WO2006028160A1 - S-oligonucleotide conjugate and antisense agent - Google Patents

S-oligonucleotide conjugate and antisense agent Download PDF

Info

Publication number
WO2006028160A1
WO2006028160A1 PCT/JP2005/016483 JP2005016483W WO2006028160A1 WO 2006028160 A1 WO2006028160 A1 WO 2006028160A1 JP 2005016483 W JP2005016483 W JP 2005016483W WO 2006028160 A1 WO2006028160 A1 WO 2006028160A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
conjugate
group
peptide
oligonucleotide conjugate
Prior art date
Application number
PCT/JP2005/016483
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Oba
Masayuki Fujii
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Kitakyushu Foundation For The Advancement Of Industry Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Kitakyushu Foundation For The Advancement Of Industry Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2006028160A1 publication Critical patent/WO2006028160A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07049RNA-directed DNA polymerase (2.7.7.49), i.e. telomerase or reverse-transcriptase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide

Definitions

  • the present invention relates to a novel phosphorothioate oligonucleotide conjugate that inhibits telomerase activity in a human leukemia cell extract and an antisense agent comprising the same as an active ingredient.
  • a complex of an oligonucleotide and a peptide has the potential to be used as an antisense agent for gene expression, and the peptide facilitates an increase in the intercellular concentration of the active oligonucleotide. Many attempts have been made to achieve this.
  • Non-Patent Document 1 For example, by introducing a thiol group at the 5 terminus of a synthetic oligonucleotide, a conjugate of DNA and a peptide siphon has been obtained (see Non-Patent Document 1).
  • functional organic compounds using bifunctional linkers such as dialkylating reagents, dimaleimides, and dialdehydes using functional groups such as amino groups, carboxylic acid groups, hydroxyl groups, and phenol groups present in protein molecules.
  • a combination of angiotensin I, insulin, bradykinin, topramycin, and other anticancer substances is also known, and the use of aromatic dithioisocyanate as a linker is also proposed (non- See Patent Document 2
  • Non-Patent Document 1 “Bioconjugate Chemistry”, 1 994, Vol. 5, p. 373-378
  • Non-Patent Document 2 "Science”, 1964, No. 144, p. 1344
  • the present invention provides a novel activity that inhibits telomerase in a human leukemia cell extract, in particular, a high activity inhibitory action, and provides a stable double-stranded hybrid with a complementary DNA. It was made for the purpose of providing such a conjugate.
  • the inventors of the present invention have made extensive studies to develop a novel DNA conjugate.
  • a nuclear localization signal polypeptide is added to a natural oligo DNA via ⁇ -aminoalkyl phosphoroate.
  • we succeeded in obtaining a DNA conjugate that has excellent antisense properties and forms stable double-stranded hybrids with complementary DNA op
  • the present invention provides a general formula
  • Alkylene Alpha 1 in the formula is interrupted by an alkylene group or an oxygen atom, Alpha 2 alkylene group, R represents a peptide residue of the sugar or functional Amin, eta is 0 or 1)
  • an antisense agent comprising the same as an active ingredient.
  • the S-oligonucleotide in the present invention is obtained by changing the phosphodiester structure in a natural oligonucleotide to a thiophosphate diester structure.
  • nucleotide residues having 10 to 15 base unit power for example, SEQ ID NO: 1-3 'and SEQ ID NO: 2-3' are preferred.
  • alkylene group having an A 1 bond in the general formula (I) a polymethylene group having 2 to 10 carbon atoms, preferably 4 to 8 carbon atoms, such as an ethylene group, a propylene group, a butylene group, a pentylene group, Hexylene group and the like can be mentioned.
  • the alkylene group may be one having a carbon chain interrupted by an oxygen atom, such as a 2-oxapropylene group, a 3-oxapentylene group, or a 4-oxaheptylene group.
  • alkylene group having an A 2 bond in the general formula (I) is preferably a polymethylene group having 4 to 12 carbon atoms or a branched alkylene group.
  • the peptides introduced into the S-oligonucleotide via a linker include peptides obtained by degradation of various proteins, such as a nuclear export signal peptide, an antigen-derived nuclear localization signal peptide, Examples of the synthesized amphipathic ⁇ -helix and ⁇ -sheet peptide include sucrose and galactosamine as saccharides, and spermine and lipofectamine as functional amines.
  • a solid phase carrier such as porous glass, controlled porous glass (CPG).
  • the DNA derivative is oxidized to form a general formula.
  • Is produced can be produced by reacting this with a peptide, sugar or functional amine, and finally treating with an alkali such as aqueous ammonia to separate the solid phase carrier, and removing the protecting group (hereinafter referred to as synthesis method 1). And u).
  • an alkali such as aqueous ammonia
  • synthesis method 2 Can be produced by reacting it with a peptide, sugar or functional amine and further subjecting it to an alkali treatment (hereinafter referred to as synthesis method 2). These reactions are carried out using an appropriate solvent such as acetonitrile or dimethylformamide.
  • a ⁇ -cyanoalkyl group such as a 2-cyanoethyl group or a trimethyl derivative residue such as a 4-methoxyphenyldimethyl group is used.
  • Natural oligonucleotides are not introduced into cells without a cell introduction agent.
  • nuclear localization signal peptide when a nuclear localization signal peptide is conjugated to this, it can be easily introduced into a cell without a cell introduction agent and localized in the nucleus, and the nuclear export signal peptide can be conjugated. When gated, it is easily introduced into the cell and localized in the cytoplasm (extranuclear).
  • the S-oligonucleotide conjugates of the present invention in which a nuclear localization signal peptide is conjugated to an S-oligonucleotide can be easily introduced into cells without a cell introduction agent, and the force can be reduced with the cytoplasm. Localizes both in the nucleus.
  • Nitrate (H Ml) or carbodiimidazole (CDI) and dimethylformamide containing diisopropylethylamine were reacted at room temperature for 2-12 hours, and then SV40T antigen nuclear localization signal (SEQ ID NO: SEQ ID NO: 7) was reacted in dimethylformamide containing diisopropylethylamine at room temperature for 24 hours.
  • reaction product thus obtained is treated in concentrated aqueous ammonia at 55 ° C for 4 hours, whereby excision from CPG and removal of the protecting group bound to the oligonucleotide and peptide are performed.
  • the desired S-oligonucleotide conjugate was obtained as a crude product.
  • the crude product was purified using a reverse phase liquid chromatograph, and the resulting compound (No. 1) was analyzed by liquid chromatography and laser-excited time-of-flight mass spectrometry (MALDI—T OF MS). Yield ⁇ or 30.45 0/0 during this, TOF MSi or 5642.63 der ivy o
  • An oligonucleotide conjugate No. 2 was produced in the same manner as in Example 1 except that a natural oligonucleotide (SEQ ID NO: 2-3) was used in place of the S-oligonucleotide in Example 1.
  • the yield was 18.21% and TOF-MS was 5384.26.
  • S-oligonucleotide conjugate sample No. 1 obtained in Example 1 and the oligonucleotide conjugate No. 2 obtained in the comparative example were tested for stability with complementary strand DNA as follows.
  • each sample is dissolved at a concentration of 1 ⁇ , and the complementary strand DNA is added to the sample and heated at 92 ° C for 5 minutes. Slowly cool to recombine the two strands
  • S-oligonucleotide conjugate molecules of the present invention can form hybrid duplexes with complementary RNA.
  • sample No. 1 obtained in Example 1 was adjusted to a concentration of M with 0.1 M NaCl, and 5 ml of DNase 1 (manufactured by Sigma) in 160 Kunits was stored therein at 37 ° C.
  • DNase 1 manufactured by Sigma
  • the decomposition rate in 180 minutes was 13%.
  • the degradation rate was similarly measured using the natural oligonucleotide conjugate obtained in the comparative example, the degradation rate was 100%.
  • Example 1 The sample No. 1 obtained in Example 1 and the sample No. 2 obtained in the comparative example were subjected to a degradation test for ribonuclease H.
  • RNA complementary to each sample was modified with a fluorescent label, adjusted to a concentration of 10 ⁇ to form a hybrid duplex, and then ribonuclease ⁇ (Sigma' (Aldrich) 2.5 units were added, and when the degradation rate in the reaction buffer was measured over time by 20% polyacrylamide gel electrophoresis, they showed exactly the same activity.
  • Sample No. 1 obtained in Example 1 and Sample No. 2 obtained in Comparative Example were examined for stability in serum.
  • sample No. 2 decomposed almost 100% after 24 hours, while sample No. 1 only decomposed 15%.
  • the sample No. 1 obtained in Example 1 and the sample No. 2 obtained in the comparative example were measured for human telomerase inhibitory activity in the cell extract.
  • the human telomerase used here is an enzyme that is specifically expressed in cancer cells and causes immortalization of the cells.
  • Jurkat cell force derived from leukemia cells was used and expressed as the concentration required for 50% inhibition (IC).
  • sample No. 2 was 1030 nM, while sample No. 1 showed sufficient activity at a very low concentration of 0.5 nM.
  • the S-oligonucleotide conjugate of the present invention exhibits significantly higher human telomerase inhibitory activity than the oligonucleotide conjugate.
  • telomere activity by a simple reaction operation, a particularly high inhibitory action is exerted on telomerase activity, an excellent antisense property, and a stable double-stranded hybrid is formed with complementary DNA.
  • S-oligonucleotide conjugates suitable as antisense agents can be produced.
  • the s-oligonucleotide conjugates of the present invention have excellent antisense properties and form stable hybrid duplexes with complementary RNA, and thus are useful as antisense agents.
  • telomerase that contributes to the immortalization of cancer cells, so it is effective for inhibiting the proliferation of cancer cells when administered to cancer patients.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)

Abstract

A novel conjugate which has high activation inhibitory activity especially against the telomerase contained in a human leukemic cell extract and which gives a stable duplex hybrid with a complementary DNA. It is a phosphorothioate oligonucleotide conjugate represented by the general formula [Chemical formula 1] (wherein A1 is alkylene or alkylene separated by an oxygen atom; A2 is alkylene; R is a residue of a peptide, sugar, or functional amine; and n is 0 or 1). Also provided is an antisense agent containing the conjugate as an active ingredient.

Description

明 細 書  Specification
S -オリゴヌクレオチドコンジュゲート及びアンチセンス剤  S-oligonucleotide conjugates and antisense agents
技術分野  Technical field
[0001] 本発明は、ヒト白血病細胞抽出液中のテロメラーゼ活性を阻害する新規なホスホロ チォエートオリゴヌクレオチドコンジュゲート及びそれを有効成分としたアンチセンス 剤に関するものである。  [0001] The present invention relates to a novel phosphorothioate oligonucleotide conjugate that inhibits telomerase activity in a human leukemia cell extract and an antisense agent comprising the same as an active ingredient.
背景技術  Background art
[0002] オリゴヌクレオチドとペプチドとの複合体は、遺伝子発現のアンチセンス剤として使 用するためのポテンシャルを有し、そのペプチドにより活性オリゴヌクレオチドの細胞 間濃度の増大を助長させるので、その形成のために多くの試みがなされている。  [0002] A complex of an oligonucleotide and a peptide has the potential to be used as an antisense agent for gene expression, and the peptide facilitates an increase in the intercellular concentration of the active oligonucleotide. Many attempts have been made to achieve this.
[0003] 例えば、合成オリゴヌクレオチドの 5 末端にチオール基を導入することにより、 DN Aとペプチドサイフォンとのコンジュゲートが得られている(非特許文献 1参照)。その ほか、タンパク質分子中に存在するァミノ基、カルボン酸基、水酸基、フエノール基な どの官能基を利用し、ジアルキル化試薬、ジマレイミド、ジアルデヒドなどの二官能性 リンカ一を介して機能性有機化合物、例えばアンジォテンシン I、インスリン、ブラジキ ニン、トプラマイシン、その他の抗ガン性物質を複合させたものも知られ、また芳香族 ジチオイソシァネートをリンカ一として用いることも提案されている(非特許文献 2参照 [0003] For example, by introducing a thiol group at the 5 terminus of a synthetic oligonucleotide, a conjugate of DNA and a peptide siphon has been obtained (see Non-Patent Document 1). In addition, functional organic compounds using bifunctional linkers such as dialkylating reagents, dimaleimides, and dialdehydes using functional groups such as amino groups, carboxylic acid groups, hydroxyl groups, and phenol groups present in protein molecules. For example, a combination of angiotensin I, insulin, bradykinin, topramycin, and other anticancer substances is also known, and the use of aromatic dithioisocyanate as a linker is also proposed (non- See Patent Document 2
) o ) o
[0004] し力しながら、これらのオリゴヌクレオチドとペプチドとの複合体は、その製造におい て必要な原料のコストが高い上に、製造過程も煩雑で、収率が低ぐしかもアンチセ ンス特性も不十分であるため、実用的には必ずしも満足できるものではな力つた。  [0004] However, these oligonucleotide and peptide conjugates are expensive in terms of raw materials required for their production, are complicated in the production process, have low yields, and have anti-sense characteristics. Since it was insufficient, it was not always satisfactory for practical use.
[0005] 非特許文献 1 :「バイオコンジュゲート'ケミストリー(Bioconjugate Chemistry)」、 1 994年、第 5卷、 p. 373 - 378  [0005] Non-Patent Document 1: “Bioconjugate Chemistry”, 1 994, Vol. 5, p. 373-378
非特許文献 2 :「サイエンス(Science)」、 1964年、第 144卷、 p. 1344  Non-Patent Document 2: "Science", 1964, No. 144, p. 1344
発明の開示  Disclosure of the invention
[0006] 本発明は、特にヒト白血病細胞抽出液中のテロメラーゼに対し、高い活性阻害作用 を示し、かつ相補的な DNAとの間の 2本鎖ハイブリッドを安定した状態で与える新規 なコンジュゲートを提供することを目的としてなされたものである。 [0006] The present invention provides a novel activity that inhibits telomerase in a human leukemia cell extract, in particular, a high activity inhibitory action, and provides a stable double-stranded hybrid with a complementary DNA. It was made for the purpose of providing such a conjugate.
[0007] 本発明者らは、新規な DNAコンジュゲートを開発するために鋭意研究を重ね、先 に天然型オリゴ DNAに ω -ァミノアルキルホスホロエートを介して核局在化シグナル ポリペプチドを縮合させることにより、優れたアンチセンス特性を有し、相補的な DNA との間で安定した 2本鎖ハイブリッドを形成する DNAコンジュゲートを得ることに成功 o p = [0007] The inventors of the present invention have made extensive studies to develop a novel DNA conjugate. First, a nuclear localization signal polypeptide is added to a natural oligo DNA via ω-aminoalkyl phosphoroate. By condensing, we succeeded in obtaining a DNA conjugate that has excellent antisense properties and forms stable double-stranded hybrids with complementary DNA op =
したが、さらに研究を進めた結果、ホスホロチォエートオリゴヌクレオチド(以下 S-オリ o  However, as a result of further research, phosphorothioate oligonucleotides (S-Oly
ゴヌクレオチドと略す)に核局在化シグナルペプチドを縮合させることにより、ヒト白血  Human white blood by condensing a nuclear localization signal peptide to
A  A
病細胞抽出液中のテロメラーゼに対し、高 ヽ活性阻害作用を示す S -オリゴヌクレオ チドコンジュゲートが得られることを見出し、この知見に基づいて本発明をなすに至つ た。 o =  It was found that an S-oligonucleotide conjugate exhibiting a high activity inhibitory action against telomerase in disease cell extract was obtained, and the present invention was made based on this finding. o =
[0008] すなわち、本発明は、一般式  That is, the present invention provides a general formula
H N  H N
[化 1]  [Chemical 1]
A A
O HO H
H Η Ν H Η Ν
s - オリ ゴ 一 N - C 0 C = R ヌク レオチド  s-Origo N-C 0 C = R Nucleotide
η  η
(式中の Α1はアルキレン基又は酸素原子で中断されたアルキレン基、 Α2はアルキ レン基、 Rはペプチド、糖又は機能性ァミンの残基、 ηは 0又は 1である) (Alkylene Alpha 1 in the formula is interrupted by an alkylene group or an oxygen atom, Alpha 2 alkylene group, R represents a peptide residue of the sugar or functional Amin, eta is 0 or 1)
で表わされる S-オリゴヌクレオチドコンジュゲート、及びそれを有効成分としてなるァ ンチセンス剤を提供するものである。  And an antisense agent comprising the same as an active ingredient.
[0009] 本発明における S-オリゴヌクレオチドは、天然型オリゴヌクレオチドにおけるリン酸 ジエステル構造がチォリン酸ジエステル構造に変ったものである。 [0009] The S-oligonucleotide in the present invention is obtained by changing the phosphodiester structure in a natural oligonucleotide to a thiophosphate diester structure.
このオリゴヌクレオチドとしては、 10〜 15個の塩基単位力もなるヌクレオチドの残基 、例えば配列表配列番号 1 - 3'及び配列表配列番号 2- 3'などが好ま 、。  As the oligonucleotide, nucleotide residues having 10 to 15 base unit power, for example, SEQ ID NO: 1-3 'and SEQ ID NO: 2-3' are preferred.
[0010] 前記の一般式 (I)における S-オリゴヌクレオチドの由来については、特に制限はな ぐ各種動物細胞由来のオリゴヌクレオチド、各種細菌類由来のオリゴヌクレオチドあ るいはそれらを酵素で細断して得られるヌクレオチドセグメントなどの中から、その使 用目的に応じ任意に選んで使用することができるが、本発明においては、 5 末端水 酸基にアミノ化剤を反応させてアミノ基を導入したものを用いることが必要である。 [0010] With regard to the origin of the S-oligonucleotide in the above general formula (I), there is no particular limitation. Oligonucleotides derived from various animal cells, oligonucleotides derived from various bacteria, or they are shredded with an enzyme. Use the nucleotide segment obtained from It can be arbitrarily selected depending on the purpose of use, but in the present invention, it is necessary to use a 5-terminal hydroxyl group reacted with an aminating agent to introduce an amino group.
[0011] 次に、一般式 (I)中の A1結合のアルキレン基としては、炭素数 2〜10、好ましくは 4 〜8のポリメチレン基、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、 へキシレン基などを挙げることができる。このアルキレン基は、炭素鎖が酸素原子で 中断されたもの、例えば 2-ォキサプロピレン基、 3-ォキサペンチレン基、 4-ォキサへ プチレン基などであってもよ 、。 Next, as the alkylene group having an A 1 bond in the general formula (I), a polymethylene group having 2 to 10 carbon atoms, preferably 4 to 8 carbon atoms, such as an ethylene group, a propylene group, a butylene group, a pentylene group, Hexylene group and the like can be mentioned. The alkylene group may be one having a carbon chain interrupted by an oxygen atom, such as a 2-oxapropylene group, a 3-oxapentylene group, or a 4-oxaheptylene group.
また、一般式 (I)中の A2結合のアルキレン基としては、炭素数 4〜12のポリメチレン 基又は分枝状アルキレン基が好まし 、。 In addition, the alkylene group having an A 2 bond in the general formula (I) is preferably a polymethylene group having 4 to 12 carbon atoms or a branched alkylene group.
[0012] そして、前記の S-オリゴヌクレオチドにリンカ一を介して導入されるペプチドとしては 、各種タンパク質の分解により得られるペプチド、例えば核外輸送シグナルペプチド 、抗原由来の核局在化シグナルペプチド、合成された両親媒性 α -ヘリックス、 β -シ ートペプチドなどを、糖類としては、ショ糖、ガラクトサミンなどを、また機能性ァミンとし ては、スペルミン、リポフエクトァミンなどを挙げることができる。  [0012] The peptides introduced into the S-oligonucleotide via a linker include peptides obtained by degradation of various proteins, such as a nuclear export signal peptide, an antigen-derived nuclear localization signal peptide, Examples of the synthesized amphipathic α-helix and β-sheet peptide include sucrose and galactosamine as saccharides, and spermine and lipofectamine as functional amines.
[0013] 本発明の S-オリゴヌクレオチドコンジュゲートのうち、一般式(I)において、 η= 1の ものは、固相フラグメント縮合法に従い、固相担体例えば多孔性ガラス、制御多孔性 ガラス (CPG)、ポリエチレングリコール—ポリスチレンなどに、 5'末端に水酸基をもつ S -オリゴヌクレオチドを縮合させたのち、以下のようにして製造される。  Of the S-oligonucleotide conjugates of the present invention, those having η = 1 in the general formula (I) are in accordance with the solid phase fragment condensation method, for example, a solid phase carrier such as porous glass, controlled porous glass (CPG). ), S-oligonucleotide having a hydroxyl group at the 5 ′ end is condensed with polyethylene glycol-polystyrene, etc., and then produced as follows.
[0014] すなわち、触媒の存在下、一般式  [0014] That is, in the presence of a catalyst, the general formula
[化 2]  [Chemical 2]
O R 1 OR 1
I I
H O— P - 0— A 1 - N H R 2 ( I I ) HO— P-0— A 1 -NHR 2 (II)
(式中の R1及び R2は保護基、 A1は前記と同じ意味をもつ) (Wherein R 1 and R 2 are protecting groups, A 1 has the same meaning as above)
で表わされる亜リン酸エステルを反応させ、前記 S—オリゴヌクレオチドの^末端をィ匕 学修飾し、一般式 O R 1 Is reacted with a phosphite represented by the following formula: OR 1
I  I
S -オリ ゴ — 5 '— O— P— O— A1— NHR2 ( i l l ) ヌク レオチ ド S-Oligo — 5 '— O— P— O— A 1 — NHR 2 (ill) Nucleotide
(式中の R1 R2及び A1は前記と同じ意味をもつ) (Wherein R 1 R 2 and A 1 have the same meaning as above)
で表わされる DNA誘導体を形成させる。次に、前記 DNA誘導体を酸化させて、一 般式 To form a DNA derivative represented by Next, the DNA derivative is oxidized to form a general formula.
[化 4] [Chemical 4]
O R 1 OR 1
S - オリ ゴ _ 5 ' _0— P— O— A1— NHR2 ( I V) S-Origo _ 5 '_0— P— O— A 1 — NHR 2 (IV)
ヌク レオチ ド II  Nuku Leo de Do II
o  o
(式中の R1 R2及び A1は前記と同じ意味をもつ) (Wherein R 1 R 2 and A 1 have the same meaning as above)
で表わされる S-オリゴヌクレオチド誘導体とし、次いで一般式 S-oligonucleotide derivative represented by the formula
OCN - A2 - NCO (V) OCN-A 2 -NCO (V)
(A2は前記と同じ意味をもつ) (A 2 has the same meaning as above)
で表わされる脂肪族ジイソシァネートを反応させることにより、一般式 Is reacted with an aliphatic diisocyanate represented by the general formula
[化 5] [Chemical 5]
O R 1 OR 1
I H H H  I H H H
S - オリ ゴ ― — υ _ A ' _ IN _じ一 Ν— Α Ν _ C— Η ( V ヌク レオチド II fl II  S-Oligo ― — υ _ A '_ IN _ 1 Ν— Α Ν _ C— Η (V
o o o
Figure imgf000006_0001
A1及び ΑΊま前記と同じ意味をもつ)
ooo
Figure imgf000006_0001
A 1 and ΑΊ have the same meaning as above)
で表わされる化合物を製造する。これにペプチド、糖又は機能性ァミンを反応させ、 最後にアルカリ例えばアンモニア水で処理して固相担体力もの切り離し、及び保護 基の脱離を行うことにより製造することができる(以下合成法 1と 、う)。 Is produced. It can be produced by reacting this with a peptide, sugar or functional amine, and finally treating with an alkali such as aqueous ammonia to separate the solid phase carrier, and removing the protecting group (hereinafter referred to as synthesis method 1). And u).
一方、一般式 (I)において、 η=0のものは、前記一般式 (V)で表わされる脂肪族ジ イソシァネートの代りに、式 On the other hand, in the general formula (I), those having η = 0 are aliphatic dioxins represented by the general formula (V). Instead of isocyanate, the formula
[化 6]  [Chemical 6]
A 八 A eight
N N - C - N N (V I I)  N N-C-N N (V I I)
0  0
で表わされるカルボ-ルジイミダゾールを用いて、一般式  Using carbodiimidazole represented by the general formula
[化 7]  [Chemical 7]
OR 1 O OR 1 O
I H II 八  I H II
S -オリゴ — P— O— A1— N_C— N N (V I I I ) ヌクレオチド II \=/ S-oligo — P— O— A 1 — N_C— NN (VIII) nucleotide II \ = /
O  O
(式中の R1及び A1は前記と同じ意味をもつ) (R 1 and A 1 in the formula have the same meaning as above)
で表わされる化合物を製造したのち、これにペプチド、糖又は機能性ァミンを反応さ せ、さらにアルカリ処理することにより製造することができる(以下合成法 2という)。 これらの反応は、適当な溶媒、例えばァセトニトリル、ジメチルホルムアミドなどを用 いて行われる。  Can be produced by reacting it with a peptide, sugar or functional amine and further subjecting it to an alkali treatment (hereinafter referred to as synthesis method 2). These reactions are carried out using an appropriate solvent such as acetonitrile or dimethylformamide.
[0016] 次いで、このようにして得た反応生成物にアンモニア水をカ卩え、固体担体から DNA コンジュゲートを切り出すとともに、場合により存在するペプチドの保護基の脱離を行  [0016] Next, ammonia water is added to the reaction product thus obtained to excise the DNA conjugate from the solid support, and optionally remove the protecting group of the peptide present.
R1及び R2で示される保護基としては、例えば 2-シァノエチル基のような ω -シァノア ルキル基や、 4-メトキシフヱ-ルジフヱ-ルメチル基のようなトリフ -ルメチル誘導体 残基が用いられる。 As the protecting group represented by R 1 and R 2 , for example, a ω-cyanoalkyl group such as a 2-cyanoethyl group or a trimethyl derivative residue such as a 4-methoxyphenyldimethyl group is used.
[0017] このようにして得られる一般式 (I)の S—オリゴヌクレオチドコンジュゲートのうち、式 [化 8]  [0017] Among the S-oligonucleotide conjugates of the general formula (I) thus obtained,
ΟΗΟΗ
I I
S—オリゴ _P_0_CH2CH2OCH2CH2— ΝΗ— C— R ヌクレオチド II II S—Oligo _P_0_CH 2 CH 2 OCH 2 CH 2 — ΝΗ— C— R Nucleotide II II
o o に相当するものの例としては、 S-オリゴヌクレオチド及び Rが以下の表 1に示す構造 をもつ C〜Cを挙げることができる。 oo Examples of those corresponding to include S-oligonucleotide and C to C in which R has the structure shown in Table 1 below.
1 3  13
[表 1]  [table 1]
Figure imgf000008_0001
Figure imgf000008_0001
[0019] 天然オリゴヌクレオチドは、細胞導入剤がないと細胞内に全く導入されない。 [0019] Natural oligonucleotides are not introduced into cells without a cell introduction agent.
し力しながら、これに核局在化シグナルペプチドをコンジュゲートさせると、細胞導 入剤なしに細胞内に容易に導入され、かつ核内に局在化するし、核外輸送シグナル ペプチドをコンジュゲートさせると細胞内に容易に導入され、かつ細胞質 (核外)に局 在化する。  However, when a nuclear localization signal peptide is conjugated to this, it can be easily introduced into a cell without a cell introduction agent and localized in the nucleus, and the nuclear export signal peptide can be conjugated. When gated, it is easily introduced into the cell and localized in the cytoplasm (extranuclear).
これに対し、 S-オリゴヌクレオチドに核局在化シグナルペプチドをコンジュゲートさ せた本発明の S-オリゴヌクレオチドコンジュゲートは、細胞導入剤なしに細胞内に容 易に導入され、し力も細胞質と核内の両方に局在化する。  In contrast, the S-oligonucleotide conjugates of the present invention in which a nuclear localization signal peptide is conjugated to an S-oligonucleotide can be easily introduced into cells without a cell introduction agent, and the force can be reduced with the cytoplasm. Localizes both in the nucleus.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 次に、実施例により本発明をさらに詳細に説明する。  Next, the present invention will be described in more detail with reference to examples.
[0021] 実施例 1 [0021] Example 1
先ず DNA自動合成機 [クルァケム (Cruachem)社製、製品名「PS250」]を用い、 制御多孔性ガラス (ダレンリサーチ社製、製品名「500 Aサポート」、以下 CPGと略す )に、 5,末端の水酸基をジメトキシトリチル基で保護した S-オリゴヌクレオチド(5 配 列表配列番号 3-3Ίを担持させたのち、トリクロ口酢酸の 3質量%ァセトニトリル溶液 で処理して、その保護基を脱離し、その遊離水酸基に市販のアミノ化試薬である N- メトキシトリチル -2- (2-アミノエチルォキシ)ェチルホスホアミダイトを 1Hテトラゾール を含むジメチルホルムアミド溶液により室温下、 30分間反応させることによりァミノ化し た。  First, using an automated DNA synthesizer [product name “PS250” manufactured by Cruachem, Inc., product name “500 A support” (product name “500 A support”, hereinafter abbreviated as CPG)] S-oligonucleotide having a hydroxyl group protected with a dimethoxytrityl group (supported by 5 SEQ ID NO: 3-3) and then treated with a 3% by weight acetonitrile solution of trichlorodiacetic acid to remove the protecting group, N-methoxytrityl-2- (2-aminoethyloxy) ethyl phosphoramidite, a commercially available amination reagent, was aminated by reacting the free hydroxyl group with a dimethylformamide solution containing 1H tetrazole at room temperature for 30 minutes. .
[0022] 次いで未反応の 5 水酸基を無水酢酸によりキヤッビングしたのち、ヨウ素酢酸溶 液によりリン原子部分を酸ィ匕してリン酸エステルを形成させた。このようにして得た中 間体ィ匕合物にトリクロ口酢酸の 3質量%ァセトニトリル溶液を反応させて末端アミノ基 の保護基であるメトキシトリチル基を除去し、次にへキサメチレンジイソシァネート (H Ml)又はカルボ-ルジイミダゾール(CDI)とジイソプロピルェチルァミンを含むジメチ ルホルムアミド中、室温下 2〜12時間反応させたのち、 SV40T抗原核局在化シグナ ル(配列表配列番号 7)をジイソプロピルェチルァミンを含むジメチルホルムアミド中、 室温下 24時間反応させた。 [0022] Next, the unreacted 5 hydroxyl group was capped with acetic anhydride, and then dissolved in iodoacetic acid. Phosphoric acid ester was formed by acidifying the phosphorus atom portion with the liquid. The intermediate compound thus obtained is reacted with a 3% by weight acetonitrile solution of trichlorodiacetic acid to remove the methoxytrityl group, which is a protecting group for the terminal amino group, and then hexamethylene diisocyanate. Nitrate (H Ml) or carbodiimidazole (CDI) and dimethylformamide containing diisopropylethylamine were reacted at room temperature for 2-12 hours, and then SV40T antigen nuclear localization signal (SEQ ID NO: SEQ ID NO: 7) was reacted in dimethylformamide containing diisopropylethylamine at room temperature for 24 hours.
[0023] 次に、このようにして得た反応生成物を濃アンモニア水中、 55°Cにおいて 4時間処 理することにより、 CPGからの切り出しとオリゴヌクレオチド及びペプチドに結合してい る保護基の除去を行い、所望の S-オリゴヌクレオチドコンジュゲートを粗製物として得 た。 [0023] Next, the reaction product thus obtained is treated in concentrated aqueous ammonia at 55 ° C for 4 hours, whereby excision from CPG and removal of the protecting group bound to the oligonucleotide and peptide are performed. The desired S-oligonucleotide conjugate was obtained as a crude product.
この粗製物を逆相液体クロマトグラフを用いて精製し、得られた化合物 (No. 1)を 液体クロマトグラフ及びレーザー励起飛行時間型質量スペクトル分析 (MALDI— T OF MS)により分析した。この際の収率 ίま 30. 450/0、TOF— MSiま 5642. 63であ つた o The crude product was purified using a reverse phase liquid chromatograph, and the resulting compound (No. 1) was analyzed by liquid chromatography and laser-excited time-of-flight mass spectrometry (MALDI—T OF MS). Yield ί or 30.45 0/0 during this, TOF MSi or 5642.63 der ivy o
[0024] 比較例  [0024] Comparative Example
実施例 1における S-オリゴヌクレオチドの代りに、天然オリゴヌクレオチド (配列表配 列番号 2 - 3 Ίを用いる以外は、実施例 1と同様に処理してオリゴヌクレオチドコンジュ ゲート No. 2を製造した。この際の収率は 18. 21%、 TOF— MSは 5384. 26であつ た。  An oligonucleotide conjugate No. 2 was produced in the same manner as in Example 1 except that a natural oligonucleotide (SEQ ID NO: 2-3) was used in place of the S-oligonucleotide in Example 1. The yield was 18.21% and TOF-MS was 5384.26.
[0025] 実施例 2  [0025] Example 2
実施例 1で得た S-オリゴヌクレオチドコンジュゲート試料 No. 1及び比較例で得た オリゴヌクレオチドコンジュゲート No. 2について、相補鎖 DNAとの安定性を次のよう にして試験した。  The S-oligonucleotide conjugate sample No. 1 obtained in Example 1 and the oligonucleotide conjugate No. 2 obtained in the comparative example were tested for stability with complementary strand DNA as follows.
UV検出器(日本分光社製、製品名「V— 560UVZVisスぺクトロメータ」)を用い、 lOOmMの NaCl、 50mMの Tris— HC1、 20mMの MgClからなる緩衝溶液(ρΗ7  Using a UV detector (product name “V-560UVZVis Spectrometer” manufactured by JASCO Corporation), a buffer solution consisting of lOOmM NaCl, 50mM Tris-HC1, 20mM MgCl (ρΗ7
2  2
. 0)中に各試料を 1 μ Μ濃度で溶解し、これに相補鎖 DNAをカ卩え、 92°Cで 5分間加 熱することにより、いったん 2本鎖を融解したのち、 4°Cまで徐冷して 2本鎖を再結合さ せた。 0), each sample is dissolved at a concentration of 1 μΜ, and the complementary strand DNA is added to the sample and heated at 92 ° C for 5 minutes. Slowly cool to recombine the two strands Let
[0026] 次いで、これらを 5°Cから 80°Cまで 0. 5°CZ分の上昇速度で加熱し、 UV検出器に より 260nmにおける吸光度変化を測定し、 50%吸光度上昇地点の温度を融解温度 として算出した。その結果を表 2に示す。  [0026] Next, these were heated from 5 ° C to 80 ° C at an increase rate of 0.5 ° CZ, and the change in absorbance at 260nm was measured with a UV detector to melt the temperature at the 50% absorbance increase point. Calculated as temperature. The results are shown in Table 2.
なお、表中の + Mg2+は測定溶液中に MgClが存在する場合、—Mg2+は MgCl In the case + Mg 2+ in the table of MgCl is present in the measurement solution, -Mg 2+ is MgCl
2 2 が存在しない場合を示す。  2 Indicates the case where 2 does not exist.
[表 2]  [Table 2]
Figure imgf000010_0001
この表から、本発明の S-オリゴヌクレオチドコンジュゲート分子は、相補的な RNAと の間でハイブリッド 2本鎖を形成しうることが分る。
Figure imgf000010_0001
From this table it can be seen that the S-oligonucleotide conjugate molecules of the present invention can form hybrid duplexes with complementary RNA.
[0027] 実施例 3 [0027] Example 3
本発明の S-オリゴヌクレオチドコンジュゲートの DNA分解酵素 DNァーゼ 1に対す る耐性試験を行った。  The resistance test of the S-oligonucleotide conjugate of the present invention against DNase 1 was performed.
すなわち、実施例 1で得た試料 No. 1を 0. 1Mの NaClで濃度: Mに調整し、こ の中に 160Kunit単位の DNァーゼ 1 (シグマ社製) 5mlをカ卩え、 37°Cに保持して、経 時的にその分解率を測定したところ、 180分間における分解率は 13%であった。 また、比較のために、比較例で得た天然オリゴヌクレオチドコンジュゲートを用いて 同様に分解率を測定したところ、分解率は 100%であった。  That is, sample No. 1 obtained in Example 1 was adjusted to a concentration of M with 0.1 M NaCl, and 5 ml of DNase 1 (manufactured by Sigma) in 160 Kunits was stored therein at 37 ° C. When the decomposition rate was measured over time, the decomposition rate in 180 minutes was 13%. For comparison, when the degradation rate was similarly measured using the natural oligonucleotide conjugate obtained in the comparative example, the degradation rate was 100%.
なお、 IKunitとは 25°C、 ρΗ5. 0において lml中のヌクレオチドについて、 UVスぺ タトル 260nmの吸光度を 1分間で 0. 001上昇させる単位である。  IKunit is a unit that increases the absorbance of UV spectrum at 260 nm by 0.001 per minute for nucleotides in lml at 25 ° C and ρΗ5.0.
[0028] 実施例 4 [0028] Example 4
実施例 1で得た試料 No. 1と比較例で得た試料 No. 2についてリボヌクレアーゼ H に対する分解試験を行った。  The sample No. 1 obtained in Example 1 and the sample No. 2 obtained in the comparative example were subjected to a degradation test for ribonuclease H.
すなわち、各試料と相補的な RNAの 5 末端を蛍光ラベルで修飾したものを 10 μ Μ濃度に調整し、ハイブリッド 2本鎖を形成させたのち、リボヌクレアーゼ Η (シグマ' アルドリッチ社製) 2. 5単位を加え、反応緩衝液中における分解率を 20%ポリアタリ ルアミドゲル電気泳動で経時的に測定したところ、両者は全く同様の活性を示した。 In other words, the 5 'end of RNA complementary to each sample was modified with a fluorescent label, adjusted to a concentration of 10 μΜ to form a hybrid duplex, and then ribonuclease Η (Sigma' (Aldrich) 2.5 units were added, and when the degradation rate in the reaction buffer was measured over time by 20% polyacrylamide gel electrophoresis, they showed exactly the same activity.
[0029] 実施例 5 [0029] Example 5
実施例 1で得た試料 No. 1と比較例で得た試料 No. 2について血清中での安定性 を調べた。  Sample No. 1 obtained in Example 1 and Sample No. 2 obtained in Comparative Example were examined for stability in serum.
各試料を 120 1の超純水に InM濃度で溶かし、 10%の非動化済みゥシ胎児血 清 20 μ 1を加え、 RP— HPLC (ヒューレット パッカード社製、シリーズ 1100)を用い てオリゴヌクレオチドの分解状態を経時的にモニターした。この際、所定時間ごとに試 料を 0. 1Mの Tris—HCl、 0. 09Mホウ酸、 7M尿素からなる反応溶液(pH8. 4)中 に加え、液体窒素を用いて凍結することによって反応を停止させた。  Dissolve each sample in 120 1 ultrapure water at InM concentration, add 10% non-immobilized urine fetal serum 20 μ1, and use RP-HPLC (Hewlett Packard, Series 1100) for oligonucleotides The degradation state of was monitored over time. At this time, the sample is added to a reaction solution (pH 8.4) consisting of 0.1 M Tris-HCl, 0.09 M boric acid, and 7 M urea at predetermined time intervals, and the reaction is performed by freezing with liquid nitrogen. Stopped.
モニターは、上記の RP— HPLCと ODSカラム(5 X 125 X 4mm)を用い、 260nm における変化を測定することによって行った。その結果、試料 No. 2は 24時間後に ほぼ 100%分解したのに対し、試料 No. 1は 15%の分解に止まった。  The monitoring was performed by measuring the change at 260 nm using the above RP-HPLC and ODS column (5 × 125 × 4 mm). As a result, sample No. 2 decomposed almost 100% after 24 hours, while sample No. 1 only decomposed 15%.
[0030] 実施例 6 [0030] Example 6
実施例 1で得た試料 No. 1と比較例で得た試料 No. 2について細胞抽出液中での ヒトテロメラーゼ阻害活性を測定した。なお、ここで用いたヒトテロメラーゼはガン細胞 中に特異的に発現し、細胞の不死化を引き起す酵素である。  The sample No. 1 obtained in Example 1 and the sample No. 2 obtained in the comparative example were measured for human telomerase inhibitory activity in the cell extract. The human telomerase used here is an enzyme that is specifically expressed in cancer cells and causes immortalization of the cells.
白血病細胞由来のジャーカット (Jurkat)細胞力 抽出した液を用い、 50%阻害に 要する濃度 (IC )で表わした。  Jurkat cell force derived from leukemia cells was used and expressed as the concentration required for 50% inhibition (IC).
50  50
その結果、試料 No. 2は 1030nMであったのに対し、試料 No. 1は 0. 5nMという 非常に低 ヽ濃度で十分な活性を示すことが分った。  As a result, sample No. 2 was 1030 nM, while sample No. 1 showed sufficient activity at a very low concentration of 0.5 nM.
このことから、本発明の S-オリゴヌクレオチドコンジュゲートは、オリゴヌクレオチドコ ンジュゲートに比べて著しく高いヒトテロメラーゼ阻害活性を示す。  From this, the S-oligonucleotide conjugate of the present invention exhibits significantly higher human telomerase inhibitory activity than the oligonucleotide conjugate.
産業上の利用可能性  Industrial applicability
[0031] 本発明によると、簡単な反応操作により、特にテロメラーゼ活性に対して高い阻害 作用を示し、優れたアンチセンス特性をもち、相補的な DNAとの間で安定した 2本鎖 ハイブリッドを形成しうる、アンチセンス剤として好適な S-オリゴヌクレオチドコンジュゲ ートを製造することができる。 本発明の s-オリゴヌクレオチドコンジュゲートは、優れたアンチセンス特性を有し、 相補的な RNAと安定なハイブリッド 2本鎖を形成するので、アンチセンス剤として有 用である。 [0031] According to the present invention, by a simple reaction operation, a particularly high inhibitory action is exerted on telomerase activity, an excellent antisense property, and a stable double-stranded hybrid is formed with complementary DNA. S-oligonucleotide conjugates suitable as antisense agents can be produced. The s-oligonucleotide conjugates of the present invention have excellent antisense properties and form stable hybrid duplexes with complementary RNA, and thus are useful as antisense agents.
また、ガン細胞の不死化に寄与するテロメラーゼの活性を阻害するので、ガン患者 に投与すればガン細胞の増殖を阻害するために効果的である。  In addition, it inhibits the activity of telomerase that contributes to the immortalization of cancer cells, so it is effective for inhibiting the proliferation of cancer cells when administered to cancer patients.

Claims

請求の範囲 [1] 一般式 Claim [1] General formula
[化 1]  [Chemical 1]
ホスホロチォエー ト一 - -R オリ ゴヌク レオチドPhosphorothioate--R oli goon leotide
Figure imgf000013_0001
Figure imgf000013_0001
(式中の A1はアルキレン基又は酸素原子で中断されたアルキレン基、 A2はアルキレ ン基、 Rはペプチド、糖又は機能性ァミンの残基、 nは 0又は 1である) (In the formula, A 1 is an alkylene group or an alkylene group interrupted by an oxygen atom, A 2 is an alkylene group, R is a residue of a peptide, sugar or functional amine, and n is 0 or 1)
で表わされるホスホロチォエートオリゴヌクレオチドコンジュゲート。  A phosphorothioate oligonucleotide conjugate represented by:
[2] 式  [2] Expression
[化 2]  [Chemical 2]
O H  O H
I  I
ホスホロチォエートー P_0— CH2CH。OCH2CH2— N H— C— R オリゴヌクレオチド II II Phosphorothioate P_0—CH 2 CH. OCH 2 CH 2 — NH— C— R Oligonucleotide II II
O O  O O
(式中の Rはペプチド、糖又は機能性ァミンの残基である)  (Wherein R is a residue of a peptide, sugar or functional amine)
で表される請求の範囲第 1項記載のホスホロチォエートオリゴヌクレオチドコンジュゲ ート。  The phosphorothioate oligonucleotide conjugate according to claim 1 represented by claim 1.
[3] 請求の範囲第 1又は 2項記載のホスホロチォエートオリゴヌクレオチドコンジュゲート を有効成分としてなるアンチセンス剤。  [3] An antisense agent comprising the phosphorothioate oligonucleotide conjugate according to claim 1 or 2 as an active ingredient.
PCT/JP2005/016483 2004-09-10 2005-09-08 S-oligonucleotide conjugate and antisense agent WO2006028160A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004264447A JP2006075110A (en) 2004-09-10 2004-09-10 New s-oligonucleotide conjugate and anti-sense agent containing the same as active ingredient
JP2004-264447 2004-09-10

Publications (1)

Publication Number Publication Date
WO2006028160A1 true WO2006028160A1 (en) 2006-03-16

Family

ID=36036441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016483 WO2006028160A1 (en) 2004-09-10 2005-09-08 S-oligonucleotide conjugate and antisense agent

Country Status (2)

Country Link
JP (1) JP2006075110A (en)
WO (1) WO2006028160A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124609A1 (en) 2015-07-29 2017-02-01 IFOM Fondazione Istituto Firc di Oncologia Molecolare Therapeutics oligonucleotides
EP3650546A1 (en) 2015-07-29 2020-05-13 IFOM Fondazione Istituto Firc di Oncologia Molecolare Therapeutic oligonucleotides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275140A (en) * 2003-03-18 2004-10-07 National Institute Of Advanced Industrial & Technology Method for producing dna or rna conjugate
JP2005027569A (en) * 2003-07-04 2005-02-03 National Institute Of Advanced Industrial & Technology New dna conjugate and antisense agent with the same as active ingredient
JP2005229946A (en) * 2004-02-20 2005-09-02 National Institute Of Advanced Industrial & Technology Cytoplasm localized dna and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275140A (en) * 2003-03-18 2004-10-07 National Institute Of Advanced Industrial & Technology Method for producing dna or rna conjugate
JP2005027569A (en) * 2003-07-04 2005-02-03 National Institute Of Advanced Industrial & Technology New dna conjugate and antisense agent with the same as active ingredient
JP2005229946A (en) * 2004-02-20 2005-09-02 National Institute Of Advanced Industrial & Technology Cytoplasm localized dna and method for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUBO T.ET AL: "Conjugate-gata Idenshi Iyaku ni yoru Human Telomerase Kassei Yokusei. ( Inhibition of Human Telomerase by Conjugate Genetic Medicines)", BIO INDUSTRY, vol. 21, no. 5, 12 May 2004 (2004-05-12), pages 30 - 35, XP002998178 *
NORTON J.T. ET AL: "Inhibition of human telomerase activity by peptide nucleic acids", NATURAL BIOTECHNOL., vol. 14, 1996, pages 615 - 619, XP001023086 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124609A1 (en) 2015-07-29 2017-02-01 IFOM Fondazione Istituto Firc di Oncologia Molecolare Therapeutics oligonucleotides
EP3650546A1 (en) 2015-07-29 2020-05-13 IFOM Fondazione Istituto Firc di Oncologia Molecolare Therapeutic oligonucleotides

Also Published As

Publication number Publication date
JP2006075110A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Kaur et al. Perspectives on chemistry and therapeutic applications of Locked Nucleic Acid (LNA)
EP1731615A1 (en) Cytoplasmic localization dna and rna
US20080199960A1 (en) Methods for the Delivery of Oligomeric Compounds
JP2004500330A (en) Guanidinium-functionalized oligomers and their preparation
JP2002167441A (en) Non-charged morpholino-based polymer having phosphorus-containing chiral intersubunit
JPS62502338A (en) stereoregular polynucleotide binding polymer
Ros et al. Oligonucleotides and oligonucleotide conjugates: a new approach for cancer treatment
WO2008120016A1 (en) Modified nucleic acids
Roviello et al. Nucleobase-containing peptides: an overview of their characteristic features and applications
Tailhades et al. Solid-phase synthesis of difficult purine-rich PNAs through selective Hmb incorporation: Application to the total synthesis of cell penetrating peptide-PNAs
De Napoli et al. A new solid-phase synthesis of oligonucleotides 3′-conjugated with peptides
Gao et al. Double-stranded cyclic oligonucleotides with non-nucleotide bridges
CZ2002300A3 (en) Conjugates for transportation of molecules through a biological membrane, process for preparing such conjugates and pharmaceutical preparation containing those conjugates
KR20100120293A (en) Cationic sirnas, synthesis and use for rna interference
WO2006028160A1 (en) S-oligonucleotide conjugate and antisense agent
Grijalvo et al. Stepwise synthesis of oligonucleotide–peptide conjugates containing guanidinium and lipophilic groups in their 3′-termini
Eritja Solid-phase synthesis of modified oligonucleotides
JP3725405B2 (en) Molecules that can bind to telomeres, etc., and methods using them
Roviello et al. Synthesis, characterization and hybridization studies of an alternate nucleo-ε/γ-peptide: Complexes formation with natural nucleic acids
JP2005027569A (en) New dna conjugate and antisense agent with the same as active ingredient
Gaglione et al. Current methods in synthesis of cyclic oligonucleotides and analogues
Ivanov et al. Artificial genetic polymers against human pathologies
CN118109468A (en) Antisense nucleic acid to induce skipping of exon 50
AU2005219815B2 (en) Compounds for hydrolysing ribonucleic acids (RNAs)
Greco et al. Cytosine-rich oligonucleotides incorporating a non-nucleotide loop: a further step towards the obtainment of physiologically stable i-motif DNA

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase