WO2006033400A1 - Dna detection method and reporter probe - Google Patents

Dna detection method and reporter probe Download PDF

Info

Publication number
WO2006033400A1
WO2006033400A1 PCT/JP2005/017501 JP2005017501W WO2006033400A1 WO 2006033400 A1 WO2006033400 A1 WO 2006033400A1 JP 2005017501 W JP2005017501 W JP 2005017501W WO 2006033400 A1 WO2006033400 A1 WO 2006033400A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
dna
reporter probe
target dna
enzyme
Prior art date
Application number
PCT/JP2005/017501
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichiro Sue
Hideo Katayama
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2006536417A priority Critical patent/JPWO2006033400A1/en
Publication of WO2006033400A1 publication Critical patent/WO2006033400A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means

Definitions

  • the present invention relates to target DNA by binding a target DNA using an electrode in which a capillary probe is bound to the surface of a conductor and a reporter probe labeled with an enzyme, and measuring the current value.
  • L-proline dehydrogenase derived from Thermococcus profundus DS M9503, a hyperthermophilic bacterium was purified and the activity of this L-proline dehydrogenase was demonstrated. (For example, see Non-Patent Document 2.)
  • Non-patent literature 1 Biochemistry experiment course, 5th V, Enzyme research method (Tokyo Chemical Doujin) P121-129
  • Non-patent literature 2 Haruhiko Sakuraba, Yoshinori Takamatsu, Takenon Satomura ), Ryusm Kawakami, Toshihisa Ohshima, “Applied and Environmental Microbiology” (USA), 2001, 6th 7 ⁇ , ⁇ ⁇ 1470-1475
  • the heat-resistant enzyme that has been used conventionally is Since the enzyme was inactivated at a high temperature near 90 ° C, it was necessary to introduce the reporter probe labeled with the enzyme after reducing the temperature of the reaction solution to about 70 ° C. In other words, regardless of the efficiency of the hybridization, the reporter probe labeled with an enzyme had to be introduced after the temperature of the sample solution had dropped to a temperature at which the enzyme was not inactivated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a DNA detection method and a reporter probe for detecting DNA with higher sensitivity and efficiency. .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a DNA detection method and a reporter probe for detecting DNA with higher sensitivity and efficiency. .
  • the DNA detection method of the present invention comprises using a capillary probe, a report probe labeled with a thermostable enzyme, and a substrate that reacts with the thermostable enzyme, and the captive probe and the reporter probe.
  • the target DNA is bound to the target DNA, and the target DNA is detected electrochemically by a reaction with the thermostable enzyme labeled with the reporter probe and the substrate.
  • a reporter probe labeled with a thermostable enzyme can be put into a high-temperature reaction solution that is a temperature at which the thermostable enzyme is active. Accordingly, since the reporter probe can be introduced into the reaction solution at a higher temperature, the efficiency of hybridization is increased, and the target DNA can be detected with higher sensitivity and efficiency.
  • thermostable enzyme can be an enzyme derived from a hyperthermophilic bacterium.
  • a reporter probe labeled with a thermophilic enzyme derived from a hyperthermophilic bacterium can be introduced into a high-temperature reaction solution that is a temperature at which the thermophilic enzyme derived from the hyperthermophilic bacterium remains active. . Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • the enzyme derived from the hyperthermophilic bacterium can be L-proline dehydrase.
  • a reporter probe labeled with an L-proline dehydrogenase derived from a hyperthermophilic bacterium can be introduced into a high-temperature reaction solution at which the L proline dehydrogenase is active. . Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • the L proline dehydrogenase comprises Thermococcus' Puff Fungus, I'nermococcus profundus, Thermococcus heptonovifus, Pyrococcus furiosus, and It can be derived from an organism selected from a group force consisting of Pyrococcus horikoshi OT-3.
  • a reporter probe labeled with L proline dehydrogenase derived from each of these organisms can be introduced into the reaction solution at a temperature at which the L proline dehydrogenase is active. For this reason, after the target DNA is denatured into single-stranded DNA, the reporter probe can be reacted with the target DNA at a high temperature. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • the reporter probe labeled with the thermostable enzyme can be introduced into a solution containing the target DNA during heat treatment for denaturing the target DNA.
  • the capillary probe fixed to the electrode and the reporter probe labeled with the thermostable enzyme can coexist with the target DNA at the time of denaturation of the target DNA for hybridization.
  • the efficiency of hybridization can be increased, and target DNA can be detected with higher sensitivity and efficiency.
  • processing can be performed with a simpler operation.
  • the reporter probe of the present invention is used for target DNA binding to a capillary probe.
  • a reporter probe that binds further is labeled with a thermostable enzyme, and is used for electrochemically detecting the target DNA by a reaction with the thermostable enzyme and a substrate.
  • a reporter probe labeled with a thermostable enzyme can be put into a high-temperature reaction solution that is a temperature at which the thermostable enzyme maintains its activity. Accordingly, since the reporter probe can be introduced into the reaction solution at a higher temperature and temperature, the efficiency of hybridization can be increased, and target DNA can be detected with higher sensitivity and efficiency.
  • the reporter probe is a target that binds to the cap probe of an electrode in which the cap probe is bonded to a conductor surface.
  • the target DNA can be detected by further binding to DNA and measuring the value of the current flowing through the electrode by the reaction with the thermostable enzyme and the substrate. According to this, a higher sensitivity can be obtained by measuring the value of the current flowing through the electrode using an electrode formed by binding the above-described captive probe to the surface of a conductor and a reporter probe labeled with a thermostable enzyme. And target DNA can be detected efficiently
  • the thermostable enzyme can be an enzyme derived from a hyperthermophilic bacterium.
  • a reporter probe labeled with a thermophilic enzyme derived from a hyperthermophilic bacterium can be put into a high-temperature reaction solution that is a temperature at which the thermophilic enzyme derived from the hyperthermophilic bacterium remains active. it can. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • the enzyme derived from the hyperthermophilic bacterium can be L_proline dehydrogenase.
  • a reporter probe labeled with L-proline dehydrogenase derived from a hyperthermophilic bacterium can be put into a high-temperature reaction solution at which the activity of L_proline dehydrogenase is maintained. it can. Therefore, the efficiency of hybridization is improved, and target DNA can be detected with higher sensitivity and efficiency.
  • the L_proline dehydrogenase is Thermococcus' phlophanta, 'Hermococcus profundus) ⁇ ir ⁇ Mokok Blades' 7 ⁇ Nofifs (Thermoco ecus peptonophilus) (Pvrococcus furiosus), Pirococca It can be said that it is derived from the organism selected from the group power consisting of T. 3 (Pyrococcus horikoshi OT-3). According to this, a reporter probe labeled with L_proline dehydrogenase derived from each of these organisms can be introduced into the reaction solution at a temperature at which this L_proline dehydrogenase is active. For this reason, after the target DNA is denatured into single-stranded DNA, the reporter probe can be reacted with the target DNA at a high temperature. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • FIG. 1 is a schematic diagram showing one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a biosensor used in one embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing one embodiment of the present invention.
  • target DNA is detected using a reporter probe labeled with a thermostable enzyme, which is the reporter probe of the present invention.
  • thermostable enzyme labeled on the reporter probe will be described first, and then the electrode used in one embodiment of the DNA detection method of the present invention will be described, and then the DNA of the present invention will be described. An embodiment of the detection method will be described.
  • the reporter probe of the present invention and the reporter probe used in the DNA detection method of the present invention are labeled with a thermostable enzyme.
  • the thermostable enzyme may be either an artificially synthesized enzyme or a natural enzyme. Examples of natural heat-resistant enzymes include enzymes obtained from hyperthermophilic bacteria.
  • the hyperthermophilic bacterium refers to a bacterium that can grow at a particularly high temperature (usually 85 ° C to 90 ° C or more) among thermophilic bacteria. From such hyperthermophilic bacteria, an enzyme that maintains its activity even at high temperatures (near 90 ° C) can be obtained. That is, an enzyme that is not completely inactivated at the denaturation temperature of the target DNA can be obtained from such a hyperthermophilic bacterium.
  • An example of such an enzyme is L_proline dehydrogenase derived from a hyperthermophilic bacterium.
  • the enzyme derived from a thermostable enzyme and a hyperthermophilic bacterium in the present invention is not limited to this.
  • L_proline dehydrogenase derived from hyperthermophilic bacteria examples include Thermococcus profundus ⁇ -Momocus fever (Thermococc us peptonophilus), Pyrococcus pylorisus ( Pyrococcus iuriosus) ⁇ and L-proline dehydrogenase derived from Pyrococcus horikoshi OT-3, including Thermococcus proflmdus (Th ermococcus proflmdus)
  • the incoming L_proline dehydrogenase is particularly preferred.
  • L-proline dehydrogenase derived from hyperthermophilic bacteria As L-proline dehydrogenase derived from hyperthermophilic bacteria, Thermococcusoirus DSM9503, Thermococcus peptonophilus, DSMl0d43, Pyrococcus furiosus (Pyrococcus fur s) L proline dehydrogenase derived from DSM3638 and Pyrococcus horikoshi ⁇ T-3 has been extracted. Among them, L proline dehydrogenase derived from Thermococcusexcellentus DSM9503 has been purified and examined under various conditions. The activity of L-proline dehydrogenase derived from this Thermococcusexcellentus DSM9503 is preferably 80 ° C for temperature and may show high activity at 90 ° C. Has been reported (see Non-Patent Document 2).
  • a capillary probe, a reporter probe labeled with a thermostable enzyme, and a substrate that reacts with the thermostable enzyme are used. Then, the target DNA is bound to the capillary probe and the reporter probe, and the target DNA is detected electrochemically by a reaction with the thermostable enzyme labeled on the reporter probe and the substrate.
  • a target probe is detected by binding a probe probe to the surface of a conductor to form an electrode and measuring the value of the current flowing through the electrode. The case of doing will be described in detail.
  • the electrode used in this embodiment can be used to measure the activity of L-proline dehydrinase labeled on a reporter probe.
  • any material that is usually used as an electrode is used. can do.
  • graphite, carbon, carbon fabric, etc . metal or alloy such as aluminum, copper, gold, platinum, silver, SnO, InO, WO, TiO, etc., conductive oxidation
  • a single layer of various materials such as a product, or a laminated structure of two or more types.
  • the film thickness, size, shape, etc. of the electrode are not particularly limited, and can be appropriately adjusted depending on the type of mediator, enzyme, etc. used, the performance of the biosensor to be obtained, and the like.
  • the conductor is laminated with a mediator. Note that the mediator may be present in the solution without being stacked on the conductor.
  • Phenol alkali metal ferricyanide (potassium ferricyanide, lithium ferricyanide, sodium ferricyanide, etc.) or alkyl substitutions thereof (methyl substitution, ethyl substitution, propyl substitution, etc.), phenazine
  • alkali metal ferricyanide potassium ferricyanide, lithium ferricyanide, sodium ferricyanide, etc.
  • alkyl substitutions thereof methyl substitution, ethyl substitution, propyl substitution, etc.
  • phenazine One or more redox organic or inorganic compounds such as methosulfate, p-benzoquinone, 2,6 dichlorophenol, indophenol, methylene blue, ⁇ -naphthoquinone-4-potassium sulfonate, phenazine etsulfate, vitamins, viologen, etc. Combinations are listed. Of these, those that dissolve in water or water-soluble organic solvents (lower alcohols, etc.) and
  • L_proline dehydrogenase for example, flavin adenine dinucleotide (FAD), ferredoxin and the like can be used.
  • FAD flavin adenine dinucleotide
  • ferredoxin ferredoxin
  • the film thickness of the mediator laminated on the conductor is not particularly limited.
  • the size of the conductor, the type of mediator to be used, the type and amount of enzyme in the enzyme layer described later, the type of enzyme to be measured, etc. Can be adjusted as appropriate. For example, about 0. lzm to l 000 xm can be mentioned.
  • An appropriate method for laminating the mediator on the conductor can be selected as appropriate depending on the type of the mediator.
  • the mediator is dissolved in a solvent that does not hinder its function, such as water or a water-soluble organic solvent, Coating and drying methods, mediators mixed and dispersed in a suitable carrier, for example, high molecular compounds such as resins and proteins, and the carrier is formed into a thin film, alternating lamination method (present chemistry, 1997 1 Any of the thin film forming methods known in the art can be used, such as Mon, p20-25). Especially, the alternating lamination method mentioned later is preferable.
  • a solvent that does not hinder its function such as water or a water-soluble organic solvent
  • Coating and drying methods mediators mixed and dispersed in a suitable carrier, for example, high molecular compounds such as resins and proteins
  • the carrier is formed into a thin film
  • alternating lamination method present chemistry, 1997 1 Any of the thin film forming methods known in the art can be used, such as Mon, p20-25). Especially, the alternating lamination method mentioned later is preferable.
  • the enzyme layer may be further laminated on a mediator laminated on the conductor, and depending on the type of the mediator and the enzyme, the enzyme layer may be arranged on the conductor together with the mediator. Also good.
  • the thickness of the enzyme layer is not particularly limited, and can be adjusted as appropriate depending on the size of the electrical conductor, the use, the type of mediator, the type of enzyme to be measured, and the like. For example, 0.1 / im ⁇ : about 1000 / im.
  • Examples of the method of stacking the enzyme layer include the same method as stacking the mediator together with or on the mediator.
  • the above-mentioned mediator and enzyme layer may be laminated in layers with a polymer carrier.
  • a polymer carrier that can be used here, one that has a charge, one that is a polymer, and one that is water-soluble, preferably one that satisfies all properties is suitable.
  • the charge may be positive or negative.
  • polymer carrier examples include various proteins (eg, enzymes, antibodies, receptor tanks, etc.), polypeptides (eg, polylysine, polyaspartic acid, polyglutamic acid, etc.), water-soluble synthetic polymer compounds (eg, polyethylene Amine, polyacrylic acid, carboxymethylenosenololose, polystyrene sulphonic acid, polydimethinoresinolylene monum chloride, etc.) and natural polymers (alginic acid and its salts, tragacanth gum, etc.).
  • proteins eg, enzymes, antibodies, receptor tanks, etc.
  • polypeptides eg, polylysine, polyaspartic acid, polyglutamic acid, etc.
  • water-soluble synthetic polymer compounds eg, polyethylene Amine, polyacrylic acid, carboxymethylenosenololose, polystyrene sulphonic acid, polydimethinoresinolylene monum chloride, etc.
  • natural polymers al
  • the method of laminating the mediator and the like together with the polymer carrier is not particularly limited.
  • the mediator or the like which is not limited, is dispersed in the polymer carrier, or an appropriate solvent (water, buffer solution, water-soluble organic solvent) together with the polymer carrier Etc.) may be dissolved or dispersed, applied and dried, or an alternate lamination method may be used.
  • the alternate lamination method of laminating the mediator and enzyme layers (here, the method of laminating each layer in sequence) can be performed, for example, as follows.
  • the conductor surface is activated to be positively or negatively charged.
  • the molecules that make up the mediator, or the high molecular weight that binds the mediator to the dispersion / mediator By charging the child carrier negatively or positively and bringing it into contact with the conductor surface, the mediator is stacked on the conductor surface through the interaction between positive and negative charges. If the required amount of mediator can be secured by such a single positive / negative interaction, only one layer as described above is required. However, when a larger amount of mediator is to be stacked on the conductor surface In this case, a plurality of mediator layers, for example, about 2 to 20 layers may be laminated by performing the above-described interaction a plurality of times.
  • a carrier having the opposite charge for example, the above-described polymer carrier
  • a mediator or the like is laminated on the laminated mediator, and a molecule constituting the mediator is again added to the polymer carrier or the like.
  • the enzyme to be measured for activity may be laminated, or (2) An enzyme to be measured may be arranged separately from this electrode so as to come into contact.
  • lamination can be performed using the same lamination method as that for mediators and the like, and similarly, it is preferably formed by an alternate lamination method.
  • the enzyme to be measured is laminated on the conductor, so that, for example, the enzyme to be measured is compared with that supplied by the solution together with the substrate.
  • the enzyme to be measured may be brought into contact with the electrode in the form of a solution, suspension or dispersion, preferably in the presence of a substrate.
  • it may be a liquid containing the enzyme to be measured.
  • a DNA fragment is further immobilized on the electrode used in the present embodiment.
  • This DNA fragment is a capillary probe for pairing with DNA for detection and / or quantification (hereinafter referred to as “target DNA”) using the complementarity of DNA.
  • the target DNA is a DNA fragment for detection and Z or quantification purposes, which is paired with the capture probe using the complementarity of DNA.
  • a specific D having complementarity to the capillary probe and the reporter probe, respectively.
  • the NA fragment is detected, and the DNA fragment to be detected corresponds to the target DNA.
  • the collected DNA is amplified by the polymerase chain reaction (PCR) and used.
  • the reporter probe pairs with the target DNA by utilizing the complementarity of DNA.
  • This report probe is labeled with an enzyme for detection and Z or quantification of the target DNA.
  • this enzyme is L-proline dehydrogenase.
  • the capture probe, the target DNA, and the reporter probe are bonded to the electrode on the J jet. That is, so-called hybridization of the target DNA is performed on the electrode.
  • indirect electron exchange via the mediator can be measured, for example, as a current value, thereby detecting and / or quantifying the target DNA. .
  • the method using a DNA fragment that is, the DNA probe method and the DNA hybridization itself use all methods known in the art and methods based thereon. can do. Any commercially available DNA fragment can be used.
  • a Salmonella probe see Rahn K., SA Deurandis, RC Clarke, SA McEwen, JE Galan, Lrinocchio, R. Curtiss and CL Gyles, Mol. Cell. Probes, 6, 271-279 (1992)).
  • the electrode produced as described above usually contains a counter electrode, these electrode and counter electrode, and can contain a liquid, preferably a solution containing a substrate of the enzyme to be measured. Is placed in a reactor that is capable of further immersion in the reactor. It is suitable to be used in biosensors filled with solution each time. In such a biosensor, based on the result of cyclic voltammetry, for example, a constant potential having a predetermined potential difference is applied to both electrodes, and the current value generated due to the reaction of the enzyme to be measured. Can be measured (for example, measured as a limiting oxidation current value), and the activity of the enzyme to be measured can be determined. The current value can be detected by, for example, a current detection unit such as a potentiostat or an ammeter. In this embodiment, DNA is detected by measuring a current value using such a nanosensor.
  • the reporter probe is labeled with a thermostable enzyme, and a solution containing the substrate of the thermostable enzyme is accommodated in the reactor. Then, the electrode prepared as described above, the counter electrode, and the reference electrode are immersed in a solution containing the substrate, and a constant potential having a predetermined potential difference is applied to the electrode and the counter electrode, so that the heat resistance Measure the current value generated by the reaction between the enzyme and the substrate.
  • thermostable enzyme is an L proline dehydrogenase derived from a hyperthermophilic bacterium
  • thermostable enzyme in the present invention is not limited to this.
  • the working electrode has a captive probe 28a immobilized on the carbon electrode 21 through a mediator 22 in a complementary manner to hybridize with the target DNA 28b.
  • the mediator 22 does not have to be fixed to the carbon electrode 21 but is present in the solution.
  • the reporter probe 28c labeled with L-proline dehydrogenase 26 is obtained by binding the reporter probe 28c labeled with the capillary probe 28a, the target DNA 28b, and L_proline dehydrogenase 26.
  • a coupled working electrode can be obtained.
  • the single-stranded DNA obtained by modifying this DNA corresponds to the single-stranded target DNA 28b.
  • target DNA28b it is necessary to detect target DNA28b in the DNA sample solution. It is necessary that there is enough DNA collected. For this reason, first, in order to obtain a sufficient amount of DNA for detection of the target DNA 28b, PCR (Polymerase Chain Reaction) is performed using the DNA sample solution to amplify the DNA in the sample solution.
  • the DNA sample solution is heat-treated at 96 ° C for 30 seconds, for example, to denature the double-stranded DNA into single-stranded DNA.
  • a working electrode is inserted into the sample solution, and a reporter probe 28c labeled with L-proline dehydrogenase 26 is introduced.
  • the reporter probe 28c labeled with the L proline dehydrogenase 26 may be lyophilized or a liquid reagent.
  • the temperature of the reaction solution needs to be lower than the heat resistant temperature of L proline dehydrogenase 26. If the temperature of the reaction solution is lower than the heat-resistant temperature of L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium, reporter probe 28c labeled with L proline dehydrogenase 26 can be added to the reaction solution without further cooling. .
  • the capillary probe 28a, the single-stranded target DNA 28b, and the reporter probe 28c are annealed.
  • the detection target DNA when the detection target DNA is obtained, this corresponds to the detection target DNA force single-stranded target DNA 28b. Therefore, when the DNA to be detected is contained in the sample solution, the capillary probe 28a, the target DNA 28b, and the reporter probe 28c are bonded to the carbon electrode 21 in this order.
  • DNA is detected using the above working electrode, a reference electrode and a counter electrode. That is, a biosensor having a working electrode, a reference electrode, and a counter electrode is used. A schematic diagram of this biosensor is shown in Figure 2.
  • the biosensor 18 is connected to the working electrode 11 connected to the lead 11a, the counter electrode 14 also connected to the lead 14a, and the lead 12a in the reactor 15.
  • the reference electrode 12 is accommodated.
  • a buffer solution containing L proline which is a substrate of L proline dehydrogenase labeled on the reporter probe for example, For example, Tris buffer
  • the working electrode, the reference electrode and the counter electrode are immersed in this buffer solution.
  • a separator 16 is provided between the working electrode 11 and the counter electrode 14.
  • an ammeter 17 is connected to the lead 11a as a current detector for measuring a current value generated in the working electrode 11.
  • the current flowing through the working electrode 11 is defined as the limiting oxidation current by the transfer of electrons by L-proline in the electrolyte 13, L-loop phosphorus dehydrogenase and mediator labeled on the reporter probe, and the ammeter 17 Can be measured.
  • the capillary probe 28a, the target DNA 28b, and the reporter probe 28c are combined in this order on the working electrode 11. Yes.
  • the reporter probe 28c is labeled with L proline dehydrogenase 26.
  • the current value is measured by applying a potential of +5 OOmV to the working electrode 11 of the biosensor 18 with reference to the reference electrode 12, and measuring the current flowing through the working electrode 11.
  • carbon of working electrode 11 Measure the current value of the current flowing through electrode 21 (limit oxidation current). For example, when a potential of +500 mV is applied to the working electrode 11 with reference to the reference electrode 12, L monoproline 25 and L-proline dehydrogenase 26 in the reaction solution react, and the mediator 22 is The current flowing through the working electrode 11 can be measured by the ammeter 17 as the limit oxidation current.
  • the target DNA is bound to the capture probe and the reporter probe using the capture probe, the reporter probe labeled with the thermostable enzyme, and the substrate that reacts with the thermostable enzyme, and the reporter
  • the target DNA is detected electrochemically by a reaction between a thermostable enzyme labeled on the probe and a substrate.
  • the reporter probe labeled with the heat-resistant enzyme can be put into a high-temperature reaction solution at which the heat-resistant enzyme is active. Therefore, since the reporter probe can be introduced into the reaction solution at a higher temperature, the efficiency of hybridization can be increased, and the target DNA can be detected with higher sensitivity and efficiency.
  • a heat-promoting enzyme labeled with a reporter probe by binding a capture probe to a conductor surface to form an electrode, binding a target DNA to the capture probe and the reporter probe, and The target DNA is detected by measuring the value of the current flowing through the electrode due to the reaction with the substrate. This will allow you to Detecting target DNA more sensitively and efficiently by measuring the value of the current flowing through the electrode using an electrode constructed by bonding to the surface of a conductor and a reportable probe labeled with a thermostable enzyme be able to.
  • a repo-tableb labeled with an enzyme derived from a hyperthermophilic bacterium is used. Since hyperthermophilic bacteria can obtain enzymes that are not completely inactivated at the denaturation temperature of the target DNA, according to this, the report probe is introduced into the reaction solution at the denaturation temperature of the target DNA. It becomes possible. For this reason, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • an electrode in which a capillary probe 28a is bonded to the surface of the carbon electrode 21, and a reporter probe 28c labeled with L proline dehydrogenase 26 derived from a hyperthermophilic bacterium The L proline dehydrogenase 26, which is a substrate that reacts with the L proline dehydrogenase 26, is used.
  • the target DNA 28b is bound to the capillary probe 28a and the reporter probe 28c, and the limit oxidation that flows to the carbon electrode 21 based on the reaction by the L-proline dehydrogenase 26 and L proline 25 labeled on the reporter probe 28c.
  • the target DNA28b is detected by measuring the current value of the current.
  • reportable probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is introduced into the reaction solution at a high temperature at which this L-proline dehydrogenase 26 remains active. It becomes possible to do. Therefore, the efficiency of the hybridization is increased, and the target DNA can be detected with higher sensitivity and efficiency.
  • a reportable tab labeled with an enzyme derived from a hyperthermophilic bacterium is used. Since hyperthermophilic bacteria can obtain enzymes that are not completely inactivated at the denaturation temperature of the target DNA, according to this, the report probe is introduced into the reaction solution at the denaturation temperature of the target DNA. It becomes possible. For this reason, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • the repotable probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is added to the reaction solution at a high temperature at which this L-proline dehydrogenase 26 maintains its activity. It becomes possible to input. Therefore, the efficiency of the hybridization is increased, and the target DNA can be detected with higher sensitivity and efficiency.
  • the reporter probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is used. According to this, reporter probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is put into a high-temperature reaction solution at a temperature at which this L-proline dehydrogenase 26 remains active. can do. For this reason, it is possible to denature the target DNA into single-stranded target DNA28b and then react the reporter probe 28c with target DNA28b at a high temperature that keeps L-proline dehydrogenase 26 active. It becomes. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • L_proline dehydrogenase derived from an organism selected from the group consisting of O T_3) can be used. Therefore, a reporter probe labeled with L_proline dehydrogenase derived from each of these organisms can be introduced into the reaction solution at a temperature at which the L_proline dehydrogenase is active. For this reason, after the target DNA is denatured into single-stranded DNA, the reporter probe can be reacted with the target DNA at a high temperature. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
  • a target probe when the target DNA is denatured for hybridization, a target probe is used as a capture probe immobilized on an electrode and a reporter probe labeled with L-proline dehydrogenase. Put into the contained solution. For this reason, the electrode The probe probe fixed to the target and the reporter probe labeled with L-proline dehydrogenase can coexist with the target DNA during denaturation of the target DNA for hybridization. As a result, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency. In addition, processing can be performed with simpler operations.
  • a captive probe is bonded to the surface of a conductor to form an electrode, and the target DNA is detected by measuring the value of the current flowing through the electrode.
  • the present invention is not limited to this.
  • a capillary probe may be immobilized on a pH sensitive membrane, and a change in pH due to an enzyme reaction may be detected by a change in voltage, thereby detecting a target DNA.
  • an embodiment in this case will be described.
  • FIG. 3 shows a field effect transistor structure used in the DNA detection method of one embodiment of the present invention.
  • This field effect transistor structure includes a p-type silicon substrate 31, a pH sensitive film 32, a counter electrode 34, a source electrode 35, a drain electrode 36, and an n + -type layer 37.
  • the pH sensitive film 32 exhibits a pH response, and for example, Si N (silicon nitride film) or the like can be used.
  • Si N silicon nitride film
  • the pH sensitive membrane 32 and the counter electrode 34 are immersed in the electrolytic solution.
  • a capture probe 48a is fixed on the pH sensitive membrane 32.
  • the capture probe 48a hybridizes in a complementary manner to the target DNA 48b.
  • the heat-resistant enzyme 46 can be held in the vicinity of the pH sensitive membrane 32 by binding the reporter probe 48c labeled with the capillary probe 48a, the target DNA 48b, and the heat-resistant enzyme 46.
  • thermostable enzyme 46 for example, an enzyme that changes pH in response to the reaction with the substrate 45, such as glucose oxidase, is used.
  • Double-stranded DNA corresponds to single-stranded target DNA48b.
  • the collected DNA In order to detect the target DNA48b, the collected DNA must be present in the DNA sample solution sufficient for the detection of the target DNA48b. Therefore, first, in order to obtain a sufficient amount of DNA for detection of the target DNA48b, the DNA in the sample solution is amplified by performing PCR using the DNA sample solution.
  • this DNA sample solution is heat-treated at 96 ° C for 30 seconds, for example, to denature the double-stranded DNA into single-stranded DNA.
  • the pH sensitive membrane 32 is immersed in this sample solution, and a reporter probe 48c labeled with a thermostable enzyme 46 is introduced.
  • the temperature of the reaction solution needs to be lower than the thermostable temperature of the thermostable enzyme 46. If the temperature of the reaction solution is lower than the heat-resistant temperature of thermostable enzyme 46, reporter probe 48c labeled with thermostable enzyme 46 can be added to the reaction solution without further cooling.
  • the capillary probe 48a, the single-stranded target DNA 48b, and the reporter probe 48c are annealed.
  • this corresponds to the target DNA48b having a single-strand DNA force to be detected. Therefore, when the DNA to be detected is contained in the sample solution, the capillary probe 48a, the target DNA 48b, and the reporter probe 48c bind to the pH sensitive membrane 32 in this order.
  • the reaction solution is discarded, and the pH sensitive membrane 32 and the counter electrode 34 are immersed in a buffer solution that is an electrolytic solution.
  • a buffer solution that is an electrolytic solution.
  • the reporter probe 48c which is detected by the capillar probe 48a, the target DNA 48b, and the thermostable enzyme 46, They are combined in this order. Therefore, in this case, the thermostable enzyme 46 is held in the vicinity of the pH sensitive membrane 32.
  • the interfacial potential between the pH sensitive film 32 and the electrolytic solution changes according to the change in pH.
  • This change in interfacial potential is measured.
  • the gate current is measured while keeping the drain current and the source Z-drain voltage constant.
  • the presence or concentration of the target DNA can be detected by detecting the change in pH by measuring the voltage.

Abstract

An electrode where a capture probe (28a) is connected to the surface of a carbon electrode (21), a reporter probe (28c) labeled with an L-proline dehydrogenation enzyme (26), and an L-proline (25) serving as a substrate reactive with the L-proline dehydrogenation enzyme (26) are used. A target DNA (28b) is connected to the capture probe (28a) and the reporter probe (28c). By measuring the current value of the limiting oxidation current flowing through the carbon electrode (21) because of the reaction between the L-proline dehydrogenation enzyme (26) with which the reporter probe (28c) is labeled and the L-proline (25), the target DNA (28b) is detected.

Description

明 細 書  Specification
DNA検出方法及びレポータプローブ  DNA detection method and reporter probe
技術分野  Technical field
[0001] 本発明は、導電体表面にキヤプチヤープローブが結合してなる電極と、酵素が標識 されたレポータプローブとを用いて、ターゲット DNAを結合させ、電流値を測定する ことによりターゲット DNAを検出する DNA検出方法及びレポータプローブに関する 背景技術  [0001] The present invention relates to target DNA by binding a target DNA using an electrode in which a capillary probe is bound to the surface of a conductor and a reporter probe labeled with an enzyme, and measuring the current value. Background Art Related to DNA Detection Method and Reporter Probe
[0002] 従来から、ノくツチ式のシステムにおいて、二種類の酸化還元酵素と補酵素とを組み 合わせて、基質 (例えば、生体内物質等)を高感度に定量する方法及び酵素活性を 測定する方法が確立されている(例えば、非特許文献 1参照。)。  [0002] Conventionally, in a notch-type system, a combination of two types of oxidoreductases and a coenzyme to quantitate a substrate (for example, a substance in a living body) with high sensitivity and measure enzyme activity. Has been established (for example, see Non-Patent Document 1).
[0003] この方法を用いてサンドイッチハイブリダィゼーシヨンにより DNAの検出を行う場合 は、レポータプローブに酵素を標識し、酵素反応に基づく電子の授受を測定する。こ の方法によれば、ハイブリダィゼーシヨンをさせるためにターゲット DNAを一本鎖に 変性させる必要があるが、ハイブリダィゼーシヨンの効率を上げるためには、 90°C以 上の高温が必要となる。  [0003] When DNA is detected by sandwich hybridization using this method, an enzyme is labeled on the reporter probe, and electron exchange based on the enzyme reaction is measured. According to this method, it is necessary to denature the target DNA into a single strand for hybridization, but in order to increase the efficiency of hybridization, a high temperature of 90 ° C or higher is required. Is required.
[0004] 一方、超好熱菌であるサーモコッカス.プロファンダス (Thermococcus profundus)DS M9503に由来する L—プロリン脱水素酵素が精製され、この L—プロリン脱水素酵 素の活性が示されている(例えば、非特許文献 2参照。)。  [0004] On the other hand, L-proline dehydrogenase derived from Thermococcus profundus DS M9503, a hyperthermophilic bacterium, was purified and the activity of this L-proline dehydrogenase was demonstrated. (For example, see Non-Patent Document 2.)
非特許文献 1 :生化学実験講座、第 5卷、酵素研究法 (東京化学同人) P121-129 非特許文献 2 :ハルヒコ サクラバ (Haruhiko Sakuraba),ヨシノリ タカマツ (Yoshinori T akamatsu)、タケノリ サトムラ (Takenon Satomura)、リュウシ 力ワカ (Ryusm Kawakam i)、トシヒサ ォオシマ (Toshihisa Ohshima)著,「アプライド'アンド'ェンヴアイラメンタル •マイクロバイオロジー (Applied and Environmental Microbiology)」,(米国), 2001年,第 6 7卷 ,ρ· 1470-1475  Non-patent literature 1: Biochemistry experiment course, 5th V, Enzyme research method (Tokyo Chemical Doujin) P121-129 Non-patent literature 2: Haruhiko Sakuraba, Yoshinori Takamatsu, Takenon Satomura ), Ryusm Kawakami, Toshihisa Ohshima, “Applied and Environmental Microbiology” (USA), 2001, 6th 7 卷, ρ · 1470-1475
発明の開示  Disclosure of the invention
[0005] 上記の方法を用いて DNAの検出を行う場合、従来力 使用されている耐熱酵素は 90°C近くの高温では失活してしまうため、酵素により標識されたレポータプローブは 、 70°C程度まで反応液の温度を下げてから投入する必要があった。つまり、ハイプリ ッドダイゼーシヨンの効率にかかわらず、酵素により標識されたレポータプローブは、 酵素が失活しない温度までサンプル液の温度が下がってから投入しなければならな かった。 [0005] When DNA is detected using the above method, the heat-resistant enzyme that has been used conventionally is Since the enzyme was inactivated at a high temperature near 90 ° C, it was necessary to introduce the reporter probe labeled with the enzyme after reducing the temperature of the reaction solution to about 70 ° C. In other words, regardless of the efficiency of the hybridization, the reporter probe labeled with an enzyme had to be introduced after the temperature of the sample solution had dropped to a temperature at which the enzyme was not inactivated.
[0006] 本発明は、上記課題を解決するためになされたものであり、その目的は、より高感 度かつ効率的に DNAを検出するための DNA検出方法及びレポータプローブを提 供することにある。  [0006] The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a DNA detection method and a reporter probe for detecting DNA with higher sensitivity and efficiency. .
[0007] 本発明は、上記課題を解決するためになされたものであり、その目的は、より高感 度かつ効率的に DNAを検出するための DNA検出方法及びレポータプローブを提 供することにある。  [0007] The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a DNA detection method and a reporter probe for detecting DNA with higher sensitivity and efficiency. .
[0008] 本発明の DNA検出方法は、キヤプチヤープローブと、耐熱酵素により標識されたレ ポータブローブと、前記耐熱酵素と反応する基質とを用いて、前記キヤプチヤープロ ーブと、前記レポータプローブとにターゲット DNAを結合させ、前記レポータプロ一 ブに標識された前記耐熱酵素と前記基質による反応により電気化学的に前記ターゲ ット DNAを検出する。これによれば、耐熱酵素により標識されたレポータプローブを、 この耐熱酵素が活性を保つ温度である高温の反応液に投入することができる。従つ て、より高い温度でレポータプローブを反応液に投入できるため、ハイブリダィゼーシ ヨンの効率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことがで きる。  [0008] The DNA detection method of the present invention comprises using a capillary probe, a report probe labeled with a thermostable enzyme, and a substrate that reacts with the thermostable enzyme, and the captive probe and the reporter probe. The target DNA is bound to the target DNA, and the target DNA is detected electrochemically by a reaction with the thermostable enzyme labeled with the reporter probe and the substrate. According to this, a reporter probe labeled with a thermostable enzyme can be put into a high-temperature reaction solution that is a temperature at which the thermostable enzyme is active. Accordingly, since the reporter probe can be introduced into the reaction solution at a higher temperature, the efficiency of hybridization is increased, and the target DNA can be detected with higher sensitivity and efficiency.
[0009] この DNA検出方法において、前記キヤプチヤープローブを導電体表面に結合させ て電極を構成し、前記キヤプチヤープローブと、前記レポータプローブとにターゲット DNAを結合させ、前記レポータプローブに標識された前記耐熱酵素と前記基質に よる反応により前記電極に流れる電流値を測定することにより前記ターゲット DNAを 検出することができる。これによれば、前記キヤプチヤープローブを導電体表面に結 合させて構成した電極と耐熱酵素により標識されたレポータプローブとを用いて、電 極に流れる電流値を測定することにより、より高感度かつ効率的にターゲット DNAの 検出を行うことができる。 [0010] この DNA検出方法において、前記耐熱酵素を、超好熱菌に由来する酵素とするこ とができる。これによれば、超好熱菌に由来する耐熱酵素により標識されたレポータ プローブを、この超好熱菌に由来する耐熱酵素が活性を保つ温度である高温の反 応液に投入することができる。従って、ハイブリダィゼーシヨンの効率が上がり、より高 感度かつ効率的にターゲット DNAの検出を行うことができる。 [0009] In this DNA detection method, an electrode is formed by binding the capillary probe to the surface of a conductor, target DNA is bound to the capillary probe and the reporter probe, and the reporter probe is labeled. The target DNA can be detected by measuring the value of the current flowing through the electrode by the reaction between the thermostable enzyme and the substrate. According to this, a higher value can be obtained by measuring the value of the current flowing through the electrode using an electrode formed by binding the above-described captive probe to the surface of a conductor and a reporter probe labeled with a thermostable enzyme. Target DNA can be detected with sensitivity and efficiency. [0010] In this DNA detection method, the thermostable enzyme can be an enzyme derived from a hyperthermophilic bacterium. According to this, a reporter probe labeled with a thermophilic enzyme derived from a hyperthermophilic bacterium can be introduced into a high-temperature reaction solution that is a temperature at which the thermophilic enzyme derived from the hyperthermophilic bacterium remains active. . Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0011] この DNA検出方法において、前記超好熱菌に由来する酵素は、 L一プロリン脱水 素酵素とすることができる。これによれば、超好熱菌に由来する L—プロリン脱水素酵 素により標識されたレポータプローブを、この L プロリン脱水素酵素が活性を保つ 温度である高温の反応液に投入することができる。従って、ハイブリダィゼーシヨンの 効率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことができる。  [0011] In this DNA detection method, the enzyme derived from the hyperthermophilic bacterium can be L-proline dehydrase. According to this, a reporter probe labeled with an L-proline dehydrogenase derived from a hyperthermophilic bacterium can be introduced into a high-temperature reaction solution at which the L proline dehydrogenase is active. . Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0012] この DNA検出方法において、前記 L プロリン脱水素酵素は、サーモコッカス'プ 口ファングス、 I'nermococcus profundus) サーモコッカス'ヘプトノフィフス (Thermococc us peptonophilus)、ピロコッカス'フリ才サス (Pyrococcus furiosus)、及び、ピロコッ Xス' ホリコシ〇T—3(Pyrococcus horikoshi OT-3)からなる群力ら選ばれる生物に由来す るとすることができる。これによれば、これらの各生物に由来する L プロリン脱水素 酵素により標識されたレポータプローブを、この L プロリン脱水素酵素が活性を保 つ温度で反応液に投入することができる。このため、ターゲット DNAを 1本鎖 DNAに 変性させてから、高温の状態で、ターゲット DNAにレポータプローブを反応させるこ とができる。従って、ハイブリダィゼーシヨンの効率が上がり、より高感度かつ効率的 にターゲット DNAの検出を行うことができる。  [0012] In this DNA detection method, the L proline dehydrogenase comprises Thermococcus' Puff Fungus, I'nermococcus profundus, Thermococcus heptonovifus, Pyrococcus furiosus, and It can be derived from an organism selected from a group force consisting of Pyrococcus horikoshi OT-3. According to this, a reporter probe labeled with L proline dehydrogenase derived from each of these organisms can be introduced into the reaction solution at a temperature at which the L proline dehydrogenase is active. For this reason, after the target DNA is denatured into single-stranded DNA, the reporter probe can be reacted with the target DNA at a high temperature. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0013] この DNA検出方法において、ターゲット DNAの変性のための熱処理時に、前記 耐熱酵素により標識されたレポータプローブを、前記ターゲット DNAが含まれる溶液 中に投入することができる。これによれば、電極に固定されたキヤプチヤープローブと 耐熱酵素により標識されたレポータプローブとをハイブリダィゼーシヨンのためのター ゲット DNAの変性時にターゲット DNAと共存させることができる。これにより、ハイブ リダィゼーシヨンの効率が上がり、より高感度かつ効率的にターゲット DNAの検出を 行うことができる。また、より簡易な操作で処理を行うことができる。  [0013] In this DNA detection method, the reporter probe labeled with the thermostable enzyme can be introduced into a solution containing the target DNA during heat treatment for denaturing the target DNA. According to this, the capillary probe fixed to the electrode and the reporter probe labeled with the thermostable enzyme can coexist with the target DNA at the time of denaturation of the target DNA for hybridization. As a result, the efficiency of hybridization can be increased, and target DNA can be detected with higher sensitivity and efficiency. In addition, processing can be performed with a simpler operation.
[0014] 本発明のレポータプローブは、キヤプチヤープローブに結合するターゲット DNAに 、さらに結合するレポータプローブであって、耐熱酵素により標識されており、前記耐 熱酵素と基質による反応により電気化学的に前記ターゲット DNAを検出するために 用いられる。これによれば、耐熱酵素により標識されたレポータプローブを、この耐熱 酵素が活性を保つ温度である高温の反応液に投入することができる。従って、より高 レ、温度でレポータプローブを反応液に投入できるため、ハイブリダィゼーシヨンの効 率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことができる。 [0014] The reporter probe of the present invention is used for target DNA binding to a capillary probe. A reporter probe that binds further, is labeled with a thermostable enzyme, and is used for electrochemically detecting the target DNA by a reaction with the thermostable enzyme and a substrate. According to this, a reporter probe labeled with a thermostable enzyme can be put into a high-temperature reaction solution that is a temperature at which the thermostable enzyme maintains its activity. Accordingly, since the reporter probe can be introduced into the reaction solution at a higher temperature and temperature, the efficiency of hybridization can be increased, and target DNA can be detected with higher sensitivity and efficiency.
[0015] このレポータプローブにおいて、前記レポータプローブは、導電体表面にキヤプチ ヤープローブが結合してなる電極の前記キヤプチヤープローブに結合するターゲット[0015] In this reporter probe, the reporter probe is a target that binds to the cap probe of an electrode in which the cap probe is bonded to a conductor surface.
DNAに、さらに結合し、前記耐熱酵素と基質による反応により前記電極に流れる電 流値を測定することにより前記ターゲット DNAを検出するために用いることができる。 これによれば、前記キヤプチヤープローブを導電体表面に結合させて構成した電極 と耐熱酵素により標識されたレポータプローブとを用いて、電極に流れる電流値を測 定することにより、より高感度かつ効率的にターゲット DNAの検出を行うことができる The target DNA can be detected by further binding to DNA and measuring the value of the current flowing through the electrode by the reaction with the thermostable enzyme and the substrate. According to this, a higher sensitivity can be obtained by measuring the value of the current flowing through the electrode using an electrode formed by binding the above-described captive probe to the surface of a conductor and a reporter probe labeled with a thermostable enzyme. And target DNA can be detected efficiently
[0016] このレポータプローブにおいて、前記耐熱酵素を、超好熱菌に由来する酵素とする こと力 Sできる。これによれば、超好熱菌に由来する耐熱酵素により標識されたレポ一 タプローブを、この超好熱菌に由来する耐熱酵素が活性を保つ温度である高温の反 応液に投入することができる。従って、ハイブリダィゼーシヨンの効率が上がり、より高 感度かつ効率的にターゲット DNAの検出を行うことができる。 [0016] In this reporter probe, the thermostable enzyme can be an enzyme derived from a hyperthermophilic bacterium. According to this, a reporter probe labeled with a thermophilic enzyme derived from a hyperthermophilic bacterium can be put into a high-temperature reaction solution that is a temperature at which the thermophilic enzyme derived from the hyperthermophilic bacterium remains active. it can. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0017] このレポータプローブにおいて、前記超好熱菌に由来する酵素は、 L_プロリン脱 水素酵素とすることができる。これによれば、超好熱菌に由来する L—プロリン脱水素 酵素により標識されたレポータプローブを、この L_プロリン脱水素酵素が活性を保 つ温度である高温の反応液に投入することができる。従って、ノ、イブリダィゼーシヨン の効率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことができる  [0017] In this reporter probe, the enzyme derived from the hyperthermophilic bacterium can be L_proline dehydrogenase. According to this, a reporter probe labeled with L-proline dehydrogenase derived from a hyperthermophilic bacterium can be put into a high-temperature reaction solution at which the activity of L_proline dehydrogenase is maintained. it can. Therefore, the efficiency of hybridization is improved, and target DNA can be detected with higher sensitivity and efficiency.
[0018] このレポータプローブにおいて、前記 L_プロリン脱水素酵素は、サーモコッカス' フロファンタ、'ス 丄 'hermococcus profundus)^ ir ~モコッ刃ス 'へ 7卜ノフィフス (Thermoco ecus peptonophilus)、ピロコッカス.フリオサス (Pvrococcus furiosus)、及ぴ、ピロコッカ ス.ホリコシ〇T_ 3(Pyrococcus horikoshi OT- 3)からなる群力 選ばれる生物に由来 するとすることができる。これによれば、これらの各生物に由来する L_プロリン脱水 素酵素により標識されたレポータプローブを、この L_プロリン脱水素酵素が活性を 保つ温度で反応液に投入することができる。このため、ターゲット DNAを 1本鎖 DNA に変性させてから、高温の状態で、ターゲット DNAにレポータプローブを反応させる ことができる。従って、ハイブリダィゼーシヨンの効率が上がり、より高感度かつ効率的 にターゲット DNAの検出を行うことができる。 [0018] In this reporter probe, the L_proline dehydrogenase is Thermococcus' phlophanta, 'Hermococcus profundus) ^ ir ~ Mokok Blades' 7 卜 Nofifs (Thermoco ecus peptonophilus) (Pvrococcus furiosus), Pirococca It can be said that it is derived from the organism selected from the group power consisting of T. 3 (Pyrococcus horikoshi OT-3). According to this, a reporter probe labeled with L_proline dehydrogenase derived from each of these organisms can be introduced into the reaction solution at a temperature at which this L_proline dehydrogenase is active. For this reason, after the target DNA is denatured into single-stranded DNA, the reporter probe can be reacted with the target DNA at a high temperature. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]本発明の一実施形態を示す概略模式図。  FIG. 1 is a schematic diagram showing one embodiment of the present invention.
[図 2]本発明の一実施形態で用いられるバイオセンサを示す概略模式図。  FIG. 2 is a schematic diagram showing a biosensor used in one embodiment of the present invention.
[図 3]本発明の一実施形態を示す概略模式図。  FIG. 3 is a schematic diagram showing one embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明の DNA検出方法では、本発明のレポータプローブである、耐熱酵素で標 識されたレポータプローブを用いて、ターゲット DNAの検出を行う。ここでは、まず、 レポータプローブに標識された耐熱酵素について説明し、次に、本発明の DNA検 出方法の一実施形態で用レ、られる電極にっレ、て説明した後、本発明の DNA検出方 法の一実施形態について説明する。  [0020] In the DNA detection method of the present invention, target DNA is detected using a reporter probe labeled with a thermostable enzyme, which is the reporter probe of the present invention. Here, the thermostable enzyme labeled on the reporter probe will be described first, and then the electrode used in one embodiment of the DNA detection method of the present invention will be described, and then the DNA of the present invention will be described. An embodiment of the detection method will be described.
[0021] (レポータプローブに標識された耐熱酵素)  [0021] (Thermolytic enzyme labeled on the reporter probe)
本発明のレポータプローブ、及び、本発明の DNA検出方法で用いられるレポータ プローブは、耐熱酵素により標識されている。耐熱酵素は、人工合成による酵素又は 天然の酵素のいずれでもよい。天然の耐熱酵素としては、超好熱菌から得られる酵 素が挙げられる。  The reporter probe of the present invention and the reporter probe used in the DNA detection method of the present invention are labeled with a thermostable enzyme. The thermostable enzyme may be either an artificially synthesized enzyme or a natural enzyme. Examples of natural heat-resistant enzymes include enzymes obtained from hyperthermophilic bacteria.
[0022] なお、超好熱菌とは、好熱菌のうち特に高い温度(通常 85°C〜90°C以上)で生育 できる菌をいう。このような超好熱菌からは、高温(90°C近く)でも活性を保つ酵素を 得ることができる。すなわち、このような超好熱菌から、ターゲット DNAの変性温度で 完全には失活しない酵素を得ることができる。このような酵素として、例えば、超好熱 菌に由来する L_プロリン脱水素酵素が挙げられる。なお、本発明における耐熱酵 素及び超好熱菌に由来する酵素は、これに限定されるものではない。 [0023] 超好熱菌に由来する L_プロリン脱水素酵素としては、例えば、サーモコッカス'プ 口ファンタス (Thermococcus profundus^ケ" ~モコッカス'へノトノフィフス (Thermococc us peptonophilus)、ピロコッカス'フリ才サス (Pyrococcus iuriosus)^及び、ピロコッ刀ス' ホリコシ〇T_ 3(Pyrococcus horikoshi OT-3)に由来する L—プロリン脱水素酵素が 挙げられる。このうち、サーモコッカス'プロファンダス (Th ermococcus proflmdus)に由 来する L_プロリン脱水素酵素が特に好ましい。 [0022] The hyperthermophilic bacterium refers to a bacterium that can grow at a particularly high temperature (usually 85 ° C to 90 ° C or more) among thermophilic bacteria. From such hyperthermophilic bacteria, an enzyme that maintains its activity even at high temperatures (near 90 ° C) can be obtained. That is, an enzyme that is not completely inactivated at the denaturation temperature of the target DNA can be obtained from such a hyperthermophilic bacterium. An example of such an enzyme is L_proline dehydrogenase derived from a hyperthermophilic bacterium. In addition, the enzyme derived from a thermostable enzyme and a hyperthermophilic bacterium in the present invention is not limited to this. [0023] Examples of L_proline dehydrogenase derived from hyperthermophilic bacteria include Thermococcus profundus ^ -Momocus fever (Thermococc us peptonophilus), Pyrococcus pylorisus ( Pyrococcus iuriosus) ^ and L-proline dehydrogenase derived from Pyrococcus horikoshi OT-3, including Thermococcus proflmdus (Th ermococcus proflmdus) The incoming L_proline dehydrogenase is particularly preferred.
[0024] なお、超好熱菌に由来する L—プロリン脱水素酵素として、サーモコッカス'プロファ ンダス (Thermococcus profondus)DSM9503、サーモコッカス'ぺプトノフィラス (Ther mococcus peptonophilus)、 DSMl0d43、ピロコッカス ·フリオサス (Pyrococcus furiosu s)DSM3638、及びピロコッカス'ホリコシ (Pyrococcus horikoshi)〇T— 3に由来する L プロリン脱水素酵素が抽出されている。このうち、サーモコッカス'プロファンダス (T hermococcus profondus)DSM9503に由来する L プロリン脱水素酵素について、 精製され、各条件下における活性が調べられている。このサーモコッカス'プロファン ダス (Thermococcus profondus)DSM9503に由来する L プロリン脱水素酵素の活 性には、温度については 80°Cが好適であり、 90°Cにおいても高い活性が示されるこ とが報告されている (非特許文献 2参照。)。  [0024] As L-proline dehydrogenase derived from hyperthermophilic bacteria, Thermococcus profondus DSM9503, Thermococcus peptonophilus, DSMl0d43, Pyrococcus furiosus (Pyrococcus fur s) L proline dehydrogenase derived from DSM3638 and Pyrococcus horikoshi 〇T-3 has been extracted. Among them, L proline dehydrogenase derived from Thermococcus profondus DSM9503 has been purified and examined under various conditions. The activity of L-proline dehydrogenase derived from this Thermococcus profondus DSM9503 is preferably 80 ° C for temperature and may show high activity at 90 ° C. Has been reported (see Non-Patent Document 2).
[0025] (電気化学的方法による DNAの検出)  [0025] (Detection of DNA by electrochemical method)
本発明の DNA検出方法では、キヤプチヤープローブと、耐熱酵素により標識され たレポータプローブと、耐熱酵素と反応する基質とを用いる。そして、キヤプチヤープ ローブとレポータプローブとにターゲット DNAを結合させ、レポータプローブに標識 された耐熱酵素と基質による反応により電気化学的にターゲット DNAを検出する。  In the DNA detection method of the present invention, a capillary probe, a reporter probe labeled with a thermostable enzyme, and a substrate that reacts with the thermostable enzyme are used. Then, the target DNA is bound to the capillary probe and the reporter probe, and the target DNA is detected electrochemically by a reaction with the thermostable enzyme labeled on the reporter probe and the substrate.
[0026] 以下、電気化学的方法により DNA検出を行う場合として、キヤプチヤープローブを 導電体表面に結合させて電極を構成し、この電極に流れる電流値を測定することに よりターゲット DNAを検出する場合について詳述する。  [0026] In the following, when DNA is detected by an electrochemical method, a target probe is detected by binding a probe probe to the surface of a conductor to form an electrode and measuring the value of the current flowing through the electrode. The case of doing will be described in detail.
[0027] (電極)  [0027] (Electrode)
本実施形態で用いられる電極は、レポータプローブに標識された L一プロリン脱水 素酵素の活性を測定するために用いることができるものである。  The electrode used in this embodiment can be used to measure the activity of L-proline dehydrinase labeled on a reporter probe.
[0028] 導電体としては、通常、電極として用いられるものであればどのような材料でも使用 することができる。例えば、グラフアイト、カーボン、カーボンファブリック等;アルミユウ ム、銅、金、白金、銀等の金属又は合金、 SnO、 In O、 WO、 TiO等、導電性酸化 [0028] As the conductor, any material that is usually used as an electrode is used. can do. For example, graphite, carbon, carbon fabric, etc .; metal or alloy such as aluminum, copper, gold, platinum, silver, SnO, InO, WO, TiO, etc., conductive oxidation
2 2 3 3 2  2 2 3 3 2
物等種々の材料の単層又は 2種以上の積層構造が挙げられる。電極の膜厚、大きさ 及び形状等は特に限定されるものではなぐ使用するメディエータ、酵素等の種類、 得ようとするバイオセンサの性能等によって適宜調整することができる。例えば、厚み 0.:!〜 5mm程度、 1〜: 10000mm2程度の面積の矩形形状であることが適当である。 A single layer of various materials such as a product, or a laminated structure of two or more types. The film thickness, size, shape, etc. of the electrode are not particularly limited, and can be appropriately adjusted depending on the type of mediator, enzyme, etc. used, the performance of the biosensor to be obtained, and the like. For example, a rectangular shape having an area of about 0.:! To about 5 mm and about 1 to about 10,000 mm 2 is suitable.
[0029] 導電体には、メディエータが積層されてレ、てもよレ、。なお、メディエータは、導電体 に積層されず、溶液中に存在していてもよい。 [0029] The conductor is laminated with a mediator. Note that the mediator may be present in the solution without being stacked on the conductor.
メディエータとしては、電極と L プロリン脱水素酵素との間で電子を授受し得る電 子移動媒体として機能するもので、 L—プロリン脱水素酵素の反応に悪影響を与えな レ、ものであれば、どのようなものでも使用することができる。例えば、フエ口セン、フェリ シアン化アルカリ金属(フェリシアン化カリウム、フェリシアン化リチウム、フェリシアン化 ナトリウム等)又はこれらのアルキル置換体(メチル置換体、ェチル置換体、プロピル 置換体等)、フエナジンメトサルフェート、 p ベンゾキノン、 2, 6 ジクロロフエノール インドフエノール、メチレンブルー、 β ナフトキノンー4ースルホン酸カリウム、フエナ ジンエトサルフェート、ビタミン 、ビオローゲン等の酸化還元性の有機又は無機化合 物の 1種あるいは 2種以上の組み合わせが挙げられる。なかでも、水や水溶性有機 溶媒 (低級アルコール等)に溶解し、取り扱いが容易であるもの、電子移動媒体として の機能が安定しているものが好ましぐ例えば、フエ口セン、フェリシアンィ匕カリウム等 が好適に用いられる。  As a mediator, it functions as an electron transfer medium that can exchange electrons between the electrode and L proline dehydrogenase, and if it does not adversely affect the reaction of L-proline dehydrogenase, Anything can be used. For example, Phenol, alkali metal ferricyanide (potassium ferricyanide, lithium ferricyanide, sodium ferricyanide, etc.) or alkyl substitutions thereof (methyl substitution, ethyl substitution, propyl substitution, etc.), phenazine One or more redox organic or inorganic compounds such as methosulfate, p-benzoquinone, 2,6 dichlorophenol, indophenol, methylene blue, β-naphthoquinone-4-potassium sulfonate, phenazine etsulfate, vitamins, viologen, etc. Combinations are listed. Of these, those that dissolve in water or water-soluble organic solvents (lower alcohols, etc.) and are easy to handle and those that have a stable function as an electron transfer medium are preferred. Etc. are preferably used.
[0030] なお、 L_プロリン脱水素酵素による反応における電子受容体としては、例えば、フ ラビンアデニンジヌクレオチド(FAD)、フェレドキシン等を用いることができる。  [0030] As the electron acceptor in the reaction by L_proline dehydrogenase, for example, flavin adenine dinucleotide (FAD), ferredoxin and the like can be used.
導電体上に積層されるメディエータの膜厚は、特に限定されるものではな 導電 体の大きさ、用いるメディエータの種類、後述する酵素層の酵素の種類及び量、測定 対象である酵素の種類等によって適宜調整することができる。例えば、 0. l z m〜l 000 x m程度が挙げられる。なお、メディエータを導電体上に積層する方法は、メデ イエータの種類によって、適当なものを適宜選択することができる。例えば、メデイエ ータをその機能を阻害しない溶媒、例えば、水又は水溶性有機溶媒等に溶解させ、 塗布、乾燥する方法、メディエータを適当な担体、例えば、樹脂、タンパク等の高分 子化合物等に混合及び分散させ、担体を薄膜状に形成する方法、交互積層法 (現 代化学、 1997年 1月、 p20〜25参照)等、当該分野で公知の薄膜形成法のすべて を利用することができる。なかでも、後述する交互積層法が好ましい。 The film thickness of the mediator laminated on the conductor is not particularly limited. The size of the conductor, the type of mediator to be used, the type and amount of enzyme in the enzyme layer described later, the type of enzyme to be measured, etc. Can be adjusted as appropriate. For example, about 0. lzm to l 000 xm can be mentioned. An appropriate method for laminating the mediator on the conductor can be selected as appropriate depending on the type of the mediator. For example, the mediator is dissolved in a solvent that does not hinder its function, such as water or a water-soluble organic solvent, Coating and drying methods, mediators mixed and dispersed in a suitable carrier, for example, high molecular compounds such as resins and proteins, and the carrier is formed into a thin film, alternating lamination method (present chemistry, 1997 1 Any of the thin film forming methods known in the art can be used, such as Mon, p20-25). Especially, the alternating lamination method mentioned later is preferable.
[0031] なお、酵素層が、さらに、導電体上に積層されたメディエータの上に積層されてもよ いし、メディエータ及び酵素の種類等によっては、酵素層をメディエータとともに導電 体上に配置してもよい。酵素層の膜厚は、特に限定されるものではなぐ導電体の大 きさ、用レ、るメディエータの種類、測定対象である酵素の種類等によって適宜調整す ることができる。例えば、 0. 1 /i m〜: 1000 /i m程度が挙げられる。なお、酵素層を積 層する方法としては、メディェータとともに、あるいはメディエータの上に、メディエータ を積層するのと同様の方法が挙げられる。  [0031] Note that the enzyme layer may be further laminated on a mediator laminated on the conductor, and depending on the type of the mediator and the enzyme, the enzyme layer may be arranged on the conductor together with the mediator. Also good. The thickness of the enzyme layer is not particularly limited, and can be adjusted as appropriate depending on the size of the electrical conductor, the use, the type of mediator, the type of enzyme to be measured, and the like. For example, 0.1 / im ~: about 1000 / im. Examples of the method of stacking the enzyme layer include the same method as stacking the mediator together with or on the mediator.
[0032] この DNA検出方法で用いられる電極では、上述したメディエータ、酵素層が、高分 子担体とともに層状で積層されてレ、てもよレ、。ここで用いることができる高分子担体と しては、電荷を有すること、ポリマーであること及び水溶性であることのいずれ力 1種、 好ましくは全ての性質を満足するものが適当である。電荷は正及び負のいずれでも よい。高分子担体は、例えば、各種タンパク質 (例えば、酵素、抗体、レセプタータン ノ ク等)、ポリペプチド(例えば、ポリリシン、ポリアスパラギン酸、ポリグルタミン酸等)、 水溶性合成高分子化合物(例えば、ポリエチレンィミン、ポリアクリル酸、カルボキシメ チノレセノレロース、ポリスチレンスノレホン酸、ポリジメチノレジァリノレアンモニゥムクロライド 等)、天然高分子(アルギン酸及びその塩類、トラガントガム等)が挙げられる。  [0032] In the electrode used in this DNA detection method, the above-mentioned mediator and enzyme layer may be laminated in layers with a polymer carrier. As the polymer carrier that can be used here, one that has a charge, one that is a polymer, and one that is water-soluble, preferably one that satisfies all properties is suitable. The charge may be positive or negative. Examples of the polymer carrier include various proteins (eg, enzymes, antibodies, receptor tanks, etc.), polypeptides (eg, polylysine, polyaspartic acid, polyglutamic acid, etc.), water-soluble synthetic polymer compounds (eg, polyethylene Amine, polyacrylic acid, carboxymethylenosenololose, polystyrene sulphonic acid, polydimethinoresinolylene monum chloride, etc.) and natural polymers (alginic acid and its salts, tragacanth gum, etc.).
[0033] メディエータ等を高分子担体とともに積層する方法としては、特に限定されるもので はなぐメディエータ等を高分子担体に分散、あるいは高分子担体とともに適当溶媒( 水、緩衝液、水溶性有機溶媒等)に溶解又は分散し、塗布、乾燥する方法でもよいし 、交互積層法を利用してもよい。  [0033] The method of laminating the mediator and the like together with the polymer carrier is not particularly limited. The mediator or the like, which is not limited, is dispersed in the polymer carrier, or an appropriate solvent (water, buffer solution, water-soluble organic solvent) together with the polymer carrier Etc.) may be dissolved or dispersed, applied and dried, or an alternate lamination method may be used.
[0034] メディエータ及び酵素層を積層する交互積層法 (ここでは、各層を順次積層する方 法)は、例えば、以下のように行うことができる。  [0034] The alternate lamination method of laminating the mediator and enzyme layers (here, the method of laminating each layer in sequence) can be performed, for example, as follows.
まず、導電体表面を活性化することにより、正又は負に帯電させる。次いで、メディ エータを構成する分子、あるいはメディエータを分散/メディエータと結合した高分 子担体を負又は正に帯電させ、これを導電体表面に接触させることにより、正と負と の電荷の間の相互作用を通してメディエータを導電体表面に積層する。なお、このよ うな 1回の正負の相互作用によって、必要なメディエータ量を確保することができれば 、上述のような積層は 1層のみでよいが、さらに多量のメディエータを導電体表面に 積層したい場合は、上述の相互作用を複数回行うことによって、メディエータ層を複 数層、例えば、 2〜20層程度積層してもよい。この場合、積層されたメディエータ上に 、これと反対の電荷を有する担体 (例えば、上述した高分子担体)又はメディエータ 等を積層し、再度、メディエータを構成する分子等を、この高分子担体等の上に積層 するという一連の操作を繰り返すことによって、多数層のメディエータの積層を実現す ること力 Sできる。 First, the conductor surface is activated to be positively or negatively charged. Next, the molecules that make up the mediator, or the high molecular weight that binds the mediator to the dispersion / mediator. By charging the child carrier negatively or positively and bringing it into contact with the conductor surface, the mediator is stacked on the conductor surface through the interaction between positive and negative charges. If the required amount of mediator can be secured by such a single positive / negative interaction, only one layer as described above is required. However, when a larger amount of mediator is to be stacked on the conductor surface In this case, a plurality of mediator layers, for example, about 2 to 20 layers may be laminated by performing the above-described interaction a plurality of times. In this case, a carrier having the opposite charge (for example, the above-described polymer carrier) or a mediator or the like is laminated on the laminated mediator, and a molecule constituting the mediator is again added to the polymer carrier or the like. By repeating a series of operations of stacking on top, it is possible to realize the stacking of multiple mediators.
[0035] また、この DNA測定装置の電極では、測定対象となる酵素の活性を測定するため に、(1)活性の測定対象となる酵素が積層されていてもよいし、(2)電極に接触する ように、この電極とは別個に測定対象となる酵素が配置されていてもよい。 (1)の場合 には、メディエータ等と同様の積層法を利用して積層することができ、同様に、交互 積層法によって形成することが好ましい。なお、(1)の場合には、測定対象となる酵 素が導電体上に積層されていることにより、例えば、酵素が基質とともに溶液によって 供給されるのに比較して、測定対象の酵素の反応に起因して発生する電流値が十 分に高い出力として得ることができ、より測定感度が良好となり、測定誤差を低減する ことが可能になるという利点がある。 (2)の場合には、例えば、測定対象となる酵素を 、好ましくは基質の存在下において、溶液状、懸濁又は分散された液状で、電極に 接触させてもよい。なお、(2)の場合には、測定対象となる酵素が含有された液状で あってもよレヽ。  [0035] Further, in the electrode of the DNA measuring apparatus, in order to measure the activity of the enzyme to be measured, (1) the enzyme to be measured for activity may be laminated, or (2) An enzyme to be measured may be arranged separately from this electrode so as to come into contact. In the case of (1), lamination can be performed using the same lamination method as that for mediators and the like, and similarly, it is preferably formed by an alternate lamination method. In the case of (1), the enzyme to be measured is laminated on the conductor, so that, for example, the enzyme to be measured is compared with that supplied by the solution together with the substrate. There is an advantage that the current value generated due to the reaction can be obtained as a sufficiently high output, the measurement sensitivity becomes better, and the measurement error can be reduced. In the case of (2), for example, the enzyme to be measured may be brought into contact with the electrode in the form of a solution, suspension or dispersion, preferably in the presence of a substrate. In the case of (2), it may be a liquid containing the enzyme to be measured.
[0036] 本実施形態で用いる電極には、さらに、 DNA断片を固定させておく。この DNA断 片は、 DNAの相補性を利用して、検出及び/又は定量目的の DNA (以下「ターグ ット DNA」と記す)と対合させるためのキヤプチヤープローブである。  [0036] A DNA fragment is further immobilized on the electrode used in the present embodiment. This DNA fragment is a capillary probe for pairing with DNA for detection and / or quantification (hereinafter referred to as “target DNA”) using the complementarity of DNA.
[0037] ターゲット DNAは、 DNAの相補性を利用して、このキヤプチヤープローブと対合さ せられる検出及び Z又は定量目的の DNA断片である。本発明の DNA検出方法で は、キヤプチヤープローブとレポータプローブとにそれぞれ相補性を有する特定の D NA断片の検出を行うが、検出対象の DNA断片が、ターゲット DNAに相当する。な お、採取された DNAは、ポリメラーゼ連鎖反応(PCR)により増幅されて用いられる。 [0037] The target DNA is a DNA fragment for detection and Z or quantification purposes, which is paired with the capture probe using the complementarity of DNA. In the DNA detection method of the present invention, a specific D having complementarity to the capillary probe and the reporter probe, respectively. The NA fragment is detected, and the DNA fragment to be detected corresponds to the target DNA. The collected DNA is amplified by the polymerase chain reaction (PCR) and used.
[0038] レポータプローブは、 DNAの相補性を利用してターゲット DNAと対合する。このレ ポータブローブには、ターゲット DNAの検出及び Z又は定量するために酵素が標識 されている。本発明において、この酵素は、 L—プロリン脱水素酵素である。  [0038] The reporter probe pairs with the target DNA by utilizing the complementarity of DNA. This report probe is labeled with an enzyme for detection and Z or quantification of the target DNA. In the present invention, this enzyme is L-proline dehydrogenase.
[0039] そして、このキヤプチヤープローブとターゲット DNAとレポータプローブとを反応さ せることにより、キヤプチヤープローブ、ターゲット DNA、レポータプローブがこの J噴 に電極に結合させられる。つまり、電極上で、いわゆるターゲット DNAのハイブリダィ ゼーシヨンを行わせる。そして、ターゲット DNA及びレポータプローブが結合された 電極を用いて、メディエータを介する間接的な電子授受を、例えば、電流値として測 定することによって、ターゲット DNAの検出及び/又は定量を行うことができる。  [0039] Then, by reacting the capture probe, the target DNA, and the reporter probe, the capture probe, the target DNA, and the reporter probe are bonded to the electrode on the J jet. That is, so-called hybridization of the target DNA is performed on the electrode. Then, by using an electrode to which the target DNA and the reporter probe are bound, indirect electron exchange via the mediator can be measured, for example, as a current value, thereby detecting and / or quantifying the target DNA. .
[0040] 電極上にキヤプチヤープローブを固定する方法としては、当該分野で公知の方法 の全て及びそれらに準じた方法を利用することができる。例えば、電極上にストレプト アビジンを積層し、キヤプチヤープローブの 5 '末端をビォチン修飾し、アビジンービ ォチンの相互作用により固定する方法又はこれに準じた方法が挙げられる。  [0040] As a method of fixing the capillary probe on the electrode, all methods known in the art and methods according to them can be used. For example, streptavidin is laminated on the electrode, the 5 ′ end of the capillary probe is modified with biotin, and fixed by avidin-biotin interaction or a similar method.
[0041] なお、 DNA断片(キヤプチヤープローブ、レポータプローブ)を用いる方法、つまり DNAプローブ法、 DNAハイブリダィゼーシヨン自体は当該分野で公知の方法の全 て及びそれらに準じた方法を利用することができる。この際に利用する DNA断片は 、市販されているいずれを用いてもよレ、。例えば、サルモネラのプローブ(Rahn K., S. A. De urandis, R. C. Clarke, S. A. McEwen, J. E. Galan,し. Lrinocchio, R. Curtiss and C.L. Gyles, Mol. Cell. Probes, 6, 271-279 (1992)参照)、タカラバイオケミカルス 、赤痢菌および腸管侵入性大腸菌(EIEC) invE遺伝子検出用 Primer Set INV-1& 2、 赤痢菌および腸管侵入性大腸菌(EIEC) ipaH遺伝子検出用 Primer Set IPA-1& 2、コ レラ毒素遺伝子検出用 primer Set VCT-1 & 2 (いずれも (株)島津製作所製)等が挙 げられる。 [0041] The method using a DNA fragment (capture probe, reporter probe), that is, the DNA probe method and the DNA hybridization itself use all methods known in the art and methods based thereon. can do. Any commercially available DNA fragment can be used. For example, a Salmonella probe (see Rahn K., SA Deurandis, RC Clarke, SA McEwen, JE Galan, Lrinocchio, R. Curtiss and CL Gyles, Mol. Cell. Probes, 6, 271-279 (1992)). , Takara Biochemicals, Shigella and Enteroinvasive Escherichia coli (EIEC) Primer Set INV-1 & 2 for detecting invE gene, Shigella and Enteroinvasive Escherichia coli (EIEC) ipaH gene detecting Primer Set IPA-1 & 2, Collera toxin The gene detection primer Set VCT-1 & 2 (both manufactured by Shimadzu Corporation) can be listed.
[0042] 上記のようにして作成された電極は、通常、対電極と、これらの電極及び対電極とを 収容し、液体、好ましくは測定対象の酵素の基質を含有する溶液を収容することがで きる反応器内に配置され、さらにこの反応器内に、両電極がほぼ完全に浸漬する程 度に溶液で充填されたバイオセンサにおいて、利用されることが適当である。このよう なバイオセンサにおいては、サイクリックボルタンメトリの結果をもとにして、例えば両 電極に所定の電位差を有する定電位を与え、測定対象の酵素の反応に起因して発 生する電流値を測定して (例えば、限界酸化電流値として測定する)、測定対象の酵 素の活性を判定することができる。電流値の検出は、例えば、ポテンシヨスタツト、電 流計等の電流検出部によって行うことができる。本実施形態においては、このような ノィォセンサを用いて電流値を測定することにより DNAの検出を行う。 [0042] The electrode produced as described above usually contains a counter electrode, these electrode and counter electrode, and can contain a liquid, preferably a solution containing a substrate of the enzyme to be measured. Is placed in a reactor that is capable of further immersion in the reactor. It is suitable to be used in biosensors filled with solution each time. In such a biosensor, based on the result of cyclic voltammetry, for example, a constant potential having a predetermined potential difference is applied to both electrodes, and the current value generated due to the reaction of the enzyme to be measured. Can be measured (for example, measured as a limiting oxidation current value), and the activity of the enzyme to be measured can be determined. The current value can be detected by, for example, a current detection unit such as a potentiostat or an ammeter. In this embodiment, DNA is detected by measuring a current value using such a nanosensor.
[0043] 本実施形態における DNA検出方法では、レポータプローブが耐熱酵素により標識 され、この耐熱酵素の基質を含有する溶液を反応器内に収容する。そして、上記のよ うに作成された電極と、対電極と、参照電極とを、この基質を含有する溶液に浸潰さ せ、この電極と対電極とに所定の電位差を有する定電位を与え、耐熱酵素と基質に よる反応に起因して発生する電流値を測定する。  [0043] In the DNA detection method of the present embodiment, the reporter probe is labeled with a thermostable enzyme, and a solution containing the substrate of the thermostable enzyme is accommodated in the reactor. Then, the electrode prepared as described above, the counter electrode, and the reference electrode are immersed in a solution containing the substrate, and a constant potential having a predetermined potential difference is applied to the electrode and the counter electrode, so that the heat resistance Measure the current value generated by the reaction between the enzyme and the substrate.
[0044] <本実施形態における DNA検出方法 >  <DNA detection method in this embodiment>
以下に、本実施形態における DNA検出方法を、図面に基づいて具体的に説明す る。なお、ここでは耐熱酵素が超好熱菌に由来する L プロリン脱水素酵素である場 合について説明するが、上述のとおり、本発明における耐熱酵素は、これに限られる ものではない。  Hereinafter, the DNA detection method in the present embodiment will be specifically described with reference to the drawings. Although the case where the thermostable enzyme is an L proline dehydrogenase derived from a hyperthermophilic bacterium is described here, as described above, the thermostable enzyme in the present invention is not limited to this.
[0045] (作用電極)  [0045] (Working electrode)
図 1に示すように、作用電極は、カーボン電極 21上にメディエータ 22を介してター ゲット DNA28bと相補的にハイブリダィズするキヤプチヤープローブ 28aを固定化し ている。なお、メディエータ 22は、カーボン電極 21に固定化されていなくてもよぐ溶 液中に存在してレ、てもよレ、。  As shown in FIG. 1, the working electrode has a captive probe 28a immobilized on the carbon electrode 21 through a mediator 22 in a complementary manner to hybridize with the target DNA 28b. Note that the mediator 22 does not have to be fixed to the carbon electrode 21 but is present in the solution.
[0046] そして、キヤプチヤープローブ 28a、ターゲット DNA28b、 L_プロリン脱水素酵素 2 6により標識されたレポータプローブ 28cを結合させることにより、 L—プロリン脱水素 酵素 26により標識されたレポータプローブ 28cを結合した作用電極を得ることができ る。ここで、 DNAサンプル液中に検出対象の DNAが存在する場合、この DNAを変 性させた 1本鎖 DNAが、 1本鎖のターゲット DNA28bに相当する。ターゲット DNA2 8bの検出を行うためには、 DNAサンプル液中に、ターゲット DNA28bの検出のため に十分なだけ、採取された DNAが存在する必要がある。このため、まず、ターゲット DNA28bの検出のために十分な量の DNAを得るために、 DNAサンプル液を用い て PCR (Polymerase Chain Reaction)を行うことにより、サンプル液中の DNAを増幅 させる。 [0046] Then, the reporter probe 28c labeled with L-proline dehydrogenase 26 is obtained by binding the reporter probe 28c labeled with the capillary probe 28a, the target DNA 28b, and L_proline dehydrogenase 26. A coupled working electrode can be obtained. Here, when the DNA to be detected is present in the DNA sample solution, the single-stranded DNA obtained by modifying this DNA corresponds to the single-stranded target DNA 28b. In order to detect target DNA28b, it is necessary to detect target DNA28b in the DNA sample solution. It is necessary that there is enough DNA collected. For this reason, first, in order to obtain a sufficient amount of DNA for detection of the target DNA 28b, PCR (Polymerase Chain Reaction) is performed using the DNA sample solution to amplify the DNA in the sample solution.
[0047] そして、この DNAサンプル液を、例えば、 96°Cで 30秒間、熱処理することにより、 2 本鎖 DNAを 1本鎖 DNAに変性させる。そして、作用電極をサンプル液に揷入すると ともに、 L—プロリン脱水素酵素 26により標識されたレポータプローブ 28cを投入する 。なお、 L プロリン脱水素酵素 26により標識されたレポータプローブ 28cは、凍結 乾燥させた状態のものを用いてもよいし、液状試薬を用いてもよい。  [0047] Then, the DNA sample solution is heat-treated at 96 ° C for 30 seconds, for example, to denature the double-stranded DNA into single-stranded DNA. Then, a working electrode is inserted into the sample solution, and a reporter probe 28c labeled with L-proline dehydrogenase 26 is introduced. The reporter probe 28c labeled with the L proline dehydrogenase 26 may be lyophilized or a liquid reagent.
[0048] ここで、レポータプローブ 28cに標識された L プロリン脱水素酵素 26の活性を保 つためには、反応液の温度が L プロリン脱水素酵素 26の耐熱温度より低いことが 必要である。超好熱菌に由来する L—プロリン脱水素酵素 26の耐熱温度より反応液 の温度が低ければ、さらに冷却することなぐ L プロリン脱水素酵素 26で標識され たレポータプローブ 28cを反応液に投入できる。  [0048] Here, in order to maintain the activity of L proline dehydrogenase 26 labeled on reporter probe 28c, the temperature of the reaction solution needs to be lower than the heat resistant temperature of L proline dehydrogenase 26. If the temperature of the reaction solution is lower than the heat-resistant temperature of L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium, reporter probe 28c labeled with L proline dehydrogenase 26 can be added to the reaction solution without further cooling. .
[0049] ここで、 DNAサンプル液中にターゲット DNA28bが存在する場合、図 1に示すよう に、キヤプチヤープローブ 28a、 1本鎖のターゲット DNA28b及びレポータプローブ 2 8cがァニールさせられる。ここで、検出対象の DNAが得られている場合には、この 検出対象の DNA力 1本鎖のターゲット DNA28bに相当する。従って、サンプル液 中に検出対象の DNAが含まれている場合に、キヤプチヤープローブ 28a、ターゲット DNA28b、レポータプローブ 28cがこの順にカーボン電極 21に結合させられる。  [0049] Here, when the target DNA 28b is present in the DNA sample solution, as shown in FIG. 1, the capillary probe 28a, the single-stranded target DNA 28b, and the reporter probe 28c are annealed. Here, when the detection target DNA is obtained, this corresponds to the detection target DNA force single-stranded target DNA 28b. Therefore, when the DNA to be detected is contained in the sample solution, the capillary probe 28a, the target DNA 28b, and the reporter probe 28c are bonded to the carbon electrode 21 in this order.
[0050] (バイオセンサ)  [0050] (Biosensor)
この DNA検出方法では、上記の作用電極と、参照電極及び対電極とを用いて、 D NAの検出を行う。すなわち、作用電極と参照電極と対電極とを備えたバイオセンサ を用いる。このバイオセンサの概略図を図 2に示す。  In this DNA detection method, DNA is detected using the above working electrode, a reference electrode and a counter electrode. That is, a biosensor having a working electrode, a reference electrode, and a counter electrode is used. A schematic diagram of this biosensor is shown in Figure 2.
[0051] 図 2に示すように、バイオセンサ 18は、反応器 15内に、リード 11aに接続された作 用電極 11と、同じくリード 14aに接続された対電極 14と、リード 12aに接続された参 照電極 12とを収容する。そして、反応器 15内に、電解液 13として、レポータプローブ に標識された L プロリン脱水素酵素の基質である L プロリンを含有した緩衝液 (例 えば、トリス緩衝液)を収容する。そして、この緩衝液に、作用電極、参照電極及び対 電極を浸漬させる。なお、作用電極 11と対電極 14との間にセパレータ 16を装備する 。また、リード 11aには、作用電極 11において発生した電流値を測定するための電流 検出部として電流計 17が接続されている。 [0051] As shown in FIG. 2, the biosensor 18 is connected to the working electrode 11 connected to the lead 11a, the counter electrode 14 also connected to the lead 14a, and the lead 12a in the reactor 15. The reference electrode 12 is accommodated. Then, in the reactor 15, as an electrolyte solution 13, a buffer solution containing L proline which is a substrate of L proline dehydrogenase labeled on the reporter probe (for example, For example, Tris buffer) is stored. Then, the working electrode, the reference electrode and the counter electrode are immersed in this buffer solution. A separator 16 is provided between the working electrode 11 and the counter electrode 14. In addition, an ammeter 17 is connected to the lead 11a as a current detector for measuring a current value generated in the working electrode 11.
[0052] このようなバイオセンサ 18の作用電極 11に、参照電極 12を基準として、例えば + 5 OOmVの電位を印加することにより、電解液 13中の基質 (L—プロリン)と酵素(L—プ 口リン脱水素酵素)等が反応し、メディエータを介して電子の授受が行われる。これに より作用電極に流れる電流を限界酸化電流として、電流計によって測定することがで きる。従って、この電解液 13中の L—プロリン、レポータプローブに標識された Lープ 口リン脱水素酵素及びメディエータ等による電子の授受により、作用電極 11に流れる 電流を限界酸化電流として、電流計 17によって測定することができる。  [0052] By applying a potential of, for example, +5 OOmV to the working electrode 11 of the biosensor 18 with reference to the reference electrode 12, a substrate (L-proline) and an enzyme (L- Electron dehydrogenase) reacts and exchanges electrons through the mediator. As a result, the current flowing through the working electrode can be measured with an ammeter as the limiting oxidation current. Therefore, the current flowing through the working electrode 11 is defined as the limiting oxidation current by the transfer of electrons by L-proline in the electrolyte 13, L-loop phosphorus dehydrogenase and mediator labeled on the reporter probe, and the ammeter 17 Can be measured.
[0053] (電流値の測定によるターゲット DNAの検出)  [0053] (Detection of target DNA by measuring current value)
次に、上記の様に構成された電極(作用電極 11 )を備えたバイオセンサ 18を用い て電流値の測定を行うことによるターゲット DNAの検出について説明する。  Next, detection of the target DNA by measuring the current value using the biosensor 18 equipped with the electrode (working electrode 11) configured as described above will be described.
[0054] ここで、サンプル液中に検出対象の DNAが含まれていた場合には、作用電極 11 上には、キヤプチヤープローブ 28a、ターゲット DNA28b、レポータプローブ 28cが、 この順で結合されている。なお、レポータプローブ 28cは、 L プロリン脱水素酵素 2 6により標識されている。  [0054] Here, when the DNA to be detected is contained in the sample solution, the capillary probe 28a, the target DNA 28b, and the reporter probe 28c are combined in this order on the working electrode 11. Yes. The reporter probe 28c is labeled with L proline dehydrogenase 26.
[0055] 電流値の測定は、バイオセンサ 18の作用電極 11に、参照電極 12を基準として + 5 OOmVの電位を印加し、作用電極 11に流れる電流を測定することにより行う。  [0055] The current value is measured by applying a potential of +5 OOmV to the working electrode 11 of the biosensor 18 with reference to the reference electrode 12, and measuring the current flowing through the working electrode 11.
ここで、バイオセンサ 18の作用電極 11に電位を印加すると、反応液中の L—プロリ ン 25と L—プロリン脱水素酵素 26が反応し、メディエータ 22を介して電子の授受が 行われる。具体的には、図 1に示すように、 L—プロリン脱水素酵素 26が、基質である L プロリン 25と反応して Δ 1—ピロリン一 5 カルボン酸 27を生成する際に、メディ エータ 22が水素を受け取ることで還元型に変換される。この還元型のメディエータ 2 2が、水素を移動させて、これによつて生じた電子の授受をカーボン電極 21に伝達さ せる。 Here, when a potential is applied to the working electrode 11 of the biosensor 18, L-proline 25 and L-proline dehydrogenase 26 in the reaction solution react, and electrons are transferred via the mediator 22. Specifically, as shown in FIG. 1, when L-proline dehydrogenase 26 reacts with the substrate L proline 25 to produce Δ 1 -pyrroline-15 carboxylic acid 27, mediator 22 By receiving hydrogen, it is converted to a reduced form. This reduced-type mediator 22 moves hydrogen and transmits and receives the electrons generated thereby to the carbon electrode 21.
[0056] この作用電極 11と、対電極 14と、参照電極 12とを用いて、作用電極 11のカーボン 電極 21に流れる電流(限界酸化電流)の電流値を測定する。作用電極 11に、参照 電極 12を基準として、例えば、 + 500mVの電位を印加することにより、反応液中の、 L一プロリン 25と、 L—プロリン脱水素酵素 26とが反応し、メディエータ 22を介して電 子の授受が行われ、作用電極 11に流れる電流を、限界酸化電流として、電流計 17 によって測定することができる。 Using this working electrode 11, counter electrode 14, and reference electrode 12, carbon of working electrode 11 Measure the current value of the current flowing through electrode 21 (limit oxidation current). For example, when a potential of +500 mV is applied to the working electrode 11 with reference to the reference electrode 12, L monoproline 25 and L-proline dehydrogenase 26 in the reaction solution react, and the mediator 22 is The current flowing through the working electrode 11 can be measured by the ammeter 17 as the limit oxidation current.
[0057] なお、電解質溶液のみを用い、 L_プロリン脱水素酵素 26による酵素反応が起こら ない場合であっても、ベースとなる電流が発生するが、酵素反応が起こった場合の酸 化還元反応の電子の移動を、このベース電流に比較してより大きな値として測定する こと力 Sできる。 [0057] Even if only the electrolyte solution is used and the enzymatic reaction by L_proline dehydrogenase 26 does not occur, the base current is generated, but the oxidation-reduction reaction when the enzymatic reaction occurs The force S can be measured as a larger value compared to this base current.
[0058] このように、 L プロリン脱水素酵素 26による酵素反応に基づく酵素 電極間の電 子伝達をモニタする、つまり、一連の電子移動を電流として捕らえることにより、ターゲ ット DNAの有無又は濃度を検知することができる。従って、ターゲット DNAを捕捉す るキヤプチヤープローブ及びキヤプチヤーしたターゲット DNAにさらに結合し、信号 を得るためのレポータプローブを用いるサンドイッチハイブリダィゼーシヨンアツセィに より DNAの検出を行うことが可能となる。  [0058] Thus, by monitoring the electron transfer between the enzyme electrodes based on the enzyme reaction by L proline dehydrogenase 26, that is, by capturing a series of electron transfer as an electric current, the presence or absence or concentration of the target DNA is detected. Can be detected. Therefore, it is possible to detect DNA by sandwich hybridization assay that uses a reporter probe to obtain a signal by further binding to a capture probe that captures the target DNA and a captured target DNA. Become.
[0059] 以上、本実施形態によれば、以下に示す効果を得ることができる。  As described above, according to the present embodiment, the following effects can be obtained.
• 上記実施形態では、キヤプチヤープローブと、耐熱酵素により標識されたレポ一 タプローブと、耐熱酵素と反応する基質とを用いて、キヤプチヤープローブとレポータ プローブとにターゲット DNAを結合させ、レポータプローブに標識された耐熱酵素と 基質による反応により電気化学的に前記ターゲット DNAを検出する。これにより、耐 熱酵素により標識されたレポータプローブを、この耐熱酵素が活性を保つ温度である 高温の反応液に投入することができる。従って、より高い温度でレポータプローブを 反応液に投入できるため、ハイブリダィゼーシヨンの効率が上がり、より高感度かつ効 率的にターゲット DNAの検出を行うことができる。  • In the above embodiment, the target DNA is bound to the capture probe and the reporter probe using the capture probe, the reporter probe labeled with the thermostable enzyme, and the substrate that reacts with the thermostable enzyme, and the reporter The target DNA is detected electrochemically by a reaction between a thermostable enzyme labeled on the probe and a substrate. As a result, the reporter probe labeled with the heat-resistant enzyme can be put into a high-temperature reaction solution at which the heat-resistant enzyme is active. Therefore, since the reporter probe can be introduced into the reaction solution at a higher temperature, the efficiency of hybridization can be increased, and the target DNA can be detected with higher sensitivity and efficiency.
[0060] · 上記実施形態では、キヤプチヤープローブを導電体表面に結合させて電極を構 成し、キヤプチヤープローブとレポータプローブとにターゲット DNAを結合させ、レポ ータプローブに標識された耐熱酵素と基質による反応により電極に流れる電流値を 測定することによりターゲット DNAを検出する。これにより、キヤプチヤープローブを 導電体表面に結合させて構成した電極と耐熱酵素により標識されたレポ一タブロー ブとを用いて、電極に流れる電流値を測定することにより、より高感度かつ効率的に ターゲット DNAの検出を行うことができる。 [0060] In the above-described embodiment, a heat-promoting enzyme labeled with a reporter probe by binding a capture probe to a conductor surface to form an electrode, binding a target DNA to the capture probe and the reporter probe, and The target DNA is detected by measuring the value of the current flowing through the electrode due to the reaction with the substrate. This will allow you to Detecting target DNA more sensitively and efficiently by measuring the value of the current flowing through the electrode using an electrode constructed by bonding to the surface of a conductor and a reportable probe labeled with a thermostable enzyme be able to.
[0061] · 上記実施形態では、超好熱菌に由来する酵素により標識されたレポ一タブロー ブを用いる。超好熱菌からは、ターゲット DNAの変性温度で完全には失活しない酵 素を得ることができるため、これによれば、ターゲット DNAの変性温度で、レポ一タブ ローブを反応液に投入することが可能となる。このため、ハイブリダィゼーシヨンの効 率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことができる。  [0061] · In the above embodiment, a repo-tableb labeled with an enzyme derived from a hyperthermophilic bacterium is used. Since hyperthermophilic bacteria can obtain enzymes that are not completely inactivated at the denaturation temperature of the target DNA, according to this, the report probe is introduced into the reaction solution at the denaturation temperature of the target DNA. It becomes possible. For this reason, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0062] · 上記実施形態では、カーボン電極 21の表面にキヤプチヤープローブ 28aが結 合してなる電極と、超好熱菌に由来する L プロリン脱水素酵素 26により標識された レポータプローブ 28cと、この L プロリン脱水素酵素 26と反応する基質である L プ 口リン 25とを用レ、る。そして、キヤプチヤープローブ 28aと、レポータプローブ 28cとに ターゲット DNA28bを結合させ、レポータプローブ 28cに標識された L—プロリン脱 水素酵素 26と L プロリン 25による反応に基づいてカーボン電極 21に流れる限界 酸化電流の電流値を測定することによりターゲット DNA28bを検出する。これによれ ば、超好熱菌に由来する L プロリン脱水素酵素 26により標識されたレポ一タブロー ブ 28cを、この L—プロリン脱水素酵素 26が活性を保つ温度である高温で反応液に 投入することが可能となる。従って、ノ、イブリダィゼーシヨンの効率が上がり、より高感 度かつ効率的にターゲット DNAの検出を行うことができる。  [0062] In the embodiment described above, an electrode in which a capillary probe 28a is bonded to the surface of the carbon electrode 21, and a reporter probe 28c labeled with L proline dehydrogenase 26 derived from a hyperthermophilic bacterium The L proline dehydrogenase 26, which is a substrate that reacts with the L proline dehydrogenase 26, is used. Then, the target DNA 28b is bound to the capillary probe 28a and the reporter probe 28c, and the limit oxidation that flows to the carbon electrode 21 based on the reaction by the L-proline dehydrogenase 26 and L proline 25 labeled on the reporter probe 28c. The target DNA28b is detected by measuring the current value of the current. According to this, reportable probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is introduced into the reaction solution at a high temperature at which this L-proline dehydrogenase 26 remains active. It becomes possible to do. Therefore, the efficiency of the hybridization is increased, and the target DNA can be detected with higher sensitivity and efficiency.
[0063] · 上記実施形態では、超好熱菌に由来する酵素により標識されたレポ一タブロー ブを用いる。超好熱菌からは、ターゲット DNAの変性温度で完全には失活しない酵 素を得ることができるため、これによれば、ターゲット DNAの変性温度で、レポ一タブ ローブを反応液に投入することが可能となる。このため、ハイブリダィゼーシヨンの効 率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことができる。  [0063] In the above-described embodiment, a reportable tab labeled with an enzyme derived from a hyperthermophilic bacterium is used. Since hyperthermophilic bacteria can obtain enzymes that are not completely inactivated at the denaturation temperature of the target DNA, according to this, the report probe is introduced into the reaction solution at the denaturation temperature of the target DNA. It becomes possible. For this reason, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0064] . 上記実施形態では、カーボン電極 21の表面にキヤプチヤープローブ 28aが結 合してなる電極と、超好熱菌に由来する L一プロリン脱水素酵素 26により標識された レポータプローブ 28cと、この L—プロリン脱水素酵素 26と反応する基質である L—プ 口リン 25とを用レ、る。そして、キヤプチヤープローブ 28aと、レポータプローブ 28cとに ターゲット DNA28bを結合させ、レポータプローブ 28cに標識された L—プロリン脱 水素酵素 26と L—プロリン 25による反応に基づいてカーボン電極 21に流れる限界 酸化電流の電流値を測定することによりターゲット DNA28bを検出する。これによれ ば、超好熱菌に由来する L—プロリン脱水素酵素 26により標識されたレポ一タブロー ブ 28cを、この L—プロリン脱水素酵素 26が活性を保つ温度である高温で反応液に 投入することが可能となる。従って、ノ、イブリダィゼーシヨンの効率が上がり、より高感 度かつ効率的にターゲット DNAの検出を行うことができる。 [0064] In the above-described embodiment, an electrode formed by coupling a capillary probe 28a to the surface of the carbon electrode 21, and a reporter probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium. And L-proline 25, which is a substrate that reacts with L-proline dehydrogenase 26, is used. And for the probe probe 28a and the reporter probe 28c The target DNA28b is detected by binding the target DNA28b and measuring the current value of the limiting oxidation current flowing through the carbon electrode 21 based on the reaction with L-proline dehydrogenase 26 and L-proline 25 labeled on the reporter probe 28c. To do. According to this, the repotable probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is added to the reaction solution at a high temperature at which this L-proline dehydrogenase 26 maintains its activity. It becomes possible to input. Therefore, the efficiency of the hybridization is increased, and the target DNA can be detected with higher sensitivity and efficiency.
[0065] · 上記実施形態では、超好熱菌に由来する L—プロリン脱水素酵素 26により標識 されたレポータプローブ 28cを用いる。これによれば、超好熱菌に由来する L—プロリ ン脱水素酵素 26により標識されたレポータプローブ 28cを、この L—プロリン脱水素 酵素 26が活性を保つ温度である高温の反応液に投入することができる。このため、タ 一ゲット DNAを 1本鎖のターゲット DNA28bに変性させてから、 L—プロリン脱水素 酵素 26が活性を保つ温度である高温で、ターゲット DNA28bにレポータプローブ 2 8cを反応させることが可能となる。従って、ハイブリダィゼーシヨンの効率が上がり、よ り高感度かつ効率的にターゲット DNAの検出を行うことができる。  [0065] In the above embodiment, the reporter probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is used. According to this, reporter probe 28c labeled with L-proline dehydrogenase 26 derived from a hyperthermophilic bacterium is put into a high-temperature reaction solution at a temperature at which this L-proline dehydrogenase 26 remains active. can do. For this reason, it is possible to denature the target DNA into single-stranded target DNA28b and then react the reporter probe 28c with target DNA28b at a high temperature that keeps L-proline dehydrogenase 26 active. It becomes. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0066] · 上記実施形態では、サーモコッカス'プロファンダス (Thermococcus profundus), サーモコッカス'ぺプトノフィラス (Thermococcus peptonophilus),ピロコッカス'フリオサ ス (Pyrococcus iuriosus)^及び、ピロコッカス 'ホリコシ〇T_ 3(Pyrococcus horikoshi O T_3)からなる群から選ばれる生物に由来する L_プロリン脱水素酵素を用いることが できる。このため、これらの各生物に由来する L_プロリン脱水素酵素により標識され たレポータプローブを、この L_プロリン脱水素酵素が活性を保つ温度で反応液に投 入することが可能となる。このため、ターゲット DNAを 1本鎖 DNAに変性させてから、 高温の状態で、ターゲット DNAにレポータプローブを反応させることが可能となる。 従って、ハイブリダィゼーシヨンの効率が上がり、より高感度かつ効率的にターゲット DNAの検出を行うことができる。  [0066] · In the above embodiment, Thermococcus profundus, Thermococcus peptonophilus, Pyrococcus iuriosus ^ and Pyrococcus' Tokosyo Tcc 3 L_proline dehydrogenase derived from an organism selected from the group consisting of O T_3) can be used. Therefore, a reporter probe labeled with L_proline dehydrogenase derived from each of these organisms can be introduced into the reaction solution at a temperature at which the L_proline dehydrogenase is active. For this reason, after the target DNA is denatured into single-stranded DNA, the reporter probe can be reacted with the target DNA at a high temperature. Therefore, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency.
[0067] . 上記実施形態では、ハイブリダィゼーシヨンのためのターゲット DNAの変性時に 、電極に固定されたキヤプチヤープローブと L一プロリン脱水素酵素により標識された レポータプローブを、ターゲット DNAが含まれる溶液中に投入する。このため、電極 に固定されたキヤプチヤープローブと L一プロリン脱水素酵素により標識されたレポ ータプローブとをハイブリダィゼーシヨンのためのターゲット DNAの変性時にターゲッ ト DNAと共存させることができる。これにより、ハイブリダィゼーシヨンの効率が上がり 、より高感度かつ効率的にターゲット DNAの検出を行うことができる。また、より簡易 な操作で処理を行うことができる。 [0067] In the above-described embodiment, when the target DNA is denatured for hybridization, a target probe is used as a capture probe immobilized on an electrode and a reporter probe labeled with L-proline dehydrogenase. Put into the contained solution. For this reason, the electrode The probe probe fixed to the target and the reporter probe labeled with L-proline dehydrogenase can coexist with the target DNA during denaturation of the target DNA for hybridization. As a result, the efficiency of hybridization is increased, and target DNA can be detected with higher sensitivity and efficiency. In addition, processing can be performed with simpler operations.
[0068] なお、上記実施形態は、以下の態様に変更してもよい。  [0068] The embodiment described above may be changed to the following modes.
〇 上記実施形態では、キヤプチヤープローブを導電体表面に結合させて電極を 構成し、この電極に流れる電流値を測定することによりターゲット DNAを検出したが 、電気化学的方法による DNA検出の方法は、これに限定されるものではない。例え ば、 pH感応膜上にキヤプチヤープローブを固定しておき、酵素反応による pH変化を 電圧の変化により検出し、これによりターゲット DNAを検出してもよい。以下、この場 合の実施形態について説明する。  In the above embodiment, a captive probe is bonded to the surface of a conductor to form an electrode, and the target DNA is detected by measuring the value of the current flowing through the electrode. However, the present invention is not limited to this. For example, a capillary probe may be immobilized on a pH sensitive membrane, and a change in pH due to an enzyme reaction may be detected by a change in voltage, thereby detecting a target DNA. Hereinafter, an embodiment in this case will be described.
[0069] 図 3は、本発明の一実施形態の DNA検出方法で用いられる電界効果トランジスタ 構造を示す。この電界効果トランジスタ構造は、 p型のシリコン基板 31、 pH感応膜 32 、対極 34、ソース電極 35、ドレイン電極 36、 n+型層 37を備えている。 pH感応膜 32 は、 pH応答を示し、例えば、 Si N (シリコン窒化膜)等を用いることができる。そして、 FIG. 3 shows a field effect transistor structure used in the DNA detection method of one embodiment of the present invention. This field effect transistor structure includes a p-type silicon substrate 31, a pH sensitive film 32, a counter electrode 34, a source electrode 35, a drain electrode 36, and an n + -type layer 37. The pH sensitive film 32 exhibits a pH response, and for example, Si N (silicon nitride film) or the like can be used. And
3 4  3 4
pH感応膜 32及び対極 34を電解液に浸漬させる。  The pH sensitive membrane 32 and the counter electrode 34 are immersed in the electrolytic solution.
[0070] (pH感応膜)  [0070] (pH sensitive membrane)
本実施形態では、図 3の下部の拡大図に示すように、 pH感応膜 32上にキヤプチャ 一プローブ 48aを固定化させている。このキヤプチヤープローブ 48aは、ターゲット D NA48bと相補的にハイブリダィズする。そして、図 3に示すように、キヤプチヤープロ ーブ 48a、ターゲット DNA48b、耐熱酵素 46により標識されたレポータプローブ 48c を結合させることにより、耐熱酵素 46を pH感応膜 32の近傍に保持することができる。  In this embodiment, as shown in the enlarged view at the bottom of FIG. 3, a capture probe 48a is fixed on the pH sensitive membrane 32. The capture probe 48a hybridizes in a complementary manner to the target DNA 48b. Then, as shown in FIG. 3, the heat-resistant enzyme 46 can be held in the vicinity of the pH sensitive membrane 32 by binding the reporter probe 48c labeled with the capillary probe 48a, the target DNA 48b, and the heat-resistant enzyme 46.
[0071] なお、ここでは電圧の測定により pHの変化を検出することにより DNAの検出を行う ため、耐熱酵素 46と基質 45との反応は pHの変化を伴う必要がある。そこで、本実施 形態においては、耐熱酵素 46として、例えば、グルコースォキシダーゼのように、基 質 45との反応にぉレ、て pHを変化させる酵素を用いる。  [0071] Here, since DNA is detected by detecting a change in pH by measuring a voltage, the reaction between thermostable enzyme 46 and substrate 45 needs to be accompanied by a change in pH. Therefore, in the present embodiment, as the thermostable enzyme 46, for example, an enzyme that changes pH in response to the reaction with the substrate 45, such as glucose oxidase, is used.
[0072] DNAサンプル液中に検出対象の DNAが存在する場合、この DNAを変性させた 1 本鎖 DNAが、 1本鎖のターゲット DNA48bに相当する。ターゲット DNA48bの検出 を行うためには、 DNAサンプル液中に、ターゲット DNA48bの検出のために十分な だけ、採取された DNAが存在する必要がある。このため、まず、ターゲット DNA48b の検出のために十分な量の DNAを得るために、 DNAサンプル液を用いて PCRを 行うことにより、サンプル液中の DNAを増幅させる。 [0072] If the DNA to be detected is present in the DNA sample solution, this DNA was denatured 1 Double-stranded DNA corresponds to single-stranded target DNA48b. In order to detect the target DNA48b, the collected DNA must be present in the DNA sample solution sufficient for the detection of the target DNA48b. Therefore, first, in order to obtain a sufficient amount of DNA for detection of the target DNA48b, the DNA in the sample solution is amplified by performing PCR using the DNA sample solution.
[0073] そして、この DNAサンプル液を、例えば、 96°Cで 30秒間、熱処理することにより、 2 本鎖 DNAを 1本鎖 DNAに変性させる。そして、このサンプル液に pH感応膜 32を浸 漬させるとともに、耐熱酵素 46により標識されたレポータプローブ 48cを投入する。こ こで、レポータプローブ 48cに標識された耐熱酵素 46の活性を保っためには、反応 液の温度が耐熱酵素 46の耐熱温度より低いことが必要である。耐熱酵素 46の耐熱 温度より反応液の温度が低ければ、これをさらに冷却することなぐ耐熱酵素 46によ り標識されたレポータプローブ 48cを反応液に投入できる。  [0073] Then, this DNA sample solution is heat-treated at 96 ° C for 30 seconds, for example, to denature the double-stranded DNA into single-stranded DNA. Then, the pH sensitive membrane 32 is immersed in this sample solution, and a reporter probe 48c labeled with a thermostable enzyme 46 is introduced. Here, in order to keep the activity of the thermostable enzyme 46 labeled on the reporter probe 48c, the temperature of the reaction solution needs to be lower than the thermostable temperature of the thermostable enzyme 46. If the temperature of the reaction solution is lower than the heat-resistant temperature of thermostable enzyme 46, reporter probe 48c labeled with thermostable enzyme 46 can be added to the reaction solution without further cooling.
[0074] ターゲット DNA48bが存在する場合、図 3に示すように、キヤプチヤープローブ 48a 、 1本鎖のターゲット DNA48b及びレポータプローブ 48cがァニールさせられる。ここ で、検出対象の DNAが得られている場合には、この検出対象の DNA力 1本鎖の ターゲット DNA48bに相当する。従って、サンプル液中に検出対象の DNAが含ま れている場合に、キヤプチヤープローブ 48a、ターゲット DNA48b、レポータプローブ 48cがこの順に pH感応膜 32に結合する。  [0074] When the target DNA 48b is present, as shown in FIG. 3, the capillary probe 48a, the single-stranded target DNA 48b, and the reporter probe 48c are annealed. Here, when the DNA to be detected is obtained, this corresponds to the target DNA48b having a single-strand DNA force to be detected. Therefore, when the DNA to be detected is contained in the sample solution, the capillary probe 48a, the target DNA 48b, and the reporter probe 48c bind to the pH sensitive membrane 32 in this order.
[0075] (電圧の測定によるターゲット DNAの検出)  [0075] (Detection of target DNA by voltage measurement)
次に、上記の様に構成された電界効果トランジスタを用いて電圧の測定を行うこと によるターゲット DNAの検出について説明する。  Next, detection of target DNA by measuring voltage using the field effect transistor configured as described above will be described.
[0076] まず、反応液を廃棄し、電解液である緩衝液に pH感応膜 32及び対極 34を浸漬さ せる。ここで、サンプノレ液中に検出対象の DNAが含まれていた場合には、 pH感応 膜 32上には、キヤプチヤープローブ 48a、ターゲット DNA48b、耐熱酵素 46により標 識されたレポータプローブ 48cが、この順で結合されている。従って、この場合、 pH 感応膜 32の近傍に耐熱酵素 46が保持されている。  First, the reaction solution is discarded, and the pH sensitive membrane 32 and the counter electrode 34 are immersed in a buffer solution that is an electrolytic solution. Here, when the DNA to be detected is contained in the Sampnore solution, on the pH sensitive membrane 32, the reporter probe 48c, which is detected by the capillar probe 48a, the target DNA 48b, and the thermostable enzyme 46, They are combined in this order. Therefore, in this case, the thermostable enzyme 46 is held in the vicinity of the pH sensitive membrane 32.
[0077] そして、レポータプローブに標識された耐熱酵素 46と反応する基質 45をこの電解 液中に投入すると、電解液中の基質 45と耐熱酵素 46とが反応して反応後基質 47を 生成し、 pH感応膜 32の近傍の pHが変化する。 [0077] Then, when the substrate 45 that reacts with the thermostable enzyme 46 labeled on the reporter probe is introduced into the electrolyte, the substrate 45 and the thermostable enzyme 46 in the electrolyte react to react with the substrate 47 after the reaction. And the pH in the vicinity of the pH sensitive membrane 32 changes.
上記のように構成された電界効果トランジスタにおいて、 pHの変化に応じて pH感 応膜 32と電解液との界面電位が変化する。この界面電位の変化を測定する。例えば 、ドレイン電流とソース Zドレイン間電圧とを一定に保持し、ゲート電圧を測定する。こ のように、 pHの変化を電圧の測定により検出することにより、ターゲット DNAの有無 又は濃度を検知することができる。  In the field effect transistor configured as described above, the interfacial potential between the pH sensitive film 32 and the electrolytic solution changes according to the change in pH. This change in interfacial potential is measured. For example, the gate current is measured while keeping the drain current and the source Z-drain voltage constant. Thus, the presence or concentration of the target DNA can be detected by detecting the change in pH by measuring the voltage.

Claims

請求の範囲 The scope of the claims
[1] キヤプチヤープローブと、耐熱酵素により標識されたレポータプローブと、前記耐熱 酵素と反応する基質とを用いて、  [1] Using a capillary probe, a reporter probe labeled with a thermostable enzyme, and a substrate that reacts with the thermostable enzyme,
前記キヤプチヤープローブと、前記レポータプローブとにターゲット DNAを結合さ せ、前記レポータプローブに標識された前記耐熱酵素と前記基質による反応により 電気化学的に前記ターゲット DNAを検出することを特徴とする DNA検出方法。  A target DNA is bound to the capillary probe and the reporter probe, and the target DNA is detected electrochemically by a reaction with the thermostable enzyme labeled on the reporter probe and the substrate. DNA detection method.
[2] 前記キヤプチヤープローブを導電体表面に結合させて電極を構成し、  [2] An electrode is formed by binding the above-mentioned captive probe to a conductor surface,
前記キヤプチヤープローブと、前記レポータプローブとにターゲット DNAを結合さ せ、前記レポータプローブに標識された前記耐熱酵素と前記基質による反応により 前記電極に流れる電流値を測定することにより前記ターゲット DNAを検出することを 特徴とする請求項 1に記載の DNA検出方法。  The target DNA is bound by binding the target DNA to the captive probe and the reporter probe, and measuring the value of the current flowing through the electrode by the reaction with the thermostable enzyme labeled on the reporter probe and the substrate. 2. The DNA detection method according to claim 1, wherein the detection is performed.
[3] 前記耐熱酵素は、超好熱菌に由来する酵素であることを特徴とする請求項 1又は 2 に記載の DNA検出方法。  [3] The DNA detection method according to claim 1 or 2, wherein the thermostable enzyme is an enzyme derived from a hyperthermophilic bacterium.
[4] 前記超好熱菌に由来する酵素は、 L_プロリン脱水素酵素であることを特徴とする 請求項 3のいずれ力 4つに記載の DNA検出方法。  [4] The DNA detection method according to any one of [4], wherein the enzyme derived from the hyperthermophilic bacterium is L_proline dehydrogenase.
[5] 前記 L_プロリン脱水素酵素は、サーモコッカス ·プロファンダス (Thermococcus prof undus)、サ1 ~モコッ 7ス 'へゾトノフィフス (Thermococcus peptonophilus)、ピロコッ刀ス' フリオサス (Pyrococcus furiosus)、及 Ό、、ピロコッカス'ホリコシ〇T_ 3(Pyrococcus hori koshi OT-3)からなる群から選ばれる生物に由来することを特徴とする請求項 4に記 載の DNA検出方法。 [5] The L_proline dehydrogenase is Thermococcus prof undus, 1 to Mococ 7s' Thermococcus peptonophilus, Pyrococcus furiosus, and Ό The DNA detection method according to claim 4, wherein the DNA detection method is derived from an organism selected from the group consisting of Pyrococcus hori koshi OT-3.
[6] ターゲット DNAの変性のための熱処理時に、前記耐熱酵素により標識されたレポ ータプローブを、前記ターゲット DNAが含まれる溶液中に投入することを特徴とする 請求項 1〜5のいずれ力 1つに記載の DNA検出方法。  [6] In the heat treatment for denaturation of the target DNA, the reporter probe labeled with the thermostable enzyme is put into a solution containing the target DNA. A DNA detection method according to 1.
[7] キヤプチヤープローブに結合するターゲット DNAに、さらに結合するレポータプロ ーブであって、  [7] A reporter probe that further binds to a target DNA that binds to a capillary probe,
耐熱酵素により標識されており、  It is labeled with a thermostable enzyme,
前記耐熱酵素と基質による反応により電気化学的に前記ターゲット DNAを検出す るために用いられることを特徴とするレポータプローブ。 A reporter probe which is used for electrochemically detecting the target DNA by a reaction between the thermostable enzyme and a substrate.
[8] 前記レポータプローブは、導電体表面にキヤプチヤープローブが結合してなる電極 の前記キヤプチヤープローブに結合するターゲット DNAに、さらに結合し、 [8] The reporter probe further binds to a target DNA that binds to the capture probe of an electrode formed by binding a capture probe to the surface of a conductor.
前記耐熱酵素と基質による反応により前記電極に流れる電流値を測定することによ り前記ターゲット DNAを検出するために用いられることを特徴とする請求項 7に記載 のレポータプローブ。  The reporter probe according to claim 7, wherein the reporter probe is used to detect the target DNA by measuring a value of a current flowing through the electrode by a reaction between the thermostable enzyme and a substrate.
[9] 前記耐熱酵素は、超好熱菌に由来する酵素であることを特徴とする請求項 7又は 8 に記載のレポータプローブ。  [9] The reporter probe according to claim 7 or 8, wherein the thermostable enzyme is an enzyme derived from a hyperthermophilic bacterium.
[10] 前記超好熱菌に由来する酵素は、 L プロリン脱水素酵素であることを特徴とする 請求項 9に記載のレポータプローブ。  10. The reporter probe according to claim 9, wherein the enzyme derived from the hyperthermophile is L proline dehydrogenase.
[11] 前記 L プロリン脱水素酵素は、サーモコッカス.プロファンダス (Thermococcus prof undus)、サーモコッフ ス 'へブトノフィフス (Thermococcus peptonophims)、ピロコッスス' フリオサス (Pyrococcus furiosus),及び、ピロコッカス'ホリコシ〇T—3(Pyrococcus hori koshi OT-3)からなる群から選ばれる生物に由来することを特徴とする請求項 10に記 載のレポータプローブ。  [11] The L proline dehydrogenase is Thermococcus prof undus, Thermococcus peptonophims, Pyrococcus furiosus, and Pyrococcus T3. The reporter probe according to claim 10, wherein the reporter probe is derived from an organism selected from the group consisting of (Pyrococcus hori koshi OT-3).
PCT/JP2005/017501 2004-09-22 2005-09-22 Dna detection method and reporter probe WO2006033400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006536417A JPWO2006033400A1 (en) 2004-09-22 2005-09-22 DNA detection method and reporter probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004275817 2004-09-22
JP2004-275817 2004-09-22

Publications (1)

Publication Number Publication Date
WO2006033400A1 true WO2006033400A1 (en) 2006-03-30

Family

ID=36090154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017501 WO2006033400A1 (en) 2004-09-22 2005-09-22 Dna detection method and reporter probe

Country Status (2)

Country Link
JP (1) JPWO2006033400A1 (en)
WO (1) WO2006033400A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619300A (en) * 1984-06-22 1986-01-16 Fujirebio Inc Polynucleotide determination reagent containing labeled thermophilic enzyme
WO1992008808A1 (en) * 1990-11-14 1992-05-29 Siska Diagnostics, Inc. Non-isotopic detection of nucleic acids using a polystyrene support-based sandwich hybridization assay and compositions useful therefor
WO1999067628A1 (en) * 1998-06-24 1999-12-29 Therasense, Inc. Multi-sensor array for electrochemical recognition of nucleotide sequences and methods
WO2000032813A1 (en) * 1998-12-01 2000-06-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method and system for detecting oligonucleotides in a sample

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619300A (en) * 1984-06-22 1986-01-16 Fujirebio Inc Polynucleotide determination reagent containing labeled thermophilic enzyme
WO1992008808A1 (en) * 1990-11-14 1992-05-29 Siska Diagnostics, Inc. Non-isotopic detection of nucleic acids using a polystyrene support-based sandwich hybridization assay and compositions useful therefor
WO1999067628A1 (en) * 1998-06-24 1999-12-29 Therasense, Inc. Multi-sensor array for electrochemical recognition of nucleotide sequences and methods
WO2000032813A1 (en) * 1998-12-01 2000-06-08 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method and system for detecting oligonucleotides in a sample

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKURABA H ET AL: "Purification, Characterization, and Application of a Novel Dye-Linked L-Proline Dehydrogenase from a Hyperthermophilic Archaeon, Thermococcus profundus.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY., vol. 67, no. 4, April 2001 (2001-04-01), pages 1470 - 1475, XP002995063 *

Also Published As

Publication number Publication date
JPWO2006033400A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
Dzyadevych et al. Amperometric enzyme biosensors: Past, present and future
Pérez et al. Immunomagnetic separation with mediated flow injection analysis amperometric detection of viable Escherichia coli O157
WO2016062101A1 (en) Modified electrode for detecting ndm-1 and preparation method therefor and use thereof
Pedrero et al. Electrochemical genosensors based on PCR strategies for microorganisms detection and quantification
JPS62294958A (en) Assay method
Rai et al. Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp.
Loaiza et al. Disposable magnetic DNA sensors for the determination at the attomolar level of a specific Enterobacteriaceae family gene
Nunez-Bajo et al. Disposable silicon-based all-in-one micro-qPCR for rapid on-site detection of pathogens
Toldrà et al. Detecting harmful algal blooms with nucleic acid amplification-based biotechnological tools
Lermo et al. Towards Q-PCR of pathogenic bacteria with improved electrochemical double-tagged genosensing detection
Khaliliazar et al. Electrochemical detection of genomic DNA utilizing recombinase polymerase amplification and stem-loop probe
Nunez-Bajo et al. Ultra-low-cost integrated silicon-based transducer for on-site, genetic detection of pathogens
Aslan et al. Development of an osmium redox polymer mediated bioanode and examination of its performance in Gluconobacter oxydans based microbial fuel cell
Rabti et al. Impedimetric DNA E-biosensor for multiplexed sensing of Escherichia coli and its virulent f17 strains
Ishiki et al. Kinetics of intracellular electron generation in Shewanella oneidensis MR-1
Sheng et al. Ultrasensitive electrical biosensing of syphilis DNA using target-guided formation of polyaniline based on enzyme-catalyzed polymerization
JPWO2002025262A1 (en) Enzyme electrode
Agarkar et al. Oxygen vacancy modulated MnO2 bi-electrode system for attomole-level pathogen nucleic acid sequence detection
KR101345077B1 (en) Method for the electrochemical detection of target nucleic acid sequences
JP2005069836A (en) Electrode, protein measuring instrument and measuring method for enzyme activity
CN110346436A (en) Detect uracil-DNA glycosylase, based on non-enzymatic nano material signal amplification without substrate electrochemica biological sensor
US20060199187A1 (en) Enzyme amplified electrochemical DNA detection
JP2007097551A (en) Method for detecting microorganism
Yu et al. Multiplex electrochemical genosensor for identifying toxigenic Vibrio cholerae serogroups O1 and O139
Hooda et al. Biosensor based on enzyme coupled PVC reaction cell for electrochemical measurement of serum total cholesterol

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006536417

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase