WO2006032644A1 - A process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel - Google Patents
A process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel Download PDFInfo
- Publication number
- WO2006032644A1 WO2006032644A1 PCT/EP2005/054659 EP2005054659W WO2006032644A1 WO 2006032644 A1 WO2006032644 A1 WO 2006032644A1 EP 2005054659 W EP2005054659 W EP 2005054659W WO 2006032644 A1 WO2006032644 A1 WO 2006032644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel
- mixture
- oxygen
- range
- molecular oxygen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/386—Catalytic partial combustion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0053—Details of the reactor
- B01J19/006—Baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
- B01J4/001—Feed or outlet devices as such, e.g. feeding tubes
- B01J4/002—Nozzle-type elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0207—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0278—Feeding reactive fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M27/00—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
- F02M27/02—Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/02—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
- F02M31/12—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
- F02M31/135—Fuel-air mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00716—Means for reactor start-up
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1288—Evaporation of one or more of the different feed components
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/148—Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention provides a process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel, in particular diesel fuel.
- the fuel In order to start and establish catalytic partial oxidation and to achieve the most complete fuel conversion, the fuel must be evaporated and the fuel/oxygen mixture must be preheated before contacting the partial oxidation catalyst. That means that, especially for higher boiling hydrocarbons like diesel fuel, the preferred feed preheat at the inlet to the catalytic zone is up to 400 0 C. At these conditions, and in particular at hot surfaces like those of heaters, the higher boiling hydrocarbons are prone to form carbonaceous residuals resulting in fouling. In particular in case of the NO x abatement application, the temperature of the main supply of molecular oxygen containing gas can go down to a value of 100 °C during normal engine operation or even ambient temperature during system heat-up right after engine start-up.
- US 2003/0233789 is disclosed a fast start-up catalytic reformer.
- a lean fuel/air mixture i.e. near-stoichiometric
- the air to fuel ratio is adjusted to provide a rich fuel/air mixture which is reformed (reforming mode) .
- the fuel is evaporated by spraying the fuel on the hot outside surface of the reactor in the mixing chamber.
- the air is preheated by contacting it with the hot outside surface of the reactor in the mixing chamber before being mixed with the fuel. The hot air causes the fuel to evaporate.
- a disadvantage of the process of US 2003/0233789 is that the dual mode operation requires switching between the combustion and reforming mode.
- US 2004/0144030 is disclosed a method for operating a partial oxidation fuel reformer.
- a first air/fuel mixture having a first air-to-fuel ratio is ignited to create a flame.
- a second air/fuel mixture having a second air-to- fuel ratio is advanced into contact with the flame to generate a reformate gas.
- the hydrocarbonaceous fuel is reacted with a first amount of molecular oxygen to generate sufficient heat to evaporate the fuel prior to the catalytic conversion of the fuel.
- the invention provides a process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel, comprising the following steps: a) mixing the hydrocarbonaceous fuel with a first amount of molecular oxygen to form a first mixture comprising fuel and molecular oxygen; b) evaporating the fuel by igniting the first mixture; c) mixing the evaporated fuel with a second amount of molecular oxygen to form a second mixture comprising fuel and molecular oxygen; and d) contacting the second mixture with a partial oxidation catalyst for conversion into a product gas comprising at least hydrogen, in which process the overall oxygen-to-carbon ratio is in the range of from 0.3 to 0.8 and the oxygen-to-carbon ratio in the first mixture is in the range of from 0.01 to 0.4.
- An advantage of the process according to the invention is that the fuel is evaporated and preheated to a temperature in a range of from 300 to 500 0 C before it contacts the partial oxidation catalyst, whereby the necessary heat is generated with the fuel itself.
- the no separate, voluminous heater unit is needed, even if the inlet gas has a relatively low temperature, such as 200 0 C or even ambient (typically 20 0 C) .
- the reaction of the fuel with the first amount of molecular oxygen can be initialised and sustained even at fuel and molecular oxygen supply temperatures as low as ambient temperature, at fluctuating molecular oxygen supply, e.g. when using diesel exhaust gas as molecular oxygen source, and at fluctuating fuel supply.
- a further advantages are that a relatively well- defined and energy-efficient operation is facilitated and formation of carbonaceous fuel residuals can be reduced.
- a still further advantage is that there is no need to switch between modes of operation.
- the process according to the present invention is a process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel.
- the liquid fuel is mixed with a first amount of molecular oxygen (O2) to form a first mixture comprising fuel and molecular oxygen (step (a)) .
- the first mixture is ignited, causing the fuel to react exothermically with the molecular oxygen
- step (b) The heat generated by the exothermic reaction causes the fuel in the mixture to evaporate.
- the evaporated fuel is mixed with a second amount of molecular oxygen, to form a second mixture comprising fuel and molecular oxygen (step (c) ) .
- This second mixture is contacted with a partial oxidation catalyst for conversion into a product gas comprising at least hydrogen (step (d) ) .
- the oxygen-to-carbon ratio in the first mixture is in the range of from 0.01 to 0.4, preferably of from 0.01 to 0.15, more preferably of from 0.02 to 0.10.
- Reference herein to the oxygen-to-carbon ratio is to the ratio of oxygen molecules mixed with the fuel and carbon atoms in the fuel.
- the overall oxygen-to-carbon ratio is in the range of from 0.3 to 0.8, preferably of from 0.40 to 0.75, more preferably of from 0.45 to 0.65. Reference herein to the overall oxygen-to-carbon ratio is to the ratio of oxygen molecules mixed with the fuel in steps (a) and (c) and carbon atoms in the fuel.
- the oxygen-to-carbon in the first mixture cannot exceed the overall oxygen-to-carbon ratio.
- the oxygen-to-carbon in the first mixture does not exceed 50% of the total oxygen-to-carbon ratio. Therefore, preferably, the first mixture comprises no more than half of the total amount of molecular oxygen mixed with the fuel in steps (a) and (c) .
- the hydrocarbonaceous fuel is a liquid fuel.
- a liquid fuel is to a fuel that is liquid at 20 0 C and atmospheric pressure.
- the liquid fuel has a final boiling point up to 400 0 C, more preferably in the range of from 250 to 400 0 C.
- suitable fuels for use in the process according to the invention are gasoline, naphtha, biodiesel, or diesel fuel, preferably diesel fuel.
- Diesel fuel typically comprises at least 90% (v/v) hydrocarbons with carbon numbers in the range of from C]_Q-C28' preferably C12-C24, more preferably C ⁇ 2 ⁇ Cl5-
- the molecular oxygen may be comprised in any suitable molecular oxygen-containing gas known in the art.
- the molecular oxygen that is mixed with the fuel in steps (a) and (b) is, independently, comprised in air, diesel exhaust gas or a mixture thereof.
- diesel exhaust gas is to the exhaust gas generated by an internal combustion engine running on diesel fuel.
- the molecular oxygen-containing gas may comprise water. It will be appreciated that depending on the temperature the water will either in a liquid or vapour phase.
- the overall water-to-carbon ratio is preferably in the range of from above 0.0 to 3.0, more preferably of from above 0.0 to 1.5, even more preferably of from above 0.0 to 1.0.
- Reference herein to the overall water-to- carbon ratio is to the ratio of water molecules mixed with the fuel and carbon atoms in the fuel.
- a molecular oxygen-containing gas like diesel exhaust gas already comprise water.
- the process according to the invention is especially suitable for mixing the fuel in step (c) with molecular oxygen that has a temperature up to 400 0 C.
- the heat comprised in the molecular oxygen is not sufficient to evaporate the fuel.
- the amount of the molecular oxygen mixed with the fuel in step (c) has a temperature in a range of from ambient to 400 0 C, more preferably in the range of from 200 0 C to 400 0 C.
- step (a) of the process according to the invention the fuel is mixed with the molecular oxygen in a nozzle to the form of a spray of the first mixture.
- a spray is advantageous as the evaporation of the fuel is accelerated due to the high surface area of the fuel droplets comprised in the spray.
- a suitable nozzle is for instance an air-assisted nozzle.
- the air-assisted nozzle comprises a fuel rail assembly with a pulse-width-modulated fuel injector and a pulse-width-modulated air injector.
- the molecular oxygen supply pressure to the nozzle is about 5 or 6 bar and/or that the fuel supply pressure to the nozzle's fuel rail assembly is in a range from 9 to 15 bar. — o —
- the first mixture may be ignited in step (b) using any suitable ignitor known in the art.
- the first mixture is ignited using a spark plug that is placed in the flow path of the mixture.
- Suitable spark plugs are typically operated at a voltage in a range from 9 to 13 Volt, which is sufficient to ignite the spray and react part of the fuel with the oxygen.
- the partial oxidation catalyst used in step (d) of the process according to the invention may be any catalyst suitable for catalytic partial oxidation.
- Such catalysts are known in the art and typically comprise one or more metals selected from Group VIII of the Periodic Table of the Elements as catalytically active material on a catalyst carrier.
- Suitable catalyst carrier materials are well known in the art and include refractory oxides, such as silica, alumina, titania, zirconia and mixtures thereof, and metals.
- Preferred refractory oxides are zirconia-based, more preferably comprising at least 70% by weight zirconia, for example selected from known forms of
- zirconia-based materials comprise zirconia stabilised or partially-stabilised by one or more oxides of Mg, Ca, Al, Y, La or Ce.
- Preferred metals are alloys, more preferably alloys containing iron, chromium and aluminium, such as fecralloy-type materials.
- the catalytically active material comprises one or more Group VIII noble metals, more preferably rhodium, iridium, palladium and/or platinum, even more preferably rhodium and/or iridium.
- the catalyst comprises the catalytically active material in a concentration in the range of from 0.02 to 10% by weight, based on the total weight of the catalyst, preferably in the range of from 0.1 to 5% by weight.
- the catalyst may further comprise a performance-enhancing inorganic metal cation selected from Al, Mg, Zr, Ti, La, Hf, Si, Ba, and Ce which is present in intimate association supported on or with the catalytically active metal, preferably a zirconium cation.
- the second mixture is preferably contacted with the catalyst at a gas hourly space velocity in the range of from 20,000 to 10,000,000 Nl/l/h (normal litres of gaseous feed mixture per litre of catalyst per hour) , preferably in the range of from 50,000 to
- the second mixture is preferably contacted with the catalyst at a pressure up to 100 bar (absolute) , preferably in the range of from 1 to 50 bar (absolute) , more preferably of from 1 to 10 bar (absolute) .
- the product gas obtained with the present invention can be fed e.g. to an absorber for hydrogen sulphide or undergo one or more water-gas shift conversions, e.g. low or high temperature water-gas shifts, followed by preferential oxidation for the reduction of carbon monoxide in the fuel gas to yield a product gas that is suitable for fuel cells.
- water-gas shift conversions e.g. low or high temperature water-gas shifts
- FIG. 1 schematically shows a fuel processor suitable for the process according to the invention.
- Fuel processor 1 comprises housing 2, consisting of three parts 3, 4, 5, bolted together via respective flanges.
- the most upstream part 3, which is essentially a mixer, comprises air-assisted fuel nozzle 6 and radially extending inlet 7.
- Mixer 3 further contains two co-axial cylinders 8, 9, defining main flow path 10 (inside the innermost cylinder) as well as annular duct 11 (between cylinders 8, 9) mounted in mixer 3 by means of bolts 12 and a baffle 13. Openings 14 and 15 are provided in cylinder 8 and baffle 13 respectively.
- Spark plug 16 is mounted in the wall of mixer 3 and between nozzle 6 and openings 14 in inner cylinder 8.
- the downstream parts 4, 5 of the housing 2 are provided with outlet opening 17 for the product gas and contain cylinder 18, in line with the above-mentioned inner cylinder 8 thus extending main flow path 10.
- Cylinder 18 in turn contains catalytic zone 19, for converting the fuel
- diesel fuel and compressed air are fed to nozzle 6 forming a spray comprising the first mixture inside mixer 3.
- the first mixture is ignited by spark plug 16.
- Diesel exhaust gas is fed to inlet 7, and, via the openings 15 in the second baffle 13, through the annular duct 11 (which serves to homogenise the flow profile of the inlet gas) and the openings 14 in the inner cylinder 8, radially into the evaporated fuel.
- the second mixture is fed to the catalytic zone 19 through cylinder 18. After converting to fuel the product gas is removed from the process through outlet opening 17.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Materials Engineering (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007531760A JP2008513326A (en) | 2004-09-20 | 2005-09-19 | Method for catalytic partial oxidation of liquid hydrocarbonaceous fuel |
US11/663,117 US20070261686A1 (en) | 2004-09-20 | 2005-09-19 | Process for the Catalytic Partial Oxidation of Liquid Hydrocarbonaceous Fuel |
CA002580647A CA2580647A1 (en) | 2004-09-20 | 2005-09-19 | A process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel |
EP05789379A EP1791783A1 (en) | 2004-09-20 | 2005-09-19 | A process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04022293 | 2004-09-20 | ||
EP04022293.7 | 2004-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006032644A1 true WO2006032644A1 (en) | 2006-03-30 |
Family
ID=34926605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/054659 WO2006032644A1 (en) | 2004-09-20 | 2005-09-19 | A process for the catalytic partial oxidation of a liquid hydrocarbonaceous fuel |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070261686A1 (en) |
EP (1) | EP1791783A1 (en) |
JP (1) | JP2008513326A (en) |
KR (1) | KR20070061883A (en) |
CN (1) | CN101023024A (en) |
CA (1) | CA2580647A1 (en) |
WO (1) | WO2006032644A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2277825A1 (en) * | 2009-07-21 | 2011-01-26 | Honda Motor Co., Ltd. | Reactor flow control apparatus |
US20110023453A1 (en) * | 2007-08-30 | 2011-02-03 | Energy Conversion Technology As | Particle filter assembly and method for cleaning a particle filter |
CN104179604A (en) * | 2013-05-16 | 2014-12-03 | 曼卡车和巴士股份公司 | Propulsion device and method for operating same using a partially oxidized diesel fuel |
WO2015069754A3 (en) * | 2013-11-06 | 2015-09-03 | WATT Fuel Cell Corp | Liquid fuel cpox reformer and fuel cell systems, and methods of producing electricity |
WO2015069749A3 (en) * | 2013-11-06 | 2015-09-03 | Watt Fuel Cell Corp. | Liquid fuel cpox reformers and methods of cpox reforming |
US9234146B2 (en) | 2011-07-27 | 2016-01-12 | Saudi Arabian Oil Company | Process for the gasification of heavy residual oil with particulate coke from a delayed coking unit |
US9574142B2 (en) | 2010-09-07 | 2017-02-21 | Saudi Arabian Oil Company | Process for oxidative desulfurization and sulfone management by gasification |
US9627701B2 (en) | 2013-11-06 | 2017-04-18 | Watt Fuel Cell Corp. | Integrated gaseous fuel CPOX reformer and fuel cell systems, and methods of producing electricity |
US9627699B2 (en) | 2013-11-06 | 2017-04-18 | Watt Fuel Cell Corp. | Gaseous fuel CPOX reformers and methods of CPOX reforming |
WO2017162681A1 (en) | 2016-03-23 | 2017-09-28 | Karlsruher Institut für Technologie | Reactor for producing synthesis gas |
US10035960B2 (en) | 2010-09-07 | 2018-07-31 | Saudi Arabian Oil Company | Process for oxidative desulfurization and sulfone management by gasification |
US10106406B2 (en) | 2013-11-06 | 2018-10-23 | Watt Fuel Cell Corp. | Chemical reactor with manifold for management of a flow of gaseous reaction medium thereto |
US10676354B2 (en) | 2013-11-06 | 2020-06-09 | Watt Fuel Cell Corp. | Reformer with perovskite as structural component thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2468159B (en) * | 2009-02-27 | 2011-11-09 | Energy Conversion Technology As | Exhaust gas cleaning apparatus and method for cleaning an exhaust gas |
EP2336083A1 (en) * | 2009-12-17 | 2011-06-22 | Topsøe Fuel Cell A/S | Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas |
GB2510171B (en) | 2013-01-28 | 2015-01-28 | Cool Flame Technologies As | Method and cleaning apparatus for removal of SOx and NOx from exhaust gas |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2723685A1 (en) * | 1977-05-25 | 1978-11-30 | Siemens Ag | Cracked gas generator for catalytic fuel gasification - with atomised fuel sprays on porous plate upstream of catalyst package |
US6244367B1 (en) * | 1997-06-02 | 2001-06-12 | The University Of Chicago | Methanol partial oxidation reformer |
US20030233789A1 (en) * | 2002-06-24 | 2003-12-25 | Dauer Kenneth J. | Method and apparatus for fuel/air preparation in a fuel cell |
US20040144030A1 (en) * | 2003-01-23 | 2004-07-29 | Smaling Rudolf M. | Torch ignited partial oxidation fuel reformer and method of operating the same |
US20040229752A1 (en) * | 2003-05-16 | 2004-11-18 | Long Richard Q. | Oxidation process using microchannel technology and novel catalyst useful in same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522894A (en) * | 1982-09-30 | 1985-06-11 | Engelhard Corporation | Fuel cell electric power production |
DE3532413A1 (en) * | 1985-09-11 | 1987-03-12 | Uhde Gmbh | DEVICE FOR GENERATING SYNTHESIS GAS |
FR2679217B1 (en) * | 1991-07-18 | 1994-04-01 | Institut Francais Petrole | PROCESS AND DEVICE FOR THE MANUFACTURE OF SYNTHESIS GAS AND APPLICATION THEREOF. |
DE19955929C2 (en) * | 1999-11-20 | 2002-04-18 | Daimler Chrysler Ag | Process for the autothermal reforming of a hydrocarbon |
JP2001270704A (en) * | 2000-03-28 | 2001-10-02 | Matsushita Electric Ind Co Ltd | Hydrogen generator |
US6872379B2 (en) * | 2001-08-15 | 2005-03-29 | Sulzer Hexis Ag | Method for the reformation of fuels, in particular heating oil |
US7261751B2 (en) * | 2004-08-06 | 2007-08-28 | Conocophillips Company | Synthesis gas process comprising partial oxidation using controlled and optimized temperature profile |
-
2005
- 2005-09-19 CN CNA200580031661XA patent/CN101023024A/en active Pending
- 2005-09-19 KR KR1020077008881A patent/KR20070061883A/en not_active Application Discontinuation
- 2005-09-19 EP EP05789379A patent/EP1791783A1/en not_active Withdrawn
- 2005-09-19 WO PCT/EP2005/054659 patent/WO2006032644A1/en active Application Filing
- 2005-09-19 CA CA002580647A patent/CA2580647A1/en not_active Abandoned
- 2005-09-19 US US11/663,117 patent/US20070261686A1/en not_active Abandoned
- 2005-09-19 JP JP2007531760A patent/JP2008513326A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2723685A1 (en) * | 1977-05-25 | 1978-11-30 | Siemens Ag | Cracked gas generator for catalytic fuel gasification - with atomised fuel sprays on porous plate upstream of catalyst package |
US6244367B1 (en) * | 1997-06-02 | 2001-06-12 | The University Of Chicago | Methanol partial oxidation reformer |
US20030233789A1 (en) * | 2002-06-24 | 2003-12-25 | Dauer Kenneth J. | Method and apparatus for fuel/air preparation in a fuel cell |
US20040144030A1 (en) * | 2003-01-23 | 2004-07-29 | Smaling Rudolf M. | Torch ignited partial oxidation fuel reformer and method of operating the same |
US20040229752A1 (en) * | 2003-05-16 | 2004-11-18 | Long Richard Q. | Oxidation process using microchannel technology and novel catalyst useful in same |
Non-Patent Citations (1)
Title |
---|
HARTMANN L ET AL: "Mixture preparation by cool flames for diesel-reforming technologies", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 118, no. 1-2, 25 May 2003 (2003-05-25), pages 286 - 297, XP004425693, ISSN: 0378-7753 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9784156B2 (en) * | 2007-08-30 | 2017-10-10 | Alfa Laval Aalborg A/S | Particle filter assembly and method for cleaning a particle filter |
US20110023453A1 (en) * | 2007-08-30 | 2011-02-03 | Energy Conversion Technology As | Particle filter assembly and method for cleaning a particle filter |
EP2277825A1 (en) * | 2009-07-21 | 2011-01-26 | Honda Motor Co., Ltd. | Reactor flow control apparatus |
US10035960B2 (en) | 2010-09-07 | 2018-07-31 | Saudi Arabian Oil Company | Process for oxidative desulfurization and sulfone management by gasification |
US9574142B2 (en) | 2010-09-07 | 2017-02-21 | Saudi Arabian Oil Company | Process for oxidative desulfurization and sulfone management by gasification |
US9234146B2 (en) | 2011-07-27 | 2016-01-12 | Saudi Arabian Oil Company | Process for the gasification of heavy residual oil with particulate coke from a delayed coking unit |
CN104179604A (en) * | 2013-05-16 | 2014-12-03 | 曼卡车和巴士股份公司 | Propulsion device and method for operating same using a partially oxidized diesel fuel |
CN104179604B (en) * | 2013-05-16 | 2018-05-15 | 曼卡车和巴士股份公司 | Use the method for the propulsion device and operation of partial oxidation the diesel fuel device |
US10364150B2 (en) | 2013-11-06 | 2019-07-30 | Watt Fuel Cell Corp. | Duel utilization liquid and gaseous fuel reformer and method of reforming |
US10106406B2 (en) | 2013-11-06 | 2018-10-23 | Watt Fuel Cell Corp. | Chemical reactor with manifold for management of a flow of gaseous reaction medium thereto |
US9627700B2 (en) | 2013-11-06 | 2017-04-18 | Watt Fuel Cell Corp. | Liquid fuel CPOX reformer and fuel cell systems, and methods of producing electricity |
US11254568B2 (en) | 2013-11-06 | 2022-02-22 | Watt Fuel Cell Corp. | Liquid fuel CPOX reformer and fuel cell systems, and methods of producing electricity |
US10858247B2 (en) | 2013-11-06 | 2020-12-08 | Watt Fuel Cell Corp. | Multi-tubular chemical reactor with igniter for initiation of gas phase exothermic reactions |
US9624104B2 (en) | 2013-11-06 | 2017-04-18 | Watt Fuel Cell Corp. | Liquid fuel CPOX reformers and methods of CPOX reforming |
US9878908B2 (en) | 2013-11-06 | 2018-01-30 | Watt Agent, Llc | Liquid fuel reformer including a vaporizer and method of reforming liquid reformable fuel |
US9627701B2 (en) | 2013-11-06 | 2017-04-18 | Watt Fuel Cell Corp. | Integrated gaseous fuel CPOX reformer and fuel cell systems, and methods of producing electricity |
WO2015069749A3 (en) * | 2013-11-06 | 2015-09-03 | Watt Fuel Cell Corp. | Liquid fuel cpox reformers and methods of cpox reforming |
US9627699B2 (en) | 2013-11-06 | 2017-04-18 | Watt Fuel Cell Corp. | Gaseous fuel CPOX reformers and methods of CPOX reforming |
WO2015069754A3 (en) * | 2013-11-06 | 2015-09-03 | WATT Fuel Cell Corp | Liquid fuel cpox reformer and fuel cell systems, and methods of producing electricity |
US10414650B2 (en) | 2013-11-06 | 2019-09-17 | Watt Fuel Cell Corp. | Multi-tubular chemical reactor with igniter for initiation of gas phase exothermic reactions |
US10647572B2 (en) | 2013-11-06 | 2020-05-12 | Watt Fuel Cell Corp. | Liquid fuel reformer including a vaporizer and method of reforming liquid reformable fuel |
US10676354B2 (en) | 2013-11-06 | 2020-06-09 | Watt Fuel Cell Corp. | Reformer with perovskite as structural component thereof |
US10717648B2 (en) | 2013-11-06 | 2020-07-21 | Watt Fuel Cell Corp. | Liquid fuel CPOX reformer and fuel cell systems, and methods of producing electricity |
DE102016105492A1 (en) | 2016-03-23 | 2017-09-28 | Karlsruher Institut für Technologie | Reactor for the production of synthesis gas |
US10888833B2 (en) | 2016-03-23 | 2021-01-12 | Karlsruher Institut Fuer Technologie | Reactor for producing synthesis gas |
WO2017162681A1 (en) | 2016-03-23 | 2017-09-28 | Karlsruher Institut für Technologie | Reactor for producing synthesis gas |
Also Published As
Publication number | Publication date |
---|---|
CN101023024A (en) | 2007-08-22 |
EP1791783A1 (en) | 2007-06-06 |
KR20070061883A (en) | 2007-06-14 |
JP2008513326A (en) | 2008-05-01 |
US20070261686A1 (en) | 2007-11-15 |
CA2580647A1 (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070261686A1 (en) | Process for the Catalytic Partial Oxidation of Liquid Hydrocarbonaceous Fuel | |
JP3088099B2 (en) | Fuel cell device | |
Lindström et al. | Diesel fuel reformer for automotive fuel cell applications | |
AU729890B2 (en) | Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide | |
US7399327B2 (en) | Direct water vaporization for fuel processor startup and transients | |
EP1375420B1 (en) | Method and apparatus for fuel/air preparation for a fuel cell | |
RU2539561C2 (en) | Gas-generator for fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas, its application and method of fuel conversion to oxygen-depleted gas and/or to hydrogen-enriched gas (versions) | |
US7131264B2 (en) | Method of operating a reformer and a vehicle | |
EP1231183B1 (en) | Fuel reformer system | |
US20050132650A1 (en) | Fast light-off catalytic reformer | |
US6929785B2 (en) | Method and apparatus for preheating of a fuel cell micro-reformer | |
JPH11176461A (en) | Fuel cell device | |
US20040154222A1 (en) | Fuel processor primary reactor and combustor startup via electrically-heated catalyst | |
WO2008053007A1 (en) | Process for the production of hydrogen | |
US7338644B2 (en) | Fuel processor | |
JP2005213133A (en) | Reforming device and fuel cell system | |
JP2000191304A (en) | Liquid fuel evaporator and reformer for fuel cell using the same | |
JP2004286281A (en) | Catalytic combustion burner and fuel cell system | |
JP2007507068A (en) | Auxiliary power supply based on solid oxide fuel cell | |
KR100846716B1 (en) | Apparatus for reforming fuel | |
US20020026748A1 (en) | Method and device for generating a hydrogen-rich gas | |
Hartmann et al. | POX-reformer for gas oil/diesel in stationary and automotive SOFC-technologies | |
WO2008053006A1 (en) | Process for the production of hydrogen and the use thereof and a process for the operation of a internal combustion engine | |
CA2450917A1 (en) | Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005789379 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 996/CHENP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2580647 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11663117 Country of ref document: US Ref document number: 2007531760 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580031661.X Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077008881 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005789379 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11663117 Country of ref document: US |