WO2006028123A1 - Process for producing polymer crystal and polymer crystal growing apparatus - Google Patents

Process for producing polymer crystal and polymer crystal growing apparatus Download PDF

Info

Publication number
WO2006028123A1
WO2006028123A1 PCT/JP2005/016405 JP2005016405W WO2006028123A1 WO 2006028123 A1 WO2006028123 A1 WO 2006028123A1 JP 2005016405 W JP2005016405 W JP 2005016405W WO 2006028123 A1 WO2006028123 A1 WO 2006028123A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
polymer crystal
growth
polymer
pulse laser
Prior art date
Application number
PCT/JP2005/016405
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Adachi
Hiroshi Kitano
Original Assignee
Sasaki, Takatomo
Mori, Yusuke
Takano, Kazufumi
Inoue, Tsuyoshi
Matsumura, Hiroyoshi
Murakami, Satoshi
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasaki, Takatomo, Mori, Yusuke, Takano, Kazufumi, Inoue, Tsuyoshi, Matsumura, Hiroyoshi, Murakami, Satoshi, Nikon Corporation filed Critical Sasaki, Takatomo
Publication of WO2006028123A1 publication Critical patent/WO2006028123A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds

Definitions

  • the present invention relates to a method for producing a polymer crystal and a polymer crystal growing apparatus used therefor, and more specifically, by processing an unnecessary portion in a polymer crystal growing process,
  • the present invention relates to a large-sized high-quality polymer crystal, a method for producing a polymer crystal in which a substance other than the polymer crystal is inserted into the crystal, and a polymer crystal growing apparatus used therefor.
  • proteome has become popular.
  • research that seeks to unravel the three-dimensional structure of proteins, which is called structural genomics.
  • Protein structure and function analysis is an important research field in life science, and it is indispensable to elaborate on detailed three-dimensional structures in order to be directly linked to disease treatment and drug discovery.
  • One of the main means is X-ray crystal structure analysis. In order to apply X-ray crystal structure analysis, it is necessary to crystallize the polymer substance to be analyzed.
  • polymer crystals are often much softer and more brittle than crystals of, for example, inorganic substances and organic low-molecular substances. Therefore, if a large impact is applied during processing, cracks and cracks may occur in the periphery. Cause damage. In addition, it is known that it is sensitive to temperature changes and easily denatures by applying heat.
  • a conventionally used processing technique for polymer crystals is a processing technique that requires mechanical contact with the crystal using a knife or a needle. This method is artificially observed under observation with a microscope or the like, and is mainly used for cutting polymer crystals.
  • the polymer crystal has a cutting surface that is sheared by the shearing force that is applied to the polymer crystal.
  • the polymer crystal processing method currently used has many elements left to luck, and is a processing method with low success probability and low reproducibility, even for those who have craftsmanship.
  • this method is capable of performing relatively simple processing such as crystal cutting, and it is very difficult to adapt when complicated and precise processing is required.
  • the present inventors have performed an invention whose main point is to perform processing such as removing unnecessary portions of the polymer crystal by irradiation with ultraviolet short pulse laser light.
  • the present invention has been filed as Japanese Patent Application Nos. 2003-32090, 2004-19516, and 2004-137991 (referred to as “prior invention”).
  • a probe or the like that requires physical contact with the crystal may be inserted into the crystal.
  • a polymer crystal is brittle and soft. Techniques have made it difficult to insert such probes into the crystal.
  • the present invention has been made in view of such circumstances, and solves the problems of the prior application invention, a method for producing a high-quality and large polymer crystal, and a substance other than the polymer in the crystal. It is an object of the present invention to provide a method for producing a polymer crystal inserted in a polymer crystal and a polymer crystal growth apparatus used therefor.
  • the first means for solving the above problem is that in the process of producing the polymer crystal, during the growth of the polymer crystal or once the growth of the polymer crystal is stopped, the polymer crystal Among these, an unnecessary portion is processed by irradiation with ultraviolet short pulse laser light, and thereafter grown, (claim 1).
  • laser light is widely used as a processing tool.
  • the processing with carbon dioxide laser (wavelength 10.6 ⁇ m) and YAG laser (wavelength 1.06 ⁇ m), which are widely used is thermal processing, and the temperature of the material to be processed increases when irradiated with laser light. .
  • the laser light applied to the material to be processed is pulsed light that is not continuous light. This is because laser processing using continuous light generates far greater heat than processing using pulsed light. Therefore, for polymer crystals that must avoid thermal denaturation, these laser processing using infrared light or visible light laser, and laser processing using continuous light are not suitable.
  • ultraviolet short pulse laser light can be processed to directly cut the chemical bonds of polymer crystals with high photon energy due to its short wavelength. This processing can achieve high-precision and smooth processing that is far less affected by heat than processing using a normal carbon dioxide laser or YAG laser.
  • Nerghi is about 70 kcal / mol and the CC bond has a bond energy of about 84 kJ / mol.
  • an ultraviolet short pulse laser beam with a wavelength of 300 nm corresponds to a photon energy of about 95 kcal / mol.
  • the bond can be broken.
  • the processed crystal can be grown by controlling the external environment such as temperature change, solvent evaporation, pressure change, concentration change, pH change, impurity change and the like.
  • a second means for solving the above problem is the first means, wherein the unnecessary portion is processed by removing an unnecessary portion using laser ablation with an ultraviolet short pulse laser beam. (Claim 2).
  • a third means for solving the above problem is the second means, wherein after removing the unnecessary part, a substance other than the polymer crystal is applied to at least a part of the removed part. It is characterized by being inserted (claim 3).
  • a polymer crystal is brittle and soft, when a substance is inserted into the crystal, breakage such as cleavage occurs due to stress generated when the substance comes into physical contact with the crystal.
  • stress applied to the crystal at the time of insertion can be prevented by removing unnecessary portions by irradiation with an ultraviolet short pulse laser and inserting a substance into the removed region.
  • the crystal can continue to grow until it comes into contact with the inserted material, so inserts that require physical contact with the crystal are inserted into the polymer crystal with low damage. It becomes possible.
  • a fourth means for solving the above problem is any one of the first means to the third means, and the processing of the unnecessary portion is performed on the surface of the polymer crystal by ultraviolet short. It is performed by performing an operation for efficiently reaching the pulsed laser beam and then irradiating the surface of the polymer crystal with an ultraviolet short pulse laser beam (claims).
  • the growth solution is removed to expose the surface of the polymer crystal, or the growth solution is efficiently transmitted with ultraviolet rays.
  • the polymer crystal is moved to expose the crystal surface, and ultraviolet short pulse laser light is propagated using a light guide such as an optical fiber, and its tip is placed near the polymer crystal surface.
  • a light guide such as an optical fiber
  • the fifth means for solving the above-mentioned problems is any one of the first to fourth means, wherein the polymer crystal comprises rosin, protein, saccharide, lipid and Out of nucleic acids , Characterized in that it is at least one crystal (Claim 5).
  • a sixth means for solving the above problem is any one of the first to fifth means, wherein the wavelength of the ultraviolet short pulse laser beam is 400 nm or less. This is a feature (claim 6).
  • the wavelength of the irradiated ultraviolet short pulse laser light is 400 nm or less. Preferably there is. Further, considering that the C—C bond is surely broken, the wavelength is preferably 340 ⁇ m or less. In terms of energy, it is not necessary to specifically limit the lower limit of the wavelength of the ultraviolet short pulse laser beam. In addition, currently available optical elements do not transmit light having a wavelength of less than 150 nm, so it is preferable to use ultraviolet short pulse laser light having a wavelength of 150 nm or more.
  • a seventh means for solving the above problem is any one of the first means to the sixth means, wherein an energy density per pulse of the ultraviolet short pulse laser beam is lmj / cm 2 or more (Claim 7).
  • the cache characteristics are greatly influenced by the energy density (fluence) per pulse of ultraviolet short pulse laser light to be irradiated.
  • the processing amount (force rate) per pulse of ultraviolet short pulse laser light does not show linearity with respect to fluence. If the fluence is too small, even if the chemical bond is broken, the subsequent transpiration becomes insufficient and the processing cannot be performed. In other words, a fluence above a certain threshold is required to cause machining. For fluences above the threshold, the processing rate increases as the fluence increases.
  • the fluence of the ultraviolet short pulse laser beam to be irradiated must be adjusted appropriately.
  • the preferred fluence depends on the absorption coefficient of the work material with respect to the irradiation light.
  • the absorption coefficient of the polymer varies greatly depending on the wavelength in the ultraviolet region, the preferred fluence varies depending on the wavelength of the irradiation light. In the wavelength range below 400 nm, a fluence of lmj / cm 2 or more can be used.
  • An eighth means for solving the above problems includes a growth container in which a growth solution is introduced to grow a polymer crystal, a stage on which the growth container is placed and movable in a three-dimensional direction, A solution injection and suction device for injecting or aspirating the growth solution into the growth vessel, and irradiation with ultraviolet short pulse laser light for processing polymer crystals in the growth vessel
  • a polymer crystal growth apparatus comprising: an ultraviolet irradiation apparatus that performs the observation; an observation apparatus that observes the polymer crystal in the growth container; and a constant temperature and humidity apparatus that maintains a constant temperature and humidity of the growth container. (Claim 8).
  • a high molecular crystal can be grown by putting a growth solution in a growth container and maintaining the temperature at a predetermined temperature. Then, the growing polymer crystal is observed with an observation device, and if an unnecessary portion is generated, the growth solution is sucked with a solution injection and suction device as necessary to expose the polymer crystal to the growing solution force.
  • the polymer crystal is processed by the ultraviolet short pulse laser light emitted from the ultraviolet irradiation device to process unnecessary portions, and then the growth solution is injected into the growth container by the solution injection and suction device, and the polymer crystal is injected. You can continue to train.
  • the stage When observing and processing a sample, the stage can be moved in a three-dimensional direction to observe the polymer crystal in the field of view, and ultraviolet short pulse laser light can be applied to any part of the polymer crystal. Can be irradiated.
  • ultraviolet short pulse laser light can be applied to any part of the polymer crystal. Can be irradiated.
  • a method for producing a large, high-quality polymer crystal a method for producing a polymer crystal in which a substance other than the polymer crystal is inserted into the crystal, and a polymer crystal growing apparatus. Can be provided.
  • FIG. 1 is a diagram showing an outline of a polymer crystal growth apparatus as an example of an embodiment of the present invention.
  • FIG. 2 is a diagram showing an outline of an ultraviolet short pulse laser processing apparatus used in an example of the present invention.
  • FIG. 3 is a photomicrograph showing chicken egg white lysozyme crystals before ultraviolet irradiation, immediately after ultraviolet irradiation, and after regrowth.
  • FIG. 1 is a diagram showing an outline of a polymer crystal growth apparatus as an example of an embodiment of the present invention.
  • an x-y-z stage 2 is provided, on which a growth vessel 3 can be placed.
  • the growth vessel 3 can be moved in the X direction (left and right direction on the paper), y direction (front side, depth direction), and z direction (up and down direction on the paper surface). , Rotation around the z axis is possible.
  • an injection / suction device 4 is provided so that the growth solution 5 can be injected into the growth container 3 or the growth solution 5 can be sucked from the growth container 3. .
  • the polymer single crystal 6 is grown in the growth vessel 3.
  • the growing polymer single crystal 6 is observed through the beam splitter 8 by the observation device 7. Then, when the occurrence of unnecessary parts is observed, the injection and suction device 4 sucks the medium growth solution 5 of the growth vessel 3 to expose the polymer crystal 6 from the surface of the growth solution 5, and generates an ultraviolet short pulse laser.
  • the apparatus 9 irradiates the ultraviolet short pulse laser beam, and the light is condensed on the polymer crystal 6 by the condenser lens 10, and an unnecessary portion of the polymer crystal 6 is processed.
  • Ultraviolet short pulse laser The one light is reflected by the beam splitter 8 and focused on the polymer crystal 6.
  • the growth solution 5 is injected from the injection suction device 4 into the growth vessel 3, and the polymer crystal 6 is again immersed in the growth solution 5. Start training.
  • the stage 2 is driven to perform processing such as removal of the target portion.
  • the portion irradiated with ultraviolet rays may not be visible.
  • the optical axis of the observation device 7 is aligned with the portion where the ultraviolet rays are collected so that a virtual image of the mark can be formed at that position.
  • the position where the ultraviolet rays are collected and the position where the observation device 7 is in focus are matched, and the stage 2 is driven so that the processed part is in focus during the ultraviolet irradiation.
  • the ultraviolet rays can be condensed at the target position.
  • the reason why the growth container 3 is placed in the constant temperature & humidity chamber 1 is to minimize the influence of changes in temperature and humidity on the growth conditions of the polymer crystal. For example, a change in temperature is not preferable because the supersaturation degree of the solution changes. Also, since the inside of the growth container is covered with the cover 11, it is saturated, and if the outside of the container is dry, the evaporation amount of the growth solution 5 increases when the force bar 11 is removed during the processing operation. Absent.
  • the stage 2 is driven when the polymer crystal 6 is observed or processed.
  • the stage 2 is grown by temporarily or intermittently moving during the growth of the polymer crystal 6.
  • Solution 5 can be agitated to suppress unnecessary nucleation and to improve the quality of crystals.
  • Ultraviolet light is irradiated into the constant temperature and humidity chamber 1 through the window 12, and the window 12 is made of a material such as quartz or fluorite that has a high transmittance with respect to the ultraviolet light.
  • ultraviolet rays are incident (vertical) irradiation, but oblique irradiation may be used, and an optical fiber may be used as a propagation path.
  • the injection / suction device 4 has a function of injecting the growth solution 5 into the growth container 3 and suctioning it from the growth container 3 as described above. Debris (scattered matter generated by laser abrasion) generated during processing of crystal 6 is removed by suction, Operations such as taking out and removing crystals that are no longer needed, operations such as transferring the processed polymer single crystal 6 to another growth vessel, and operations such as adding or replacing a solution can also be performed.
  • the injection / suction device 4 has a position control mechanism (not shown), and can be positioned so that the tip thereof enters the growth container 3 and further the growth solution 5 as necessary.
  • the cover 11 may be one that manually closes the upper portion of the growth vessel 3, but may also have an automatic opening and closing mechanism. Further, even when the tip of the injection / suction device 4 is inserted into the growth vessel 3, it is connected to the tip of the injection / suction arch I device 4 by means of, for example, a bellows mechanism so as to maintain hermeticity. Have you been?
  • the illuminating device of the observation device 7 is omitted, but a device as shown in FIG. 2 shown later can be used.
  • a protein single crystal was irradiated with an ultraviolet short pulse laser beam using an apparatus as shown in Fig. 2, thereby A portion of the abrasion was removed.
  • the laser-processed crystal was regrown and the X-ray diffraction pattern was measured on the grown crystal.
  • a cross-shaped mark is formed at the optical axis position of the optical microscope so that the optical axis position is visible.
  • the focus position of the optical microscope (the in-focus position, that is, the object surface that is in focus when viewed) is fixed.
  • the ultraviolet short pulse laser beam condensed by the condensing optical system 22 is collected at the optical axis position of the optical microscope and at the focal position of the optical microscope. Therefore, when the object is placed on the stage 23 and the image is observed with an optical microscope, it is in focus and at the center of the cross mark.
  • the ultraviolet short pulse laser beam from the ultraviolet short pulse laser system 21 is condensed.
  • the relative positional relationship of the ultraviolet short pulse laser system 21, the condensing optical system 22, and the optical microscope section is fixed, and only the stage 23 is movable relative to these fixed systems.
  • the processing is performed !, and the processing is performed while moving the stage 23 so that the location is the optical axis position of the optical microscope and the in-focus position.
  • Shape processing can be performed.
  • FIG. 3 (a) shows a crystal photograph before irradiation with ultraviolet short pulse laser light.
  • a solid ultraviolet short pulse laser light source having a wavelength of 193 nm was used as the ultraviolet short pulse laser system 21.
  • the configuration of the light source is as follows. Directly modulate the vertical and horizontal single mode laser diodes to generate pulsed light with a wavelength of 1547 nm and a repetition rate of 1 kHz. This pulse light is amplified approximately 2 million times by a total of three stages of erbium-doped fiber amplifiers connected in series. Next, the output light with fiber amplifier power is converted to the 8th harmonic by a five-step wavelength conversion process using a nonlinear optical crystal, and light with a wavelength of 193 nm is generated.
  • the ultraviolet short pulse laser light emitted from the ultraviolet short pulse laser system 21 is passed through a shirt and then condensed by a synthetic quartz lens having a focal length of 100 mm, which is a condensing optical system 22.
  • a synthetic quartz lens having a focal length of 100 mm, which is a condensing optical system 22.
  • irradiation was performed in the Z-axis direction from the upper surface of the sample container 25 containing the egg white lysozyme crystal (polymer crystal) 24 placed on the stage 23.
  • the irradiation position on the crystal was finely adjusted while observing with an optical microscope.
  • the pulse energy of the irradiated light on the crystal was 0.25 ⁇ J
  • the spot diameter was 25 ⁇ m
  • the fluence was 50 mJ / cm 2
  • the average intensity was 0.25 mW
  • the pulse duration was Ins.
  • X-ray diffraction patterns were measured at room temperature for egg white lysozyme crystals regrown after laser processing and egg white lysozyme crystals grown under the same conditions.
  • Rigaku Denki ultraX18 (voltage 50kV, current 100mA) was used as the X-ray generator, and RAXI S IV ++ was used as the detector.
  • the distance between the crystal and the detector was 150 mm, the detection angle was 2 °, and the measurement time was 30 minutes / 2 °.
  • the portion where the abrasion is removed is a normal crystal part. From this example, when there is a defective part such as a damage, the defective part is removed by processing including the normal part. It can be seen that large crystals with few defective parts can be grown by regrowth.
  • the present invention can be preferably applied to the production of polymer crystals.
  • biopolymer crystals such as protein crystals and other organic polymer crystals can be produced, and the use thereof is not limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A process for producing a large single crystal of polymer free of defectives. A single crystal of hen eggwhite lysozyme is grown in a culture medium (a). Part of this single crystal is exposed to solid ultraviolet short-pulse laser beams of 193 nm wavelength to thereby remove any ablation (b). Upon re-initiation of incubation, crystal re-growth from a worked surface as a starting point has been effected to thereby enable obtaining of a large crystal (c).

Description

明 細 書  Specification
高分子結晶の製造方法及び高分子結晶育成装置  Polymer crystal production method and polymer crystal growth apparatus
技術分野  Technical field
[0001] 本発明は、高分子結晶の製造方法及びそれに使用される高分子結晶育成装置に 関するものであり、さらに詳しくは、高分子結晶の育成過程において、その不要部分 を加工することにより、大型で高品質な高分子結晶、当該高分子結晶以外の物質が 結晶内部に挿入された高分子結晶を製造する方法、及びそれに使用される高分子 結晶育成装置に関するものである。  [0001] The present invention relates to a method for producing a polymer crystal and a polymer crystal growing apparatus used therefor, and more specifically, by processing an unnecessary portion in a polymer crystal growing process, The present invention relates to a large-sized high-quality polymer crystal, a method for producing a polymer crystal in which a substance other than the polymer crystal is inserted into the crystal, and a polymer crystal growing apparatus used therefor.
背景技術  Background art
[0002] 近年、プロテオームと呼ばれるポストゲノム研究が盛んになってきている。その中で 、特に注目されるのが、タンパク質の 3次元構造を解き明かそうとする研究であり、構 造ゲノム科学と呼ばれている。タンパク質の構造や機能解析は、生命科学における 重要な研究分野であり、病気の治療や創薬に直結するため、詳細な立体構造の解 祈が不可欠である。その主要な手段の一つとして X線結晶構造解析が挙げられるが 、 X線結晶構造解析を適用するためには、解析対象とされる高分子物質を結晶化す る必要がある。  [0002] In recent years, post-genome research called proteome has become popular. Of particular note is research that seeks to unravel the three-dimensional structure of proteins, which is called structural genomics. Protein structure and function analysis is an important research field in life science, and it is indispensable to elaborate on detailed three-dimensional structures in order to be directly linked to disease treatment and drug discovery. One of the main means is X-ray crystal structure analysis. In order to apply X-ray crystal structure analysis, it is necessary to crystallize the polymer substance to be analyzed.
[0003] 高分子結晶の育成においては、無機結晶や有機低分子結晶の育成と同様に、分 子構造と育成条件を反映した形状の結晶が育成される。また、多くの高分子物質は、 良質な単結晶を得るための結晶化条件および育成条件が確立して 、な ヽため、結 晶の析出制御や、その後の成長制御が非常に困難である。そのため、結晶品質に問 題が生じたり、近接して析出した結晶同士が付着して多結晶化したりする等の問題が 生じることが多い。  [0003] In the growth of polymer crystals, crystals with shapes reflecting the molecular structure and growth conditions are grown in the same manner as the growth of inorganic crystals and organic low-molecular crystals. In addition, many polymer substances have established crystallization conditions and growth conditions for obtaining high-quality single crystals, and therefore, it is very difficult to control crystal precipitation and subsequent growth control. For this reason, there are many problems such as problems in crystal quality, and crystals deposited in close proximity to each other and polycrystallize.
[0004] 例えば、 X線結晶構造解析を行う場合、所望の形状を有し、かつ良質な単結晶が 必要である。そのため、結晶化および育成条件を最適化し、前記結晶を得るのが一 般的である。しかしながら、前述したとおり、高分子物質については、これら結晶を得 るのは非常に困難である。したがって、得られた結晶から、 X線結晶構造解析に必要 な大きさや形状、あるいは結晶品質の良好な部分を取り出したり、多結晶から単結晶 を切り出すなどの加工を施す場合がある。 [0004] For example, when X-ray crystal structure analysis is performed, a single crystal having a desired shape and high quality is required. For this reason, it is common to optimize the crystallization and growth conditions to obtain the crystal. However, as described above, it is very difficult to obtain these crystals for polymer substances. Therefore, from the obtained crystal, the size and shape necessary for X-ray crystal structure analysis, or a portion with good crystal quality can be taken out, or a single crystal can be obtained from a polycrystal. There are cases where processing such as cutting out is performed.
[0005] しかしながら高分子結晶は、例えば無機物質や有機低分子物質の結晶と比べて遥 かに軟ら力べ脆いことが多いため、加工時に大きな衝撃を与えると、周辺部にひびや 割れなどの損傷を生じる。また、温度変化に対しても敏感であることが多ぐ熱を与え ることにより容易に変性を起こすことが知られて 、る。  [0005] However, polymer crystals are often much softer and more brittle than crystals of, for example, inorganic substances and organic low-molecular substances. Therefore, if a large impact is applied during processing, cracks and cracks may occur in the periphery. Cause damage. In addition, it is known that it is sensitive to temperature changes and easily denatures by applying heat.
[0006] このように、高分子結晶は取り扱いが非常に困難であるため、無機結晶その他の材 料において普及している加工技術をそのまま適用することは極めて困難であり、信頼 性のある結晶加工技術が確立して 、なかった。  [0006] As described above, since polymer crystals are very difficult to handle, it is extremely difficult to directly apply the processing techniques that are widely used in inorganic crystals and other materials, and reliable crystal processing. There was no technology established.
[0007] 従来用いられている高分子結晶の加工手法は、メスや針などを使用した、当該結 晶との機械的接触を要する加工手法である。この方法は、顕微鏡などによる観察下 において、人為的にカ卩ェするものであり、主に高分子結晶を切断するために用いら れている。  [0007] A conventionally used processing technique for polymer crystals is a processing technique that requires mechanical contact with the crystal using a knife or a needle. This method is artificially observed under observation with a microscope or the like, and is mainly used for cutting polymer crystals.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、高分子結晶は、一般の結晶に比して機械的にもろぐメスや針によ る加工の際には、切断面が受ける剪断力のために、切断面が崩れてしまう可能性が ある。よって、現在用いられている高分子結晶の加工手法は、運に任せた要素が多く 、職人的な技術を有する者でさえ、成功確率と再現性の低い加工方法である。さらに 、この手法では結晶の切断などの比較的単純な加工を行うことは可能である力 複雑 で精密な加工が要求される場合においては適応が非常に困難となる。  [0008] However, in the case of processing with a scalpel or a needle that is mechanically fragile compared to a general crystal, the polymer crystal has a cutting surface that is sheared by the shearing force that is applied to the polymer crystal. There is a possibility of collapse. Therefore, the polymer crystal processing method currently used has many elements left to luck, and is a processing method with low success probability and low reproducibility, even for those who have craftsmanship. Furthermore, this method is capable of performing relatively simple processing such as crystal cutting, and it is very difficult to adapt when complicated and precise processing is required.
[0009] 本発明者等は、このような問題を解決する方法として、高分子結晶の不要部分を紫 外線短パルスレーザ光の照射により除去する等の加工を行うことを要旨とする発明を 行い、この発明は、特願 2003— 32090号、特願 2004— 19516号、特願 2004— 1 37991号として特許出願されている (これらを「先願発明」と称する。)。  [0009] As a method for solving such a problem, the present inventors have performed an invention whose main point is to perform processing such as removing unnecessary portions of the polymer crystal by irradiation with ultraviolet short pulse laser light. The present invention has been filed as Japanese Patent Application Nos. 2003-32090, 2004-19516, and 2004-137991 (referred to as “prior invention”).
[0010] 先願発明によれば、従来結晶構造に損傷を与えずに加工することが困難であった 高分子単結晶の加工が、結晶構造を損傷することなく可能となり、高分子結晶から、 不要部分を取り除き、残りの部分を X線回折等で観測することなどが可能となった。  [0010] According to the invention of the prior application, it has been difficult to process a polymer single crystal without damaging the crystal structure in the prior art, without damaging the crystal structure. It became possible to remove unnecessary parts and observe the remaining parts by X-ray diffraction.
[0011] し力しながら、先願発明を使用した場合には、高分子結晶の不要部分を加工する ため、例えば、高分子結晶の不要部分が多い場合には、得られる正常な高分子結晶 の大きさが小さくなりすぎてしまうといった問題点があった。 [0011] However, when the invention of the prior application is used, an unnecessary portion of the polymer crystal is processed. Therefore, for example, when there are many unnecessary portions of the polymer crystal, there is a problem that the size of the obtained normal polymer crystal becomes too small.
[0012] また、結晶の物性評価を行うために、当該結晶との物理的な接触を要するプローブ 等を結晶内部に挿入する場合があるが、前述の通り高分子結晶は脆く軟らかいため に、従来技術ではそのようなプローブを結晶内部に挿入することが困難であった。  [0012] In addition, in order to evaluate the physical properties of a crystal, a probe or the like that requires physical contact with the crystal may be inserted into the crystal. However, as described above, a polymer crystal is brittle and soft. Techniques have made it difficult to insert such probes into the crystal.
[0013] 本発明はこのような事情に鑑みてなされたものであり、先願発明の問題点を解決し 、高品質で大きな高分子結晶を製造する方法、当該高分子以外の物質が結晶内部 に挿入された高分子結晶を製造する方法、及びこれに使用される高分子結晶の育 成装置を提供することを課題とする。  [0013] The present invention has been made in view of such circumstances, and solves the problems of the prior application invention, a method for producing a high-quality and large polymer crystal, and a substance other than the polymer in the crystal. It is an object of the present invention to provide a method for producing a polymer crystal inserted in a polymer crystal and a polymer crystal growth apparatus used therefor.
課題を解決するための手段  Means for solving the problem
[0014] 前記課題を解決するための第 1の手段は、高分子結晶を製造する過程において、 前記高分子結晶の育成中に、あるいは一旦前記高分子結晶の育成を中止し、当該 高分子結晶のうち不要部分を紫外短パルスレーザ光の照射により加工し、その後育 成する過程を含むことを特徴とするもの(請求項 1)である。  [0014] The first means for solving the above problem is that in the process of producing the polymer crystal, during the growth of the polymer crystal or once the growth of the polymer crystal is stopped, the polymer crystal Among these, an unnecessary portion is processed by irradiation with ultraviolet short pulse laser light, and thereafter grown, (claim 1).
[0015] 現在レーザ光は加工用ツールとして普及している。し力しながら、広く用いられてい る炭酸ガスレーザ (波長 10.6 μ m)や YAGレーザ (波長 1.06 μ m)などによる加工は熱 的な加工であり、レーザ光照射時に被加工材料は温度上昇を生じる。さらに、被加工 材料に照射するレーザ光は、連続光ではなぐパルス光であることが望ましい。なぜ ならば、連続光によるレーザ加工は、パルス光による加工に比べて発熱の程度が遥 かに大きいからである。したがって、熱変性を回避しなければならない高分子結晶に おいては、これら赤外光のレーザや可視光のレーザによる加工、連続光によるレー ザ加工は不適である。  Currently, laser light is widely used as a processing tool. However, the processing with carbon dioxide laser (wavelength 10.6 μm) and YAG laser (wavelength 1.06 μm), which are widely used, is thermal processing, and the temperature of the material to be processed increases when irradiated with laser light. . Furthermore, it is desirable that the laser light applied to the material to be processed is pulsed light that is not continuous light. This is because laser processing using continuous light generates far greater heat than processing using pulsed light. Therefore, for polymer crystals that must avoid thermal denaturation, these laser processing using infrared light or visible light laser, and laser processing using continuous light are not suitable.
[0016] そこで、発明者等は、紫外短パルスレーザに注目した。すなわち、紫外短パルスレ 一ザ光は、その波長が短いために光子エネルギーが高ぐ高分子結晶の化学結合 を直接切断する加工が可能である。この加工では、通常の炭酸ガスレーザや YAGレ 一ザを用いた加工に比べて、熱による影響が遥かに少ない高精度で平滑な加工が 達成できる。  [0016] Therefore, the inventors paid attention to the ultraviolet short pulse laser. In other words, ultraviolet short pulse laser light can be processed to directly cut the chemical bonds of polymer crystals with high photon energy due to its short wavelength. This processing can achieve high-precision and smooth processing that is far less affected by heat than processing using a normal carbon dioxide laser or YAG laser.
[0017] 高分子の主鎖中には C N結合や C C結合が存在するが、 C N結合の結合ェ ネルギ一は約 70kcal/mol、 C C結合の結合エネルギーは約 84kJ/molであり、例え ば波長 300nmの紫外短パルスレーザ光であれば、その光子エネルギーは約 95kcal/ molに相当するので、これらの結合を切断することができる。 [0017] There are CN bonds and CC bonds in the main chain of the polymer. Nerghi is about 70 kcal / mol and the CC bond has a bond energy of about 84 kJ / mol.For example, an ultraviolet short pulse laser beam with a wavelength of 300 nm corresponds to a photon energy of about 95 kcal / mol. The bond can be broken.
[0018] この紫外短パルスレーザ光照射による加工は、基本的には分子結合を光子エネル ギ一により切断し蒸散させるものであるので、加工中に切断面に剪断力が働かない。 この優れた性質により、高分子結晶という非常にもろい材料を、壊すことなく加工し、 きれいなカ卩工面を得ることができる。則ち、紫外線短パルスレーザによる加工は、高 分子結晶が、機械的な加工方法では、加工面が損傷するような脆いものである場合 に特に有効である。 [0018] Since the processing by irradiation with ultraviolet short pulse laser light basically cuts molecular bonds with photon energy and evaporates, no shear force acts on the cut surface during processing. This excellent property makes it possible to process a very fragile material called a polymer crystal without breaking it and to obtain a clean surface. In other words, processing using an ultraviolet short pulse laser is particularly effective when a high molecular crystal is brittle with a mechanical processing method that may damage the processed surface.
[0019] 本手段を用いると、例えば、高分子単結晶の育成途中において、結晶の一部が損 傷したり、多結晶化したりしていることが判明した場合、育成させたい結晶の不要部 分を加工することで、それら不要部分の成長を抑制することができるため、高品質で 大型の高分子単結晶を効率的に製造することが可能となる。前記不要部分の加工は 、高分子結晶を製造する過程の中で行われるが、高分子結晶の育成中、すなわち育 成を継続させながら不要部分の加工を行う方法と、ー且育成を中止して不要部分の 加工を行い、その後に育成を再開する方法とがあり、適宜好ましい方法を選ぶことが できる。  When this means is used, for example, when it is found that a part of the crystal is damaged or polycrystallized during the growth of the polymer single crystal, an unnecessary part of the crystal to be grown is obtained. By processing the portion, it is possible to suppress the growth of those unnecessary portions, so that it is possible to efficiently produce a large-sized polymer single crystal of high quality. The processing of the unnecessary portion is performed in the process of producing the polymer crystal. However, the method of processing the unnecessary portion during the growth of the polymer crystal, that is, the growth is continued, and the growth is stopped. There is a method of processing unnecessary portions and then restarting the growth, and a preferable method can be selected as appropriate.
[0020] 加工後の結晶は、温度変化、溶媒蒸発、圧力変化、濃度変化、 pH変化、不純物変 化などの外的環境を制御することにより成長させることができる。  [0020] The processed crystal can be grown by controlling the external environment such as temperature change, solvent evaporation, pressure change, concentration change, pH change, impurity change and the like.
[0021] 前記課題を解決するための第 2の手段は、前記第 1の手段であって、前記不要部 分の加工が、紫外短パルスレーザ光によるレーザアブレーシヨンを用いた不要部分 の除去であることを特徴とするもの(請求項 2)である。  [0021] A second means for solving the above problem is the first means, wherein the unnecessary portion is processed by removing an unnecessary portion using laser ablation with an ultraviolet short pulse laser beam. (Claim 2).
[0022] 紫外短パルスレーザ光による高分子結晶の不要部分の加工としては、不要部分の 除去、改質、微細化などが挙げられる力 レーザアブレーシヨンを用いて不要部分の 除去することにより、加工面力 結晶成長することが容易となる。本手段においては、 紫外短パルスレーザを用いて不要部分の除去を行っているので、加工面が破損した としてもその程度が小さぐよって、加工後の高分子結晶の製造過程において、加工 面からも結晶が成長する。 [0023] 前記課題を解決するための第 3の手段は、前記第 2の手段であって、前記不要部 分を除去した後に、除去した部分の少なくとも一部に前記高分子結晶以外の物質を 挿入することを特徴とするもの(請求項 3)である。 [0022] As the processing of the unnecessary portion of the polymer crystal by the ultraviolet short pulse laser beam, the unnecessary portion can be removed, modified, refined, etc. By removing the unnecessary portion using laser ablation, Processing surface force Crystal growth becomes easy. In this method, unnecessary parts are removed using an ultraviolet short pulse laser, so even if the processed surface is damaged, the degree of damage is small. Crystal grows. [0023] A third means for solving the above problem is the second means, wherein after removing the unnecessary part, a substance other than the polymer crystal is applied to at least a part of the removed part. It is characterized by being inserted (claim 3).
[0024] 高分子結晶は脆く軟らかいため、結晶中に何らかの物質を挿入しょうとすると、その 物質が結晶と物理的に接触したときに発生する応力により、碧開などの破損を生じる 。本手段では、紫外短パルスレーザーの照射により不要部分を除去し、除去した領 域に物質を挿入することにより、挿入時に結晶に加わる応力を防ぐことができる。さら に、挿入後に結晶を育成すると、結晶は挿入した物質と接触するまで成長を続けるこ とができるため、結晶との物理的な接触を要する挿入物を低損傷で高分子結晶中に 挿入することが可能となる。  [0024] Since a polymer crystal is brittle and soft, when a substance is inserted into the crystal, breakage such as cleavage occurs due to stress generated when the substance comes into physical contact with the crystal. In this means, stress applied to the crystal at the time of insertion can be prevented by removing unnecessary portions by irradiation with an ultraviolet short pulse laser and inserting a substance into the removed region. In addition, if the crystal is grown after insertion, the crystal can continue to grow until it comes into contact with the inserted material, so inserts that require physical contact with the crystal are inserted into the polymer crystal with low damage. It becomes possible.
[0025] 前記課題を解決するための第 4の手段は、前記第 1の手段から第 3の手段のいず れかであって、前記不要部分の加工が、前記高分子結晶表面に紫外短パルスレー ザ光が効率的に到達するための操作を行い、その上で前記高分子結晶表面に紫外 短パルスレーザ光の照射を行うことによって実施されることを特徴とするもの(請求項 [0025] A fourth means for solving the above problem is any one of the first means to the third means, and the processing of the unnecessary portion is performed on the surface of the polymer crystal by ultraviolet short. It is performed by performing an operation for efficiently reaching the pulsed laser beam and then irradiating the surface of the polymer crystal with an ultraviolet short pulse laser beam (claims).
4)である。 4).
[0026] 育成溶液は一般に紫外線を透過しないものが多い。そこで、本手段においては、 高分子結晶の育成の途中において、不要部分の加工を行う前に、高分子結晶表面 に紫外短パルスレーザ光が効率的に到達するための操作を行 、、その上で紫外短 パルスレーザ光の照射を行うようにしている。よって、育成溶液が紫外線を透過しな [0026] Many growth solutions generally do not transmit ultraviolet light. Therefore, in this means, before the unnecessary portion is processed during the growth of the polymer crystal, an operation for efficiently reaching the ultraviolet short pulse laser beam on the surface of the polymer crystal is performed. In addition, irradiation with ultraviolet short pulse laser light is performed. Therefore, the growth solution must not transmit ultraviolet light.
V、ものであっても、不要部分の加工を行うことができる。 Even if it is V, it can process unwanted parts.
[0027] 高分子結晶表面に紫外短パルスレーザ光が効率的に到達するための操作として は、育成溶液を取り除いて高分子結晶表面を露出させること、育成溶液を紫外線を 効率的に透過する別の溶液に置換すること、高分子結晶を動かして結晶表面を露出 させること、紫外短パルスレーザ光を光ファイバ等のライトガイドを用いて伝播させて その先端を高分子結晶表面の近傍に配置すること、などが挙げられるがこれに限ら れない。  [0027] As an operation for efficiently reaching the surface of the polymer crystal with the ultraviolet short pulse laser light, the growth solution is removed to expose the surface of the polymer crystal, or the growth solution is efficiently transmitted with ultraviolet rays. The polymer crystal is moved to expose the crystal surface, and ultraviolet short pulse laser light is propagated using a light guide such as an optical fiber, and its tip is placed near the polymer crystal surface. However, it is not limited to this.
[0028] 前記課題を解決するための第 5の手段は、前記第 1の手段から第 4の手段のいず れカであって、前記高分子結晶が、榭脂、タンパク質、糖類、脂質および核酸のうち 、少なくとも一つの結晶であることを特徴とするもの(請求項 5)である。 [0028] The fifth means for solving the above-mentioned problems is any one of the first to fourth means, wherein the polymer crystal comprises rosin, protein, saccharide, lipid and Out of nucleic acids , Characterized in that it is at least one crystal (Claim 5).
[0029] これらの材料力もなる高分子結晶は、特にもろぐ少しの剪断力を受けただけでも 全体が破壊されやすいものが多い。よって、前記第 1の手段から第 4の手段を応用す ると、特に効果のある材料である。  [0029] Many of these polymer crystals having material strengths are particularly susceptible to destruction even when subjected to a fragile little shearing force. Therefore, the application of the first to fourth means is a particularly effective material.
[0030] 前記課題を解決するための第 6の手段は、前記第 1の手段から第 5の手段のいず れかであって、前記紫外短パルスレーザ光の波長が 400nm以下であることを特徴と するもの(請求項 6)である。  [0030] A sixth means for solving the above problem is any one of the first to fifth means, wherein the wavelength of the ultraviolet short pulse laser beam is 400 nm or less. This is a feature (claim 6).
[0031] 高分子結晶中には C N結合が存在することが多いので、このような場合 C N結 合を確実に切断するためには、照射する紫外短パルスレーザ光の波長は、 400nm以 下であることが好ましい。又、 C— C結合を確実に切断することを考えると波長は 340η m以下であることが望ましい。エネルギー的には紫外短パルスレーザ光の波長の下 限を特に制限する必要は無いが、 190nm未満となると大気中の酸素による吸収が多 くなるので、 190應以上であることが好ましい。又、現在、容易に入手できる光学素子 は、波長 150nm未満の光を透過しないため、 150nm以上の紫外短パルスレーザ光を 使用することが好ましい。  [0031] Since there are many CN bonds in the polymer crystal, in such a case, in order to cut the CN bond reliably, the wavelength of the irradiated ultraviolet short pulse laser light is 400 nm or less. Preferably there is. Further, considering that the C—C bond is surely broken, the wavelength is preferably 340 ηm or less. In terms of energy, it is not necessary to specifically limit the lower limit of the wavelength of the ultraviolet short pulse laser beam. In addition, currently available optical elements do not transmit light having a wavelength of less than 150 nm, so it is preferable to use ultraviolet short pulse laser light having a wavelength of 150 nm or more.
[0032] 前記課題を解決するための第 7の手段は、前記第 1の手段から第 6の手段のいず れかであって、前記紫外短パルスレーザ光の 1パルス当たりのエネルギー密度が lmj /cm2以上であることを特徴とするもの(請求項 7)である。 [0032] A seventh means for solving the above problem is any one of the first means to the sixth means, wherein an energy density per pulse of the ultraviolet short pulse laser beam is lmj / cm 2 or more (Claim 7).
[0033] 紫外短パルスレーザ光による加工過程においては、照射する紫外短パルスレーザ 光 1パルスあたりのエネルギー密度(フルーエンス)によってカ卩ェ特性が大きく左右さ れる。一般に、紫外短パルスレーザ光 1パルスあたりの加工量 (力卩ェレート)はフルー エンスに対して線形性を示さない。フルーエンスが小さすぎる場合は、たとえ化学結 合を切断したとしてもその後の蒸散が不十分となり、加工を施すことができない。すな わち、加工を起こすためにはある閾値以上のフルーエンスが必要である。閾値以上 のフルーエンスにおいては、フルーエンスの増加に伴って加工レートが増加していく In the processing process using ultraviolet short pulse laser light, the cache characteristics are greatly influenced by the energy density (fluence) per pulse of ultraviolet short pulse laser light to be irradiated. Generally, the processing amount (force rate) per pulse of ultraviolet short pulse laser light does not show linearity with respect to fluence. If the fluence is too small, even if the chemical bond is broken, the subsequent transpiration becomes insufficient and the processing cannot be performed. In other words, a fluence above a certain threshold is required to cause machining. For fluences above the threshold, the processing rate increases as the fluence increases.
。したがって、良好なカ卩ェ特性を得るためには、照射される前記紫外短パルスレーザ 光のフルーエンスを適切に調整しなければならない。 . Therefore, in order to obtain good cache characteristics, the fluence of the ultraviolet short pulse laser beam to be irradiated must be adjusted appropriately.
[0034] 前記の好適なフルーエンスは、照射光に対する被加工材料の吸収係数に依存す る。吸収係数が大きいほど単位体積あたりに多くの光子が吸収されて効率的に化学 結合が切断されるため、加工可能の閾値となるフルーエンスの値は小さくなる。高分 子の吸収係数は紫外領域において波長によって大きく変化するので、前記の好適な フルーエンスは照射光の波長によって異なる。 400nm以下の波長範囲では lmj/cm2 以上のフルーエンスを採用できる。前記適切なフルーエンスにお!、て紫外短パルス レーザ照射を実施することにより、紫外短パルスレーザ光 1パルスあたりに結晶表面 力も深さ 1應以上の領域にわたって力卩ェの影響を及ぼすことが可能である。 [0034] The preferred fluence depends on the absorption coefficient of the work material with respect to the irradiation light. The The larger the absorption coefficient, the more photons are absorbed per unit volume and the chemical bonds are efficiently broken, so the fluence value that is the threshold for processing becomes smaller. Since the absorption coefficient of the polymer varies greatly depending on the wavelength in the ultraviolet region, the preferred fluence varies depending on the wavelength of the irradiation light. In the wavelength range below 400 nm, a fluence of lmj / cm 2 or more can be used. By applying ultraviolet short pulse laser irradiation to the appropriate fluence described above, the surface force of the crystal can be affected over a range of depth of 1 or more per pulse of ultraviolet short pulse laser light. It is.
[0035] 前記課題を解決するための第 8の手段は、育成溶液を入れて高分子結晶を育成す る育成容器と、前記育成容器を載置して 3次元方向に移動可能なステージと、前記 育成溶液を前記育成容器中に注入したり前記育成容器中から吸引したりする溶液注 入吸引装置と、前記育成容器中の高分子結晶の加工を行うための紫外短パルスレ 一ザ光の照射を行う紫外線照射装置と、前記育成容器中の高分子結晶を観察する 観察装置と、前記育成容器の温度 ·湿度を一定に保つ恒温恒湿装置とを有すること を特徴とする高分子結晶育成装置 (請求項 8)である。  [0035] An eighth means for solving the above problems includes a growth container in which a growth solution is introduced to grow a polymer crystal, a stage on which the growth container is placed and movable in a three-dimensional direction, A solution injection and suction device for injecting or aspirating the growth solution into the growth vessel, and irradiation with ultraviolet short pulse laser light for processing polymer crystals in the growth vessel A polymer crystal growth apparatus, comprising: an ultraviolet irradiation apparatus that performs the observation; an observation apparatus that observes the polymer crystal in the growth container; and a constant temperature and humidity apparatus that maintains a constant temperature and humidity of the growth container. (Claim 8).
[0036] 本手段においては、育成容器中に育成溶液を入れて、所定温度 '湿度に保ち、高 分子結晶を育成することができる。そして、育成中の高分子結晶を観察装置で観察 し、不要部が発生した場合には、必要に応じて溶液注入吸引装置で育成溶液を吸 引して高分子結晶を育成溶液力 露出させ、紫外線照射装置から照射される紫外短 パルスレーザ光により、高分子結晶を加工して不要部分を加工し、その後、溶液注 入吸引装置で育成溶液を育成容器中に注入して、高分子結晶の育成を続けること ができる。試料の観察及び加工の際、ステージを 3次元方向に移動させることにより、 高分子結晶を視野に入れて観察することができ、又、高分子結晶の任意の部分に紫 外短パルスレーザ光を照射することができる。 発明の効果  [0036] In this means, a high molecular crystal can be grown by putting a growth solution in a growth container and maintaining the temperature at a predetermined temperature. Then, the growing polymer crystal is observed with an observation device, and if an unnecessary portion is generated, the growth solution is sucked with a solution injection and suction device as necessary to expose the polymer crystal to the growing solution force. The polymer crystal is processed by the ultraviolet short pulse laser light emitted from the ultraviolet irradiation device to process unnecessary portions, and then the growth solution is injected into the growth container by the solution injection and suction device, and the polymer crystal is injected. You can continue to train. When observing and processing a sample, the stage can be moved in a three-dimensional direction to observe the polymer crystal in the field of view, and ultraviolet short pulse laser light can be applied to any part of the polymer crystal. Can be irradiated. The invention's effect
[0037] 本発明によれば、大型で高品質な高分子結晶の製造方法、当該高分子結晶以外 の物質が結晶内部に挿入された高分子結晶の製造方法、及び高分子結晶の育成 装置を提供することができる。  [0037] According to the present invention, there is provided a method for producing a large, high-quality polymer crystal, a method for producing a polymer crystal in which a substance other than the polymer crystal is inserted into the crystal, and a polymer crystal growing apparatus. Can be provided.
図面の簡単な説明 [0038] [図 1]本発明の実施の形態の 1例である高分子結晶の育成装置の概要を示す図であ る。 Brief Description of Drawings FIG. 1 is a diagram showing an outline of a polymer crystal growth apparatus as an example of an embodiment of the present invention.
[図 2]本発明の実施例に使用した紫外短パルスレーザ加工装置の概要を示す図であ る。  FIG. 2 is a diagram showing an outline of an ultraviolet short pulse laser processing apparatus used in an example of the present invention.
[図 3]紫外線照射前、紫外線照射直後、再育成後のニヮトリ卵白リゾチーム結晶を示 す顕微鏡写真である。  FIG. 3 is a photomicrograph showing chicken egg white lysozyme crystals before ultraviolet irradiation, immediately after ultraviolet irradiation, and after regrowth.
符号の説明  Explanation of symbols
[0039] 1 恒温'恒湿槽、2 ステージ、 3 育成容器、 4 注入吸引装置、 5 育成溶液、 6 高分子結晶、 7 観察装置、 8 ビームスプリッタ、 9 紫外短パルスレーザ発生装置、 10 集光レンズ、 11 カバー、 21 紫外短パルスレーザシステム、 22 集光光学系、 23 ステージ、 24 高分子結晶、 25 試料容器、 26 照明光源、 27 反射鏡、 28 対物レンズ、 29 接眼レンズ、 30 眼  [0039] 1 constant temperature & humidity chamber, 2 stages, 3 growth vessel, 4 injection and suction device, 5 growth solution, 6 polymer crystal, 7 observation device, 8 beam splitter, 9 ultraviolet short pulse laser generator, 10 condensing Lens, 11 Cover, 21 Ultraviolet short pulse laser system, 22 Condensing optics, 23 Stage, 24 Polymer crystal, 25 Sample container, 26 Illumination light source, 27 Reflector, 28 Objective lens, 29 Eyepiece, 30 Eyes
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 以下、本発明の実施の形態である高分子結晶の育成装置の例を、図を用いて説 明する。図 1は、本発明の実施の形態の 1例である高分子結晶の育成装置の概要を 示す図である。 [0040] Hereinafter, an example of a polymer crystal growth apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a polymer crystal growth apparatus as an example of an embodiment of the present invention.
[0041] 恒温 ·'[·亘湿槽 1の中には、 x—y—zステージ 2が設けられ、その上に育成容器 3が載 置できるようになつている。 x—y—zステージ 2を駆動することにより、育成容器 3を X 方向(紙面左右方向)、 y方向(紙面手前、奥行き方向)、 z方向(紙面上下方向)に移 動させることができると共に、 z軸を中心とした回転が可能なようになつている。  [0041] In the constant temperature '[· wet humidity tank 1, an x-y-z stage 2 is provided, on which a growth vessel 3 can be placed. By driving the x—y—z stage 2, the growth vessel 3 can be moved in the X direction (left and right direction on the paper), y direction (front side, depth direction), and z direction (up and down direction on the paper surface). , Rotation around the z axis is possible.
[0042] 又、注入吸引装置 4が設けられ、育成容器 3の中に育成溶液 5を注入したり、育成 容器 3の中から育成溶液 5を吸引したりすることができるようになって 、る。高分子単 結晶 6は、育成容器 3の中で育成される。  [0042] In addition, an injection / suction device 4 is provided so that the growth solution 5 can be injected into the growth container 3 or the growth solution 5 can be sucked from the growth container 3. . The polymer single crystal 6 is grown in the growth vessel 3.
[0043] 観察装置 7により、ビームスプリッタ 8を通して育成中の高分子単結晶 6を観察する 。そして、不要部分の発生が観察されたとき、注入吸引装置 4により、育成容器 3の中 力 育成溶液 5を吸引して育成溶液 5の表面から高分子結晶 6を露出させ、紫外短 パルスレーザ発生装置 9から紫外短パルスレーザ光を照射して、集光レンズ 10により 、高分子結晶 6に集光させ、高分子結晶 6の不要部分を加工する。紫外短パルスレ 一ザ光は、ビームスプリッタ 8により反射されて高分子結晶 6に集光される。 [0043] The growing polymer single crystal 6 is observed through the beam splitter 8 by the observation device 7. Then, when the occurrence of unnecessary parts is observed, the injection and suction device 4 sucks the medium growth solution 5 of the growth vessel 3 to expose the polymer crystal 6 from the surface of the growth solution 5, and generates an ultraviolet short pulse laser. The apparatus 9 irradiates the ultraviolet short pulse laser beam, and the light is condensed on the polymer crystal 6 by the condenser lens 10, and an unnecessary portion of the polymer crystal 6 is processed. Ultraviolet short pulse laser The one light is reflected by the beam splitter 8 and focused on the polymer crystal 6.
[0044] このようにして高分子結晶 6の不要部分が加工された後、注入吸引装置 4から育成 容器 3中に育成溶液 5を注入して、再び高分子結晶 6を育成溶液 5中に浸して育成 を開始する。 [0044] After the unnecessary portion of the polymer crystal 6 is processed in this way, the growth solution 5 is injected from the injection suction device 4 into the growth vessel 3, and the polymer crystal 6 is again immersed in the growth solution 5. Start training.
[0045] 高分子結晶 6の不要部分を除去する際には、観察装置 7で加工部分を観察しなが ら、ステージ 2を駆動して目的とする部分の除去などの加工を行う。なお、紫外線の 照射されている部分は目視することができない場合があるが、例えば、紫外線の集光 される部分に観察装置 7の光軸を合わせ、その位置にマークの虚像ができるようにし て、そのマークの虚像と高分子結晶 6とを重ね合わせて観察することにより、紫外線 が照射される位置を観察することができる。又、 z方向位置については、紫外線が集 光される位置と観察装置 7のピントが合う位置を一致させておくことにおり、紫外線照 射時に、加工部分にピントが合うようにステージ 2を駆動させることにより、目的の位置 に紫外線を集光させることができる。  [0045] When removing unnecessary portions of the polymer crystal 6, while observing the processed portion with the observation device 7, the stage 2 is driven to perform processing such as removal of the target portion. Note that the portion irradiated with ultraviolet rays may not be visible. For example, the optical axis of the observation device 7 is aligned with the portion where the ultraviolet rays are collected so that a virtual image of the mark can be formed at that position. By observing the virtual image of the mark superimposed on the polymer crystal 6, the position irradiated with ultraviolet rays can be observed. In addition, for the z-direction position, the position where the ultraviolet rays are collected and the position where the observation device 7 is in focus are matched, and the stage 2 is driven so that the processed part is in focus during the ultraviolet irradiation. By doing so, the ultraviolet rays can be condensed at the target position.
[0046] 育成容器 3を恒温 '恒湿槽 1の中に入れているのは、高分子結晶の育成条件に与 える温度と湿度の変化の影響を最小限に抑えるためである。例えば温度が変化する と、溶液の過飽和度が変化するために好ましくない。又、育成容器内部はカバー 11 により覆われているので飽和状態にあり、容器外が乾燥していると、加工操作中に力 バー 11を外したときに育成溶液 5の蒸発量が多くなり好ましくない。  The reason why the growth container 3 is placed in the constant temperature & humidity chamber 1 is to minimize the influence of changes in temperature and humidity on the growth conditions of the polymer crystal. For example, a change in temperature is not preferable because the supersaturation degree of the solution changes. Also, since the inside of the growth container is covered with the cover 11, it is saturated, and if the outside of the container is dry, the evaporation amount of the growth solution 5 increases when the force bar 11 is removed during the processing operation. Absent.
[0047] 前述のように、ステージ 2は、高分子結晶 6を観察したり加工したときに駆動するが、 その他にも高分子結晶 6の育成中に一時的又は断続的に動かすことで、育成溶液 5 を攪拌し、不要な核発生を抑制したり、結晶の高品質ィ匕を図ることができる。  [0047] As described above, the stage 2 is driven when the polymer crystal 6 is observed or processed. In addition, the stage 2 is grown by temporarily or intermittently moving during the growth of the polymer crystal 6. Solution 5 can be agitated to suppress unnecessary nucleation and to improve the quality of crystals.
[0048] 紫外線は、窓 12を通して恒温 '恒湿槽 1中に照射されるが、窓 12としては、水晶や 蛍石等、紫外線に対して高い透過率を持つ材料カゝら構成される。なお、図 1におい ては、紫外線は落射 (垂直)照射とされているが、斜め照射であってもよぐ又伝搬経 路として、光ファイバを使用してもよい。  [0048] Ultraviolet light is irradiated into the constant temperature and humidity chamber 1 through the window 12, and the window 12 is made of a material such as quartz or fluorite that has a high transmittance with respect to the ultraviolet light. In FIG. 1, ultraviolet rays are incident (vertical) irradiation, but oblique irradiation may be used, and an optical fiber may be used as a propagation path.
[0049] 注入吸引装置 4は、前述のように、育成溶液 5を育成容器 3中に注入したり育成容 器 3から吸引したりする機能を有するものであるが、この他に、高分子単結晶 6の加工 中に発生したデブリ(レーザアブレーシヨンにより発生した飛散物)を吸引除去したり、 不要になった結晶を取り出して除去するような動作、加工後の高分子単結晶 6を別の 育成容器に移すような動作、溶液の追加や置換等の動作も行うことができる。注入吸 引装置 4は、不図示の位置制御機構を有し、必要に応じて、その先端部が育成容器 3の中、さらには育成溶液 5の中に入り込むような位置とすることができる。 The injection / suction device 4 has a function of injecting the growth solution 5 into the growth container 3 and suctioning it from the growth container 3 as described above. Debris (scattered matter generated by laser abrasion) generated during processing of crystal 6 is removed by suction, Operations such as taking out and removing crystals that are no longer needed, operations such as transferring the processed polymer single crystal 6 to another growth vessel, and operations such as adding or replacing a solution can also be performed. The injection / suction device 4 has a position control mechanism (not shown), and can be positioned so that the tip thereof enters the growth container 3 and further the growth solution 5 as necessary.
[0050] カバー 11は、手動により育成容器 3の上部を塞ぐようなものであってもよいが、自動 開閉機構を有するようなものであってもよい。又、注入吸引装置 4の先端部が育成容 器 3中に挿入される場合でも、密閉性が保たれるように、例えば蛇腹機構により注入 吸弓 I装置 4の先端部と接続されるようにされて 、てもよ 、。  [0050] The cover 11 may be one that manually closes the upper portion of the growth vessel 3, but may also have an automatic opening and closing mechanism. Further, even when the tip of the injection / suction device 4 is inserted into the growth vessel 3, it is connected to the tip of the injection / suction arch I device 4 by means of, for example, a bellows mechanism so as to maintain hermeticity. Have you been?
[0051] なお、図 1においては、観察装置 7の照明装置は省略しているが、後に示す図 2に 示すようなものを使用することができる。  In FIG. 1, the illuminating device of the observation device 7 is omitted, but a device as shown in FIG. 2 shown later can be used.
実施例  Example
[0052] 本発明による結晶育成の基本的な特性を調べるために、図 2に示すような装置を使 用して、紫外短パルスレーザ光をタンパク質の単結晶に照射し、それにより、結晶の 一部をアブレーシヨン除去した。レーザ加工した結晶を再育成し、育成後の結晶につ V、て X線回折パターンの測定を行った。  [0052] In order to investigate the basic characteristics of crystal growth according to the present invention, a protein single crystal was irradiated with an ultraviolet short pulse laser beam using an apparatus as shown in Fig. 2, thereby A portion of the abrasion was removed. The laser-processed crystal was regrown and the X-ray diffraction pattern was measured on the grown crystal.
[0053] この装置においては、紫外短パルスレーザシステム 21からの紫外短パルスレーザ 光を、集光光学系 22を介して所定の点に集光する。ステージ 23は、後に示す光学 顕微鏡の光軸方向を z軸として、 X— y— z直交座標系で X軸、 y軸、 z軸の 3次元方向 の移動が可能とされていると共に、 z軸の周りに回転可能となっている。高分子結晶 2 4の入った試料容器 25がステージ 23上に載置されている。照明光源 26からの可視 光は、反射鏡 27で反射され、試料容器 25をケーラー照明する。高分子結晶 24は、 光学顕微鏡の対物レンズ 28、接眼レンズ 29を介して眼 30により目視される。  In this apparatus, the ultraviolet short pulse laser beam from the ultraviolet short pulse laser system 21 is condensed at a predetermined point via the condensing optical system 22. The stage 23 can move in the three-dimensional directions of the X, y, and z axes in the X-y-z Cartesian coordinate system with the optical axis direction of the optical microscope shown below as the z axis, and the z axis It can be rotated around. A sample container 25 containing polymer crystals 24 is placed on the stage 23. Visible light from the illumination light source 26 is reflected by the reflecting mirror 27, and the sample container 25 is Koehler illuminated. The polymer crystal 24 is visually observed by the eye 30 through the objective lens 28 and the eyepiece lens 29 of the optical microscope.
[0054] 光学顕微鏡の光軸位置には、十字状のマークが形成されており、光軸位置が目視 できるようになつている。そして、光学顕微鏡の焦点位置 (合焦位置、すなわち、目視 したときピントが合う物面)は固定とされている。集光光学系 22により集光された紫外 短パルスレーザ光は、光学顕微鏡の光軸位置で、かつ光学顕微鏡の焦点位置に集 光されるようになっている。よって、ステージ 23上に被力卩ェ物を載置し、光学顕微鏡 でその像を観察した場合、ピントが合っており、かつ十字マークの中心にある位置に 、紫外短パルスレーザシステム 21からの紫外短パルスレーザ光が集光されるようにな つている。なお、紫外短パルスレーザシステム 21、集光光学系 22、及び光学顕微鏡 部の相対位置関係は固定されており、ステージ 23のみがこれらの固定系に対して相 対的に移動可能とされて 、る。 [0054] A cross-shaped mark is formed at the optical axis position of the optical microscope so that the optical axis position is visible. The focus position of the optical microscope (the in-focus position, that is, the object surface that is in focus when viewed) is fixed. The ultraviolet short pulse laser beam condensed by the condensing optical system 22 is collected at the optical axis position of the optical microscope and at the focal position of the optical microscope. Therefore, when the object is placed on the stage 23 and the image is observed with an optical microscope, it is in focus and at the center of the cross mark. The ultraviolet short pulse laser beam from the ultraviolet short pulse laser system 21 is condensed. The relative positional relationship of the ultraviolet short pulse laser system 21, the condensing optical system 22, and the optical microscope section is fixed, and only the stage 23 is movable relative to these fixed systems. The
[0055] よって、加工を行!、た 、場所が光学顕微鏡の光軸位置でかつ合焦位置となるよう にステージ 23を移動させながら加工を行うことにより、所望の場所の加工、及び所望 の形状の加工を行うことができる。  [0055] Therefore, the processing is performed !, and the processing is performed while moving the stage 23 so that the location is the optical axis position of the optical microscope and the in-focus position. Shape processing can be performed.
[0056] モデル高分子としてタンパク質の-ヮトリ卵白リゾチームを選び、蒸気拡散法により 本タンパク質の単結晶を試料容器中で育成した。結晶育成溶液は、 6回再精製した -ヮトリ卵白リゾチーム試料 25mg/ml溶液を作成した後、 pH4.5に調整した 0.1M酢酸 緩衝溶液の中に塩ィ匕ナトリウムが 80mg/ml濃度となるように調整した溶液を 1: 1の比 率で混合した 5 1の溶液を使用した。外液として pH4.5に調整した 0.1M酢酸緩衝溶 液の中に塩ィ匕ナトリウムが 80mg/ml濃度となるように調整した溶液を 400 μ 1追加した。  [0056] As a model macromolecule, protein-amber chicken egg white lysozyme was selected, and a single crystal of this protein was grown in a sample container by vapor diffusion. The crystal growth solution was re-purified 6 times.-After preparing a 25 mg / ml solution of egg white egg lysozyme sample, 0.1 mg acetic acid sodium was adjusted to a concentration of 80 mg / ml in 0.1 M acetic acid buffer solution adjusted to pH 4.5 A solution of 5 1 was used, which was prepared by mixing the prepared solution at a ratio of 1: 1. As an external solution, 400 μl of a solution adjusted to 80 mg / ml sodium chloride was added to 0.1 M acetic acid buffer solution adjusted to pH 4.5.
[0057] この試料容器を 20°Cの一定温度にて 20時間静置したところ、大きさが約 0.1mm X 0.  [0057] When this sample container was allowed to stand at a constant temperature of 20 ° C for 20 hours, the size was about 0.1 mm X 0.
2mm X 0.03mmの-ヮトリ卵白リゾチーム単結晶が育成された。この成長途上の結晶 に対してレーザ加工を行った。結晶が存在している育成溶液の一部を取り除き、結 晶が乾燥による変性を起こさな 、ように結晶近辺に育成溶液の液滴を残した状態で 、石英ガラスで密閉した。紫外短パルスレーザ光照射前の結晶写真を図 3 (a)に示す  A 2mm x 0.03mm-bird hen egg white lysozyme single crystal was grown. Laser processing was performed on this growing crystal. A part of the growth solution in which the crystals were present was removed, and the crystal was sealed with quartz glass in a state where droplets of the growth solution were left in the vicinity of the crystals so that the crystals were not denatured by drying. Fig. 3 (a) shows a crystal photograph before irradiation with ultraviolet short pulse laser light.
[0058] 紫外短パルスレーザシステム 21として、波長 193nmの固体紫外短パルスレーザ光 源を使用した。本光源の構成は以下の通りである。縦横シングルモードのレーザダイ オードを直接変調して波長 1547nm、繰返し周波数 1kHzのパルス光を発生させる。こ のパルス光を合計三段の直列に接続されたエルビウム添加ファイバー増幅器により 約 200万倍に増幅する。次に、ファイバー増幅器力もの出力光を、非線形光学結晶を 用いた 5段階の波長変換過程により第 8高調波に変換し、波長 193nmの光を発生さ せる。 As the ultraviolet short pulse laser system 21, a solid ultraviolet short pulse laser light source having a wavelength of 193 nm was used. The configuration of the light source is as follows. Directly modulate the vertical and horizontal single mode laser diodes to generate pulsed light with a wavelength of 1547 nm and a repetition rate of 1 kHz. This pulse light is amplified approximately 2 million times by a total of three stages of erbium-doped fiber amplifiers connected in series. Next, the output light with fiber amplifier power is converted to the 8th harmonic by a five-step wavelength conversion process using a nonlinear optical crystal, and light with a wavelength of 193 nm is generated.
[0059] 紫外短パルスレーザシステム 21から放出された紫外短パルスレーザ光を、シャツタ を通過させた後、集光光学系 22である焦点距離 100mmの合成石英レンズで集光す ることにより、ステージ 23上に配置された、卵白リゾチーム結晶(高分子結晶) 24が入 つている試料容器 25の上面より、 Z軸方向に照射した。結晶への照射位置は光学顕 微鏡で観察しながら微調整した。結晶上における照射光のパルスエネルギーは 0.25 μ J、スポット径は 25 μ m、フルーエンスは 50mJ/cm2、平均強度 0.25mW、パルス時間 幅は Insであった。 [0059] The ultraviolet short pulse laser light emitted from the ultraviolet short pulse laser system 21 is passed through a shirt and then condensed by a synthetic quartz lens having a focal length of 100 mm, which is a condensing optical system 22. Thus, irradiation was performed in the Z-axis direction from the upper surface of the sample container 25 containing the egg white lysozyme crystal (polymer crystal) 24 placed on the stage 23. The irradiation position on the crystal was finely adjusted while observing with an optical microscope. The pulse energy of the irradiated light on the crystal was 0.25 μJ, the spot diameter was 25 μm, the fluence was 50 mJ / cm 2 , the average intensity was 0.25 mW, and the pulse duration was Ins.
[0060] ステージ 23を移動速度 0.5mm/secで XY面内において直線的に往復動作させるこ とにより、結晶上のスポット位置を変化させた。上記往復動作を継続的に実施するこ と〖こより、同一箇所に複数回、紫外短パルスレーザ光を照射した。顕微鏡で加工の 様子を観察しながら照射を続け、合計約 2万パルスの照射によって前記-ヮトリ卵白 リゾチーム結晶の一部をアブレーシヨン除去した。本照射において切除した結晶の総 体積は約 3 X 10_4mm3であった。図 3 (b)に紫外短パルスレーザ光照射による加工直 後の-ヮトリ卵白リゾチーム結晶の実体顕微鏡写真を示す。未照射部位へクラックな どの機械的損傷を与えることなぐレーザ加工が実施できていることを確認した。 [0060] The spot position on the crystal was changed by reciprocating the stage 23 linearly in the XY plane at a moving speed of 0.5 mm / sec. Since the above-described reciprocating operation was continuously performed, the same location was irradiated with ultraviolet short pulse laser light a plurality of times. Irradiation was continued while observing the state of processing with a microscope, and a portion of the above-mentioned chicken hen egg white lysozyme crystal was removed by irradiation with a total of about 20,000 pulses. The total volume of crystals excised by this irradiation was about 3 X 10 _4 mm 3 . Figure 3 (b) shows a stereomicrograph of the eggplant lysozyme crystal immediately after processing by ultraviolet short pulse laser irradiation. It was confirmed that laser processing could be performed without causing mechanical damage such as cracks to the unirradiated site.
[0061] レーザ加工終了後すぐに取り除いた育成溶液を戻して育成を再開した。試料容器 を 20°Cの一定温度にて静置したところ、レーザ加工された結晶が種結晶となり、再び 結晶が成長することが確かめられた。レーザ加工後 24時間経過したときの結晶の写 真を図 3 (c)に示す。レーザ加工した-ヮトリ卵白リゾチーム結晶の大きさは約 0.3mm X 0.4mm X 0.1mmとなっていた。レーザ加工していない面、およびレーザ加工した面 の 、ずれにお 、ても結晶が成長して 、ることが分力つた。さらに 20°Cに静置して育成 の経過を観察したところ、最終的に約 0.35mm X 0.45mm X 0.12mmの大きさとなったと ころで結晶成長は終了した。  [0061] The growth solution removed immediately after the completion of laser processing was returned to resume the growth. When the sample container was allowed to stand at a constant temperature of 20 ° C, it was confirmed that the laser-processed crystal became a seed crystal and the crystal grew again. Figure 3 (c) shows a crystal photograph after 24 hours of laser processing. The size of the laser-processed eggplant lysozyme crystal was about 0.3 mm x 0.4 mm x 0.1 mm. Even if there was a deviation between the surface that was not laser-processed and the surface that was laser-processed, it was possible to grow crystals. Furthermore, when the growth was observed after standing at 20 ° C, the crystal growth was completed when it finally reached a size of about 0.35 mm × 0.45 mm × 0.12 mm.
[0062] レーザ加工後に再育成した卵白リゾチーム結晶と、同一条件で育成したレーザ未 照射の卵白リゾチーム結晶について、室温にて X線回折パターンの測定を行った。 X 線発生器として理学電機社製 ultraX18 (電圧 50kV,電流 100mA)、検出器として RAXI S IV++を用いた。結晶と検出器の距離は 150mm、検出角度 2° 、測定時間 30分 /2° とした。  [0062] X-ray diffraction patterns were measured at room temperature for egg white lysozyme crystals regrown after laser processing and egg white lysozyme crystals grown under the same conditions. Rigaku Denki ultraX18 (voltage 50kV, current 100mA) was used as the X-ray generator, and RAXI S IV ++ was used as the detector. The distance between the crystal and the detector was 150 mm, the detection angle was 2 °, and the measurement time was 30 minutes / 2 °.
[0063] 各結晶について 45フレームのデータを収集した。レーザカ卩ェした結晶の回折分解 能は 0.19nmであり、未力卩ェの結晶の回折分解能と同じであった。また、全てにフレー ムについて、一つの単結晶からの回折パターンしか測定されなかった。これらより、レ 一ザ加工後に再育成卵白リゾチーム結晶は単結晶であることが分力つた。さらに、レ 一ザ照射を施した結晶のモザイシティは 0.300であり、レーザカ卩ェによって顕著な結 晶品質の低下が弓 Iき起こされて 、な 、ことが確かめられた。 [0063] 45 frames of data were collected for each crystal. The diffraction resolution of the laser-carrying crystal was 0.19 nm, which was the same as the diffraction resolution of the powerless crystal. Also, all Only the diffraction pattern from one single crystal was measured. From these results, it was found that the regrown egg white lysozyme crystals after processing the laser were single crystals. Furthermore, the crystal irradiance of the laser irradiated laser was 0.300, and it was confirmed that no significant crystal quality degradation was caused by the laser beam.
[0064] なお、この実施例においてアブレーシヨン除去した部分は正常な結晶部である力 この実施例から、損傷などの不良部がある場合には、正常部を含めた加工により不 良部を除去して再育成することで、不良部の少ない大型の結晶を育成可能であるこ とが分かる。 [0064] In this example, the portion where the abrasion is removed is a normal crystal part. From this example, when there is a defective part such as a damage, the defective part is removed by processing including the normal part. It can be seen that large crystals with few defective parts can be grown by regrowth.
産業上の利用可能性  Industrial applicability
[0065] 本発明は、高分子結晶の製造に好ましく適用でき、例えば、タンパク質結晶等の生 体高分子結晶、その他の有機高分子結晶の製造でき、その用途は広ぐ制限されな い。 [0065] The present invention can be preferably applied to the production of polymer crystals. For example, biopolymer crystals such as protein crystals and other organic polymer crystals can be produced, and the use thereof is not limited.

Claims

請求の範囲 The scope of the claims
[1] 高分子結晶を製造する過程において、前記高分子結晶の育成中に、あるいは一旦 前記高分子結晶の育成を中止し、当該高分子結晶のうち不要部分を紫外短パルス レーザ光の照射により加工し、その後育成する過程を含むことを特徴とする高分子結 晶の製造方法。  [1] In the process of producing the polymer crystal, during the growth of the polymer crystal, or once the growth of the polymer crystal is stopped, unnecessary portions of the polymer crystal are irradiated with ultraviolet short pulse laser light. A method for producing a polymer crystal, comprising a process of processing and subsequent growth.
[2] 前記不要部分の加工が紫外短パルスレーザ光によるレーザアブレーシヨンを用いた 不要部分の除去であることを特徴とする請求項 1に記載の高分子結晶の製造方法。  [2] The method for producing a polymer crystal according to [1], wherein the processing of the unnecessary portion is removal of the unnecessary portion using laser ablation with an ultraviolet short pulse laser beam.
[3] 前記不要部分を除去した後に、除去した部分の少なくとも一部に前記高分子結晶以 外の物質を挿入することを特徴とする請求項 2に記載の高分子結晶の製造方法。 [3] The method for producing a polymer crystal according to [2], wherein after removing the unnecessary portion, a substance other than the polymer crystal is inserted into at least a part of the removed portion.
[4] 前記不要部分の加工が、前記高分子結晶表面に紫外短パルスレーザ光が効率的 に到達するための操作を行 、、その上で前記高分子結晶表面に紫外短パルスレー ザ光の照射を行うことによって実施されることを特徴とする請求項 1から請求項 3のう ちいずれか 1項に記載の高分子結晶の製造方法。 [4] The processing of the unnecessary portion performs an operation for efficiently reaching the surface of the polymer crystal with ultraviolet short pulse laser light, and then irradiating the surface of the polymer crystal with ultraviolet short pulse laser light. The method for producing a polymer crystal according to any one of claims 1 to 3, wherein the polymer crystal is carried out by performing the step.
[5] 前記高分子結晶が、榭脂、タンパク質、糖類、脂質および核酸のうち、少なくとも一つ の結晶であることを特徴とする請求項 1から請求項 4のうちいずれか 1項に記載の高 分子結晶の製造方法。 [5] The polymer crystal according to any one of claims 1 to 4, wherein the polymer crystal is at least one crystal selected from coconut resin, protein, saccharide, lipid, and nucleic acid. A method for producing a high molecular crystal.
[6] 前記紫外短パルスレーザ光の波長が 400應以下であることを特徴とする請求項 1から 請求項 5のうちいずれか 1項に記載の高分子結晶の製造方法。  [6] The method for producing a polymer crystal according to any one of [1] to [5], wherein the wavelength of the ultraviolet short pulse laser beam is 400 or less.
[7] 前記紫外短パルスレーザ光の 1パルス当たりのエネルギー密度が lmj/cm2以上であ ることを特徴とする請求項 1から請求項 6のうちいずれか 1項に記載の高分子結晶の 製造方法。 [7] The polymer crystal according to any one of claims 1 to 6, wherein an energy density per pulse of the ultraviolet short pulse laser beam is lmj / cm 2 or more. Production method.
[8] 育成溶液を入れて高分子結晶を育成する育成容器と、前記育成容器を載置して 3次 元方向に移動可能なステージと、前記育成溶液を前記育成容器中に注入したり前 記育成容器中から吸引したりする溶液注入吸引装置と、前記育成容器中の高分子 結晶の加工を行うための紫外短パルスレーザ光の照射を行う紫外線照射装置と、前 記育成容器中の高分子結晶を観察する観察装置と、前記育成容器の温度'湿度を 一定に保つ恒温恒湿装置とを有することを特徴とする高分子結晶育成装置。  [8] A growth vessel in which a growth solution is put to grow a polymer crystal, a stage on which the growth vessel is placed and movable in a three-dimensional direction, and the growth solution is injected into the growth vessel before or after A solution injection and suction device for sucking from the growth vessel, an ultraviolet irradiation device for irradiating an ultraviolet short pulse laser beam for processing the polymer crystal in the growth vessel, and a high in the growth vessel. A polymer crystal growth apparatus comprising: an observation apparatus for observing a molecular crystal; and a constant temperature and humidity apparatus for maintaining a constant temperature and humidity of the growth vessel.
PCT/JP2005/016405 2004-09-08 2005-09-07 Process for producing polymer crystal and polymer crystal growing apparatus WO2006028123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-261541 2004-09-08
JP2004261541A JP2006076820A (en) 2004-09-08 2004-09-08 Method for producing polymer crystal and apparatus for growing polymer crystal

Publications (1)

Publication Number Publication Date
WO2006028123A1 true WO2006028123A1 (en) 2006-03-16

Family

ID=36036404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016405 WO2006028123A1 (en) 2004-09-08 2005-09-07 Process for producing polymer crystal and polymer crystal growing apparatus

Country Status (2)

Country Link
JP (1) JP2006076820A (en)
WO (1) WO2006028123A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878228B2 (en) * 2006-06-28 2012-02-15 大日本スクリーン製造株式会社 Tape peeling apparatus, coating system, and tape peeling method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306497A (en) * 2002-02-12 2003-10-28 Tetsuo Okutsu Method of producing giant molecule crystal and apparatus used in the same
WO2005026238A1 (en) * 2003-09-11 2005-03-24 Nikon Corporation Processing method of polymer crystal, processing system of polymer crystal, and observation system of polymer crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306497A (en) * 2002-02-12 2003-10-28 Tetsuo Okutsu Method of producing giant molecule crystal and apparatus used in the same
WO2005026238A1 (en) * 2003-09-11 2005-03-24 Nikon Corporation Processing method of polymer crystal, processing system of polymer crystal, and observation system of polymer crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITANO H ET AL: "New Approach to Improve X-Ray Diffraction Pattern of Protein Crystal Using UV-Laser Ablative Processing.", JPN J APPL PHYS., vol. 43, no. 2B, 2004, pages L297 - L299, XP002993736 *

Also Published As

Publication number Publication date
JP2006076820A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4784930B2 (en) Polymer crystal processing method, polymer crystal processing apparatus, and polymer crystal observation apparatus
Berns et al. Laser scissors and tweezers
EP2230040B1 (en) Laser material processing system
JP4509573B2 (en) Semiconductor substrate, semiconductor chip, and semiconductor device manufacturing method
US7351241B2 (en) Method and apparatus for precision working of material
JP4739188B2 (en) Organic crystal processing method, organic crystal processing apparatus, and organic crystal observation apparatus
WO2007105537A1 (en) Laser processing method and laser processing system
JP4029987B2 (en) Crystal nucleus production method and crystallization condition screening method
JP2002192371A (en) Laser beam machining method and laser beam machining device
JP2006245498A (en) Process and apparatus for producing substrate
CN110695515B (en) Method and system for processing nanocone array on silk film by femtosecond laser
JP3990710B2 (en) Laser processing method
WO2006028123A1 (en) Process for producing polymer crystal and polymer crystal growing apparatus
JP3990711B2 (en) Laser processing equipment
JP3761566B2 (en) Manufacturing method of semiconductor chip
Kashii et al. Femtosecond laser processing of protein crystals in crystallization drop
JP2003088975A (en) Laser beam machining method
Kitano et al. New approach to improve X-ray diffraction pattern of protein crystal using UV-laser ablative processing
JP2005335020A (en) Micro object machining device
Kitano et al. Novel approach to process protein crystals using deep-UV laser
Zhang et al. Fenestration operation in middle ear bone with pulsed infrared lasers: an in-vivo study
Kashii et al. Femtosecond laser processing of lysozyme crystals
JPH0315380A (en) Container for irradiating laser or the like

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase