WO2006028234A1 - Motor and devive using this - Google Patents

Motor and devive using this Download PDF

Info

Publication number
WO2006028234A1
WO2006028234A1 PCT/JP2005/016685 JP2005016685W WO2006028234A1 WO 2006028234 A1 WO2006028234 A1 WO 2006028234A1 JP 2005016685 W JP2005016685 W JP 2005016685W WO 2006028234 A1 WO2006028234 A1 WO 2006028234A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
armature
permanent magnet
motor
series
Prior art date
Application number
PCT/JP2005/016685
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Mizushima
Original Assignee
Venera Laboratory Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Venera Laboratory Co., Ltd filed Critical Venera Laboratory Co., Ltd
Priority to JP2006535857A priority Critical patent/JPWO2006028234A1/en
Publication of WO2006028234A1 publication Critical patent/WO2006028234A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K25/00DC interrupter motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass
    • H02K99/20Motors

Definitions

  • the present invention relates to a motor including an armature and a permanent magnet rotor, which can efficiently perform a rotational drive of a motor, and an apparatus using the motor.
  • FIG. 1 shows a schematic diagram of a typical permanent magnet type DC motor as disclosed in Japanese Patent Application Laid-Open No. 8-1-2679 as a conventionally known DC motor.
  • the coil A is wound around most of the gears B 1, B 2, B 3, B 4 extending radially inward from the annular stator C.
  • Coil A is connected to power source S.
  • the current supplied from the power source S generates a magnetic field through each gear B 1 _B 4.
  • the rectifier (commutator) D is electrically connected to the power source S and the coil A, and alternately supplies the DC current supplied from the coil power source.
  • Coil A is wound directly around gears B 1 – B 4 alternately so that the polarity of the magnetic field is in the opposite direction to the vicinity of the gear.
  • gears B 1 — B 4 the magnetic field attracts or bends alternately with each of the majority of permanent magnets E l, E 2, E 3, E 4 on rotor F to rotate the rotor.
  • the rotor F is connected to a wing (not shown) for rotating the wing.
  • the current supplied to coil A is typically First.
  • the power applied to the coil A by the power source S is consumed while passing the torque.
  • a large current passing through the coil A causes a large current to flow through the armature at the initial operation when the load torque is large, and if the load torque decreases as the rotation increases, the current flow to the armature decreases. If the rotational force increases or the load torque decreases, the current flow through coil A decreases as well.
  • the use of gears B1-B4 in the motor results in rotational resistance, uneven rotation and other consumption.
  • these permanent magnet type DC motors were used as motors and generators, and electric power required gear-like torque to rotate the rotor.
  • the conventional permanent magnet type DC motor supplies current to the armature according to the magnitude of the load torque, and the power applied to this armature is used for torque consumption.
  • a conventional permanent magnet type DC motor is wound with a slot provided in an armature core. Cogging is caused by the magnetic action between the slot and the permanent magnet on the rotor. Torque is generated, and this cogging torque causes losses such as rotation resistance and rotation unevenness. Similarly, when this permanent magnet type DC motor is used as a generator, this cogging torque is a large load required for the rotation of the rotor.
  • Patent Document 1 Disclosure of Japanese Patent Application Laid-Open No. Hei 8- 1 2 6 2 7 9
  • the present invention has been made in view of the above, and can rotate or move the motor with almost no power consumption of the motor itself, and can output the electric power applied to the motor to an external output or
  • the object is to provide a motor that can be consumed internally and a device using the motor.
  • a motor according to claim 1 includes an armature core that forms an annular magnetic path, and a plurality of series-connected high-resistance DC resistors wound around the armature core in the same direction.
  • the first coil and the armature core are wound in the same direction as the first coil, and the DC resistance is lower and the number of turns is smaller than that of the first coil to form a magnetic domain having the same length.
  • the coil group is wound around the armature core, a power source, a load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series
  • the coil group is formed in the circumferential direction near the inner circumference of the annular magnetic path armature.
  • a disk-shaped permanent magnet rotor in which permanent magnets having the same number of magnetic domains and different magnetic poles are alternately arranged at equal intervals and inscribed in the annular magnetic path armature.
  • the slot is not formed in the annular magnetic armature, it is possible to realize an efficient motor without cogging torque, and the first coil and the second coil. Since the counter electromotive force generated in the step 1 is canceled out, an efficient motor that hardly generates reverse torque can be realized. Furthermore, since the annular magnetic circuit armature functions as a transformer between the power source and the load, there is almost no power consumption by the annular magnetic circuit itself, depending on the level generated by the annular magnetic circuit armature. In addition to rotating the permanent magnet rotor, it can also transfer power from the power source to the load.
  • the motor according to the invention of claim 2 is characterized in that, in the above invention, the yoke is fixed to a shaft of the permanent magnet rotor and disposed at a position facing the permanent magnet side of the permanent magnet rotor, and the permanent magnet rotor.
  • a polygonal air-core coil disposed between the magnet rotor and the yoke; It is prepared for.
  • rotational energy can be output to the outside by disposing a polygonal air-core coil between the permanent magnet rotor and the yoke.
  • the motor according to the invention of claim 3 comprises the commutator synchronized with the rotation of the permanent magnet rotor, and a direct current power source that supplies direct current power instead of the power source.
  • the child is characterized in that DC power supplied from the a-flow power source is rectified and commutated and input to the annular magnetic circuit armature.
  • a DC motor using a DC power supply can be realized.
  • the motor according to the invention of claim 4 is characterized in that, in the above invention, the load is a rectifier circuit, and supplies the rectified power output from the rectifier circuit to the DC power supply.
  • the motor according to the invention of claim 5 controls the rotational speed and direction of rotation of the permanent magnet rotor by shifting the relative positional relationship between the annular magnetic circuit armature and the commutator in the invention described above. It is characterized by that.
  • the rotational speed and direction of the permanent magnet rotor are controlled by shifting the relative positional relationship between the annular magnetic path armature and the commutator, and the motor is configured with a simple configuration. Can be freely controlled.
  • the motor according to the invention of claim 6 is characterized in that, in the above invention, the output of the air-core coil is input to the annular magnetic circuit armature.
  • the output of the air-core coil is input to the annular magnetic path armature to compensate for losses such as copper loss and iron loss that occur in the annular magnetic path armature and the commutator.
  • An efficient motor can be realized.
  • the motor according to the invention of claim 7 is the motor according to the above invention, wherein the armature core forming an annular magnetic path and a plurality of the armature core wound in the same direction and connected in series with high DC resistance.
  • the first coil and the armature core are wound in the same direction as the first coil, and form a magnetic domain of the same length with a lower DC resistance and a smaller number of turns than the first coil.
  • Permanent magnets with the same number of magnetic domains and different magnetic poles Disk-shaped permanent magnet rotors that are alternately disposed and inscribed in the annular magnetic path armature; fixed to the shaft of the permanent magnet rotor; and at a position facing the permanent magnet side of the permanent magnet rotor A yoke disposed, and a polygonal air core coil disposed between the permanent magnet rotor and the yoke, and an output of the air core coil is input to the annular magnetic circuit armature, The rotational force of the permanent magnet rotor is assisted.
  • the output of the air-core coil is input to the annular magnetic path armature, and the rotational force of the permanent magnet rotor is assisted so that the external rotational force applied to the permanent magnet rotor is reduced.
  • a motor for power generation with reduced rotational load can be realized.
  • the motor according to the invention of claim 8 is characterized in that, in the above invention, all or part of the output of the air-core coil is externally output.
  • the motor according to any one of claims 1 to 8 is arranged to face each other around the axis of the permanent magnet rotor.
  • the winding direction of the coil group of the annular magnetic path armature of one motor is reversed with respect to the winding direction of the annular magnetic path armature of the other motor, and the output of one motor is input to the other motor. It is characterized by serial connection.
  • the motor is configured in multiple stages around the axis of the permanent magnet rotor, and the chained output is electrically connected in series so that one motor is driven. Rotational torque can be increased using the same power that is sometimes transferred.
  • the motor according to the invention of claim 10 is the motor according to any one of claims 1 to 9, wherein the motor according to any one of claims 1 to 9 is configured in multiple stages around the axis of the permanent magnet rotor. It is characterized by the serial connection in which the overnight output is sequentially input to the next stage.
  • the motor is configured in multiple stages around the axis of the permanent magnet rotor, and the chained output is electrically connected in series so that one motor is driven. Rotational torque can be increased using the same power that is sometimes transferred.
  • the mobile according to the invention of claim 11 is characterized in that, in the above invention, one or more of the motors according to any one of claims 1 to 10 are incorporated in a rotating body. According to the invention of claim 11, driving of the vehicle can be assisted by incorporating at least one of the features described in any of claims 1 to 10 into the rotating body, and Electricity feedback can be performed efficiently, and an energy-saving vehicle can be realized.
  • a motor according to the invention of claim 12 is characterized in that, in the above invention, one or more of the motors according to any one of claims 7 to 10 are incorporated in a rotating body. According to the invention of claim 12, since at least one of the motors according to claims 7 to 10 is incorporated in the rotating body so as to assist the rotational drive, efficient power generation Machine can be realized.
  • the motor according to the invention of claim 13 is the motor according to the invention described above, wherein the armature core that forms a linear magnetic path is wound around the armature core, and the plurality of the series connected in series with high DC resistance.
  • a permanent magnet having a length of It is a sign.
  • the armature functions as a transformer between the power source and the load, there is almost no power consumption by the armature itself, and it becomes permanent by the next time generated by this armature. In addition to realizing a linear motor that moves magnets, it can also transfer power from the power supply to the load.
  • the motor according to the invention of claim 14 is the above-described invention, wherein the armature core forming an annular or linear magnetic path is wound around the armature core in the same direction and connected in series or in parallel. A plurality of the first coils and the armature core are wound in the same direction as the first coil, and form a magnetic domain having the same number of turns as the first coil in series connection or in parallel.
  • a permanent magnet rotor In the circumferential direction in the vicinity of the inner circumference of the armature, the same number of permanent magnets as the magnetic domains formed by the coil group and different magnetic poles are alternately arranged at equal intervals, and the shape of the disk is inscribed in the annular magnetic path armature
  • the motor according to the invention of claim 15 is the above invention, wherein the armature core forming an annular or linear magnetic path is wound around the armature core and connected in series or in parallel.
  • FIG. 1 is a basic circuit diagram showing a prior art annular DC motor.
  • FIG. 2 is a basic circuit diagram showing a winding structure of an armature used in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a state of current flowing in the winding shown in FIG.
  • FIG. 4 is a basic circuit diagram showing a schematic configuration of the linear motor which is Embodiment 1 of the present invention.
  • FIG. 5 is a basic circuit diagram showing another connection form of the coil used in the linear motor according to the first embodiment of the present invention.
  • FIG. 6 is an assembly diagram of a motor which is Embodiment 2 of the present invention.
  • FIG. 7 is an explanatory view showing the positional relationship between the annular magnetic path armature and the permanent magnet rotor shown in FIG.
  • FIG. 8 is a schematic diagram showing an overall outline of the motor shown in FIG.
  • FIGS. 9a and 9b show examples of the relative positions of the N poles facing the magnet in the motor shown in FIG. 8 by the rotation of the annular magnetic circuit armature in the current switch section.
  • FIG. 10 is a schematic diagram of the motor of FIG. 8 for electrifying the battery.
  • FIG. 11 is a diagram showing waveforms of a voltage input to the MONO ring magnetic circuit armature shown in FIG. 8, a voltage output to the load, and a voltage output from the rectifier circuit.
  • FIG. 12 is an assembly view of a motor having a power generation function according to another embodiment of the present invention.
  • Fig. 13 shows the position of the annular magnetic path armature, permanent magnet rotor and air-core coil shown in Fig. 12. It is explanatory drawing which shows arrangement
  • FIG. 14 is a schematic view of the motor that is shown in FIG. 12 starting as a generator for electrifying the battery.
  • FIG. 15 is an explanatory diagram showing the positional relationship among the annular magnetic path armature, the rotor, and the air-core coil in the mode shown in FIG.
  • FIG. 16 is an explanatory view showing a modification of the positional relationship among the annular magnetic path armature, the rotor, and the air-core coil.
  • FIG. 17a is a perspective view of a generator motor which is another embodiment of the present invention activated by an external rotor.
  • FIG. 17 b is a basic circuit diagram of the motor shown in FIG.
  • FIG. 18 a is a perspective view showing a two-layer electric motor which is another embodiment of the present invention.
  • FIG. 18 b is a basic circuit diagram of the motor shown in FIG.
  • FIG. 19 is a perspective view showing a two-layer electric motor that is another embodiment of the present invention.
  • FIG. 20 is a basic circuit diagram showing a part of a motor / generator which is another embodiment supplied from a pulse.
  • FIG. 21 is a basic circuit diagram shown in FIG. 20 in which power is supplied from a power source.
  • FIG. 22 is a basic circuit diagram shown in FIG. 20 in which power is not supplied from the power source.
  • Figure 2 3a shows the two sections of the coil wound around the two motor / generator stars in Figure 20 regardless of the light sensor and magnet in the rotor. It is a basic circuit diagram of a neighboring coil.
  • FIG. 23b is a diagram showing that voltage is applied to the coil when power is supplied or not supplied while the rotor is operating in FIG. 21 and FIG. FIG. 23c is a drawing showing the rectified voltage generated by the coil when the rotor is operated regardless of the coil in FIG.
  • FIG. 24a shows the input voltage when power is supplied to the motor shown in FIG.
  • FIG. 24 shows the dielectric voltage balanced across the coil when no power is supplied to the coil in FIG.
  • FIG. 24c is a drawing showing the voltage supplied to the adjustment circuit of the circuit of FIG. 20 during operation.
  • Figure 24d shows a DC voltage that balances across the charge like a resistor during operation.
  • FIG. 25 is a basic circuit diagram of two motors that are relatively supplied to a power source.
  • FIG. 26 is a diagram showing voltage waveforms for the two modules in FIG.
  • FIG. 27 is a selective relative arrangement diagram of two motors 100c and 100d that are relatively supplied to a charge battery.
  • FIG. 28-30 shows the rotation of the magnet around the air-core coil device used with the motor and generator of the present invention.
  • FIG. 31 is a schematic drawing of an optional annular magnetic circuit armature core used in some embodiments described in detail in the present invention.
  • FIG. 32 is a schematic depiction of a coil forming a transformer used in the present invention.
  • FIG. 33 is a schematic diagram showing an overall schematic configuration of an assist bicycle according to Embodiment 7 of the present invention.
  • Fig. 34 shows the motor and high-speed motor used in the assist bicycle shown in Fig. 33. It is a figure which shows the relationship.
  • FIG. 35 is a schematic diagram showing an overall schematic configuration of a wind power generator that is Embodiment 8 of the present invention.
  • FIG. 2 is a basic circuit diagram showing a winding structure of two coils 1 and 2 wound around a straight iron core used in the linear motor that is Embodiment 1 of the present invention.
  • the coil 1 and the coil 2 are wound around the iron core 3 in the same direction, and are connected in parallel near each other.
  • Ma FIG. 3 is a circuit diagram corresponding to coils 1 and 2 in FIG. 2, and shows the states of currents I 1 and I 2 flowing through the winding shown in FIG.
  • iron core 3 is a laminated electrical steel sheet having a rod-like structure with the same cross-sectional area. Coils 1 and 2 have different resistances.
  • the iron core 3 is a thin copper wire with a large number of windings, a coil 1 with a high resistance value, and a thick copper wire with a small number of windings, and the same winding direction as the coil 1
  • the coil 2 wound around each is wound, connected in series and arranged adjacent to each other.
  • the resistances of the coils 1 and 2 are the same as those shown in the embodiment of FIG.
  • a power source 4 that generates an AC rectangular wave voltage is connected to the end points T 1 and T 2 that are both ends of the coil 1.
  • the load 5 is connected between the end point T 1 of the coil 1 to which the coil 2 is not connected and the end point T 3 of the coil 2 to which the coil 1 is not connected. That is, the power supply 4 is connected to the input side, and the load 5 is connected to the output side.
  • coil 1 and coil 2 share a common output ⁇ .
  • Output ⁇ works as an intermediate lead for coils 1 and 2.
  • Coil 1 and coil 2 may be part of one coil or a separate coil that is electrically connected. During operation, coil 1 and coil 2 are guided in pairs with their respective ends. Coil 1 and coil 2 forming the primary and secondary coils are distributed as an autotransformer, and the primary and secondary coils are distributed as a common winding.
  • the input current I is distributed as the current I 1 and the current I 2 in the coil 1 and the coil 2.
  • the coil 1 has a stronger resistance than the coil 2, and the current input from the power supply 4 almost flows into the load 5 as the current 12 as shown in FIG.
  • the current I 1 shunted to coil 1 is very small.
  • coil 1 has a large number of winding wires and coil 2 has a small number of windings.
  • the voltage between the end point T l and ⁇ 2 of the coil 1 is large.
  • the winding ratio of coil 1 to coil 2 is set to 100: 1, the input side voltage V1 to the output side voltage V2 will be 10:00 to 10.1, almost 1 to 1. It functions as a transformer. Note that the power consumed by each of the coils 1 and 2 is the same.
  • Coil 1 and coil 2 are each electrically connected in parallel, and the direction of current flows in the opposite direction through the coil wound in the same direction as iron core 3.
  • the magnetic field region differs in the vicinity of coils 1 and 2 as described in Fig. 4 below.
  • FIG. 4 is a circuit diagram showing a schematic configuration of a linear motor which is an example of the motor which is the embodiment of FIGS.
  • Coil 1 includes 1 a to l c section coils
  • coil 2 includes 2 a to 2 c section coils.
  • such a single-winding transformer is configured such that the coils 1a to lc and 2a to 2c corresponding to the coils 1 and 2 are alternately arranged along the longitudinal direction of the rod-shaped iron core 13. By arranging them adjacent to each other, a linear motor can be formed.
  • the arrangement relationship between the coils 1 a to 1 c and the coils 2 a to 2 c is that the coils 1 and 2 are divided into three in series, and the three divided coils 2 a to 2 c are divided into three divided coils. It is also a relationship placed adjacent to 1 a to 1 c.
  • the lengths of the coils la to lc and 2a to 2c in the longitudinal direction are all the same.
  • Coil 1 and coil 2 (or a single coil) are formed by winding each coil 1a-lc and 2a-2c.
  • the width L 1 of the coils 1 a to lc and the width L 2 of the coils 2 a to 2 c in the vertical axis direction are the same.
  • Coil 1 and coil 2 are separately connected in a linear state by coils la to lc and 2 a to 2 c.
  • These coils la to lc and 2 a to 2 c have the same saddle direction, and the direction of the current flowing through the adjacent coils is opposite, so that each coil la to lc, 2 & to 2 end points 1 1 to T 16 have different magnetic poles.
  • negative poles are generated at the end points ⁇ 11, ⁇ 13 and ⁇ 15, and S poles are generated at the end points T12, ⁇ 14 and ⁇ 16. And when the direction of current changes, the negative pole becomes S pole and the S pole becomes negative pole.
  • the N pole and the S pole are formed along the longitudinal direction of the iron core 13, and the same as the coils la to lc and 2 a to 2 c
  • a linear motor is realized.
  • the permanent magnets 10 having the same width L 3 as the widths L 1 and L 2 of the coils 1 a to lc and the coils 2 a to 2 c are positioned in the vicinity of the coils 1 a to lc and 2 a to 2 c, respectively.
  • a supporting structure (not shown) and induction of a long permanent magnet along the iron core I 3 are prepared in advance.
  • the permanent magnet moves to change the magnetic polarity of the transformer.
  • the iron core 13 and the coils 1 a ⁇ : L c, 2 a ⁇ 2 c only function as a one-to-one transformer, and the power supplied from the power source 4 is almost supplied to the load 5.
  • the linear motor shown in FIG. 3 is provided with a transformer in the middle of being supplied from the power source 4 to the load 5, and the permanent magnet is moved by changing the magnetic pole of this transformer.
  • the coils 2a to 2c and Z or the coils 1a to lc may be connected in parallel. In this case, the total resistance values of the coils 2a to 2c are further reduced, and the function as a transformer can be made closer to 1: 1 as shown in FIG.
  • Terminals I 2 a, I 2 b, and I 5 are shown.
  • Terminal I 1 is connected to the first end of secondary coils 2 a, 2 b, 2 c.
  • Terminals I 2 a and I 2 b are connected to the first end of coil 1 a. It continues.
  • Terminal 15 connects to the second end of coil 2c, the second end of coil lc (which forms the center lead), and the second ends of coils 2a and 2c.
  • FIG. 6 is an assembly diagram of the mouthpiece tally motor 20 including the permanent magnet rotor 21 and the annular magnetic path armature 24 according to the second embodiment of the present invention.
  • the annular magnetic circuit armature 24 is annular, is composed of a circular core 23 and a rotor, and has a circular shape.
  • three coils 1 a to c and three coils 2 a to 2 c are alternately wound around the iron core I.3.
  • the coils 1a to lc are connected in series, and the coils 2a to 2c are connected in parallel.
  • the coils la to lc are thin and have a larger number of times than the coils 2 a to 2 c and have a higher resistance value than the coils 2 a to 2.
  • Coils 1 a to lc and 2 a to 2 c are wound around the core at 60 degrees.
  • the terminals I 1, I 2 and I 5 supply a pair of coils 1 a to 1 lc and 2 a to 2 c to the power source.
  • Figure 5 shows how the terminals are connected in this way.
  • the iron core I 3 forms the annular magnetic path armature 24 and does not move.
  • the inner peripheral part of the iron core I 3 is fitted with the outer peripheral part of the permanent magnet rotor 21.
  • FIG. 7 is an explanatory diagram showing the positional relationship between the annular magnetic path armature and the permanent magnet rotor shown in FIG.
  • Fig. 8 is a schematic diagram showing the overall outline of the motor shown in Fig. 6. It is. 6 to 8, in the permanent magnet rotor 21, circular permanent magnets 22 having N poles and S poles are alternately arranged around the upper surface of the disk-shaped yoke 21 a.
  • FIG. 6 shows six permanent magnets positioned on the permanent magnet rotor 21.
  • Three N-pole and three S-pole permanent magnets 22 are arranged at equal intervals in the circumferential direction.
  • the permanent magnet 22 is, for example, neodymium.
  • the permanent magnet 22 is an electromagnet.
  • the permanent magnet rotor 2 1 is a magnetized material such as iron.
  • the annular magnetic path armature 24 has the annular structure of the iron core 13 of the circuit shown in FIG. 5 so that the inner circumference coincides with the outer circumference of the permanent magnet rotor 21. Yes.
  • the annular magnetic path armature 24 is arranged as an armature with an air gap of several millimeters provided on the permanent magnet rotor 21.
  • the annular magnetic path armature 24 has six coils 1 a to lc and 2 a to 2 c having six shafts according to the arrangement of the permanent magnets 22 of the permanent magnet rotor 2.1.
  • a thin coil with a large number of windings 1 a to 2 c and a thick coil with a small number of windings 2 a to 2 c are alternately wound around an annular iron core at an angle of 60 degrees.
  • the permanent magnet 2 2 is preferably positioned in a circle on the permanent magnet rotor 2 1 at an equal distance from the center of the circular rotor.
  • the permanent magnet 22 is arranged with an angular difference of 60 degrees between the adjacent N pole and S pole.
  • a shaft 2 l b is provided at the center of the disk of the permanent magnet rotor 21, and the permanent magnet rotor 21 functions as a so-called flat row.
  • the upper and lower ends of the shaft 2 1 b are tightened with bearings 2 7 and 2 8.
  • the end of the shaft 21 b is paired with an external device to cause the device to rotate and to accomplish work.
  • the shaft 2 lb is provided with a commutator 26 and is fixed to the upper portion of the yoke 25.
  • the commutator 2 6 is joined to the shaft 2 1 b in the shoulder 2 1 c.
  • Commutator brush 2 6 a Delay X of contact energization to commutator 26 by is shown. Delay X is greater than 0, less than 1800 degrees, and preferably slightly delayed, such as 10 degrees. As a commutator, brush commutation is well known as a prior art.
  • an optical sensor commutator, electromagnetic sensor commutator, or switch combined with a commutator-based switching element (solid-state relay, hereinafter referred to as a switching element). It is a commutator. If the commutator 26 has an electronic control switch element, the motor is a brushless motor. If the switch element is composed of a switching element, the motor shown in FIG. It is indicated.
  • FIG. 8 is a circuit diagram showing a conceptual configuration of the combined motor 20 shown by the DC power supply 31 that is electrically related to the commutator 26. The commutator 26 generates a DC current from the power supply 31 in a certain direction.
  • the rectified current enters coils 1a-lc and 2a-2c via terminals 12 and I5 (as seen in FIG. 6). Therefore, the rectifier 26 is converted into a commutated and rectified current of three cycles by one rotation of the permanent magnet rotor 21.
  • the lower end and the upper end of the shaft 21b are supported by bearings 2 7 and 2 8.
  • a load 3 2 is connected between the terminals 1 2 and 1 1 of the annular magnetic circuit armature 24.
  • the annular magnetic circuit armature 24 has coils 1 a to lc and 2 a to 2 c arranged in a ring shape, and a coil 2 connected in parallel with the resistances of the coils 1 a to lc connected in series.
  • the permanent magnet rotor 2 is an annular magnetic circuit machine in which the permanent magnet 2 2 is located slightly more than the shafts 7 A, 7 b, 7 c between the ends of the coils 1 a to lc and 2 a to 2 c.
  • the magnetism generated by rectification is located on the N and S pole faces of the child 24 and the magnetic domain side of the coils la to lc and 2 a to 2 c in the annular magnetic circuit armature is coaxial with the pole of the magnet 22 Rotate slightly to the side.
  • the permanent magnet on the permanent magnet rotor 21 is at a position advanced about 10 degrees toward the magnetic domain side of the annular magnetic path armature 24.
  • Figure 9a shows, for example, the N pole of one magnet 2 2 at the current switch point, a section of the annular magnetic armature 24, several N and S pole sections in the rotor, and the axis 7a. Show.
  • the magnetic domains generated by the same polarity repulsion coils 1 a to 1 c and 2 a to 2 c of the magnet 22 are the basis for rotating the permanent magnet rotor 21.
  • the rotation of the rotor and the direction of the rectifying electronic switch are performed by switching the polarity of the coils 1 a to 1 c and 2 a to 2 c in order to attract the adjacent magnet 22 in the permanent magnet rotor 21. This method is repeated when the permanent magnet rotor 21 is rotated.
  • the N pole generated by the annular magnetic circuit armature 2 4 is generated 10 degrees ahead in the forward rotation direction. Begins to rotate in the polar direction, and eventually, the annular magnetic circuit armature
  • the rotational speed and torque of the permanent magnet rotor 2 1 are the same as the permanent magnet rotor 2 at the current switch point.
  • Fig. 9b shows the positional relationship of the N pole on the surface of the magnet 22 approximately halfway between the N pole and S pole sections in the annular magnetic armature 24 when the current is changed.
  • the rotational speed and torque are less than the example in Fig. 9a.
  • the winding method of the coils la to lc and 2 a to 2 c is a resistance value between the series coupling coils 1 a to 1 c and the parallel coupling coils 2 a to 2 c, for example, 9 9% to 1%
  • the current 99% input from the commutator 26 flows through the coils 2a to 2c and the load 32.
  • the load 3 2 digests 99% of the current from the DC power supply 3 1.
  • the rotation of the permanent magnet rotor 21 caused by electric power is digested by the load 3 2 and the torque generated by the annular magnetic path armature 2 4.
  • the annular magnetic path armature 2 4 since there is no slot in the annular magnetic path armature 2 4, no cogging torque is generated, and between the inner week of the annular magnetic path rotor 2 4 and the outer periphery of the permanent magnet rotor 2 1.
  • the magnetic flux density is increased, the tangential force and the rotation angle due to the gap of the magnet 22 are maximized, so that the permanent magnet rotor 21 can be rotated at high speed.
  • the annular magnetic path armature 2 4 functions as a transformer.
  • the rotation of the permanent magnet rotor 21 causes the coils 1a to lc and 2a to c of the annular magnetic circuit armature 24 to be electromotive in the opposite direction of each magnetic domain.
  • the electromotive force is offset, and power can be supplied to the load side with almost no influence from the counter electromotive force.
  • the positive rotation torque of the permanent magnet rotor 21 is generated by the change in magnetic flux induced in response to the amount of power supplied to the load side, the amount of power supplied to the load side can be adjusted.
  • the rotation speed and torque of the permanent magnet rotor 21 can be adjusted.
  • a resistance of 5.5 ⁇ is connected as load 32 and DC current 31 to 22.2 W (DC voltage 12 V, current 1.85 A) is supplied, 22 W (AC voltage 11 V, current 2) at load 32 OA), and the permanent magnet rotor 21 in this case was able to obtain a rotational speed of about 2000 rpm. That is, stable output power of 22 W was obtained with respect to input power of 22.2 W, and at the same time, the permanent magnet rotor 21 could be rotated.
  • a rectifier circuit 33 is provided on the load 32 side, the direct current obtained by the rectifier circuit is stored in the battery 34, and the stored electric power is supplied to the direct current power source 31 side by floating. It may be. As shown in Fig.
  • the input voltage input to the coils 1 a to lc and 2 a to 2 c in the annular magnetic armature 24 is rectified and commutated by the commutator 26, and the permanent magnet circuit
  • the rotation of the trochanter 21 has a cycle of 3 cycles, and the output voltage output to the load 32 has substantially the same voltage value and waveform as shown in FIG.
  • the rectifier circuit 33 converts the rectified DC voltage as shown in FIG. 11 (c) and stores it in the battery 34. In this way, the permanent magnet rotor 21 can be efficiently rotated by re-supplying the electric power output from the annular magnetic path armature 24 to the input side.
  • the rectifier circuit 33 comprises, for example, a bridge diode, and an example of a rectifier circuit is shown in detail with respect to FIG. 20 shown below.
  • the rotational speed of the permanent magnet rotor 21 is fixed to the annular magnetic path armature 24 Can be controlled by rotating the coil with respect to the commutator 26 and can be rotated in the reverse direction. Furthermore, instead of rotating the annular magnetic path armature 24, the rotational position of the commutator 26 relative to the annular magnetic path armature 24 is changed to change the rotational speed and direction of the permanent magnet rotor 21. You may make it control.
  • annular magnetic armature 24 having the number of turns of the single-turn transformer shown in FIG. 1 in which the same number of magnetic domains as the permanent magnet rotor 21 is formed is provided.
  • the permanent magnet rotor 2 1 is rotated by the induction power of the armature 2 4, and the power passing through the annular magnetic path armature 2 4 is independent of the rotational speed and load torque of the permanent magnet rotor 2 1. It can be stably consumed by an external load.
  • the annular magnetic path armature 2 4 forms an annular magnetic path without a slot in the iron core, the cogging torque can be eliminated.
  • FIG. 12 is an assembly diagram illustrating Embodiment 3 of the present invention.
  • a power generation function is further added to the configuration of the second embodiment so as to compensate for power loss such as copper loss and iron loss of the commutator 26 and the annular magnetic circuit armature 24.
  • Yoke 25 is located above the air core coil.
  • the disc is supported and assembled by the shoulder portion 21c of the shaft 21b, and the commutator 26 is supported by the disc.
  • the yoke 25 has the same inclination and size as the permanent magnet rotor 21 and is located in parallel.
  • the yoke is, for example, iron. While the yoke is rotated by the permanent magnet rotor 21, the consumed torque is increased by the eddy current. Occurs during FIG.
  • FIG. 13 is an independent diagram of a motor that is Embodiment 3 of the present invention.
  • FIG. 13 is an explanatory diagram showing a positional relationship among the annular magnetic path armature, the permanent magnet rotor, and the air-core coil shown in FIG. 12 and 13, the air-core coil 40A is disposed between the permanent magnet rotor 21 and the yoke 25, and is disposed in a magnetic field generated between the permanent magnet rotor 21 and the yoke 25. .
  • the air-core coil 4 OA is formed by three triangular coils 41, 42, 43 that are arranged 40 degrees apart from each other. Further, the triangular coils 41 to 43 are wound with thick copper wires to keep the resistance value low. Each of the coils 41 to 43 has a triangular apex position inscribed in the outer circumference circle of the permanent magnet rotor 21 or inscribed in the inner circumference circle of the annular magnetic path armature 24 and fixed in the same manner as the annular magnetic path armature 24. Is done.
  • the air-core coil 4 OA and the primary and secondary coils 1 a to 1 c and 2 a to 2 c are insulated. Vertices P 1 and P 2, P 2 and P 3 are electrically connected. Terminals 44, 45, and 46 extend from vertices Pl, P2, and P3, respectively.
  • the yoke 25 and the permanent magnet rotor 21 rotate together, the reverse torque due to the eddy current does not occur.
  • FIG. 14 is a distant view of a motor including the air-core coil 40 A of FIG. 13 for providing a power generation function.
  • Air core coil 4 OA terminals 4 4, 4 5 and 4 6 are connected to rectifier circuit 3 3.
  • the rectifier circuit 3 3 full-wave rectifies the three-phase AC power output from the terminals 4 4, 4 5 and 4 6 and rectifies it into DC power.
  • the rectifier circuit 3 3 is electrically connected to the battery 3 4.
  • One outlet of the rectifier circuit 33 is electrically connected to one brush 26a of the rectifier 26, and one outlet is electrically connected to the power source 31.
  • Air-core coil 4 The three-phase AC power generated by the OA is electrically insulated from the annular magnetic circuit armature 3 4, so the DC power from the rectifier circuit 3 3 is used as the input power to the annular magnetic circuit armature 2. Can be used as combined power. Since it is electrically separated from the annular magnetic circuit armature 24, it can generate electricity without a torque. By combining the three-phase AC power obtained from the air-core coil 4 OA with the input power to the annular magnetic circuit armature 24, the loss of input power can be compensated for by the torque loss with low reverse torque. In addition, sufficient rotation of the permanent magnet rotor 21 can be obtained, and an output power close to 100% can be obtained for the load 32 as much as possible.
  • rotating power synchronized with the permanent magnet rotor 2 1 by supplying single-phase AC power obtained from the coil 4 1 of the air-core coil 4 OA from the terminals 1 2 and I 5 Supply can be made. That is, power can be directly supplied to the annular magnetic circuit armature 24 without going through the commutator 26.
  • the air-core coil 4 OA is provided with three coils 4 1 to 4 3 so that three-phase AC power can be output.
  • the present invention is not limited to this.
  • FIG. 4 1 and 4 7 may be used to output single-phase or 2-phase AC power, respectively.
  • the coils 4 1 and 4 7 are arranged so as to be shifted from each other by 60 degrees.
  • the terminal extends from two electrically connected vertices P 1 and P 2.
  • Figure 17b shows how the air core coil of Figure 15 connects to the motor.
  • FIG. 16 shows two coils 73 and 74 and an air-core coil 40 as will be described in detail below.
  • the number of magnets 22 arranged in the permanent magnet rotor 21 is not limited to six.
  • eight magnets 72 may be arranged at equal intervals.
  • the magnetic domain formed by the annular magnetic path armature 2 4 (coils 5 1 a to 5 1 d,
  • each coil 7 3 and 7 4 of the air-core coil is made quadrangular for .8 magnets 2 2.
  • Coils 7 3 and 7 4 have moved 45 degrees.
  • Vertices P 7 1 and P 7 2 are electrically connected, and terminals extend from them. The terminals are electrically connected to the motor as shown in the conceptual diagram in Fig. 17b.
  • Each coil 7 3, 7 4 of the air-core coil shown in FIG. 16 outputs four cycles of AC power for one rotation of the permanent magnet rotor 71.
  • the magnets 2 2 and 7 2 have a lead tube shape.
  • the shape is not limited to this, and the shape is arbitrary, and may be, for example, a polygonal shape.
  • a brushless motor may be realized by supplying power using a hole element or the like as the commutator 26.
  • the configuration of the second embodiment is further provided with a power generation function using an air-core coil, and the AC power obtained from this air-core coil is combined with the external output or input power. From characteristics, obtain AC power with low torque and low torque loss By supplying this electric power to the input electric power, the electric power supplied to the load side can be made 100% as much as possible, and the rotation of the permanent magnet rotor 21 can be sufficiently obtained.
  • the motor using the transformer function of the electric power input from the outside is started.
  • the motor is started by the rotational force from the outside.
  • the power generation function shown in Example 3 is used to assist the rotation of the motor.
  • FIG. 1A is a schematic diagram showing a schematic configuration of a generator motor 20 that is Embodiment 4 of the present invention.
  • this generator motor is provided with an air-core coil in the same manner as the motor 40 of FIGS. 12 to 16 shown in the third embodiment.
  • no external power source such as DC power source 3 1 is used.
  • the electric power from the air-core coil obtained by the rotation of the permanent magnet rotor 21 is supplied to the annular magnetic path armature 24.
  • FIG. 17 b is a schematic diagram showing a schematic configuration of the generator motor 20 of FIG. 17 a showing how the air-core coil 4 O A of FIG. 15 is connected to the motor.
  • the air-core coil 4 O A has two external terminals P 1 and P 4.
  • Terminal P 1 is wound in such a way that it is electrically connected to motor terminal 15 and electrically connected to center tap Z between primary and secondary coils 1 and 2.
  • Terminal P4 is electrically connected to power supply 31.
  • Terminal 1 1 is electrically connected to one end of secondary coil 2 and load 3 2.
  • the terminal 12 is electrically connected to one end of the primary coil and the other end of the load 32.
  • the generator motor 20 is started by rotating the permanent magnet rotor 21 with a rotational force F from the outside.
  • the rotational force from the outside is, for example, a bicycle wheel Supplied by wings operating other propellers, other rotating devices.
  • no cogging torque is generated from the annular magnetic armature 24.
  • the permanent magnet rotor 21 rotates, electric power is output from the air-core coil, and this electric power is input to the annular magnetic circuit armature 24 to assist the rotation of the permanent magnet rotor 21.
  • the AC power from the air-core coil 4 OA is single-phase and is synchronized with the rotation of the permanent magnet rotor 21, so a commutator is not required, and directly to the annular magnetic circuit armature 24 Can be entered.
  • the air-core coil 4 OA generates the counter electromotive force emf of the permanent magnet rotor 21 and reduces the generated torque.
  • a power generation mode capable of assisting the external rotational force is realized.
  • the power generation motor 80 shown in the second to fourth embodiments described above is configured in multiple stages around the shaft 21b. That is, a direct current from the DC power supply 31 is input to the upper annular magnetic circuit armature 2 4 b via the commutator 26, and the upper permanent magnet rotor 21 c is rotated, and this annular magnet The output power of the road armature 24 b is input to the lower annular magnetic circuit element 24 a, and the lower permanent magnet rotor 21 is rotated to output power to the load 32.
  • the upper permanent magnet rotor 21 and the lower permanent magnet rotor 21 are fixed to the same shaft 21 b, the same input power and output as the motors shown in Examples 2 to 4 are used.
  • the torque can be amplified by the electric power.
  • An air-core coil can be provided for each stage.
  • FIG. 18 a two-stage configuration is shown, but the present invention is not limited to this, and a torque amplification can be further performed by using a multistage configuration of three or more stages.
  • Fig. 18b is a schematic circuit diagram of the motor of Fig. 18a showing the connection of a more detailed configuration. is there.
  • Terminal 11 is electrically connected to the first end of the secondary coil (schematically shown in FIG. 18a) of the upper annular magnetic armature 24b.
  • Terminal 12 is electrically connected to the second end of the primary coil.
  • One end of the power source 31 is also electrically connected to the second end of the primary coil.
  • terminal 12 is electrically connected to one end of load 32.
  • Terminal 15 is electrically connected to the center tap X between the second ends of the primary and secondary coils 1 and 2 and the power supply 31.
  • Terminal 1 1 is also the second end of the primary and secondary coils 1 and 2 of the lower annular magnetic armature 2 4 a.
  • the center tap between is electrically connected with Y.
  • the terminal 1 2 ′ is electrically connected to the terminal 1 2 and the first end of the primary coil of the lower annular magnetic circuit armature 2 4 a.
  • the terminal 1 1 ′ is electrically connected to the load 3 2 and the first end of the secondary coil of the lower annular magnetic circuit armature 2 4 a. It is understood that the lower annular magnetic path armature 2 4 a and the upper annular magnetic path armature 2 4 b include two coils 1 and 2 as described above.
  • the motor or power generation module shown in the second to fourth embodiments is disposed so as to face the shaft 2lb.
  • each coil forming the magnetic domain of the upper annular magnetic path armature 24 c is opposite to each coil of the lower annular magnetic path armature 24 a.
  • the permanent magnet rotor 9 1 is provided instead of the yoke 25, and the magnets of the lower permanent magnet rotor 21 and the upper permanent magnet 9 1 are synchronously arranged and fixed by the same shaft. Is done.
  • the connection of coils 1 and 2 to terminals 1 1, 1 2 and 15 is the same as shown in Figure 18a.
  • the DC power from the DC power source 3 1 is input to the upper annular magnetic circuit armature 2 4 c via the commutator 26, and the upper permanent magnet rotor 91 is rotated.
  • the output power of the child 2 4 c is input to the lower annular magnetic circuit armature 2 4 a, the lower permanent magnet rotor 2 1 is rotated, and the power is output to the load 3 2.
  • the upper permanent magnet rotor 9 1 and the lower permanent magnet rotor 21 are fixed to the same shaft 2 1 b, the same input power and output as the motors shown in Examples 2 to 4 are used.
  • the torque can be amplified by the electric power.
  • an air-core coil can be provided for each stage.
  • the motor 90 shown in FIG. 19 can be configured in multiple stages. With such a multi-stage configuration, even greater torque amplification can be performed with the same power.
  • Embodiment 7 of the present invention will be described.
  • the other motors shown in the second to sixth embodiments described above are realized.
  • FIG. 20 is a conceptual diagram of a portion of the motor related to another embodiment in which the input power is shown in the form of voltage.
  • the motor part 100 comprises an annular magnetic path armature 102.
  • the commutator is formed by primary and secondary “switching elements” 104, 106, to name one example.
  • the switching elements 104 and 106 are controlled by an optical sensor 107 as shown in FIG.
  • FIG. 21 is a conceptual diagram of the rotating circuit of FIG. 20 when both the switching element 104 and the switching element 106 are closed.
  • FIG. 22 is a conceptual diagram of the rotating circuit of FIG. 20 when both of the switching elements 104 and 106 are closed. Referring to FIG. 20, the switching elements 104 and 106 are connected across the DC power source 108 and the capacitor 110.
  • the anode terminal 108a of the DC power supply 108 is the switching element 104
  • the cathode terminal 108 b of the DC power supply 108 is connected to the cathode terminal 106 b of the switching element 106 shown in FIGS. 20 and 21.
  • the cathode terminal 104 b of the switching element 106 and the anode terminal 106 a of the switching element 106 are similarly shown in FIGS. 20 and 21.
  • the switching elements 104 and 106 are electrically connected to the primary coil 112 and the secondary coil 114 wound around the armature 102, respectively.
  • the primary coil consists of the first coils 112a, 112b, 112c and is connected in series.
  • the secondary coil consists of the second coils 114a, 114b, 114c and is connected in series as well. Either or both of the coils 114 a -114 c are similarly connected in parallel.
  • the primary and secondary coils 112 and 114 are generally alternately wound with coils 114a, 114b, and 114c and wound with coils 112a, 112b, and 112c. ing.
  • the primary coils 112 a, 112 b, 112 c and the secondary coils 114 a, 114 b, 114 c share the common terminal 106 a of the switching element 106.
  • Terminal 106 a serves as the center tap for primary and secondary coils 112, 114.
  • the primary and secondary coils 112 and 114 are single coils. They are similarly inductively coupled during other operations.
  • the primary and secondary coils constitute an automatic transformer. It is desirable that the primary and secondary coils 112 and 114 have the same number of turns, the same material, and the same resistance. On the other hand, it is not required to be preferable.
  • the cathode 104 b of the first switching element 104 is electrically connected to the first coil 112 through the node 115.
  • the primary coil 112 is electrically connected to the anode 106a of the second switching element 106.
  • the anode 106 a of the second switching element 106 is electrically connected to the secondary coil 114 so as to occur simultaneously with the primary coil 112.
  • Rectifier circuit 116 is electrically connected to power supply 108 across nodes 115 and 140.
  • the rectifier circuit 116 is composed of a bridge diode circuit 117 composed of four diodes 118, 120, 122, 124 connected to four nodes 126, 128, 130, 132.
  • Capacitor 134 is electrically connected across bridge 126 and 130 in parallel with bridge diode 117 and resistor 136. Node 132 is electrically connected to secondary coil 114 at node 138 that provides input to secondary coil 114. The resistor 136 is supplied in parallel to a capacitor 134 typified by an external load.
  • the current output of the first switching element 104 is divided at node 115.
  • the first output of node 115 is output to primary coil 112 as described above.
  • the second output of the node 115 is connected to the node 128 of the bridge diode circuit 117 that supplies the output to the rectifier circuit 116.
  • the node 126 of the bridge diode circuit 117 is connected to the capacitor 134 and the resistance 136. Is electrically connected to node 140 which is electrically connected to The node 140 is electrically connected to a node 142 that is electrically connected to the switching element 106.
  • a magnetic rotor (not shown) mounted on the yoke is shown above and serves as a position to adjust the rotor 102 as described.
  • Other configurations of the above embodiment are provided appropriately.
  • Capacitance evening 110 has a capacity of 22,000 Faraday.
  • Kiyapashi Yuichi 134 has a capacity of 3,300 Faraday.
  • Resistor 136 has a resistance of 30 ohms.
  • the DC power supply 108 supplies 1 2 port or 2 4 port.
  • the first and second switching elements 104, 106 are opened based on an external signal supplied by a pair of optical sensors 107 whose movement occurs simultaneously with the rotation of the rotor blades. Closed.
  • both switching elements 104 and 106 are closed as shown in FIG. 21, current and voltage are supplied to the primary coil 112 and the rectifier circuit 116 with respect to the node 115.
  • the current is supplied to the primary coil 112 that turns to the cathode terminal 108 b of the DC power supply 108 to the switching element 106 and the node 142.
  • the current is supplied to the rectifier circuit 116 and is induced and stored in the capacitor 134.
  • the rectified current flows outside the capacitor 134 and resistor 136, or other load, and is also routed to the negative terminal of the DC power supply 108 relative to the node 142.
  • the electromagnetic field is generated by the primary coil 112 in the secondary coil 114 due to voltage and current pulses that match the voltage and current input to the primary coil.
  • the magnetic field is generated by the secondary coil.
  • the magnetic field is generated by the primary and secondary coils 112, 114 due to rotation of the rotor (not shown) at 60 degrees, for example, while the switching elements 104 and 106 are closed.
  • the back electromotive force “e m f” is generated when the switching elements 104 and 106 are opened, and the power to the circuit is not supplied for a long time.
  • the continuous rotation of the rotor and the magnetic field are caused by the rotor causing a voltage in both the primary and secondary coils 112, 114.
  • the switching elements 104 and 106 are an example, but are opened and closed at a frequency of 40 cycle-nos.
  • the current supplied to the primary coil 112 and the rectifier circuit The ratio of supplied current is about 1: 8.
  • FIG. 2 3a shows, for example, when the rotor and the optical sensor 107 rotate, the N pole facing the magnet 22 in the rotor (not shown) and the optical sensor 107 at two points T1 and T2.
  • FIG. 4 is a conceptual diagram of two coils 112 a and 114 b on each side of the primary and secondary coils 112 and 114 with respect to the S pole.
  • switching element 104, 106 is closed by T 1 and T 2 is opened so that the rotor and the optical sensor move regardless of the annular magnetic armature coil 102.
  • the input voltage of a square wave across terminal 104 b and node 142 is shown.
  • Figure 2 3 c shows the input generated by rotating coils 112 and 114 from T 1, T 2 and ⁇ ⁇ ⁇ 3 across node 1 0 6 a and node 142, regardless of whether the rotor is a coil or not. Voltage is shown. From Ding 1 to Ding 2, switching elements 104 and 106 are closed, and power is supplied to coils 112 and 114 and rectifier circuit 116. Spike 149, or surge voltage, is indicated by T 2 due to back electromotive force. It is clear that while switching elements 104, 106 are open, a voltage is generated as well, and the motor can act as a generator.
  • FIG. 24 shows the input voltage across the terminal 104b and the node 142 when the switching element 104 is closed in FIG.
  • FIG. 24b shows the input voltage measured across node 142 and node 106a when switching elements 104, 106 are open, as shown in FIGS.
  • Figure 24c shows the voltage supplied to rectifier circuit 116 across node 142 and node 104b, which is the sum of the input voltage shown in figure 24a and the rectified voltage shown in figure 24b during operation. Is shown.
  • Figure 2 4 d Shown is the DC voltage generated across resistor 136 during operation.
  • Figure 25 shows two motors similar to the motor 100 in Figure 20 that are electrically connected to demonstrate how the motor can constantly function as a generator in accordance with an embodiment of the present invention.
  • Both i 00a and 100b are electrically connected in part to the resistor 136 which is representative of the external load for the switching elements 149 and 150.
  • Each of the motors 100a and 100b is an example, but the added switching elements 145, 146, 147, 148, 149 and 150 are electrically connected in the same manner as the other capacitors 134b and 134a. Connected.
  • the switching elements 104a, 106a, 104b, 106b, 145, 146, 147, 148, 149 and 150 are alternately opened and closed in their respective motors 100a, 100b.
  • the switching elements 104a and 106a of the motor 100a are open, and the switching elements 104b and 106B are closed.
  • switching elements 145, 148, and 150 are open, and switching elements 146, 147, and 149 are closed. Therefore, the motor 100a charges the battery 108a and the capacitor 134a with the rectified voltage generated by the motor 100a as shown in FIG. 26a.
  • FIG. 26a As shown in FIG.
  • FIG. 27 c shows two pairs of alternating transformers 100c and 100d, respectively, and a transformer for storing electricity in batteries 108c and 108d.
  • This transformer contains only four switching elements 104c, 106c, 104d, 106d and therefore has less loss than the transformer of FIG.
  • FIGS. 28_30 show additional air core coil transformers 150, 152, 154 using the motor and generator of the present invention.
  • These air-core coils 150, 152, 154 are produced by a single-phase AC whose frequency is dependent on the number of magnets 22 on the rotor. For example, as shown in FIG. 6, there are six magnets 22 on the rotor 21, for example, then the frequency is 3 cycles / rotation of the rotor.
  • Air-core coils 150-154 are located right next to the inner circumference of the coil wound around the rotor.
  • the air-core coil 105-154 is an example, but is a part of a circuit (not shown) that is separated from the motor circuit in order to pack the battery.
  • FIG. 28 is a plan view of air-core coils on the six permanent magnets 22 on the permanent magnet rotor 21.
  • the air core coil 150 is wound around the magnet 22 in a wave shape.
  • FIG. 29 is a plan view of another air-core coil on the six permanent magnets 22 on the permanent magnet rotor 21, and each air-core coil is wound around the magnet. The winding direction is alternated with respect to the magnet 22.
  • FIG. 30 is a plan view showing another air-core coil 154 on the six permanent magnets 22 on the permanent magnet rotor 21, and the air core is wound only on the N pole, differently. Those wound around the N pole are in the same direction.
  • the air-core coil 154 is alternately wound around the south pole in the same direction.
  • FIG. 31 is a conceptual diagram of alternating annular magnetic armature cores 200. As described herein, it is used in some of the embodiments of the present invention.
  • the annular magnetic path armature core 200 is composed of core parts 202, 204, 206 separated by air gaps 208, 210, 212. In this example, there are three core portions 202-206 separated by three air gaps 208-212.
  • the first coil 214 segment and the second coil 216 segment are It is shown wound around. Additional portions of the first and second coils 214, 216 (not shown) are alternately wound around the other cores 202, 206, in series with each coil in the same coil section, or Connected in parallel.
  • FIG. 31 shows the magnetic field region for the winding method of the primary coil 214 and the secondary coil 216 with respect to the air gap position.
  • the air gap 208-212 provided in the annular magnetic path armature core 200 increases magnetic leakage and stabilizes the current in the primary and secondary coils 112, 114.
  • the rotational efficiency of the permanent magnet rotor 21 is increased as compared with the case where the annular magnetic path armature core does not have the air gap 208-212.
  • the air gap 208-212 is narrow, the magnetic path is always located right next to the same magnetic pole of the rotor, and stable coking torque is not generated.
  • the coil wound around the core is also in the single turn transformer.
  • the primary coil 280 is connected to a power source 282 and is wound around a core 286.
  • Secondary coil 288 is similarly wound around core 286.
  • the motor and generator motor in the embodiment of the present invention convert DC to AC, and the resulting AC is a square wave having various frequencies in the rotor EPM.
  • DC power is common, but many devices are required for AC (power).
  • the motor and the generator / motor are therefore often used to efficiently convert D C to A C.
  • the generator Z motor in the embodiment of the present invention similarly converts the input voltage and current into different external voltages and currents.
  • the rotor and the annular magnetic armature are each on the other side, Similarly, the rotor and the annular magnetic path armature are concentric. Either the rotor is around the annular magnetic armature or the annular magnetic armature is around the rotor.
  • the coil wound around the core in the above embodiment is a stator, but it can also be a coil wound around the core.
  • the rotor of this coil functions stably as an annular magnetic path armature.
  • Embodiment 7 of the present invention will be described.
  • the assist bicycle using the motor, the power generation motor, or the power generation motor shown in the above-described second to sixth embodiments is realized.
  • FIG. 33 is a schematic diagram showing the main configuration of an assist bicycle that is Embodiment 7 of the present invention.
  • motors 1 1 1 1 and 1 1 2 shown in the second, third, and fifth embodiments are respectively arranged at the rotation center of the front wheel 1 2 1 and the rotation center of the rear wheel 1 2 2.
  • the output power of the motor 1 1 1 and 1 1 2 is the input power of the motor 1 1 2 as in the multistage configuration.
  • a high-speed power generator 1 1 3 that rotates by the rotational force of the rear wheels 1 2 2 is provided.
  • the rear wheels 1 2 2 are driven by the power of the person operating the assist bicycle and the rotational force of the motors 1 1 1, 1 1 2 by the power supply of a DC power source (not shown).
  • the motor 1 1 2 rotates the permanent magnet rotor 1 1 2 a by supplying power to the annular magnetic path armature 1 1 2 b, and the output power from the annular magnetic path armature 1 1 2 b is
  • the input power of the motor 1 1 1 is input to the annular magnetic circuit armature 1 1 lb, the permanent magnet rotor 1 1 2 a is rotated, and the output power from the permanent magnet rotor 1 1 2 a is the DC power supply Accumulated in.
  • the motors 1 1 1 and 1 1 2 are torque amplified.
  • the high-speed power generation module 1 1 3 is rotated at a high speed by changing the rotation associated with the rotation of the permanent magnet 1 1 2 a.
  • This high-speed rotation causes the permanent magnet rotor of the high-speed generator motor to rotate at a high speed, and power is generated by the air-core coil 1 1 3 a.
  • the output power from the air-core coil 1 1 3 a may be stored in the DC power source described above, or the electric assist 2 may be performed as shown in the fourth embodiment.
  • the configuration is such that the mo-yu is distributed, but this distributed arrangement can be similarly applied to, for example, each place of the power transmission relay, and a new rotational force is obtained for each power transmission relay.
  • the power generation function using an air-core coil with this rotational force can compensate for the loss during power transmission relay.
  • FIG. 35 is a schematic diagram showing the main configuration of wind power generation that is Embodiment 8 of the present invention.
  • this wind power generator receives wind power by means of a propeller 14 0, rotates the mouth 1 4 1, and transmits this rotational force to the permanent magnet rotor of the high speed generator motor 1 3 1. In this rotation transmission, the low-speed rotation of the rotor 14 1 is shifted to the high-speed rotation of the permanent magnet rotor.
  • the pulse input is controlled as follows. That is, when pulse power is input from the DC power source to the primary coil, the rotational force and the number of rotations can be controlled.
  • the secondary coil generates an AC current due to an induced voltage synchronized with the pulse frequency.
  • the direction of the current generates a positive rotational force with respect to the magnetic pole array of the rotor.
  • the pulse width it is possible to obtain a rotational force and a rotational speed that are directly proportional to the pulse width.
  • the slot is not formed in the annular magnetic armature, there is no cogging torque, and an efficient motor can be realized, and the first coil and the second coil can be realized. Since the generated back electromotive force is canceled out, an efficient motor that hardly generates reverse torque can be realized. Further, there is almost no power consumption by the annular magnetic path armature itself, and the permanent magnet rotor can be rotated by the annular magnetic path armature and power can be transferred from the power source to the load.
  • the rotational position and direction of the permanent magnet rotor are controlled by shifting the relative positional relationship between the annular magnetic path armature and the commutator, and the rotation control of the motor is performed with a simple configuration. There is an effect that can be performed freely.
  • the output of the air core coil is input to the annular magnetic armature and the output of the air core coil is input to the annular magnetic armature, the commutator, and the like. It is possible to realize an efficient operation that compensates for the loss.
  • the external rotational force applied to the permanent magnet rotor is reduced by inputting the output of the air core coil to the annular magnetic path armature and assisting the rotational force of the permanent magnet rotor.
  • the output of the air core coil is reduced by inputting the output of the air core coil to the annular magnetic path armature and assisting the rotational force of the permanent magnet rotor.
  • the motor is configured in a multistage configuration with opposing arrangements around the axis of the permanent magnet rotor and is electrically connected in series so as to perform a chain output, or the permanent magnet rotor Since the motor output is made up of multiple stages around the axis and is connected in series with the electrical connection, the rotational power is increased by using the same power as the power transferred during driving of one motor. There is an effect that can be made.
  • the armature on the straight line is entrained as a transformer between the power source and the load, there is almost no power consumption by the armature itself, and the magnetic field generated by this armature In addition to realizing a linear motor that moves the permanent magnet, it also has the effect of being able to transfer power from the power supply to the load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Dc Machiner (AREA)
  • Brushless Motors (AREA)

Abstract

A motor comprising an annular magnetic path armature (24) having coils (1a-1c) that are wound in the same direction around an armature iron core forming an annular magnetic path, are high in direct-current resistance, and are connected in series, and coils (2a-2c) that are wound in the same direction, are lower in direct-current resistance and smaller in the number of windings than the coils (1a-1c), form magnetic domains of the same length, and connected in series or in parallel, the coils (1a-1c) and the coils (2a-2c) being disposed alternately, and a permanent magnet rotor (21) provided thereon with permanent magnets (22), having the samenumber of magnetic domains and unlike magnetic poles, disposed at an equal interval and alternately in the peripheral direction of the vicinity of the inner periphery of the annular magnetic path armature (24), wherein power rectified and commutated to the series-connected coils (1a-1c) via a commutator (26) is input to between terminals (12, 13), and a load is connected between terminals (12, 11) to which parallel-connected coils (2a, -2c) and coils (1a-1c) are series-connected.

Description

モー夕及びこれを用いた装置  Moyu and equipment using the same
 Light
技術分野 細  Technical field
本件発明は、 電機子と永久磁石回転子とを備えたモー夕の回転駆動を効率良く行う ことができるモータ及びこれを用いた装置に関するものである。 背景技術  The present invention relates to a motor including an armature and a permanent magnet rotor, which can efficiently perform a rotational drive of a motor, and an apparatus using the motor. Background art
従来から公知の D Cモータとして特開平 8— 1 2 6 2 7 9号に開示されるように、 図 1に永 磁石型の代表的な D Cモータの概要図を示している。 図 1に示すように、 コイル Aは、 環状固定子 Cから内部方向へ、 また、 放射状に延長している歯車 B 1 , B 2 , B 3 , B 4の大部分に巻きつけられている。 コイル Aは、 電源 Sへ連結されて いる。 電源 Sから供給された電流は、 各歯車 B 1 _ B 4を通って磁場を発生させる。 整流器 (整流子) Dは、 電源 Sとコイル Aとに電気的に接続し、 コイル電源から供給 される D C電流を交互に供給している。 コイル Aは、 磁場の両極性が歯車の近傍とは 反対方向にあるように歯車 B 1— B 4それぞれの周囲を交互に直接巻きつけている。 歯車 B 1— B 4それぞれにおいて、 磁場は、 回転子を回転させるために、 回転子 F上 の永久磁石 E l , E 2 , E 3 , E 4の過半数のそれぞれと交互に引きつけ、 またはね つけている。 回転子 Fは、 翼を回転させるために翼 (図示しないが) に連結されてい る。  FIG. 1 shows a schematic diagram of a typical permanent magnet type DC motor as disclosed in Japanese Patent Application Laid-Open No. 8-1-2679 as a conventionally known DC motor. As shown in FIG. 1, the coil A is wound around most of the gears B 1, B 2, B 3, B 4 extending radially inward from the annular stator C. Coil A is connected to power source S. The current supplied from the power source S generates a magnetic field through each gear B 1 _B 4. The rectifier (commutator) D is electrically connected to the power source S and the coil A, and alternately supplies the DC current supplied from the coil power source. Coil A is wound directly around gears B 1 – B 4 alternately so that the polarity of the magnetic field is in the opposite direction to the vicinity of the gear. In each of gears B 1 — B 4, the magnetic field attracts or bends alternately with each of the majority of permanent magnets E l, E 2, E 3, E 4 on rotor F to rotate the rotor. ing. The rotor F is connected to a wing (not shown) for rotating the wing.
このようなモ一夕において、 コイル Aに供給する電流は、 典型的には負荷トルク次 第である。 電源 Sによってコイル Aに充当する電力は、 トルクを通過する内に消費さ れてしまう。 例えば、 コイル Aを通過する大電流は、 負荷トルクの大きい初動時に、 電機子に大電流を流し、 回転の上昇に伴って負荷トルクが減少すると、 電機子への電 流量が減少する。 回転力が増加したり負荷トルクが減少したりする場合、 コイル Aを 通過する電流の流れは、 同様に減少する。 製造された歯車状トルクと同様に、 モータ の中で歯車 B 1— B 4の使用は、 回転抵抗、 一様でない回転及び他の消費を結果とし て生じさせる。 このように、 これらの永久磁石型 D Cモータは、 モータ及び発電機と して用いられ、 電力は、 回転子を回転させるために歯車状トルクを必要としていた。 すなわち、 従来の永久磁石型の D Cモータは、 負荷トルクの大小に応じた電流を電 機子に供給し、 この電機子に加えられた電力は、 トルク消費に使われていた。 In such a scenario, the current supplied to coil A is typically First. The power applied to the coil A by the power source S is consumed while passing the torque. For example, a large current passing through the coil A causes a large current to flow through the armature at the initial operation when the load torque is large, and if the load torque decreases as the rotation increases, the current flow to the armature decreases. If the rotational force increases or the load torque decreases, the current flow through coil A decreases as well. As with the gear-like torque produced, the use of gears B1-B4 in the motor results in rotational resistance, uneven rotation and other consumption. Thus, these permanent magnet type DC motors were used as motors and generators, and electric power required gear-like torque to rotate the rotor. In other words, the conventional permanent magnet type DC motor supplies current to the armature according to the magnitude of the load torque, and the power applied to this armature is used for torque consumption.
上記記載の永久磁石型 D Cモータは、 コイルへ供給する全ての電力が発電トルクへ 用いられていた。 コイルへ供給する電力は、 例えば回転装置のような外部負荷を運転 するために外側から出力されているとは信じられていない。 その上、 永久磁石の回転 に従って磁力流動変化の結果として回転翼の中で逆起電力が生じている。 回転子の主 な回転に従い、 この逆起電力を克服するためにコイルに十分な電流を供給することが 必要となっている。 永久磁石の回転によってコイル翼中の逆起電力は、 回転を邪魔す る反トルクを生じさせるモーター中の歯車の中で著しく大きくなつており、 電流の大 部分は逆起電力の発生に消費されている。  In the permanent magnet type DC motor described above, all the electric power supplied to the coil was used for the generated torque. The power supplied to the coil is not believed to be output from the outside to drive an external load, such as a rotating device. In addition, a back electromotive force is generated in the rotor blade as a result of the change in magnetic flow as the permanent magnet rotates. Following the main rotation of the rotor, it is necessary to supply enough current to the coil to overcome this counter electromotive force. The counter electromotive force in the coil wings due to the rotation of the permanent magnet is remarkably large in the gears in the motor that generate counter-torque that interferes with rotation, and most of the current is consumed for the generation of the counter electromotive force. ing.
これらは、 高エネルギー効率、 低エネルギー要件及びコスト、 環境中の効果を低減 させるためのモータや発電機の開発に寄与している。  These contribute to the development of motors and generators to reduce high energy efficiency, low energy requirements and costs, and environmental effects.
また、 従来の永久磁石型の D Cモータには、 電機子鉄心にスロットを設けて巻き線 されているが、 このスロットと回転子上の永久磁石との磁気作用によって、 コギング トルクを発生し、 このコギングトルクが、 回転の抵抗および回転ムラなどの損失を生 じている。 同様に、 この永久磁石型の D Cモータを発電機として用いる場合、 このコ ギングトルクは、 回転子の回転に要する大きな負荷となっている。 A conventional permanent magnet type DC motor is wound with a slot provided in an armature core. Cogging is caused by the magnetic action between the slot and the permanent magnet on the rotor. Torque is generated, and this cogging torque causes losses such as rotation resistance and rotation unevenness. Similarly, when this permanent magnet type DC motor is used as a generator, this cogging torque is a large load required for the rotation of the rotor.
(特許文献 1 ) 特開平 8— 1 2 6 2 7 9号 発明の開示  (Patent Document 1) Disclosure of Japanese Patent Application Laid-Open No. Hei 8- 1 2 6 2 7 9
(発明が解決しょうとする課題)  (Problems to be solved by the invention)
ところで、 上述した永久磁石の D Cモータにおいて電機子に加えられた電力は、 上 述したように全てトルク消費されるだけであり、 電機子に加えられた電力を外部に取 り出すことができない。 また、 永久磁石の回転に伴って、 磁束変化による逆起電力が 電機子巻き線に生じ、 回転子の回転を維持するためには、 この逆起電力に打ち勝つ電 力を加える必要があった。 特に、 スロット構造のモータでは、 永久磁石の回転による 巻き線の逆起電力を最大にするため、 回転に対する逆トルクを発生させ、 この逆起電 力に打ち勝つ大きな電力を消費させなければならない。 したがって、 従来の永久磁石 型の D Cモ一夕では、 電機子に加えれた電力の有効利用を図ることができないという 問題点があった。  By the way, all the electric power applied to the armature in the above-described permanent magnet DC motor is merely torque consumed as described above, and the electric power applied to the armature cannot be taken out to the outside. As the permanent magnet rotates, a counter electromotive force is generated in the armature winding due to a change in magnetic flux. To maintain the rotation of the rotor, it is necessary to add power that overcomes the counter electromotive force. In particular, in a slot-structure motor, in order to maximize the counter electromotive force of the winding due to the rotation of the permanent magnet, it is necessary to generate a reverse torque against the rotation and consume a large amount of power to overcome this counter electromotive force. Therefore, the conventional permanent magnet type DC motor has a problem that it cannot effectively use the power applied to the armature.
一方、 近年の環境問題を解決するため、 トータル的にエネルギー効率のよい装置や システムの開発が強く要望されている。  On the other hand, in order to solve recent environmental problems, there is a strong demand for the development of totally energy efficient devices and systems.
この発明は、 上記に鑑みてなされたもので、 モ一夕自体にかかる電力消費をほとん ど行うことなくモータの回転あるいは移動を行うことができるとともに、 モータに加 えられた電力を外部出力または内部消費することができるモータ及びこれを用いた装 置を提供することを目的とするものである。 (課題を解決するための手段) The present invention has been made in view of the above, and can rotate or move the motor with almost no power consumption of the motor itself, and can output the electric power applied to the motor to an external output or The object is to provide a motor that can be consumed internally and a device using the motor. (Means for solving problems)
上記目的を解決するために、 請求項 1にかかるモータは、 環状の磁路を形成する電 機子鉄心と、 前記電機子鉄心に同一方向に卷回され直流抵抗が高く直列接続された複 数の第 1コイルと前記電機子鉄心に前記第 1コイルと同一方向に巻回され、 前記第 1 コイルに比して直流抵抗が低く且つ巻回数が小さく同一長さの磁区を形成し直列接続 又は並列接続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイルとが交 互に配置されるコイル群と、 直列接続された前記第 1コイル群に交流電力を供給する 電源と、 直列または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接 続された前記コイル群に接続される負荷と、 前記電機子鉄心に前記コイル群が巻回さ れた環状磁路電機子の内周近傍の周方向に、 前記コイル群が形成する磁区と同数であ つて磁極が異なる永久磁石が等間隔に交互に配設され前記環状磁路電機子に内接する 円板状の永久磁石回転子と、 を備えたことを特徴とする。  In order to solve the above-described object, a motor according to claim 1 includes an armature core that forms an annular magnetic path, and a plurality of series-connected high-resistance DC resistors wound around the armature core in the same direction. The first coil and the armature core are wound in the same direction as the first coil, and the DC resistance is lower and the number of turns is smaller than that of the first coil to form a magnetic domain having the same length. A plurality of second coils connected in parallel, wherein each first coil and each second coil are arranged alternately, and AC power is supplied to the first coil group connected in series The coil group is wound around the armature core, a power source, a load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series The coil group is formed in the circumferential direction near the inner circumference of the annular magnetic path armature. And a disk-shaped permanent magnet rotor in which permanent magnets having the same number of magnetic domains and different magnetic poles are alternately arranged at equal intervals and inscribed in the annular magnetic path armature.
この請求項 1の発明によれば、環状磁路電機子にスロットが形成されていないため、 コギングトルクがなく、 効率の良いモータを実現することができると共に、 第 1コィ ルと第 2コイルとに生じる逆起電力が打ち消されるため、逆トルクが殆ど発生しない、 効率のよいモータを実現することができる。 さらに、 環状磁路電機子は、 電源と負荷 との間の変圧器として機能しているため、 環状磁路自体による電力消費がほとんどな く、 この環状磁路電機子によって発生した位階によつて永久磁石回転子を回転させる と共に、 電源から負荷への電力転送も行うことができるものである。  According to the invention of claim 1, since the slot is not formed in the annular magnetic armature, it is possible to realize an efficient motor without cogging torque, and the first coil and the second coil. Since the counter electromotive force generated in the step 1 is canceled out, an efficient motor that hardly generates reverse torque can be realized. Furthermore, since the annular magnetic circuit armature functions as a transformer between the power source and the load, there is almost no power consumption by the annular magnetic circuit itself, depending on the level generated by the annular magnetic circuit armature. In addition to rotating the permanent magnet rotor, it can also transfer power from the power source to the load.
また、 請求項 2の発明に係るモー夕は、 上記の発明において、 前記永久磁石回転子 の軸に固定され、 該永久磁石回転子の永久磁石側の対向位置に配置されるヨークと、 前記永久磁石回転子前記ヨークとの間に配置される多角形状の空芯コイルと、 をさら に備えたことを特徴とする。 The motor according to the invention of claim 2 is characterized in that, in the above invention, the yoke is fixed to a shaft of the permanent magnet rotor and disposed at a position facing the permanent magnet side of the permanent magnet rotor, and the permanent magnet rotor. A polygonal air-core coil disposed between the magnet rotor and the yoke; It is prepared for.
この請求項 2の発明によれば、 前記永久磁石回転子と前記ヨークとの間に、 多角形 状の空芯コイルを配置することによって、 回転エネルギーを外部出力することができ る。  According to the invention of claim 2, rotational energy can be output to the outside by disposing a polygonal air-core coil between the permanent magnet rotor and the yoke.
また、 請求項 3の発明にかかるモータは、 上記の発明において、 前記永久磁石回転 子の回転に同期した整流子と、 前記電源に代え、 直流電力を供給する直流電源と、 を 備え、 前記整流子は、 前記 a流電源から供給される直流電力を整流転流して前記環状 磁路電機子に入力することを特徴とする。  The motor according to the invention of claim 3 comprises the commutator synchronized with the rotation of the permanent magnet rotor, and a direct current power source that supplies direct current power instead of the power source. The child is characterized in that DC power supplied from the a-flow power source is rectified and commutated and input to the annular magnetic circuit armature.
この請求項 3の発明によれば、 直流電源を用いた D Cモータを実現することができ る。  According to the invention of claim 3, a DC motor using a DC power supply can be realized.
また、 請求項 4の発明にかかるモータは、 上記の発明において、 前記負荷は、 整流 回路であり、 前記整流回路から出力された整流電力を前記直流電源に供給することを 特徴とする。  The motor according to the invention of claim 4 is characterized in that, in the above invention, the load is a rectifier circuit, and supplies the rectified power output from the rectifier circuit to the DC power supply.
この請求項 4の発明によれば、 負荷として整流回路を設け、 この整流された電力を 電源側に供給することによって、 省エネルギー化された効率のよいモータを実現でき る。  According to the fourth aspect of the present invention, by providing a rectifier circuit as a load and supplying the rectified power to the power supply side, an energy-saving and efficient motor can be realized.
また、 請求項 5の発明にかかるモータは、 上記の発明において、 前記環状磁路電機 子と前記整流子との相対位置関係をずらして前記永久磁石回転子の回転速度および回 転方向を制御することを特徴とする。  The motor according to the invention of claim 5 controls the rotational speed and direction of rotation of the permanent magnet rotor by shifting the relative positional relationship between the annular magnetic circuit armature and the commutator in the invention described above. It is characterized by that.
この請求項 5の発明によれば、 前記環状磁路電機子と前記整流子との相対位置関係 をずらして前記永久磁石回転子の回転速度および回転方向を制御し、 簡易な構成によ つてモータの回転制御を自在に行うことができる。 また、 請求項 6の発明にかかるモータは、 上記の発明において、 前記空芯コイルの 出力を前記環状磁路電機子に入力することを特徴とする。 According to the invention of claim 5, the rotational speed and direction of the permanent magnet rotor are controlled by shifting the relative positional relationship between the annular magnetic path armature and the commutator, and the motor is configured with a simple configuration. Can be freely controlled. The motor according to the invention of claim 6 is characterized in that, in the above invention, the output of the air-core coil is input to the annular magnetic circuit armature.
この請求項 6の発明によれば、 前記空芯コイルの出力を前記環状磁路電機子に入力 し、 環状磁路電機子や整流子などに発生する銅損や鉄損などの損失を補った効率のよ いモータを実現できる。  According to the invention of claim 6, the output of the air-core coil is input to the annular magnetic path armature to compensate for losses such as copper loss and iron loss that occur in the annular magnetic path armature and the commutator. An efficient motor can be realized.
また、 請求項 7の発明にかかるモータは、 上記の発明において、 環状の磁路を形成 する電機子鉄心と、 前記電機子鉄心に同一方向に巻回され直流抵抗が高く直列接続さ れた複数の第 1コイルと前記電機子鉄心に前記第 1コイルと同一方向に巻回され、 前 記第 1コイルに比して直流抵抗が低く且つ巻回数が小さく同一長さの磁区を形成し直 列接続又は並列接続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイル とが交互に配置されるコイル群と、 直列または並列接続された前記第 2コイル群と前 記第 1コイル群とが直列接続された前記コイル群に接続される負荷と、 前記電機子鉄 心に前記コイル群が巻回された環状磁路電機子の内周近傍の周方向に、 前記コイル群 が形成する磁区と同数であって磁極が異なる永久磁石が等間隔に交互に配設され前記 環状磁路電機子に内接する円板状の永久磁石回転子と、 前記永久磁石回転子の軸に固 定され、 該永久磁石回転子の永久磁石側の対向位置に配置されるヨークと、 前記永久 磁石回転子と前記ヨークとの間に配置される多角形状の空芯コイルと、 を備え、 前記 空芯コイルの出力を前記環状磁路電機子に入力して、 前記永久磁石回転子の回転力を アシストすることを特徴とする。  The motor according to the invention of claim 7 is the motor according to the above invention, wherein the armature core forming an annular magnetic path and a plurality of the armature core wound in the same direction and connected in series with high DC resistance. The first coil and the armature core are wound in the same direction as the first coil, and form a magnetic domain of the same length with a lower DC resistance and a smaller number of turns than the first coil. A plurality of second coils connected or connected in parallel; a coil group in which the first coils and the second coils are alternately arranged; and the second coil group connected in series or in parallel. A load connected to the coil group connected in series with the first coil group, and a circumferential direction in the vicinity of an inner periphery of an annular magnetic path armature in which the coil group is wound around the armature core. Permanent magnets with the same number of magnetic domains and different magnetic poles Disk-shaped permanent magnet rotors that are alternately disposed and inscribed in the annular magnetic path armature; fixed to the shaft of the permanent magnet rotor; and at a position facing the permanent magnet side of the permanent magnet rotor A yoke disposed, and a polygonal air core coil disposed between the permanent magnet rotor and the yoke, and an output of the air core coil is input to the annular magnetic circuit armature, The rotational force of the permanent magnet rotor is assisted.
この請求項 7の発明によれば、 空芯コイルの出力を環状磁路電機子に入力し、 永久 磁石回転子の回転力をアシストすることによって、 永久磁石回転子にかかる外部の回 転力が軽減され、 回転負荷を小さくした発電用モータを実現できる。 また、 請求項 8の発明にかかるモータは、 上記の発明において、 前記空芯コイルの 出力の全部あるいは一部を外部出力することを特徴とする。 According to the seventh aspect of the present invention, the output of the air-core coil is input to the annular magnetic path armature, and the rotational force of the permanent magnet rotor is assisted so that the external rotational force applied to the permanent magnet rotor is reduced. A motor for power generation with reduced rotational load can be realized. The motor according to the invention of claim 8 is characterized in that, in the above invention, all or part of the output of the air-core coil is externally output.
この請求項 8の発明によれば、 空芯コイルの出力の全部あるいは一部を外部出力す るようにしているので、 外部への発電出力機能をも併せ持った効率の良いモー夕を実 現できる。  According to the invention of claim 8, since all or a part of the output of the air-core coil is output to the outside, it is possible to realize an efficient mode with an external power generation output function. .
また、 請求項 9の発明にかかるモー夕は、 上記の発明において、 請求項 1〜8の何 れか一つに記載のモ一夕を、 前記永久磁石回転子の軸を中心に対向配置させ、 一方の モータの環状磁路電機子のコイル群の巻回方向を他方のモータの環状磁路電機子の巻 回方向に対して逆にし、 一方のモー夕の出力を他方のモータに入力する直列接続を行 なうことを特徴とする。  In addition, in the above invention, the motor according to any one of claims 1 to 8 is arranged to face each other around the axis of the permanent magnet rotor. The winding direction of the coil group of the annular magnetic path armature of one motor is reversed with respect to the winding direction of the annular magnetic path armature of the other motor, and the output of one motor is input to the other motor. It is characterized by serial connection.
この請求項 9の発明によれば、永久磁石回転子の軸を中心にモー夕が多段構成され、 かつ電気的に直列接続された連鎖出力を行うようにしているので、 一つのモータを駆 動時に転送する電力と同じ電力を用いて、 回転トルクを増大させることができる。 また、 請求項 1 0の発明にかかるモータは、 上記の発明において、 請求項 1〜9の いずれか一つに記載のモータを、 前記永久磁石回転子の軸を中心に多段構成し、 各モ 一夕の出力を順次、 次段のモ一夕に入力する直列接続を行うことをしたことを特徴と する。  According to the ninth aspect of the invention, the motor is configured in multiple stages around the axis of the permanent magnet rotor, and the chained output is electrically connected in series so that one motor is driven. Rotational torque can be increased using the same power that is sometimes transferred. The motor according to the invention of claim 10 is the motor according to any one of claims 1 to 9, wherein the motor according to any one of claims 1 to 9 is configured in multiple stages around the axis of the permanent magnet rotor. It is characterized by the serial connection in which the overnight output is sequentially input to the next stage.
この請求項 1 0の発明によれば、 永久磁石回転子の軸を中心にモータが多段構成さ れ、 かつ電気的に直列接続された連鎖出力を行うようにしているので、 一つのモータ を駆動時に転送する電力と同じ電力を用いて、回転トルクを増大させることができる。 また、 請求項 1 1の発明にかかるモー夕は、 上記の発明において、 請求項 1〜1 0 のいずれかに一つに記載のモータを、 回転体に 1以上組み込んだことを特徴とする。 この請求項 1 1の発明によれば、 請求項 1〜1 0のいずれかに一つに記載のモー夕 を、 回転体に 1以上組み込むことによって、 車両の駆動をアシストすることができる とともに、 電力のフィードバックを効率良く行うことができ、 省エネルギー化された 車両を実現できる。 According to the invention of claim 10, the motor is configured in multiple stages around the axis of the permanent magnet rotor, and the chained output is electrically connected in series so that one motor is driven. Rotational torque can be increased using the same power that is sometimes transferred. Further, the mobile according to the invention of claim 11 is characterized in that, in the above invention, one or more of the motors according to any one of claims 1 to 10 are incorporated in a rotating body. According to the invention of claim 11, driving of the vehicle can be assisted by incorporating at least one of the features described in any of claims 1 to 10 into the rotating body, and Electricity feedback can be performed efficiently, and an energy-saving vehicle can be realized.
また、 請求項 1 2の発明にかかるモータは、 上記の発明において、 請求項 7〜1 0 のいずれか一つに記載のモータを、 回転体に 1以上組み込んだことを特徴とする。 この請求項 1 2の発明によれば、請求項 7〜1 0のいずれか一つに記載のモータを、 回転体に 1以上組み込み、 回転駆動をアシストするようにしているので、 効率の良い 発電機を実現できる。  A motor according to the invention of claim 12 is characterized in that, in the above invention, one or more of the motors according to any one of claims 7 to 10 are incorporated in a rotating body. According to the invention of claim 12, since at least one of the motors according to claims 7 to 10 is incorporated in the rotating body so as to assist the rotational drive, efficient power generation Machine can be realized.
また、 請求項 1 3の発明にかかるモータは、 上記の発明において、 直線上の磁路を 形成する電機子鉄心と、 前記電機子鉄心に巻回され直流抵抗が高く直列接続された複 数の第 1コイルと前記電機子鉄心に巻回され、 前記第 1コイルに比して直流抵抗が低 く且つ巻回数が小さく同一長さの磁区を形成し直列接続又は並列接続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイルとが交互に配置されるコイル群と、 直列接続された前記第 1コイル群に交流電力を供給する電源と、 直列または並列接続 された前記第 2コイル群と前記第 1コイル群とが直列接続された前記コイル群に接続 される負荷と、 前記コイル群の近傍に設けられ、 前記電機子鉄心の長手方向に沿って 前記磁区と同一の長さを有する永久磁石と、 を備えたことを特徴とする。  The motor according to the invention of claim 13 is the motor according to the invention described above, wherein the armature core that forms a linear magnetic path is wound around the armature core, and the plurality of the series connected in series with high DC resistance. A plurality of second coils wound around the first coil and the armature core, having a DC resistance lower than that of the first coil and having a smaller number of turns to form a magnetic domain of the same length and connected in series or in parallel. A coil group in which each first coil and each second coil are alternately arranged, a power source for supplying AC power to the first coil group connected in series, and a series or parallel connection A load connected to the coil group in which the second coil group and the first coil group are connected in series; provided in the vicinity of the coil group; and the same as the magnetic domain along a longitudinal direction of the armature core A permanent magnet having a length of It is a sign.
この請求項 1 3の発明によれば、 電機子が、 電源と負荷との間の変圧器として機能 しているため、 電機子自体による電力消費がほとんどなく、 この電機子によって発生 した次回によって永久磁石を移動させるリニアモー夕を実現できると共に、 電源から 負荷への電力転送をも行うことができる。 また、 請求項 1 4の発明にかかるモー夕は、 上記の発明において、 環状又は直線状 の磁路を形成する電機子鉄心と、 前記電機子鉄心に同一方向に巻回され直列接続又は 並列接続された複数の第 1コイルと前記電機子鉄心に前記第 1コイルと同一方向に巻 回され、 前記第 1コイルに比して同巻回数の同一長さの磁区を形成し直列接続又は並 列接続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイルとが同一抵抗 値を有しながら交互に配置されるコイル群と、 直列接続又は並列接続された前記第 1 コイル群に交流電力を供給する電源と、 直列接続または並列接続された前記第 2コィ ル群と前記第 1コイル群とが直列接続又は並列接続された前記コイル群に接続される 負荷と、 前記電機子鉄心に前記コイル群が巻回された環状磁路電機子の内周近傍の周 方向に、 前記コイル群が形成する磁区と同数であって磁極が異なる永久磁石が等間隔 に交互に配設され前記環状磁路電機子に内接する円板状の永久磁石回転子と、 を備え たことを特徴とする。 According to the invention of claim 13, since the armature functions as a transformer between the power source and the load, there is almost no power consumption by the armature itself, and it becomes permanent by the next time generated by this armature. In addition to realizing a linear motor that moves magnets, it can also transfer power from the power supply to the load. The motor according to the invention of claim 14 is the above-described invention, wherein the armature core forming an annular or linear magnetic path is wound around the armature core in the same direction and connected in series or in parallel. A plurality of the first coils and the armature core are wound in the same direction as the first coil, and form a magnetic domain having the same number of turns as the first coil in series connection or in parallel. A plurality of second coils connected to each other, and each first coil and each second coil having the same resistance value, and the first coil group connected in series or in parallel. A power source for supplying AC power to the coil group, a load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series or in parallel, and An annular magnetic path in which the coil group is wound around an armature core In the circumferential direction in the vicinity of the inner circumference of the armature, the same number of permanent magnets as the magnetic domains formed by the coil group and different magnetic poles are alternately arranged at equal intervals, and the shape of the disk is inscribed in the annular magnetic path armature. And a permanent magnet rotor.
また、 請求項 1 5の発明にかかるモー夕は、 上記の発明において、 環状又は直線状 の磁路を形成する電機子鉄心と、 前記電機子鉄心に巻回され直列接続又は並列接続さ れた複数の第 1コイルと前記電機子鉄心に巻回され、 前記第 1コイルに比して同卷回 数の同一長さの磁区を形成し直列接続又は並列接続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイルとが同一抵抗値を有しながら交互に配置されるコイル群 と、 直列接続又は並列接続された前記第 1コイル群に交流電力を供給する電源と、 直 列接続または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接続又は 並列接続された前記コイル群に接続される負荷と、 前記コイル群の近傍に設けられ、 前記電機子鉄心の長手方向に沿って前記磁区と同一の長さを有する永久磁石と、 を備 えたことを特徴とする。 図面の簡単な説明 The motor according to the invention of claim 15 is the above invention, wherein the armature core forming an annular or linear magnetic path is wound around the armature core and connected in series or in parallel. A plurality of first coils and a plurality of second coils wound around the armature core, forming a magnetic domain having the same number of turns as the first coil and connected in series or in parallel. A coil group in which each first coil and each second coil are alternately arranged while having the same resistance value; and a power source for supplying AC power to the first coil group connected in series or in parallel. A load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series or in parallel; and provided in the vicinity of the coil group; The same length as the magnetic domain along the longitudinal direction of the core And a permanent magnet that is characterized in that example Bei the. Brief Description of Drawings
第 1図は、 先行技術である環状 D Cモータを示す基本回路図である。 FIG. 1 is a basic circuit diagram showing a prior art annular DC motor.
第 2図は、 この発明の実施例 1であるモー夕に用いられる電機子の巻き線構造を示す 基本回路図である。 FIG. 2 is a basic circuit diagram showing a winding structure of an armature used in the first embodiment of the present invention.
第 3図は、 第 2図に示した巻線に流れる電流の様子を示す図である。 FIG. 3 is a diagram showing a state of current flowing in the winding shown in FIG.
第 4図は、 この発明の実施例 1であるリニアモータの概要構成を示す基本回路図であ る。 FIG. 4 is a basic circuit diagram showing a schematic configuration of the linear motor which is Embodiment 1 of the present invention.
第 5図は、 この発明の実施例 1であるリニアモ一夕に用いられるコイルの他の接続形 態を示す基本回路図である。 FIG. 5 is a basic circuit diagram showing another connection form of the coil used in the linear motor according to the first embodiment of the present invention.
第 6図は、 この発明の実施例 2であるモータの組み立て図である。 FIG. 6 is an assembly diagram of a motor which is Embodiment 2 of the present invention.
第 7図は、 第 6図に示した環状磁路電機子と永久磁石回転子との位置関係を示す説明 図である。 FIG. 7 is an explanatory view showing the positional relationship between the annular magnetic path armature and the permanent magnet rotor shown in FIG.
第 8図は、 第 6図に示したモータの全体概要を示す模式図である。 FIG. 8 is a schematic diagram showing an overall outline of the motor shown in FIG.
第 9 a、 b図は、 第 8図に示したモータ中、 電流のスィッチ部で環状磁路電機子の回 転で磁石に対面する N極の関係位置の実施例を示している。 FIGS. 9a and 9b show examples of the relative positions of the N poles facing the magnet in the motor shown in FIG. 8 by the rotation of the annular magnetic circuit armature in the current switch section.
第 1 0図は、 バッテリーを電化するための図 8のモータの模式図である。 FIG. 10 is a schematic diagram of the motor of FIG. 8 for electrifying the battery.
第 1 1図は、 第 8図に示したモー夕の環状磁路電機子に入力される電圧、 負荷に出力 される電圧、 および整流回路から出力される電圧の各波形を示す図である。 FIG. 11 is a diagram showing waveforms of a voltage input to the MONO ring magnetic circuit armature shown in FIG. 8, a voltage output to the load, and a voltage output from the rectifier circuit.
第 1 2図は、 この発明の他の実施例である発電機能を有するモ一夕の組み立て図であ る。 FIG. 12 is an assembly view of a motor having a power generation function according to another embodiment of the present invention.
第 1 3図は、 第 1 2図に示した環状磁路電機子と永久磁石回転子と空芯コイルとの位 置関係を示す説明図である。 Fig. 13 shows the position of the annular magnetic path armature, permanent magnet rotor and air-core coil shown in Fig. 12. It is explanatory drawing which shows arrangement | positioning relationship.
第 1 4図は、 バッテリーを電化するための発電機として起動する第 1 2図であるモー 夕の模式図である。 FIG. 14 is a schematic view of the motor that is shown in FIG. 12 starting as a generator for electrifying the battery.
第 1 5図は、 第 1 2図におけるモー夕一において、 環状磁路電機子と回転子と空芯コ ィルとの位置関係を示す説明図である。 FIG. 15 is an explanatory diagram showing the positional relationship among the annular magnetic path armature, the rotor, and the air-core coil in the mode shown in FIG.
第 1 6図は、 環状磁路電機子と回転子と空芯コイルとの位置関係の変形例を示す説明 図である。 FIG. 16 is an explanatory view showing a modification of the positional relationship among the annular magnetic path armature, the rotor, and the air-core coil.
第 1 7 a図は、 外部回転子よつて起動されるこの発明の他の実施例である発電モータ の透視である。 FIG. 17a is a perspective view of a generator motor which is another embodiment of the present invention activated by an external rotor.
第 1 7 b図は、 第 1 7図に示すモータの基本回路図である。 FIG. 17 b is a basic circuit diagram of the motor shown in FIG.
第 1 8 a図は、 この発明の他の実施例である二層の発電モータを示す透視図である。 第 1 8 b図は、 第 1 8図に示すモータの基本回路図である。 FIG. 18 a is a perspective view showing a two-layer electric motor which is another embodiment of the present invention. FIG. 18 b is a basic circuit diagram of the motor shown in FIG.
第 1 9図は、 この発明の他の実施例である二層の発電モータを示す透視図である。 第 2 0図は、 パルスから供給される他の実施例であるモータ/発電機の一部を示す基本 回路図である。 FIG. 19 is a perspective view showing a two-layer electric motor that is another embodiment of the present invention. FIG. 20 is a basic circuit diagram showing a part of a motor / generator which is another embodiment supplied from a pulse.
第 2 1図は、 電力が電源から供給されている第 2 0図に示す基本回路図である。 FIG. 21 is a basic circuit diagram shown in FIG. 20 in which power is supplied from a power source.
第 2 2図は、 電力が電源から供給されていない第 2 0図に示す基本回路図である。 第 2 3 a図は、 回転子中の光センサ一及び磁石にかかわらず、 第 2 0図における 2ケ 所のモ一夕/発電機のスター夕一の周囲で巻かれたコイルの 2区画の近傍コイルの基本 回路図である。 FIG. 22 is a basic circuit diagram shown in FIG. 20 in which power is not supplied from the power source. Figure 2 3a shows the two sections of the coil wound around the two motor / generator stars in Figure 20 regardless of the light sensor and magnet in the rotor. It is a basic circuit diagram of a neighboring coil.
第 2 3 b図は、 第 2 1図及び第 2 2図において回転子が動作中において、 電力が供給 し或いは供給しないときに電圧がコイルへ応用されたことを示す図である。 第 2 3 c図は、 第 2 2図においてコイルに構わずに回転子が動作した時に、 コイルに よって発電された整流電圧を示す図面である。 FIG. 23b is a diagram showing that voltage is applied to the coil when power is supplied or not supplied while the rotor is operating in FIG. 21 and FIG. FIG. 23c is a drawing showing the rectified voltage generated by the coil when the rotor is operated regardless of the coil in FIG.
第 2 4 a図は、 電力が第 2 0図のモー夕一に供給された時の入力電圧を示す図面であ る。 FIG. 24a shows the input voltage when power is supplied to the motor shown in FIG.
第 2 4 b図は、 第 2 2図において、 電力がコイルに供給されないときにコイルを横切 つて釣り合いの取れた誘電電圧を示す図面である。 FIG. 24 shows the dielectric voltage balanced across the coil when no power is supplied to the coil in FIG.
第 2 4 c図は、 操作中において、 第 2 0図のモ一夕一回路の調整回路へ供給する電圧 を示す図面である。 FIG. 24c is a drawing showing the voltage supplied to the adjustment circuit of the circuit of FIG. 20 during operation.
第 2 4 d図は、 操作中において、 抵抗器の様に電荷を横切って釣り合う D C電圧を示 す図面である。 Figure 24d shows a DC voltage that balances across the charge like a resistor during operation.
第 2 5図は、 電源に相対的に供給する 2個のモータ一の基本回路図である。 FIG. 25 is a basic circuit diagram of two motors that are relatively supplied to a power source.
第 2 6図は、 第 2 5図において 2個のモ一夕一に対する電圧波形を示す図面である。 第 2 7図は、 電荷バッテリーに相対的に供給する 2個のモータ一 100c, 100dの選択的 相対配置図である。 FIG. 26 is a diagram showing voltage waveforms for the two modules in FIG. FIG. 27 is a selective relative arrangement diagram of two motors 100c and 100d that are relatively supplied to a charge battery.
第 2 8— 3 0図は、 本発明のモーターと発電機と共に使用する空芯コイル装置の周り にある磁石の回転を示す図面である。 FIG. 28-30 shows the rotation of the magnet around the air-core coil device used with the motor and generator of the present invention.
第 3 1図は、 本発明の詳細に記載されるいくつかの実施例で用いられる選択的な環状 磁路電機子芯の概要図面である。 FIG. 31 is a schematic drawing of an optional annular magnetic circuit armature core used in some embodiments described in detail in the present invention.
第 3 2図は、本発明において用いられる変圧器を形成するコイルの概要描写図である。 第 3 3図は、 この発明の実施例 7であるアシスト自転車の全体概要構成を示す模式図 である。 FIG. 32 is a schematic depiction of a coil forming a transformer used in the present invention. FIG. 33 is a schematic diagram showing an overall schematic configuration of an assist bicycle according to Embodiment 7 of the present invention.
第 3 4図は、 第 3 3図に示したアシスト自転車に用いられるモータと高速発電モータ との関係を示す図である。 Fig. 34 shows the motor and high-speed motor used in the assist bicycle shown in Fig. 33. It is a figure which shows the relationship.
第 35図は、 この発明の実施例 8である風力発電機の全体概要構成を示す模式図であ る。 FIG. 35 is a schematic diagram showing an overall schematic configuration of a wind power generator that is Embodiment 8 of the present invention.
(符号の説明)  (Explanation of symbols)
l a〜: L c, 2 a〜2 c、 41〜43, 47、 51 a〜 51 d、 52〜52 d コィ ル  l a to: L c, 2 a to 2 c, 41 to 43, 47, 51 a to 51 d, 52 to 52 d coil
3, 13, 23 286 鉄芯  3, 13, 23 286 Iron core
4 電源 4 Power supply
5 負荷 5 Load
10, 22, 72 永久磁石  10, 22, 72 Permanent magnet
20, 40, 80, 90, 100, 11 1, 112 モ一夕  20, 40, 80, 90, 100, 11 1, 112
21, 71, 21 c、 91 永久磁石回転子 21, 71, 21 c, 91 Permanent magnet rotor
21 a、 25 ヨーク 21 a, 25 York
21 b シャフト 21 b shaft
24, 24 a、 24b、 24 c、 102 環状磁路電機子  24, 24 a, 24 b, 24 c, 102 annular magnetic circuit armature
26 整流子  26 Commutator
26 a 整流子ブラシ  26 a commutator brush
27, 28 ベアリング  27, 28 Bearing
31 直流電源 31 DC power supply
32 負荷  32 Load
33 整流回路  33 Rectifier circuit
34 バッテリー 4 OA, 150 空芯コイル 34 battery 4 OA, 150 Air core coil
104, 106 スィッチング素子  104, 106 switching element
107 光センサー  107 Light sensor
108 DC電源  108 DC power supply
1 1 5, 126, 130, 1 32 ノード  1 1 5, 126, 130, 1 32 nodes
1 13, 131 高速発電モ'一夕  1 13, 131 High-speed power generation
1 17 ブリッジダイオード  1 17 Bridge diode
121, 122 車輪  121, 122 wheels
134 キャパシター  134 capacitors
136 抵抗器  136 resistors
1 0 プロペラ  1 0 Propeller
141 ロータ  141 rotor
I I, 1 2, 1 3, 1 5 端子 発明を実施するための最良の形態  I I, 1 2, 1 3, 1 5 terminals BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照して、 この発明にかかるモータ及びこれを用いる装置の好適 な実施例を詳細に説明する。  Exemplary embodiments of a motor and an apparatus using the same according to the present invention will be explained below in detail with reference to the accompanying drawings.
(実施例 1 )  (Example 1)
まず、 この発明の実施例 1について説明する。 図 2は、 この発明の実施例 1である 直線状のモータに用いられる直線上鉄心に巻かれる 2つのコイル 1, 2の巻き線構造 を示す基本回路図である。 この実施例において、 コイル 1及びコイル 2は鉄心 3の周 りに同一方向で巻かれており、 他のものの近傍に位置して平行に接続されている。 ま た、 図 3は、 図 2においてコイル 1 , 2に相当する回路図であり、 図 1に示した巻き 線に流れる電流 I 1、 I 2の様子を示す図である。 図 2において、 鉄心 3は、 断面積 が同一の棒状構造をもつ積層型電磁鋼板である。 コイル 1, 2は異なった抵抗を有し ている。 例えば、 鉄心 3には、 細い銅線であって巻線数の多く、 又、 抵抗値の高いコ ィル 1と、 太い銅線であって巻き線数が少なく、 コイル 1と同一巻き線方向に卷回さ れたコイル 2とがそれぞれ巻回され、 直列接続されて隣接配置される。 コイル 1、 2 の抵抗は、 後述する図面 2 0の実施例において示されると同様なものである。 First, Embodiment 1 of the present invention will be described. FIG. 2 is a basic circuit diagram showing a winding structure of two coils 1 and 2 wound around a straight iron core used in the linear motor that is Embodiment 1 of the present invention. In this embodiment, the coil 1 and the coil 2 are wound around the iron core 3 in the same direction, and are connected in parallel near each other. Ma FIG. 3 is a circuit diagram corresponding to coils 1 and 2 in FIG. 2, and shows the states of currents I 1 and I 2 flowing through the winding shown in FIG. In FIG. 2, iron core 3 is a laminated electrical steel sheet having a rod-like structure with the same cross-sectional area. Coils 1 and 2 have different resistances. For example, the iron core 3 is a thin copper wire with a large number of windings, a coil 1 with a high resistance value, and a thick copper wire with a small number of windings, and the same winding direction as the coil 1 The coil 2 wound around each is wound, connected in series and arranged adjacent to each other. The resistances of the coils 1 and 2 are the same as those shown in the embodiment of FIG.
コイル 1の両端である端点 T 1、 T 2には、 交流の矩形波電圧を発生する電源 4が 接続される。 コイル 2が接続されないコイル 1の端点 T 1とコイル 1が接続されない コイル 2の端点 T 3との間には、 負荷 5が接続される。 すなわち、 入力側には電源 4 が接続され、 出力側には負荷 5が接続される。  A power source 4 that generates an AC rectangular wave voltage is connected to the end points T 1 and T 2 that are both ends of the coil 1. The load 5 is connected between the end point T 1 of the coil 1 to which the coil 2 is not connected and the end point T 3 of the coil 2 to which the coil 1 is not connected. That is, the power supply 4 is connected to the input side, and the load 5 is connected to the output side.
図 2において見られるように、 コイル 1及びコイル 2は共通の出力〇を分配してい る。 出力〇は、 コイル 1 , 2に対して中間口出しとして働いている。 コイル 1及ぴコ ィル 2は 1つのコイルの部分であったり、 電気的に接続される分離コイルであったり する。 操作中、 コイル 1及びコイル 2は、 それぞれの端部と一対となって誘導される。 一次及び二次コイルを形成するコイル 1及びコイル 2は、 めいめいに単巻変圧器 (ォ —トトランス) として、 一次コイル及び二次コイルは共通巻きとして分配される。 入力された電流 Iは、 コイル 1及びコイル 2の中にめいめいに電流 I 1及び電流 I 2として分配される。 ここで、 コイル 1は、 コイル 2より強い抵抗を示し、 電源 4か ら入力された電流は図 3に示されるように、 入力された電流 Iは、 電流 1 2として負 荷 5にほとんど流れ、 コイル 1に分流した電流 I 1は、 微小なものとなる。 一方、 コ ィル 1は、 卷き線数が多く、 コイル 2は、 巻き線数が少ないため、 コイル 2の両端で ある端点 T 2 , Τ 3間の電圧に比して、 コイル 1の端点 T l、 Τ 2間の電圧は大きい ものとなる。 例えば、 コイル 1対コイル 2の巻き線数比を 1 0 0対 1にすると、 入力 側の電圧 V 1対出力側の電圧 V 2は、 1 0 0対 1 0 1となり、 ほぼ 1対 1の変圧器と して機能する。 なお、 コイル 1およびコイル 2のそれぞれが消費する電力は同じであ る。 As can be seen in Fig. 2, coil 1 and coil 2 share a common output 〇. Output ◯ works as an intermediate lead for coils 1 and 2. Coil 1 and coil 2 may be part of one coil or a separate coil that is electrically connected. During operation, coil 1 and coil 2 are guided in pairs with their respective ends. Coil 1 and coil 2 forming the primary and secondary coils are distributed as an autotransformer, and the primary and secondary coils are distributed as a common winding. The input current I is distributed as the current I 1 and the current I 2 in the coil 1 and the coil 2. Here, the coil 1 has a stronger resistance than the coil 2, and the current input from the power supply 4 almost flows into the load 5 as the current 12 as shown in FIG. The current I 1 shunted to coil 1 is very small. On the other hand, coil 1 has a large number of winding wires and coil 2 has a small number of windings. Compared with the voltage between a certain end point T 2 and Τ 3, the voltage between the end point T l and Τ 2 of the coil 1 is large. For example, if the winding ratio of coil 1 to coil 2 is set to 100: 1, the input side voltage V1 to the output side voltage V2 will be 10:00 to 10.1, almost 1 to 1. It functions as a transformer. Note that the power consumed by each of the coils 1 and 2 is the same.
コイル 1及びコイル 2は、 それぞれ並列に電気的に接続され、 電流の方向は、 鉄心 3と同じ方向巻かれたコイルを通してお互いに反対の方向に流れる。 磁界領域は、 以 下に示す図 4で述べられるように、 コイル 1 , 2の近傍で異なっている。  Coil 1 and coil 2 are each electrically connected in parallel, and the direction of current flows in the opposite direction through the coil wound in the same direction as iron core 3. The magnetic field region differs in the vicinity of coils 1 and 2 as described in Fig. 4 below.
図 4は、 この発明の図 1一 3の実施例であるモータの一例であるリニアモータの概 念構成を示す回路図である。 コイル 1は、 1 a〜l c区分のコイルを包含し、 コイル 2は 2 a〜2 c区分のコイルを包含している。 このような単巻変圧器の構成は、 図 4 に示すように棒状の鉄心 1 3の長手方向に沿ってコイル 1, 2に対応する各コイル 1 a〜l c, 2 a〜 2 cを交互に隣接配置することによって、 リニアモータを形成する ことができる。  FIG. 4 is a circuit diagram showing a schematic configuration of a linear motor which is an example of the motor which is the embodiment of FIGS. Coil 1 includes 1 a to l c section coils, and coil 2 includes 2 a to 2 c section coils. As shown in Fig. 4, such a single-winding transformer is configured such that the coils 1a to lc and 2a to 2c corresponding to the coils 1 and 2 are alternately arranged along the longitudinal direction of the rod-shaped iron core 13. By arranging them adjacent to each other, a linear motor can be formed.
なお、 コイル 1 a〜 1 cとコイル 2 a〜2 cとの配置関係は、 コイル 1, 2を直列 的に 3分割し、 3分割されたコイル 2 a〜2 cを、 3分割されたコイル 1 a〜 1 cに 隣接配置された関係でもある。 また、 各コイル l a〜l c、 2 a〜 2 cの長手方向の 長さは全て同じである。 コイル 1及びコイル 2 (或いは単一コイル) は、 各コイル 1 a〜l c及び 2 a〜2 cで巻かれて形成する。 縦軸方向におけるコイル 1 a〜l cの 幅 L 1とコイル 2 a〜2 cの幅 L 2は、 同じであることが望ましい。 コイル 1及びコ ィル 2は、 コイル l a〜l c、 2 a〜2 cで直線的にめいめいの状態で別々に接続さ れる。 これらコイル l a〜l c、 2 a〜2 cの卷方向は同一方向であって、 隣接するコィ ルに流れる電流の向きは逆であるため、 各コイル l a~l c、 2 &〜2じの端点丁 1 1〜T 16には、 異なる磁極が発生する。 例えば、 端点 Τ 1 1, Τ 13 , Τ 15には Ν極が発生し、 端点 T12, Τ 14, Τ 16には S極が発生する。 また、 電流の向き が変わると、 Ν極は S極になり、 S極は Ν極になる。 したがって、 コイル lA〜l c、 2 a〜2 cの近傍であって、 鉄心 13の長手方向に沿って N極と S極とを形成し、 コ ィル l a〜l c、 2 a〜 2 cと同じ長さを有する永久磁石 10を設け、 この永久磁石 10が鉄心 13の長方向にガイドされる構成をとることによって、 リニアモ一夕が実 現される。 コイル 1 a〜l c及びコイル 2 a〜2 cの幅 L 1及び L 2と同じ幅 L 3の 永久磁石 10は、 コイル 1 a〜l c及び 2 a〜2 cの近傍にそれぞれ位置する。 公知 技術として知られるように、 支持するための構造 (図示しない) や鉄心 I 3に沿う長 い永久磁石の誘導は、 前もって用意されている。 永久磁石は、 変圧器 (トランス) の 磁性極性を変化させるために移動する。 この場合、鉄心 13およびコイル 1 a〜: L c, 2 a〜2 cは、 ほぼ 1対 1の変圧器として機能するのみで、 電源 4から供給される電 力は、 負荷 5に殆ど供給される。 すなわち、 図 3に示したリニアモータは、 電源 4か ら負荷 5に供給される途中に変圧器を設け、 この変圧器の磁極変化によって永久磁石 を移動させるようにしている。 The arrangement relationship between the coils 1 a to 1 c and the coils 2 a to 2 c is that the coils 1 and 2 are divided into three in series, and the three divided coils 2 a to 2 c are divided into three divided coils. It is also a relationship placed adjacent to 1 a to 1 c. The lengths of the coils la to lc and 2a to 2c in the longitudinal direction are all the same. Coil 1 and coil 2 (or a single coil) are formed by winding each coil 1a-lc and 2a-2c. Desirably, the width L 1 of the coils 1 a to lc and the width L 2 of the coils 2 a to 2 c in the vertical axis direction are the same. Coil 1 and coil 2 are separately connected in a linear state by coils la to lc and 2 a to 2 c. These coils la to lc and 2 a to 2 c have the same saddle direction, and the direction of the current flowing through the adjacent coils is opposite, so that each coil la to lc, 2 & to 2 end points 1 1 to T 16 have different magnetic poles. For example, negative poles are generated at the end points Τ 11, Τ 13 and Τ 15, and S poles are generated at the end points T12, Τ 14 and Τ 16. And when the direction of current changes, the negative pole becomes S pole and the S pole becomes negative pole. Therefore, in the vicinity of the coils lA to lc and 2 a to 2 c, the N pole and the S pole are formed along the longitudinal direction of the iron core 13, and the same as the coils la to lc and 2 a to 2 c By providing a permanent magnet 10 having a length and guiding the permanent magnet 10 in the longitudinal direction of the iron core 13, a linear motor is realized. The permanent magnets 10 having the same width L 3 as the widths L 1 and L 2 of the coils 1 a to lc and the coils 2 a to 2 c are positioned in the vicinity of the coils 1 a to lc and 2 a to 2 c, respectively. As known in the art, a supporting structure (not shown) and induction of a long permanent magnet along the iron core I 3 are prepared in advance. The permanent magnet moves to change the magnetic polarity of the transformer. In this case, the iron core 13 and the coils 1 a˜: L c, 2 a˜2 c only function as a one-to-one transformer, and the power supplied from the power source 4 is almost supplied to the load 5. The That is, the linear motor shown in FIG. 3 is provided with a transformer in the middle of being supplied from the power source 4 to the load 5, and the permanent magnet is moved by changing the magnetic pole of this transformer.
なお、 図 5に示すように、 コイル 2 a〜2 c及び Z又はコイル 1 a〜l cを並列接 続するようにしてもよい。 この場合、 コイル 2 a〜 2 cの全抵抗値がさらに低減され、 図 4に示すように、 変圧器としての機能をさらに 1対 1に近づけることができる。 端子 I 2 a、 I 2 b、 及び I 5を示す。 端子 I 1は 2次コイル 2 a、 2 b、 2 cの 最初の端部に接続している。 端子 I 2 a及び I 2 bは、 コイル 1 aの最初の端部に接 続している。 ターミナル 1 5は、 コイル 2 cの 2番目の端部、 コイル l c (中心の口 出しを形成する) の 2番目の端部、 コイル 2 a及び 2 cの 2番目の端部と接続する。 (実施例 2 ) As shown in FIG. 5, the coils 2a to 2c and Z or the coils 1a to lc may be connected in parallel. In this case, the total resistance values of the coils 2a to 2c are further reduced, and the function as a transformer can be made closer to 1: 1 as shown in FIG. Terminals I 2 a, I 2 b, and I 5 are shown. Terminal I 1 is connected to the first end of secondary coils 2 a, 2 b, 2 c. Terminals I 2 a and I 2 b are connected to the first end of coil 1 a. It continues. Terminal 15 connects to the second end of coil 2c, the second end of coil lc (which forms the center lead), and the second ends of coils 2a and 2c. (Example 2)
次に、 この発明の実施例 2について説明する。 上述した実施例 1では、 リニアモー 夕を実現していたが、 この実施例 2では、 上述した変圧器を用いた回転型のモー夕を 実現している。  Next, a second embodiment of the present invention will be described. In the first embodiment described above, the linear motor is realized, but in the second embodiment, the rotary motor using the above-described transformer is realized.
図 6は、 この発明の実施例 2である永久磁石回転子 2 1及び環状磁路電機子 2 4か らなる口一タリーモータ 2 0の組み立て図である。 本実施例において、 環状磁路電機 子 2 4は、 環状で、 円形鉄心 2 3及び回転子とから成り立つており、 円形状である。 この試験例では、 図 7に示すように 3つのコイル 1 a〜c、 及び 3つのコイル 2 a〜 2 cが鉄心 I .3のの周りに交互に巻きつけている。 図 5の巻き方のように、 コイル 1 a〜l cは直列巻きで、 コイル 2 a〜2 cは並列巻きである。 この試験例において、 コイル l a〜l cは、 細く且つコイル 2 a〜2 cよりも回数をより多く有し、 コイル 2 a〜 2より抵抗値が高くなつている。 コイル 1 a〜l c及び 2 a〜2 cは、 鉄心の 周囲をそれぞれが 6 0度で巻き付いている。 端子 I 1、 I 2及び I 5は、 図 6及び図 8に示すように、 電源に対して一対のコイル 1 a〜l c、 2 a〜 2 cを供給している。 このように端子が接続されたモ一夕一は、 一方において図 5に示すとおりである。 上述の通り、 本実施例では、 鉄心 I 3は、 環状磁路電機子 2 4を形成して動かない ものである。 鉄心 I 3の内周部は、 永久磁石回転子 2 1の外周部と嵌合する。 環状磁 路電機子 2 4は、 永久磁石回転子 2 1の上に位置し、 数 mmのエアギャップを有して いる。 また、 図 7は、 図 6に示した環状磁路電機子と永久磁石回転子との位置関係を 示す説明図である。 さらに、 図 8では、 図 6に示したモータの全体概要を示す模式図 である。 図 6〜図 8において、 永久磁石回転子 2 1は、 円板状のヨーク 2 1 aの上面 周囲に N極と S極との円形の永久磁石 2 2が交互に配置される。 FIG. 6 is an assembly diagram of the mouthpiece tally motor 20 including the permanent magnet rotor 21 and the annular magnetic path armature 24 according to the second embodiment of the present invention. In the present embodiment, the annular magnetic circuit armature 24 is annular, is composed of a circular core 23 and a rotor, and has a circular shape. In this test example, as shown in FIG. 7, three coils 1 a to c and three coils 2 a to 2 c are alternately wound around the iron core I.3. As shown in FIG. 5, the coils 1a to lc are connected in series, and the coils 2a to 2c are connected in parallel. In this test example, the coils la to lc are thin and have a larger number of times than the coils 2 a to 2 c and have a higher resistance value than the coils 2 a to 2. Coils 1 a to lc and 2 a to 2 c are wound around the core at 60 degrees. As shown in FIGS. 6 and 8, the terminals I 1, I 2 and I 5 supply a pair of coils 1 a to 1 lc and 2 a to 2 c to the power source. Figure 5 shows how the terminals are connected in this way. As described above, in this embodiment, the iron core I 3 forms the annular magnetic path armature 24 and does not move. The inner peripheral part of the iron core I 3 is fitted with the outer peripheral part of the permanent magnet rotor 21. The annular magnetic armature 24 is positioned on the permanent magnet rotor 21 and has an air gap of several mm. FIG. 7 is an explanatory diagram showing the positional relationship between the annular magnetic path armature and the permanent magnet rotor shown in FIG. In addition, Fig. 8 is a schematic diagram showing the overall outline of the motor shown in Fig. 6. It is. 6 to 8, in the permanent magnet rotor 21, circular permanent magnets 22 having N poles and S poles are alternately arranged around the upper surface of the disk-shaped yoke 21 a.
図 6では、 永久磁石回転子 2 1の上に位置する 6個の永久磁石を示している。 3つ の N極と 3つの S極の永久磁石 2 2が周方向に等間隔に配置されている。 永久磁石 2 2は、 一例としてネオジゥムである。 同様に、 永久磁石 2 2は、 電磁石である。 永久 磁石回転子 2 1は、 鉄のような磁化素材である。  FIG. 6 shows six permanent magnets positioned on the permanent magnet rotor 21. Three N-pole and three S-pole permanent magnets 22 are arranged at equal intervals in the circumferential direction. The permanent magnet 22 is, for example, neodymium. Similarly, the permanent magnet 22 is an electromagnet. The permanent magnet rotor 2 1 is a magnetized material such as iron.
この実施例において、 環状磁路電機子 2 4は、 図 5に示した回路の鉄心 1 3を環状 構造としたのであり、 内周が、永久磁石回転子 2 1の外周に一致するようにしている。 そして、 環状磁路電機子 2 4は、 永久磁石回転子 2 1の上に、 数ミリのエアギャップ を設け、 電機子として配置される。 環状磁路電機子 2 4は、 図 6に示すように、 永久 磁石回転子 2 .1の永久磁石 2 2の配置に合わせた 6つのコイル 1 a〜l c、 2 a〜 2 cが 6つの軸を構成し、 細く巻き線数の多いコイル 1 a〜 2 cと太く巻き線数の少な い 2 a〜2 cとが 6 0度の角度をもって、 環状の鉄心に交互に巻回される。  In this embodiment, the annular magnetic path armature 24 has the annular structure of the iron core 13 of the circuit shown in FIG. 5 so that the inner circumference coincides with the outer circumference of the permanent magnet rotor 21. Yes. The annular magnetic path armature 24 is arranged as an armature with an air gap of several millimeters provided on the permanent magnet rotor 21. As shown in FIG. 6, the annular magnetic path armature 24 has six coils 1 a to lc and 2 a to 2 c having six shafts according to the arrangement of the permanent magnets 22 of the permanent magnet rotor 2.1. A thin coil with a large number of windings 1 a to 2 c and a thick coil with a small number of windings 2 a to 2 c are alternately wound around an annular iron core at an angle of 60 degrees.
永久磁石 2 2は、 円形に、 円形状の回転子の中心から等距離で永久磁石回転子 2 1 の上に位置するのが望ましい。 この塲合、 永久磁石 2 2は、 隣接する N極と S極とが 6 0度の角度差をもって配置される。 永久磁石回転子 2 1の円板中心には、 シャフト 2 l bが設けられ、永久磁石回転子 2 1は、 いわゆるフラットロー夕として機能する。 シャフト 2 1 bの上下端部はべァリング 2 7及び 2 8で締付けられる。 シャフト 2 1 bの端部は、 装置に回転を生じさせ、 また仕事を成し遂げるために外部装置と一対に なっている。  The permanent magnet 2 2 is preferably positioned in a circle on the permanent magnet rotor 2 1 at an equal distance from the center of the circular rotor. In this combination, the permanent magnet 22 is arranged with an angular difference of 60 degrees between the adjacent N pole and S pole. A shaft 2 l b is provided at the center of the disk of the permanent magnet rotor 21, and the permanent magnet rotor 21 functions as a so-called flat row. The upper and lower ends of the shaft 2 1 b are tightened with bearings 2 7 and 2 8. The end of the shaft 21 b is paired with an external device to cause the device to rotate and to accomplish work.
このシャフト 2 l bには、 整流子 2 6が設けられ、 ヨーク 2 5の上部に固定される。 整流子 2 6は、 肩部 2 1 c内のシャフト 2 1 bと接合される。 整流子ブラシ 2 6 a による整流子 2 6への接触通電のデレイ Xは、 示されている。 デレイ Xは 0より大き く、 1 8 0度より小さく、好ましくは、 1 0度のようにわずかに遅れさせた方がよい。 整流子は、 ブラシ整流が先行技術としてよく知られている。 例えば、 本件の整流子及 び本発明の他の実施例では、 整流子に基づくスィツチング素子 (ソリッドステートリ レー、 以下、 スイッチング素子という) と組み合わせる光学センサ一整流子、 電磁気 センサー整流子、 あるいはスィッチ整流子とされている。 もし整流子 2 6は、 電子制 御スィッチ素子を有しているならば、 モ一夕はブラシレスモータ一であり、 スィッチ 素子がスイッチング素子から成り立っていれば、図 2 0 — 2 2のモータ一と示される。 図 8は、 整流子 2 6と電気的に関連する D C電源 3 1で示される組み合わせモータ 一 2 0の概念構成を示す回路図である。 整流子 2 6は、 電源 3 1から相互に D C電流 をある方向に生じさせている。 整流された電流は、 (図 6に見られるように) 端子 1 2 及び I 5を経由してコイル 1 a〜l c , 2 a〜2 cへ入る。 従って、 したがって、 整 流子 2 6は、 永久磁石回転子 2 1の 1回転で、 3サイクルの転流整流された電流に変 換する。 なお、 シャフト 2 1 bの下端及び上端は、 ベアリング 2 7 , 2 8によって軸 支される。 また、 環状磁路電機子 2 4の端子 1 2, 1 1間には、 負荷 3 2が接続され る。 The shaft 2 lb is provided with a commutator 26 and is fixed to the upper portion of the yoke 25. The commutator 2 6 is joined to the shaft 2 1 b in the shoulder 2 1 c. Commutator brush 2 6 a Delay X of contact energization to commutator 26 by is shown. Delay X is greater than 0, less than 1800 degrees, and preferably slightly delayed, such as 10 degrees. As a commutator, brush commutation is well known as a prior art. For example, in the present commutator and other embodiments of the present invention, an optical sensor commutator, electromagnetic sensor commutator, or switch combined with a commutator-based switching element (solid-state relay, hereinafter referred to as a switching element). It is a commutator. If the commutator 26 has an electronic control switch element, the motor is a brushless motor. If the switch element is composed of a switching element, the motor shown in FIG. It is indicated. FIG. 8 is a circuit diagram showing a conceptual configuration of the combined motor 20 shown by the DC power supply 31 that is electrically related to the commutator 26. The commutator 26 generates a DC current from the power supply 31 in a certain direction. The rectified current enters coils 1a-lc and 2a-2c via terminals 12 and I5 (as seen in FIG. 6). Therefore, the rectifier 26 is converted into a commutated and rectified current of three cycles by one rotation of the permanent magnet rotor 21. The lower end and the upper end of the shaft 21b are supported by bearings 2 7 and 2 8. A load 3 2 is connected between the terminals 1 2 and 1 1 of the annular magnetic circuit armature 24.
ここで、 直流電源 3 1から直流電流が整流子 2 6に入力されると、 この直流電流は、 整流子 2 6によって転送整流された電流に変換され、 環状磁路電機子 2 4に入力され る。 環状磁路電機子 2 4は、 図 6に示すようなコイル 1 a〜l c , 2 a〜2 cが環状 に配置され、 直列接続されたコイル 1 a〜l cの抵抗と並列接続されたコイル 2 a〜 2 cとの抵抗比がたとえば 9 9対 1に巻回されている場合、 整流子 2 6から入力され る電流の 9 9 %がコイル 2 a〜2 cおよび負荷に流れ、 負荷 3 2には、 転送整流され た電圧とほぼ同電圧の電流が流れる。 すなわち、 負荷 3 2が直流電源 3 1から流れる 電力の 9 9 %を消費している状態となる。 Here, when a direct current is input to the commutator 26 from the direct current power source 31, this direct current is converted into a current transferred and rectified by the commutator 26 and input to the annular magnetic circuit armature 24. The As shown in FIG. 6, the annular magnetic circuit armature 24 has coils 1 a to lc and 2 a to 2 c arranged in a ring shape, and a coil 2 connected in parallel with the resistances of the coils 1 a to lc connected in series. When the resistance ratio between a and 2 c is wound to 9 9 to 1, for example, 9 9% of the current input from commutator 2 6 flows to coils 2 a to 2 c and the load, and load 3 2 The rectified transfer A current of approximately the same voltage as that of the current flows. That is, the load 3 2 consumes 99% of the power flowing from the DC power supply 31.
環状磁路電機子 2 4に転送整流された電流が流れると、 各コイル l a〜l c, 2 a 〜2 c間、 すなわち各磁区間には、 N極と S極とが交互に生成される。 N極及び S極 の範囲は、 図 7に示されるように、 環状磁路電機子 2 4の外部で N及び S文字によつ て示されている。 望ましくは、 永久磁石回転子 2 1の永久磁石 2 2がコイル 1 a〜l c、 2 a〜2 cの端の間の軸 7 A、 7 b、 7 cよりにわずかに位置する環状磁路電機 子 2 4の N及び S極面に位置し、 整流によって生じた磁気は、 環状磁路電機子中のコ ィル l a〜l c、 2 a〜 2 cの磁区側を同軸の磁石 2 2の極側にわずかに回転させる。 例えば、 永久磁石回転子 2 1上の永久磁石は、 環状磁路電機子 2 4の磁区側に約 1 0 度進んだ位置.にある。 図 9 aは、 一例として電流スィッチ点における 1個の磁石 2 2 の N極、 環状磁路電機子 2 4の一区分、 回転子中のいくつかの N極及び S極区分及び 軸 7 aを示している。 磁石 2 2の同じ極性反発のコイル 1 a〜l c、 2 a〜2 cによ つて発生する磁区は、永久磁石回転子 2 1を回転する基となっている。 回転子の回転、 整流電子スィツチの方向は、 永久磁石回転子 2 1中の近接のマグネット 2 2を引き寄 せるためにコイル 1 a〜 1 c、 2 a〜2 cの極性を切り替える。 この方法は、 永久磁 石回転子 2 1を回転させるときに繰り返されるものである。 永久磁石回転子 2 1上の 磁石 2 2が N極である場合、 環状磁路電機子 2 4が生成する N極は正回転方向に 1 0 度進んで生成されるので、 磁石 2 2は S極方向に回転し始め、 結局、 環状磁路電機子 When the rectified current flows through the annular magnetic armature 24, N poles and S poles are alternately generated between the coils l a to l c and 2 a to 2 c, that is, in each magnetic section. The range of N and S poles is indicated by the N and S characters outside the annular magnetic armature 24 as shown in FIG. Desirably, the permanent magnet rotor 2 is an annular magnetic circuit machine in which the permanent magnet 2 2 is located slightly more than the shafts 7 A, 7 b, 7 c between the ends of the coils 1 a to lc and 2 a to 2 c. The magnetism generated by rectification is located on the N and S pole faces of the child 24 and the magnetic domain side of the coils la to lc and 2 a to 2 c in the annular magnetic circuit armature is coaxial with the pole of the magnet 22 Rotate slightly to the side. For example, the permanent magnet on the permanent magnet rotor 21 is at a position advanced about 10 degrees toward the magnetic domain side of the annular magnetic path armature 24. Figure 9a shows, for example, the N pole of one magnet 2 2 at the current switch point, a section of the annular magnetic armature 24, several N and S pole sections in the rotor, and the axis 7a. Show. The magnetic domains generated by the same polarity repulsion coils 1 a to 1 c and 2 a to 2 c of the magnet 22 are the basis for rotating the permanent magnet rotor 21. The rotation of the rotor and the direction of the rectifying electronic switch are performed by switching the polarity of the coils 1 a to 1 c and 2 a to 2 c in order to attract the adjacent magnet 22 in the permanent magnet rotor 21. This method is repeated when the permanent magnet rotor 21 is rotated. When the magnet 2 2 on the permanent magnet rotor 2 1 has N pole, the N pole generated by the annular magnetic circuit armature 2 4 is generated 10 degrees ahead in the forward rotation direction. Begins to rotate in the polar direction, and eventually, the annular magnetic circuit armature
2 4が正回転方向に回転し始める。 2 4 starts to rotate in the forward direction.
回転速度及び永久磁石回転子 2 1のトルクは、 電流スィッチ点で永久磁石回転子 2 The rotational speed and torque of the permanent magnet rotor 2 1 are the same as the permanent magnet rotor 2 at the current switch point.
1の領域に関して環状磁路電機子 2 4の相対位置を変えることによって制御される。 図 9 bは、 電流を替えた時に環状磁路電機子 2 4中の N極及び S極区分間のほぼ中間 で、 磁石 2 2表面の N極の位置関係を示している。 回転速度及びトルクは、 図 9 aの 例より少ない。 It is controlled by changing the relative position of the annular magnetic path armature 24 with respect to the region of 1. Fig. 9b shows the positional relationship of the N pole on the surface of the magnet 22 approximately halfway between the N pole and S pole sections in the annular magnetic armature 24 when the current is changed. The rotational speed and torque are less than the example in Fig. 9a.
もしコイル l a〜l c、 2 a〜2 cの巻き方が、 直列結合コイル 1 a〜 1 c及び並 列結合コイル 2 a〜2 c間の抵抗値であるならば、 例えば 9 9 %〜1 %となり、 整流 子 2 6から入力された電流 9 9 %はコイル 2 a〜2 cと負荷 3 2とを通して流れる。 一方で、 負荷 3 2は、 D C電源 3 1からの電流を 9 9 %消化する。  If the winding method of the coils la to lc and 2 a to 2 c is a resistance value between the series coupling coils 1 a to 1 c and the parallel coupling coils 2 a to 2 c, for example, 9 9% to 1% The current 99% input from the commutator 26 flows through the coils 2a to 2c and the load 32. On the other hand, the load 3 2 digests 99% of the current from the DC power supply 3 1.
電力によって生ずる永久磁石回転子 2 1の回転は、 負荷 3 2と環状磁路電機子 2 4 が発生するトルクとによって消化される。 ここで、 環状磁路電機子 2 4には、 スロッ トがないので、 コギングトルクが発生せず、 環状磁路回転子 2 4の内週と永久磁石回 転子 2 1の外周との間で磁束密度が高くなつて、 磁石 2 2のギャップによる接線力及 び回転角が最大となるため、 永久磁石回転子 2 1の高速回転が可能になる。  The rotation of the permanent magnet rotor 21 caused by electric power is digested by the load 3 2 and the torque generated by the annular magnetic path armature 2 4. Here, since there is no slot in the annular magnetic path armature 2 4, no cogging torque is generated, and between the inner week of the annular magnetic path rotor 2 4 and the outer periphery of the permanent magnet rotor 2 1. As the magnetic flux density is increased, the tangential force and the rotation angle due to the gap of the magnet 22 are maximized, so that the permanent magnet rotor 21 can be rotated at high speed.
すなわち、環状磁路電機子 2 4を介して、負荷 3 2に消費させる電力を供給すると、 この負荷 3 2に消費させる電力によって永久磁石回転子 2 1にトルクが加わり、 永久 磁石回転子 2 1が回転し、 この永久磁石回転子 1が高速回転状態になると、 環状磁路 電機子 2 4は、 変圧器として機能する。 ここで、 永久磁石回転子 2 1の回転によって、 環状磁路電機子 2 4のコイル 1 a〜l cと 2 a〜 cには各磁区逆向きに起電されるの で、 負荷 3 2に対する逆起電力は相殺され、 逆起電力にほとんど影響されずに、 負荷 側に電力を供給することができる。 しかも、 負荷側に供給される電力量に対応して誘 導される磁束変化によって永久磁石回転子 2 1の正回転トルクを発生するようにして いるので、 負荷側に供給する電力量の調整によって、 永久磁石回転子 2 1の回転数お よびトルクを調整することができる。 ここで、 負荷 32として 5. 5 Ωの抵抗を繋ぎ、 直流電流 31から 22. 2W (直 流電圧 12V, 電流 1. 85A) を供給した場合、 負荷 32において、 22W (交流 電圧 11V、 電流 2. OA) を得ることができ、 この場合における永久磁石回転子 2 1は約 2000 r pmの回転数を得ることができた。 すなわち、 入力電力 22. 2W に対して安定した 22Wの出力電力を得、 同時に永久磁石回転子 21を回転させるこ とができた。 なお。 0. 2Wの損失電力は。 環状磁路電機子 24による銅損などによ つて生じたものである。 このため、 たとえば、 回転力によってベルトコンベアなどを 駆動させつつ、 負荷によって照明などの電力をまかなうことができる。 That is, when electric power to be consumed by the load 3 2 is supplied via the annular magnetic path armature 2 4, torque is applied to the permanent magnet rotor 2 1 by the electric power consumed by the load 3 2, and the permanent magnet rotor 2 1 When the permanent magnet rotor 1 is rotated at a high speed, the annular magnetic path armature 2 4 functions as a transformer. Here, the rotation of the permanent magnet rotor 21 causes the coils 1a to lc and 2a to c of the annular magnetic circuit armature 24 to be electromotive in the opposite direction of each magnetic domain. The electromotive force is offset, and power can be supplied to the load side with almost no influence from the counter electromotive force. In addition, since the positive rotation torque of the permanent magnet rotor 21 is generated by the change in magnetic flux induced in response to the amount of power supplied to the load side, the amount of power supplied to the load side can be adjusted. The rotation speed and torque of the permanent magnet rotor 21 can be adjusted. Here, when a resistance of 5.5 Ω is connected as load 32 and DC current 31 to 22.2 W (DC voltage 12 V, current 1.85 A) is supplied, 22 W (AC voltage 11 V, current 2) at load 32 OA), and the permanent magnet rotor 21 in this case was able to obtain a rotational speed of about 2000 rpm. That is, stable output power of 22 W was obtained with respect to input power of 22.2 W, and at the same time, the permanent magnet rotor 21 could be rotated. Note that. 0. What is the power loss of 2W? This is caused by copper loss due to the annular magnetic armature 24. For this reason, for example, while driving a belt conveyor or the like by rotational force, it is possible to supply power such as lighting by a load.
コイル 1, 2へ直流電源 31によって供給される電気の殆どは、 永久磁石回転子 2 1の回転中モーターによっては消化されない。 なお、 図 10に示すように、 負荷 32 側に整流回路 33を設け、 この整流回路によって得られた直流をバッテリー 34に蓄 電し、 蓄電された電力を直流電源 31側にフローティングによって供給するようにし てもよい。 図 1 1 (a) に示すように、 環状磁路電機子 24中のコイル 1 a〜l c、 2 a〜2 cに入力される入力電圧は、 整流子 26によって整流転流され、 永久磁石回 転子 21の回転により、 3サイクルの周期をもち、 負荷 32に出力される出力電圧は 図 1 1 (b) に示すように、 ほぼ同じ電圧値および波形を有する。 整流回路 33は、 図 1 1 (c) に示すように整流された直流電圧に変換し、 これをバッテリー 34に蓄 積する。 このようにして、 環状磁路電機子 24から外部出力された電力を入力側に再 供給することによって、 効率良く永久磁石回転子 21を回転させることができる。 整 流回路 33は、 例えば、 ブリッジダイオードから成り立つており、 整流回路の一例は、 以下に示す図 20に関して詳細に示されている。  Most of the electricity supplied by the DC power source 31 to the coils 1 and 2 is not digested by the motor during the rotation of the permanent magnet rotor 2 1. As shown in FIG. 10, a rectifier circuit 33 is provided on the load 32 side, the direct current obtained by the rectifier circuit is stored in the battery 34, and the stored electric power is supplied to the direct current power source 31 side by floating. It may be. As shown in Fig. 11 (a), the input voltage input to the coils 1 a to lc and 2 a to 2 c in the annular magnetic armature 24 is rectified and commutated by the commutator 26, and the permanent magnet circuit The rotation of the trochanter 21 has a cycle of 3 cycles, and the output voltage output to the load 32 has substantially the same voltage value and waveform as shown in FIG. The rectifier circuit 33 converts the rectified DC voltage as shown in FIG. 11 (c) and stores it in the battery 34. In this way, the permanent magnet rotor 21 can be efficiently rotated by re-supplying the electric power output from the annular magnetic path armature 24 to the input side. The rectifier circuit 33 comprises, for example, a bridge diode, and an example of a rectifier circuit is shown in detail with respect to FIG. 20 shown below.
また、 永久磁石回転子 21の回転速度は、 固定配置されている環状磁路電機子 24 を整流子 2 6に対して回転させることによって制御することができ、 逆回転させるこ とができる。 さらに、 環状磁路電機子 2 4を回転させるのではなく、 環状磁路電機子 2 4に対する整流子 2 6の回転位置を変化させて、 永久磁石回転子 2 1の回転速度及 び回転方向を制御するようにしてもよい。 The rotational speed of the permanent magnet rotor 21 is fixed to the annular magnetic path armature 24 Can be controlled by rotating the coil with respect to the commutator 26 and can be rotated in the reverse direction. Furthermore, instead of rotating the annular magnetic path armature 24, the rotational position of the commutator 26 relative to the annular magnetic path armature 24 is changed to change the rotational speed and direction of the permanent magnet rotor 21. You may make it control.
この実施例 2では、 永久磁石回転子 2 1の磁石数と同数の磁区を形成した図 1に示 した単巻変圧原理の巻き数をもつ環状磁路電機子 2 4を設け、 この環状磁路電機子 2 4の誘導電力によって永久磁石回転子 2 1を回転させるととも、 この永久磁石回転子 2 1の回転数や負荷トルクとは無関係に、 環状磁路電機子 2 4を経由する電力を安定 して外部負荷に消費させることができる。 また、 環状磁路電機子 2 4は、 鉄心にスロ ットがない環状磁路を形成しているので、 コギングトルクをなくすことができ、 さら に、 環状磁路電機子 2 4のコイル 1 a〜 1 cとコイル 2 a〜2 cとの巻き方向にし、 永久磁石回転子 2 1の回転によって環状磁路電機子 2 4に生じる逆起電力を、 隣接す る磁区間において打ち消すようにして逆起電力による逆トルクの発生をなくすように しているので、 入力電力をそのまま負荷側に出力させることができる。  In the second embodiment, an annular magnetic armature 24 having the number of turns of the single-turn transformer shown in FIG. 1 in which the same number of magnetic domains as the permanent magnet rotor 21 is formed is provided. The permanent magnet rotor 2 1 is rotated by the induction power of the armature 2 4, and the power passing through the annular magnetic path armature 2 4 is independent of the rotational speed and load torque of the permanent magnet rotor 2 1. It can be stably consumed by an external load. In addition, since the annular magnetic path armature 2 4 forms an annular magnetic path without a slot in the iron core, the cogging torque can be eliminated. Further, the coil 1 a of the annular magnetic path armature 2 4 ~ 1 c and coils 2 a ~ 2 c winding direction, permanent magnet rotor 2 Reverse rotation of counter electromotive force generated in annular magnetic circuit armature 2 4 due to rotation in adjacent magnetic section Since the generation of reverse torque due to electromotive force is eliminated, the input power can be output to the load as it is.
(実施例 3 )  (Example 3)
つぎに、 図 1 2は、 この発明の実施例 3について説明する組み立て図である。 この 実施例 3では、 実施例 2の構成にさらに発電機能を設け、 整流子 2 6や環状磁路電機 子 2 4の銅損、 鉄損などの損失電力を補うようにしている。 ヨーク 2 5は、 空芯コィ ルの上に位置する。 ディスクはシャフト 2 1 bの肩部 2 1 cによって支持されて組立 てられ、 整流子 2 6はディスクによって支持される。 ヨーク 2 5は、 永久磁石回転子 2 1と同様の傾斜と大きさを有し、 平行に位置する。 ヨークは、 例えば鉄である。 ョ ークは永久磁石回転子 2 1で回転されながら、 消費トルクは渦巻き電流によってョー ク中に発生する。 図 13は、 この発明の実施例 3であるモータの独立図である。 また、 図 13は、 図 12に示した環状磁路電機子と永久磁石回転子と空芯コイルとの位置関 係を示す説明図である。 図 12及び図 13において、 空芯コイル 40Aは、 永久磁石 回転子 21とヨーク 25との間に配置され、 永久磁石回転子 21とヨーク 25との間 に発生している磁界内に配置される。 Next, FIG. 12 is an assembly diagram illustrating Embodiment 3 of the present invention. In the third embodiment, a power generation function is further added to the configuration of the second embodiment so as to compensate for power loss such as copper loss and iron loss of the commutator 26 and the annular magnetic circuit armature 24. Yoke 25 is located above the air core coil. The disc is supported and assembled by the shoulder portion 21c of the shaft 21b, and the commutator 26 is supported by the disc. The yoke 25 has the same inclination and size as the permanent magnet rotor 21 and is located in parallel. The yoke is, for example, iron. While the yoke is rotated by the permanent magnet rotor 21, the consumed torque is increased by the eddy current. Occurs during FIG. 13 is an independent diagram of a motor that is Embodiment 3 of the present invention. FIG. 13 is an explanatory diagram showing a positional relationship among the annular magnetic path armature, the permanent magnet rotor, and the air-core coil shown in FIG. 12 and 13, the air-core coil 40A is disposed between the permanent magnet rotor 21 and the yoke 25, and is disposed in a magnetic field generated between the permanent magnet rotor 21 and the yoke 25. .
空芯コイル 4 OAは、互いに 40度ずれて配置される 3つの三角形状のコイル 41、 42、 43によって形成される。 また、 三角形状のコイル 41〜43は、 太い銅線が 巻回され、 抵抗値を低く抑えている。 各コイル 41〜43は、 三角形状の頂点位置が 永久磁石回転子 2 1の外周円に内接あるいは環状磁路電機子 24の内周円に内接し、 環状磁路電機子 24と同様に固定される。 空芯コイル 4 OAと 1次及び 2次コイル 1 a〜l c、 2 a〜2 cは、 絶縁されている。 頂点 P 1と P 2, P 2と P 3は電気的に 接続している。 端子 44, 45, 及び 46は、 それぞれ頂点 P l、 P 2及び P 3から 延長している。 ここで、 ヨーク 25と永久磁石回転子 21とは一緒に回転するので、 渦電流による逆卜ルクは発生しない。  The air-core coil 4 OA is formed by three triangular coils 41, 42, 43 that are arranged 40 degrees apart from each other. Further, the triangular coils 41 to 43 are wound with thick copper wires to keep the resistance value low. Each of the coils 41 to 43 has a triangular apex position inscribed in the outer circumference circle of the permanent magnet rotor 21 or inscribed in the inner circumference circle of the annular magnetic path armature 24 and fixed in the same manner as the annular magnetic path armature 24. Is done. The air-core coil 4 OA and the primary and secondary coils 1 a to 1 c and 2 a to 2 c are insulated. Vertices P 1 and P 2, P 2 and P 3 are electrically connected. Terminals 44, 45, and 46 extend from vertices Pl, P2, and P3, respectively. Here, since the yoke 25 and the permanent magnet rotor 21 rotate together, the reverse torque due to the eddy current does not occur.
図 13に示すように、 永久磁石回転子 21の磁石 22の円と永久磁石回転子 21の 外周円との接点位置に、 コイル 41の三角形の頂点が位置する場合、 コイル 41の内 側と外側では磁束方向が逆になり、 永久磁石回転子 21の回転に伴って、 コイル 41 の内側と外側との磁束方向が逆転し、 コイル 41には、 永久磁石回転子 21の 1回転 に対して 3サイクルの交流電力が誘導される。 同様にして、 他のコイル 42, 43に も、 交流電力が誘導され、 それぞれが 40度ずれて配置されるため、 各コイル 41〜 43には、 120度の位相差をもった交流電力が誘導され、 外部出力することができ る。 したがって、 図 1 2及び図 1 3に示すように、 各コイル 4 1〜4 3を△結線した端 子 4 4〜4 6を設けることによって、 3相交流電力を得ることができる。 図 1 4は、 発電機能を与えるための図 1 3の空芯コイル 4 0 Aを含むモーターの遠景図である。 空芯コイル 4 O Aの端子 4 4、 4 5及び 4 6は、 整流回路 3 3と接続している。 整流 回路 3 3は端子 4 4、 4 5及び 4 6から出力される三相交流電力を全波整流し直流電 力に整流する。 整流回路 3 3は、 電気的にバッテリー 3 4と接続している。 整流回路 3 3の一方の出口は、 整流器 2 6の 1個のブラシ 2 6 aと電気的に接続している、 一 方の出口は、 電力源 3 1と電気的に接続している。 空芯コイル 4 O Aによって生じた 三相交流電力は、 環状磁路電機子 3 4と電気的に絶縁されているため整流回路 3 3か らの直流電力を環状磁路電機子 2 への入力電力に対して合成電力として使用するこ とを可能にする。 環状磁路電機子 2 4とは電気的に離隔しているため、 コギンクトル クのない発電をすることができる。 この空芯コイル 4 O Aから得られた 3相交流電力 を、 環状磁路電機子 2 4への入力電力に合成することによって、 逆トルクが小さいト ルク損失によって、 入力電力の損失を補うことができ、 永久磁石回転子 2 1の充分な 回転を得ることができると共に、 負荷 3 2に対して、 限りなく 1 0 0 %に近い出力電 力を得ることができる。 As shown in FIG. 13, when the apex of the triangle of the coil 41 is located at the contact point between the circle of the magnet 22 of the permanent magnet rotor 21 and the outer circumference of the permanent magnet rotor 21, the inside and outside of the coil 41 Then, the direction of the magnetic flux is reversed, and as the permanent magnet rotor 21 rotates, the direction of the magnetic flux between the inner side and the outer side of the coil 41 is reversed, and the coil 41 has 3 for one rotation of the permanent magnet rotor 21 Cycle AC power is induced. Similarly, AC power is also induced in the other coils 42 and 43, and each coil is arranged 40 degrees apart, so that each coil 41 to 43 is induced with AC power having a phase difference of 120 degrees. Can be output externally. Therefore, as shown in FIG. 12 and FIG. 13, three-phase AC power can be obtained by providing the terminals 44-46 having the Δ-connections of the coils 41-43. FIG. 14 is a distant view of a motor including the air-core coil 40 A of FIG. 13 for providing a power generation function. Air core coil 4 OA terminals 4 4, 4 5 and 4 6 are connected to rectifier circuit 3 3. The rectifier circuit 3 3 full-wave rectifies the three-phase AC power output from the terminals 4 4, 4 5 and 4 6 and rectifies it into DC power. The rectifier circuit 3 3 is electrically connected to the battery 3 4. One outlet of the rectifier circuit 33 is electrically connected to one brush 26a of the rectifier 26, and one outlet is electrically connected to the power source 31. Air-core coil 4 The three-phase AC power generated by the OA is electrically insulated from the annular magnetic circuit armature 3 4, so the DC power from the rectifier circuit 3 3 is used as the input power to the annular magnetic circuit armature 2. Can be used as combined power. Since it is electrically separated from the annular magnetic circuit armature 24, it can generate electricity without a torque. By combining the three-phase AC power obtained from the air-core coil 4 OA with the input power to the annular magnetic circuit armature 24, the loss of input power can be compensated for by the torque loss with low reverse torque. In addition, sufficient rotation of the permanent magnet rotor 21 can be obtained, and an output power close to 100% can be obtained for the load 32 as much as possible.
たとえば、 図 1 3に示すように、 空芯コイル 4 O Aのコイル 4 1から得られる単相 交流電力を端子 1 2と端子 I 5から供給することによって永久磁石回転子 2 1に同期 した回転電力供給を行うことができる。 すなわち、 整流子 2 6を経由せずに直接、 環 状磁路電機子 2 4に電力供給することができる。  For example, as shown in Fig. 13, rotating power synchronized with the permanent magnet rotor 2 1 by supplying single-phase AC power obtained from the coil 4 1 of the air-core coil 4 OA from the terminals 1 2 and I 5 Supply can be made. That is, power can be directly supplied to the annular magnetic circuit armature 24 without going through the commutator 26.
なお、 空芯コイル 4 O Aは、 3つのコイル 4 1〜4 3を設けて 3相交流電力を出力 できるようにしているが、 これに限らず、 例えば図 1 3に示すように、 2つのコイル 4 1 , 4 7によってそれぞれ単相あるいは 2相交流電力を出力させるようにしてもよ い。 この場合、 コイル 4 1 , 4 7は、 互いに 6 0度ずれて配置される。 端子は、 2個 の電気的に繋がる頂点 P 1及び P 2から延びている。 図 1 7 bは、 図 1 5の空芯コィ ルがどの様にモーターと接続するかを示している。 図 1 6は、 下記に詳細を説明する ように、 2個のコイル 7 3と 7 4及び空芯コイル 4 0を示している。 The air-core coil 4 OA is provided with three coils 4 1 to 4 3 so that three-phase AC power can be output. However, the present invention is not limited to this. For example, as shown in FIG. 4 1 and 4 7 may be used to output single-phase or 2-phase AC power, respectively. In this case, the coils 4 1 and 4 7 are arranged so as to be shifted from each other by 60 degrees. The terminal extends from two electrically connected vertices P 1 and P 2. Figure 17b shows how the air core coil of Figure 15 connects to the motor. FIG. 16 shows two coils 73 and 74 and an air-core coil 40 as will be described in detail below.
また、 永久磁石回転子 2 1に配置される磁石 2 2の個数は、 6つに限定されるもの ではない。 たとえば、 図 1 6に示すように 8つの磁石 7 2を等間隔で配置するように してもよい。 この場合、 環状磁路電機子 2 4が形成する磁区 (コイル 5 1 a〜5 1 d、 Further, the number of magnets 22 arranged in the permanent magnet rotor 21 is not limited to six. For example, as shown in FIG. 16, eight magnets 72 may be arranged at equal intervals. In this case, the magnetic domain formed by the annular magnetic path armature 2 4 (coils 5 1 a to 5 1 d,
5 2 a〜5 2 d ) も 8つにする必要がある。 また、 この場合における空芯コイル 4 0 Aは、 △形状ではなく、 磁石 2 2の個数に合わせた多角形状にすればよい。 たとえば、 図 1 6では、 .8つの磁石 2 2に対して、 空芯コイルの各コイル 7 3, 7 4の形状を 4 角形にしている。 コイル 7 3, 7 4は、 4 5度移動している。 頂点 P 7 1及び P 7 2 は電気的に接続し、 端子はそれらから延長している。 端子は、 図 1 7 bの概念図に示 すようにモーターと電気的に繋がっている。 この図 1 6 示した空芯コイルの各コィ ル 7 3 , 7 4は、 それぞれ永久磁石回転子 7 1の 1回転に対して 4サイクルの交流電 力を出力することになる。 また、 コイル 7 3, 7 4から 2相電力を出力する場合、 位 相差は 9 0度となる。 なお、 磁石 2 2, 7 2は鉛管形状であつたがこれに限らず、 形 状は任意であり、 たとえば多角形状などであってもよい。 また、 整流子 2 6としてホ ール素子などを用いて電力供給し、 ブラシレスモー夕を実現してもよい。 5 2 a to 5 2 d) must also be eight. Further, the air-core coil 40 A in this case may have a polygonal shape corresponding to the number of magnets 22 instead of the Δ shape. For example, in Fig. 16, the shape of each coil 7 3 and 7 4 of the air-core coil is made quadrangular for .8 magnets 2 2. Coils 7 3 and 7 4 have moved 45 degrees. Vertices P 7 1 and P 7 2 are electrically connected, and terminals extend from them. The terminals are electrically connected to the motor as shown in the conceptual diagram in Fig. 17b. Each coil 7 3, 7 4 of the air-core coil shown in FIG. 16 outputs four cycles of AC power for one rotation of the permanent magnet rotor 71. In addition, when 2-phase power is output from coils 7 3 and 7 4, the phase difference is 90 degrees. The magnets 2 2 and 7 2 have a lead tube shape. However, the shape is not limited to this, and the shape is arbitrary, and may be, for example, a polygonal shape. Further, a brushless motor may be realized by supplying power using a hole element or the like as the commutator 26.
この実施例 3では、 実施例 2の構成に、 さらに空芯コイルによる発電機能をもたせ、 この空芯コイルから得られる交流電力を外部出力あるいは入力電力に合成するように し、 空芯コイルの形状特性から、 逆トルクが少ないトルク損失で交流電力を得ること ができ、 この電力を入力電力に供給することによって、 負荷側に供給する電力を限り なく 1 0 0 %とすることができるとともに、 永久磁石回転子 2 1の回転も十分得るこ とができる。 In this third embodiment, the configuration of the second embodiment is further provided with a power generation function using an air-core coil, and the AC power obtained from this air-core coil is combined with the external output or input power. From characteristics, obtain AC power with low torque and low torque loss By supplying this electric power to the input electric power, the electric power supplied to the load side can be made 100% as much as possible, and the rotation of the permanent magnet rotor 21 can be sufficiently obtained.
(実施例 4 )  (Example 4)
つぎに、 この発明の実施例 4について説明する。 上述した実施の形態 3では、 外部 から入力される電力の変圧器機能を用いたモータを回転始動させるものであつたが、 この実施例 4では、 外部からの回転力によってモータを回転始動し、 実施例 3で示し た発電機能を用いて、 このモータの回転をアシストしょうとするものである。  Next, a fourth embodiment of the present invention will be described. In the third embodiment described above, the motor using the transformer function of the electric power input from the outside is started. However, in the fourth embodiment, the motor is started by the rotational force from the outside. The power generation function shown in Example 3 is used to assist the rotation of the motor.
図 1 Ί aは、 この発明の実施例 4である発電モータ 2 0の概要構成を示す模式図で ある。 図 1 7 aにおいて、 この発電モータは、 実施例 3で示した図 1 2〜図 1 6のモ 一夕 4 0と同様に空芯コイルが設けられる。 ただし、 直流電源 3 1などの外部電源は 用いていない。 そして、 永久磁石回転子 2 1の回転によって得られた空芯コイルから の電力は、環状磁路電機子 2 4に供給される。その他の構成は実施例 3と同じである。 図 1 7 bは、 図 1 5の空芯コイル 4 O Aがモーターとどの様に接続するかを示す図 1 7 aの発電モータ 2 0の概要構成を示す模式図である。 空芯コイル 4 O Aは、 2個 の外部端子 P 1と P 4とを有している。 端子 P 1は、 モータの端子 1 5と電気的に接 続し、 一次及び二次コイル 1, 2の間の中心タップ Zと電気的に接続するように巻か れている。 端子 P 4は、 電源 3 1と電気的に接続している。 端子 1 1は、 二次コイル 2と負荷 3 2との一方の端部と電気的に接続している。 端子 1 2は、 一次コイルの一 方の端部及び負荷 3 2の他端と電気的に接続している。  FIG. 1A is a schematic diagram showing a schematic configuration of a generator motor 20 that is Embodiment 4 of the present invention. In FIG. 17 a, this generator motor is provided with an air-core coil in the same manner as the motor 40 of FIGS. 12 to 16 shown in the third embodiment. However, no external power source such as DC power source 3 1 is used. The electric power from the air-core coil obtained by the rotation of the permanent magnet rotor 21 is supplied to the annular magnetic path armature 24. Other configurations are the same as those of the third embodiment. FIG. 17 b is a schematic diagram showing a schematic configuration of the generator motor 20 of FIG. 17 a showing how the air-core coil 4 O A of FIG. 15 is connected to the motor. The air-core coil 4 O A has two external terminals P 1 and P 4. Terminal P 1 is wound in such a way that it is electrically connected to motor terminal 15 and electrically connected to center tap Z between primary and secondary coils 1 and 2. Terminal P4 is electrically connected to power supply 31. Terminal 1 1 is electrically connected to one end of secondary coil 2 and load 3 2. The terminal 12 is electrically connected to one end of the primary coil and the other end of the load 32.
この発電モータ 2 0の始動は、 外部からの回転力 Fによって永久磁石回転子 2 1を 回転させることによって行われる。 外部からの回転力は、 例えば、 自転車のホイール のようなプロペラを操作する翼、 他の回転装置のよって供給される。 この際、 環状磁 路電機子 2 4からコギングトルクは発生しない。 永久磁石回転子 2 1が回転すると、 空芯コイルから電力が出力され、 この電力は環状磁路電機子 2 4に入力され、 永久磁 石回転子 2 1の回転をアシストする。 ここで、 空芯コイル 4 O Aからの交流電力は単 相であり、永久磁石回転子 2 1の回転に同期しているため、 整流子などは不要となり、 直接、 環状磁路電機子 2 4に入力することができる。 付言すると、 空芯コィ 4 O Aは、 永久磁石回転子 2 1の逆起電力 e m f を生じ、 発生したトルクを減じている。 この実 施例 4では、 空芯コイルによって得られた同期電力を環状磁路電機子 2 4に供給する ことによって、外部の回転力をアシストすることができる発電モー夕を実現している。 (実施例 5 ) The generator motor 20 is started by rotating the permanent magnet rotor 21 with a rotational force F from the outside. The rotational force from the outside is, for example, a bicycle wheel Supplied by wings operating other propellers, other rotating devices. At this time, no cogging torque is generated from the annular magnetic armature 24. When the permanent magnet rotor 21 rotates, electric power is output from the air-core coil, and this electric power is input to the annular magnetic circuit armature 24 to assist the rotation of the permanent magnet rotor 21. Here, the AC power from the air-core coil 4 OA is single-phase and is synchronized with the rotation of the permanent magnet rotor 21, so a commutator is not required, and directly to the annular magnetic circuit armature 24 Can be entered. In addition, the air-core coil 4 OA generates the counter electromotive force emf of the permanent magnet rotor 21 and reduces the generated torque. In the fourth embodiment, by supplying the synchronous power obtained by the air core coil to the annular magnetic path armature 24, a power generation mode capable of assisting the external rotational force is realized. (Example 5)
つぎに、 この発明の実施例 5について説明する。 この実施例 5では、 図 1 8 aに示 すように上述した実施例 2〜4に示した発電モー夕 8 0を、 シャフト 2 1 bを中心に 多段構成している。 すなわち、 直流電源 3 1から直流電流は、 整流子 2 6を介して上 段の環状磁路電機子 2 4 bに入力され、 上段の永久磁石回転子 2 1 cを回転させ、 こ の環状磁路電機子 2 4 bの出力電力が下段の環状磁路電気子 2 4 aに入力され、 下段 の永久磁石回転子 2 1を回転させ、 負荷 3 2に電力が出力される。 ここで、 上段の永 久磁石回転子 2 1と下段の永久磁石回転子 2 1とは同じシャフト 2 1 bに固定されて いるため、 実施例 2〜4に示したモータと同じ入力電力および出力電力によって、 回 転力のトルク増幅を行うことができる。 なお、 各段毎に空芯コイルを設けることがで きる。 また、 図 1 8では、 2段構成を示したが、 これに限らず 3段以上の多段構成と することによって、 さらにトルク増幅を行うことができる。  Next, Embodiment 5 of the present invention will be described. In the fifth embodiment, as shown in FIG. 18a, the power generation motor 80 shown in the second to fourth embodiments described above is configured in multiple stages around the shaft 21b. That is, a direct current from the DC power supply 31 is input to the upper annular magnetic circuit armature 2 4 b via the commutator 26, and the upper permanent magnet rotor 21 c is rotated, and this annular magnet The output power of the road armature 24 b is input to the lower annular magnetic circuit element 24 a, and the lower permanent magnet rotor 21 is rotated to output power to the load 32. Here, since the upper permanent magnet rotor 21 and the lower permanent magnet rotor 21 are fixed to the same shaft 21 b, the same input power and output as the motors shown in Examples 2 to 4 are used. The torque can be amplified by the electric power. An air-core coil can be provided for each stage. Further, in FIG. 18, a two-stage configuration is shown, but the present invention is not limited to this, and a torque amplification can be further performed by using a multistage configuration of three or more stages.
図 1 8 bは、 更に詳細な構成の接続を示す図 1 8 aのモーターの概要回路模式図で ある。 端子 1 1は、 上段の環状磁路電機子 2 4 bの (図 1 8 aに模式的に示される) 2次コイルの最初の端部に電気的に接続されている。 端子 1 2は、 1次コイルの 2番 目の端部に電気的に接続されている。 電源 3 1の 1個の端部は、 同様に 1次コイルの 2番目の端部に電気的に接続されている。 端子 1 2は、 同様に負荷 3 2の一方の端に 電気的に接続している。 端子 1 5は、 1次及び 2次コイル 1, 2の 2番目の端部の間 の中心タップ Xと、 電源 3 1とに電気的に接続している。 端子 1 1は、 同様に下段の 環状磁路電機子 2 4 aの 1次及び 2次コイル 1, 2の 2番目の端部。の間の中心タップ Yと電気的に接続している。 端子 1 2 ' は、 端子 1 2と下段の環状磁路電機子 2 4 a の 1次コイルの最初の端部と電気的に接続している。 端子 1 1 ' は、 下段の環状磁路 電機子 2 4 aの 2次コイルの最初の端部と負荷 3 2と電気的に接続している。 下段の 環状磁路電機子 2 4 aと上段の環状磁路電機子 2 4 b二つのコイル 1 , 2は、 上述の ようにそれぞれのコイル区分を含んでいることが理解される。 Fig. 18b is a schematic circuit diagram of the motor of Fig. 18a showing the connection of a more detailed configuration. is there. Terminal 11 is electrically connected to the first end of the secondary coil (schematically shown in FIG. 18a) of the upper annular magnetic armature 24b. Terminal 12 is electrically connected to the second end of the primary coil. One end of the power source 31 is also electrically connected to the second end of the primary coil. Similarly, terminal 12 is electrically connected to one end of load 32. Terminal 15 is electrically connected to the center tap X between the second ends of the primary and secondary coils 1 and 2 and the power supply 31. Terminal 1 1 is also the second end of the primary and secondary coils 1 and 2 of the lower annular magnetic armature 2 4 a. The center tap between is electrically connected with Y. The terminal 1 2 ′ is electrically connected to the terminal 1 2 and the first end of the primary coil of the lower annular magnetic circuit armature 2 4 a. The terminal 1 1 ′ is electrically connected to the load 3 2 and the first end of the secondary coil of the lower annular magnetic circuit armature 2 4 a. It is understood that the lower annular magnetic path armature 2 4 a and the upper annular magnetic path armature 2 4 b include two coils 1 and 2 as described above.
(実施例 6 )  (Example 6)
つぎに、 この発明の実施例 6について説明する。 この実施例 6では、 上述した実施 例 2〜4に示したモータあるいは発電モ一夕を、 シャフト 2 l bを中心に対向配置さ せるようにしている。  Next, Embodiment 6 of the present invention will be described. In the sixth embodiment, the motor or power generation module shown in the second to fourth embodiments is disposed so as to face the shaft 2lb.
すなわち、 図 1 9に示すように、 上段の環状磁路電機子 2 4 cの磁区を形成する各 コイルの巻回方向を、 下段の環状磁路電機子 2 4 aの各コイルとは逆の方向にし、 ョ ーク 2 5に代えて、 永久磁石回転子 9 1を設け、 下段の永久磁石回転子 2 1と上段の 永久磁石 9 1との磁石が同期配置されると共に、 同じシャフトによって固定される。 端子 1 1, 1 2及び 1 5へのコイル 1 , 2の接続は、 図 1 8 aに示すものと同一であ る。 ここで、 直流電源 3 1から直流電力は、 整流子 2 6を介して上段の環状磁路電機子 2 4 cに入力され、 上段の永久磁石回転子 9 1を回転させ、 この環状磁路電機子 2 4 cの出力電力が下段の環状磁路電機子 2 4 aに入力され、 下段の永久磁石回転子 2 1 を回転させ、 負荷 3 2に電力が出力される。 ここで、 上段の永久磁石回転子 9 1と下 段の永久磁石回転子 2 1とは同じシャフト 2 1 bに固定されているため、 実施例 2〜 4に示したモータと同じ入力電力および出力電力によって、 回転力のトルク増幅を行 うことができる。 まお、 各段毎に空芯コイルを設けることができる。 That is, as shown in FIG. 19, the winding direction of each coil forming the magnetic domain of the upper annular magnetic path armature 24 c is opposite to each coil of the lower annular magnetic path armature 24 a. The permanent magnet rotor 9 1 is provided instead of the yoke 25, and the magnets of the lower permanent magnet rotor 21 and the upper permanent magnet 9 1 are synchronously arranged and fixed by the same shaft. Is done. The connection of coils 1 and 2 to terminals 1 1, 1 2 and 15 is the same as shown in Figure 18a. Here, the DC power from the DC power source 3 1 is input to the upper annular magnetic circuit armature 2 4 c via the commutator 26, and the upper permanent magnet rotor 91 is rotated. The output power of the child 2 4 c is input to the lower annular magnetic circuit armature 2 4 a, the lower permanent magnet rotor 2 1 is rotated, and the power is output to the load 3 2. Here, since the upper permanent magnet rotor 9 1 and the lower permanent magnet rotor 21 are fixed to the same shaft 2 1 b, the same input power and output as the motors shown in Examples 2 to 4 are used. The torque can be amplified by the electric power. Well, an air-core coil can be provided for each stage.
なお、 実施例 5と同様に、 図 1 9に示したモータ 9 0を多段構成することができる。 このような多段構成によって、 同一電力で、 一層大きなトルク増幅を行うことができ る。  As in the fifth embodiment, the motor 90 shown in FIG. 19 can be configured in multiple stages. With such a multi-stage configuration, even greater torque amplification can be performed with the same power.
(実施例 7 ) ·  (Example 7)
つぎに、 この発明の実施例 7について説明する。 この実施例 7では、 上述した実施 例 2〜 6に示した他のモータを実現している。  Next, Embodiment 7 of the present invention will be described. In the seventh embodiment, the other motors shown in the second to sixth embodiments described above are realized.
図 2 0は、 入力電力が電圧の形で示されるという他の実施例に関するモータ一の部 分の概念図である。 モーター部分 100は、 環状磁路電機子 102から成り立つている。 整流子は、 一例を上げれば、 一次及び二次" スイッチング素子" 104, 106 によって形 成されている。 スイッチング素子 104, 106は、 図 2 1に示すように光センサ一 107に よって制御されている。 図 2 1は、 スイッチング素子 104とスイッチング素子 106が 両方とも閉鎖した時における、 図 2 0の回転回路の概念図である。 図 2 2は、 スイツ チング素子 104, 106が、 両方とも閉鎖したときの図 2 0の回転回路の概念図である。 図 2 0を参照すると、スィツチング素子 104, 106は、 D C電源 108とキャパシター 110 とを横切って接続している。 D C電源 108の陽極端子 108 aは、 スイッチング素子 104 の陽極 104 aと接続し、 D C電源 108の陰極端子 108 bは、 図 2 0及び 2 1に示され るスイッチング素子 106の陰極端子 106 bと接続している。 スイッチング素子 106の 陰極端子 104 bとスィツチング素子 106の陽極端子 106 aは、 図 2 0お及び図 2 1に 同様に示されている。 FIG. 20 is a conceptual diagram of a portion of the motor related to another embodiment in which the input power is shown in the form of voltage. The motor part 100 comprises an annular magnetic path armature 102. The commutator is formed by primary and secondary “switching elements” 104, 106, to name one example. The switching elements 104 and 106 are controlled by an optical sensor 107 as shown in FIG. FIG. 21 is a conceptual diagram of the rotating circuit of FIG. 20 when both the switching element 104 and the switching element 106 are closed. FIG. 22 is a conceptual diagram of the rotating circuit of FIG. 20 when both of the switching elements 104 and 106 are closed. Referring to FIG. 20, the switching elements 104 and 106 are connected across the DC power source 108 and the capacitor 110. The anode terminal 108a of the DC power supply 108 is the switching element 104 The cathode terminal 108 b of the DC power supply 108 is connected to the cathode terminal 106 b of the switching element 106 shown in FIGS. 20 and 21. The cathode terminal 104 b of the switching element 106 and the anode terminal 106 a of the switching element 106 are similarly shown in FIGS. 20 and 21.
スイッチング素子 104, 106は、 電機子 102の周りにそれぞれ巻かれている一次コィ ル 112と二次コイル 114と電気的に接続している。 一次コイルは、 最初のコイル 112 a、 112 b、 112 cから成り立ち直列に繋がっている。二次コィルは、二番目のコイル 114 a、 114 b、 114 cから成り立ち、 同様に直列に繋がっている。 コイル 114 a -114 c のどちらカ、あるいは両方は、同様に平行に繋がっている。一次及び二次コイル 112、 114 は、 図 2 0に示されるように、 一般的にコイル 114 a、 114 b、 114 cと交互に位置し てコイル 112 a、 112 b、 112 cとが巻かれている。 一次コイル 112 a、 112 b、 112 c及び二次コイル 114 a、 114 b、 114 cは、 スィツチング素子 106の共通端子 106 a を分け合つている。 端子 106 aは、 一次及び二次コイル 112, 114の中心タップとして の働きをなす。 一次及び二次コイル 112, 114は単一コイルである。 それらは同様に他 の操作の間に誘導的に連結されている。 一次及び二次コイルは、 自動変圧器を構成す る。 一次及び二次コイル 112, 114は、 巻数が同じであり、 同じ素材、 同じ抵抗である ことが望ましい。 一方で、 好ましいことは要求されていない。  The switching elements 104 and 106 are electrically connected to the primary coil 112 and the secondary coil 114 wound around the armature 102, respectively. The primary coil consists of the first coils 112a, 112b, 112c and is connected in series. The secondary coil consists of the second coils 114a, 114b, 114c and is connected in series as well. Either or both of the coils 114 a -114 c are similarly connected in parallel. As shown in FIG. 20, the primary and secondary coils 112 and 114 are generally alternately wound with coils 114a, 114b, and 114c and wound with coils 112a, 112b, and 112c. ing. The primary coils 112 a, 112 b, 112 c and the secondary coils 114 a, 114 b, 114 c share the common terminal 106 a of the switching element 106. Terminal 106 a serves as the center tap for primary and secondary coils 112, 114. The primary and secondary coils 112 and 114 are single coils. They are similarly inductively coupled during other operations. The primary and secondary coils constitute an automatic transformer. It is desirable that the primary and secondary coils 112 and 114 have the same number of turns, the same material, and the same resistance. On the other hand, it is not required to be preferable.
最初のスイッチング素子 104の陰極 104 bは、 ノード 115を通して最初のコイル 112 と電気的に接続している。 回転子 102に巻き付いた後、 一次コイル 112は二番目のス イッチング素子 106の陽極 106 aと電気的に接続している。 二番目のスイッチング素 子 106の陽極 106 aは、 一次コイル 112と同時に起きるように、 二次コイル 114と電 気的に接続している。 整流回路 116は、 ノード 115と 140横切って電源 108と電気的に接続している。 こ の実施例では、 整流回路 116は、 四つのノード 126, 128, 130, 132と接続する四つの ダイォ一ド 118, 120, 122, 124から成るブリッジダイォード回路 117から成り立って いる。 キャパシター 134は、 ノード 126, 130を横切つて電気的にブリッジダイォ一ド 117と抵抗 136に対して並列に接続している。 ノード 132は、 二次コイル 114に入力 を供給するノード 138において、 二次コイル 114 と電気的に接続している。 抵抗 136 は、 外部負荷に代表されるキャパシター 134に並列的に供給される。 The cathode 104 b of the first switching element 104 is electrically connected to the first coil 112 through the node 115. After winding around the rotor 102, the primary coil 112 is electrically connected to the anode 106a of the second switching element 106. The anode 106 a of the second switching element 106 is electrically connected to the secondary coil 114 so as to occur simultaneously with the primary coil 112. Rectifier circuit 116 is electrically connected to power supply 108 across nodes 115 and 140. In this embodiment, the rectifier circuit 116 is composed of a bridge diode circuit 117 composed of four diodes 118, 120, 122, 124 connected to four nodes 126, 128, 130, 132. Capacitor 134 is electrically connected across bridge 126 and 130 in parallel with bridge diode 117 and resistor 136. Node 132 is electrically connected to secondary coil 114 at node 138 that provides input to secondary coil 114. The resistor 136 is supplied in parallel to a capacitor 134 typified by an external load.
最初のスイッチング素子 104の電流出力は、 ノード 115で分割される。 ノ一ド 115 の最初の出力は、 上述のように一次コイル 112に出力される。 ノ一ド 115の二番目の 出力は、 整流回路 116に出力を供給するプリッジダイオード回路 117のノード 128と 接続している ό ブリッジダイォ一ド回路 117のノード 126は、 キャパシ夕一 134と抵 抗 136と電気的に接続しているノード 140と電気的に接続している。 ノード 140は、 スイッチング素子 106と電気的に接続するノード 142と電気的に接続している。 The current output of the first switching element 104 is divided at node 115. The first output of node 115 is output to primary coil 112 as described above. The second output of the node 115 is connected to the node 128 of the bridge diode circuit 117 that supplies the output to the rectifier circuit 116. The node 126 of the bridge diode circuit 117 is connected to the capacitor 134 and the resistance 136. Is electrically connected to node 140 which is electrically connected to The node 140 is electrically connected to a node 142 that is electrically connected to the switching element 106.
ヨーク上に載置される磁気回転子 (図示しない) は上記に示され、 又、 述べられる ように回転子 102 を調整する位置と成っている。 上記実施例の他の構成は適当に供給 される。  A magnetic rotor (not shown) mounted on the yoke is shown above and serves as a position to adjust the rotor 102 as described. Other configurations of the above embodiment are provided appropriately.
キャパシ夕一 110は、 一例では、 22, 000 ファラディ一の容量を有している。 キヤ パシ夕一 134は、 3, 300ファラディーの容量を有している。 抵抗 136は、 3 0オーム の抵抗を有している。 D C電源 108 は、 一例として 1 2ポルト、 あるいは 2 4ポルト を供給している。  Capacitance evening 110, for example, has a capacity of 22,000 Faraday. Kiyapashi Yuichi 134 has a capacity of 3,300 Faraday. Resistor 136 has a resistance of 30 ohms. For example, the DC power supply 108 supplies 1 2 port or 2 4 port.
操作上、 一番目及び二番目のスイッチング素子 104, 106は、 動きが回転翼の回転と 同時に発生する一対の光センサー 107 によって供給される外部シグナルに基づいて開 閉される。図 2 1に示すようにスイッチング素子 104, 106は両方とも閉じられた時に、 電流及び電圧は、 ノード 115に対して一次コイル 112及ぴ整流回路 116に供給される。 電流は、 スイッチング素子 106、 ノード 142に対して、 D C電源 108の陰極端子 108 bに回す一次コイル 112へ供給する。 電流は、 整流回路 116に供給され、 キャパシ夕 ― 134の中で誘導され、 貯蔵される。 整流電流は、 キャパシター 134と抵抗器 136、 あるいは他の負荷の外部に流れ、 そして同様にノード 142に対して D C電源 108の陰 極端子へ回される。 電磁場は、 二次コイル 114 の中において一次コイルへ入力する電 圧と電流と一致する電圧及び電流パルスによる一次コイル 112 によって生ずる。 同様 に、 磁場は二次コイルよつて生ずる。 磁場は、 スイッチング素子 104と 106とが閉じ る間に、 一例として、 6 0デグリーで回転子 (図示しない) の回転に起因して一次及 び二次コイル 112, 114によって生ずる。 In operation, the first and second switching elements 104, 106 are opened based on an external signal supplied by a pair of optical sensors 107 whose movement occurs simultaneously with the rotation of the rotor blades. Closed. When both switching elements 104 and 106 are closed as shown in FIG. 21, current and voltage are supplied to the primary coil 112 and the rectifier circuit 116 with respect to the node 115. The current is supplied to the primary coil 112 that turns to the cathode terminal 108 b of the DC power supply 108 to the switching element 106 and the node 142. The current is supplied to the rectifier circuit 116 and is induced and stored in the capacitor 134. The rectified current flows outside the capacitor 134 and resistor 136, or other load, and is also routed to the negative terminal of the DC power supply 108 relative to the node 142. The electromagnetic field is generated by the primary coil 112 in the secondary coil 114 due to voltage and current pulses that match the voltage and current input to the primary coil. Similarly, the magnetic field is generated by the secondary coil. The magnetic field is generated by the primary and secondary coils 112, 114 due to rotation of the rotor (not shown) at 60 degrees, for example, while the switching elements 104 and 106 are closed.
図 2 2に示すようにスイッチング素子 104, 106の両方が開いた時、 D C電源 108は、 一次及び二次コイル 112, 114から切断される。 電圧及び電流は、 電源 108によって一 次コイル 112へ供給されない。 回転子は、 それ自身の慣性に起因して回転を維持する。 一次コイル及び二次コイルの誘導電力は、 ブリッジダイオード回路 117 とキャパシタ 一 134を横切って引き起こされる。 整流電流は、 抵抗器 136へキャパシター 134から 流れる。  As shown in FIG. 22, when both switching elements 104 and 106 are opened, the DC power source 108 is disconnected from the primary and secondary coils 112 and 114. Voltage and current are not supplied to the primary coil 112 by the power source 108. The rotor maintains its rotation due to its own inertia. Inductive power in the primary and secondary coils is caused across the bridge diode circuit 117 and capacitor 134. Rectified current flows from capacitor 134 to resistor 136.
逆起電力" e m f " は、 スイッチング素子 104, 106が開いた時に生じ、 回路への電 力は長く供給されない。 回転子の継続回転と磁場は、 一次及び二次コイル 112, 114両 方の中で回転子が電圧を引き起すことによって生ずる。  The back electromotive force “e m f” is generated when the switching elements 104 and 106 are opened, and the power to the circuit is not supplied for a long time. The continuous rotation of the rotor and the magnetic field are caused by the rotor causing a voltage in both the primary and secondary coils 112, 114.
スイッチング素子 104, 106は、 一例であるが、 4 0サイクルノ秒の頻度で開いたり 閉じたりする。 一実施例において、 一次コイル 112へ供給される電流及び整流回路へ 供給される電流の割合は約 1 : 8である。 The switching elements 104 and 106 are an example, but are opened and closed at a frequency of 40 cycle-nos. In one embodiment, the current supplied to the primary coil 112 and the rectifier circuit The ratio of supplied current is about 1: 8.
図 2 3 aは、 一例として回転子と光センサ一 107が回転する時、 T 1及び T 2の 2 地点で回転子 (図示しない) と光センサー 107の中で磁石 22に面する N極及び S極に 関して、 一次及び二次コイル 112, 114それぞれの側の 2個のコイル 112 a、 114 bの 概念図である。  Fig. 2 3a shows, for example, when the rotor and the optical sensor 107 rotate, the N pole facing the magnet 22 in the rotor (not shown) and the optical sensor 107 at two points T1 and T2. FIG. 4 is a conceptual diagram of two coils 112 a and 114 b on each side of the primary and secondary coils 112 and 114 with respect to the S pole.
図 2 3 aにおいて、 回転子と光センサーが環状磁路電機子コイル 102 に構わずに移 動するように、 図 2 3 bは、 スイッチング素子 104, 106が T 1が閉じ、 T 2が開いた 時に、 端子 104 bとノード 142とを横切る四角い波の入力電圧を示している。  In Fig. 2 3a, switching element 104, 106 is closed by T 1 and T 2 is opened so that the rotor and the optical sensor move regardless of the annular magnetic armature coil 102. The input voltage of a square wave across terminal 104 b and node 142 is shown.
図 2 3 cは、 ノード 1 0 6 a及びノ一ド 142 とを横切る T 1、 T 2、 Τ 3から、 図 2 3 aにおいて回転子がコイルに構わずに回転コイル 112, 114によって生ずる入力電 圧を示している。 丁1から丁2へ、 スイッチング素子 104, 106は閉じられ、 電力はコ ィル 112, 114お整流回路 116に供給される。 スパイク 149、 あるいはサージ電圧は、 後方の逆起電力によって起因する T 2で示される。 スイッチング素子 104, 106が開い ている間、 同様に電圧を生じ、 モーターが発電機として働くことが出来るのは明白で ある。  Figure 2 3 c shows the input generated by rotating coils 112 and 114 from T 1, T 2 and ノ ー ド 3 across node 1 0 6 a and node 142, regardless of whether the rotor is a coil or not. Voltage is shown. From Ding 1 to Ding 2, switching elements 104 and 106 are closed, and power is supplied to coils 112 and 114 and rectifier circuit 116. Spike 149, or surge voltage, is indicated by T 2 due to back electromotive force. It is clear that while switching elements 104, 106 are open, a voltage is generated as well, and the motor can act as a generator.
図 2 4 a— 2 4 dは、 図 2 0のモーターの操作と共に、 様々な波形の多くのサイク ルを示している。 図 2 4 aは、 図 2 1においてスイッチング素子 104が閉じた時、 端 子 104bとノード 142を横切る入力電圧を示している。 図 2 4 bは、 図 2 0と 2 2に示 されるように、スイッチング素子 104, 106が開かれている時、ノード 142とノード 106a を横切って測定される入力電圧を示している。 図 2 4 cは、 操作中における図 2 4 a に示される入力電圧と図 2 4 bに示される整流電圧の総和であるノード 142 とノード 104bとを横切って生ずる整流回路 116へ供給される電圧を示している。 図 2 4 dは、 操作中抵抗器 136を横切って生ずる D C電圧を示している。 Figures 2 4a-2 4d show many cycles of various waveforms along with the operation of the motor of Figure 20. FIG. 24 shows the input voltage across the terminal 104b and the node 142 when the switching element 104 is closed in FIG. FIG. 24b shows the input voltage measured across node 142 and node 106a when switching elements 104, 106 are open, as shown in FIGS. Figure 24c shows the voltage supplied to rectifier circuit 116 across node 142 and node 104b, which is the sum of the input voltage shown in figure 24a and the rectified voltage shown in figure 24b during operation. Is shown. Figure 2 4 d Shown is the DC voltage generated across resistor 136 during operation.
図 2 5は、 本発明の実施例に従ってモーターがどのようにして発電機の働きを絶え ずなし得るかを実証するために電気的に接続する図 2 0のモーター 100 と同様な 2つ のモーター i00a100b両方は、 部分的にスィツチング素子 149と 150に対して外部負 荷の代表的なものである抵抗器 136 と電気的に接続している。 それぞれのモーター 100a、 100bは、 一例であるが、 付加されたスイッチング素子 145, 146, 147, 148, 149 と 150に対して、 他のモ一夕一のキャパシ夕一 134b, 134aと同様に電気的に接続され ている。 Figure 25 shows two motors similar to the motor 100 in Figure 20 that are electrically connected to demonstrate how the motor can constantly function as a generator in accordance with an embodiment of the present invention. Both i 00a and 100b are electrically connected in part to the resistor 136 which is representative of the external load for the switching elements 149 and 150. Each of the motors 100a and 100b is an example, but the added switching elements 145, 146, 147, 148, 149 and 150 are electrically connected in the same manner as the other capacitors 134b and 134a. Connected.
操作中、 スイッチング素子 104a, 106a, 104b, 106b, 145, 146, 147, 148, 149及 び 150は、 それぞれのモータ一 100a、 100bの中で交互に開いたり閉じたりする。 例え ば、 図 2 5において、 モータ一 100aのスイッチング素子 104a、 106aは開き、 スイツ チング素子 104b、 106B は閉じている。 付言するならば、 スイッチング素子 145、 148 と 150は開き、 スイッチング素子 146、 147, と 149は閉じている。 それ故に、 モー夕 一 100aは、 図 2 6 aに示されると同様にモ一ター 100aによって、 その時生ずる整流 電圧をバッテリー 108a とキャパシター 134aに詰めている。 同様に図 2 6 bにおいて 示されるように、スイッチング素子 104a、 106aが閉じて、スイッチング素子 104b, 106b が開き、 スィツチング素子 145, 148と 150が閉じ、 スィツチング素子 146, 147と 149 が開くと、 モーター 100bによって生ずる整流電圧はバッテリー 108bとキャパシター 134bに詰められる。  During operation, the switching elements 104a, 106a, 104b, 106b, 145, 146, 147, 148, 149 and 150 are alternately opened and closed in their respective motors 100a, 100b. For example, in FIG. 25, the switching elements 104a and 106a of the motor 100a are open, and the switching elements 104b and 106B are closed. In other words, switching elements 145, 148, and 150 are open, and switching elements 146, 147, and 149 are closed. Therefore, the motor 100a charges the battery 108a and the capacitor 134a with the rectified voltage generated by the motor 100a as shown in FIG. 26a. Similarly, as shown in FIG. 26b, when switching elements 104a and 106a are closed, switching elements 104b and 106b are opened, switching elements 145, 148 and 150 are closed, and switching elements 146, 147 and 149 are opened, The rectified voltage generated by the motor 100b is packed in the battery 108b and the capacitor 134b.
図 2 7 cは、それぞれ 2対のモ一夕一 100c、 100dの交互変圧器と、バッテリー 108c, 108dに蓄電するための変圧である。この変圧器は、 4つのスィツチング素子 104c, 106c, 104d, 106dのみを含み、 それ故に、 図 2 5の変圧器よりも少ない損失を有する。 図 2 8 _ 3 0は、 本発明のモーター及び発電機を用いる追加の空芯コイル変圧器 150, 152, 154 を示している。 これらの空芯コイル 150, 152, 154 は、 回転子上で磁 石 22の数に周波数が従属関係にある単一相 A Cで生ずる。例えば、図 6に示すように、 もしそこには回転子 21の上で 6個の磁石 22があり、 例えば、 それから周波数は回転 子の 3サイクル/回転である。 もし、 そこに 8個の磁石 22があれば、 周波数は 4サイ クル Z回転である。 空芯コイル 150-154 は、 回転子の回りで巻かれたコイルの内側円 周のすぐそばに位置している。 空芯コイル 105-154 は、 一例であるが、 回路の中でバ ッテリーに詰めるためモーター回路から分離する回路 (図示しない) の部分である。 図 2 8は、 永久磁石回転子 21上の 6個の永久磁石 22上の空芯コイルの平面図であ る。 空芯コイル 150は、 磁石 22の回りで波形状に巻かれている。 図 2 9は、 永久磁石 回転子 2 1上の 6個の永久磁石 22の上の他の空芯コイルの平面図であり、 該空芯コィ ルは、 それぞれ磁石の周囲に巻かれている。 巻かれる方向は、 磁石 22に対してそれぞ れ交互にする。 最初、 巻く方向は、 全ての N極に同じように巻き、 二番目に巻く方向 はそれぞれ S極に同じように巻く (最初に巻く方向とは反対に)。 図 3 0は、 永久磁石 回転子 2 1上の 6個の永久磁石 22上の他の空芯コイル 154のを示す平面図であり、 空 芯は N極に違い違いに唯一巻かれている。 N極の回りに巻かれるものは同一方向であ る。空芯コイル 154は、代わりに交互に S極の回りに巻かれるものは同一方向である。 図 3 1は、 交互となる環状磁路電機子芯 200 の概念図である。 ここで述べられたよ うに、 本発明の実施例の幾つかで用いられている。 環状磁路電機子芯 200は、 エアギ ヤップ 208, 210, 212によって分離される芯部分 202, 204, 206とから成り立つてい る。この例では、 3つのエアギャップ 208-212によって分けられる 3つの芯部分 202-206 がある。 最初のコイル 214区分と二番目のコイル 216の区分は、 一つの芯部分 204の 回りに巻かれているのが示されている。 一番目と二番目のコイル 214, 216 (図示され ていない) の付加部分は、 他の芯 202, 206の周りに交互に巻かれ、 同一のコイルの部 分でそれぞれのコイルで一連に、 あるいは並列して接続している。 図 3 1は、 エアギ ヤップ位置に関する一次コイル 214及び二次コイル 216の巻き方に対する磁場領域を 示している。 Fig. 27 c shows two pairs of alternating transformers 100c and 100d, respectively, and a transformer for storing electricity in batteries 108c and 108d. This transformer contains only four switching elements 104c, 106c, 104d, 106d and therefore has less loss than the transformer of FIG. FIGS. 28_30 show additional air core coil transformers 150, 152, 154 using the motor and generator of the present invention. These air-core coils 150, 152, 154 are produced by a single-phase AC whose frequency is dependent on the number of magnets 22 on the rotor. For example, as shown in FIG. 6, there are six magnets 22 on the rotor 21, for example, then the frequency is 3 cycles / rotation of the rotor. If there are 8 magnets 22 there, the frequency is 4 cycles Z rotation. Air-core coils 150-154 are located right next to the inner circumference of the coil wound around the rotor. The air-core coil 105-154 is an example, but is a part of a circuit (not shown) that is separated from the motor circuit in order to pack the battery. FIG. 28 is a plan view of air-core coils on the six permanent magnets 22 on the permanent magnet rotor 21. The air core coil 150 is wound around the magnet 22 in a wave shape. FIG. 29 is a plan view of another air-core coil on the six permanent magnets 22 on the permanent magnet rotor 21, and each air-core coil is wound around the magnet. The winding direction is alternated with respect to the magnet 22. First, the winding direction is the same for all N poles, and the second winding direction is the same for each S pole (as opposed to the first winding direction). FIG. 30 is a plan view showing another air-core coil 154 on the six permanent magnets 22 on the permanent magnet rotor 21, and the air core is wound only on the N pole, differently. Those wound around the N pole are in the same direction. The air-core coil 154 is alternately wound around the south pole in the same direction. FIG. 31 is a conceptual diagram of alternating annular magnetic armature cores 200. As described herein, it is used in some of the embodiments of the present invention. The annular magnetic path armature core 200 is composed of core parts 202, 204, 206 separated by air gaps 208, 210, 212. In this example, there are three core portions 202-206 separated by three air gaps 208-212. The first coil 214 segment and the second coil 216 segment are It is shown wound around. Additional portions of the first and second coils 214, 216 (not shown) are alternately wound around the other cores 202, 206, in series with each coil in the same coil section, or Connected in parallel. FIG. 31 shows the magnetic field region for the winding method of the primary coil 214 and the secondary coil 216 with respect to the air gap position.
環状磁路電機子芯 200の中に設けられているエアギャップ 208-212は、 磁力漏れを 増やし、 一次コイル及び二次コイル 112, 114の中で電流を安定させる。 その上、 漏れ た磁束の増加の結果、 環状磁路電機子芯がエアギャップ 208-212 を有しない場合と比 較すると永久磁石回転子 2 1の回転効率を高めている。 エアギャップ 208-212が狭い 時、 磁力通路が回転子の同じ磁極のすぐ側に常に位置し、 安定的にコキングトルクを 生じない。  The air gap 208-212 provided in the annular magnetic path armature core 200 increases magnetic leakage and stabilizes the current in the primary and secondary coils 112, 114. In addition, as a result of the increase in the leaked magnetic flux, the rotational efficiency of the permanent magnet rotor 21 is increased as compared with the case where the annular magnetic path armature core does not have the air gap 208-212. When the air gap 208-212 is narrow, the magnetic path is always located right next to the same magnetic pole of the rotor, and stable coking torque is not generated.
単巻き変圧器の中でコイル自体、 あるいは複数のコイルのどちらかが好ましいかは 必要でない。 芯の周りに巻かれるコイルは、 同様に単巻き変圧器の中にある。 例えば、 図 3 2の中において示されるように、 一次コイル 280は電源 282に接続し、 芯 286の 周りに巻かれている。 二次コイル 288は、 同様に芯 286の周りに巻かれている。  It is not necessary whether the coil itself or multiple coils are preferred in a single transformer. The coil wound around the core is also in the single turn transformer. For example, as shown in FIG. 32, the primary coil 280 is connected to a power source 282 and is wound around a core 286. Secondary coil 288 is similarly wound around core 286.
本発明の実施例におけるモーター及び発電機ノモータ一は、 D Cを A Cに変換させ、 生じた A Cは回転子の E P Mで様々な周波数を有する四角い波である。 D C電源は、 一般的であるが、 多くの装置が A C (電源) には必要である。 本発明の実施例におい て、 モータ一及び発電機/モータ一は、 それ故によく使用され、 能率良く D Cを A C に変換させている。 本発明の実施例における発電機 Zモ一ターは、 同様に異なった外 部電圧及び電流に入力電圧及び電流を変換させている。  The motor and generator motor in the embodiment of the present invention convert DC to AC, and the resulting AC is a square wave having various frequencies in the rotor EPM. DC power is common, but many devices are required for AC (power). In the embodiment of the present invention, the motor and the generator / motor are therefore often used to efficiently convert D C to A C. The generator Z motor in the embodiment of the present invention similarly converts the input voltage and current into different external voltages and currents.
上記の実施例においては、 回転子と環状磁路電機子はそれぞれ他のすぐ側にあり、 同様に回転子と環状磁路電機子は同心にある。 回転子は、 環状磁路電機子の周りにあ るか、 環状磁路電機子が回転子の回りにあるかである。 In the above embodiment, the rotor and the annular magnetic armature are each on the other side, Similarly, the rotor and the annular magnetic path armature are concentric. Either the rotor is around the annular magnetic armature or the annular magnetic armature is around the rotor.
付け加えるなら、 上記の実施例において芯に巻かれたコイルは固定子であるが、 芯 に巻かれたコイルとすることもできる。 このコイルの回転子は上述したように、 環状 磁路電機子として安定し機能する。  In addition, the coil wound around the core in the above embodiment is a stator, but it can also be a coil wound around the core. As described above, the rotor of this coil functions stably as an annular magnetic path armature.
つぎに、 この発明の実施例 7について説明する。 この実施例 7では、 上述した実施 例 2〜 6に示したモータあるいは発電モー夕あるいは発電モータを用いたアシスト自 転車を実現している。  Next, Embodiment 7 of the present invention will be described. In the seventh embodiment, the assist bicycle using the motor, the power generation motor, or the power generation motor shown in the above-described second to sixth embodiments is realized.
図 3 3では、 この発明の実施例 7であるアシスト自転車の主要構成を示す模式図で ある。 図 3 3において、 前輪 1 2 1の回転中心及び後輪 1 2 2の回転中心には、 実施 例 2 , 3 , 5 ; 6に示したモータ 1 1 1, 1 1 2がそれぞれ配置される。 さらに、 モ 一夕 1 1 1, 1 1 2は多段構成と同様に、 モー夕 1 1 1の出力電力がモータ 1 1 2の 入力電力となる。 また、 後輪 1 2 2の回転力によって回転する高速発電モ一夕 1 1 3 が設けられる。  FIG. 33 is a schematic diagram showing the main configuration of an assist bicycle that is Embodiment 7 of the present invention. In FIG. 33, motors 1 1 1 and 1 1 2 shown in the second, third, and fifth embodiments are respectively arranged at the rotation center of the front wheel 1 2 1 and the rotation center of the rear wheel 1 2 2. In addition, the output power of the motor 1 1 1 and 1 1 2 is the input power of the motor 1 1 2 as in the multistage configuration. In addition, a high-speed power generator 1 1 3 that rotates by the rotational force of the rear wheels 1 2 2 is provided.
後輪 1 2 2は、 このアシスト自転車を操縦する人の動力、 および図示しない直流電 源の電力供給によるモ一夕 1 1 1 , 1 1 2の回転力によって駆動される。 モータ 1 1 2は、 環状磁路電機子 1 1 2 bに電力が供給されることによって永久磁石回転子 1 1 2 aを回転させるとともに、 環状磁路電機子 1 1 2 bからの出力電力は、 モー夕 1 1 1の入力電力として環状磁路電機子 1 1 l bに入力され、 永久磁石回転子 1 1 2 aを 回転させ、 永久磁石回転子 1 1 2 aからの出力電力は、 直流電源に蓄積される。 すな わち、 モータ 1 1 1, 1 1 2はトルク増幅されている。 この蓄積された電力は、 再び モータ 1 1 2への入力電力として利用される。 一方、 図 3 4に示すように、 高速発電モ一夕 1 1 3は、 永久磁石 1 1 2 aの回転に 伴う回転を変速して高速回転される。 この高速回転によって高速発電モータの永久磁 石回転子は高速回転し、 空芯コイル 1 1 3 aによって発電される。 空芯コイル 1 1 3 aからの出力電力は、 上述した直流電源に電力を蓄積してもよいし、 実施例 4に示し たように電動アシスト 2を行うようにしてもよい。 The rear wheels 1 2 2 are driven by the power of the person operating the assist bicycle and the rotational force of the motors 1 1 1, 1 1 2 by the power supply of a DC power source (not shown). The motor 1 1 2 rotates the permanent magnet rotor 1 1 2 a by supplying power to the annular magnetic path armature 1 1 2 b, and the output power from the annular magnetic path armature 1 1 2 b is The input power of the motor 1 1 1 is input to the annular magnetic circuit armature 1 1 lb, the permanent magnet rotor 1 1 2 a is rotated, and the output power from the permanent magnet rotor 1 1 2 a is the DC power supply Accumulated in. In other words, the motors 1 1 1 and 1 1 2 are torque amplified. This accumulated power is used again as input power to the motor 1 1 2. On the other hand, as shown in FIG. 34, the high-speed power generation module 1 1 3 is rotated at a high speed by changing the rotation associated with the rotation of the permanent magnet 1 1 2 a. This high-speed rotation causes the permanent magnet rotor of the high-speed generator motor to rotate at a high speed, and power is generated by the air-core coil 1 1 3 a. The output power from the air-core coil 1 1 3 a may be stored in the DC power source described above, or the electric assist 2 may be performed as shown in the fourth embodiment.
なお、 上述したモータ 1 1 1 , 1 1 2および高速発電モータ 1 1 3の構成は、 自動 車のホイールにも適用することができ、 効率の良い電気自動車を実現することができ る。  Note that the configurations of the motors 1 1 1 and 1 1 2 and the high-speed power generation motor 1 1 3 described above can be applied to the wheel of an automobile, and an efficient electric vehicle can be realized.
また、 この実施例では、 モー夕が分散配置される構成としているが、 この分散配置 は、 たとえば、 送電中継の各所にも同様に適用することができ、 送電中継毎に新たな 回転力を得ることができ、 この回転力による空芯コイルを用いた発電機能によって送 電中継時の損失を補うことができる。  In addition, in this embodiment, the configuration is such that the mo-yu is distributed, but this distributed arrangement can be similarly applied to, for example, each place of the power transmission relay, and a new rotational force is obtained for each power transmission relay. The power generation function using an air-core coil with this rotational force can compensate for the loss during power transmission relay.
(実施例 8 )  (Example 8)
つぎに、 この発明の実施例 8について説明する。 この実施例 8では、 上述した実施 例 4に示した発電モー夕を用いて、 発電機の動力アシストを行うようにしている。 図 3 5は、 この発明の実施例 8である風力発電の主要構成を示す模式図である。 図 3 5において、 この風力発電機は、 風力をプロペラ 1 4 0によって受け、 口一夕 1 4 1を回転させ、 この回転力を高速発電モータ 1 3 1の永久磁石回転子に伝達させる。 この回転の伝達は、 ロータ 1 4 1の低速回転を永久磁石回転子の高速回転に変速され ている。 高速発電モー夕 1 3 1の永久磁石回転子が高速回転すると、 空芯コイルによ つて電力が出力され、 この電力は、 高速発電モ一夕 1 3 1の環状磁路電機子にフィー ドバックされて、 永久磁石回転子の回転をアシストすると共に、 外部に電力が出力さ れる。 これによつて、 発電機として機能する高速発電モータ 1 3 1に係るトルクをな くし、 高効率の発電を行うことができる。 Next, an eighth embodiment of the present invention will be described. In the eighth embodiment, the power assist of the generator is performed using the power generation mode shown in the fourth embodiment. FIG. 35 is a schematic diagram showing the main configuration of wind power generation that is Embodiment 8 of the present invention. In FIG. 35, this wind power generator receives wind power by means of a propeller 14 0, rotates the mouth 1 4 1, and transmits this rotational force to the permanent magnet rotor of the high speed generator motor 1 3 1. In this rotation transmission, the low-speed rotation of the rotor 14 1 is shifted to the high-speed rotation of the permanent magnet rotor. When the permanent magnet rotor of the high-speed power generation motor 1 3 1 rotates at high speed, power is output by the air-core coil, and this power is fed back to the annular magnetic circuit armature of the high-speed power generation motor 1 3 1. Assists the rotation of the permanent magnet rotor and outputs power to the outside. It is. This eliminates the torque associated with the high-speed generator motor 1 3 1 functioning as a generator and enables highly efficient power generation.
なお、 本発明の実施例 1〜実施例 8においては、 パルス入力を以下のように制御し ている。 すなわち、 直流電源より一次コイルにパルス電力を入力すると回転力及び回 転数の制御を行うことができるために、 この場合は、 二次コイルは、 パルス周波数に 同期した誘導電圧による交流電流が生じ、 その電流の向きは、 回転子の磁極配列に対 して正の回転力を生じさせることになる。 また、 パルス幅の制御を行うことで、 パル ス幅に正比例した回転力及び回転数を得ることが可能となっている。 産業上の利用可能性  In the first to eighth embodiments of the present invention, the pulse input is controlled as follows. That is, when pulse power is input from the DC power source to the primary coil, the rotational force and the number of rotations can be controlled. In this case, the secondary coil generates an AC current due to an induced voltage synchronized with the pulse frequency. The direction of the current generates a positive rotational force with respect to the magnetic pole array of the rotor. In addition, by controlling the pulse width, it is possible to obtain a rotational force and a rotational speed that are directly proportional to the pulse width. Industrial applicability
本発明のモ一夕は、 環状磁路電機子にスロットが形成されていないために、 コギン グトルクがなく、 効率の良いモー夕を実現することができると共に、 第 1コイルと第 2コイルとに生ずる逆起電力が打ち消されるため、 逆トルクが殆ど発生しない、 効率 のよいモータを実現することができる。 さらに、 環状磁路電機子自体による電力消費 がほとんどなく、 この環状磁路電機子によって永久磁石回転子を回転させると共に、 電源から負荷への電力転送をも行うことができるという効果を奏する。  According to the present invention, since the slot is not formed in the annular magnetic armature, there is no cogging torque, and an efficient motor can be realized, and the first coil and the second coil can be realized. Since the generated back electromotive force is canceled out, an efficient motor that hardly generates reverse torque can be realized. Further, there is almost no power consumption by the annular magnetic path armature itself, and the permanent magnet rotor can be rotated by the annular magnetic path armature and power can be transferred from the power source to the load.
また、 この発明によれば、 前記永久磁石回転子と前記ヨークとの間に、 多角形状の 空芯コイルを配置することによって、 回転エネルギーを外部出力することができ、 発 電機能をももたせることができるという効果を奏する。  Further, according to the present invention, by disposing a polygonal air-core coil between the permanent magnet rotor and the yoke, rotational energy can be output to the outside and a power generation function can be provided. There is an effect that can be.
また、 この発明によれば、 負荷として整流回路を設け、 この整流された電力を電源 側に供給することによって、 省エネルギー化された効率のよいモータ一を実現できる という効果を奏する。 また、 この発明によれば、 前記環状磁路電機子と前記整流子との相対位置関係をず らして前記永久磁石回転子の回転速度および回転方向を制御し、 簡易な構成によって モータの回転制御を自在に行うことができるという効果を奏する。 Further, according to the present invention, by providing a rectifier circuit as a load and supplying the rectified power to the power supply side, there is an effect that an energy-saving and efficient motor can be realized. Further, according to the present invention, the rotational position and direction of the permanent magnet rotor are controlled by shifting the relative positional relationship between the annular magnetic path armature and the commutator, and the rotation control of the motor is performed with a simple configuration. There is an effect that can be performed freely.
また、 この発明によれば、 空芯コイルの出力を前記空芯コイルの出力を前記環状磁 路電機子に入力し、 環状磁路電機子や整流子などに発生する銅損や鉄損などの損失を 補った効率のよいモ一夕を実現できる。  Further, according to the present invention, the output of the air core coil is input to the annular magnetic armature and the output of the air core coil is input to the annular magnetic armature, the commutator, and the like. It is possible to realize an efficient operation that compensates for the loss.
また、 この発明によれば、 空芯コイルの出力を環状磁路電機子に入力し、 永久磁石 回転子の回転力をアシストすることによって、 永久磁石回転子にかかる外部の回転力 が軽減され、回転負荷を小さくした発電機用モ一夕を実現できるという効果を奏する。 また、 この発明によれば、 空芯コイルの出力の全部あるいは一部を外部出力するよ うにしているので、 外部への発電出力機能をも併せ持った効率の良いモータを実現す ることができるという効果を奏する。  In addition, according to the present invention, the external rotational force applied to the permanent magnet rotor is reduced by inputting the output of the air core coil to the annular magnetic path armature and assisting the rotational force of the permanent magnet rotor. There is an effect that it is possible to realize a generator motor with a reduced rotational load. In addition, according to the present invention, since all or part of the output of the air-core coil is output to the outside, an efficient motor having an external power generation output function can be realized. There is an effect.
また、 この発明によれば、 永久磁石回転子の軸を中心にモー夕が対向配置によって 多段構成され、 かつ電気的に直列接続された連鎖出力を行うようにし、 あるいは、 永 久磁石回転子の軸を中心にモー夕が多段構成され、 かつ電気的に直列接続された連鎖 出力を行うようにしているので、 1つのモー夕を駆動時に転送する電力と同じ電力を 用いて、 回転トルクを増大させることができるという効果を奏する。  Further, according to the present invention, the motor is configured in a multistage configuration with opposing arrangements around the axis of the permanent magnet rotor and is electrically connected in series so as to perform a chain output, or the permanent magnet rotor Since the motor output is made up of multiple stages around the axis and is connected in series with the electrical connection, the rotational power is increased by using the same power as the power transferred during driving of one motor. There is an effect that can be made.
また、 この発明によれば、 直線上の電機子が、 電源と負荷との間の変圧器としてき のうしているため、 電機子自体による電力消費がほとんどなく、 この電機子によって 発生した磁界によって永久磁石を移動させるリニアモー夕を実現できると共に、 電源 から負荷への電力転送をも行うことができるという効果を奏する。  Further, according to the present invention, since the armature on the straight line is entrained as a transformer between the power source and the load, there is almost no power consumption by the armature itself, and the magnetic field generated by this armature In addition to realizing a linear motor that moves the permanent magnet, it also has the effect of being able to transfer power from the power supply to the load.

Claims

請 求 の 範 囲 The scope of the claims
1 . 環状の磁路を形成する電機子鉄心と、 1. an armature core that forms an annular magnetic path;
前記電機子鉄心に同一方向に巻回され直流抵抗が高く直列接続された複数の第 1コ ィルと前記電機子鉄心に前記第 1コイルと同一方向に巻回され、 前記第 1コイルに比 して直流抵抗が低く且つ巻回数が小さく同一長さの磁区を形成し直列接続又は並列接 続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイルとが交互に配置さ れるコイル群と、  A plurality of first coils wound in the same direction around the armature core and connected in series with high DC resistance, and wound around the armature core in the same direction as the first coil. A plurality of second coils connected in series or in parallel, each having a low DC resistance and a small number of turns, forming a magnetic domain of the same length. A coil group to be arranged; and
直列接続された前記第 1コイル群に交流電力を供給する電源と、  A power source for supplying AC power to the first coil group connected in series;
直列または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接続され た前記コイル群に接続される負荷と、  A load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series;
前記電機子鉄心に前記コイル群が巻回された環状磁路電機子の内周近傍の周方向に、 前記コイル群が形成する磁区と同数であって磁極が異なる永久磁石が等間隔に交互に 配設され前記環状磁路電機子に内接する円板状の永久磁石回転子と、  In the circumferential direction in the vicinity of the inner circumference of the annular magnetic path armature in which the coil group is wound around the armature core, permanent magnets having the same number of magnetic domains formed by the coil group and having different magnetic poles are alternately arranged at equal intervals. A disk-shaped permanent magnet rotor disposed and inscribed in the annular magnetic path armature;
を備えたことを特徴とするモータ。  A motor comprising:
2 . 前記永久磁石回転子の軸に固定され、 該永久磁石回転子の永久磁石側の対向位置 に配置されるヨークと、  2. a yoke fixed to the shaft of the permanent magnet rotor and disposed at an opposing position on the permanent magnet side of the permanent magnet rotor;
前記永久磁石回転子前記ヨークとの間に配置される多角形状の空芯コイルと、 をさらに備えたことを特徴とする請求項 1記載のモー夕。  The motor according to claim 1, further comprising: a polygonal air-core coil disposed between the permanent magnet rotor and the yoke.
3 . 前記永久磁石回転子の回転に同期した整流子と、  3. a commutator synchronized with the rotation of the permanent magnet rotor;
前記電源に代え、 直流電力を供給する直流電源と、  Instead of the power source, a DC power source for supplying DC power;
を備え、 前記整流子は、 前記直流電源から供給される直流電力を整流転流して前記 環状磁路電機子に入力することを特徴とする請求項 1または 2に記載のモータ。 The commutator rectifies and commutates direct current power supplied from the direct current power source. 3. The motor according to claim 1, wherein the motor is input to an annular magnetic path armature.
4 . 前記負荷は、 整流回路であり、 4. The load is a rectifier circuit;
前記整流回路から出力された整流電力を前記直流電源に供給することを特徴とする 請求項 3に記載のモータ。  4. The motor according to claim 3, wherein rectified power output from the rectifier circuit is supplied to the DC power supply.
5 . 前記環状磁路電機子と前記整流子との相対位置関係をずらして前記永久磁石回転 子の回転速度および回転方向を制御することを特徴とする請求項 3または 4に記載の モ^ ^タ  5. The motor according to claim 3 or 4, wherein the rotational speed and direction of the permanent magnet rotor are controlled by shifting the relative positional relationship between the annular magnetic path armature and the commutator. T
6 . 前記空芯コイルの出力を前記環状磁路電機子に入力することを特徴とする請求項 2〜 5に記載のモータ。 6. The motor according to any one of claims 2 to 5, wherein an output of the air-core coil is input to the annular magnetic path armature.
7 . 環状の磁路を形成する電機子鉄心と、  7. An armature core forming an annular magnetic path;
前記電機子鉄心に同一方向に巻回され直流抵抗が高く直列接続された複数の第 1コ ィルと前記電機子鉄心に前記第 1コイルと同一方向に巻回され、 前記第 1コイルに比 して直流抵抗が低く且つ巻回数が小さく同一長さの磁区を形成し直列接続又は並列接 続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイルとが交互に配置さ れるコイル群と、  A plurality of first coils wound in the same direction around the armature core and connected in series with high DC resistance, and wound around the armature core in the same direction as the first coil. A plurality of second coils connected in series or in parallel, each having a low DC resistance and a small number of turns, forming a magnetic domain of the same length. A coil group to be arranged; and
直列または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接続され た前記コイル群に接続される負荷と、  A load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series;
前記電機子鉄心に前記コィル群が巻回された環状磁路電機子の内周近傍の周方向に、 前記コイル群が形成する磁区と同数であって磁極が異なる永久磁石が等間隔に交互に 配設され前記環状磁路電機子に内接する円板状の永久磁石回転子と、  In the circumferential direction near the inner periphery of the annular magnetic path armature in which the coil group is wound around the armature core, permanent magnets having the same number of magnetic domains formed by the coil group and having different magnetic poles are alternately arranged at equal intervals. A disk-shaped permanent magnet rotor disposed and inscribed in the annular magnetic path armature;
前記永久磁石回転子の軸に固定され、 該永久磁石回転子の永久磁石側の対向位置に 配置されるヨークと、 前記永久磁石回転子と前記ヨークとの間に配置される多角形状の空芯コイルと、 を備え、 前記空芯コイルの出力を前記環状磁路電機子に入力して、 前記永久磁石回 転子の回転力をアシストすることを特徴とするモータ。 A yoke fixed to the shaft of the permanent magnet rotor and disposed at a position opposed to the permanent magnet side of the permanent magnet rotor; A polygonal air-core coil disposed between the permanent magnet rotor and the yoke; and an output of the air-core coil is input to the annular magnetic path armature, and the permanent magnet rotor A motor characterized by assisting the rotational force of the motor.
8 . 前記空芯コイルの出力の全部あるいは一部を外部出力することを特徴とする請求 項 2〜 7のいずれか一つに記載のモータ。  8. The motor according to any one of claims 2 to 7, wherein all or part of the output of the air-core coil is output to the outside.
9 . 請求項 1〜8の何れか一つに記載のモータを、 前記永久磁石回転子の軸を中心に 対向配置させ、 一方のモー夕の環状磁路電機子のコイル群の巻回方向を他方のモータ の環状磁路電機子の巻回方向に対して逆にし、 一方のモー夕の出力を他方のモータに 入力する直列接続を行なうことを特徴とするモー夕。  9. The motor according to any one of claims 1 to 8, wherein the motor is disposed so as to face the axis of the permanent magnet rotor, and the winding direction of the coil group of the annular magnetic path armature of one of the motors is set. The motor is characterized in that it is connected in series with the output of one motor being input to the other motor by reversing the winding direction of the annular magnetic circuit armature of the other motor.
1 0 . 請求項 1〜 9のいずれか一つに記載のモータを、 前記永久磁石回転子の軸を中 心に多段構成し、 各モータの出力を順次、 次段のモ一夕に入力する直列接続を行うこ とをしたことを特徴とするモータ。  10. The motor according to any one of claims 1 to 9, wherein the motor is configured in multiple stages around the axis of the permanent magnet rotor, and the output of each motor is sequentially input to the next stage of the motor. A motor characterized in that it is connected in series.
1 1 . 請求項 1〜1 0のいずれかに一つに記載のモータを、 回転体に 1以上組み込ん だことを特徴とする車両。  1 1. A vehicle comprising at least one motor according to any one of claims 1 to 10 incorporated in a rotating body.
1 2 . 請求項 7〜 1 0のいずれか一つに記載のモ一夕を、 回転体に 1以上組み込んだ ことを特徴とする発電機。  1 2. A generator comprising one or more of the modules according to any one of claims 7 to 10 incorporated in a rotating body.
1 3 . 直線上の磁路を形成する電機子鉄心と、  1 3. Armature core that forms a straight magnetic path;
前記電機子鉄心に巻回され直流抵抗が高く直列接続された複数の第 1コイルと前記 電機子鉄心に巻回され、 前記第 1コイルに比して直流抵抗が低く且つ巻回数が小さく 同一長さの磁区を形成し直列接続又は並列接続された複数の第 2コイルとを有し、 各 第 1コイルと各第 2コイルとが交互に配置されるコイル群と、  A plurality of first coils wound around the armature core and connected in series with a high direct current resistance and wound around the armature core, the direct current resistance is lower than the first coil, and the number of turns is small. A plurality of second coils that are connected in series or in parallel, and each first coil and each second coil are alternately arranged, and
直列接続された前記第 1コィル群に交流電力を供給する電源と、 直列または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接続され た前記コイル群に接続される負荷と、 A power supply for supplying AC power to the first coil group connected in series; A load connected to the coil group in which the second coil group and the first coil group connected in series or in parallel are connected in series;
前記コイル群の近傍に設けられ、 前記電機子鉄心の長手方向に沿って前記磁区と同 一の長さを有する永久磁石と、  A permanent magnet provided in the vicinity of the coil group and having the same length as the magnetic domain along the longitudinal direction of the armature core;
を備えたことを特徴とするモー夕。  Mo Yu is characterized by having.
1 4 . 環状又は直線状の磁路を形成する電機子鉄心と、  1 4. an armature core forming an annular or linear magnetic path;
前記電機子鉄心に同一方向に巻回され直列接続又は並列接続された複数の第 1コィ ルと前記電機子鉄心に前記第 1コイルと同一方向に巻回され、 前記第 1コイルに比し て同巻回数の同一長さの磁区を形成し直列接続又は並列接続された複数の第 2コイル とを有し、 各第 1コイルと各第 2コイルとが同一抵抗値を有しながら交互に配置され るコイル群と、  A plurality of first coils wound in the same direction around the armature core and connected in series or in parallel, and wound around the armature core in the same direction as the first coil, as compared to the first coil A plurality of second coils connected in series or in parallel, forming magnetic domains of the same length with the same number of turns, and each first coil and each second coil are alternately arranged with the same resistance value Coil group to be
直列接続又は並列接続された前記第 1コイル群に交流電力を供給する電源と、 直列接続または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接続 又は並列接続された前記コイル群に接続される負荷と、  A power supply for supplying AC power to the first coil group connected in series or in parallel, and the coil in which the second coil group and the first coil group connected in series or in parallel are connected in series or in parallel A load connected to the group;
前記電機子鉄心に前記コイル群が巻回された環状磁路電機子の内周近傍の周方向に、 前記コイル群が形成する磁区と同数であって磁極が異なる永久磁石が等間隔に交互に 配設され前記環状磁路電機子に内接する円板状の永久磁石回転子と、  In the circumferential direction in the vicinity of the inner circumference of the annular magnetic path armature in which the coil group is wound around the armature core, permanent magnets having the same number of magnetic domains formed by the coil group and having different magnetic poles are alternately arranged at equal intervals. A disk-shaped permanent magnet rotor disposed and inscribed in the annular magnetic path armature;
を備えたことを特徴とするモー夕。  Mo Yu is characterized by having.
1 5 . 環状又は直線状の磁路を形成する電機子鉄心と、  1 5. An armature core that forms an annular or linear magnetic path;
前記電機子鉄心に巻回され直列接続又は並列接続された複数の第 1コィルと前記電 機子鉄心に巻回され、 前記第 1コイルに比して同巻回数の同一長さの磁区を形成し直 列接続又は並列接続された複数の第 2コイルとを有し、 各第 1コイルと各第 2コイル とが同一抵抗値を有しながら交互に配置されるコイル群と、 A plurality of first coils wound around the armature core and connected in series or parallel to each other and wound around the armature core to form a magnetic domain having the same number of turns as the first coil. A plurality of second coils connected in series or in parallel, each first coil and each second coil And coil groups that are alternately arranged while having the same resistance value,
直列接続又は並列接続された前記第 1コイル群に交流電力を供給する電源と、 直列接続または並列接続された前記第 2コイル群と前記第 1コイル群とが直列接続 又は並列接続された前記コイル群に接続される負荷と、  A power supply for supplying AC power to the first coil group connected in series or in parallel, and the coil in which the second coil group and the first coil group connected in series or in parallel are connected in series or in parallel A load connected to the group;
前記コイル群の近傍に設けられ、 前記電機子鉄心の長手方向に沿って前記磁区と同 一の長さを有する永久磁石と、  A permanent magnet provided in the vicinity of the coil group and having the same length as the magnetic domain along the longitudinal direction of the armature core;
を備えたことを特徴とするモータ。  A motor comprising:
PCT/JP2005/016685 2004-09-08 2005-09-05 Motor and devive using this WO2006028234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006535857A JPWO2006028234A1 (en) 2004-09-08 2005-09-05 Motor and device using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-295439 2004-09-08
JP2004295439 2004-09-08
JP2005106743 2005-03-04
JP2005-106743 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006028234A1 true WO2006028234A1 (en) 2006-03-16

Family

ID=36036514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016685 WO2006028234A1 (en) 2004-09-08 2005-09-05 Motor and devive using this

Country Status (3)

Country Link
JP (1) JPWO2006028234A1 (en)
TW (1) TW200616309A (en)
WO (1) WO2006028234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300834A (en) * 2014-09-25 2015-01-21 陈新培 Novel magnetic energy electric generator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175575U (en) * 1981-04-28 1982-11-06
JPH01103146A (en) * 1987-10-13 1989-04-20 Fuji Xerox Co Ltd Motor
JPH04101602A (en) * 1990-08-16 1992-04-03 Honda Motor Co Ltd Motor vehicle
JPH0458074U (en) * 1990-09-22 1992-05-19
JPH0993976A (en) * 1995-09-25 1997-04-04 Sony Corp Rotation driver
JPH10275726A (en) * 1997-03-28 1998-10-13 Yamamoto Makoto Transformer provided with built-in induction motor
JP2000287426A (en) * 1999-03-30 2000-10-13 Sakuragigumi:Kk Wind turbine power generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175575U (en) * 1981-04-28 1982-11-06
JPH01103146A (en) * 1987-10-13 1989-04-20 Fuji Xerox Co Ltd Motor
JPH04101602A (en) * 1990-08-16 1992-04-03 Honda Motor Co Ltd Motor vehicle
JPH0458074U (en) * 1990-09-22 1992-05-19
JPH0993976A (en) * 1995-09-25 1997-04-04 Sony Corp Rotation driver
JPH10275726A (en) * 1997-03-28 1998-10-13 Yamamoto Makoto Transformer provided with built-in induction motor
JP2000287426A (en) * 1999-03-30 2000-10-13 Sakuragigumi:Kk Wind turbine power generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300834A (en) * 2014-09-25 2015-01-21 陈新培 Novel magnetic energy electric generator

Also Published As

Publication number Publication date
JPWO2006028234A1 (en) 2008-05-08
TW200616309A (en) 2006-05-16

Similar Documents

Publication Publication Date Title
US20220190661A1 (en) Dc electric motor/generator with enhanced permanent magnet flux densities
CN101772876B (en) Electric machine comprising rotor with hybrid excitation
CN103427575B (en) Switched reluctance motor
US20190356251A1 (en) Control system for an electric motor/generator
AU2007276902B2 (en) Electric motor
AU2005333993B2 (en) Electric motor
CA2320055C (en) Constant-power brushless dc motor
US8710779B2 (en) Brushless electric motor or generator in shell construction
CN101874337A (en) Rotary electric machine and drive controller
GB2454170A (en) Pole number changing in permanent magnet reluctance machines
CN107546946B (en) M-phase stator winding switch reluctance motor, driving method and pole changing method
CN110739891A (en) electro-magnetic synchronous reluctance brushless power generation system
JP2017225203A (en) Switched reluctance motor drive system
JP2013258899A (en) Electric machine
WO2006028234A1 (en) Motor and devive using this
TW201841454A (en) Auxiliary coil for an electric machine
JPH0956127A (en) Ac induction motor
JP2000092816A (en) Power amplifying pulse motor with transformer built therein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535857

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase