侦听多址协议为例, 控制帧中的 RTS、 CTS帧 采用初始速率发送, 随后的数据分段和与之相应的返回帧根据与传输速率相 关的信息在最小速率和最大速率之间自适应地调整; 与传输速率相关的信息 包括当前传输的业务类别、 信道质量信息、 数据帧长、 信道编码、 调制解调 方式信息, 其中信道质量则可根据信噪比、 信号强度、 误比特率、 误符号率 或误帧率的统计来确定。 需要说明的是当数据帧不长时, 数据帧传输中的数 据分段则只有一个。
3) .根据本发明方法, 数据传输过程中, 发送站点不仅确知当前发送帧 的信息速率, 同时还确知了对端返回的确认帧的发送速率。 数据传输中的第 一个发送帧, 其当前发送帧速率域和接收端确认帧的发送速率域以初始速率 发送, 其后的发送帧传输速率则可以自适应地随着与传输速率相关的信息变 化而变化。
4) . rRATE的确定:
接收站点在接收到发送帧后, 如果发送站点仍有数据要发送, 接收站点 根据接收的发送帧对信道质量进行统计, 计算下一发送帧长, 并由当前传递 业务类别得到该业务对误帧和时延的服务质量要求, 接收方依据当前业务对 服务质量的要求综合考虑信道质量、 下一发传输帧长、 信道编码、 调制解调 方式因素估计出下一发送帧的发送速; 将该值作为 rRATE通知发送站点。
所述发送站点收到返回帧后, 如果仍有要发送的帧, 则将当前接收的返 回帧中的 rRATE值作为该发送帧的 RATE,当前返回帧中若有 eRATE,则将 eRATE 作为 rRATE; 当前返回帧中若没有 eRATE, 则根据速率因子 a和当前发送帧的 RATE计算并填入 rRATE值通知接收站点, 发送帧中 rRATE的计算方法如下: rRATE估计值二 a* RATE;
若 rRATE估计值 Vp, rRATE = Vp;
若 RATE估计值 VI, rRATE = VI;
其他情况, 则有 rRATE = a* RATE。
2.持续时间设置
如果发送的不是最后一个帧, 发送站点统一用当前发送帧的信息速率传 输相应于当前发送帧的接收端确认帧、 下一个发送帧和相应的接收端确认帧 所花时间设置持续时间; 如果发送的是最后一个帧, 发送站点根据接收端确 认帧的发送速率、 接收端确认帧帧长设置持续时间。 需要说明的是由于发送 站点发送数据帧中的当前发送帧速率和对端确认帧速率总是相等, 即发送站 点发送数据帧和接收站点返回的该帧的确认帧的传输速率是相等的, 这样的 设置方法可以保证发送站点对信道的占用, 并在通信结束按时释放对信道的 占用
如果发送的不是最后一个确认帧, 接收站点可以根据接收到的帧的持续 时间、 当前发送帧的信息速率、 接收端确认帧长计算出下一接收帧的帧长, 进而可以按采用接收端确认帧的发送速率发送下一接收帧和相应接收端确 认帧所花时间设置持续时间。如果发送的是最后一个确认帧则持续时间设为 零。 需要说明的是由于发送站点发送数据帧中的当前发送帧速率和对端确认 帧速率总是相等, 即发送站点发送数据帧和接收站点返回的该帧的确认帧的 传输速率是相等的, 这样的设置方法可以保证接收站点对信道的占用, 并在 通信结束按时释放对信道的占用。
3.网络分配矢量的计算和更新
没有参与通信的站点能够侦听到正在传输的数据帧, 将完整接收数据帧 的那一时刻和该数据帧中的持续时间相加, 并由此得到网络分配矢量。 没有 参与通信的站点用新得到的网络分配矢量替换旧有的网络分配矢量。
这样, 一方面可以确保移动终端成对通信时不会相互干扰, 消除有时持 续时间大于实际传输时长的负面影响, 另一方面可以提高全网的工作效率。
如图 1所示,本实施例的无线局域网中传输数据的方法,首先在步骤 101, 以当前速率, 从发送方向接收方发送一个发送帧, 帧中包含接收端确认帧的 发送速率和业务类别。 正如本领域技术人员已知的那样, 在无线局域网 (WLAN) 中发送帧可以包括: RTS (Request To Send, 请求发送)帧、 数据 帧等; 分别与发送帧相对应地, 返回帧可以包括: CTS (Clear To Send, 允 许发送)帧、 ACK (确认) 帧等。
接着,在步骤 105, 以当前接收的发送帧中的接收端确认帧的发送速率, 从接收方向发送返回速率和下一个发送帧返回帧的发送速率或与传输速率 相关的信息以及速率因子 a。 具体地, 可以是, 接收方接收由发送方发来的 发送帧,根据接收的结果评价信道质量,结合发送帧对所传业务类别的描述、 下一发送帧长和返回帧帧长等因素, 确定该业务类别数据下一个发送帧最佳 的传输速率和速率因子 a, 用该最佳传输速率和速率因子 a求得相应于下一 个发送帧的返回帧的传输速率作为下一个发送帧返回帧的发送速率, 并将将 该最佳传输速率和下一个发送帧返回帧的发送速率返回给发送方; 或者接收 方将该最佳传输速率的信息和速率因子 a返回给发送方; 或者, 也可以是, 接收方只是将与速率相关的信息返回给发送方, 然后由发送方根据信道质量 确定最佳传输速率。
在此, 对于如何评价信道质量、 如何根据信道质量确定最佳传输速率, 本发明方法并没有特别的限制, 可以采用本领域技术人员了解的任何方法。 后面描述的本发明最佳实施例中示例性地列举了一些方法, 但是本发明方法 并不限于这些具体实施例。
接着, 在步骤 110, 根据返回的与传输速率或与传输速率相关的信息, 调整当前速率。 具体地, 与前面返回信息的步骤相对应, 如果从接收方返回 的是与传输速率相关的信息, 则在发送方进一步根据该质量信息确定一个最 佳传输速率来调整当前速率; 如果从接收方返回的是指示最佳传输速率的信 息, 则在发送方直接按照该信息更新当前速率即可。
然后, 在步骤 115, 以调整后的当前速率, 从发送方向接收方发送下一 个发送帧。
这样, 本实施例的无线局域网中传输数据的方法可以根据传输业务、 信 道质量、 传输帧长以不同的速率传输数据, 从而适应传输业务的要求以及由 于移动或其他原因造成的信道质量的变化。
如图 2所示是本发明方法的一优选实施例的流程图示, 在开始一次数据 传输后, 首先在步骤 205, 设置初始 RATE、 rRATE。 在本实施例中, 传输速 率被划分为多个级 V1〜VP, 其中 VI是基本速率(最低速率) , VP是最高速 率。
在此, 初始 RATE、 rRATE可以被设置为基本速率 VI。如果在发送方具有 信道质量的统计信息, 则可以根据该统计信息选择一个高于基本速率的速率 作为初始当前速率。 但是, 前提条件是要充分保证以该初始当前速率能够正 确地传送第一个发送帧和返回帧。
接着, 在步骤 210, 以该初始 RATE, 从发送方向接收方发送 RTS帧。 正 如本领域技术人员已知的那样, 通常在 WLAN中开始一次数据传输, 首先要 由发送方发送 RTS帧作为请求。
接着, 在步骤 215, 接收方收到该 RTS请求后, 以该 RTS中初始 rRATE 作为 RATE返回一个 CTS帧。 具体地, 接收方接收由发送方发来的 RTS帧, 根据接收的结果评价信道质量, 然后结合 RTS帧中包含的业务类别和其持续 时间中隐含的数据帧长等信息确定一个最佳的传输速率例如 V4和速率因子 a, 并且在向发送方返回的 CTS返回帧中包含表示该最佳传输速率的信息和 下一个发送帧返回帧的发送速率或该最佳传输速率的信息和速率因子 a。
接着, 在步骤 220, 根据 CTS帧中的最佳传输速率信息和下一个发送帧 返回帧的发送速率或该最佳传输速率的信息和速率因子 a,发送方调整 RATE、 rRATE例如 V4、 V5。
接着, 在步骤 225, 以调整后的 RATE, 从发送方向接收方发送一个数据 帧。
接着, 在步骤 230, 同样以该调整后的 RATE, 从接收方向发送方返回一 个 Ack帧。 与前述的步骤 215—样, 接收方接收由发送方发来的数据帧, 根 据接收的结果评价信道质量, 然后确定结合当前传输业务类别和数据帧中持 续时间中隐含的下一数据帧长等信息确定一个最佳的传输速率一个最佳的 传输速率和速率因子 a, 并且在向发送方返回的 Ack返回帧中包含表示该最 佳传输速率的信息和下一个发送帧返回帧的发送速率或该最佳传输速率的 信息和速率因子 a。
接着, 在步骤 235, 判断是否还有数据帧需要发送。 如果判断为 "是", 则进行到步骤 240, 根据该 ACK中的 rRATE、 eRATE或 rRATE和速率因子 a, 发送方调整 RATE、 rRATE, 与前述的步骤 220相同; 然后, 返回到步骤 225 重复执行步骤 225〜240, 直到没有数据帧需要发送为止。
如果步骤 235的判断为 "否", 则在步骤 245结束。
下面结合图 4对于本发明实施例中发送帧和返回帧的持续时间的设置方 式以及没有参与数据传输的其它站点维护网络分配矢量 (NAV) 的方式进行 说明。
正如本领域技术人员已知的那样, 在以往无线局域网的数据通信中, 为 了减小碰撞的损失以及隐藏终端等的影响, 在 RTS和 CTS帧里存放预留时长 信息, RTS为 20字节, CTS为 14字节。 没有参与数据传输的其它站点, 接 收到 RTS/CTS帧,获取持续时间信息后更新自己的 NAV (network allocation vector)值, 为竞争信道的发送方和接收方进行数据交换预留出信道带宽, 如图 4所示。
在以往传输速率一定的情况下, 以上这种方式是可行的。 但是, 如果采 用本发明的方法, 则由于传输速率是变化的, 仅仅依靠 RTS和 CTS帧的持续 时间信息是不够的, 会造成其它节点的 NAV值的更新不准确, 导致资源浪费 或冲突增加。
因此, 本发明方法在从发送方向接收方发送每一个发送帧时, 例如, 图 1的步骤 105、 115以及图 2的步骤 210、 225中, 都为该发送帧设置持续时 间。 具体地, 首先根据以当前速率传输与该发送帧对应的返回帧、 下一个发 送帧和与下一发送帧对应的返回帧所花的时间, 计算该发送帧的持续时间。 然后, 将计算出的该发送帧的持续时间设置在该发送帧的持续时间字段中。
例如, 在图 2的步骤 210中计算该 RTS帧的持续时间时, 就应当计算以 初始 rRATE传输与该 RTS对应的 CTS返回帧、 以初始 RATE传输下一个数据 发送帧(步骤 225中要发送的数据帧)和以初始 rRATE传输与该下一个发送 帧对应的返回帧所花的时间, 当然还应包括这些帧之间的间隔时间 (SIFS) 再例如, 在图 2的步骤 225中计算该数据发送帧的持续时间时, 就应当 计算以调整后的 rRATE传输与该数据发送帧对应的 Ack返回帧、 以调整后的 RATE传输下一个数据发送帧(如果有的话,下一次循环执行步骤 225处理的 数据帧)和以调整后的 rRATE传输与该下一个发送帧对应的 Ack返回帧所花 的时间, 当然还应包括这些帧之间的间隔时间 (SIFS) 。
进而, 根据本发明方法, 在从接收方向发送方返回每一个返回帧时(例 如, 图 2的步骤 215、 230中)都为该返回帧设置持续时间。 具体地, 首先, 根据接收到的与该返回帧对应的发送帧的持续时间、 RATE、 rRATE和该返回 帧的帧长计算出下一个发送帧的帧长。 然后, 计算该返回帧的持续时间, 该 返回帧的持续时间相应于按照与传输速率或信道质量有关的信息所指示的 传输速率发送下一接收帧,和以该速率和速率因子推导的返回帧速率发送与 该下一发送帧对应的返回帧所花时间。 最后, 将计算出的该返回帧的持续时 间设置在该返回帧的持续时间字段中。
例如, 在图 2的步骤 215中计算该 CTS帧的持续时间时, 首先, 根据步 骤 210发送的 RTS帧中的持续时间 (D1 ) 、 初始 RATE (VI ) 、 rRATE (V2) 和该 CTS帧的帧长(L1 )计算出下一个发送帧(步骤 225要发送的帧) 的帧 长(L2),可以通过以下公式计算: L2= (D1— 3 * SIFS) * VI— 2 * L1*V1/V2。 当没有后续数据帧时 (可以通过 More Frag字段状态获知) , L2=0。
同时, 根据本优选实施例, 网络中那些没有参与通信的其它站点监听信 道中每一个发送帧和返回帧, 根据其中记录的持续时间更新 NAV值。 这样, 即使在传输速率变化的情况下, 也可以保证无线局域网中各个节点 NAV值的 准确更新, 在可以进一步节省资源的同时还可以避免冲突的发生。
本发明方法在数据传输过程中, 信息传输速率可根据信道状态依物理帧 分段自适应地变化; 故本发明适用于高速移动无线衰落信道。
同时, 本发明方法还采用了速率信息的交换技术, 帧的发送速率不仅和 信道质量信息有关, 还和帧长有关, 发送站点不仅确知当前发送帧的信息速 率, 同时还确知对端返回的确认帧的发送速率。 因此本发明不仅兼容现有的 固定速率传输协议, 同时不同帧长的帧传输成功的概率在统计意义上是平等 的, 使得网络性能获得整体的提高。
本发明方法通过及时更新网络分配矢量的方法实现全连通网络的多速 帛f专车俞。
应当理解的是, 本发明方法的上述针对较佳实施例的描述过于具体, 并 不能因此而限制本发明请求专利保护的范围, 专利保护范围应以所附权利要 求为准。

Claims

权 利 要 求 书
1、 一种无线局域网多速率自适应传输的方法, 其特征在于, 该方法包 括:收发双方在通信过程中相互交换传输速率信息或与传输速率相关的信 息; 根据上述传输速率信息或与传输速率相关的信息, 分别调整当前传输速 率; 以及以调整后的当前速率传输数据。
2、根据权利要求 1所述的方法,其特征在于,所述与传输速率信息包括: 传输当前发送帧速率、 接收端确认帧的发送速率和下一个发送帧的估计速 率, 或传输当前发送帧速率和接收端确认帧的发送速率。
3、 根据权利要求 1所述的方法, 其特征在于, 所述调整当前传输速率的 过程包括: 将传输速率分为多个等级, 等级越高速率越快, 定义最低速率为 基本速率; 数据帧传输中, 站点根据当前发送帧速率发送数据, 初始传输当 前发送帧速率和接收端确认帧的发送速率并被设置为基本速率。
4、 根据权利要求 3所述的方法, 其特征在于, 在所述调整当前传输速率 的过程中, 如果在发送方具有传输速率或与传输速率相关的信息的统计信 息, 则根据该统计信息选择高于基本速率的速率作为初始传输当前发送帧速 率和接收端确认帧的发送速率和当前传输业务类别, 传输当前发送帧速率和 接收端确认帧的发送速率可以不相等, 以能够正确地传送第一个发送帧和返 回帧为适合。
5、 根据权利要求 4所述的方法, 其特征在于, 在数据帧传输中, 接收站 点在接收到发送帧后, 将当前接收的发送帧中的接收端确认帧的发送速率值 作为返回帧的传输当前发送帧速率, 以该传输当前发送帧速率发送返回帧。
6、 根据权利要求 5所述的方法, 其特征在于, 所述数据帧传输中, 如果 发送站点仍有帧发送, 所述接收站点根据接收的发送帧对信道质量进行统 计, 计算下一发送帧长, 接收方依据当前业务类别对服务质量的要求综合考 虑信道质量、 下一发传输帧长、 信道编码、 调制解调方式因素估计出下一发 送帧的发送速率, 并将该值填入接收端确认帧的发送速率通知发送站点。
7、 根据权利要求 1至 6任一权项所述的方法, 其特征在于, 所述在通信 过程中传输速率的调整由与传输速率相关的信息确定的过程包括: 定义一速 率因子, 该速率因子是综合了信道质量信息、 当前传输的业务类别相应于当 前信道质量信息的误码特性、 下一发送帧帧长及与之相应的返回帧帧长、 信 道编码、 调制解调方式因素得到的统计值, 用于确定下一发送帧相应的返回 帧的发送速率;
所述发送站点收到返回帧后, 如果仍有发送帧要发送, 则将当前接收的 返回帧中的接收端确认帧的发送速率值作为该发送帧的传输当前发送帧速 率, 发送发送帧; 根据速率因子计算并填入接收端确认帧的发送速率值然后 通知接收站点, 所述发送帧中接收端确认帧的发送速率的计算方法如下- 接收端确认帧的发送速率估计值 =速率因子 *传输当前发送帧速率; 其 中
若接收端确认帧的发送速率估计值 最高传输速率, 接收端确认帧的发 送速率 =最高传输速率,
若接收端确认帧的 送速率估计值 最低传输速率, 接收端确认帧的发 送速率 =最低传输速率;
其他情况, 则有接收端确认帧的发送速率 =速率因子 *传输当前发送帧 速率。
接收方可以上述算法计算出接收端确认帧的发送速率, 并填写在下一个 发送帧的估计速率字段通过返回帧通知发送方, 发送方将该一个发送帧的估 计速率字段值填入当前发送帧的接收端确认帧的发送速率; 也可以由发送方 在获知速率因子的前提下, 依靠上述算法计算出接收端确认帧的发送速率并 将该值作为当前发送帧的接收端确认帧的发送速率。
8、 根据权利要求 7所述的方法, 其特征在于, 所述速率因子通过统计结 果得到, 速率因子可以是传输过程开始以前收发站点公认的经验值, 无须在 传输过程中交换该信息; 或者是通信过程中由接收站点实时统计的测量值, 并将该值直接或隐含在其他参数中通过返回帧通知所述发送站点。
9、 根据权利要求 1所述的方法, 其特征在于, 所述不参与通信的站点不 干扰正在进行的通信包括:
a)持续时间设置;
如果发送的不是最后一个发送帧, 发送站点在考虑了帧间间隔的基础 上, 按以当前发送帧中的接收端确认帧的发送速率发送返回帧、 下一发送帧 的返回帧以及以传输当前发送帧速率发送下一发送帧所花的时间设置持续 时间; 如果发送的是最后一个发送帧, 发送站点按以接收端确认帧的发送速 率发送返回帧所花时间设置持续时间;
如果发送的不是最后一个返回帧, 接收站点根据接收到的当前发送帧中 所含的持续时间、 传输当前发送帧速率、 接收端确认帧的发送速率、 返回帧 帧长计算出下一发送帧的帧长; 进而可以按当前返回帧中接收端确认帧的发 送速率发送下一发送帧和以与下一发送帧相应的返回帧速率发送该下一返 回帧所花时间设置持续时间; 如果发送的是最后一个返回帧则持续时间设为 零;
b) 网络分配矢量的计算和更新;
没有参与通信的站点侦听到正在传输的数据帧, 将完整接收数据帧的那 一时刻和该数据帧中的持续时间相加, 得到网络分配矢量, 没有参与通信的 站点用新得到的网络分配矢量替换旧有的网络分配矢量。
10、 根据权利要求 9所述的方法, 其特征在于, 所述数据帧传输包括请 求发送帧、 允许发送、 数据分段及确认帧的发送。
11、 根据权利要求 10所述的方法, 其特征在于, 所述与传输速率相关的 信息包括: 当前传输的业务类别、 信道质量信息、 下一发送帧帧长及与之相 应的返回帧帧长、 信道编码、 调制解调方式信息。
12、 根据权利要求 11所述的方法, 其特征在于, 所述信道质量根据信噪 比、 信号强度、 误比特率、 误符号率、 误帧率的统计来确定。
PCT/CN2005/001617 2004-09-30 2005-09-29 Procede de transmission adaptatif a debits multiples pour reseau local sans fil WO2006034654A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2004100516929A CN100574318C (zh) 2004-09-30 2004-09-30 一种无线局域网多速率自适应传输的方法
CN200410051692.9 2004-09-30

Publications (1)

Publication Number Publication Date
WO2006034654A1 true WO2006034654A1 (fr) 2006-04-06

Family

ID=36118592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/001617 WO2006034654A1 (fr) 2004-09-30 2005-09-29 Procede de transmission adaptatif a debits multiples pour reseau local sans fil

Country Status (2)

Country Link
CN (1) CN100574318C (zh)
WO (1) WO2006034654A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055381A (zh) * 2020-07-31 2020-12-08 北京临近空间飞行器系统工程研究所 一种速率自适应无线数据分包传输方法和系统
CN112654057A (zh) * 2020-12-16 2021-04-13 西安烽火电子科技有限责任公司 基于信道探测的带宽及速率自适应通信方法
CN113259167A (zh) * 2021-05-28 2021-08-13 贵州电网有限责任公司 一种基于事件触发机制的配电终端数据传输方法
CN114726730A (zh) * 2022-02-15 2022-07-08 阿里巴巴(中国)有限公司 应用于cdn的拥塞控制方法、电子设备、介质及产品

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110815B (zh) * 2006-07-17 2011-12-07 中兴通讯股份有限公司 一种无线局域网多速率自适应传输的方法
CN101764743A (zh) * 2009-12-16 2010-06-30 华为技术有限公司 一种控制CCG向AAA发送radius消息速率的方法、装置及系统
CN102447526A (zh) * 2010-10-13 2012-05-09 大唐移动通信设备有限公司 Rru与bbu之间速率自适应的方法及设备
CN102843721B (zh) * 2012-09-14 2015-11-25 福建星网锐捷网络有限公司 信标报文发送速率的选择方法、装置和无线接入设备
CN104254109B (zh) * 2013-06-25 2019-02-19 华为技术有限公司 用户设备、基站、流媒体自适应传输系统和方法
CN104168090A (zh) * 2014-08-28 2014-11-26 四川长虹电器股份有限公司 应用于Wi-Fi网络的无线数据传输自动调整方法
CN104320815B (zh) * 2014-10-27 2017-12-22 深圳市蜂联科技有限公司 一种用于提高无线局域网络吞吐量的数据传输策略
CN106656371A (zh) * 2016-12-29 2017-05-10 中国科学院微电子研究所 基于接收端信噪比预测的无线速率选择方法及无线网络
CN108810999B (zh) * 2017-05-03 2022-12-09 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置和通信设备
CN109348515B (zh) * 2018-11-27 2022-08-16 锐捷网络股份有限公司 无线网络中传输速率的调节方法及装置
CN109639537A (zh) * 2019-01-29 2019-04-16 深圳市银河风云网络系统股份有限公司 一种tdma自动协商速率的高速数据传输方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319293A (zh) * 1998-09-22 2001-10-24 西门子公司 评估数字通信信号的传输质量的方法和装置
WO2004066546A1 (en) * 2003-01-21 2004-08-05 Sony Ericsson Mobile Communications Ab Speed data receiver with detection of channel coding rate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319293A (zh) * 1998-09-22 2001-10-24 西门子公司 评估数字通信信号的传输质量的方法和装置
WO2004066546A1 (en) * 2003-01-21 2004-08-05 Sony Ericsson Mobile Communications Ab Speed data receiver with detection of channel coding rate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055381A (zh) * 2020-07-31 2020-12-08 北京临近空间飞行器系统工程研究所 一种速率自适应无线数据分包传输方法和系统
CN112654057A (zh) * 2020-12-16 2021-04-13 西安烽火电子科技有限责任公司 基于信道探测的带宽及速率自适应通信方法
CN112654057B (zh) * 2020-12-16 2023-08-11 西安烽火电子科技有限责任公司 基于信道探测的带宽及速率自适应通信方法
CN113259167A (zh) * 2021-05-28 2021-08-13 贵州电网有限责任公司 一种基于事件触发机制的配电终端数据传输方法
CN113259167B (zh) * 2021-05-28 2023-07-18 贵州电网有限责任公司 一种基于事件触发机制的配电终端数据传输方法
CN114726730A (zh) * 2022-02-15 2022-07-08 阿里巴巴(中国)有限公司 应用于cdn的拥塞控制方法、电子设备、介质及产品
CN114726730B (zh) * 2022-02-15 2023-12-29 阿里巴巴(中国)有限公司 应用于cdn的拥塞控制方法、电子设备、介质及产品

Also Published As

Publication number Publication date
CN1756252A (zh) 2006-04-05
CN100574318C (zh) 2009-12-23

Similar Documents

Publication Publication Date Title
WO2006034654A1 (fr) Procede de transmission adaptatif a debits multiples pour reseau local sans fil
US7796632B2 (en) Transmission channel bandwidth selection for communications between multi-bandwidth nodes
JP4331088B2 (ja) 通信装置および通信方法
US8274961B2 (en) Apparatus and associated methodology of adjusting a RTS/CTS transmission protocol
US7948911B2 (en) Implicit signaling for link adaptation
JP3962405B2 (ja) リンク・アダプテーション
US8284753B2 (en) Wireless communication apparatus and wireless communication method
US7650559B2 (en) Communication apparatus, communication system, communication method, and communication control program
EP3399791B1 (en) Information processing apparatus
JP4528541B2 (ja) 通信装置、通信方法、および通信システム
KR100885628B1 (ko) 무선 통신 네트워크에서 데이터 레이트를 선택하기 위한 방법
US7688847B2 (en) Expected channel occupancy time as a wireless link metric
KR100724931B1 (ko) 무선 망에서 데이터 전송 방법
JP2009060623A (ja) 移動通信システムにおける逆方向リンクを制御する方法
JP2008524898A (ja) 電力制御を備えたマルチキャスト通信システム
CN113875272B (zh) 实时应用
CN112188565A (zh) 基于网络分配向量的移动自组织网络多用户协同发送方法
WO2015109438A1 (zh) 数据传输方法及装置
US8724469B2 (en) Method and device for sending packets on a wireless local area network
JP2007151171A (ja) 通信装置、通信方法、および通信システム
WO2008012789A1 (en) Method for reduced latency wireless communication having reduced latency and increased range and handoff performance between different transmitting stations
WO2014183558A1 (zh) 一种缓存状态报告的处理方法及装置、终端、存储介质
WO2006012772A1 (fr) Procede de transmission sur reseau local etendu
Santos et al. Dyn-ARF: A rate adaptation mechanism sensitive to the network load over 802.11 WLANs
WO2015062270A1 (zh) 无线通信方法和无线通信设备

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase