WO2006031058A1 - Reacteur a microcanaux - Google Patents

Reacteur a microcanaux Download PDF

Info

Publication number
WO2006031058A1
WO2006031058A1 PCT/KR2005/003029 KR2005003029W WO2006031058A1 WO 2006031058 A1 WO2006031058 A1 WO 2006031058A1 KR 2005003029 W KR2005003029 W KR 2005003029W WO 2006031058 A1 WO2006031058 A1 WO 2006031058A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
doughnut
channels
fluids
micro
Prior art date
Application number
PCT/KR2005/003029
Other languages
English (en)
Inventor
Sang-Hee Lee
Hwan-Pyo Hong
Min-Soo Choi
Taek-Jun Sohn
Sung-Bae Lee
Ki-Youn Song
Original Assignee
Spec Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2004-0073126A external-priority patent/KR100473504B1/ko
Priority claimed from KR1020050084531A external-priority patent/KR100658361B1/ko
Application filed by Spec Co., Ltd filed Critical Spec Co., Ltd
Priority to JP2007531084A priority Critical patent/JP2008512237A/ja
Publication of WO2006031058A1 publication Critical patent/WO2006031058A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4317Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4323Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa using elements provided with a plurality of channels or using a plurality of tubes which can either be placed between common spaces or collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4338Mixers with a succession of converging-diverging cross-sections, i.e. undulating cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/81Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles
    • B01F33/811Combinations of similar mixers, e.g. with rotary stirring devices in two or more receptacles in two or more consecutive, i.e. successive, mixing receptacles or being consecutively arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/00804Plurality of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation

Definitions

  • a micro channel reactor in which channels of tens or hundreds of microns in size are processed, and thus micro fluid-passageways are formed, is an apparatus for mixing the fluids passing between the passageways, and discharging the mixed fluid.
  • Korean Patent Application No. 2000-7004186 discloses a micro channel reactor for solving such problems, as shown in FIG. 1.
  • the bottom portion 1001 and the top portion 1002 of a housing support each other in a tightly sealed manner on each contacting surface 1003, 1004 facing each other.
  • Inlet passageways 1005a, 1005b and an outlet port 1006 are opened to a separating surface formed by the contacting surfaces 1003, 1004, and passageway grooves 1008, 1009 are formed on at least one of the two contacting surfaces 1003, 1004.
  • a micro channel reactor As another example of a micro channel reactor conventionally used, a micro channel reactor has been proposed, in which fluids are injected through hundreds of micro channels and mixed by diffusion.
  • fluids are injected on different planes in different directions, which is no more than a mixture by diffusion, and thus mixing performance is limited.
  • processing the passageway grooves 1008, 1009 is difficult, thereby requiring a large amount of production costs.
  • many portions of fluids are mixed with each other, and thus pressure losses occur ex ⁇ cessively, thereby decreasing mixing efficiency. Accordingly, in order to maintain a certain pressure when the mixed fluid is discharged through the outlet port 1006, fluids must be injected into the inlet passageways 1005a, 1005b at a high pressure, the micro channel reactor must be manufactured using a high pressure container.
  • Korean Patent Laid-open Publication No. 437135 (title of the invention: micro heat exchanger and manufacturing method thereof) applied and registered by the inventor is shown in FIG. 2, which relates to a heat exchanger man ⁇ ufactured by blazingly bonding metal plates having a plurality of micro channels.
  • metal plates 1022 and bonding sheets are alternately stacked and blazingly bonded, and thus the heat exchanger is formed, the metal plate on which micro channels 1021 are processed.
  • the heat exchanger configured as such maximizes thermal endurance and pressure endurance of each fluid-passageway formed of micro channels 102.
  • the present invention has been made in order to solve the above problems occurring in the art, and it is an object of the invention to provide a micro channel reactor, in which different kinds of fluids can be mixed without using a large mixer, and a container can be used without being replaced according to the determined mixing amount, thereby mixing fluids effectively in a short period of time.
  • Another object of invention is to provide a micro channel reactor, in which different kinds of fluids pass through three-dimensional fluid-passageways formed so as to allow the fluids repeatedly move upwardly and downwardly, directly collide with each other, thereby effectively mixing fluids in a short period of time.
  • Another object of invention is to provide a micro channel reactor having lengthy but miniaturized fluid-passageways, and easily absorbs and radiates reaction heat when different kinds of fluids are mixed, thereby improving reaction efficiency.
  • a micro channel reactor comprising a fluid injector provided with injection rubes for injecting fluids to be into the inside of the micro channel reactor therethrough, a fluid mixer for mixing the injected fluids, and a fluid discharger for discharging the mixed fluid.
  • the fluid injector includes fluid-communicators for fluid- communicating the fluids injected through the injection tubes, and distribution plates having discharge ports formed thereon at regular intervals for discharging fluids from the fluid-communicators to the fluid mixer.
  • sheet metals for a heat exchanger are inserted and stacked between the sheet metals having micro channels and branch ports, the sheet metals for a heat exchanger having pass-through holes for passing through fluids and a plurality of micro channels fluid-communicated with the pass-through holes.
  • the fluid mixer of the invention includes a lower plate and an upper plate formed in one body, the lower plate having a plurality of doughnut- shaped channels of a certain depth arranged in the axial direction on the top surface, fluid-communicators formed by concatenating the end portions of the doughnut- shaped channels each other in order to fluid-communicate the doughnut-shaped channels, and fluid passageway channels in the axial direction formed thereby, the upper plate having a plurality of doughnut- shaped channels of a certain depth arranged in the axial direction on the top and bottom surfaces, fluid-communicators formed by concatenating the end portions of the doughnut-shaped channels each other in order to fluid-communicate the doughnut- shaped channels, and three-dimensional fluid-passageways where injected fluids repeatedly move in the vertical and axial directions, and being stacked on the top of the lower plate, in which the doughnut-shaped channel formed on the bottom surface having the fluid-communicator placed at the center of the doughnut-shaped channel of the lower plate is
  • the doughnut- shaped channels of the lower plate of the invention are formed by etching, and the doughnut-shaped channels formed on the top and bottom surfaces of the middle plate are etched half as deep as the thickness of the middle plate so as to fluid-communicated upwardly and downwardly.
  • Two or more of the lower plate and the middle plate of the fluid mixer are consecutively stacked, and fluid- communicated upwardly and downwardly through the end portions of the fluid- passageways.
  • the fluid mixer of the invention is further provided with one or more heat insulation hole(s) passing through certain portions surrounding the micro channels in a certain shape.
  • the fluid mixer has a plurality of the micro channels and the branch ports connected in series or parallel.
  • the doughnut- shaped channels of the lower plate of the invention are formed by etching, and the doughnut-shaped channels formed on the top and bottom surfaces of the middle plate are etched half as deep as the thickness of the middle plate so as to fluid-communicated upwardly and downwardly.
  • the depth of the doughnut- shaped d channels of the lower plate is the same as that of the doughnut-shaped channels formed on the top and bottom surfaces of the middle plate.
  • a micro heat exchanger coupled to the lower portion of the lower plate of the fluid mixer, the micro heat exchanger having an inlet and an outlet of a coolant, and a plurality of micro channels on the top surface, is further provided.
  • Two or more of the lower plate and the middle plate of the fluid mixer are consecutively stacked, and fluid-communicated upwardly and downwardly through the end portions of the fluid-passageways.
  • FIGS. 6 and 7 are perspective views showing sheet metals according to the invention.
  • FIG. 21 is a cross-sectional view taken along the line B-B of FIG. 18;
  • FIG. 23 is a cross-sectional view taken along the line D-D of FIG. 18;
  • the distribution plate 114a, 114b is placed at the inner side of the cover 112, and contains a fluid-communicator 115 for fluid-communicating the fluid injected through the injection tube 111 and the injection hole 113, and discharge ports 116a, 116b formed thereon at regular intervals for discharging the fluid from the fluid- communicator 115 to the fluid mixer 120.
  • the fluid-communicator 115 is fluid- communicated with each discharge port 116a, 116b, so that the distribution plate 114 allows a constant amount of fluid to be distributed to each discharge port 116a, 116b when the fluid is discharged to the fluid mixer 120.
  • the most important point in the present invention is that different kinds of injected fluids directly collide and are mixed, the fluids having alternately passed through the micro channels 121 and the branch ports 122 by way of the discharge ports 116a, 116b formed on the distribution plates 113a, 114b. Accordingly, in the present invention, the injected fluids that have passed through the micro channels 121 and the branch ports 122 of the fluid mixer 120 directly collide and are mixed, thereby being mixed in a short period of time.
  • the reactor can be modified in diverse forms according to the location where the reactor 100 is installed.
  • another form of the micro channel reactor 200 comprises a fluid injector 210 for injecting fluids to be mixed into the inside of the micro channel reactor therethrough, a fluid mixer 220 for mixing the injected fluids, and a fluid discharger 230 for discharging the mixed fluid.
  • the end portions of the doughnut- shaped channels 221a are preferably overlapped at the fluid- communicator 221b so as to form a V-shape protrusion 221c in order to join and branch the different kinds of fluids at the fluid-communicator 221b.
  • the doughnut- shaped channels 221a of the lower plate 221 are preferably formed by etching.
  • the middle plate 222 has the same configuration as that of the upper plate 160 shown in FIG. 17 described above.
  • the middle plate 222 is stacked on the lower plate 221, and has a plurality of doughnut- shaped channels 222a', 222a" formed on the top and bottom surfaces in the same manner as the lower plate 221, the channels having a certain depth and being arranged in the axial direction.
  • Fluid-communicators 222b', 222b" are provided such that the end portions of the doughnut- shaped channels 222a' and 222a" are concatenated each other so as to fluid-communicate the doughnut- shaped channels 222a', 222a".
  • the end portions of the doughnut-shaped channels 222a' and 222a" are preferably overlapped at the fluid-communicators 222b' and 222b" so as to form a V-shape protrusion 222c' and 222c" in order to join and branch different kinds of fluids at the fluid-communicator 222b', 222b".
  • a three-dimensional fluid passageway channel is formed in a row.
  • a plurality of neighboring three-dimensional fluid passageway channels are provided, and the end portions of the fluid passageways are connected each other.
  • FIG. 20 is a cross-sectional view of FIG. 18 taken along the line A-A.
  • the fluid-communicator 222b" of the middle plate 222, the doughnut-shaped channels 222a' formed on the top surface of the middle plate 222, and the doughnut- shaped channel 221a of the lower plate 221 are branched re ⁇ spectively, and different kinds of fluids are branched respectively according to this.
  • FIG. 24 is a perspective view showing a micro channel reactor of another form according to the invention
  • FIG. 25 is an exploded perspective view of FIG. 24
  • FIG. 26 is a plan view
  • FIG. 26 is the lower plate of FIG. 25
  • FIG. 27 is a plan view showing the middle plate of FIG. 25.
  • FIG. 28 is an exploded perspective view showing a micro channel reactor of another form according to the invention.
  • two or more lower plates 221 shown in FIG. 26 and the middle plates 222 are alternately and con ⁇ secutively stacked.
  • the outlet of the fluid-passageway of the lower plate 221' and the middle plate 222' placed at the uppermost portion are connected to the inlets of the lower plate 221" and the middle plate 222" placed in the middle.
  • the outlet of lower plate 221" and the middle plate 222" placed in the middle are connected to the inlets of the lower plate 221'" and the middle plate 222'" placed at the lowermost portion.
  • two or more lower plates 221 and middle plates 222 are alternately and consecutively stacked, and thus the length of the three-dimensional fluid-passageway can be maximized, thereby enhancing mixing reaction efficiency.
  • the micro channel reactor of the invention preferably further stacks a micro heat exchanger 240 at the lower portion of the lower plate 221.
  • the micro heat exchanger 240 is coupled to the lower portion of the lower plate 221 of the fluid mixer 220, the micro channel reactor having an inlet and an outlet of a coolant, and a plurality of micro channels 241 formed on the top surface.
  • the micro channel reactor according to the invention can mix different kinds of fluids without using a big mixer, and thus be miniaturized, in which a container does not need to be replaced according to the determination of mixing amount, and different fluids injected through an injection port directly collide with each other, and thus the fluids can be mixed efficiently in a short period of time.
  • the micro channel reactor is manufactured by blazingly bonding and stacking sheet metals having micro channels and branch ports formed thereon through etching, thereby being precisely processed, easily manufactured, economical, and endurable.

Abstract

L'invention porte sur un réacteur à microcanaux comprenant: un injecteur de fluides muni de tubes d'injection de fluides se mélangeant dans le réacteur; un mélangeur des fluides injectés; et un évacuateur des fluides mélangés. L'injecteur comporte: des canaux de communication où circulent les fluides injectés, et des plaques de distribution présentant des ports d'évacuation formés à intervalles réguliers et servant au transfert des fluides des canaux de communication vers le mélangeur de fluides. Le mélangeur de fluides comporte: des trous traversants pénétrant dans les ports d'évacuation; plusieurs microcanaux communiquant avec les trous traversants; et des ports secondaires situés à l'extrémité de sortie des microcanaux et où les différentes sortes de fluides traversant les microcanaux voisins se heurtent et sont mélangés. Les évacuateurs de fluides comportent: un réservoir des fluides heurtés dans les ports secondaires et mélangés; et des ports d'évacuation des fluides mélangés du réservoir. Il en résulte que le réacteur de l'invention peut mélanger différentes sortes de fluides sans utiliser un gros mélangeur et donc être miniaturisé. Le réservoir ne doit pas être remplacé quelque soit la quantité mélangée, et comme les différents fluides injectés se heurtent directement entre eux, leur mélange s'effectue rapidement. En outre, ledit réacteur étant produit par soudage/soufflage et empilement de feuilles métalliques présentant des microcanaux obtenus par mordançage, est d'une grande précision, facile à fabriquer, économique et robuste.
PCT/KR2005/003029 2004-09-13 2005-09-13 Reacteur a microcanaux WO2006031058A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531084A JP2008512237A (ja) 2004-09-13 2005-09-13 マイクロチャンネルリアクター

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2004-0073126 2004-09-13
KR10-2004-0073126A KR100473504B1 (ko) 2004-09-13 2004-09-13 마이크로 믹서
KR1020050084531A KR100658361B1 (ko) 2005-09-12 2005-09-12 마이크로 채널 리액터
KR10-2005-0084531 2005-09-12

Publications (1)

Publication Number Publication Date
WO2006031058A1 true WO2006031058A1 (fr) 2006-03-23

Family

ID=36060266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2005/003029 WO2006031058A1 (fr) 2004-09-13 2005-09-13 Reacteur a microcanaux

Country Status (2)

Country Link
JP (1) JP2008512237A (fr)
WO (1) WO2006031058A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307440A (ja) * 2006-05-16 2007-11-29 Hitachi Plant Technologies Ltd 化学反応装置
JP2008246283A (ja) * 2007-03-29 2008-10-16 Okayama Prefecture Industrial Promotion Foundation 衝突型マイクロミキサー
WO2010138676A1 (fr) 2009-05-29 2010-12-02 Corning Incorporated Dispositifs microfluidiques à flux contrôlé
RU2473382C1 (ru) * 2011-07-07 2013-01-27 Общество с ограниченной ответственностью "СинТоп" Микроканальный реактор для синтеза жидких углеводородов по методу фишера-тропша
WO2016029644A1 (fr) * 2014-08-29 2016-03-03 高剑峰 Dispositif de réaction micro-tubulaire et procédé de préparation de caoutchouc nitrile hydrogéné à l'aide du dispositif
CN105764603A (zh) * 2013-11-25 2016-07-13 Lg化学株式会社 微通道反应器
US9421507B2 (en) 2012-04-30 2016-08-23 Oregon State University Micro-channels, micro-mixers and micro-reactors
RU2605421C1 (ru) * 2015-06-01 2016-12-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Проточный микроканальный реактор и способ получения в нем триэтаноламина
CN107922524A (zh) * 2015-09-17 2018-04-17 Lg化学株式会社 阴离子聚合引发剂的制备方法、制备设备和由其制备的阴离子聚合引发剂
WO2018185736A1 (fr) * 2017-04-07 2018-10-11 Petróleos De Portugal - Petrogal, S.A. Dispositif d'échangeur de chaleur de réseau, procédé et utilisations de celui-ci
CN109647307A (zh) * 2019-01-28 2019-04-19 北京理工大学 Y型组合式微通道结构
WO2021031201A1 (fr) * 2019-08-22 2021-02-25 于志远 Réacteur à microcanaux et procédé de préparation de micro/nanoparticules de précurseur de matériaux d'électrode positive et de matériaux d'électrode négative de batterie au lithium
EP3812037A1 (fr) * 2019-10-25 2021-04-28 University College Dublin, National University of Ireland, Dublin Unité de traitement imprimée destinée à être utilisée pour le mélange de matériaux chimiques ou biologiques et son procédé de fabrication
WO2021105153A1 (fr) * 2019-11-29 2021-06-03 Merck Patent Gmbh Mélangeurs statiques multibranches
EP4088810A1 (fr) * 2021-05-13 2022-11-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dispositif de canal
KR20230161780A (ko) 2022-05-19 2023-11-28 한국기계연구원 마이크로 채널 반응기의 제조를 위한 전열판 접합 방법 및 전열판 정렬 구조

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121020A (ja) * 2009-12-14 2011-06-23 Isel Co Ltd 混合要素、混合装置、混合方法、攪拌翼、攪拌装置及び攪拌方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459168A2 (fr) * 1990-05-10 1991-12-04 BASF Aktiengesellschaft Produits de condensation d'acides hydroxybenzène monosulfoniques, de dihydroxydiphénylsulfones, d'urée et de formaldéhyde
US6299657B1 (en) * 1995-11-06 2001-10-09 Bayer Aktiengesellschaft Process for carrying out chemical reactions using a microlaminar mixer
US6446442B1 (en) * 1999-10-07 2002-09-10 Hydrocool Pty Limited Heat exchanger for an electronic heat pump
US20040145967A1 (en) * 2001-05-28 2004-07-29 Yamatake Corporation Micro-mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459168A2 (fr) * 1990-05-10 1991-12-04 BASF Aktiengesellschaft Produits de condensation d'acides hydroxybenzène monosulfoniques, de dihydroxydiphénylsulfones, d'urée et de formaldéhyde
US6299657B1 (en) * 1995-11-06 2001-10-09 Bayer Aktiengesellschaft Process for carrying out chemical reactions using a microlaminar mixer
US6446442B1 (en) * 1999-10-07 2002-09-10 Hydrocool Pty Limited Heat exchanger for an electronic heat pump
US20040145967A1 (en) * 2001-05-28 2004-07-29 Yamatake Corporation Micro-mixer

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007307440A (ja) * 2006-05-16 2007-11-29 Hitachi Plant Technologies Ltd 化学反応装置
JP2008246283A (ja) * 2007-03-29 2008-10-16 Okayama Prefecture Industrial Promotion Foundation 衝突型マイクロミキサー
WO2010138676A1 (fr) 2009-05-29 2010-12-02 Corning Incorporated Dispositifs microfluidiques à flux contrôlé
CN102448596A (zh) * 2009-05-29 2012-05-09 康宁股份有限公司 流动受控的微流体装置
CN102448596B (zh) * 2009-05-29 2016-10-12 康宁股份有限公司 流动受控的微流体装置
RU2473382C1 (ru) * 2011-07-07 2013-01-27 Общество с ограниченной ответственностью "СинТоп" Микроканальный реактор для синтеза жидких углеводородов по методу фишера-тропша
US9421507B2 (en) 2012-04-30 2016-08-23 Oregon State University Micro-channels, micro-mixers and micro-reactors
US10232338B2 (en) 2013-11-25 2019-03-19 Lg Chem, Ltd. Micro-channel reactor
CN105764603A (zh) * 2013-11-25 2016-07-13 Lg化学株式会社 微通道反应器
WO2016029644A1 (fr) * 2014-08-29 2016-03-03 高剑峰 Dispositif de réaction micro-tubulaire et procédé de préparation de caoutchouc nitrile hydrogéné à l'aide du dispositif
RU2605421C1 (ru) * 2015-06-01 2016-12-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Проточный микроканальный реактор и способ получения в нем триэтаноламина
US11028189B2 (en) 2015-09-17 2021-06-08 Lg Chem, Ltd. Preparation method of anionic polymerization initiator, device for manufacturing anionic polymerization initiator and anionic polymerization initiator prepared therefrom
CN107922524A (zh) * 2015-09-17 2018-04-17 Lg化学株式会社 阴离子聚合引发剂的制备方法、制备设备和由其制备的阴离子聚合引发剂
US11484862B2 (en) 2017-04-07 2022-11-01 Petrogal, S.A. Network heat exchanger device, method and uses thereof
KR20200000248U (ko) * 2017-04-07 2020-01-30 페트로갈, 에스.에이. 네트워크 열 교환기 장치, 그 방법 및 용도
WO2018185736A1 (fr) * 2017-04-07 2018-10-11 Petróleos De Portugal - Petrogal, S.A. Dispositif d'échangeur de chaleur de réseau, procédé et utilisations de celui-ci
KR200496561Y1 (ko) * 2017-04-07 2023-02-28 페트로갈, 에스.에이. 네트워크 열 교환기 장치, 그 방법 및 용도
CN109647307A (zh) * 2019-01-28 2019-04-19 北京理工大学 Y型组合式微通道结构
WO2021031201A1 (fr) * 2019-08-22 2021-02-25 于志远 Réacteur à microcanaux et procédé de préparation de micro/nanoparticules de précurseur de matériaux d'électrode positive et de matériaux d'électrode négative de batterie au lithium
EP3812037A1 (fr) * 2019-10-25 2021-04-28 University College Dublin, National University of Ireland, Dublin Unité de traitement imprimée destinée à être utilisée pour le mélange de matériaux chimiques ou biologiques et son procédé de fabrication
WO2021105153A1 (fr) * 2019-11-29 2021-06-03 Merck Patent Gmbh Mélangeurs statiques multibranches
CN114555216A (zh) * 2019-11-29 2022-05-27 默克专利股份有限公司 多分支静态混合器
EP4088810A1 (fr) * 2021-05-13 2022-11-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dispositif de canal
KR20230161780A (ko) 2022-05-19 2023-11-28 한국기계연구원 마이크로 채널 반응기의 제조를 위한 전열판 접합 방법 및 전열판 정렬 구조

Also Published As

Publication number Publication date
JP2008512237A (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
WO2006031058A1 (fr) Reacteur a microcanaux
US8986546B2 (en) Flow channel structure, and mixing method, extraction method, and reaction method for fluids
EP1997553B1 (fr) Mélangeur de fuide et procédé de formation d'un fluide mélangé
US6537506B1 (en) Miniaturized reaction apparatus
KR100658361B1 (ko) 마이크로 채널 리액터
US9073018B2 (en) Micro mixer
EP1908514B1 (fr) Microréacteur
JP2005512760A (ja) 少なくとも2つの流体を混合及び反応させるための装置
WO2007131926A1 (fr) Dispositifs de microréacteur thermiquement trempés à haut débit et méthodes
EP2814773B1 (fr) Appareil et procédé de mélange centrifuge microfluidique
WO2012025224A1 (fr) Dispositif microfluidique
JP4257795B2 (ja) マイクロリアクタ
US8057677B2 (en) Extraction method using a static micromixer
US20120082601A1 (en) Honeycomb reactor or heat exchanger mixer
JP4403943B2 (ja) 流体混合器及びマイクロリアクタシステム
US7955564B2 (en) Micro reactor
JP4504817B2 (ja) 反応器チャンバ用の流れ方向付けインサートおよび反応器
US8920020B2 (en) Flow passage structure
JP2006523523A (ja) 混合装置
CN115245847B (zh) 一种基于特斯拉阀的微混合芯片
KR100473504B1 (ko) 마이크로 믹서
CN210022101U (zh) 一种微反应器及化工生产系统
EP2506961B1 (fr) Mélangeurs à courbure en u et à corps en nid-d'abeilles
KR101818521B1 (ko) 마이크로채널 열교환기용 2상 유체 공급장치 및 그 방법
CN216171903U (zh) 一种具有空间结构的被动式微混合器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531084

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase