WO2006030651A1 - Carbon dioxide gas fixation material obtained by thermolysis of chrysotile asbestos and/or serpentinite containing chrysotile asbestos - Google Patents

Carbon dioxide gas fixation material obtained by thermolysis of chrysotile asbestos and/or serpentinite containing chrysotile asbestos Download PDF

Info

Publication number
WO2006030651A1
WO2006030651A1 PCT/JP2005/016122 JP2005016122W WO2006030651A1 WO 2006030651 A1 WO2006030651 A1 WO 2006030651A1 JP 2005016122 W JP2005016122 W JP 2005016122W WO 2006030651 A1 WO2006030651 A1 WO 2006030651A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
asbestos
forsterite
chrysotile asbestos
serpentinite
Prior art date
Application number
PCT/JP2005/016122
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotsugu Yamashita
Tetsuya Shimamura
Original Assignee
Nozawa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nozawa Corporation filed Critical Nozawa Corporation
Publication of WO2006030651A1 publication Critical patent/WO2006030651A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/22Magnesium silicates

Definitions

  • Carbon dioxide fixing material obtained by thermal decomposition of warm asbestos and Z or serpentine containing warm asbestos
  • the present invention relates to forsterite (also referred to as “forsterite”), which is effective as a measure against global warming, and has excellent performance of diacid-carbon fixation. It is related to forsterite, which is excellent in carbon dioxide fixation performance obtained from Iwaoka.
  • Hot asbestos and serpentinite containing Z or hot asbestos, and hot asbestos recovered from products containing hot asbestos, etc. are thermally decomposed to become non-asbestos, eliminating harmful biological effects and fixing carbon dioxide Recycled as a material with excellent ability.
  • carbon dioxide carbon dioxide
  • environmental destruction such as global warming has become a global problem.
  • technology for reducing carbon dioxide and carbon dioxide in the atmosphere and technology for reusing it are required, and carbon dioxide immobilization is one of them.
  • carbon dioxide can be fixed by an electric energy method, a method of fixing to various substances, a method of fixing to the ground, a method of using marine organisms, or a method of absorbing it in seawater.
  • Patent Document 1 a) Method using electric energy: Patent Document 1
  • Patent Document 2 a) Method using electric energy: Patent Document 1
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-73978
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-97894
  • Patent Document 3 Japanese Patent No. 3105953
  • Patent Document 4 JP-A-6-71161
  • Patent Document 5 Japanese Patent No. 3004393
  • the electric power generation method relies on the current thermal power generation method
  • the electric power generation method is meaningless because it generates carbon dioxide in the direction of thermal power generation.
  • a method for immobilizing the substance in a substance there is a method using a crystalline silicate, but it is disadvantageous in terms of cost because it cannot be immobilized by a crystalline silicate alone.
  • problems such as environmental safety in the method of using underground, deep sea, and marine organisms.
  • Thermal asbestos and serpentinite generally lose water of crystallization at 500 to 700 ° C, and the crystal structure is destroyed and becomes amorphous. However, when it exceeds 800 ° C, it reverts to forsterite. Crystallizes and further enstatite crystals form in the temperature range around 1000 ° C.
  • the present inventors have performed heat treatment in a temperature range in which warm asbestos and serpentinite become amorphous and crystallization into forsterite is suppressed as much as possible. In comparison with pure substance of forsterite, we found that the value of crystallinity in terms of peak area by X-ray analysis decreased, and the reactivity with carbon dioxide gas increased dramatically.
  • Hot asbestos and / or serpentinite containing hot asbestos is fired at 660 ° C to 800 ° C, and the crystallinity is 7 to 80 in terms of peak area by X-ray analysis. Forsterite with excellent carbon dioxide fixing performance.
  • Hot asbestos and / or serpentinite containing hot asbestos is fired at 660 ° C to 800 ° C, and the crystallinity is 7 to 80 in terms of peak area by X-ray analysis.
  • Carbon dioxide fixed material characterized by containing stellite.
  • the false obtained by firing warm asbestos and / or serpentine containing warm asbestos Carbon dioxide is fixed by using terlite.
  • forsterite that immobilizes carbon dioxide is obtained by the following treatment.
  • Forsterite with excellent carbon dioxide fixation performance is obtained by calcining warm asbestos and serpentinite containing Z or warm asbestos at 660 ° C to 800 ° C. The atmosphere during heating and firing may be in the air.
  • the material structure of warm asbestos is modified into forsterite such as chrysotile mosquito.
  • Forsterite with excellent carbon dioxide immobilization performance can be obtained.
  • the carbon dioxide fixing material obtained by thermally decomposing the warm asbestos according to the present invention is obtained by calcining warm asbestos and Z or serpentinite containing warm asbestos at a low temperature of 660 ° C to 800 ° C to obtain a crystallinity.
  • the value represented by the peak area by X-ray analysis is set to 7 to 80, it has excellent carbon dioxide fixation performance.
  • the crystallinity is the peak area (peak height) of the first peak of forsterite (36.5 °) in the X-ray diffraction diagram of the carbon dioxide fixed material after pyrolysis. X half-value width) is calculated, and the comparison value is shown when the peak area of pure forsterite is 100 as a comparison. Therefore, the comparative value is high but the crystallinity is high, and the lower the comparative value is, the lower the crystallinity is.
  • the carbon dioxide-fixed soot material obtained by thermally decomposing warm asbestos according to the present invention can be easily obtained by heat-treating warm asbestos-containing serpentine widely existing in Japan as a natural resource. Further, the carbon dioxide fixing material obtained by thermally decomposing the warm asbestos of the present invention is obtained by calcining warm asbestos and Z or serpentinite containing warm asbestos at 660 ° C to 800 ° C and analyzing the crystallinity by X-ray analysis. Those with a peak area value of 7 to 80 are excellent in carbon dioxide fixation performance and have higher diacid / carbon fixation performance than natural mineral forsterite. This makes it possible to effectively fix carbon dioxide, the main cause of global warming.
  • the energy required for non-asbestos formation can be reduced by lowering the heat treatment temperature and lowering the crystallinity.
  • the forsterite produced at this time was calcined at 660 ° C to 800 ° C, and the crystallinity was expressed as a peak area by X-ray analysis of 7 to 80. ⁇ Although it has excellent performance, specifically, we conducted a differential thermal analysis on the target warm asbestos and serpentinite, and exceeded the temperature showing an endothermic peak in the temperature range of 500 ° C or higher, generating heat.
  • the purpose can be achieved by performing heat treatment in the temperature range below the peak temperature and decomposing the warm asbestos. That is, the firing temperature can be set by measuring the endothermic peak temperature in the differential thermal analysis.
  • the differential thermal analysis shows the peak of crystallization water withdrawal and the peak temperature of recrystallization into forsterite. Therefore, it is necessary to perform heating in this temperature range. In general, this temperature range may vary slightly depending on the location of the force temperature asbestos and serpentinite corresponding to 660 ° C to 800 ° C, so it is desirable to confirm this by differential thermal analysis.
  • the heating and holding time requires that the asbestos is completely decomposed to become non-asbestos. This makes it possible to completely eliminate harmful biological effects.
  • the heat treatment is completed in about 0.5 to 3 hours. Note that the closer the temperature is to the upper limit, the shorter the processing time, the higher the recrystallization rate of forsterite, and the higher the crystallinity expressed by the peak area by X-ray analysis. On the other hand, the closer to the minimum temperature, the forsterite crystals The treatment time required for the decomposition of warm asbestos is long.
  • the heat treatment conditions are preferably a temperature of 700 to 750 ° C and a heating time of 1 to 1.5 hours in order to keep the economic efficiency of heating and the specific surface area of the processed material high. is there.
  • any heating furnace used as an industrial furnace can be used, but an externally heated rotary furnace or a roller hearth kiln that can easily maintain heating at 660 ° C to 800 ° C is suitable.
  • the target material of the present invention is warm asbestos, serpentinite containing warm asbestos, and warm asbestos recovered through processing such as pulverization and classification from industrial products such as building materials containing warm asbestos. Can also be applied.
  • the material treated as described above can be fixed with carbon dioxide at normal pressure.
  • carbon dioxide gas may be immobilized under supercritical conditions.
  • the specific surface area of the obtained carbon dioxide fixed material is influenced by the length of the chrysotile fiber.
  • Forsterite with a high specific surface area can be obtained by heating and firing long fiber products. This is because a long fiber has a large area for adsorbing carbon dioxide, so that the amount of fixed fiber increases.
  • the fiber length also affects the crystallization during firing. When fired at the same temperature, those with long fiber lengths are forsterite with low crystallinity and those with short fiber length. Those with a long fiber length pass 30% on a 15 O / zm sieve, and those with a short fiber length pass all on a 150 m sieve.
  • the immobilization reaction temperature is preferably near room temperature, and as the temperature increases, the immobilization efficiency decreases. (20-40 ° C is desirable.)
  • reaction time is 20 to 24 hours, and the fixed amount reaches saturation.
  • hot asbestos and / or hot asbestos-containing serpentinite can be used as a raw material, but pulverized from corrugated hot asbestos slate and hot asbestos slate board, which are waste materials containing hot asbestos. Separated recycled asbestos can also be used.
  • adsorption treatment conditions were a reaction time of 48 hours, a pressure of 8 MPa, and a temperature of 100 ° C.
  • the reactor is placed in an oil bath (100 ° C) (theoretical pressure: 8. OMPa) and allowed to react for 48 hours.
  • the product is vacuum dried at 60 ° C for 10 hours.
  • the specific surface area was measured by the BET 3-point method using a BET specific surface area measuring device.
  • the weight gain is also estimated by the amount of fixed carbon dioxide.
  • the measurement results are shown in the following table. (Each test and test result)
  • Carbon dioxide fixation rate Increased weight due to fixation Z Weight before fixation
  • Immobilization material Canadian 4 class chrysotile 740 ° C ⁇ 1 hour fired product (Test conditions)
  • Immobilization material Canadian 4 class chrysotile 740 ° C ⁇ Crushed after firing for 1 hour (test conditions)
  • Immobilization material Canadian 4 class chrysotile 740 ° C ⁇ Crushed after firing for 1 hour (test conditions)
  • Carbon dioxide fixation conditions normal pressure reaction (water content 30% ⁇ 24 hours)
  • Immobilization material Canadian 4 class chrysotile 740 ° C ⁇ Crushed after firing for 1 hour (test conditions)
  • Immobilization material Canadian 4 class chrysotile 740 ° C (Test conditions)
  • the cytotoxicity is the same level as that of the inorganic fiber wollastonite, which has been confirmed to be safe.
  • the forsterite having excellent carbon dioxide fixation performance according to the present invention renders warm asbestos in cement product waste such as fire-resistant coating material slate as a construction material particularly problematic in terms of pollution, and recycles it. It provides a useful application of recycled warm asbestos in building materials that need to be recycled.

Abstract

[PROBLEMS] To attain effective utilization of chrysotile asbestos or serpentinite containing chrysotile asbestos as a carbon dioxide fixation material useful for reduction of carbon dioxide gas (carbon dioxide) contained in the atmosphere by converting the chrysotile structure of asbestos to the forsterite structure. [MEANS FOR SOLVING PROBLEMS] Forsterite excelling in carbon dioxide gas fixation potency produced by firing chrysotile asbestos and/or serpentinite containing chrysotile asbestos at 660˚ to 800˚C and characterized by exhibiting a crystallization degree, as expressed by a peak area of X-ray analysis, of 7 to 80. There is provided a carbon dioxide gas fixation material characterized by containing the forsterite produced by firing chrysotile asbestos and/or serpentinite containing chrysotile asbestos at 660˚ to 800˚C so as to exhibit a crystallization degree, as expressed by a peak area of X-ray analysis, of 7 to 80.

Description

明 細 書  Specification
温石綿及び Z又は温石綿含有蛇紋岩を加熱分解して得る炭酸ガス固定 化材料  Carbon dioxide fixing material obtained by thermal decomposition of warm asbestos and Z or serpentine containing warm asbestos
技術分野  Technical field
[0001] 本発明は、地球温暖化対策として有効な二酸ィ匕炭素固定ィ匕性能に優れたフォルス テライト(「フォーステライト」とも言う)に関するものであり、特に、温石綿や温石綿含有 蛇紋岩カゝら得られる炭酸ガス固定ィ匕性能に優れたフォルステライトに関するものであ る。  [0001] The present invention relates to forsterite (also referred to as “forsterite”), which is effective as a measure against global warming, and has excellent performance of diacid-carbon fixation. It is related to forsterite, which is excellent in carbon dioxide fixation performance obtained from Iwaoka.
[0002] 温石綿及び Z又は温石綿を含む蛇紋岩、また、温石綿を含有する製品等から回収 した温石綿を加熱分解して非石綿化し、有害な生体影響を消失させるとともに、炭酸 ガス固定ィ匕能力に優れた材料として再生利用する。  [0002] Hot asbestos and serpentinite containing Z or hot asbestos, and hot asbestos recovered from products containing hot asbestos, etc. are thermally decomposed to become non-asbestos, eliminating harmful biological effects and fixing carbon dioxide Recycled as a material with excellent ability.
背景技術  Background art
[0003] 温石綿は、吸入により、長い潜状期間の後、発がんに至る危険性から、 2008年ま でに全面的に使用が禁止されることとなっている。温石綿の中でも産出量、使用量と もに最も多い温石綿 (クリノタイル)を含む工業製品のストック量は膨大であり、今後廃 棄物となった場合には、埋め立てもしくは溶融処理しか方策がない。産廃処分場の 容量が減少の一途をたどっていること、地中埋設では本質的に危険性は残ること、無 害化のための溶融処理には多大のコストを要すること等が指摘され、その取扱!/、が 問題となっている。  [0003] The use of warm asbestos is completely prohibited by 2008 due to the risk of carcinogenesis after a long latent period by inhalation. The stock of industrial products including warm asbestos (clinotile), which is the largest amount of warm asbestos in both production and use, is enormous. . It has been pointed out that the capacity of industrial waste disposal sites is steadily decreasing, that there is an inherent danger in underground burial, and that the melting process for detoxification requires significant costs. Handling! / Is a problem.
[0004] 特に、最近まで温石綿は、建築材料として耐火被覆材ゃスレートなどのセメント製 品などに多く用いられてきた。し力しながら、温石綿は有害性が問題となりその使用 が規制されるようになり、温石綿製品についても使用が禁止となる。今後、これら温石 綿が用いられた建築物の耐用年数が過ぎ、解体時期を迎えた場合に、温石綿を含 有した建築材料の処分の関係から、処理が必要となり、建築資材としての有効なリサ イタルが求められることが想定される。これらの点からリサイクル温石綿の有用な用途 につ 、ても早急な開発が待たれて 、る。  [0004] In particular, until recently, warm asbestos has been widely used as a building material for cement products such as fireproof coating material slate. However, the use of hot asbestos is becoming a problem and its use is regulated, and the use of hot asbestos products is also prohibited. In the future, when the useful life of buildings using these warm asbestos has passed and the dismantling time has come, it will be necessary to treat them due to the disposal of building materials containing warm asbestos, which is effective as a building material. It is assumed that a recital is required. From these points, the rapid development of a useful use of recycled warm asbestos is awaited.
[0005] また、温石綿は蛇紋岩を母岩とする力 蛇紋岩は、 日本国内および世界的にみて も天然資源として、広く賦存している。蛇紋岩はその産地によって温石綿の含有量は 異なるが、全く含まないものは皆無といってよい。これらの温石綿を含有する材料に ついては、温石綿の使用が禁止されても膨大な量が存在することから、安全性を付 与して再利用できるようにすることは、環境対策として極めて重要である。 [0005] In addition, hot asbestos is a force that uses serpentine as the host rock. Is also a natural resource. Serpentinite has a warm asbestos content depending on its place of production, but it can be said that there is nothing at all. There is an enormous amount of these materials containing warm asbestos even if the use of warm asbestos is prohibited, so it is extremely important as an environmental measure to give safety and make it reusable. It is.
[0006] 一方、地球温暖化の主因である炭酸ガスについては、京都議定書の発効により様 々な措置や対策が検討され、炭酸ガスを固定ィヒする技術についても、様々な方法が 開発されているが、経済性や環境影響に懸念のない方法や材料については、確立 して 、るとは言 ヽ難 、現状である。  [0006] On the other hand, with respect to carbon dioxide, which is the main cause of global warming, various measures and measures have been studied by the entry into force of the Kyoto Protocol, and various methods have been developed for technologies for fixing carbon dioxide. However, it is difficult to say that the methods and materials that have no concern for economic efficiency and environmental impact have been established.
[0007] 特に、化石燃料の使用によって発生する二酸化炭素 (炭酸ガス)により、地球温暖 化現象などの環境破壊が世界的規模で問題となっている。地球温暖化現象に関連 して、大気中の二酸ィ匕炭素の低減技術、さらに再利用化のための技術が求められて おり、二酸化炭素の固定化方法もその 1つである。従来、二酸化炭素の固定化には 電気工ネルギ一による方法、各種物質に固定化する方法、地中へ固定化する方法、 海洋生物の利用や海水に吸収させる方法等がある。  [0007] In particular, due to carbon dioxide (carbon dioxide) generated by the use of fossil fuels, environmental destruction such as global warming has become a global problem. In connection with the global warming phenomenon, technology for reducing carbon dioxide and carbon dioxide in the atmosphere and technology for reusing it are required, and carbon dioxide immobilization is one of them. Conventionally, carbon dioxide can be fixed by an electric energy method, a method of fixing to various substances, a method of fixing to the ground, a method of using marine organisms, or a method of absorbing it in seawater.
[0008] また、天然鉱物を用いて炭酸塩ィ匕する方法の 1つとしてフォルステライトを使用する 方法があるが、工業的にはあまり活用されていない。二酸化炭素の固定化に関して は次のような技術がある。  [0008] Further, there is a method of using forsterite as one of the methods of carbonate formation using natural minerals, but it is not used much industrially. The following technologies are available for carbon dioxide fixation.
[0009] a)電気エネルギーによる方法:特許文献 1、特許文献 2  [0009] a) Method using electric energy: Patent Document 1, Patent Document 2
b)物質中に固定化する方法:特許文献 3  b) Immobilization method in substance: Patent Document 3
c)地中へ固定化する方法:特許文献 4  c) Immobilization method in the ground: Patent Document 4
d)深海へ固定化する方法:特許文献 5  d) Immobilization to the deep sea: Patent Literature 5
特許文献 1:特開 2004— 73978号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-73978
特許文献 2:特開 2001— 97894号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-97894
特許文献 3:特許第 3105953号公報  Patent Document 3: Japanese Patent No. 3105953
特許文献 4:特開平 6— 71161号公報  Patent Document 4: JP-A-6-71161
特許文献 5:特許第 3004393号公報  Patent Document 5: Japanese Patent No. 3004393
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0010] 電気工ネルギ一による方法では、発電法を現在の火力発電に頼っている限りは、 火力発電の方で二酸ィ匕炭素を発生させるため、無意味である。物質中に固定化する 方法では、結晶性ケィ酸塩を使用する方法があるが、結晶性ケィ酸塩単独では固定 化できないため、コスト面で不利である。また、地中や、深海、海洋生物を利用する方 法では、環境に対する安全性等の問題点がある。 Problems to be solved by the invention [0010] As long as the electric power generation method relies on the current thermal power generation method, the electric power generation method is meaningless because it generates carbon dioxide in the direction of thermal power generation. As a method for immobilizing the substance in a substance, there is a method using a crystalline silicate, but it is disadvantageous in terms of cost because it cannot be immobilized by a crystalline silicate alone. In addition, there are problems such as environmental safety in the method of using underground, deep sea, and marine organisms.
[ooii] 温石綿及び Z又は温石綿を含有した蛇紋岩を、温石綿のクリソタイル構造をフオル ステライト構造に変性させることによって、大気中の炭酸ガス(二酸ィ匕炭素)低減に有 効な二酸ィ匕炭素固定ィ匕材として有効活用を図ることを目的とするものである。 [ooii] By converting warm asbestos and Z or serpentinite containing warm asbestos into a forsterite structure, it is effective in reducing carbon dioxide (diacid-carbon) in the atmosphere. The purpose is to make effective use as an acid-carbon-fixing material.
課題を解決するための手段  Means for solving the problem
[0012] 温石綿および蛇紋岩は、一般的に 500〜700°Cで、結晶水を失い、結晶構造が破 壊され非晶質ィ匕するが、 800°Cを超えると、フォルステライトに再結晶化し、 1000°C 前後の温度域で、更にエンスタタイトの結晶が生成する。  [0012] Thermal asbestos and serpentinite generally lose water of crystallization at 500 to 700 ° C, and the crystal structure is destroyed and becomes amorphous. However, when it exceeds 800 ° C, it reverts to forsterite. Crystallizes and further enstatite crystals form in the temperature range around 1000 ° C.
[0013] 本発明者等は、この加熱変化にお!、て、温石綿および蛇紋岩が非晶質ィ匕し、フォ ルステライトへの結晶化が極力抑制される温度範囲で加熱処理することにより、フォ ルステライトの純物質との比較にぉ 、て、結晶化度を X線解析によるピーク面積で表 した値が小さくなり、炭酸ガスとの反応性が飛躍的に増大することを見出した。  [0013] The present inventors have performed heat treatment in a temperature range in which warm asbestos and serpentinite become amorphous and crystallization into forsterite is suppressed as much as possible. In comparison with pure substance of forsterite, we found that the value of crystallinity in terms of peak area by X-ray analysis decreased, and the reactivity with carbon dioxide gas increased dramatically.
[0014] すなわち、温石綿及び Z又は温石綿含有蛇紋岩を加熱して焼成すると、石綿繊維 を構成するクリソタイル構造がフォルステライト構造に変性するが、その際生成するフ オルステライトが、 660°C〜800°Cで焼成したもの力 炭酸ガス固定ィ匕性能に優れた ものであることを知見し、この知見に基づいて本発明を完成するに至った。  [0014] That is, when heated asbestos and Z or serpentinite containing warm asbestos are heated and fired, the chrysotile structure constituting the asbestos fibers is modified to a forsterite structure, and the generated forsterite is 660 ° C. It was discovered that it was fired at ˜800 ° C. and was excellent in performance for fixing carbon dioxide gas. Based on this knowledge, the present invention was completed.
[0015] すなわち、本発明は、次の構成により上記課題を解決した。  [0015] That is, the present invention has solved the above-described problems by the following configuration.
( 1 )温石綿及び/又は温石綿を含む蛇紋岩を 660°C〜800°Cで焼成したものであり 、結晶化度を X線解析によるピーク面積で表した値が 7〜80であることを特徴とする 炭酸ガス固定ィ匕性能に優れたフォルステライト。  (1) Hot asbestos and / or serpentinite containing hot asbestos is fired at 660 ° C to 800 ° C, and the crystallinity is 7 to 80 in terms of peak area by X-ray analysis. Forsterite with excellent carbon dioxide fixing performance.
(2)温石綿及び/又は温石綿を含む蛇紋岩を 660°C〜800°Cで焼成したものであり 、結晶化度を X線解析によるピーク面積で表した値が 7〜80であるフォルステライトを 含むことを特徴とする炭酸ガス固定ィ匕材。  (2) Hot asbestos and / or serpentinite containing hot asbestos is fired at 660 ° C to 800 ° C, and the crystallinity is 7 to 80 in terms of peak area by X-ray analysis. Carbon dioxide fixed material characterized by containing stellite.
[0016] 本発明においては、温石綿及び/又は温石綿含有蛇紋岩を焼成して得るフォルス テライトを用いることにより、二酸化炭素の固定化を行なう。本発明では、以下の処理 により二酸化炭素を固定化するフォルステライトを得る。温石綿及び Z又は温石綿を 含む蛇紋岩を 660°C〜800°Cで焼成することにより炭酸ガス固定ィ匕性能に優れたフ オルステライトを得る。加熱焼成時における雰囲気は空気中でよい。この処理により、 温石綿の物質構造はクリソタイルカゝらフォルステライトに変性される。焼成温度による 結晶化度の制御と、高比表面積部を用いることで、二酸化炭素の固定化性能に優れ たフォルステライトが得られる。廃温石綿、温石綿含有建材を処理する場合は、破砕 しふる!/、分けした材料を原料とするのが望ま 、。 [0016] In the present invention, the false obtained by firing warm asbestos and / or serpentine containing warm asbestos Carbon dioxide is fixed by using terlite. In the present invention, forsterite that immobilizes carbon dioxide is obtained by the following treatment. Forsterite with excellent carbon dioxide fixation performance is obtained by calcining warm asbestos and serpentinite containing Z or warm asbestos at 660 ° C to 800 ° C. The atmosphere during heating and firing may be in the air. By this treatment, the material structure of warm asbestos is modified into forsterite such as chrysotile mosquito. By controlling the degree of crystallinity depending on the firing temperature and using a high specific surface area, forsterite with excellent carbon dioxide immobilization performance can be obtained. When processing waste warm asbestos and building materials containing warm asbestos, it is desirable to crush and / or use the separated materials as raw materials.
[0017] 本発明の温石綿を加熱分解して得る炭酸ガス固定化材料は、温石綿及び Z又は 温石綿を含む蛇紋岩を 660°C〜800°Cで低温で焼成し、結晶化度を X線解析による ピーク面積で表した値が 7〜80とすることにより、優れた炭酸ガス固定ィ匕性能を有す る。 [0017] The carbon dioxide fixing material obtained by thermally decomposing the warm asbestos according to the present invention is obtained by calcining warm asbestos and Z or serpentinite containing warm asbestos at a low temperature of 660 ° C to 800 ° C to obtain a crystallinity. By setting the value represented by the peak area by X-ray analysis to 7 to 80, it has excellent carbon dioxide fixation performance.
[0018] ここで、結晶化度とは、熱分解後の炭酸ガス固定ィ匕材料について、 X線回折図にお けるフォルステライトの第 1ピーク(36. 5° )のピーク面積 (ピーク高さ X半価幅)を算 出し、フォルステライト純物質のピーク面積を比較対照として 100とした場合の比較値 を表したものである。従って、比較値は高いもど結晶化度が高くなり、比較値が低い ほど結晶化度が低くなる。  [0018] Here, the crystallinity is the peak area (peak height) of the first peak of forsterite (36.5 °) in the X-ray diffraction diagram of the carbon dioxide fixed material after pyrolysis. X half-value width) is calculated, and the comparison value is shown when the peak area of pure forsterite is 100 as a comparison. Therefore, the comparative value is high but the crystallinity is high, and the lower the comparative value is, the lower the crystallinity is.
発明の効果  The invention's effect
[0019] 本発明による温石綿を加熱分解して得る炭酸ガス固定ィ匕材料は、天然資源として 国内に広く存在している温石綿含有蛇紋岩を熱処理することで容易に得られる。また 、本発明の温石綿を加熱分解して得る炭酸ガス固定化材料は、温石綿及び Z又は 温石綿を含む蛇紋岩を 660°C〜800°Cで焼成し、結晶化度を X線解析によるピーク 面積で表した値が 7〜80であるものが炭酸ガス固定ィ匕性能に優れたものであり、天 然鉱物のフォルステライトに比べ高い二酸ィ匕炭素固定ィ匕性能を有する。これにより、 地球温暖化の主因である炭酸ガスを効果的に固定化することを可能とする。  [0019] The carbon dioxide-fixed soot material obtained by thermally decomposing warm asbestos according to the present invention can be easily obtained by heat-treating warm asbestos-containing serpentine widely existing in Japan as a natural resource. Further, the carbon dioxide fixing material obtained by thermally decomposing the warm asbestos of the present invention is obtained by calcining warm asbestos and Z or serpentinite containing warm asbestos at 660 ° C to 800 ° C and analyzing the crystallinity by X-ray analysis. Those with a peak area value of 7 to 80 are excellent in carbon dioxide fixation performance and have higher diacid / carbon fixation performance than natural mineral forsterite. This makes it possible to effectively fix carbon dioxide, the main cause of global warming.
[0020] さらに、吸入による呼吸器への有害性を持つ温石綿を、比較的低い温度で加熱処 理することにより、安全性を付与し、再生利用を可能にする。  [0020] Further, warm asbestos, which is harmful to the respiratory tract by inhalation, is heated at a relatively low temperature, thereby providing safety and enabling recycling.
[0021] さらに、温石綿含有建材である波型温石綿スレートや温石綿スレートボードから分 別される廃温石綿を原料としても同様の材料を得られるため、温石綿含有廃建材の 有効な処理、リサイクル手段としても活用可能である。 [0021] Further, it is separated from corrugated warm asbestos slate and warm asbestos slate board, which are building materials containing warm asbestos. Since the same material can be obtained using the separated waste warm asbestos, it can be used as an effective treatment and recycling method for waste building materials containing warm asbestos.
[0022] 熱処理温度を低くし、結晶化度を低くすることで、非石綿化に要するエネルギーも 少なくできる。  [0022] The energy required for non-asbestos formation can be reduced by lowering the heat treatment temperature and lowering the crystallinity.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 温石綿及び Z又は温石綿含有蛇紋岩を加熱して焼成すると、石綿繊維を構成す るクリソタイル構造力 Sフォルステライト構造に変性する。し力しながら、焼成温度が高 い程、結晶化が促進され、結晶化度は増カロしてしまう。クリソタイルの構造が焼成する ことで崩れ、ー且アモルファス状になり、フォルステライトの構造を造る。このァモルフ ァスに近いフォルステライトを用いることで多くの二酸ィ匕炭素を吸着することができる。 アモルファス状態は、分子が規則的に配列して 、な 、結晶構造となって 、るので他 物質と反応し易いものであり、本発明では、この状態のフォルステライトを用いる。  [0023] When warm asbestos and Z or serpentine containing warm asbestos are heated and baked, the chrysotile structural force constituting the asbestos fibers is modified to S forsterite structure. However, the higher the firing temperature, the more the crystallization is promoted and the crystallinity increases. The structure of chrysotile collapses when fired and becomes amorphous, creating a forsterite structure. By using forsterite close to this amorphous phase, a large amount of carbon dioxide can be adsorbed. In the amorphous state, the molecules are regularly arranged to form a crystal structure, so that they easily react with other substances. In the present invention, forsterite in this state is used.
[0024] その際生成するフォルステライトが、 660°C〜800°Cで焼成し、結晶化度を X線解 析によるピーク面積で表した値が 7〜80としたものが、炭酸ガス固定ィ匕性能に優れた ものであるが、具体的には、対象とする温石綿ゃ蛇紋岩について、示差熱分析を行 い、 500°C以上の温度域で吸熱ピークを示す温度を超えて、発熱ピークを示す温度 を下回る温度の範囲で、加熱処理を行い、温石綿を分解することにより、目的を達す ることが可能となる。すなわち、焼成する温度設定は示差熱分析における吸熱ピーク 温度を測定することによつても可能である。  [0024] The forsterite produced at this time was calcined at 660 ° C to 800 ° C, and the crystallinity was expressed as a peak area by X-ray analysis of 7 to 80.匕 Although it has excellent performance, specifically, we conducted a differential thermal analysis on the target warm asbestos and serpentinite, and exceeded the temperature showing an endothermic peak in the temperature range of 500 ° C or higher, generating heat. The purpose can be achieved by performing heat treatment in the temperature range below the peak temperature and decomposing the warm asbestos. That is, the firing temperature can be set by measuring the endothermic peak temperature in the differential thermal analysis.
[0025] 示差熱分析は、結晶水の離脱ピークを示すものであり、フォルステライトへの再結晶 化のピーク温度を示している。従って、この温度範囲で加熱を行うことが必要である。 一般的には、この温度範囲は 660°C〜800°Cに相当する力 温石綿ゃ蛇紋岩の産 地により若干異なる場合があるので、示差熱分析により確認することが望ましい。  [0025] The differential thermal analysis shows the peak of crystallization water withdrawal and the peak temperature of recrystallization into forsterite. Therefore, it is necessary to perform heating in this temperature range. In general, this temperature range may vary slightly depending on the location of the force temperature asbestos and serpentinite corresponding to 660 ° C to 800 ° C, so it is desirable to confirm this by differential thermal analysis.
[0026] 加熱保持時間は、温石綿を完全に分解し、非石綿化することが必要である。このこ とにより、有害な生体影響を完全に消失させることが可能となる。一般的には、 0. 5〜 3時間程度で加熱処理が完了する。なお、温度は上限に近いほど、処理時間は短縮 される力 フォルステライトの再結晶化率が高くなり、、結晶化度を X線解析によるピ ーク面積で表した値が高くなる。一方下限温度に近いほど、フォルステライトの結晶 化を抑制することは可能である力 温石綿の分解に要する処理時間が長く必要であ る。 [0026] The heating and holding time requires that the asbestos is completely decomposed to become non-asbestos. This makes it possible to completely eliminate harmful biological effects. Generally, the heat treatment is completed in about 0.5 to 3 hours. Note that the closer the temperature is to the upper limit, the shorter the processing time, the higher the recrystallization rate of forsterite, and the higher the crystallinity expressed by the peak area by X-ray analysis. On the other hand, the closer to the minimum temperature, the forsterite crystals The treatment time required for the decomposition of warm asbestos is long.
[0027] 加熱処理条件は、加熱の経済性の点や、処理後の材料の比表面積を高く保つに は、温度は、 700〜750°C、加熱時間は 1〜1. 5時間が好適である。  [0027] The heat treatment conditions are preferably a temperature of 700 to 750 ° C and a heating time of 1 to 1.5 hours in order to keep the economic efficiency of heating and the specific surface area of the processed material high. is there.
[0028] 加熱に使用する設備には特に制約はない。工業炉として使用されている加熱炉で あれば、使用可能であるが、 660°C〜800°Cの加熱を保持することが容易な外熱式 回転炉やローラーハースキルン等が好適である。  [0028] There are no particular restrictions on the equipment used for heating. Any heating furnace used as an industrial furnace can be used, but an externally heated rotary furnace or a roller hearth kiln that can easily maintain heating at 660 ° C to 800 ° C is suitable.
[0029] 本発明の対象となる材料は、温石綿や温石綿を含む蛇紋岩、また、温石綿を含有 する建材等の工業製品より、粉砕'分級等の処理を経て回収された温石綿にも適用 することが可能である。  [0029] The target material of the present invention is warm asbestos, serpentinite containing warm asbestos, and warm asbestos recovered through processing such as pulverization and classification from industrial products such as building materials containing warm asbestos. Can also be applied.
[0030] 上記により処理された材料については、常圧で、炭酸ガスを固定ィ匕させることが可 能である。また、反応時間を短縮するために、超臨界下で炭酸ガスを固定化させても よい。  [0030] The material treated as described above can be fixed with carbon dioxide at normal pressure. In order to shorten the reaction time, carbon dioxide gas may be immobilized under supercritical conditions.
[0031] なお、炭酸ガスの固定ィ匕反応においては、以下に述べる条件を適用することにより 、効果的な固定ィ匕が可能である。  [0031] In the carbon dioxide gas fixation reaction, effective fixation can be achieved by applying the conditions described below.
(1)材料は比表面積の大き 、ものを用いる。(25m2Zg以上が望まし 、) (1) Use a material with a large specific surface area. (25m 2 Zg or more is desirable)
比表面積を大きくするためには、加熱処理温度を低くすること(700〜750°C)、ま た、加熱後に粉砕する方法も有効である。  In order to increase the specific surface area, it is effective to lower the heat treatment temperature (700 to 750 ° C.) and to grind after heating.
[0032] 得られる炭酸ガス固定ィ匕材料の比表面積については、クリソタイル繊維の長さによ つて影響を受ける。長繊維品を加熱焼成して用いることで高比表面積のフォルステラ イトを得ることができる。これは、長い繊維は二酸ィ匕炭素を吸着する面積が大きいの で固定ィ匕量も大きくなるためである。また、繊維長は、焼成時の結晶化などにも影響 する。同じ温度で焼成した場合、繊維長が長いものは、結晶化度が低ぐ繊維長が 短いものは、結晶化度が高いフォルステライトとなる。繊維長の長いものとしては、 15 O /z m篩において 3割が通過するもの、繊維長の短いものとしては、 150 m篩にお いて全て通過するものである。なお、結晶化度が低くても比表面積が小さいと固定ィ匕 量は少なくなる。従って、効率よく固定ィ匕するためには、結晶化度が低くかつ比表面 積が大き 、ものとするのが良 、。 (2)材料に適度の水分を均一に分散させる。(含水率 30〜60%が望ましい。 ) 含水しな!ヽ状態では、炭酸ガスの固定化反応は全く進行しな ヽ。 [0032] The specific surface area of the obtained carbon dioxide fixed material is influenced by the length of the chrysotile fiber. Forsterite with a high specific surface area can be obtained by heating and firing long fiber products. This is because a long fiber has a large area for adsorbing carbon dioxide, so that the amount of fixed fiber increases. The fiber length also affects the crystallization during firing. When fired at the same temperature, those with long fiber lengths are forsterite with low crystallinity and those with short fiber length. Those with a long fiber length pass 30% on a 15 O / zm sieve, and those with a short fiber length pass all on a 150 m sieve. Even if the degree of crystallinity is low, the fixed amount is small when the specific surface area is small. Therefore, in order to fix efficiently, the crystallinity should be low and the specific surface area should be large. (2) Disperse moderate moisture uniformly in the material. (It is desirable that the water content is 30 to 60%.) No water content! In the soot state, the carbon dioxide immobilization reaction does not proceed at all.
(3)常圧下では、固定化反応温度は室温付近が好適で、温度が高くなると、固定ィ匕 効率が低下する。(20〜40°Cが望ましい。)  (3) Under normal pressure, the immobilization reaction temperature is preferably near room temperature, and as the temperature increases, the immobilization efficiency decreases. (20-40 ° C is desirable.)
また、反応時間は、 20〜24時間で固定量が飽和に達する。  Also, the reaction time is 20 to 24 hours, and the fixed amount reaches saturation.
(4)超臨界下では、反応温度は高いほど固定ィ匕が進行し、圧力による差異は殆どな いが、低い方が固定化効率が若干高ぐ反応時間は 1時間で固定ィ匕量がほぼ飽和 に達する。(100°C、 8MPaで 1時間程度処理することが好ましい。)さらに、超臨界下 では、反応前に固定ィ匕材料を攪拌することで固定ィ匕温度が上昇する。  (4) Under supercritical conditions, the higher the reaction temperature, the more the fixation is progressed, and there is almost no difference due to pressure, but the lower one has a slightly higher immobilization efficiency and the reaction time is 1 hour, and the amount of fixation is Nearly saturated. (It is preferable to treat at 100 ° C and 8 MPa for about 1 hour.) Furthermore, under supercritical conditions, the temperature of the fixed liquid rises by stirring the fixed liquid material before the reaction.
[0033] 本発明にお ヽては、温石綿及び/又は温石綿含有蛇紋岩を原料とすることができ るが、温石綿含有廃建材である波型温石綿スレートや温石綿スレートボードから粉砕 分別したリサイクル石綿を用いることもできる。温石綿含有廃建材を処理する場合は 、粉砕し、 450 μ mの網目でふる ヽ分け後、網上残 (長繊維分を含む)を原料とする のが望ましい。これは、 450 mの篩分けにより、網上の温石綿とそれ以外を分けるこ とができ、また長!、繊維を採ることができるからである。  [0033] In the present invention, hot asbestos and / or hot asbestos-containing serpentinite can be used as a raw material, but pulverized from corrugated hot asbestos slate and hot asbestos slate board, which are waste materials containing hot asbestos. Separated recycled asbestos can also be used. When processing waste building materials containing warm asbestos, it is desirable to grind and screen with a 450 μm mesh, and then use the net residue (including long fibers) as the raw material. This is because it is possible to separate hot asbestos on the net from the others by sieving 450 m, and long! This is because fibers can be taken.
実施例 1  Example 1
[0034] 以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に限定 されるものではない。  Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実施例及び比較例  Examples and Comparative Examples
温石綿、蛇紋岩及びその処理品を下記の条件で比較を行なった。  Wet Asbestos, serpentine and their treated products were compared under the following conditions.
1.温石綿及び蛇紋岩の加熱処理条件と炭酸ガス固定化率による比較  1. Comparison of heat treatment conditions and carbon dioxide fixation rate of warm asbestos and serpentine
2.炭酸ガスの固定化条件と固定化率  2. Carbon dioxide fixation conditions and fixation rate
(二酸化炭素固定化試験)  (CO2 fixation test)
上記で得た各フォルステライト 0. 5gと水 0. 15mlを練り、超臨界装置内で二酸ィ匕 炭素を吸着させ、重量の変化を測定した。吸着処理条件は、反応時間 48時間、圧 力 8MPa、温度 100°Cで行った。  0.5 g of each forsterite obtained above and 0.15 ml of water were kneaded, and carbon dioxide was adsorbed in a supercritical apparatus, and the change in weight was measured. The adsorption treatment conditions were a reaction time of 48 hours, a pressure of 8 MPa, and a temperature of 100 ° C.
(1)試験手順  (1) Test procedure
ガラスチューブにフォルステライト(0. 5g)と水(0. 15ml)をカ卩える。 [0035] ガラスチューブを反応器 (オートクレープ)に入れ、ドライアイス(1. 4g)を加える。 Place forsterite (0.5 g) and water (0.15 ml) in a glass tube. [0035] Place the glass tube in a reactor (autoclave) and add dry ice (1.4 g).
[0036] 反応器をオイルバス(100°C)の中に入れ(理論値で圧力 8. OMPa)、 48hr反応さ せる。 [0036] The reactor is placed in an oil bath (100 ° C) (theoretical pressure: 8. OMPa) and allowed to react for 48 hours.
[0037] 生成物を 60°Cで 10時間真空乾燥させる。  [0037] The product is vacuum dried at 60 ° C for 10 hours.
(2)比表面積の測定方法  (2) Specific surface area measurement method
BET3点法により、 BET式比表面積測定装置を用いて比表面積を測定した。  The specific surface area was measured by the BET 3-point method using a BET specific surface area measuring device.
[0038] 測定結果は、以下の表に示す。 [0038] The measurement results are shown in the following table.
(3)固定化量測定  (3) Immobilization amount measurement
重量増力も二酸ィ匕炭素の固定ィ匕量を見積もる。測定結果は以下の表に示す。 (各試験と試験結果)  The weight gain is also estimated by the amount of fixed carbon dioxide. The measurement results are shown in the following table. (Each test and test result)
1.温石綿及び蛇紋岩の加熱処理条件と炭酸ガス固定化率  1. Heat treatment conditions and carbon dioxide fixation rate of warm asbestos and serpentine
(試験試料)  (Test sample)
温石綿;カナダ産 4クラスクリソタイル · ·蛇紋岩;北海道富良野巿産出  Wet asbestos; Canadian 4-class chrysotile · Serpentine; Hokkaido Furano Pass
(炭酸ガス固定化条件);  (Carbon dioxide fixation conditions);
※ェ 含水率 30% 超臨界反応(100°C · 8MPa·48時間)  * D Moisture content 30% Supercritical reaction (100 ° C · 8MPa · 48 hours)
※2 含水率 30% 超臨界反応(100°C · 13MPa·48時間)  * 2 Water content 30% Supercritical reaction (100 ° C · 13MPa · 48 hours)
炭酸ガス固定化率 =固定化による増加重量 Z固定化前の重量  Carbon dioxide fixation rate = Increased weight due to fixation Z Weight before fixation
(試験結果)  (Test results)
結果は第 1表に示す。  The results are shown in Table 1.
[0039] [表 1] [0039] [Table 1]
第 1表 温石綿およぴ蛇紋岩の加熱処理条件と炭酸ガス固定化率 Table 1 Heat treatment conditions and carbon dioxide fixation rate of warm asbestos and serpentinite
Figure imgf000010_0001
第 1表 温石綿および蛇紋岩の加熱処理条件と炭酸ガス固定化率 (続)
Figure imgf000010_0001
Table 1 Heat treatment conditions and carbon dioxide fixation rate of hot asbestos and serpentinite (continued)
Figure imgf000010_0002
.炭酸ガスの固定化条件と固定化率
Figure imgf000010_0002
Carbon dioxide immobilization conditions and immobilization rate
(1)固定化材料の比表面積と固定ィ匕率 (試験試料) (1) Specific surface area of fixed material and fixed ratio (Test sample)
温石綿;カナダ産 4クラスクリソタイル · ·粉砕;ボールミル粉砕 1時間 (試験条件)  Hot asbestos; Canadian 4 class chrysotile · · Grinding; Ball milling 1 hour (test conditions)
炭酸ガス固定化条件;  Carbon dioxide fixation conditions;
※ェ 含水率 30% 超臨界反応(100°C '8MPa'48時間) * D Moisture content 30% Supercritical reaction (100 ° C '8MPa' 48 hours)
※? 含水率 30% 常圧反応(20°C ' 24時間) *? Water content 30% Normal pressure reaction (20 ° C '24 hours)
(試験結果)  (Test results)
結果は第 2表に示す。  The results are shown in Table 2.
[表 2] 第 2表 固定化材料の比表面積と固定化率  [Table 2] Table 2 Specific surface area and immobilization rate of immobilization materials
Figure imgf000011_0001
Figure imgf000011_0001
[0042] (2)固定化材料の含水率と固定化率 [0042] (2) Moisture content and immobilization rate of immobilization material
(試験試料)  (Test sample)
固定化材料;カナダ産 4クラスクリソタイル 740°C · 1時間焼成品 (試験条件)  Immobilization material: Canadian 4 class chrysotile 740 ° C · 1 hour fired product (Test conditions)
炭酸ガス固定化条件;超臨界反応(100°C · 8MPa ·48時間) (試験結果)  Carbon dioxide fixation conditions; supercritical reaction (100 ° C · 8MPa · 48 hours) (test result)
結果は第 3表に示す。  The results are shown in Table 3.
[0043] [表 3] 第 3表 固定化材料の含水率と固定化率
Figure imgf000012_0001
[0043] [Table 3] Table 3 Moisture content and immobilization rate of immobilization materials
Figure imgf000012_0001
[0044] (3)常圧下の反応温度と反応時間 [0044] (3) Reaction temperature and reaction time under normal pressure
a)反応温度  a) Reaction temperature
(試験試料)  (Test sample)
固定化材料;カナダ産 4クラスクリソタイル 740°C · 1時間焼成後粉砕品 (試験条件)  Immobilization material: Canadian 4 class chrysotile 740 ° C · Crushed after firing for 1 hour (test conditions)
炭酸ガス固定化条件;常圧反応 (含水率 30% · 24時間) (試験結果)  Carbon dioxide immobilization conditions: normal pressure reaction (water content 30% · 24 hours) (test result)
結果は第 4表に示す。  The results are shown in Table 4.
[0045] [表 4] 第 4表 常圧下の反応温度
Figure imgf000012_0002
[0045] [Table 4] Table 4 Reaction temperature under normal pressure
Figure imgf000012_0002
[0046] b)反応時間 [0046] b) Reaction time
(試験試料)  (Test sample)
固定化材料;カナダ産 4クラスクリソタイル 740°C · 1時間焼成後粉砕品 (試験条件)  Immobilization material: Canadian 4 class chrysotile 740 ° C · Crushed after firing for 1 hour (test conditions)
炭酸ガス固定化条件;常圧反応 (含水率 30% · 24時間)  Carbon dioxide fixation conditions: normal pressure reaction (water content 30% · 24 hours)
(試験結果)  (Test results)
結果は第 5表に示す。 [0047] [表 5] 第 5表 常圧下の反応時間
Figure imgf000013_0001
The results are shown in Table 5. [0047] [Table 5] Table 5 Reaction time under normal pressure
Figure imgf000013_0001
[0048] (4)超臨界下での反応温度と反応時間、圧力  [0048] (4) Supercritical reaction temperature, reaction time, and pressure
a)反応温度と反応時間  a) Reaction temperature and reaction time
(試験試料)  (Test sample)
固定化材料;カナダ産 4クラスクリソタイル 740°C · 1時間焼成後粉砕品 (試験条件)  Immobilization material: Canadian 4 class chrysotile 740 ° C · Crushed after firing for 1 hour (test conditions)
炭酸ガス固定化条件;超臨界反応 (含水率 30% · 8MPa) (試験結果)  Carbon dioxide fixation conditions; supercritical reaction (water content 30% · 8 MPa) (test result)
結果は第 6表に示す。  The results are shown in Table 6.
[0049] [表 6] 第 6表 超臨界下での反応温度と反応時間
Figure imgf000013_0002
[0049] [Table 6] Table 6 Reaction temperature and reaction time under supercritical conditions
Figure imgf000013_0002
b)圧力  b) Pressure
(試験試料)  (Test sample)
固定化材料;カナダ産 4クラスクリソタイル 740°C · 1時間焼成後粉砕品 (試験条件) Immobilization material: Canadian 4 class chrysotile 740 ° C (Test conditions)
炭酸ガス固定化条件;超臨界反応 (含水率 30% · 100°C ·48時間)  Carbon dioxide fixation conditions; supercritical reaction (water content 30% · 100 ° C · 48 hours)
(試験結果)  (Test results)
結果は第 7表に示す。  The results are shown in Table 7.
[0051] [表 7] 第 7表 超臨界下での圧力
Figure imgf000014_0001
[0051] [Table 7] Table 7 Pressure under supercriticality
Figure imgf000014_0001
[0052] c)攪拌条件  [0052] c) Stirring conditions
(試験試料)  (Test sample)
固定ィ匕材料;カナダ産 4クラスクリソタイル 740° 1時間焼成後粉砕品 (試験条件)  Fixed candy material: Canadian 4 class chrysotile 740 ° 1 hour fired and ground product (test conditions)
炭酸ガス固定化条件;超臨界反応 (含水率 30% · 100°C ·48時間)  Carbon dioxide fixation conditions; supercritical reaction (water content 30% · 100 ° C · 48 hours)
ただし、試験中、固定化材料の攪拌の有る場合と無い場合とした。  However, during the test, the case where the immobilization material was agitated and the case where it was absent were used.
(試験結果)  (Test results)
結果は第 8表に示す。  The results are shown in Table 8.
[0053] [表 8] 反応前の固定化材料攪拌の有無による比較
Figure imgf000014_0002
[0053] [Table 8] Comparison with and without immobilization of immobilization material before reaction
Figure imgf000014_0002
[0054] 3.温石綿の加熱処理条件と生体影響  [0054] 3. Heat treatment conditions and biological effects of warm asbestos
焼成温度における生体への影響を確認した。本発明の焼成品について生体への 影響を確認した。 The influence on the living body at the firing temperature was confirmed. About the baked product of the present invention The effect was confirmed.
(試験試料)  (Test sample)
温石綿;カナダ産 4クラスクリソタイル  Hot asbestos; Canadian 4-class chrysotile
(試験内容)  (contents of the test)
(細胞毒性試験);ほ乳類培養細胞を用いた試験 (コロニー形成法)  (Cytotoxicity test); Test using cultured mammalian cells (Colony formation method)
実施例 2—1、 2— 2とも、細胞毒性は、安全性が認められている無機繊維ウォラスト ナイトと同等レベルである。  In both Examples 2-1 and 2-2, the cytotoxicity is the same level as that of the inorganic fiber wollastonite, which has been confirmed to be safe.
(ラット気管内注入試験);投与量; lmgZラット 180日  (Rat tracheal instillation test); dose; lmgZ rat 180 days
実施例 2—1、 2— 2については、発がんに関連するとされる線維化が発生しないこ とが確認された。  In Examples 2-1 and 2-2, it was confirmed that fibrosis, which is related to carcinogenesis, did not occur.
(試験結果)  (Test results)
結果は第 9表に示す。  The results are shown in Table 9.
[0055] [表 9] 温石綿の加熱処理条件と生体影響 [0055] [Table 9] Heat treatment conditions and biological effects of hot asbestos
Figure imgf000015_0001
Figure imgf000015_0001
産業上の利用可能性  Industrial applicability
[0056] 本発明の炭酸ガス固定ィ匕性能に優れたフォルステライトは、特に公害上問題のある 建築材料としての耐火被覆材ゃスレートなどのセメント製品廃棄物中の温石綿を無 害化し、再利用を可能にするので、リサイクルが必要となる建築材料中のリサイクル 温石綿の有用な用途を提供するものである。  [0056] The forsterite having excellent carbon dioxide fixation performance according to the present invention renders warm asbestos in cement product waste such as fire-resistant coating material slate as a construction material particularly problematic in terms of pollution, and recycles it. It provides a useful application of recycled warm asbestos in building materials that need to be recycled.

Claims

請求の範囲 The scope of the claims
[1] 温石綿及び Z又は温石綿を含む蛇紋岩を 660°C〜800°Cで焼成したものであり、 結晶化度を X線解析によるピーク面積で表した値が 7〜80であることを特徴とする炭 酸ガス固定ィ匕性能に優れたフォルステライト。  [1] Hot asbestos and serpentinite containing Z or hot asbestos are baked at 660 ° C to 800 ° C, and the crystallinity is 7 to 80 in terms of peak area by X-ray analysis. This is a forsterite with excellent carbon dioxide gas fixing performance.
[2] 温石綿及び/又は温石綿を含む蛇紋岩を 660°C〜800°Cで焼成したものであり、 結晶化度を X線解析によるピーク面積で表した値が 7〜80であるフォルステライトを 含むことを特徴とする炭酸ガス固定ィ匕材。 [2] Hot asbestos and / or serpentinite containing hot asbestos are fired at 660 ° C to 800 ° C, and the crystallinity is 7 to 80 in terms of peak area by X-ray analysis. Carbon dioxide fixed material characterized by containing stellite.
PCT/JP2005/016122 2004-09-02 2005-09-02 Carbon dioxide gas fixation material obtained by thermolysis of chrysotile asbestos and/or serpentinite containing chrysotile asbestos WO2006030651A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-255479 2004-09-02
JP2004255479A JP2008019099A (en) 2004-09-02 2004-09-02 Forsterite excellent in carbon dioxide gas fixation capability

Publications (1)

Publication Number Publication Date
WO2006030651A1 true WO2006030651A1 (en) 2006-03-23

Family

ID=36059906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016122 WO2006030651A1 (en) 2004-09-02 2005-09-02 Carbon dioxide gas fixation material obtained by thermolysis of chrysotile asbestos and/or serpentinite containing chrysotile asbestos

Country Status (2)

Country Link
JP (1) JP2008019099A (en)
WO (1) WO2006030651A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142017A3 (en) * 2007-05-21 2009-02-26 Shell Int Research A process for sequestration of carbon dioxide by mineral carbonation
CN114573366A (en) * 2022-03-28 2022-06-03 武汉理碳环保科技有限公司 Forsterite porous body for carbon neutralization and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101344127B1 (en) 2012-01-16 2013-12-23 전남대학교산학협력단 Method for Detoxification of Asbestos Board and Fixation of Carbon Dioxide
WO2013002542A2 (en) * 2011-06-30 2013-01-03 전남대학교산학협력단 Method for fixing carbon dioxide using waste
KR101471381B1 (en) * 2013-05-13 2014-12-10 한국세라믹기술원 Inorganic binder composite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249153A (en) * 1997-03-11 1998-09-22 Natl Inst For Res In Inorg Mater Method for fixing co2 with alkaline earth metallic silicate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249153A (en) * 1997-03-11 1998-09-22 Natl Inst For Res In Inorg Mater Method for fixing co2 with alkaline earth metallic silicate

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FAUTH DJ ET AL: "Carbon dioxide storage as mineral carbonates.", PREPR. PAP. AM. CHEM SOC, DIV. FUEL CHEM., vol. 45, no. 4, August 2000 (2000-08-01), pages 708 - 712, XP002994930 *
MCKELVY MJ ET AL: "Exploration of the Role of Heat Activation in Enhancing Serpentine Carbon Sequestration Reactions.", ENVIRON SCI TECHNOL., vol. 38, no. 24, December 2004 (2004-12-01), pages 6897 - 6903, XP002994927 *
O'CONNOR WK ET AL: "Carbon Dioxide Sequestration by Direct Aqueous Mineral Carbonation.", PRO 26TH INT TEC CONF COAL UTIL FUEL SYST., March 2001 (2001-03-01), pages 765 - 776, XP002994929 *
O'CONNOR WK ET AL: "Carbon dioxide sequestration by direct mineral carbonation with carbonic acid.", PROC 25TH INT TECH CONF COAL UTIL FUEL SYST., August 2000 (2000-08-01), pages 153 - 164, XP002994931 *
O'CONNOR WK ET AL: "Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products.", MINER METALL PROCESS., vol. 19, no. 2, May 2002 (2002-05-01), pages 95 - 101, XP002994928 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142017A3 (en) * 2007-05-21 2009-02-26 Shell Int Research A process for sequestration of carbon dioxide by mineral carbonation
CN114573366A (en) * 2022-03-28 2022-06-03 武汉理碳环保科技有限公司 Forsterite porous body for carbon neutralization and preparation method thereof

Also Published As

Publication number Publication date
JP2008019099A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
Cruz et al. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3)
Anastasiadou et al. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions
Fu et al. The physical–chemical characterization of mechanically-treated CFBC fly ash
WO2006030651A1 (en) Carbon dioxide gas fixation material obtained by thermolysis of chrysotile asbestos and/or serpentinite containing chrysotile asbestos
Swarnalatha et al. Safe disposal of toxic chrome buffing dust generated from leather industries
WO2003043939A3 (en) Method and apparatus for the treatment of particulate biodegradable organic waste
Vashistha et al. Sustainable utilization of paper mill solid wastes via synthesis of nano silica for production of belite based clinker
Kanwal et al. An integrated and eco-friendly approach for corrosion inhibition and microstructural densification of reinforced concrete by immobilizing Bacillus subtilis in pyrolytic sugarcane-bagasse
Bie et al. Reaction mechanism of CaO with HCl in incineration of wastewater in fluidized bed
Kameda et al. Mg− Al layered double hydroxide intercalated with CO32–and its recyclability for treatment of SO2
WO2007034816A1 (en) Method for modification of asbestos
Zaremba et al. Investigation of the thermal modification of asbestos wastes for potential use in ceramic formulation
Zhang et al. Theoretical and experimental on the thermodynamic, kinetic and phase evolution characteristics of secondary aluminum ash
Dludlu et al. Micostructural and mechanical properties of geopolymers synthesized from three coal fly ashes from South Africa
Wang et al. The hydration behavior of partially sulfated fluidized bed combustor sorbent
Li et al. Comprehensive evaluation of the control efficiency of heavy-metal emissions during two-step thermal treatment of sewage sludge
JP4406090B2 (en) Asbestos decomposition treatment agent and asbestos decomposition treatment method
Kameda et al. Thermal decomposition of SO 4 2−-intercalated Mg–Al layered double hydroxide: Elimination behavior of sulfur oxides
JP5889348B2 (en) A method for removing 99% or more of asbestos from asbestos-containing materials using low-temperature heat treatment
Seghir et al. Methods for the preparation of silica and its nanoparticles from different natural sources
Necasova et al. Chemical elimination of asbestos materials
EP4101551A1 (en) Recycling system for general waste including waste plastic, recycling method for general waste, and far-infrared catalytic reduction apparatus for use in recycling system for general waste
Wang et al. Enhanced sequestration of CO2 from simulated electrolytic aluminum flue gas by modified red mud
Chervonnyi et al. Synthetic calcium aluminosilicate monolith: I. Specific features of the synthesis
JP2004238222A (en) Oxygen radical-containing calcium aluminate powder and method of preparing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP