WO2006027869A1 - Movement learning assisting device and method, movement learning assisting program, and recording medium on which the program is recorded - Google Patents

Movement learning assisting device and method, movement learning assisting program, and recording medium on which the program is recorded Download PDF

Info

Publication number
WO2006027869A1
WO2006027869A1 PCT/JP2005/007444 JP2005007444W WO2006027869A1 WO 2006027869 A1 WO2006027869 A1 WO 2006027869A1 JP 2005007444 W JP2005007444 W JP 2005007444W WO 2006027869 A1 WO2006027869 A1 WO 2006027869A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
nerve
time
processing unit
data file
Prior art date
Application number
PCT/JP2005/007444
Other languages
French (fr)
Japanese (ja)
Inventor
Mihoko Otake
Yoshihiko Nakamura
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2006027869A1 publication Critical patent/WO2006027869A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/407Evaluating the spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4561Evaluating static posture, e.g. undesirable back curvature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4041Evaluating nerves condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints

Definitions

  • Motor learning support apparatus and method motor learning support program, and recording medium recording the program
  • the present invention relates to a motor learning support device and method, a motor learning support program, and a recording medium on which the program is recorded.
  • the subjective evaluation of movement based on somatosensory sensation may coincide with the objective evaluation based on observations from outside, and the slashing action (swinging the sword while stepping on the foot and swinging it down diagonally) This has become clear through experiments.
  • the somatosensory information processing mechanism can be implemented on a computer from the viewpoint of how each movement looks when observed from inside the body, it is based on the internal sense of the person. It is possible to make a motor learning support device that works on people.
  • the goal of the present invention is to clarify a method for quantitatively handling human sensation and movement problems that have been qualitatively discussed by observing movements so far. Through this, we aim to approach motor control processes from the outside and support motor learning. There has been proposed a method for executing forward / reverse dynamics calculation at high speed for a detailed model of a body having bone geometry data and muscle / tendon 'ligament data (Non-patent Document 1). Many studies have been conducted to measure body movements and calculate the length of muscle 'tendon' ligaments and the tensions generated in these motor organs. Delp et al. SIMM and Rasmussen et al. AnyBody have been commercialized as systems for analyzing and simulating the motion of human musculoskeletal models.
  • Nakamura et al. Have proposed a method for performing forward and reverse dynamics calculations at high speed for detailed models of the body with bone geometry data and muscle 'tendon' ligament data (Patent Documents 1 and 2). . This method enables us to observe the human force and calculate the changes in the length of the muscle 'tendon' ligament and the tension generated in these moving organs.
  • Hase et al. A biped model with a three-dimensional musculoskeletal system and a hierarchical nervous system (non-patent document) Sugawara et al. Proposed an actual walking measurement data force walking neural network (Non-patent Document 3).
  • Non-patent Document 4 In general, to support motor learning, it is important to evaluate motor based on motor analysis. This is because exercise adjustment is performed based on the evaluation. Conventionally, when comparing movements based on movement measurements, some parts of the whole body that aggregate the results of coordinated movements, such as the positions of the hands and toes, or joint angles such as elbows and knees, are considered. Has been done. Alternatively, it has been common to compare muscle-by-muscle activities, such as myoelectric potential and muscle length. For example, by comparing the difference in the skill of tennis experts and beginners in the dexterity of the peak time of muscle activity, a simple analysis has been performed (Non-patent Document 4).
  • Patent Document 1 JP 2003-339673 A
  • Patent Document 2 JP 2004-013474
  • Patent Document 3 Japanese Patent Laid-Open No. 07-028592
  • Non-patent literature 1 Y. Nakamura et. Al. Dynamic computation of musculo-skeletal human model based on efficient algorithm for closed kinematic chains. In Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines, 2003. : Kazunori Hase, Junya Nishiguchi, Nobutoshi Yamazaki Biped model with three-dimensional musculoskeletal system and hierarchical nervous system Biomechanism 15—Exploration of shape and movement, Biomechanism Society, Tokyo University Press , (2000).
  • Non-Patent Document 3 Stephenchi Sugawara, Nobutoshi Yamazaki Estimation of walking neural network from real gait measurement data 2000)
  • Non-Special Reference 4 Sakurai S. et. Al. Muscle activity and performance accuracy of the smash stroke in badminton with reference to skill and practice. J. Sports Science vol. 18, pp.1— 14 (2000)
  • Nakamura et al.'S model does not include the nervous system.
  • Kawato et al. Connect a non-linear dynamics model including a neural circuit to a virtual body to realize a human interface device, but the neural circuit does not consider the structure of the peripheral nervous system.
  • Hase et al.'S technologies are all proposing a neuromusculoskeletal model.
  • the ⁇ motor neurons that directly control the force muscles and the muscles are directly connected to each other, and are identical from multiple spinal cords. Redundant structures that connect to other muscles are not considered.
  • branching structures that connect to multiple muscles with a single nerve bundle force are not considered. Therefore, the model includes the concept of muscle groups controlled by the same nerve, or muscle groups controlled by the same spinal nerve!
  • peripheral nervous system In general, motor organs and other organs including muscle 'tendon' ligaments and the central nervous system (brain) are connected via the peripheral nervous system.
  • This peripheral nervous system has a redundant branch structure. It is mechanically or functionally close!
  • the nerves that connect with the heel organs are bundled together to form the common nerve.
  • nerves that connect with mechanically or functionally related organs connect from the same spinal cord. Since the conventional technology has made great efforts taking such anatomical structures into consideration, there have been the following problems.
  • Body movement information includes internal information of the nervous system.
  • body movement information is detected by motor sensory organs such as muscle spindles and Golgi tendon organs, and is input to the nervous system. It is thought that the mechanism of human movement recognition and generation can be clarified by tracing the neural information related to body movement in order from the terminal tree to the center.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique that is useful for motor learning support after detecting neural information from motor information such as muscles and tendons of the whole body.
  • the present invention focuses on the spinal nerve that connects sensation and movement, and models its muscle control structure. Based on this, the neural information flowing through the spinal cord during exercise is mapped to an image obtained by slicing the spinal cord or the neural information flowing through the terminal nerve to a spatiotemporal pattern.
  • Neural information inherent in the spinal cord is obtained from human movement data by mapping muscle movement information to spinal nerve information using the anatomical structure of the nervous system.
  • the present invention further proposes a method for detecting how subtle differences in movement appear in the neural information using the neural information mapped by the movement information force, and the human movement.
  • the objective is to evaluate and compare global and local features.
  • the human body moves the whole body Aiming to get closer to the process of observation.
  • Japanese Patent Application No. 2004-176455 filed on June 15, 2004
  • Japanese Patent Application No. 2004-176455 filed on June 15, 2004
  • the living body processes a lot of muscle strength information distributed throughout the body! /, It is grouped to some extent by the peripheral nerves and then bundled for each spinal cord.
  • the muscle information is converted into a two-dimensional map that holds the body phase information and processed.
  • the present invention can check the degree of cooperation of the distant parts of the whole body by comparing the grouped information. Moreover, this invention can investigate the cooperation degree of proximal muscles by comparing the information in a group.
  • the present invention proposes a method for hierarchically processing global information and local information expressing whole body motion using the structure of the human nervous system. In particular,
  • the purpose is to compare and evaluate motors at the neurological level and to support motor learning.
  • Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve
  • the first corresponding time data file to be memorized
  • Reading and Z or writing to the neural data file and the first corresponding time data file obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file
  • a processing unit for storing
  • the processing unit sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
  • the processing unit reads, from the neural data file, as reference data and target data, the same portion of neural data in different trials according to the data attribute selected in the initial setting.
  • the processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
  • the processing unit creates a template by cutting out data with a length corresponding to the reference data force specified time width, scans the template from the initial time to the final time, which is the calculation target of the target data, and scans the template and the target data.
  • the processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file.
  • the processing unit creates a template by advancing a predetermined time until the final time in the reference data, and repeats the means for calculating and the means for storing;
  • the processing unit reads data from the first corresponding time data file, and displays a correspondence relationship between the reference data time and the target data time on the display unit,
  • a motor learning support device is provided. According to the second solution of the present invention,
  • the nerve ID For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
  • Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
  • the processing unit sets, from the input unit or other device, a data attribute including first and second nerve IDs and a data ID for determining a trial, and
  • the processing unit reads the same trial nerve data in different nerves as reference data and target data from the nerve data file according to the data attribute selected in the initial setting,
  • the processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
  • the processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data.
  • the processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve.
  • the processing unit creates a template for each muscle number in the reference data, and repeats the means for calculating and the means for storing;
  • the processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of movement cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
  • a motor learning support device is provided.
  • Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve
  • Reading and Z or writing to the neural data file and the first corresponding time data file obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file
  • a processing unit for storing
  • the processing unit sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
  • the processing unit reads the neural data of the same part in different trials from the neural data file as reference data and target data according to the data attribute selected in the initial setting,
  • the processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
  • the processing unit cuts out the data for the length of the reference data force specified time width and creates a template A step of scanning using a template from the initial time to the final time for calculation of the target data, and repeatedly calculating a correlation value for each time between the template and the target data;
  • the processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file.
  • the processing unit advances a predetermined time by a predetermined time until the final time in the reference data, creates a template, repeats the calculating step and the storing step, and the processing unit starts from the first corresponding time data file. Reading the data and displaying the correspondence between the reference data time and the target data time on the display unit;
  • a motor learning support method for causing a computer to execute each step, and a computer-readable recording medium storing the program are provided.
  • the nerve ID For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
  • Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
  • the processing unit sets, as an initial setting, a data attribute including the first and second nerve IDs and a data ID for determining a trial from the input unit or another device;
  • the processing unit reads the same trial nerve data in different nerves from the nerve data file as reference data and target data according to the data attribute selected in the initial setting,
  • the processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
  • the processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. A step of repeatedly calculating a correlation value for each muscle number between the template and the target data,
  • the processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. Storing correlation values on a matrix of
  • the processing unit creates a template for each muscle number in the reference data, repeats the calculating step and the storing step,
  • the processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of motor cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
  • a motor learning support method for causing a computer to execute each step, and a computer-readable recording medium storing the program are provided.
  • the present invention it is possible to provide a technique that is useful for support of movement learning after detecting nerve information from movement information of muscles and tendons of the whole body. Further, according to the present invention, a method for detecting how a subtle difference in motion appears as a difference in neural information using neural information mapped from this movement information is provided. Global and local movement Evaluation and comparison can be realized.
  • the present invention it is possible to examine the degree of cooperation of distant parts of the whole body by comparing the grouped information, and by comparing the information in the group, the proximal muscle The degree of cooperation between each other can be examined. According to the present invention, it is possible to provide a method for hierarchically processing global information expressing local movements and local information using the structure of the human nervous system. In addition, according to the present invention, comparison and evaluation at the nerve level of motor can be realized, which can be used for support of motor learning.
  • FIG. 1 is a diagram of the human central nervous system composed of the brain and spinal cord.
  • FIG. 2 Explanatory drawing of spinal cord cross section and reflection path.
  • FIG. 3 Explanatory diagram of spinal gray matter cross section and anterior horn somatic localization.
  • FIG. 5 An illustration of the slashing action of swinging a sword diagonally.
  • FIG. 6 Diagram of nerve information image every 10 frames in C5 spinal nerve during slashing action (1
  • FIG.7 Diagram of nerve information image every 10 frames in C5 spinal nerve during slashing action (2
  • FIG.8 Diagram of nerve information image every 10 frames in C5 spinal nerve during slashing action (3)
  • FIG. 9 is an explanatory diagram of the classification of muscles governed by the fifth cervical nerve (C5).
  • FIG. 10 is a schematic configuration diagram showing a connection relationship of the apparatus.
  • FIG. 11 is a hardware configuration diagram of the motor learning support device 40.
  • FIG. 12 is an explanatory diagram of a nerve data file 12 (spinal cord image) (input data).
  • FIG. 13 is an explanatory diagram of another neural data file 13 (spatiotemporal image 1) (input data).
  • FIG. 14 is an explanatory diagram of another neural data file 14 (spatiotemporal image 2) (input data).
  • FIG. 15 is an explanatory diagram of an interface when displaying a spinal cord cross-sectional image.
  • FIG. 17 Time data corresponding to different trials of different nerves.
  • FIG. 18 is a main flowchart.
  • FIG. 19 Spatiotemporal patterns of neural information in (a) myocutaneous nerve and (b) obturator nerve during slashing movement.
  • FIG. 23 is an explanatory diagram of calculation of the time variation.
  • FIG. 26 An explanatory diagram of the calculation of the degree of cooperation.
  • Patterns representing the degree of intra-nerve coordination and the degree of inter-nerve coordination (a) C5 neuronal coordination, (b) Total inter-nervous coordination. The greater the brightness, the higher the degree of cooperation.
  • FIG. 30 is an explanatory diagram of dimensions.
  • FIG. 31 is an explanatory diagram of symmetry.
  • FIG. 32 An explanatory diagram of the degree of cooperation.
  • FIG. 33 is a hardware configuration diagram of the exercise information nerve information conversion device 30.
  • FIG. 34 is an explanatory diagram of a neurogeometric data file 1 (input data or intermediate data).
  • FIG. 36 (A) An explanatory diagram of a neuromuscular data file 4 (intermediate data), and (B) an explanatory diagram of a nerve branch data file 5 (input data).
  • FIG. 38 (A) Explanatory diagram of muscle movement data file 9 (input data), (B) Explanatory diagram of spinal nerve sectional coordinate data file 11 (output data).
  • FIG. 39 is a main flowchart.
  • FIG. 40 is an explanatory diagram showing a state of data at the time of space arrangement.
  • FIG. 41 is an explanatory diagram of rearrangement 1 for creating a spatiotemporal pattern.
  • FIG. 43 is an explanatory diagram of trial evaluation data 28.
  • FIG. 44 is an explanatory diagram of position-posture-force data 27.
  • FIG. 45 is an explanatory diagram of inter-nerve coordination data 21.
  • the nervous system is functionally classified into a somatic nervous system and an autonomic nervous system.
  • the somatic nervous system organizes conscious perception, voluntary movement and information.
  • the main role of the autonomic nervous system is to constantly maintain the internal environment of the living body according to changes in the external world and regulate the functions of the organs.
  • attention is focused on the somatic nervous system that controls the movement of the body.
  • Figure 1 shows a diagram of the human central nervous system composed of the brain and spinal cord.
  • the nervous system is anatomically composed of a central nervous system and a peripheral nervous system.
  • the central nervous system reminds me of the brain.
  • the brain and spinal cord are collectively called the central nervous system.
  • the peripheral nervous system consists of cranial nerves that connect directly to the organs from the brain and spinal cords that connect to the organs. Consists of the spinal nerves that join. Since the organs that govern each nerve are different, organs can be classified according to the nerve that governs them.
  • the spinal nerves After exiting the vertebrae, the spinal nerves form a bundle called the plexus, branch again, and spread throughout the body. Here, the fibers contained in different spinal nerves are exchanged, and the nerves ahead are composed of nerves derived from multiple spinal cords.
  • Fifth force The eighth cervical nerve (C5 C8) and the first thoracic nerve (T1) join together to form the brachial plexus and control the upper trunk, upper limbs, upper arm, forearm, and hand muscles.
  • Peripheral nerves that branch off from the brachial plexus include myofascial nerves, median nerves, ulnar nerves, axillary nerves, and radial nerves.
  • parts of the first to third lumbar nerves (LI-L3) and the fourth lumbar nerve (L4) make up the lumbar plexus and control the muscles in the pelvis and thighs.
  • the closing nerve and the femoral nerve come out.
  • muscles in a relatively close region are bundled along the spinal cord cross-sectional direction. This includes both extensor and flexor muscles.
  • the peripheral nerves are bundled with muscles having relatively close functions such as extensors and flexors.
  • the muscle cutaneous nerve controls the flexor of the upper arm
  • the closing nerve controls the motion of the adductor of the thigh.
  • the fifth cervical nerve (C5) and the second lumbar nerve (L2) are taken as spinal nerves, and the percutaneous nerve and the obturator nerve are taken as peripheral nerves branched from these nerves. Neural information that passes through is processed.
  • the spinal nerves and peripheral nerves include both efferent fibers that travel from the spinal cord to the motor organs and afferent fibers that move from the motor sensory organs to the spinal cord.
  • motor sensory organs such as muscle spindles and Golgi tendon organs
  • somatosensory information such as muscle length, muscle extension speed, and muscle tension is detected and sent to the spinal cord.
  • Figure 2 shows an illustration of the spinal cord cross-section and reflection path.
  • a cross-sectional view of the spinal cord reveals butterfly-shaped gray matter and surrounding white matter (Fig. 2, Top).
  • the white matter is a nerve pathway that connects the brain and spinal cord.
  • the gray matter is the junction between the peripheral nerve and the central nerve.
  • Gray matter is divided into a rear corner and an anterior corner.
  • the dorsal horn includes centripetal or sensory-euron and the anterior horn includes efferent or motor-euron.
  • Sensory excitement is transmitted to the dorsal horn cells through the afferent nerve, and excitement is transmitted from these cells to the brain. This excitement is also transmitted to the frontal motility-Euron, which causes muscle movement.
  • the latter-induced muscle response is called reflex as is well known. For example, when a muscle is temporarily extended, momentary contraction occurs.
  • Figure 3 shows a cross-sectional view of spinal cord gray matter and an illustration of somatic localization of the anterior horn.
  • the anterior horn of the gray matter that sends commands to the motor organs, there is a constitution corresponding to the part of the body, that is, somatic localization. From the inside to the outside of the anterior horn 1) Trunk, 2) Trunk to extremity, 3) Limb girdle to extremity, 4) Upper arm and thigh, 5) Forearm and lower leg, 6) Neurons that control the muscles of the hands and feet It is said that the proximally controlled neurons are lined up inside and the distally controlled neurons lined up outside. Furthermore, flexor group control-Euron is arranged on the dorsal side of the anterior horn, and extensor control-Euron is arranged on the ventral side.
  • muscle spindle that senses muscle elongation.
  • the muscle spindles are aligned with the muscle fibers (external muscle fibers).
  • Golgi tendon organ that senses the force generated by the muscle.
  • Other kinesthetic organs include joint receptors that respond to joint forces and nociceptors that respond to muscle and joint pain.
  • Muscle spindle Muscle spindles are made up of muscle fibers in the spindle wrapped in a membrane, and there are two types: nucleus pouch fibers with a bulged center and nucleus chain fibers with a constant thickness.
  • the afferent nerves that control the muscle spindle include group la and group II.
  • the former is spirally wrapped around both nuclear bladder fibers and nuclear chain fibers (primary endings), and the latter is attached to the surface of the nuclear chain fibers (secondary endings) and ends.
  • the primary terminal is strongly excited when the length of the muscle changes greatly (dynamic response), and continues to fire at a constant length when the muscle is kept at a constant length (static response). There is almost no dynamic response at the secondary end.
  • muscle spindles have efferent innervation.
  • the efferent nerve that contracts muscle is called ⁇ motor neuron, and the efferent nerve that contracts muscle spindle is called ⁇ motor-euron.
  • the efferent nerve that contracts both muscles and muscle spindles is the ⁇ motor-euron.
  • ⁇ motor neurons regulate the sensitivity of muscle spindles. Sensitivity improves when the intramuscular muscle fiber contracts due to input from the ⁇ motor-euron.
  • the afferent nerve that governs the Golgi tendon organ is called the group lb. Both ends of the muscle become tendons and are attached to the bone, and the Golgi tendon organ exists in the joint between the muscle and the tendon and in the tendon. Among them, the Golgi tendon organ in the tendon detects the force that acts on the entire muscle.
  • the muscle that controls whole body movement is structured by the spinal cord that controls it.
  • Signals are sent to the anterior horn cell muscle of the spinal cord.
  • Feedback signals from muscle spindles and Golgi tendon organs are sent through the dorsal horn of the spinal cord, partly to the brain and partly to anterior horn cells.
  • Body part localization is seen in anterior horn cells. Muscle length, muscle elongation rate, and muscle tension information are bundled for each spinal cord that integrates efferent and afferent signals and affects the activity of the governing muscle. By placing the muscle movement information during exercise along the anterior horn cell array, it can be converted into neural information inherent in the spinal cord.
  • the data structure is defined using the spinal cord of the fifth cervical nerve (C5), which is known to be particularly developed in the spinal cord.
  • FIG. 9 is an explanatory diagram of the classification of muscles governed by the fifth cervical nerve (C5).
  • the muscles controlled by C5 are arranged in order according to the arrangement rules for anterior horn cells.
  • the first column is the nerve number; the second column is the muscle position; the third column is the extensor flexor muscle; the fourth column is the name of the muscle (muscle name).
  • the flexor In the XY plane, the flexor is placed in the first and second quadrants, and the extensor is placed in the third and fourth quadrants with the origin at the center.
  • the right and left quadrants are placed in the first and fourth quadrants, and the left and right half are placed in the second and third quadrants.
  • the absolute value of the X coordinate is small, the force is large, the force is directed toward the trunk, and the force is also arranged in order.
  • one muscle is composed of multiple muscles, arrange them in order of the force closer to the trunk from the smallest y-coordinate absolute value to the largest.
  • FIG. 4 shows a spatial layout diagram for C5 in which a grid having a side length of 1 is arranged according to the above rules.
  • the length of muscle obtained by motion measurement and calculation along the placed mesh and Arrange speed information.
  • the spinal cord was simply a relay for signal transmission to the brain force motor organs, and that all of the control of the movement was transferred to the motor center of the brain. It is now known that the spinal cord is a complex integrated device for coordinating motor functions that are not just relays. The brain force command or sensory signal coming to the anterior horn on the output side is not transmitted directly to the motor-iron, but reaches the intervening-euron. This intervening-Euron has a direct effect on exercise-Euron, or acts in an inhibitory or expeditious manner by intervening in reflexes between muscle receptors and exercise-Euron. The spinal cord and brain work together to regulate the movement of the senses.
  • Figure 5 shows an illustration of the slashing action of swinging the sword diagonally.
  • Samurai slashing is an operation of swinging a sword down diagonally from the neck of the heel along the chest, assuming that a person with a heel in front is standing.
  • Swordsman power Upper left force When cutting to the lower right, the following procedure is followed.
  • Non-patent Document 1 The human musculoskeletal model (Non-patent Document 1) is composed of 366 muscles, 91 tendons, 34 ligaments, 56 cartilage, and 53 bone groups.
  • Fig. 6 shows a diagram (1) of the nerve information image every 10 frames in the C5 spinal nerve during the slashing action (frame rate is 30 [frameZsec] and the length of the governing muscle is coded). .
  • This figure shows changes in the spinal nerve information pattern that represents the length of the muscles to which the dominant muscle strength is fed back to the spinal cord of the C5 part during the slashing action.
  • C5 mainly controls the upper body muscles, especially the chest, shoulders and upper arms. Both are parts that dynamically expand and contract during the slashing operation.
  • the front saw blade (10: Mus.SerratusAnterior in Fig. 9) placed on the left trunk is stretched.
  • the brightness became high (60 [frame]).
  • Figs. 7 and 8 show diagrams (2) and (3), respectively, of the nerve information image every 10 frames in the C5 spinal nerve during the slashing operation (frame rate is 30 [frame / sec], 7 Is encoded for the rate of elongation of the governing muscle, and in Figure 8 the tension for the governing muscle is encoded).
  • FIG. 10 is a schematic configuration diagram showing the connection relationship of this apparatus.
  • the apparatus includes a motion capture device 10, a motion information calculation device 20, a motion information nerve information conversion device 30, a motion learning support device 40, a presentation device 50, and a storage device 60.
  • the storage device 60 stores a three-dimensional position, motion information, nerve information, motion feature information, nerve feature information, and the like.
  • the motion capture device 10 measures the three-dimensional position of the human body and stores the three-dimensional position in the storage device 60 (commercially available: VICON, etc.).
  • the motion information calculation device 20 calculates the length and generated force (motion information) of a motion organ such as a muscle 'tendon' ligament from the measurement result of the motion capture device 10, and stores the motion information in the storage device 60 (commercially available: SIMM etc.).
  • the movement information neural information conversion device 30 converts the movement information obtained by the movement information calculation device 20 into nerve information based on the structural function model of the human nervous system, and stores the nerve information in the storage device 60. .
  • the motor learning support device 40 extracts the motor information obtained by the motor information calculation device 20 and the features of the nerve information obtained by the motor information-nerve information conversion device 30 and stores the motor feature information and the nerve feature information in the storage device 60.
  • the motor learning support device 40 refers to the motor information, nerve information, motor feature information, and nerve feature information stored in the storage device 60, and is obtained from the motor information calculation device 20 or the motor information nerve information conversion device 30. By processing in combination with information and nerve information, motor feature information and nerve feature information are obtained and stored in the storage device 60.
  • the storage device 60 is described as an external device, the storage device 60 may be provided inside each of the devices 10 to 30 to exchange each information.
  • the presentation device 50 includes a display device and a motor learning support in the motor information nerve information conversion device 30. Use the display device inside the assisting device 40.
  • the solid line is online
  • the dotted line is offline power
  • FIG. 11 shows a hardware configuration diagram of the motor learning support device 40.
  • This device shows, for example, a hardware configuration in the case of offline 'corresponding time display, and includes a display unit 41, an input unit 42, a processing unit (CPU) 43, an interface unit (iZF) 44, and a storage unit 45.
  • a display unit 41 for example, a hardware configuration in the case of offline 'corresponding time display, and includes a display unit 41, an input unit 42, a processing unit (CPU) 43, an interface unit (iZF) 44, and a storage unit 45.
  • FIG. 12 shows an explanatory diagram of the nerve data file 12 (spinal cord image) (input data).
  • Neural data is a pair of neural information that transmits time and an arbitrary point of an arbitrary nerve at a certain time.
  • the nerve data file 12 stores nerve data including a nerve ID, nerve information arranged in a spinal cord cross-sectional image at each time, and a data ID for determining a trial with respect to time.
  • the nerve information includes, for example, information obtained from the motor sensory organs, such as muscle length, muscle extension speed, and muscle tension information.
  • the nerve arrangement is arranged while maintaining the phase structure of muscle and nerve. Neural information is represented by an image, and motion is represented as a moving image.
  • nerve information has a time delay in motor information power due to nerve conduction velocity.
  • Spinal cord information Information from distant limbs is slow spinal cord information. For example, there are reports that the cerebrum recognizes it by canceling the time delay. For this reason, the movement information at the time when the movement actually occurs can be handled as the nerve information.
  • FIG. 13 is an explanatory diagram of another neural data file 13 (spatiotemporal image 1) (input data).
  • Neural data is a pair of neural information that transmits time and an arbitrary point of an arbitrary nerve at a certain time.
  • a spatio-temporal image represents this temporal change in neural information as a still image.
  • the muscle length and the muscle extension speed are stored for each time and for each position (left and right, trunk, periphery, etc.).
  • FIG. 14 shows an explanatory diagram of another neural data file 14 (spatio-temporal image 2) (input data).
  • the nerve data files 13 and 14 perform the trial with the nerve ID, the nerve information arranged in the position space of the muscle controlled by the nerve from the trunk to the terminal for each time, and the trial. Neural data including a data ID for determination is stored.
  • These neural data files 12 to 14 are also data stored in the storage unit, and the data also indicate images displayed on the display unit.
  • FIG. 15 is an explanatory diagram of an interface in the case of spinal cord cross-sectional image display.
  • nerve information on an arbitrary spinal cord cross section is presented as a moving image.
  • the cross section can be switched interactively.
  • each data file is merely an example, and an appropriate file configuration can be used as necessary. You can combine or divide the files as appropriate, or change the data items included as necessary. The order of the data items may be rearranged. Further, the output of nerve data or the like is only an example, and a display example appropriately changed or a plurality of display examples can be displayed.
  • FIG. 16 shows an explanatory diagram of the time data file 15 (output data) corresponding to trials for different types of nerves.
  • the trial-specific time data for different types of nerves are stored in correspondence with the corresponding time of neural information in the same nerve of different trials and the correlation value at that time.
  • the trial-specific time data file (first corresponding time data file) 15 for the same type of nerve includes a reference data time and a target data time representing the corresponding time of neural information in the same nerve of different trials, and a correlation at the corresponding time
  • the value, reference data ID, target data ID, and nerve ID are stored for different trials of the same type of nerve.
  • Various methods are known for calculating the correlation, but as an example, we use similarity that is strong against noise.
  • the similarity is a value between 1 and 1, and the error is the value obtained by subtracting the similarity from 1. The greater the similarity, the smaller the error.
  • the data type indicates the type of data used in the calculation, such as neural data, time variation data, dimension data, and left / right symmetry data.
  • FIG. 17 shows an explanatory diagram of the time data file 17 (output data) corresponding to different nerves same trial.
  • the heterogeneous nerve same trial corresponding time data is a corresponding time of neural information in different nerves of the same trial and a correlation value at that time correspondingly stored.
  • the heterogeneous nerve same trial corresponding time data file (second corresponding time data file) 17 includes a reference data time and a target data time indicating a corresponding time of nerve information in different nerves of the same trial, and each nerve.
  • Correlation value 1 and correlation value 2 reference data ID and its nerve ID, and target data ID and its nerve ID are stored for the same trial of different types of nerves.
  • This data is obtained by calculating the corresponding times of nerve 1 and nerve 2 in trial 2 based on the time of trial 1 as reference data. It is obtained by converting the time data file corresponding to trials for different types of nerves.
  • the amount of information generated at the same time in Trial 1 and the force that occurs in Trial 2, that is, the phase difference is known.
  • FIG. 28 is an explanatory diagram of the cooperation degree data file 18 (output data).
  • the cooperation degree data included in the cooperation degree data file 18 (output data) is stored in association with the reference data file name, the target data file name, and their correlation values.
  • the reference data and target data may be neural data or time variability data obtained at the preprocessing stage. The larger the correlation value, the greater the degree of cooperation.
  • the cooperation degree data file 18 includes the reference data ID, the first nerve ID, and the pair.
  • the correlation value between the elephant data ID, the second nerve ID, and the muscle number controlled by the first nerve and the muscle number controlled by the second nerve are stored in association with each other.
  • FIG. 45 is an explanatory diagram of the inter-nerve coordination data file 21 (output data).
  • Interneuronal cooperation data file 21 includes a set of reference data ID, target data ID, and nerve ID.
  • (b) shows a correlation value representing the degree of cooperation between nerves specified by the set of the first and second nerve IDs in a matrix form on the display unit.
  • FIG. 29 (a) shows the time variability file 19
  • FIG. 29 (b) shows the dimension data file 23
  • FIG. 29 (c) shows the left-right symmetry data file 25.
  • the time variability data included in the time variability data file 19 (output data) is generated at the pre-processing stage, and is obtained by converting either or both of the reference data and the target data.
  • the time and the degree of time fluctuation at that time are stored in correspondence.
  • the time variability value increases at the time when the internal state of the input data changes significantly.
  • the dimension data included in the dimension data file 23 (output data) is generated at the pre-processing stage, and is obtained by converting either or both of the reference data and the target data. Neural data becomes reference data and target data.
  • the neuron data file name, the original dimension of the neuron data, and the dimension obtained by principal component analysis are stored correspondingly. This means that the smaller the dimension obtained by principal component analysis, the greater the degree of cooperation. The dimension data will be described later.
  • the left / right symmetry data included in the right / left symmetry data file 25 (output data) is generated at the pre-processing stage, and is obtained by converting either or both of the reference data and the target data. is there.
  • the time and the left-right symmetry at that time are stored correspondingly. It can be obtained by dividing the input data into neural information for the left and right bodies and correlating the corresponding data. The higher the correlation, the higher the symmetry.
  • FIG. 43 shows an explanatory diagram of the trial evaluation data file 28.
  • the trial evaluation data included in (input / output data) is obtained by storing the evaluation results for trials in association with trial IDs and evaluation values for evaluation items. Prepare yourself Advanced learners' trials and learner's trials accumulated during the exercise process. The motion is evaluated by calculating according to the type of trial from the motion information obtained from the motion information calculation device.
  • FIG. 44 is an explanatory diagram of the position / posture / force data file 27.
  • Position-posture-force data file 27 The position-posture-force data contained in the input data (input data) is any position and Z or posture and Z Or it is stored in association with information representing the generated force, and includes a data ID for defining the body or tool part and a data ID for defining the trial.
  • Position / posture The data includes the motion capture device 10 and the motion information calculation device 20 and Z or storage device 60 that calculates the length and force (motion information) of the motion organ such as the Z or muscle 'tendon' ligament. It can be obtained by connecting.
  • FIG. 42 shows an explanatory diagram of the action definition data file 26.
  • Action definition data file 26
  • the action definition data included in (input data) is stored in association with the trial ID and the action name and Z or the action person.
  • the processing unit 43 presents the action selected based on the action definition data as reference data, processes the learner's action as target data, and presents the comparison result. The learner changes the movement so that they approach.
  • trial-specific time data file 15 for different types of nerves include heterogeneous neuro-same trial-compatible time data file 17, time variability data file 19, dimension data file 23, cooperation degree data file 18, inter-nerve
  • the cooperation degree data file 21 and the left / right symmetry degree data file 25 represent neural information.
  • the correspondence time, the degree of time variation, and the left / right symmetry can be processed even if the input data is motion information in addition to the neural information.
  • the output data represents motion feature information.
  • FIG. 18 is a flowchart of the motor learning support process according to the first embodiment.
  • the processing unit 43 performs initial setting (S101). After that, the processing unit 43
  • Read reference data and target data from neural data file 12 or 13 or 14 (S 103), pre-processing is executed (S105).
  • the processing unit 43 sets the initial time (S107), cuts out the template with the specified time width for the reference data force (S109), and calculates the correlation with the template over the specified area of the target data (SI 11).
  • the correlation between the time in the reference data and the maximum correlation value of the target data and the time is stored in the time data file 15 for trials of different types of homologous nerves (S 113). .
  • the processing unit 43 determines whether it is the final time (S115), advances the unit time by the unit time until the final time (S117), executes post-processing, and obtains the corresponding time and correlation value for the same trial of different types of nerves. Is stored in the time data file 17 corresponding to different nerves and the same trial (S119), and the result is presented (displayed) on the display unit 11 (S121). Steps S109, Sill, and S113 are repeated to complete the process. Details of each step will be described later. As described above, the corresponding time of the reference data and the target data and the set of correlation values at that time are obtained. Information on the local delay or advance of the movement, ie, phase difference, is obtained.
  • the processing unit 43 reads a plurality of neural data in any one of the neural data files 12 to 14, performs a correlation operation based on these data, obtains a corresponding time and a correlation value, and uses the same kind of nerve-specific trial corresponding time data. Store in file 15 and time data file 17 corresponding to different nerves in same trial.
  • the processing unit 43 may input these set values through another input device or IZF, or may read data stored in advance from the storage unit.
  • Data attributes include the nerve part (neural ID), the type of trial (data ID), and neural information characteristics.
  • nerve IDs an attribute including multiple nerve parts (nerve IDs) can be set for repeated processing.
  • the nerve part is identification information for identifying the nerve such as the nerve name and nerve number, and the spinal cord name representing the nerve (spinal cord etc.) cross section, for example, cervical nerve C18, thoracic nerve T1 — 12, Lumbar nerve LI-5, sacral nerve SI-5, coccygeal nerve Cocl 31 in total.
  • the nerve site may be a peripheral nerve.
  • Trial type includes all exercises. For example, for the reference data, select advanced trials of experts, masters and teachers, trials with the best or lowest results. For the target data, a trial in the process of motor learning is selected. In this example, the reference data ID and target data ID are used to define the neural information of different trials or the neural information of different nerves of the same trial.
  • Neural information characteristics include muscle length, muscle extension speed, and muscle tension information, which are information obtained from motor sensory organs.
  • the reference data and the target data are both nerve data of the same part in different trials. Not limited to this, appropriate neural data may be used.
  • Typical examples include similarity and Euclidean distance.
  • Select the display format For example, select the data format (cross section, spatiotemporal, etc.) such as the spatial arrangement of the output data, or one or more. For example, select one of the patterns of neural data files 12-14. In the case of spatio-temporal, information at a certain time is arranged in a horizontal row, and the power representing time in the vertical direction or vice versa. In addition, there are formats such as arranging neural information at the same time of multiple movements, and arranging neural information at multiple times of a single movement in parallel.
  • the processing unit 43 reads the reference data having the attribute selected in the initial setting and the target data from the neural data file 12 or 13 or 14.
  • the reference data and the target data are both nerve data of the same part in different trials.
  • FIG. 19 shows an example of reference data and target data.
  • This example shows the spatiotemporal pattern of neural information via (a) myocutaneous nerve and (b) obturator nerve when two trials of slashing are performed. It is The muscle length data of the muscles controlled by these nerves were extracted and normalized with the length of the upright posture. The magnitude of the value is expressed in luminance.
  • Trial 1 is the reference data (or reference data) and Trial 2 is the target data (or target data).
  • the processing unit 43 obtains the time variation degree for the reference data and the target data, and obtains the correlation start time and end time. Note that the processing unit 43 may obtain the time variability in advance and store it in the time variability data file 19 so that it can be read and used in this step. The processing unit 43 does not calculate the correlation when the time variation is smaller than the threshold value. By adding this pre-processing, it is possible to obtain an effect of removing a portion where the change in time is small and the corresponding time is not clear. This preprocessing may be omitted. The method for obtaining the time variation will be described later.
  • the processing unit 43 sets an initial time.
  • the initial time can be obtained from the preprocessing (S105), or when the preprocessing S105 is omitted, the initial time of the data is used.
  • the processing unit 43 cuts out data having a length corresponding to the specified time width from the current time from the reference data and uses it as a template.
  • the current time is t
  • the specified time width is N
  • the data up to time t + N is extracted for the time t force.
  • N 9.
  • the specified time width can be initialized or predetermined in step S101.
  • the processing unit 43 correlates the data from an arbitrary time t ′ to t ′ + N between the initial time and the final time to be calculated with the template cut out from the reference data (here: (Similarity) is calculated.
  • the similarity is defined as x for the reference data template pattern and y for the template size pattern of the target data.
  • the processing unit 43 obtains the similarity to all the times that are the calculation target of the target data for the template, and the time having the maximum similarity is set as the corresponding time.
  • the processing unit 43 stores the nerve, data type (neural data, time variation data, dimension data, left / right symmetry data, etc.), reference data ID, target data ID, different trials in the homologous trial-specific time data file 15.
  • the reference data time indicating the corresponding time of the nerve information in the same nerve, the corresponding time corresponding to the target data, and the same nerve type trial corresponding time data including the correlation value at that time are stored correspondingly.
  • the processing unit 43 can calculate the difference between the movement pattern and timing at the nerve level.
  • the processing unit 43 determines whether the extraction of the template in the reference data is the final time (S115), advances the template start time to the final time by the unit time (S117), steps S109, Slll, Repeat SI 13. The last time is obtained by preprocessing or the last time of data. However, in all cases, the length N of the template is subtracted. (Multiple data attributes, repeated processing: S116, S118)
  • the processing unit 43 repeats the processing for a plurality of nerves (S116), the data attribute set in the initial setting (S101) or the data attribute set in the input unit 42 or another device is used for another part. Then, the same processing is performed and the data is stored in the time data file 15 corresponding to the same-type nerve trials.
  • the processing unit 43 reads a plurality of homogeneous nerve trial-response time data from the homogeneous nerve trial-response time data file 15 and associates them. For example, the processing unit 43 calculates the corresponding times of nerve 1 and nerve 2 in trial 2 based on the time of trial 1 of nerve 1 as reference data. For example, the processing unit 43 generates homologous nerve-specific trial response time data including the corresponding times of nerve 1 trial 1 and trial 2 and homogenous nerve-specific trial response time data including corresponding times of nerve 2 trial 1 and trial 2.
  • the processing unit 43 uses the same ID for Nerve 1, the reference data ID that is the data for Nerve 1 trial 2, the ID for Nerve 2, the target data ID that is the data for Nerve 2 trial, the data type, and the like.
  • Reference data indicating the corresponding time of neural information in different trial nerves The time corresponding to the target data corresponding time and the correlation value at that time are stored in the heterogeneous nerve same trial corresponding time data file 17 as the different nerve same trial corresponding time data. As a result, it is possible to know how much the data at different parts that occurred at the same time in trial 1 shifts in trial 2, that is, the phase difference.
  • the processing unit 43 reads the corresponding time data from the homologous nerve-specific trial corresponding time data file 15 and Z or the heterogeneous nerve same trial corresponding time data 16, executes display processing, and displays it on the display unit 41. Examples of procedures for plotting graphs used for presentation (plots (1) to (3)) are shown below. Plot (1)
  • the processing unit 43 reads homogenous nerve-specific trial corresponding time data from the homogenous nerve-specific trial corresponding time data file 15, and takes the time of the reference data on the horizontal axis and the time and similarity of the corresponding data on the vertical axis, or A graph with the time of reference data on the horizontal axis and the similarity or error of the corresponding data on the vertical axis is displayed. The corresponding time and similarity may be plotted on the same graph. Since the similarity is extremely high and close to 1, the error value obtained by subtracting the similarity from 1 can actually be plotted. The error indicates the likelihood of the corresponding time. It can be said that the response time at the time when the error is small is accurate.
  • the processing unit 43 reads the homogenous nerve-specific trial corresponding time data from the homogenous nerve-specific trial corresponding time data file 15.
  • the processing unit 43 may take the time axis horizontally, arrange the reference data and the target data vertically, and connect the corresponding times with a line. As a result, when all the corresponding times are connected, it becomes difficult to see the corresponding times. Therefore, the corresponding times may be connected by a line for each arbitrary time width ⁇ . As a result, time advance and delay can be visually presented.
  • the processing unit 43 converts the heterogeneous nerve identical trial corresponding time data file to the heterogeneous nerve identical trial pair. Read from the time data 17. Since the processing unit 43 easily presents the phase difference between different parts, the corresponding times of the different parts of the target data may be connected with a line using the time of the reference data. As a result, when all the corresponding times are connected, it becomes difficult to see the corresponding times. Therefore, the corresponding times may be connected by a line between the corresponding time intervals ⁇ . This makes it possible to visually present the phase difference of each part in different trials.
  • FIG. 20 shows an example of plot (1).
  • FIG. 20 This is a plot of the similarity of neural information between the same spinal nerve and peripheral nerve and the corresponding time.
  • the degree of similarity is drawn with a diamond, and the corresponding time is drawn with a circle.
  • Figures 20 (a) and (b) correspond to the fifth cervical nerve (C5) and the second lumbar nerve (L2)
  • Figures 20 (c) and (d) correspond to the myofascial nerve and the obturator nerve.
  • the horizontal axis represents the time of trial 1
  • the vertical axis represents the corresponding time of trial 2
  • the similarity between the times is very high strength Tsutano, fully taking the difference from when they match (1) and plotted 104 times the error simultaneously. The larger the value, the greater the pattern difference.
  • the spinal cord can take time relatively smoothly, but the pattern difference is large.
  • peripheral nerves tend to have smaller errors (higher similarity) than the spinal cord, although the time correspondence is not smooth.
  • the corresponding time plot of the fifth cervical nerve (C5) (Fig. 20 (a)) has a gentle slope of 1 or less in the first half. The slope becomes almost 1 after the latter half 75 [frame].
  • Trial 2 shows that the rate of change in the first half is larger than Trial 1.
  • the second lumbar nerve (L2) Fig. 20 (b)
  • the slope between 65 [frame] and 70 [frame] is steep, and the slope at other times is gentle.
  • Trial 2 has a slower rate of change for the steep part.
  • Myoderma (Fig. 20 (c)) has a large gap in the corresponding time around 65 [frame]. Also, before and after that, the corresponding time takes a constant value for a while. The value of the error is higher than before and after that, and the corresponding time between 60 and 70 [frame] is not reliable.
  • the obturator nerve (Fig. 20 (d)) shows a tendency similar to that of the second lumbar nerve (L2), with a steep portion near 65 [frame].
  • FIG. 21 shows an example of plots (2) and (3).
  • Figure 21 shows a time chart for the two trials.
  • the upper horizontal axis is the time of trial 1
  • the lower horizontal axis is the time of trial 2.
  • Figure 21 (c) is based on the time of trial 1 in Figure 21 (a) and (b)
  • Figure 21 (c) is based on the time of trial 1 in Figures 21 (a) and (b).
  • the upper horizontal axis is the time of the fifth cervical nerve (C5)
  • the lower horizontal axis is the corresponding time of the second lumbar nerve (L2).
  • Fig. 21 (c) the upper horizontal axis is the time of the fifth cervical nerve (C5)
  • the lower horizontal axis is the corresponding time of the second lumbar nerve (L2).
  • the upper part of the horizontal axis is the time of the myelinated nerve and the lower part of the horizontal axis is the corresponding time of the closed nerve.
  • the corresponding time was taken every 5 [frames].
  • FIG. 22 is a flowchart of the motor learning support process according to the second embodiment.
  • step S109 for cutting out the template from the reference data is omitted, and the processing unit 43 performs the entire time for which the reference data is not calculated within the predetermined time width.
  • the correlation between the target data and the total time is directly calculated (S112).
  • the processing unit 43 stores a set of reference data, target data, and an overall correlation value (S114).
  • the initial time setting S107, the determination of whether the final time is S115, and the step S117 of advancing the unit time by the final time are omitted. Note that the calculation of the corresponding time described in FIG. 18 may be performed as preprocessing (S105) in FIG.
  • step S101 settings related to the template can be omitted.
  • step S112 the processing unit 43 executes correlation calculation by a known or known method, and in step S114, the processing unit 43 performs the reference data ID, the first nerve ID, the target data ID, and the second data ID. Correlation values between the muscle number controlled by the nerve ID of the first nerve ID and the muscle number controlled by the nerve of the first nerve ID and the muscle number controlled by the second nerve ID are associated and stored in the cooperation degree data file.
  • pre-processing is a variation that can be executed in the second embodiment of the exercise support processing of FIG. 22, and can be selected in advance by, for example, initial setting (S101). Note that even if applied in the exercise support processing of the first embodiment in FIG. Good.
  • FIG. 23 is an explanatory diagram of the time variation calculation method executed in the preprocessing S105.
  • the processing unit 43 cuts out the reference data or the target data from time t to t + N as a template, and times t + S t of the same data. To the correlation between t + S t + N. This is repeated in order from the initial time to the end time.
  • the processing unit 43 stores the time variability data including the nerve, the reference data ID or the target data ID, and the time variability with respect to time in the time variability file 19.
  • a strong similarity to noise is used as a powerful example of the correlation calculation.
  • similarity When using similarity, it takes a value between -1 and 1. In many cases, the correlation of neural information is generally large and close to 1. Therefore, in order to see how the time fluctuates, the value obtained by subtracting the similarity from 1 is calculated to obtain the time fluctuation. The greater the similarity, the smaller the variation. As described above, it is possible to detect the degree of fluctuation from the one hour step.
  • FIG. 24 shows, as an example, the degree of temporal fluctuation of nerve information during the slashing operation.
  • Fluctuation is smoother in the hips than in the necks It is.
  • the peak time in the first half is earlier in the cervical enormous area except for C4, and the peak time in the latter half is earlier in the lumbar enormous area.
  • the muscle activity changes synchronously from spinal cord to spinal cord, and the synchronization timing is slightly different. It can be seen that the peak time and size differ depending on the nerve. It is possible to compare the global differences in whole-body cooperative behavior for each local unit of nerves.
  • the time when the time variation takes the maximum is the state transition time of the neural data.
  • FIG. 30 shows an explanatory diagram of dimensions.
  • the pre-processing S 105 shows the dimension calculation method executed.
  • the processing unit 43 calculates dimensions by performing known or well-known principal component analysis on the neural data (reference data, target data). In this example, specifically, the number of elements whose cumulative contribution rate exceeds the threshold is calculated.
  • the processing unit 43 stores the dimension data corresponding to the nerve ID, the reference data ID or the target data ID, and the nerve ID in the dimension data file 23. The smaller the dimension obtained by principal component analysis with respect to the original number of elements, the greater the degree of cooperation.
  • the processing unit 43 obtains a dimension for each neural information, for example.
  • the principal component analysis and the dimension divided by the original number of elements is called the contraction rate.
  • the processing unit 43 calculates this for each nerve.
  • the global degree of cooperation can be expressed and compared in the form of dimensions. If the dimensions of the same movement differ greatly from person to person, the degree of coordination of the movement will vary greatly.
  • the principal component analysis is a method of summarizing information on many types of variables that are correlated with each other into a small number of comprehensive characteristic values that are uncorrelated with each other.
  • n variables (n dimensions) observations be represented by m (m dimensions) comprehensive indices (principal components).
  • m dimensions comprehensive indices
  • principal components As an indicator of how much each principal component represents the features included in the original data, or how many principal components can be used to sufficiently represent the features included in the original data, There is a cumulative contribution rate.
  • the sum of the variances up to the m-th principal component is defined as the proportion of the total variance.
  • FIG. 25 shows an example of dimension calculation.
  • somatic nerves during whole body exercise was extremely degenerate for each spinal cord, and the degree of coordination was high.
  • the two types of motions that were tested also showed that the degree of degeneration depends on the position of the spinal cord. This is thought to be because neural information is internally coupled by the spinal cord neural network.
  • FIG. 31 shows an explanatory diagram of symmetry.
  • the input neural data is obtained by dividing the neural information of the left half of the body and the information of the right half of the body, and by correlating the muscle movement data that are symmetrical and controlling the same part, and taking the difference of the neural information.
  • the processing unit 43 stores the difference corresponding to the nerve ID, reference data ID or target data ID, and nerve ID in the left-right symmetry data file 25 as left-right symmetry data.
  • the following variation of the correlation calculation is mainly the force which is the step S112 of the motor learning support process of the second embodiment. The same process is performed after the step S 119 of the motor learning support process of the first embodiment. You can do it for processing!
  • Fig. 32 shows an illustration of the degree of cooperation.
  • FIG. 26 shows a calculation method of the degree of cooperation performed in the correlation calculation S112 between the reference data and the target data.
  • the reference data and the target data are in the (spatio-temporal image) format of the neural data file 13 or 14, respectively.
  • the processing unit 43 calculates the correlation between the dominating muscle movement data one by one for the nerve data file.
  • the processing unit 43 sequentially shifts the template cut out from the reference data along the streak number (horizontal direction).
  • the correlation between all the muscle movement information included in the reference data and the target data is calculated.
  • the degree of coordination of movement information between muscles controlled by a certain nerve is detected.
  • the higher the degree of similarity the lower the degree of cooperation between the muscles, and the lower the degree of cooperation. This represents a local degree of cooperation within the nerve.
  • the processing unit 43 arranges the obtained cooperation degree in a matrix of each muscle number as shown in the figure, and stores it in the cooperation degree file 18 together with the reference data ID, the first nerve ID, the target data ID, and the second nerve ID.
  • Figure 27 (a) shows the corresponding reference data on the vertical axis and the target data on the horizontal axis. A state where the furniture is arranged on a plane is shown.
  • the number of elements of the neural data is not necessarily the same, and may not be the same nerve. For this reason, the correlation between different nerves can be calculated. Similarity was used for correlation.
  • the time variability may be obtained at the preprocessing stage, and the correlation between the reference data and the time variability of the target data may be calculated. The higher the brightness, the higher the degree of coordination. The brightness of each point represents the degree of coordination of movement information between the same innervating muscles.
  • the time variation of neural data may be used as an input for calculating the degree of cooperation.
  • a normal value obtained so that peak values are aligned at 1 may be used.
  • Step S112 of the motor learning support process according to the second embodiment After the calculation of the degree of cooperation S119, a calculation method of the degree of cooperation between nerves executed is shown.
  • the processing unit reads the correlation value from the cooperation degree data file 18 specified by the reference data ID and the first nerve ID, the target data ID and the second nerve ID, and stores the correlation value in the cooperation degree data file 18.
  • the average of the correlation values on the matrix is calculated and stored in the interneuronal cooperation data file 21. That is, the processing unit has a correlation value on a matrix of a plurality of first nerve ID sets in a predetermined reference data ID and a plurality of second nerve ID sets in a predetermined target data ID.
  • the average is stored in the interneuronal cooperation data file 21. This average is the average of the correlation values of multiple muscles controlled by the same nerve. For example, the value of one cell in the matrix of nerve coordination (FIG.
  • FIG. 27 (b)) is the average value of all the cells in the nerve coordination matrix (FIG. 27 (a)).
  • the processing unit repeats this process for all combinations of the first nerve ID group and the second nerve ID group. That is, the processing unit calculates an average value for each of the other first nerve IDs in the predetermined reference data ID and the other second nerve IDs in the predetermined target data ID. Repeat the memory.
  • the processing unit reads data from the inter-neuron cooperation degree data file 21 and displays the correlation values representing the inter-nerve cooperation degree specified by the first and second nerve ID pairs in a matrix form. To display. In this way, by calculating the correlation between nerves, it is possible to obtain a global degree of cooperation between nerves in the whole body movement, and the inter-nerve cooperation degree data file 21 shown in FIG. 45 is obtained.
  • FIG. 27 (b) shows the correlation values representing the degree of cooperation between nerves specified by the set of the first and second nerve IDs in a matrix on the display unit. In other words, it is possible to calculate the state of local and global cooperation by calculating the degree of cooperation hierarchically for each nerve.
  • the reference data and the target data may be displayed in an overlapping manner, displayed side by side, or correlations and differences may be displayed.
  • the learner will practice to approach the advanced neural data, which is the reference data, or to generate a movement that goes beyond that towards the pattern of success.
  • Presentation S121 the voice presentation method executed is shown.
  • the processing unit 43 can convert the sound into speech.
  • An example of how to convert neural information into speech information is shown. This makes it possible for learners to process somatosensory sensations in the auditory cortex, which is limited to the somatosensory cortex.
  • the processing unit 43 assigns sounds having different frequencies for each nerve or muscle, and converts the magnitude or change of nerve information into sound pressure and volume.
  • the processing unit 43 pays attention to the main muscles and plays sounds using percussion instruments with slightly different timbre or volume at the time when the temporal fluctuation of neural information including the main muscles and main muscles reaches a peak.
  • the processing unit 43 pays attention to the main muscles and plays sounds using percussion instruments with slightly different tones or volumes at times when the left and right symmetry of the nerve information including the main muscles and the main muscles peaks. [0099] Since it takes time to hear the sound and react to the power, the learner listens to the timbre rhythm first and then changes so that the same timbre and rhythm can be produced at the same timing. Let me. This method can convey detailed movements to visually impaired people at the muscle and nerve level. It is expected to be effective in learning dance. Therefore, this method realizes universal design. Even if you are not visually impaired, you can present dynamic exercises to the learners who are unable to see the screen and wear the head-mounted display.
  • the reference data may store the learner's own trials in the motor learning process as iterative learning progresses, evaluate them, and organize the best or lowest trials. it can.
  • the objective evaluation criteria differ depending on the type of movement. For example, in the case of a slashing action, (a) the start point and (b) the position of the end point of the sword tip, (c) the straightness of the trajectory connecting the start point and the end point, (D) adequate relaxation of the whole body, especially the arm, (e) dynamic stability of the whole body, (f) constant waist height, etc. Supporting the supervised learning process when model trials are selected for reference data and compared with learner trials. Support the unsupervised reinforcement learning process when choosing a self-highest or lowest evaluation trial and comparing it to a learner trial.
  • the setting of whether to support an unsupervised learning process or a supervised learning process is For example, in the initial setting in step S101 or in an appropriate step, the setting can be made as appropriate from the input unit, the storage unit, or another device.
  • the processing unit 43 When supporting the supervised learning process, the processing unit 43 reads the motion definition data 26.
  • FIG. 42 shows an example of the action definition data 26.
  • the trial ID, action name, and operator are stored in correspondence.
  • the processing unit 43 searches for a corresponding trial ID and uses it to identify reference data. As an operator, it is recommended to set a teacher, a master, and an expert who are skilled in operation.
  • the processing unit 43 When supporting the unsupervised learning process, the processing unit 43 reads the trial evaluation data 28.
  • Figure 43 shows an example of trial evaluation data28.
  • the trial ID and the evaluation value corresponding to the evaluation item are stored correspondingly.
  • the processing unit 43 searches for the trial ID having the maximum or minimum evaluation value and uses it for specifying the reference data.
  • the processing unit 43 When supporting the unsupervised learning process, the processing unit 43 reads the position and orientation power data 27.
  • Fig. 44 shows an example of position / posture force data27. To determine the position of the body or any tool used for body movement, Z or posture, Z or generated force, data ID for defining the body or tool part, and trial The data ID is stored. Establish an evaluation function and specify how to calculate the evaluation value of trial from position / posture force data or neural data.
  • the position / posture / force data is connected to the motion capture device and the motion information calculation device that calculates the length and force (motion information) of the motion organ such as Z or muscle 'tendon' ligament. You can get it.
  • the processing unit 43 calculates an evaluation value of the trial using the evaluation function from the position / posture power data or the neural data, and the trial evaluation data file 28 stores the trial ID, the evaluation item, and the evaluation.
  • the values are stored in association with each other.
  • the evaluation value can be calculated, for example, by using an appropriate evaluation function using predetermined data for each item.
  • the evaluation function for the constant waist height is defined as follows. Taking the Z axis from the floor in the direction opposite to gravity, the waist height is expressed by the Z component of the waist position. If the Z component time series of the waist position is expressed as [z (0), Z (1), Z (2), z (n)], the total sum of changes in the height direction of the waist height is
  • the input data for determining the evaluation value is the time-series Z component of the position data of the position / orientation / force data.
  • the evaluation value is calculated by substituting the time component Z component of the position data into the evaluation function f (z).
  • trial data on the process of motor learning can be accumulated while being evaluated each time, and the results can be used in subsequent trials.
  • Presentation evaluation value S121
  • the processing unit reads data from the trial evaluation data file 28 and displays a combination of trial ID, evaluation item, and evaluation value on the display unit. During repeated trials, the learner will be able to carry out kinematic learning while confirming whether each trial is strong or bad.
  • FIG. 33 shows a hardware configuration diagram of the exercise information / neural information conversion apparatus 30.
  • This device shows, for example, a hardware configuration in the case of offline 'spinal cord cross-sectional image display, and includes a display unit 31, an input unit 32, a processing unit (CPU) 33, an interface unit (I / F) 34, and a storage unit 35. Prepare.
  • the storage unit 35 includes a nerve geometry data file 1, a nerve feature data file 2, a nerve conduction time data file 3, a nerve one-corresponding data file 4, a nerve branch data file 5, a muscle rank data file 6, a muscle feature data file 7, Extensor flexor muscle data file 8, muscle movement data file 9, spinal nerve cross-section coordinate data file 11, and nerve data files 12-14.
  • the storage unit 35 or the processing unit 33 or the like may be partly or entirely shared with the storage unit 45 or the processing unit 43 or the like of the motor learning support device.
  • Fig. 34 shows an explanatory diagram of the neurogeometric data file 1 (input data or intermediate data).
  • the neurogeometric data stored in the neurogeometric data file 1 includes the nerve number, the corresponding spinal cord name, muscle Name, spinal cord and muscle, and nerve line names (columns) between them are stored in correspondence.
  • a nerve line name can also define a nerve as a point sequence.
  • nerve lines have characteristics such as conduction velocity and conduction time, nerve lines are defined separately from nerve points.
  • the start point name and the end point name are stored for the nerve line name. The start and end points of nerve lines are collectively called nerve points.
  • Table 2 is used in combination with data that correlates nerve point names and nerve point coordinates as shown in Table 3.
  • FIG. 35 (A) shows an explanatory diagram of the nerve feature data file 2 (input data).
  • the neural geometry data stored in the nerve feature data file 2 is the one in which peripheral nerve names and nerve line trains are stored correspondingly as shown in Table 1, and the nerve line name and conduction velocity as shown in Table 2. Are configured correspondingly.
  • the conduction velocity includes centripetal and centrifugal nerve conduction velocities.
  • the neural geometric data and the neural feature data are separated from each other.
  • the neural geometric data and the neural characteristic data are only examples, and may be appropriately configured without being separated. As an example, only the afferent nerve conduction velocity is used here.
  • FIG. 35 (B) shows an explanatory diagram of nerve conduction time data file 3 (output data).
  • the nerve conduction time data is stored in correspondence with the nerve number for the nerve number.
  • FIG. 36 (A) shows an explanatory diagram of the nerve-muscle correspondence data file 4 (intermediate data).
  • the data corresponding to a single nerve is a combination of the muscle name and information on the spinal nerve (horizontal axis) and peripheral nerve (vertical axis) that control the muscle.
  • the figure shows neuromuscular data related to spinal nerve (C8).
  • spinal nerve C8
  • a part of the whole-body neuromuscular correspondence is shown, but in fact it can be defined for the whole body.
  • Such correspondence tables can be created based on specialized anatomy books.
  • the neurogeometric data force can also be calculated by using each information.
  • the processing unit 33 can search for the muscle that is controlled by the spinal nerve of interest and the peripheral nerve that controls the muscle. For example, when focusing on the spinal nerve C8, the search for muscles requires the ulnar carpal flexor corresponding to the vertical arrow, and the search for peripheral nerves requires the ulnar nerve corresponding to the horizontal arrow.
  • FIG. 36 (B) shows an explanatory diagram of the nerve branch data file 5 (input data).
  • Nerve bifurcation data is a representation of the spinal nervous system in a tree structure with the spinal cord as the root and the muscle as the leaf.
  • a contact point represents a via point or a start point (spinal cord), an end point (muscle), a branch point, and a branch represents a nerve pathway.
  • the nerve pathway is taken as a branch, but the nerve pathway itself is also expressed as a contact point. There is also a way to do it.
  • FIG. 37 (A) shows an explanatory diagram of the muscle rank data file 6 (output data).
  • the muscle ranking data stores information indicating muscle ranking, muscle characteristics (left and right, extensor flexor muscle classification, muscle region classification), and muscle name.
  • the force that shows a part of the muscles of the whole body can actually be defined for the whole body.
  • FIG. 37 (B) shows an explanatory diagram of the muscle feature data file 7 (input data).
  • the muscle feature data stores information representing muscle characteristics (left and right, extensor flexor muscle classification, muscle part classification) for the muscle name.
  • muscle characteristics left and right, extensor flexor muscle classification, muscle part classification
  • the muscle parts are classified into, for example, the following six types: 1) trunk, 2) trunk to limb, 3) limb band to limb, 4) upper arm, thigh, 5) forearm, lower leg, 6) hand and leg.
  • FIG. 37 (C) shows an explanatory diagram of the extensor-flexor correspondence data file 8 (input data).
  • Extensor flexor muscle correspondence data is a pair of muscle names belonging to the corresponding flexor muscle group and extensor muscle group. Corresponding muscles are not necessarily paired just because they have the same force that is considered to correspond to each other at almost the same site. On the other hand, there are cases where the response is made across multiple sites. For this reason, the parts included in the extensor flexor muscle data are combined together.
  • FIG. 38 (A) shows an explanatory diagram of the muscle movement data file 9 (input data).
  • Muscle movement data includes the time and length of any muscle at a certain time, length change speed, force, force change speed, etc. All muscle movement information is a pair. There can be a format in which multiple pieces of information (force and length) are placed in the same file, multiple pieces of information are placed, and multiple pieces of information at a certain time are combined.
  • the file name is the name of the line, and by specifying the name of the line, it is read into the file contents cache.
  • the time change of the length of the biceps is shown.
  • the length may be an absolute value or a value that is standardized by the length of the initial posture or standard posture. The same applies to changes in muscle length.
  • FIG. 38 (B) shows an explanatory diagram of the spinal nerve sectional coordinate data file 11 (output data).
  • the spinal nerve cross-section coordinate data stores the spatial arrangement of nerves in the spinal cord cross-section with respect to the nerve number. Also, coordinate data on the 2D plane is r The ⁇ coordinate system may be used. Furthermore, instead of the coordinate data, identification information indicating the position of the spatial arrangement may be used.
  • Figure 39 shows the main flowchart.
  • the processing unit 33 When the processing is started, the processing unit 33 performs initial setting (S101). Thereafter, the processing unit 33 executes nerve conduction time calculation (S103), muscle rank calculation (S105), and nerve cross section spatial arrangement calculation (S107). Next, the processing unit 33 sets an initial time (S109), executes conversion processing from exercise information to nerve information (S111), and presents (displays) the result on the display unit 11 (S113). The processing unit 33 determines whether it is the final time (S115), advances the unit time by the unit time until the final time (S117), repeats steps S111 and S113, and ends the processing. Details of each step will be described later.
  • the processing unit 33 may input these set values via another input device or IZF, and may read the stored data from the prestored data.
  • the spinal cord is composed of a total of 31 cervical nerves, 12 thoracic nerves, 5 lumbar nerves, 5 sacral nerves, and 1 coccyal nerve.
  • Select the display format For example, select the data format (cross section, spatiotemporal, etc.) and the singular or plural of the output spatial arrangement. For example, select the pattern of neural data files 12-14.
  • information at a certain time is arranged in a horizontal row, and represents the time in the vertical direction or vice versa.
  • neural information at the same time of multiple movements and neural information at multiple times of a single movement are arranged in parallel [0124] (Nerve conduction time calculation: S 103)
  • the processing unit 33 obtains the spinal cord from the neural geometric data file 1 (Table 1) for each nerve number based on the spinal cord name representing the nerve (spinal cord, etc.) section selected in the initial setting S101.
  • the name and the name of the nerve line (column) are extracted. Depending on the nerve, one or more strings of nerve line names are included.
  • the processing unit 33 obtains the starting point name and the ending point name of the neural line from the neural geometric data file 1 (Table 2) based on the extracted neural line name (column), and further, the neural point of the starting point name and the ending point name. Based on the above, the length of each nerve line (column) is calculated by retrieving the nerve point coordinates from the neural geometric data file 1 (Table 3).
  • the processing unit 33 determines the length of each nerve line (column) and the nerve feature data file 2 (Table 2) force according to each nerve line (column).
  • the centripetal (or efferent) nerve conduction velocity force of the read nerve feature data Calculate the conduction time of the nerve line (column). Further, the processing unit 33 calculates the nerve signal conduction time of the entire nerve path to any arbitrary spinal force represented by one or more nerve lines (rows). In this way, the processing unit 33 stores the nerve signal conduction time in the nerve conduction time data 3 corresponding to the nerve number.
  • the processing unit 33 calculates the rank of muscles belonging to the same region after classifying the extensor and flexor muscles and the region, and further calculates the rank within the same muscle. This process is necessary to determine the spatial arrangement.
  • the processing unit 33 controls the spinal cord selected with reference to the single nerve-corresponding data in the single nerve-corresponding data file 4 based on the spinal cord name selected in the initial setting S101.
  • the peripheral nerve corresponding to the muscle name is obtained, and the muscle name is further classified according to peripheral nerves.
  • the processing unit 33 refers to the muscle feature data in the muscle feature data file 7 for the classified muscle names, and determines and classifies the extensor and flexor muscles based on the muscle names.
  • the processing unit 33 refers to the tree branching data of the nerve branch data file 5 and the leaf order in which the root force also branches in the same peripheral nerve (for example, the order close to the root or the order in which there are few contacts) Sort by.
  • the processing unit 33 refers to the nerve conduction time data 3 for the muscle name corresponding to each nerve number, and based on the nerve conduction time, the same part Sort them in order of short conduction time between different peripheral nerves. At this time, for example, between the same types of different peripheral nerves, the shortest conduction times are compared, and the shorter peripheral nerve is arranged first. In this way, the processing unit 33 stores the muscle rank data in the muscle rank data file 6 in association with the rearranged muscle rank, left and right, extensor 'flexor, muscle part number, and muscle name. In addition, the processing unit 33 displays the created spinal cord cross-sectional coordinate data on the display unit or outputs it via the IZF unit as necessary.
  • the muscle ranking can be determined in the order of 'deepness close to the trunk, using muscle geometric data.
  • the muscle rank may be determined in the order of short nerve conduction time determined from the neural geometry data. Not limited to these, it may be determined in the reverse order, or may be determined in an order that is determined according to appropriate arrangement, such as determining the order using the displacement of the geometric data of muscle and nerve. .
  • FIG. 40 is an explanatory diagram showing an example of a state of data at the time of space arrangement.
  • the processing unit 33 classifies each record (corresponding to a muscle name) into left and right, extensor 'flexor muscles, and muscle parts, and sets a predetermined nerve (spinal cord). Etc.) Place in a space related to the cross section.
  • the space to be placed is stored in the memory unit and connected to each nerve (spinal cord, etc.) cross section!
  • Different region shapes may be used, and the same region shape or a plurality of region shapes may be used.
  • the cells where each muscle name is placed are divided into a matrix in a shape simulating spinal cord gray matter.
  • the spatial arrangement is classified into 4 types, left and right, up and down (flexor's extensor), and further classified into 6 parts in the horizontal direction, and each muscle name at the corresponding position. Place.
  • the processing unit 33 rearranges and arranges the muscles with high (low, long) and low (long, short) muscles according to the muscle ranking and away from the central axis. This is almost equivalent to the method of rearrangement in the order of muscle classification and muscle placement strength.
  • the processing unit 33 combines the muscle control nerves by the extensor-flexor muscle correspondence data read from the extensor-flexor correspondence data file 8, and rearranges them in the upper (flexor) and lower (extensor).
  • a plurality of muscles having the same function are associated with a plurality of muscles having opposite functions. If the corresponding muscle group spans two parts, they are stacked vertically.
  • the processing unit 33 matches the classified muscle innervating nerve group with a predetermined space. . That is, the processing unit 33 determines whether or not the classified muscle innervating nerve group exceeds a preset number N. This is a device to prevent the height from increasing or decreasing extremely, and the number of N can be determined arbitrarily. If the processing unit 33 exceeds N, the processing unit 33 divides the number so that the maximum number is less than N. At this time, divide equally into heights that do not exceed the set height N. If equal division is not possible, the larger X coordinate absolute value is left as the remainder. If either the extensor or flexor muscle exceeds N, the remaining muscular control nerve group is also divided into the same number.
  • a preset number N This is a device to prevent the height from increasing or decreasing extremely, and the number of N can be determined arbitrarily. If the processing unit 33 exceeds N, the processing unit 33 divides the number so that the maximum number is less than N. At this time, divide equally into heights that do not exceed the set height N. If
  • the processing unit 33 when the height N is less than the set height N, the processing unit 33 combines the heights that do not exceed the X coordinate absolute value in ascending order. At this time, it can be combined so that the maximum number is less than N.
  • the flexor and extensor muscles may be connected in correspondence, and may be connected when neither exceeds N.
  • the processing unit 33 packs the X coordinate absolute value in the direction of decreasing toward the y axis that is the symmetry axis.
  • the processing unit 33 creates the spinal cord cross-sectional coordinate data and the spinal cord neurological cross-sectional coordinate data file 11 in the spatial arrangement thus created.
  • the processing unit 33 displays the generated spinal cord cross-sectional coordinate data on the display unit or outputs it via the IZF unit as necessary.
  • the spinal cord coordinate data may use identification information for identifying the position of the cell in the spatial arrangement.
  • the processing unit 33 may be arranged in a flat manner without dividing by the set number N in the spatial arrangement calculation of the neural section.
  • FIG. 41 shows an explanatory diagram of rearrangement 1 for creating a spatiotemporal pattern.
  • the processing unit 33 rearranges the extensor and flexor muscles while rearranging them in the order of the muscle parts.
  • the processing unit 33 advances the time by the unit time, executes the conversion process from the exercise information to the nerve information (S111), and presents (displays) the result on the display unit 11 (S113).
  • the processing unit 33 extracts the conduction time for the nerve corresponding to each nerve number from the nerve conduction time data read from the nerve conduction time data 3.
  • the processing unit 33 obtains a muscle name for each nerve number with reference to the neurogeometric data file 1 according to the exercise data set in the initial setting S 101, and the muscle name is set in the muscle exercise data file 9. Motion data BJC sticks out.
  • the processing unit 33 determines whether or not the force is in consideration of the conduction time delay. When considering the delay, the processing unit 33 extracts data before the conduction time from the obtained time, and calculates motion data by interpolation when there is no data at the corresponding time. On the other hand, the processor 33 extracts the motion data at the time obtained from the muscle motion data file 9 when the delay is not considered.
  • the processing unit 33 uses the spinal cord cross-section coordinate data read from the spinal nerve nerve cross-section coordinate data file 11 to map the movement data to the nerve data. For example, depending on the value of the muscle movement information determined in the muscle movement data by the muscle name and each time for each nerve number at the position of the nerve of the nerve number determined in the spinal cord cross-section coordinate data, Give changes.
  • the processing unit 33 converts the neural data thus created into the neural data file 12 B 0
  • the neural data file 13 14 can be created by rearranging as appropriate.
  • a feature of the present invention is that, based on knowledge of neuroanatomy, a whole body movement pattern is divided into base patterns for each nerve, and comparison between noturns is performed. Somatosensory information of the whole body is bundled for each peripheral nerve and sent to the spinal cord, and somatosensory information is processed to some extent locally at the nerve level. Comparing the spatio-temporal patterns of information flowing from one nerve to another for different trials of the same action, for example, the following question can be answered: How different are the spatio-temporal patterns? Is the spatiotemporal pattern of each nerve similar, and is the timing of pattern generation different for each nerve?
  • the present invention provides a means for reaching spinal nerve information during exercise by a non-invasive method called exercise measurement.
  • Motion measurement is a classic method with the power of the times that is a powerful means of measuring cranial nerves.
  • it becomes a third cranial nerve measurement technique that is different from direct nerve measurement and brain measurement such as PET and fMRI.
  • the motor learning support method or the motor learning support apparatus / system of the present invention includes a motor learning support program for causing a computer to execute each procedure, a computer-readable recording medium storing the motor learning support program, and a motor It can be provided by a program product that includes a learning support program and can be loaded into the internal memory of the computer, or a computer such as a server that includes the program.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurosurgery (AREA)
  • Rheumatology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A technique useful for movement learning assist by detecting nerve information from movement information on muscles and tendons of the whole body. A processing section performs initial setting (S101), reads reference data and object data from a nerve data file (S103), performs a pre-processing (S105), sets the initial time (S107), segments a template of a specific time width from the reference data (S109), computes the correlation with the template over a specific region of the object data (S111), stores about a different trial of a similar nerve the time in the reference data and the maximum correlation value of the object data associated with the time in a similar nerve trial corresponding time data file (S113), advances the time by a unit time until the final time (S115, S117), performs a post-processing, determines the corresponding time and the correlation value about the same trial of a dissimilar nerve, stores them in a dissimilar nerve same trial corresponding time data file (S119), and presents them on a display section (S121).

Description

明 細 書  Specification
運動学習支援装置及び方法、運動学習支援プログラム及び該プログラム を記録した記録媒体  Motor learning support apparatus and method, motor learning support program, and recording medium recording the program
技術分野  Technical field
[0001] 本発明は、運動学習支援装置及び方法、運動学習支援プログラム及び該プロダラ ムを記録した記録媒体に関する。  [0001] The present invention relates to a motor learning support device and method, a motor learning support program, and a recording medium on which the program is recorded.
背景技術  Background art
[0002] 筋や腱、関節などの運動器官に起こる深部体性感覚は、新 、運動を習得する際 に必要であることが知られている。体性感覚は一回の試行のフィードバック信号として 働くことだけでなぐ繰り返し試行を伴う運動学習において動作結果を評価するため の教師信号としての働きを持つと考えられている。したがって、評価が正しく行われな ければ学習者は目的とする運動に習熟することができないことになるが、人間が運動 の結果を正確に知覚できているかどうかは必ずしも明らかでなぐまた主観的な感覚 であるため計測も容易ではない。体性感覚に基づく運動の主観評価は、外部からの 観測に基づく客観評価と一致する場合が存在することが、袈裟斬り (足を一歩踏み込 みながら剣を振りかぶり、斜めに大きく振り下ろす動作)動作実験により明らかになつ ている。体の内部から観測した時、毎回の運動がどのように見えているのかという観 点から、体性感覚情報処理機構を計算機上に実装することができれば、人の内部感 覚を踏まえた上で人に働き力 4ナをする運動学習支援装置を作ることができる。現在、 脳の大局的な活動状態を非侵襲で計測することが技術的に可能である。脳の活動 に必要なエネルギーを供給する血流の大きさや、神経信号が伝達する際に生じる磁 場を可視化することができる。また、微小な電極を神経に埋め込むことによって、神経 の発火状態を直接検出することも可能である。しかし、脳や神経の活動状態を明らか にしても、その人が何を考えている力、何を感じているかが直接分力るわけではない 。むしろ、脳や神経によって制御されている器官、例えば筋の運動を計測することに よって、ヒトの意識的あるいは潜在的な運動調節過程を知ることができる可能性があ る。 [0003] ヒトの動作は、複数の筋が協調することにより生じる。従って、筋一本ずつの運動だ けでなぐ全身に分布する筋の協調状態によって、動作を評価することができると考 えられる。人は緊張するとぎこちない動きをすることがある力 このぎこちない動きとは 、筋の協調状態が不均衡である結果と捉えることができるからである。ベルンシュタイ ンは、運動器官が冗長な自由度を有することを指摘し、これを制御可能なシステムへ と転換することを協応と定義した。そして、冗長な自由度を克服するためには、感覚 器官、特に筋や腱、関節に内在する感覚器官力もの情報に基づいて運動を調節す ることが不可欠であるとし、感覚調整の原理と呼んだ。 [0002] It is known that deep somatosensory sensations occurring in motor organs such as muscles, tendons, and joints are necessary for learning new movements. Somatosensory sensation is thought to act as a teacher signal for evaluating motion results in motor learning that involves repeated trials, not just acting as a feedback signal for a single trial. Therefore, if the evaluation is not performed correctly, the learner will not be proficient in the desired movement, but it is not always clear whether the person can accurately perceive the result of movement, and it is also subjective. Measurement is not easy because it is a sense. The subjective evaluation of movement based on somatosensory sensation may coincide with the objective evaluation based on observations from outside, and the slashing action (swinging the sword while stepping on the foot and swinging it down diagonally) This has become clear through experiments. If the somatosensory information processing mechanism can be implemented on a computer from the viewpoint of how each movement looks when observed from inside the body, it is based on the internal sense of the person. It is possible to make a motor learning support device that works on people. Currently, it is technically possible to measure the global activity state of the brain non-invasively. It is possible to visualize the size of the blood flow that supplies the energy necessary for brain activity and the magnetic field generated when nerve signals are transmitted. It is also possible to directly detect the firing state of a nerve by embedding a minute electrode in the nerve. However, clarifying the state of brain and nerve activity does not directly divide what the person thinks and feels. Rather, by measuring the movements of organs that are controlled by the brain and nerves, such as muscles, it may be possible to know human conscious or potential movement control processes. [0003] Human movement occurs when a plurality of muscles cooperate. Therefore, it is considered that the movement can be evaluated by the coordination state of the muscles distributed throughout the body, not only by the exercise of each muscle. A person can be awkward when in tension This awkward movement can be seen as a result of imbalanced muscle coordination. Bernstein pointed out that motor organs have redundant degrees of freedom and defined cooperation as converting this into a controllable system. In order to overcome redundant degrees of freedom, it is indispensable to adjust movement based on sensory organs, especially muscles, tendons, and information on sensory organ forces inherent in joints. called.
[0004] 本発明の目標は、これまで動作の観測により定性的に議論されてきたヒトの感覚と 運動の課題を、計算によって定量的に扱う手法を明らかにすることである。このことを 通じ、人の運動調節過程に外側から近づき、運動学習を支援することを目指す。骨 の幾何データと筋 ·腱 '靭帯のデータを有する身体の詳細なモデルに対して順 ·逆動 力学計算を高速に実行する手法が提案されている (非特許文献 1)。身体運動を計 測して、筋'腱 '靭帯の長さや、これらの運動器官に発生する張力を計算する研究は これまでも数多く行われてきた。人体筋骨格モデルの運動を解析したりシミュレートし たりするシステムとして、 Delpらの SIMM、 Rasmussenらの AnyBodyなどが商品化されて いる。  [0004] The goal of the present invention is to clarify a method for quantitatively handling human sensation and movement problems that have been qualitatively discussed by observing movements so far. Through this, we aim to approach motor control processes from the outside and support motor learning. There has been proposed a method for executing forward / reverse dynamics calculation at high speed for a detailed model of a body having bone geometry data and muscle / tendon 'ligament data (Non-patent Document 1). Many studies have been conducted to measure body movements and calculate the length of muscle 'tendon' ligaments and the tensions generated in these motor organs. Delp et al. SIMM and Rasmussen et al. AnyBody have been commercialized as systems for analyzing and simulating the motion of human musculoskeletal models.
[0005] 一般に、視覚、聴覚などに比べ、体性感覚などの力学メディアの知覚情報処理手 法は遅れていることが指摘されている。以下に、身体モデルおよび身体モデルと結 合する神経系モデルに関する従来技術について概観する。  [0005] In general, it has been pointed out that perceptual information processing methods for dynamical media such as somatic sensations are delayed compared to visual and auditory senses. The following is an overview of the prior art related to the body model and the nervous system model combined with the body model.
中村らは、骨の幾何データと筋'腱 '靭帯のデータを有する身体の詳細なモデルに 対して順'逆動力学計算を高速に実行する手法を提案している (特許文献 1、 2)。こ の手法により、人間の運動を外力 観測して、筋'腱 '靭帯の長さ変化や、これらの運 動器官に発生する張力を計算することができるようになっている。  Nakamura et al. Have proposed a method for performing forward and reverse dynamics calculations at high speed for detailed models of the body with bone geometry data and muscle 'tendon' ligament data (Patent Documents 1 and 2). . This method enables us to observe the human force and calculate the changes in the length of the muscle 'tendon' ligament and the tension generated in these moving organs.
川人らは、計算機内の世界で身体の一部または全部のモデルである仮想身体をあ た力も自分の分身であるかのように自然に制御し、位置のみならず力、速度、加速度 を自由に操れるようなヒューマンインタフェース装置を提案して 、る(特許文献 3)。  Kawahito and others naturally control the virtual body, which is a model of all or part of the body in the world inside the computer, as if it were a part of itself, and not only the position but also the force, speed, and acceleration. We propose a human interface device that can be operated freely (Patent Document 3).
[0006] また、長谷らは 3次元筋骨格系と階層的神経系を有する 2足歩行モデル (非特許文 献 2)を、萩原らは実歩行計測データ力 歩行神経回路網 (非特許文献 3)をそれぞ れ提案した。 [0006] In addition, Hase et al., A biped model with a three-dimensional musculoskeletal system and a hierarchical nervous system (non-patent document) Sugawara et al. Proposed an actual walking measurement data force walking neural network (Non-patent Document 3).
また、一般に、運動学習支援のためには、運動解析に基づいて運動を評価するこ とが重要である。評価に基づいて運動調節を行うからである。従来、運動計測に基づ いて運動同士を比較する際には、協調運動の結果を集約する全身の部位のある一 部分、たとえば手先'足先の位置、あるいは肘や膝などの関節角を対象に行われて きた。あるいは、筋一本ずつの活動、例えば筋電位や筋長を比較することもよく行わ れてきた。例えば、筋活動のピーク時刻のずれで、テニスの熟練者と初心者の運動 の巧みさの違 、を比較すると ヽつた解析が行われてきた (非特許文献 4)。  In general, to support motor learning, it is important to evaluate motor based on motor analysis. This is because exercise adjustment is performed based on the evaluation. Conventionally, when comparing movements based on movement measurements, some parts of the whole body that aggregate the results of coordinated movements, such as the positions of the hands and toes, or joint angles such as elbows and knees, are considered. Has been done. Alternatively, it has been common to compare muscle-by-muscle activities, such as myoelectric potential and muscle length. For example, by comparing the difference in the skill of tennis experts and beginners in the dexterity of the peak time of muscle activity, a simple analysis has been performed (Non-patent Document 4).
特許文献 1:特開 2003 - 339673 Patent Document 1: JP 2003-339673 A
特許文献 2:特開 2004 -013474 Patent Document 2: JP 2004-013474
特許文献 3 :特開平 07— 028592 Patent Document 3: Japanese Patent Laid-Open No. 07-028592
非特干文献 1: Y. Nakamura et. al. Dynamic computation of musculo- skeletal human model based on efficient algorithm for closed kinematic chains. In Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines、 2003. 非特許文献 2 :長谷和徳、西口純也、山崎信寿 3次元筋骨格系と階層的神経系を 有する 2足歩行モデル バイオメカニズム 15—形と動きの探求一、バイオメカニズム 学会編、東大出版会、 ρρ.187-198、(2000)。 Non-patent literature 1: Y. Nakamura et. Al. Dynamic computation of musculo-skeletal human model based on efficient algorithm for closed kinematic chains. In Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines, 2003. : Kazunori Hase, Junya Nishiguchi, Nobutoshi Yamazaki Biped model with three-dimensional musculoskeletal system and hierarchical nervous system Biomechanism 15—Exploration of shape and movement, Biomechanism Society, Tokyo University Press , (2000).
非特許文献 3 :萩原直道、山崎信寿 実歩行計測データからの歩行神経回路網の推 定 バイオメカニズム 15—形と動きの探求一、バイオメカニズム学会編、東大出版会 、 pp.175— 186、 (2000) Non-Patent Document 3: Naomichi Sugawara, Nobutoshi Yamazaki Estimation of walking neural network from real gait measurement data 2000)
非特干文献 4: Sakurai S. et. al. Muscle activity and performance accuracy of the smash stroke in badminton with reference to skill and practice. J. Sports Science vol. 18, pp.1— 14 (2000) Non-Special Reference 4: Sakurai S. et. Al. Muscle activity and performance accuracy of the smash stroke in badminton with reference to skill and practice. J. Sports Science vol. 18, pp.1— 14 (2000)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
これら従来の技術は、骨格筋配置を外科的に変更した場合筋力が受ける影響の検 討、製品を人間が用いる際の作業空間の評価といった、医学や人間工学あるいはス ポーッ科学への応用を目的としたものである。このため、運動器官に内在する感覚器 官の発生する情報が、神経系を通じて運動器官に到達する経路について、十分に 検討されてこなかった。 These conventional technologies can be applied to medical or ergonomics or scanning, such as examining the effects of muscle strength when surgically changing the skeletal muscle placement, and evaluating the workspace when a product is used by humans. It is intended for application to Pau science. For this reason, the information generated by the sensory organs inherent in the motor organs has not been fully examined for the route through the nervous system to the motor organs.
[0008] 上述で概観した従来技術において、中村らのモデルに神経系は含まれていない。  [0008] In the conventional technology outlined above, Nakamura et al.'S model does not include the nervous system.
また、川人らでは、ヒューマンインタフェース装置を実現するために、神経回路を含む 非線形ダイナミクスモデルを仮想身体に結合して ヽるが、神経回路は末梢神経系の 構造を考慮していない。さらに、長谷らの技術については、いずれも神経筋骨格系モ デルを提案するものである力 筋肉を直接支配する α運動ニューロンと筋肉とがー対 一に直結しており、複数の脊髄から同一の筋肉へ結合する冗長構造が考慮されてい ない。そして、一つの神経束力 複数の筋肉へ結合する分岐構造などは考慮されて いない。このため、同一の神経に支配される筋群、あるいは、同一脊髄神経に支配さ れる筋群と 、つた概念が、モデルに含まれて!/、な!/、。  In addition, Kawato et al. Connect a non-linear dynamics model including a neural circuit to a virtual body to realize a human interface device, but the neural circuit does not consider the structure of the peripheral nervous system. Furthermore, Hase et al.'S technologies are all proposing a neuromusculoskeletal model. The α motor neurons that directly control the force muscles and the muscles are directly connected to each other, and are identical from multiple spinal cords. Redundant structures that connect to other muscles are not considered. In addition, branching structures that connect to multiple muscles with a single nerve bundle force are not considered. Therefore, the model includes the concept of muscle groups controlled by the same nerve, or muscle groups controlled by the same spinal nerve!
[0009] 一般に、筋'腱 '靭帯を含む運動器官やその他の器官と中枢神経系 (脳)とは、末 梢神経系を介して結合している。この末梢神経系は、冗長な分岐構造を有する。機 構的あるいは機能的に近!ヽ器官と結合する神経同士束ねられて太 ヽ神経になって いる。また、機構的あるいは機能的に関連のある器官と結合する神経が同一脊髄か ら結合して 、る。従来技術はこのような解剖学的構造を考慮に入れてこな力つたため 、次のような課題があった。  [0009] In general, motor organs and other organs including muscle 'tendon' ligaments and the central nervous system (brain) are connected via the peripheral nervous system. This peripheral nervous system has a redundant branch structure. It is mechanically or functionally close! The nerves that connect with the heel organs are bundled together to form the common nerve. In addition, nerves that connect with mechanically or functionally related organs connect from the same spinal cord. Since the conventional technology has made great efforts taking such anatomical structures into consideration, there have been the following problems.
•神経支配による器官同士の機構的あるいは機能的関係を扱うことができない Inability to handle the mechanistic or functional relationship between innervated organs
•運動神経が発生する物理的な量 (客観的な量)から、人間がどのように感じて 、るか t 、う感覚的な量を検出することができな!/、 • From the physical quantity (objective quantity) that the motor nerves generate, how humans feel, t cannot detect the sensory quantity! /,
これは、人間の脳が運動器官からどのような信号を受け取り、どのように処理するかと いう観点が欠けていたことに起因していると考えられる。ヒトの身体運動は、神経系と 筋骨格系および外界との相互作用の結果生じる。身体運動情報には、神経系の内 部情報が含まれている。逆に、身体運動情報は、筋紡錘やゴルジ腱器官などの運動 感覚器官により検知され、神経系への入力になる。身体運動に関わる神経情報を末 梢から中枢に向力つて順にたどることで、ヒトの運動認識および生成のメカニズムを明 らかにすることができると考えられる。 [0010] また、従来の運動解析手法の主流である、協調運動の結果である、手先や足先な どの一部分の位置姿勢を比較する方法では、大まかすぎて、全体のうちの一部分の ずれなどが検出できないという課題があった。即ち、異なる運動同士を比較する際、 運動の速度が異なる時に生データ同士では比較ができないので、時間を正規化しな ければならな力つた。しかし、速度が運動の重要なファクターである以上、時間を正 規ィ匕するのは望ましくない。実際には、上半身は遅ぐ下半身は速いといった速度の 違いとタイミングの違いにより、全身動作全体のずれが生じている場合がある。このよ うな運動を評価するためには、部位毎に時間を比較しなければならないが、上半身と 下半身は連動しているため、きれいに区切ることは困難である。一方、筋一本ずつを いくつか評価する方法では細かすぎて、全体の協調の様子が明らかにならないという 課題があった。筋張力などは筋電計で求めてきた関係もあり、筋電計のチャンネル数 に制約される。全身に分布する筋の一部を代表させることで、全身運動を評価する場 合、局所的な協調の度合いなどが明らかにならないという課題があった。モーション キヤプチャデータを筋骨格モデルにマッピングすることによって、筋長を計算する手 法が提案されている。しかし、筋数が数百本にも及び、これらを一様に処理しても、大 局的な情報しか得られないという課題があった。結局、主要な筋を選んで比較すると いう手法に頼らざるを得ない状況であり、多数の筋の情報を得られることが十分に生 力されな力つた。即ち、運動の大局的かつ局所的な解析が困難な状態にあった。 This is thought to be due to the lack of perspective on how the human brain receives signals from motor organs and how they are processed. Human body movements result from the interaction of the nervous system with the musculoskeletal system and the outside world. Body movement information includes internal information of the nervous system. Conversely, body movement information is detected by motor sensory organs such as muscle spindles and Golgi tendon organs, and is input to the nervous system. It is thought that the mechanism of human movement recognition and generation can be clarified by tracing the neural information related to body movement in order from the terminal tree to the center. [0010] In addition, the method of comparing the position and orientation of a part such as a hand or a foot, which is the result of cooperative movement, which is the mainstream of conventional motion analysis methods, is too rough, and a part of the whole is shifted. There was a problem that cannot be detected. In other words, when comparing different exercises, it was necessary to normalize the time because the raw data cannot be compared when the speed of the exercise is different. However, since speed is an important factor in movement, it is not desirable to keep time regular. In fact, there may be a shift in the whole body movement due to differences in speed and timing, such as the upper body being slow and the lower body being fast. In order to evaluate such movement, time must be compared for each part, but it is difficult to separate cleanly because the upper body and lower body are linked. On the other hand, the method of evaluating several muscles one by one was too detailed, and there was a problem that the overall state of cooperation could not be clarified. Muscle tension and other factors have been obtained with electromyographs and are limited by the number of channels of the electromyograph. When evaluating the whole body movement by representing a part of muscle distributed throughout the body, there was a problem that the degree of local cooperation was not clarified. A method to calculate muscle length by mapping motion capture data to a musculoskeletal model has been proposed. However, the number of muscles reached several hundreds, and even if these were processed uniformly, there was a problem that only global information could be obtained. In the end, we had to rely on the method of selecting and comparing the main muscles, and we were able to obtain information on many muscles. That is, it was difficult to perform a global and local analysis of movement.
[0011] 本発明は、以上の点に鑑み、全身の筋や腱などの運動情報から神経情報を検出し た上で、運動学習支援に役立てる手法を提供することを目的とする。本発明は、感覚 と運動とをつなぐ脊髄神経に注目し、その筋支配構造をモデル化する。これに基づ いて、運動時に脊髄を流れる神経情報を、脊髄を輪切りにした画像へ、あるいは末 梢神経を流れる神経情報を、時空間パターンへと写像する。神経系の解剖学的構造 を用いて、筋運動情報を脊髄神経情報に写像することにより、人間の運動データから 脊髄に内在する神経情報を得る。本発明では、さらに、この運動情報力 写像された 神経情報を用い、運動の微妙な違 、が神経情報のどのような違いになって現れるの かを検出する手法を提案し、人間の運動の大局的かつ局所的な特徴の評価と比較 を実現することを目的とする。神経系の構造を用いることで、全身運動を人間が内側 から観測する過程に近づくことを目指す。なお、本発明の関連技術として、本発明者 らによる特許出願 (特願 2004— 176455、 2004年 6月 15日出願)があり、本明細書 にその技術内容を参照してインコーポレートする(組み込む)ことができる。 The present invention has been made in view of the above points, and an object of the present invention is to provide a technique that is useful for motor learning support after detecting neural information from motor information such as muscles and tendons of the whole body. The present invention focuses on the spinal nerve that connects sensation and movement, and models its muscle control structure. Based on this, the neural information flowing through the spinal cord during exercise is mapped to an image obtained by slicing the spinal cord or the neural information flowing through the terminal nerve to a spatiotemporal pattern. Neural information inherent in the spinal cord is obtained from human movement data by mapping muscle movement information to spinal nerve information using the anatomical structure of the nervous system. The present invention further proposes a method for detecting how subtle differences in movement appear in the neural information using the neural information mapped by the movement information force, and the human movement. The objective is to evaluate and compare global and local features. By using the structure of the nervous system, the human body moves the whole body Aiming to get closer to the process of observation. In addition, as a related technology of the present invention, there is a patent application by the present inventors (Japanese Patent Application No. 2004-176455, filed on June 15, 2004), which is incorporated into this specification with reference to the technical content thereof (incorporated). )be able to.
[0012] 生体は全身に分布する多数の筋力 の情報をどのように処理して 、るかと!/、うことを 考えると、末梢神経である程度グルーピングした上で、脊髄毎に束ねることによって、 全身の筋情報を身体の位相情報を保持した二次元マップに変換して処理している。 本発明は、このグルーピングした情報同士を比較することにより、全身の離れた部位 の協調度合いを調べることができる。また、本発明は、グループ内の情報同士を比較 することにより、近位筋同士の協調度合いを調べることができる。本発明は、人間の 神経系の構造を利用して、全身運動を表現する大局的な情報と、局所的な情報を階 層的に処理する手法を提案するものである。特に、 [0012] Considering how the living body processes a lot of muscle strength information distributed throughout the body! /, It is grouped to some extent by the peripheral nerves and then bundled for each spinal cord. The muscle information is converted into a two-dimensional map that holds the body phase information and processed. The present invention can check the degree of cooperation of the distant parts of the whole body by comparing the grouped information. Moreover, this invention can investigate the cooperation degree of proximal muscles by comparing the information in a group. The present invention proposes a method for hierarchically processing global information and local information expressing whole body motion using the structure of the human nervous system. In particular,
'神経毎の時空間パターンの類似度を計算し、類似度の高い時刻同士を対応させる ことで、位相差を検出すること  'Calculate the spatiotemporal pattern similarity for each nerve and detect the phase difference by matching the time with high similarity
•同一動作を複数回試行する際に発生する神経情報のパターンとタイミングの違いを 神経毎に比較すること  • Compare the pattern and timing of neural information that occurs when trying the same action multiple times for each nerve.
•異なる筋を支配する脊髄の層全体の活動状態を評価する手法、特に、協調動作が 脊髄のレベルでどのように表現されて 、る力、協調度および次元を求めること • A method for assessing the activity of the entire spinal cord layer that dominates different muscles, in particular, to determine how co-operation is expressed at the level of the spinal cord, and to determine the strength, degree of coordination and dimension.
•この他、神経毎の時間変動のピーク、左右対称度を検出すること • In addition to detecting the peak of time fluctuation and left / right symmetry for each nerve
を目的とする。運動の神経レベルでの比較と評価を実現し、運動学習の支援に役立 てることを目的とする。  With the goal. The purpose is to compare and evaluate motors at the neurological level and to support motor learning.
課題を解決するための手段  Means for solving the problem
[0013] 本発明の第 1の解決手段によると、 [0013] According to the first solving means of the present invention,
時刻に対して、神経 IDと、時刻毎の脊髄断面画像又は時刻毎の体幹カゝら末端へ の神経に支配される筋の位置空間に配置された神経情報と、試行を定めるためのデ ータ IDとを含む神経データを記憶した神経データファイルと、  With respect to time, nerve ID, spinal cross-sectional images at each time or nerve information placed in the position space of muscles controlled by nerves at the trunk and terminal at each time, and data for determining trials A neural data file storing neural data including the data ID,
異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行につ!、て記憶する第 1対応時刻データフアイ ルと、 Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve The first corresponding time data file to be memorized And
神経又は試行間の対応関係を表示する表示部と、  A display for displaying the correspondence between nerves or trials;
前記神経データファイル、前記第 1対応時刻データファイルに対して読出し及び Z 又は書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係 を表示し、前記第 1対応時刻データファイルに記憶するための処理部と  Reading and Z or writing to the neural data file and the first corresponding time data file, obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file And a processing unit for storing
を備え、 With
処理部は、初期設定として、入力部又は他の装置から、神経 、異なる試行をそれ ぞれ定めるための参照データ ID及び対象データ IDを含むデータ属性を設定する手 段と、  The processing unit, as an initial setting, sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
処理部は、初期設定において選択したデータ属性に従い、異なる試行における同 一部位の神経データを参照データと対象データとして、前記神経データファイルから 読み込む手段と、  The processing unit reads, from the neural data file, as reference data and target data, the same portion of neural data in different trials according to the data attribute selected in the initial setting.
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行う手段と、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データ力 指定時間幅分の長さのデータを切り出してテンプレート を作成し、対象データの演算対象となる初期時刻から最終時刻までテンプレートを用 いて走査して、テンプレートと対象データとの時刻毎の相関値を繰り返し演算する手 段と、  The processing unit creates a template by cutting out data with a length corresponding to the reference data force specified time width, scans the template from the initial time to the final time, which is the calculation target of the target data, and scans the template and the target data. A means of repeatedly calculating the correlation value for each time,
処理部は、テンプレートに対し、参照データと対象データとの相関値が最大の時刻 を対応時刻とし、前記第 1対応時刻データファイルに、参照データ IDと、対象データ I Dと、神経 IDと、異なる試行の同一神経における神経情報の対応時刻を示す参照デ ータ時刻及び対象データ時刻と、対応時刻における相関値を対応して記憶する手段 と、  The processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file. Means for storing the reference data time and the target data time indicating the corresponding time of the neural information in the same nerve of the trial and the correlation value at the corresponding time,
処理部は、参照データにおける最終時刻まで所定時刻分時刻を進めてテンプレー トを作成し、前記演算する手段と前記記憶する手段とを繰り返す手段と、  The processing unit creates a template by advancing a predetermined time until the final time in the reference data, and repeats the means for calculating and the means for storing;
処理部は、前記第 1対応時刻データファイルからデータを読み込み、参照データ時 刻と、対象データ時刻との対応関係を前記表示部に表示する手段と、  The processing unit reads data from the first corresponding time data file, and displays a correspondence relationship between the reference data time and the target data time on the display unit,
を有する運動学習支援装置が提供される。 本発明の第 2の解決手段によると、 A motor learning support device is provided. According to the second solution of the present invention,
時刻に対して、神経 IDと、時刻毎の体幹力 末端への神経に支配される筋の位置 を示す筋番号の空間に配置された神経情報と、試行を定めるためのデータ IDとを含 む神経データを記憶した神経データファイルと、  For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
参照データ ID及び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経に 支配される筋番号により特定される神経データと第 2の神経に支配される筋番号によ り特定される神経データとの相関値を対応付けて記憶する協調度データファイルと、 神経又は試行間の対応関係を表示する表示部と、  Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
前記神経データファイルと前記協調度データファイルに対して読出し及び Z又は 書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係を表 示し、前記協調度データファイルに記憶するための処理部と  To read and Z or write to the nerve data file and the cooperation degree data file, obtain the correspondence between nerves or trials, display the correspondence on the display unit, and store it in the cooperation degree data file And the processing part
を備え、 With
処理部は、初期設定として、入力部又は他の装置から、第 1及び第 2の神経 ID、試 行を定めるためのデータ IDを含むデータ属性を設定する手段と、  The processing unit, as an initial setting, sets, from the input unit or other device, a data attribute including first and second nerve IDs and a data ID for determining a trial, and
処理部は、初期設定において選択したデータ属性に従い、異なる神経における同 一試行神経データを参照データと対象データとして、前記神経データファイルから読 み込む手段と、  The processing unit reads the same trial nerve data in different nerves as reference data and target data from the nerve data file according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行う手段と、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データから筋番号毎に演算対象となる全時間の神経データを切り 出してテンプレートを作成し、対象データの筋番号ごとに演算対象となる全時間につ いてテンプレートを用いて走査して、テンプレートと対象データとの筋番号毎の相関 値を繰り返し演算する手段と、  The processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. A means for repeatedly calculating a correlation value for each muscle number between the template and the target data,
処理部は、前記協調度データファイルに、参照データ ID、対象データ ID、第 1及び 第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配される筋番号との マトリクス上に相関値を記憶する手段と、  The processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. Means for storing correlation values on a matrix of
処理部は、参照データにおける各筋番号についてテンプレートを作成し、前記演 算する手段と前記記憶する手段とを繰り返す手段と、 処理部は、前記協調度データファイルからデータを読み込み、第 1及び第 2神経に 支配される各筋の運動協動度を表す相関値をマトリクス状に前記表示部に表示する 手段と、 The processing unit creates a template for each muscle number in the reference data, and repeats the means for calculating and the means for storing; The processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of movement cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
を有する運動学習支援装置が提供される。 A motor learning support device is provided.
本発明の第 3の解決手段によると、  According to the third solution of the present invention,
時刻に対して、神経 IDと、時刻毎の脊髄断面画像又は時刻毎の体幹カゝら末端へ の神経に支配される筋の位置空間に配置された神経情報と、試行を定めるためのデ ータ IDとを含む神経データを記憶した神経データファイルと、  With respect to time, nerve ID, spinal cross-sectional images at each time or nerve information placed in the position space of muscles controlled by nerves at the trunk and terminal at each time, and data for determining trials A neural data file storing neural data including the data ID,
異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行につ!、て記憶する第 1対応時刻データフアイ ルと、  Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve The first corresponding time data file to be stored,
神経又は試行間の対応関係を表示する表示部と、  A display for displaying the correspondence between nerves or trials;
前記神経データファイル、前記第 1対応時刻データファイルに対して読出し及び Z 又は書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係 を表示し、前記第 1対応時刻データファイルに記憶するための処理部と  Reading and Z or writing to the neural data file and the first corresponding time data file, obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file And a processing unit for storing
を備えた運動学習支援装置を用いた運動学習支援方法、各ステップをコンピュータ に実行させるための運動学習支援プログラム及びそのプログラムを記録したコンビュ ータ読み取り可能な記録媒体において、 A motor learning support method using a motor learning support device equipped with a motor learning support program for causing a computer to execute each step, and a computer-readable recording medium storing the program,
処理部は、初期設定として、入力部又は他の装置から、神経 、異なる試行をそれ ぞれ定めるための参照データ ID及び対象データ IDを含むデータ属性を設定するス テツプと、  The processing unit, as an initial setting, sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
処理部は、初期設定において選択したデータ属性に従い、異なる試行における同 一部位の神経データを参照データと対象データとして、前記神経データファイルから 読み込むステップと、  The processing unit reads the neural data of the same part in different trials from the neural data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データ力 指定時間幅分の長さのデータを切り出してテンプレート を作成し、対象データの演算対象となる初期時刻から最終時刻までテンプレートを用 いて走査して、テンプレートと対象データとの時刻毎の相関値を繰り返し演算するス テツプと、 The processing unit cuts out the data for the length of the reference data force specified time width and creates a template A step of scanning using a template from the initial time to the final time for calculation of the target data, and repeatedly calculating a correlation value for each time between the template and the target data;
処理部は、テンプレートに対し、参照データと対象データとの相関値が最大の時刻 を対応時刻とし、前記第 1対応時刻データファイルに、参照データ IDと、対象データ I Dと、神経 IDと、異なる試行の同一神経における神経情報の対応時刻を示す参照デ ータ時刻及び対象データ時刻と、対応時刻における相関値を対応して記憶するステ ップと、  The processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file. A step of storing the reference data time and the target data time indicating the corresponding time of the neural information in the same nerve of the trial, and the correlation value at the corresponding time correspondingly stored;
処理部は、参照データにおける最終時刻まで所定時刻分時刻を進めてテンプレー トを作成し、前記演算するステップと前記記憶するステップとを繰り返すステップと、 処理部は、前記第 1対応時刻データファイルからデータを読み込み、参照データ時 刻と、対象データ時刻との対応関係を前記表示部に表示するステップと、  The processing unit advances a predetermined time by a predetermined time until the final time in the reference data, creates a template, repeats the calculating step and the storing step, and the processing unit starts from the first corresponding time data file. Reading the data and displaying the correspondence between the reference data time and the target data time on the display unit;
を含む運動学習支援方法、各ステップをコンピュータに実行させるための運動学習 支援プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体 が提供される。 A motor learning support method, a motor learning support program for causing a computer to execute each step, and a computer-readable recording medium storing the program are provided.
本発明の第 4の解決手段によると、  According to a fourth solution of the invention,
時刻に対して、神経 IDと、時刻毎の体幹力 末端への神経に支配される筋の位置 を示す筋番号の空間に配置された神経情報と、試行を定めるためのデータ IDとを含 む神経データを記憶した神経データファイルと、  For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
参照データ ID及び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経に 支配される筋番号により特定される神経データと第 2の神経に支配される筋番号によ り特定される神経データとの相関値を対応付けて記憶する協調度データファイルと、 神経又は試行間の対応関係を表示する表示部と、  Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
前記神経データファイルと前記協調度データファイルに対して読出し及び Z又は 書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係を表 示し、前記協調度データファイルに記憶するための処理部と  To read and Z or write to the nerve data file and the cooperation degree data file, obtain the correspondence between nerves or trials, display the correspondence on the display unit, and store it in the cooperation degree data file And the processing part
を備え運動学習支援装置を用いた運動学習支援方法、各ステップをコンピュータに 実行させるための運動学習支援プログラム及びそのプログラムを記録したコンビユー タ読み取り可能な記録媒体において、 A motor learning support method using a motor learning support device, a motor learning support program for causing a computer to execute each step, and a combination recording the program In a readable recording medium,
処理部は、初期設定として、入力部又は他の装置から、第 1及び第 2の神経 ID、試 行を定めるためのデータ IDを含むデータ属性を設定するステップと、  The processing unit sets, as an initial setting, a data attribute including the first and second nerve IDs and a data ID for determining a trial from the input unit or another device; and
処理部は、初期設定において選択したデータ属性に従い、異なる神経における同 一試行神経データを参照データと対象データとして、前記神経データファイルから読 み込むステップと、  The processing unit reads the same trial nerve data in different nerves from the nerve data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データから筋番号毎に演算対象となる全時間の神経データを切り 出してテンプレートを作成し、対象データの筋番号ごとに演算対象となる全時間につ いてテンプレートを用いて走査して、テンプレートと対象データとの筋番号毎の相関 値を繰り返し演算するステップと、  The processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. A step of repeatedly calculating a correlation value for each muscle number between the template and the target data,
処理部は、前記協調度データファイルに、参照データ ID、対象データ ID、第 1及び 第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配される筋番号との マトリクス上に相関値を記憶するステップと、  The processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. Storing correlation values on a matrix of
処理部は、参照データにおける各筋番号についてテンプレートを作成し、前記演 算するステップと前記記憶するステップとを繰り返すステップと、  The processing unit creates a template for each muscle number in the reference data, repeats the calculating step and the storing step,
処理部は、前記協調度データファイルからデータを読み込み、第 1及び第 2神経に 支配される各筋の運動協動度を表す相関値をマトリクス状に前記表示部に表示する ステップと、  The processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of motor cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
を含む運動学習支援方法、各ステップをコンピュータに実行させるための運動学習 支援プログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体 が提供される。 A motor learning support method, a motor learning support program for causing a computer to execute each step, and a computer-readable recording medium storing the program are provided.
発明の効果 The invention's effect
本発明によると、全身の筋や腱などの運動情報から神経情報を検出した上で、運 動学習支援に役立てる手法を提供することができる。本発明によると、さらに、この運 動情報から写像された神経情報を用い、運動の微妙な違!、が神経情報のどのような 違いになって現れるのかを検出する手法を提供し、人間の運動の大局的かつ局所 的な特徴の評価と比較を実現することができる。 According to the present invention, it is possible to provide a technique that is useful for support of movement learning after detecting nerve information from movement information of muscles and tendons of the whole body. Further, according to the present invention, a method for detecting how a subtle difference in motion appears as a difference in neural information using neural information mapped from this movement information is provided. Global and local movement Evaluation and comparison can be realized.
[0018] 本発明によると、グルーピングした情報同士を比較することにより、全身の離れた部 位の協調度合いを調べることができ、また、グループ内の情報同士を比較することに より、近位筋同士の協調度合いを調べることができる。本発明によると、人間の神経 系の構造を利用して、全身運動を表現する大局的な情報と、局所的な情報を階層的 に処理する手法を提供することができる。また、本発明によると、運動の神経レベル での比較と評価を実現し、運動学習の支援に役立てることができる。  [0018] According to the present invention, it is possible to examine the degree of cooperation of distant parts of the whole body by comparing the grouped information, and by comparing the information in the group, the proximal muscle The degree of cooperation between each other can be examined. According to the present invention, it is possible to provide a method for hierarchically processing global information expressing local movements and local information using the structure of the human nervous system. In addition, according to the present invention, comparison and evaluation at the nerve level of motor can be realized, which can be used for support of motor learning.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]脳と脊髄で構成されるヒトの中枢神経系の図。 [0019] FIG. 1 is a diagram of the human central nervous system composed of the brain and spinal cord.
[図 2]脊髄断面と反射経路の説明図。  [Fig. 2] Explanatory drawing of spinal cord cross section and reflection path.
[図 3]脊髄灰白質の断面と前角の体性局在の説明図。  [Fig. 3] Explanatory diagram of spinal gray matter cross section and anterior horn somatic localization.
[図 4]C5についての空間配置図。  [Figure 4] Space layout for C5.
[図 5]対角に剣を振り下ろす袈裟斬り動作の説明図。  [Fig. 5] An illustration of the slashing action of swinging a sword diagonally.
[図 6]袈裟斬り動作時の C5脊髄神経における 10フレーム毎の神経情報画像の図(1 [Fig. 6] Diagram of nerve information image every 10 frames in C5 spinal nerve during slashing action (1
) o ) o
[図 7]袈裟斬り動作時の C5脊髄神経における 10フレーム毎の神経情報画像の図(2 [Fig.7] Diagram of nerve information image every 10 frames in C5 spinal nerve during slashing action (2
) o ) o
[図 8]袈裟斬り動作時の C5脊髄神経における 10フレーム毎の神経情報画像の図(3 [Fig.8] Diagram of nerve information image every 10 frames in C5 spinal nerve during slashing action (3)
) o ) o
[図 9]第五頸神経 (C5)に支配される筋肉の分類の説明図。  FIG. 9 is an explanatory diagram of the classification of muscles governed by the fifth cervical nerve (C5).
[図 10]本装置の接続関係を示す概略構成図。  FIG. 10 is a schematic configuration diagram showing a connection relationship of the apparatus.
[図 11]運動学習支援装置 40のハード構成図。  FIG. 11 is a hardware configuration diagram of the motor learning support device 40.
[図 12]神経データファイル 12 (脊髄断面画像)(入力データ)の説明図。  FIG. 12 is an explanatory diagram of a nerve data file 12 (spinal cord image) (input data).
[図 13]他の神経データファイル 13 (時空間画像 1) (入力データ)の説明図。  FIG. 13 is an explanatory diagram of another neural data file 13 (spatiotemporal image 1) (input data).
[図 14]他の神経データファイル 14 (時空間画像 2) (入力データ)の説明図。  FIG. 14 is an explanatory diagram of another neural data file 14 (spatiotemporal image 2) (input data).
[図 15]脊髄断面画像表示の場合のインタフェースの説明図。  FIG. 15 is an explanatory diagram of an interface when displaying a spinal cord cross-sectional image.
[図 16]同種神経別試行対応時刻データ。  [Fig. 16] Trial-specific trial time data.
[図 17]異種神経同一試行対応時刻データ。 [図 18]メインフローチャート。 [FIG. 17] Time data corresponding to different trials of different nerves. FIG. 18 is a main flowchart.
[図 19]袈裟斬り動作時の (a)筋皮神経と (b)閉鎖神経における神経情報の時空間パ ターン。  [Fig. 19] Spatiotemporal patterns of neural information in (a) myocutaneous nerve and (b) obturator nerve during slashing movement.
圆 20]袈裟斬り動作の二回の試行における (a)第五頸神経 (C5)と (b)第二腰神経(圆 20] (a) The fifth cervical nerve (C5) and (b) The second lumbar nerve (
L2) (c)筋皮神経と (d)閉鎖神経における神経情報の対応時刻と相関。対応する時 刻は青い丸で、類似度は赤い菱形で、それぞれプロットされている。 L2) Correlation with corresponding time of neural information in (c) myocutaneous nerve and (d) obturator nerve. The corresponding time is plotted as a blue circle and the similarity is plotted as a red diamond.
圆 21]袈裟斬り動作の二回の試行における (a)第五頸神経 (C5)と (b)第二腰神経(圆 21] (a) The fifth cervical nerve (C5) and (b) The second lumbar nerve (
L2)、(d)筋皮神経と (e)閉鎖神経における神経情報のタイムチャート。 C5と L2にお ける神経情報の位相差は(c)に、筋皮神経と閉鎖神経における神経情報の位相差 は(f)にプロットされている。 L2), (d) Time chart of nerve information in myocutaneous nerve and (e) obturator nerve. The phase difference of nerve information in C5 and L2 is plotted in (c), and the phase difference of nerve information in myocutaneous and obturator nerves is plotted in (f).
[図 22]メインフローチャートを変形したもの。  [Fig.22] Modified main flowchart.
[図 23]時間変動度の計算の説明図。  FIG. 23 is an explanatory diagram of calculation of the time variation.
圆 24]袈裟斬り動作時の頸膨大および腰膨大における脊髄神経情報の時間変動度 : (a) C4、(b) C5、(c) C6、(d) C7、(e) C8、(f) L2、(g) L3、(h) L4、(i) L5、 (j) Sl 圆 25]袈裟斬り動作時の頸膨大および腰膨大における脊髄神経情報の次元。 [24] Temporal variability of spinal nerve information in cervical and lumbar enlargement during slashing action: (a) C4, (b) C5, (c) C6, (d) C7, (e) C8, (f) L2 , (G) L3, (h) L4, (i) L5, (j) Sl 圆 25] Dimensions of spinal nerve information in cervical and lumbar enlargement during slashing motion.
[図 26]協調度の計算の説明図。 [FIG. 26] An explanatory diagram of the calculation of the degree of cooperation.
[図 27]神経内協調度ならびに神経間協調度を表すパターン:(a) C5神経協調度、 (b )全神経間協調度。輝度が大き 、ほど協調度が高 、。  [FIG. 27] Patterns representing the degree of intra-nerve coordination and the degree of inter-nerve coordination: (a) C5 neuronal coordination, (b) Total inter-nervous coordination. The greater the brightness, the higher the degree of cooperation.
圆 28]協調度データファイル 18 (出力データ)の説明図。 圆 28] Explanatory drawing of cooperation degree data file 18 (output data).
圆 29] (a)時間変動度ファイル 19の説明図、(b)次元データファイル 23の説明図、 ( c)左右対称度データファイル 25の説明図。 (29) (a) Explanatory diagram of the time variability file 19, (b) Explanatory diagram of the dimensional data file 23, (c) Explanatory diagram of the left-right symmetry data file 25.
[図 30]次元についての説明図。 FIG. 30 is an explanatory diagram of dimensions.
[図 31]対称性につ 、ての説明図。 FIG. 31 is an explanatory diagram of symmetry.
[図 32]協調度についての説明図。 [FIG. 32] An explanatory diagram of the degree of cooperation.
[図 33]運動情報 神経情報変換装置 30のハード構成図。  FIG. 33 is a hardware configuration diagram of the exercise information nerve information conversion device 30.
[図 34]神経幾何データファイル 1 (入力データ又は中間データ)の説明図。  FIG. 34 is an explanatory diagram of a neurogeometric data file 1 (input data or intermediate data).
圆 35] (A)神経特徴データファイル 2 (入力データ)の説明図、(B)神経伝導時間デ 一タファイル 3 (出力データ)の説明図。 圆 35] (A) Diagram of nerve feature data file 2 (input data), (B) Nerve conduction time data Illustration of single file 3 (output data).
[図 36] (A)神経 筋対応データファイル 4 (中間データ)の説明図、(B)神経分岐デ 一タファイル 5 (入力データ)の説明図。  [FIG. 36] (A) An explanatory diagram of a neuromuscular data file 4 (intermediate data), and (B) an explanatory diagram of a nerve branch data file 5 (input data).
[図 37] (A)筋順位データファイル 6 (出力データ)の説明図、(B)筋特徴データフアイ ル 7 (入力データ)の説明図、(C)伸筋 屈筋対応データファイル 8 (入力データ)の 説明図。  [Fig.37] (A) Explanatory diagram of muscle rank data file 6 (output data), (B) Explanatory diagram of muscle feature data file 7 (input data), (C) Data file 8 for extensor flexor muscles (input data) )
[図 38] (A)筋運動データファイル 9 (入力データ)の説明図、(B)脊髄神経断面座標 データファイル 11 (出力データ)の説明図。  FIG. 38 (A) Explanatory diagram of muscle movement data file 9 (input data), (B) Explanatory diagram of spinal nerve sectional coordinate data file 11 (output data).
[図 39]メインフローチャート。  FIG. 39 is a main flowchart.
[図 40]空間配置時のデータの様子を示す説明図。  FIG. 40 is an explanatory diagram showing a state of data at the time of space arrangement.
[図 41]時空間パターン作成のための並べ替え 1の説明図。  FIG. 41 is an explanatory diagram of rearrangement 1 for creating a spatiotemporal pattern.
圆 42]動作定義データ 26の説明図。  圆 42] Explanatory drawing of motion definition data26.
[図 43]試行評価データ 28の説明図。  FIG. 43 is an explanatory diagram of trial evaluation data 28.
[図 44]位置―姿勢—力データ 27の説明図。  FIG. 44 is an explanatory diagram of position-posture-force data 27.
[図 45]神経間協調度データ 21の説明図。  FIG. 45 is an explanatory diagram of inter-nerve coordination data 21.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] A.脊髄 (体性)神経系の筋支配モデルについて [0020] A. Muscle control model of spinal cord (somatic) nervous system
1. 脊髄の解剖学的構造  1. the anatomical structure of the spinal cord
神経系は機能的に、体性神経系と自律神経系とに分類される。体性神経系は、意 識的な知覚、随意運動および情報の集成を行っている。自律神経系の主な役割は、 外界の変化に応じて生体の内部環境を恒常的に維持し、器官の働きを調節すること である。本発明では、体の動きを司る体性神経系に着目する。  The nervous system is functionally classified into a somatic nervous system and an autonomic nervous system. The somatic nervous system organizes conscious perception, voluntary movement and information. The main role of the autonomic nervous system is to constantly maintain the internal environment of the living body according to changes in the external world and regulate the functions of the organs. In the present invention, attention is focused on the somatic nervous system that controls the movement of the body.
[0021] 1. 1 脊髄神経系 [0021] 1. 1 Spinal nervous system
図 1に、脳と脊髄で構成されるヒトの中枢神経系の図を示す。  Figure 1 shows a diagram of the human central nervous system composed of the brain and spinal cord.
神経系は解剖学的に、中枢神経系と末梢神経系とで構成される。一般に中枢神経 系というと脳を思い浮かべる。実際には、脳と脊髄とをあわせて中枢神経系という。一 方、末梢神経系は、脳から直接器官に結合する脳神経と、脊髄から発して器官に結 合する脊髄神経とで構成される。神経毎に支配する器官が異なるため、器官は支配 する神経によって分類することができる。人では 31対の脊髄神経が数えられ、頸神 経 (C) 8対、胸神経 (T) 12対、腰神経 (L) 5対、仙骨神経 (S) 5対、尾骨神経 (Coc) 1対で構成される。これらの神経は脊椎骨の隙間を通って脊椎骨の外に出る。本発 明では特に、全身の骨格筋の大部分を支配する脊髄と、脊髄と骨格筋の間をつなぐ 末梢神経の構造に着目する。 The nervous system is anatomically composed of a central nervous system and a peripheral nervous system. Generally speaking, the central nervous system reminds me of the brain. In fact, the brain and spinal cord are collectively called the central nervous system. On the other hand, the peripheral nervous system consists of cranial nerves that connect directly to the organs from the brain and spinal cords that connect to the organs. Consists of the spinal nerves that join. Since the organs that govern each nerve are different, organs can be classified according to the nerve that governs them. In humans, 31 pairs of spinal nerves are counted, cervical nerve (C) 8 pairs, thoracic nerve (T) 12 pairs, lumbar nerve (L) 5 pairs, sacral nerve (S) 5 pairs, coccygeal nerve (Coc) 1 Composed of pairs. These nerves go out of the vertebra through the gaps in the vertebra. In particular, the present invention focuses on the structure of the peripheral nerve that connects the spinal cord and the skeletal muscle, and the spinal cord that controls the majority of skeletal muscles throughout the body.
脊髄神経は脊椎骨から出た後、神経叢と呼ばれる束を作り、再び分岐して全身に 行き渡る。ここで異なる脊髄神経に含まれる線維の交換が行われ、この先の神経に は複数の脊髄に由来する神経が入り混じった構成になる。第五力 第八頸神経 (C5 C8)及び第一胸神経 (T1)は合流して腕神経叢を形成し、体幹上部、上肢帯、上 腕、前腕、手の筋を支配する。腕神経叢から分岐する末梢神経には、筋皮神経、正 中神経、尺骨神経、腋窩神経、橈骨神経などがある。同様に、第一から第三腰神経( LI— L3)及び第四腰神経 (L4)の一部は、腰神経叢を作り、骨盤内部や大腿の筋を 支配する。腰神経叢からは、閉鎖神経と大腿神経が出る。脊髄からは、脊髄断面方 向に沿って、比較的近い部位の筋が束ねられている。これには、伸筋と屈筋の両方 が含まれる。一方、末梢神経には、伸筋、屈筋等、比較的機能が近い筋が束ねられ ている。例えば、筋皮神経は上腕の屈筋の、閉鎖神経は大腿の内転筋の運動をつ 力さどる。  After exiting the vertebrae, the spinal nerves form a bundle called the plexus, branch again, and spread throughout the body. Here, the fibers contained in different spinal nerves are exchanged, and the nerves ahead are composed of nerves derived from multiple spinal cords. Fifth force The eighth cervical nerve (C5 C8) and the first thoracic nerve (T1) join together to form the brachial plexus and control the upper trunk, upper limbs, upper arm, forearm, and hand muscles. Peripheral nerves that branch off from the brachial plexus include myofascial nerves, median nerves, ulnar nerves, axillary nerves, and radial nerves. Similarly, parts of the first to third lumbar nerves (LI-L3) and the fourth lumbar nerve (L4) make up the lumbar plexus and control the muscles in the pelvis and thighs. From the lumbar plexus, the closing nerve and the femoral nerve come out. From the spinal cord, muscles in a relatively close region are bundled along the spinal cord cross-sectional direction. This includes both extensor and flexor muscles. On the other hand, the peripheral nerves are bundled with muscles having relatively close functions such as extensors and flexors. For example, the muscle cutaneous nerve controls the flexor of the upper arm, and the closing nerve controls the motion of the adductor of the thigh.
[0022] 本発明の実施例では、脊髄神経として、第五頸神経 (C5)と第二腰神経 (L2)、ここ から分岐する末梢神経として筋皮神経と閉鎖神経を取り上げ、これらの神経を経由 する神経情報を処理する。脊髄神経及び末梢神経には、脊髄から運動器官へ向かう 遠心性線維と、運動感覚器官から脊髄へ向力う求心性線維の両方が含まれる。筋紡 錘、ゴルジ腱器官などの運動感覚器官では、筋長、筋伸長速度、筋張力などの体性 感覚情報が検出され、脊髄に送られる。  [0022] In the embodiment of the present invention, the fifth cervical nerve (C5) and the second lumbar nerve (L2) are taken as spinal nerves, and the percutaneous nerve and the obturator nerve are taken as peripheral nerves branched from these nerves. Neural information that passes through is processed. The spinal nerves and peripheral nerves include both efferent fibers that travel from the spinal cord to the motor organs and afferent fibers that move from the motor sensory organs to the spinal cord. In motor sensory organs such as muscle spindles and Golgi tendon organs, somatosensory information such as muscle length, muscle extension speed, and muscle tension is detected and sent to the spinal cord.
[0023] 1. 2 脊髄断面の構造と反射 [0023] 1.2 Spinal cord cross-section structure and reflex
図 2に、脊髄断面と反射経路の説明図を示す。  Figure 2 shows an illustration of the spinal cord cross-section and reflection path.
脊髄を断面で見ると、蝶の形をした灰白質とこれを囲む白質とが観察される(図 2、 上部)。白質は脳と脊髄とをつなぐ神経の通り道となっている。灰白質は末梢神経と 中枢神経との接合部分である。灰白質は後角と前角に区別される。後角は求心性、 即ち感覚性の-ユーロンを含み、前角は遠心性、即ち運動性の-ユーロンを含む。 求心性神経を通って知覚の興奮は後角細胞に伝えられ、これらの細胞から脳へ興奮 が伝わる。この興奮は前角にある運動性-ユーロンにも伝えられ、筋の運動を引き起 こす。後者のように誘発された筋反応はよく知られたように反射と呼ばれる。例えば筋 は一時的に伸長されると瞬間的な収縮が起こる。これを伸長反射と呼び、ある高さの 脊髄において少数の-ユーロンを介して行われる。ここで筋の伸長を感知するのは 筋紡錘である。筋紡錘は筋線維と平行して並んでおり、筋の長さと伸長の速度につ いての情報を、求心性神経を介して脊髄に送る。 A cross-sectional view of the spinal cord reveals butterfly-shaped gray matter and surrounding white matter (Fig. 2, Top). The white matter is a nerve pathway that connects the brain and spinal cord. The gray matter is the junction between the peripheral nerve and the central nerve. Gray matter is divided into a rear corner and an anterior corner. The dorsal horn includes centripetal or sensory-euron and the anterior horn includes efferent or motor-euron. Sensory excitement is transmitted to the dorsal horn cells through the afferent nerve, and excitement is transmitted from these cells to the brain. This excitement is also transmitted to the frontal motility-Euron, which causes muscle movement. The latter-induced muscle response is called reflex as is well known. For example, when a muscle is temporarily extended, momentary contraction occurs. This is called the stretch reflex, and is performed via a small number of -eurons in the spinal cord at a certain height. It is the muscle spindle that senses muscle elongation. The muscle spindles are parallel to the muscle fibers and send information about muscle length and extension rate to the spinal cord via afferent nerves.
[0024] 1. 3 脊髄の体性局在 [0024] 1.3 Somatic localization of the spinal cord
図 3に、脊髄灰白質の断面と前角の体性局在の説明図を示す。  Figure 3 shows a cross-sectional view of spinal cord gray matter and an illustration of somatic localization of the anterior horn.
運動器官に指令を送る灰白質の前角には、体の部位に応じた構成即ち体性局在 が見られる。前角内側から外側に向かって 1)体幹、 2)体幹〜四肢、 3)肢帯〜四肢、 4)上腕、大腿、 5)前腕、下腿、 6)手および足の筋を支配するニューロンが配列して おり、近位支配のニューロンが内側に、遠位支配のニューロンが外側に並ぶとされて いる。さらに、前角の背側には屈筋群支配-ユーロン、腹側には伸筋支配-ユーロン が配列する。  In the anterior horn of the gray matter that sends commands to the motor organs, there is a constitution corresponding to the part of the body, that is, somatic localization. From the inside to the outside of the anterior horn 1) Trunk, 2) Trunk to extremity, 3) Limb girdle to extremity, 4) Upper arm and thigh, 5) Forearm and lower leg, 6) Neurons that control the muscles of the hands and feet It is said that the proximally controlled neurons are lined up inside and the distally controlled neurons lined up outside. Furthermore, flexor group control-Euron is arranged on the dorsal side of the anterior horn, and extensor control-Euron is arranged on the ventral side.
[0025] 2. 運動感覚器官と支配神経 [0025] 2. Motor sensory organs and innervating nerves
筋の伸長を感知するのは筋紡錘である。筋紡錘は筋繊維 (錘外筋線維)と平行して 並んでいる。筋が発生する力を感知するのはゴルジ腱器官である。この他の運動感 覚器官として、関節にかかる力に応答する関節受容器や、筋と関節の痛みに応答す る侵害受容器などがある。ここでは、筋運動情報をフィードバックする働きをもってい る筋紡錘とゴルジ腱器官、およびその神経支配にっ ヽて述べる。  It is the muscle spindle that senses muscle elongation. The muscle spindles are aligned with the muscle fibers (external muscle fibers). It is the Golgi tendon organ that senses the force generated by the muscle. Other kinesthetic organs include joint receptors that respond to joint forces and nociceptors that respond to muscle and joint pain. Here, we will describe the muscle spindle and Golgi tendon organ, which have the function of feeding back muscle movement information, and its innervation.
[0026] 2. 1 筋紡錘 筋紡錘は皮膜に包まれた錘内筋線維で構成され、中央がふくらんだ核袋線維と太 さが一定な核鎖線維の二種類がある。筋紡錘を支配する求心性神経は、 group laと group IIがある。前者は核袋線維と核鎖線維の両方にらせん状に巻きついており(一 次終末)、後者は核鎖線維の表面に付着して(二次終末)それぞれ終わっている。一 次終末は筋の長さが大きく変化する時に強く興奮し (動的反応)、筋が一定の長さに 保たれる時に一定の発射を続ける(静的反応)。二次終末では動的反応はほとんど 見られない。 [0026] 2.1 Muscle spindle Muscle spindles are made up of muscle fibers in the spindle wrapped in a membrane, and there are two types: nucleus pouch fibers with a bulged center and nucleus chain fibers with a constant thickness. The afferent nerves that control the muscle spindle include group la and group II. The former is spirally wrapped around both nuclear bladder fibers and nuclear chain fibers (primary endings), and the latter is attached to the surface of the nuclear chain fibers (secondary endings) and ends. The primary terminal is strongly excited when the length of the muscle changes greatly (dynamic response), and continues to fire at a constant length when the muscle is kept at a constant length (static response). There is almost no dynamic response at the secondary end.
一方、筋紡錘には遠心性の神経支配がある。筋を収縮させる遠心性神経は αモー タニューロン、筋紡錘を収縮させる遠心性神経は γモータ-ユーロンと呼ばれる。筋 と筋紡錘の両方を収縮させる遠心性神経は、 βモータ-ユーロンである。特に γモー タニューロンは、筋紡錘の感度調節を行う。 γモータ-ユーロンからの入力により錘 内筋線維が収縮すると、感度が向上する。  On the other hand, muscle spindles have efferent innervation. The efferent nerve that contracts muscle is called α motor neuron, and the efferent nerve that contracts muscle spindle is called γ motor-euron. The efferent nerve that contracts both muscles and muscle spindles is the β motor-euron. In particular, γ motor neurons regulate the sensitivity of muscle spindles. Sensitivity improves when the intramuscular muscle fiber contracts due to input from the γ motor-euron.
求心性神経(group Ia、 group II)と遠心性神経( α、 β、 γモータ-ユーロン)を伝う 信号を統合することで、筋長と伸長速度の情報が脊髄にぉ 、て得られることが分力る  By integrating signals transmitted through afferent nerves (group Ia, group II) and efferent nerves (α, β, γ motor-Euron), information on muscle length and elongation rate can be obtained in the spinal cord. Divide
[0027] 2. 2 ゴルジ腱器官 [0027] 2.2 Golgi tendon organ
ゴルジ腱器官を支配する求心性神経は group lbと呼ばれる。筋の両端は腱となつ て骨に付着しており、筋と腱の接合部および腱の中にゴルジ腱器官が存在する。こ のうち、腱の中にあるゴルジ腱器官は筋全体にカゝかる力を検出する。  The afferent nerve that governs the Golgi tendon organ is called the group lb. Both ends of the muscle become tendons and are attached to the bone, and the Golgi tendon organ exists in the joint between the muscle and the tendon and in the tendon. Among them, the Golgi tendon organ in the tendon detects the force that acts on the entire muscle.
[0028] 3. 運動情報から体性神経情報への写像 [0028] 3. Mapping from motor information to somatic nerve information
前節までに明らかになった、体性神経系、中でも脊髄神経を中心とする解剖学的 構造についてまとめる。  The anatomical structure centered on the somatic nervous system, especially the spinal nerve, that has been clarified up to the previous section, is summarized.
1.全身運動をつかさどる筋は、支配する脊髄によって構造化されている。  1. The muscle that controls whole body movement is structured by the spinal cord that controls it.
2.脊髄の前角細胞力 筋へ信号が送られる。筋紡錘およびゴルジ腱器官からのフィ ードバック信号は、脊髄の後角を通り一部は脳へ、一部は前角細胞へ送られる。  2. Signals are sent to the anterior horn cell muscle of the spinal cord. Feedback signals from muscle spindles and Golgi tendon organs are sent through the dorsal horn of the spinal cord, partly to the brain and partly to anterior horn cells.
3.前角細胞には体部位局在が見られる。 筋長、筋伸長速度及び筋張力情報は、遠心性信号と求心性信号を統合する脊髄 毎に束ねられ、支配筋の活動に影響を与える。運動中の筋運動情報を前角細胞の 配列に沿って配置することで、脊髄に内在する神経情報に変換することができると考 えられる。脊髄の中でも特に発達していることが知られている、第五頸神経 (C5)部 分の脊髄を例に取ってデータ構造を定義する。 3. Body part localization is seen in anterior horn cells. Muscle length, muscle elongation rate, and muscle tension information are bundled for each spinal cord that integrates efferent and afferent signals and affects the activity of the governing muscle. By placing the muscle movement information during exercise along the anterior horn cell array, it can be converted into neural information inherent in the spinal cord. The data structure is defined using the spinal cord of the fifth cervical nerve (C5), which is known to be particularly developed in the spinal cord.
[0029] 図 9に、第五頸神経 (C5)に支配される筋肉の分類の説明図を示す。  FIG. 9 is an explanatory diagram of the classification of muscles governed by the fifth cervical nerve (C5).
この図は、 C5が支配する筋を、前角細胞の配置ルールに従って順に並べたもので ある。図中、第一列は神経番号;第二列は筋肉の位置;第三列は伸筋屈筋の別;第 四列は筋の名前 (筋名 )を表す。  In this figure, the muscles controlled by C5 are arranged in order according to the arrangement rules for anterior horn cells. In the figure, the first column is the nerve number; the second column is the muscle position; the third column is the extensor flexor muscle; the fourth column is the name of the muscle (muscle name).
そこでこれを二次元に展開する方法について述べる。 X— y平面において原点を中 心に第一、第二象限には屈筋を、第三、第四象限には伸筋を配置する。第一、第四 象限には右半身の、第二、第三象限には左半身の筋を配置する。 X座標の絶対値が 小さ 、方力も大き 、方に向力つて体幹に近 、方力も順に並べる。一つの筋が複数の 筋で構成される場合は、 y座標の絶対値が小さい方から大きい方に向かって体幹に 近い方力 順に並べる。  Then, the method of expanding this in two dimensions is described. In the XY plane, the flexor is placed in the first and second quadrants, and the extensor is placed in the third and fourth quadrants with the origin at the center. The right and left quadrants are placed in the first and fourth quadrants, and the left and right half are placed in the second and third quadrants. The absolute value of the X coordinate is small, the force is large, the force is directed toward the trunk, and the force is also arranged in order. When one muscle is composed of multiple muscles, arrange them in order of the force closer to the trunk from the smallest y-coordinate absolute value to the largest.
[0030] 図 4に、以上のルールに従って一辺の長さ 1の升目を配置した、 C5についての空 間配置図を示す。(C5脊髄神経の体性局在における 10フレーム毎の神経情報画像 :フレームレートは 30[frameZsec]である。)配置した升目に沿って、運動計測と計 算によって得られた筋の長さ及び速度の情報を配置する。これまで述べた手順によ つて、運動情報から神経情報への写像を行うことができる。  [0030] FIG. 4 shows a spatial layout diagram for C5 in which a grid having a side length of 1 is arranged according to the above rules. (Neural information image every 10 frames in somatic localization of C5 spinal nerve: Frame rate is 30 [frameZsec].) The length of muscle obtained by motion measurement and calculation along the placed mesh and Arrange speed information. By the procedure described so far, mapping from motion information to nerve information can be performed.
[0031] 従来、筋の制御系につ!/、ては、レンシヨウ細胞と運動単位を有するモデルや歩行 制御モデル、小脳のモデルなどが提案されてきたが、脳神経系と筋骨格系の間をつ なぐ脊髄レベルでの情報の分節構造や位相構造は考慮されてこなカゝつた。本発明で 提案した手法は、解剖学的構造を活用して感覚情報のデータ構造を定義することで 、身体の内側から見た身体運動に迫ろうとするものである。イメージトレーニングにお いて、脳が実際に想起している運動指令、それにより得られる感覚信号のイメージを 具体的に得る手がかりとなると考えられる。運動を行うとき、その運動により得られる感 覚信号をあらかじめ想起する遠心性コピーが、運動指令と共に送られると考えられて いる。本実験で得られたイメージは、この遠心性コピーを形成する基となるイメージ列 であると考えられる。 [0031] Conventionally, models with muscle control systems! /, Models with lotus cells and motor units, gait control models, cerebellar models, etc. have been proposed. The segmental and topological structures of information at the connecting spinal level were taken into consideration. The method proposed in the present invention attempts to approach physical movement viewed from the inside of the body by defining the data structure of sensory information using anatomical structures. In image training, it is thought to be a clue to specifically obtain the motion commands actually recalled by the brain and the images of the sensory signals obtained from them. When performing a motion, it is thought that an efferent copy that recalls the sensory signal obtained by the motion in advance is sent with the motion command. Yes. The image obtained in this experiment is considered to be the image sequence that forms the basis of this efferent copy.
[0032] ベルンシユタインは、脊髄は脳力 運動器官への信号伝達の単なる中継器であり、 運動の制御はすべて脳の運動中枢へ移行したと述べた。現在では、脊髄は単なる中 継器ではなぐ運動機能を調整するための複雑な統合装置であることが知られている 。出力側である前角へ来ている脳力 の指令、あるいは感覚信号は、直接運動-ュ 一ロンには伝えられず、介在-ユーロンに届く。この介在-ユーロンは運動-ユーロン に直接影響を及ぼしたり、あるいは筋受容器と運動-ユーロンの間で行われる反射 に介入して、抑制的または促進的に働いたりする。脊髄と脳が協調して、感覚に対す る運動の調節に当たっているのである。  [0032] Bernciutine stated that the spinal cord was simply a relay for signal transmission to the brain force motor organs, and that all of the control of the movement was transferred to the motor center of the brain. It is now known that the spinal cord is a complex integrated device for coordinating motor functions that are not just relays. The brain force command or sensory signal coming to the anterior horn on the output side is not transmitted directly to the motor-iron, but reaches the intervening-euron. This intervening-Euron has a direct effect on exercise-Euron, or acts in an inhibitory or expeditious manner by intervening in reflexes between muscle receptors and exercise-Euron. The spinal cord and brain work together to regulate the movement of the senses.
[0033] 4.全身運動時脊髄神経情報の計測と計算 [0033] 4. Measurement and calculation of spinal nerve information during whole body exercise
本発明を実施した際に得られる動画像を実験により確かめた。袈裟斬り動作 (足を 一歩踏み込みながら剣を振りかぶり、斜めに大きく振り下ろす動作)について例示す る。  The moving image obtained when the present invention was implemented was confirmed by experiments. Demonstrate an example of a slashing action (the action of swinging a sword while stepping one foot and swinging it down diagonally).
[0034] 4. 1 袈裟斬り動作 [0034] 4.1 Cutting action
図 5に、対角に剣を振り下ろす袈裟斬り動作の説明図を示す。  Figure 5 shows an illustration of the slashing action of swinging the sword diagonally.
袈裟斬りは、正面に袈裟を着た人間が立っていると仮定して、袈裟の襟首から胸元 に沿って剣を斜め下に振り下ろす動作である。剣士力 見て左上力 右下に斬る場 合、以下のような手順で動作する。  Samurai slashing is an operation of swinging a sword down diagonally from the neck of the heel along the chest, assuming that a person with a heel in front is standing. Swordsman power Upper left force When cutting to the lower right, the following procedure is followed.
1.視線は常に正面を向き、剣の根元は常に正中線の正面に位置するよう保つ。右 足を前、左足を後ろに、剣を左斜め前に構える(図 5 (a) )。  1. Keep your line of sight always in front and keep your sword root in front of the midline. Hold your right foot forward, your left foot behind, and your sword diagonally left front (Fig. 5 (a)).
2.剣を右上に振り上げ、頭上を素早く通過させ、剣先を左上まで移動させる。この時 、両足を踏みかえる(その場で斬る場合)(図 5 (b)— (d) )。  2. Swing the sword up to the upper right, quickly pass over the head, and move the tip of the sword to the upper left. At this time, step on both feet (when slashing on the spot) (Fig. 5 (b)-(d)).
3.剣を左上から右下へ真直ぐに、正面で速度が大きくなるよう振り下ろす(図 5 (d)— 3. Swing the sword straight from the upper left to the lower right so that the speed increases in front (Fig. 5 (d) —
(f) ) oこの時、肩の力をできるだけ抜いて剣に働く重力で剣先を加速させる。 (f)) o At this time, the tip of the sword is accelerated by the gravity acting on the sword with the shoulder force removed as much as possible.
4.剣が右下まで到達したら、剣を素早く静止する。静止した時、左足は前、右足は 後ろに位置している(図 5 (f) )。 4. When the sword reaches the lower right, quickly stop the sword. When stationary, left foot is front and right foot is It is located behind (Fig. 5 (f)).
以上のように、袈裟斬りは典型的な全身協調動作であり、習熟を要する。  As described above, slashing is a typical whole body coordinated action and requires proficiency.
[0035] 4. 2 動作計測と筋運動情報の計算 [0035] 4.2 Motion measurement and calculation of muscle movement information
光学式モーションキヤプチヤシステムを用いて袈裟斬り動作中における全身に配置 したマーカの三次元位置を計測した。逆運動学計算により人体筋骨格モデルの関節 角'筋長を、逆動力学計算により筋張力をそれぞれ求め、 33 [msec]毎の時系列デ ータを得た。筋長は直立姿勢時の長さで割り、正規化した。人体の筋骨格モデル (非 特許文献 1)は、 366の筋、 91の腱、 34の靭帯、 56の軟骨、 53の骨群から構成され る。  Using the optical motion capture system, we measured the three-dimensional position of the marker placed throughout the body during the slashing motion. We calculated the joint angle of the human musculoskeletal model by inverse kinematics calculation and the muscle tension by inverse dynamics calculation, and obtained time series data every 33 [msec]. The muscle length was divided by the length in the upright posture and normalized. The human musculoskeletal model (Non-patent Document 1) is composed of 366 muscles, 91 tendons, 34 ligaments, 56 cartilage, and 53 bone groups.
[0036] 4. 3 脊髄神経情報の計算 [0036] 4.3 Calculation of spinal nerve information
全身の筋長および筋張力データの中から、第五頸神経 (C5)が支配する筋のデー タを抽出し、長さについては直立姿勢の筋長で正規ィ匕した上で、前節の方法で神経 情報に写像した。値の大きさは輝度で表現した。  Extract muscle data controlled by the 5th cervical nerve (C5) from whole body muscle length and muscle tension data. And mapped to neural information. The magnitude of the value is expressed in luminance.
[0037] 図 6に、袈裟斬り動作時の C5脊髄神経における 10フレーム毎の神経情報画像の 図(1)を示す(フレームレートは 30[frameZsec]、支配筋の長さがコード化されてい る)。 [0037] Fig. 6 shows a diagram (1) of the nerve information image every 10 frames in the C5 spinal nerve during the slashing action (frame rate is 30 [frameZsec] and the length of the governing muscle is coded). .
この図は、袈裟斬り動作時に支配筋力も C5部分の脊髄へフィードバックされる筋長 を表す脊髄神経情報パターンの変化を示す。 C5は主として上半身の筋、特に胸部と 肩と上腕を支配する。いずれも、袈裟斬り動作時にダイナミックに伸縮する部分であ る。左斜め下方力 右斜め上方に剣を振りかぶる際、左側の体幹に配置する前鋸筋 ( 図 9の 10: Mus.SerratusAnterior)が引き伸ばされる。このため、中心座標力 S (x, y) = ( -0. 5, 0. 5)の領域の輝度が高力つた (40 [frame])。剣を振りかぶった状態で頭 上を通過し、左斜め上方力 振り下ろす際、右側の同筋が引き伸ばされるため、中心 座標が(X, y) = (0. 5, 0. 5)の領域の輝度が高くなつた(60 [frame] )。  This figure shows changes in the spinal nerve information pattern that represents the length of the muscles to which the dominant muscle strength is fed back to the spinal cord of the C5 part during the slashing action. C5 mainly controls the upper body muscles, especially the chest, shoulders and upper arms. Both are parts that dynamically expand and contract during the slashing operation. Left diagonal downward force When swinging the sword diagonally right upward, the front saw blade (10: Mus.SerratusAnterior in Fig. 9) placed on the left trunk is stretched. For this reason, the brightness of the region of central coordinate force S (x, y) = (-0. 5, 0.5) was high (40 [frame]). Passing over the head with the sword swinging and tilting the left diagonal upward force, the same muscle on the right side is stretched, so the center coordinate is in the region of (X, y) = (0, 5, 0.5) The brightness became high (60 [frame]).
[0038] 図 7及び図 8に、それぞれ、袈裟斬り動作時の C5脊髄神経における 10フレーム毎 の神経情報画像の図(2)及び(3)を示す(フレームレートは 30 [frame/sec]、図 7 は、支配筋の伸長速度がコード化されており、図 8は、支配筋の張力がコード化され ている)。 [0038] Figs. 7 and 8 show diagrams (2) and (3), respectively, of the nerve information image every 10 frames in the C5 spinal nerve during the slashing operation (frame rate is 30 [frame / sec], 7 Is encoded for the rate of elongation of the governing muscle, and in Figure 8 the tension for the governing muscle is encoded).
図示のように、筋伸長速度、筋張力についても同様に、 C5部分の脊髄に内在する 神経情報の分布を表す画像列が得られた。図 6から 8は袈裟斬り動作を例として取り 上げたものであり、そのほかの動作についても適用可能である。  As shown in the figure, an image sequence representing the distribution of nerve information inherent in the spinal cord of the C5 portion was similarly obtained for the muscle extension speed and the muscle tension. Figures 6 to 8 show the slashing operation as an example, and other operations are also applicable.
[0039] B.運動学習支援装置 [0039] B. Motor learning support device
1.ハードウェア  1.Hardware
図 10は、本装置の接続関係を示す概略構成図である。  FIG. 10 is a schematic configuration diagram showing the connection relationship of this apparatus.
本装置は、モーションキヤプチャ装置 10、運動情報計算装置 20、運動情報 神経 情報変換装置 30、運動学習支援装置 40、提示装置 50、記憶装置 60を備える。記 憶装置 60には、三次元位置、運動情報、神経情報、運動特徴情報、神経特徴情報 等が記憶される。  The apparatus includes a motion capture device 10, a motion information calculation device 20, a motion information nerve information conversion device 30, a motion learning support device 40, a presentation device 50, and a storage device 60. The storage device 60 stores a three-dimensional position, motion information, nerve information, motion feature information, nerve feature information, and the like.
[0040] モーションキヤプチャ装置 10は、人体の三次元位置を計測し、三次元位置を記憶 装置 60に記憶する(市販: VICONなど)。運動情報計算装置 20は、モーションキヤ プチヤ装置 10の計測結果から筋 '腱'靭帯等運動器官の長さ及び発生力 (運動情報 )を計算し、運動情報を記憶装置 60に記憶する (市販: SIMMなど)。運動情報 神 経情報変換装置 30は、人間の神経系の構造機能モデルに基づいて、運動情報計 算装置 20で得られる運動情報を神経情報に変換し、神経情報を記憶装置 60に記 憶する。運動学習支援装置 40は、運動情報計算装置 20で得られる運動情報および 運動情報-神経情報変換装置 30で得られる神経情報カゝら特徴を抽出し、運動特徴 情報および神経特徴情報を記憶装置 60に記憶する。また、運動学習支援装置 40は 、記憶装置 60に蓄えられた運動情報、神経情報、運動特徴情報、神経特徴情報を 参照し、運動情報計算装置 20または運動情報 神経情報変換装置 30から得られる 運動情報、神経情報と組み合わせて処理することで、運動特徴情報、神経特徴情報 を求め、記憶装置 60に記憶する。記憶装置 60は、外部装置として記載しているが、 各装置 10〜30の内部に備えて、各情報を受け渡しする構成としてもよい。また、提 示装置 50は、運動情報 神経情報変換装置 30の内部の表示装置や運動学習支 援装置 40の内部の表示装置を用いてもょ 、。 [0040] The motion capture device 10 measures the three-dimensional position of the human body and stores the three-dimensional position in the storage device 60 (commercially available: VICON, etc.). The motion information calculation device 20 calculates the length and generated force (motion information) of a motion organ such as a muscle 'tendon' ligament from the measurement result of the motion capture device 10, and stores the motion information in the storage device 60 (commercially available: SIMM etc.). The movement information neural information conversion device 30 converts the movement information obtained by the movement information calculation device 20 into nerve information based on the structural function model of the human nervous system, and stores the nerve information in the storage device 60. . The motor learning support device 40 extracts the motor information obtained by the motor information calculation device 20 and the features of the nerve information obtained by the motor information-nerve information conversion device 30 and stores the motor feature information and the nerve feature information in the storage device 60. To remember. In addition, the motor learning support device 40 refers to the motor information, nerve information, motor feature information, and nerve feature information stored in the storage device 60, and is obtained from the motor information calculation device 20 or the motor information nerve information conversion device 30. By processing in combination with information and nerve information, motor feature information and nerve feature information are obtained and stored in the storage device 60. Although the storage device 60 is described as an external device, the storage device 60 may be provided inside each of the devices 10 to 30 to exchange each information. In addition, the presentation device 50 includes a display device and a motor learning support in the motor information nerve information conversion device 30. Use the display device inside the assisting device 40.
なお、図中、一例として、実線はオンライン、点線はオフラインによる処理をそれぞ れ示す力 適宜オンライン又はオフラインの処理に変更することができる。  In the figure, as an example, the solid line is online, and the dotted line is offline power.
[0041] 図 11に、運動学習支援装置 40のハード構成図を示す。 FIG. 11 shows a hardware configuration diagram of the motor learning support device 40.
この装置は例えば、オフライン '対応時刻表示の場合のハード構成を示し、表示部 41、入力部 42、処理部(CPU) 43、インタフ ース部 (iZF) 44、記憶部 45を備える 記憶部 45は、神経データファイル 12〜14、同種神経別試行対応時刻データファ ィル 15、異種神経同一試行対応時刻データファイル 17、協調度データファイル 18、 時間変動度データファイル 19、神経間協調度ファイル 21、次元データファイル 23、 左右対称度データファイル 25、動作定義データファイル 26、位置一姿勢一力データ ファイル 27、試行評価データファイル 28を含む。  This device shows, for example, a hardware configuration in the case of offline 'corresponding time display, and includes a display unit 41, an input unit 42, a processing unit (CPU) 43, an interface unit (iZF) 44, and a storage unit 45. Are the neuronal data files 12-14, time data file 15 for the same-type nerve-specific trials, time data file 17 for heterogeneous nerves same trial, cooperation degree data file 18, time variability data file 19, interneuronal cooperation degree file 21 Dimensional data file 23, left / right symmetry data file 25, motion definition data file 26, position-and-posture force data file 27, and trial evaluation data file 28.
[0042] 以下に、記憶部 45に含まれるデータファイルについて説明する。 [0042] The data file included in the storage unit 45 will be described below.
図 12に、神経データファイル 12 (脊髄断面画像)(入力データ)の説明図を示す。 神経データは、時刻と、ある時刻における任意の神経の任意の点を伝達する神経 情報が対になったものである。図示の例では、神経データファイル 12は、時刻に対し て、神経 IDと、時刻毎の脊髄断面画像に配置された神経情報と、試行を定めるため のデータ IDとを含む神経データを記憶する。神経情報には、例えば、運動感覚器官 から得られる情報である、筋長、筋伸長速度、筋張力情報などがある。特に、脊髄断 面において、神経配置は筋と神経の位相構造を保って配置されている。神経情報は 、画像で表すものであり、運動が動画像として表現される。また、一般に、神経の伝導 速度により、神経情報は運動情報力 時間遅れがある。脊髄力 遠い手足からの情 報は遅ぐ脊髄力 近い体幹力もの情報は早く到達する。例えば、大脳では時間遅 れをキャンセルして認知しているという報告もある。このため、実際に運動が生起した 時刻の運動情報を神経配置に沿って配置したものも神経情報として扱うことができる  FIG. 12 shows an explanatory diagram of the nerve data file 12 (spinal cord image) (input data). Neural data is a pair of neural information that transmits time and an arbitrary point of an arbitrary nerve at a certain time. In the illustrated example, the nerve data file 12 stores nerve data including a nerve ID, nerve information arranged in a spinal cord cross-sectional image at each time, and a data ID for determining a trial with respect to time. The nerve information includes, for example, information obtained from the motor sensory organs, such as muscle length, muscle extension speed, and muscle tension information. In particular, at the spinal cord cross-section, the nerve arrangement is arranged while maintaining the phase structure of muscle and nerve. Neural information is represented by an image, and motion is represented as a moving image. Also, in general, nerve information has a time delay in motor information power due to nerve conduction velocity. Spinal cord information Information from distant limbs is slow spinal cord information. For example, there are reports that the cerebrum recognizes it by canceling the time delay. For this reason, the movement information at the time when the movement actually occurs can be handled as the nerve information.
[0043] 図 13に、他の神経データファイル 13 (時空間画像 1) (入力データ)の説明図を示 す。 FIG. 13 is an explanatory diagram of another neural data file 13 (spatiotemporal image 1) (input data). The
神経データは、時刻と、ある時刻における任意の神経の任意の点を伝達する神経 情報が対になったものである。この神経情報の時間的変化を静止画像で表すのが時 空間画像である。この例では、脊髄神経及び末梢神経について、筋長および筋伸長 速度が時刻毎に且つ位置 (左右、体幹、末梢等)毎に記憶される。  Neural data is a pair of neural information that transmits time and an arbitrary point of an arbitrary nerve at a certain time. A spatio-temporal image represents this temporal change in neural information as a still image. In this example, for the spinal nerve and the peripheral nerve, the muscle length and the muscle extension speed are stored for each time and for each position (left and right, trunk, periphery, etc.).
[0044] 図 14に、他の神経データファイル 14 (時空間画像 2) (入力データ)の説明図を示 す。  FIG. 14 shows an explanatory diagram of another neural data file 14 (spatio-temporal image 2) (input data).
図示の例では、神経データファイル 13、 14は、時刻に対して、神経 IDと、時刻毎の 体幹から末端への神経に支配される筋の位置空間に配置された神経情報と、試行を 定めるためのデータ IDとを含む神経データを記憶する。  In the example shown in the figure, the nerve data files 13 and 14 perform the trial with the nerve ID, the nerve information arranged in the position space of the muscle controlled by the nerve from the trunk to the terminal for each time, and the trial. Neural data including a data ID for determination is stored.
これら神経データファイル 12〜 14は、記憶部に記憶されるデータでもあり、そのデ ータが表示部に表示される画像をも示す。  These neural data files 12 to 14 are also data stored in the storage unit, and the data also indicate images displayed on the display unit.
[0045] 図 15に、脊髄断面画像表示の場合のインタフェースの説明図を示す。 FIG. 15 is an explanatory diagram of an interface in the case of spinal cord cross-sectional image display.
提示装置 50又は表示部 41には、任意の脊髄断面における神経情報を動画像で 提示される。入力部 42等により、該当する脊髄を選択すると、インタラクティブに断面 を切り替えられる。  On the presentation device 50 or the display unit 41, nerve information on an arbitrary spinal cord cross section is presented as a moving image. When the corresponding spinal cord is selected using the input unit 42 etc., the cross section can be switched interactively.
この他、表示方法としては、例えば、  In addition, as a display method, for example,
•複数選択して同時に表示する  • Select multiple to display at the same time
•異なる運動をした時の同一脊髄神経を並べて表示する  • Display the same spinal nerves side by side with different exercises
•一連の動作を静止画像列として表示する  • Display a series of actions as a still image sequence
などがある。  and so on.
なお、各データファイルの構成は一例を示したにすぎず、必要に応じて適宜のファ ィル構成を用いることができる。各ファイルを適宜結合又は分割したり、含まれるデー タ項目を必要に応じて適宜変更したりしてもょ 、。データ項目の順序を並べ替えても よい。また、神経データ等の出力も一例を示したに過ぎず、適宜変更した表示例とし たり、複数の表示例を表示したりすることもできる。  Note that the configuration of each data file is merely an example, and an appropriate file configuration can be used as necessary. You can combine or divide the files as appropriate, or change the data items included as necessary. The order of the data items may be rearranged. Further, the output of nerve data or the like is only an example, and a display example appropriately changed or a plurality of display examples can be displayed.
[0046] 図 16に、同種神経別試行対応時刻データファイル 15 (出力データ)の説明図を示 す。 同種神経別試行対応時刻データは、異なる試行の同一神経における神経情報の 対応時刻及びその時刻における相関値が対応して記憶されたものである。図示の例 では、同種神経別試行対応時刻データファイル (第 1対応時刻データファイル) 15は 、異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行について記憶する。相関の計算には様々な 手法が知られているが、例としてノイズに強い類似度を用いる。類似度は— 1から 1ま での間の値を取り、 1から類似度を引いた値を誤差とする。類似度が大きいほど、誤 差は小さくなる。なお、データ種別は、例えば、神経データ、時間変動データ、次元 データ、左右対称度データのように、演算に用いたデータの種別を示す。 FIG. 16 shows an explanatory diagram of the time data file 15 (output data) corresponding to trials for different types of nerves. The trial-specific time data for different types of nerves are stored in correspondence with the corresponding time of neural information in the same nerve of different trials and the correlation value at that time. In the example shown in the figure, the trial-specific time data file (first corresponding time data file) 15 for the same type of nerve includes a reference data time and a target data time representing the corresponding time of neural information in the same nerve of different trials, and a correlation at the corresponding time The value, reference data ID, target data ID, and nerve ID are stored for different trials of the same type of nerve. Various methods are known for calculating the correlation, but as an example, we use similarity that is strong against noise. The similarity is a value between 1 and 1, and the error is the value obtained by subtracting the similarity from 1. The greater the similarity, the smaller the error. The data type indicates the type of data used in the calculation, such as neural data, time variation data, dimension data, and left / right symmetry data.
[0047] 図 17に、異種神経同一試行対応時刻データファイル 17 (出力データ)の説明図を 示す。 FIG. 17 shows an explanatory diagram of the time data file 17 (output data) corresponding to different nerves same trial.
異種神経同一試行対応時刻データは、同一試行の異なる神経における神経情報 の対応時刻及びその時刻における相関値が対応して記憶されたものである。図示の 例では、異種神経同一試行対応時刻データファイル (第 2対応時刻データファイル) 17は、同一試行の異なる神経における神経情報の対応時刻を示す参照データ時刻 及び対象データ時刻と、それぞれの神経における相関値 1及び相関値 2と、参照デ ータ ID及びその神経 IDと、対象データ ID及びその神経 IDとを、異種神経の同一試 行について記憶する。このデータは、参照データである試行 1の時刻を基準に、試行 2における神経 1と神経 2の対応時刻を計算したものである。同種神経別試行対応時 刻データファイルを変換することによって得られる。試行 1において同一時刻に生起 した情報が、試行 2においてどのくらいずれて生起する力 即ち位相差が分かる。  The heterogeneous nerve same trial corresponding time data is a corresponding time of neural information in different nerves of the same trial and a correlation value at that time correspondingly stored. In the illustrated example, the heterogeneous nerve same trial corresponding time data file (second corresponding time data file) 17 includes a reference data time and a target data time indicating a corresponding time of nerve information in different nerves of the same trial, and each nerve. Correlation value 1 and correlation value 2, reference data ID and its nerve ID, and target data ID and its nerve ID are stored for the same trial of different types of nerves. This data is obtained by calculating the corresponding times of nerve 1 and nerve 2 in trial 2 based on the time of trial 1 as reference data. It is obtained by converting the time data file corresponding to trials for different types of nerves. The amount of information generated at the same time in Trial 1 and the force that occurs in Trial 2, that is, the phase difference is known.
[0048] 図 28に、協調度データファイル 18 (出力データ)の説明図を示す。 FIG. 28 is an explanatory diagram of the cooperation degree data file 18 (output data).
協調度データファイル 18 (出力データ)に含まれる協調度データは、参照データフ アイル名と対象データファイル名とそれらの相関値が対応して記憶されたものである。 参照データおよび対象データとしては、神経データでも、前処理の段階で得られる時 間変動度データでもよい。相関値が大きいほど、協調度が大きい事を表す。  The cooperation degree data included in the cooperation degree data file 18 (output data) is stored in association with the reference data file name, the target data file name, and their correlation values. The reference data and target data may be neural data or time variability data obtained at the preprocessing stage. The larger the correlation value, the greater the degree of cooperation.
図示の例では、協調度データファイル 18は、参照データ ID及び第 1の神経 ID、対 象データ ID及び第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配 される筋番号との相関値を対応付けて記憶する。 In the illustrated example, the cooperation degree data file 18 includes the reference data ID, the first nerve ID, and the pair. The correlation value between the elephant data ID, the second nerve ID, and the muscle number controlled by the first nerve and the muscle number controlled by the second nerve are stored in association with each other.
[0049] 図 45に、神経間協調度データファイル 21 (出力データ)の説明図を示す。 FIG. 45 is an explanatory diagram of the inter-nerve coordination data file 21 (output data).
神経間協調度データファイル 21は、参照データ IDと対象データ IDと神経 IDの組と Interneuronal cooperation data file 21 includes a set of reference data ID, target data ID, and nerve ID.
、それらの神経データ間の相関値の平均値が対応して記憶されたものである。図 27The average value of correlation values between these neural data is stored correspondingly. Fig. 27
(b)は、第 1及び第 2の神経 IDの組で特定される神経間協調度を表す相関値をマトリ タス状に前記表示部に表したものである。 (b) shows a correlation value representing the degree of cooperation between nerves specified by the set of the first and second nerve IDs in a matrix form on the display unit.
[0050] 図 29 (a)に時間変動度ファイル 19、図 29 (b)に次元データファイル 23、図 29 (c) に左右対称度データファイル 25の説明図をそれぞれ示す。 FIG. 29 (a) shows the time variability file 19, FIG. 29 (b) shows the dimension data file 23, and FIG. 29 (c) shows the left-right symmetry data file 25.
時間変動度データファイル 19 (出力データ)に含まれる時間変動度データは、前処 理の段階で生成されるもので、参照データ、対象データのいずれかまたは両方を変 換したものである。時刻と、その時刻における時間変動度が対応して記憶されたもの である。入力データの内部状態が大きく遷移する時刻において、時間変動度の値が 大きくなる。  The time variability data included in the time variability data file 19 (output data) is generated at the pre-processing stage, and is obtained by converting either or both of the reference data and the target data. The time and the degree of time fluctuation at that time are stored in correspondence. The time variability value increases at the time when the internal state of the input data changes significantly.
[0051] 次元データファイル 23 (出力データ)に含まれる次元データは、前処理の段階で生 成されるもので、参照データ、対象データのいずれ力または両方を変換したものであ る。神経データが参照データ、対象データとなる。神経データファイル名とその神経 データが有するもとの次元と、主成分分析により得られる次元とが対応して記憶され たものである。もとの次元に対し、主成分分析により得られる次元が小さいほど、協調 度が大き 、事を意味して 、る。次元データにっ 、ては後述する。  [0051] The dimension data included in the dimension data file 23 (output data) is generated at the pre-processing stage, and is obtained by converting either or both of the reference data and the target data. Neural data becomes reference data and target data. The neuron data file name, the original dimension of the neuron data, and the dimension obtained by principal component analysis are stored correspondingly. This means that the smaller the dimension obtained by principal component analysis, the greater the degree of cooperation. The dimension data will be described later.
[0052] 左右対称度データファイル 25 (出力データ)に含まれる左右対称度データは、前処 理の段階で生成されるもので、参照データ、対象データのいずれかまたは両方を変 換したものである。時刻と、その時刻における左右対称度が対応して記憶されたもの である。入力データを、左半身の神経情報と右半身の神経情報に分割し、対応する データ同士相関を取ることで得られる。相関が高いほど対称性が高いことを表す。  [0052] The left / right symmetry data included in the right / left symmetry data file 25 (output data) is generated at the pre-processing stage, and is obtained by converting either or both of the reference data and the target data. is there. The time and the left-right symmetry at that time are stored correspondingly. It can be obtained by dividing the input data into neural information for the left and right bodies and correlating the corresponding data. The higher the correlation, the higher the symmetry.
[0053] 図 43に、試行評価データファイル 28の説明図を示す。試行評価データファイル 28  FIG. 43 shows an explanatory diagram of the trial evaluation data file 28. Trial Evaluation Data File 28
(入出力データ)に含まれる試行評価データは、試行に対する評価の結果が試行 ID と評価項目に関する評価値を対応づけて記憶されたものである。あら力じめ用意して おく上級者の試行や、運動過程において蓄積される学習者の試行が含まれる。運動 情報計算装置から得られる運動情報から、試行の種類に応じて計算することで、運 動の評価を行う。 The trial evaluation data included in (input / output data) is obtained by storing the evaluation results for trials in association with trial IDs and evaluation values for evaluation items. Prepare yourself Advanced learners' trials and learner's trials accumulated during the exercise process. The motion is evaluated by calculating according to the type of trial from the motion information obtained from the motion information calculation device.
[0054] 図 44に、位置一姿勢一力データファイル 27の説明図を示す。位置一姿勢一力デ 一タファイル 27 (入力データ)に含まれる位置—姿勢一力データは、時刻に対して、 身体または身体運動の際に用 、る道具の任意の位置及び Z又は姿勢及び Z又は 発生力を表す情報とが対応づけて記憶されたもので、身体または道具の部位を定め るためのデータ IDと、試行を定めるためのデータ IDとを含む。位置一姿勢—カデー タは、モーションキヤプチャ装置 10及び Z又は筋'腱 '靭帯等運動器官の長さ及び 発生力 (運動情報)を計算する運動情報計算装置 20及び Z又は記憶装置 60等と接 続することで取得することができる。  FIG. 44 is an explanatory diagram of the position / posture / force data file 27. Position-posture-force data file 27 The position-posture-force data contained in the input data (input data) is any position and Z or posture and Z Or it is stored in association with information representing the generated force, and includes a data ID for defining the body or tool part and a data ID for defining the trial. Position / posture—The data includes the motion capture device 10 and the motion information calculation device 20 and Z or storage device 60 that calculates the length and force (motion information) of the motion organ such as the Z or muscle 'tendon' ligament. It can be obtained by connecting.
[0055] 図 42に、動作定義データファイル 26の説明図を示す。動作定義データファイル 26  FIG. 42 shows an explanatory diagram of the action definition data file 26. Action definition data file 26
(入力データ)に含まれる動作定義データは、試行 IDに対し、動作名及び Z又は動 作者を対応付けて記憶されたものである。処理部 43は、動作定義データに基づいて 選択された動作を参照データとして提示し、学習者の動作を対象データとして処理し 、比較した結果を提示する。学習者はこれらが近づくように動作を変化させる。  The action definition data included in (input data) is stored in association with the trial ID and the action name and Z or the action person. The processing unit 43 presents the action selected based on the action definition data as reference data, processes the learner's action as target data, and presents the comparison result. The learner changes the movement so that they approach.
[0056] 上記データファイルのうち、同種神経別試行対応時刻データファイル 15、異種神 経同一試行対応時刻データファイル 17、時間変動度データファイル 19、次元データ ファイル 23、協調度データファイル 18、神経間協調度データファイル 21、左右対称 度データファイル 25は、神経情報を表現する。対応時刻、時間変動度、左右対称度 については、神経情報以外にも、入力データが運動情報であっても処理可能である ので、その場合、出力データは運動特徴情報を表現することになる。  [0056] Among the above data files, trial-specific time data file 15 for different types of nerves, heterogeneous neuro-same trial-compatible time data file 17, time variability data file 19, dimension data file 23, cooperation degree data file 18, inter-nerve The cooperation degree data file 21 and the left / right symmetry degree data file 25 represent neural information. The correspondence time, the degree of time variation, and the left / right symmetry can be processed even if the input data is motion information in addition to the neural information. In this case, the output data represents motion feature information.
[0057] 2.ソフトウェア [0057] 2. Software
2. 1 第 1の実施の形態の運動学習支援処理  2.1 Motor learning support processing of the first embodiment
図 18に、第 1の実施の形態の運動学習支援処理のフローチャートを示す。 処理部 43は、処理が開始されると、初期設定を行う(S101)。その後、処理部 43は FIG. 18 is a flowchart of the motor learning support process according to the first embodiment. When the processing is started, the processing unit 43 performs initial setting (S101). After that, the processing unit 43
、神経データファイル 12又は 13又は 14から参照データと対象データを読み込み(S 103)、前処理を実行する(S 105)。つぎに、処理部 43は、初期時刻を設定し (S107 )、参照データ力も指定時間幅のテンプレートを切り出し (S109)、対象データの指定 領域に渡ってテンプレートとの相関を計算し (SI 11)、同種神経の異なる試行につ!ヽ て、参照データにおける時刻と対象データの最大相関値とその時刻を対応づけたも のを、同種神経別試行対応時刻データファイル 15に記憶する(S 113)。処理部 43 は、最終時刻か判断し (S 115)、最終時刻まで単位時刻分時刻を進めて(S 117)、 後処理を実行し、異種神経の同一試行について、対応時刻と相関値を求めて異種 神経同一試行対応時刻データファイル 17に記憶し (S119)、その結果を表示部 11 に提示(表示)する(S121)。ステップ S109、 Si l l, S113を繰り返し、処理を終了 する。なお、各ステップの詳細は、後述する。以上により、参照データと対象データの 対応時刻及びその時刻における相関値の組が得られる。運動の局所的な時間の遅 れまたは進み、即ち位相差の情報が得られる。 , Read reference data and target data from neural data file 12 or 13 or 14 (S 103), pre-processing is executed (S105). Next, the processing unit 43 sets the initial time (S107), cuts out the template with the specified time width for the reference data force (S109), and calculates the correlation with the template over the specified area of the target data (SI 11). For different trials of the same type of nerves, the correlation between the time in the reference data and the maximum correlation value of the target data and the time is stored in the time data file 15 for trials of different types of homologous nerves (S 113). . The processing unit 43 determines whether it is the final time (S115), advances the unit time by the unit time until the final time (S117), executes post-processing, and obtains the corresponding time and correlation value for the same trial of different types of nerves. Is stored in the time data file 17 corresponding to different nerves and the same trial (S119), and the result is presented (displayed) on the display unit 11 (S121). Steps S109, Sill, and S113 are repeated to complete the process. Details of each step will be described later. As described above, the corresponding time of the reference data and the target data and the set of correlation values at that time are obtained. Information on the local delay or advance of the movement, ie, phase difference, is obtained.
[0058] ここで、データ間の関係について説明する。 Here, the relationship between data will be described.
処理部 43は、神経データファイル 12〜 14のいずれかの神経データを複数読み取 り、これらデータに基づき、相関演算を実行して、対応時刻と相関値を求めて同種神 経別試行対応時刻データファイル 15、異種神経同一試行対応時刻データファイル 1 7に記憶する。  The processing unit 43 reads a plurality of neural data in any one of the neural data files 12 to 14, performs a correlation operation based on these data, obtains a corresponding time and a correlation value, and uses the same kind of nerve-specific trial corresponding time data. Store in file 15 and time data file 17 corresponding to different nerves in same trial.
[0059] 以下に各ステップの処理について詳細を説明する。  [0059] Details of the processing of each step will be described below.
(初期設定: S101)  (Initial setting: S101)
初期設定として、処理部が、解析する際に、あらかじめ設定すべき事項は次の通り である。なお、これらの事項は予めデフォルト値として設定しておいてもよい。処理部 43は、これら設定値を、入力部又は IZFを介して他の装置力 入力してもよいし、予 め記憶されたデータを記憶部から読み取ってもよい。  As initial settings, the following should be set in advance when the processing unit performs analysis. These items may be set as default values in advance. The processing unit 43 may input these set values through another input device or IZF, or may read data stored in advance from the storage unit.
(1)参照データと対象データの属性を選択する。データの属性には、神経部位 (神 経 ID)と、試行の種類 (データ ID)と、神経情報特性などがある。ここでは、繰返し処 理するために、複数の神経部位 (神経 ID)を含む属性を設定することができる。  (1) Select the reference data and target data attributes. Data attributes include the nerve part (neural ID), the type of trial (data ID), and neural information characteristics. Here, an attribute including multiple nerve parts (nerve IDs) can be set for repeated processing.
•神経部位 (神経 ID)は、神経名、神経番号等のように神経を識別するための、識別 情報であり、神経 (脊髄等)断面を表す脊髄名、例えば、頸神経 C1 8、胸神経 T1 — 12、腰神経 LI— 5、仙骨神経 SI— 5、尾骨神経 Coclの計 31などがある。また、 神経部位は、末梢神経の場合もある。 • The nerve part (nerve ID) is identification information for identifying the nerve such as the nerve name and nerve number, and the spinal cord name representing the nerve (spinal cord etc.) cross section, for example, cervical nerve C18, thoracic nerve T1 — 12, Lumbar nerve LI-5, sacral nerve SI-5, coccygeal nerve Cocl 31 in total. The nerve site may be a peripheral nerve.
•試行の種類 (データ ID)には、あらゆる運動が含まれる。例えば、参照データには、 上級者や達人や師範の模範試行、自己最高あるいは最低結果が得られた試行など を選択する。対象データには、運動学習の過程での試行を選択する。この例では、 異なる試行の神経情報又は同試行の異なる神経の神経情報をそれぞれ定めるため の参照データ IDと対象データ ID  • Trial type (data ID) includes all exercises. For example, for the reference data, select advanced trials of experts, masters and teachers, trials with the best or lowest results. For the target data, a trial in the process of motor learning is selected. In this example, the reference data ID and target data ID are used to define the neural information of different trials or the neural information of different nerves of the same trial.
•神経情報特性には、運動感覚器官から得られる情報である、筋長、筋伸長速度、筋 張力情報などがある。  • Neural information characteristics include muscle length, muscle extension speed, and muscle tension information, which are information obtained from motor sensory organs.
参照データと対象データは、この例では、いずれも異なる試行における同一部位の 神経データとする。なお、これに限らず適宜の神経データを用いてもよい。  In this example, the reference data and the target data are both nerve data of the same part in different trials. Not limited to this, appropriate neural data may be used.
(2)テンプレートの時間幅を選択する。時間幅が短すぎると対応時刻が前後しやすく 、長すぎると時間幅の細かい変化を検出しに《なる。  (2) Select the template time range. If the time width is too short, the corresponding time is likely to go back and forth, and if the time width is too long, a fine change in the time width is detected.
(3)前処理において必要となる、時間変動度の最小閾値を設定する。  (3) Set the minimum threshold value of the time variability required for preprocessing.
(4)相関の計算法を選択する。代表的なものとして、類似度、ユークリッド距離などが ある。  (4) Select the correlation calculation method. Typical examples include similarity and Euclidean distance.
(5)表示形式を選択。例えば、出力されるデータの空間配置等のデータ形式 (断面、 時空間等)や単数又は複数等を選択。例えば、神経データファイル 12〜14のパター ンのいずれかを選択する。時空間の場合、ある時刻における情報は横一列に配置さ れ、縦方向に時刻を表す力、あるいはその逆になる。また、複数の運動の同じ時刻に おける神経情報や、単一の運動の複数時刻における神経情報を並列に配置する、と いった形式等がある。  (5) Select the display format. For example, select the data format (cross section, spatiotemporal, etc.) such as the spatial arrangement of the output data, or one or more. For example, select one of the patterns of neural data files 12-14. In the case of spatio-temporal, information at a certain time is arranged in a horizontal row, and the power representing time in the vertical direction or vice versa. In addition, there are formats such as arranging neural information at the same time of multiple movements, and arranging neural information at multiple times of a single movement in parallel.
[0060] (参照データと対象データの読み込み: S 103)  [0060] (Reading reference data and target data: S 103)
処理部 43は、初期設定において選択した属性を有する参照データと対象データを 神経データファイル 12又は 13又は 14から読み込む。この例では、参照データと対象 データは、いずれも異なる試行における同一部位の神経データである。  The processing unit 43 reads the reference data having the attribute selected in the initial setting and the target data from the neural data file 12 or 13 or 14. In this example, the reference data and the target data are both nerve data of the same part in different trials.
[0061] 図 19に、参照データと対象データの例を示す。この例は、袈裟斬り動作の試行を 2 回行った際に (a)筋皮神経および (b)閉鎖神経を経由する神経情報の時空間パター ンである。これらの神経が支配する筋の筋長データを抽出し、直立姿勢の筋長で正 規化した。値の大きさは輝度で表現される。試行 1を参照データ (または参照データと 呼ぶ)とし、試行 2を対象データ(または対象データと呼ぶ)とする。 FIG. 19 shows an example of reference data and target data. This example shows the spatiotemporal pattern of neural information via (a) myocutaneous nerve and (b) obturator nerve when two trials of slashing are performed. It is The muscle length data of the muscles controlled by these nerves were extracted and normalized with the length of the upright posture. The magnitude of the value is expressed in luminance. Trial 1 is the reference data (or reference data) and Trial 2 is the target data (or target data).
[0062] (前処理: S 105)  [0062] (Pretreatment: S 105)
処理部 43は、参照データと対象データについて、時間変動度を求めて、相関の開 始時刻と終了時刻を求める。なお、処理部 43は、予め時間変動度を求め時間変動 度データファイル 19に記憶しておき、このステップでそれを読み出して用いてもよい。 処理部 43は、時間変動度が閾値よりも小さい時は相関を計算しない。この前処理を 加えることで、時間変化が小さく対応時刻が明確でない部分を除く効果が得られる。 この前処理は省略してもよい。なお、時間変動度の求め方は後述する。  The processing unit 43 obtains the time variation degree for the reference data and the target data, and obtains the correlation start time and end time. Note that the processing unit 43 may obtain the time variability in advance and store it in the time variability data file 19 so that it can be read and used in this step. The processing unit 43 does not calculate the correlation when the time variation is smaller than the threshold value. By adding this pre-processing, it is possible to obtain an effect of removing a portion where the change in time is small and the corresponding time is not clear. This preprocessing may be omitted. The method for obtaining the time variation will be described later.
[0063] (初期時刻設定: S107)  [0063] (Initial time setting: S107)
処理部 43は、初期時刻を設定する。初期時刻は、前処理 (S105)〖こより得られるも の、または、前処理 S 105を省略した場合等においては、データの先頭時刻を用いる ことちでさる。  The processing unit 43 sets an initial time. The initial time can be obtained from the preprocessing (S105), or when the preprocessing S105 is omitted, the initial time of the data is used.
[0064] (テンプレートの切り出し: S109)  [0064] (Cut out template: S109)
処理部 43は、参照データから現在時刻から指定時間幅分の長さのデータを切り出 し、テンプレートとして用いる。すなわち、現在時刻を t、指定時間幅を Nとして、時刻 t 力も時刻 t+Nまでのデータを切り出す。なお、本実施例では N = 9とする。なお、指 定時間幅はステップ S101で初期設定したり予め定めたりすることができる。  The processing unit 43 cuts out data having a length corresponding to the specified time width from the current time from the reference data and uses it as a template. In other words, the current time is t, the specified time width is N, and the data up to time t + N is extracted for the time t force. In this embodiment, N = 9. Note that the specified time width can be initialized or predetermined in step S101.
[0065] (テンプレートと対象データとの相関演算: SI 11)  [0065] (Correlation between template and target data: SI 11)
処理部 43は、対象データにおいて、演算対象となる初期時刻から最終時刻までの 間の任意の時刻 t'から t' +Nまでのデータと、参照データから切り出したテンプレー トとの相関 (ここでは類似度)を計算する。類似度は、参照データのテンプレートバタ ーンを x、対象データのテンプレートサイズのパターンを yとしたとき、  In the target data, the processing unit 43 correlates the data from an arbitrary time t ′ to t ′ + N between the initial time and the final time to be calculated with the template cut out from the reference data (here: (Similarity) is calculated. The similarity is defined as x for the reference data template pattern and y for the template size pattern of the target data.
f (x, y) = (x-y) / ( | x | | y | )  f (x, y) = (x-y) / (| x | | y |)
で表される。類似度は 1から 1までを取り、完全に一致する場合 1、大きさが一緒で 向きが反対の場合— 1を取る。これを、対象データの演算対象となる初期時刻から最 終時刻まで繰り返す。 [0066] (参照データと対象データの対応時刻の計算: SI 13) It is represented by The similarity score ranges from 1 to 1, taking 1 for perfect match, 1 for the same size but opposite orientation. This process is repeated from the initial time to the final time for which the target data is calculated. [0066] (Calculation of correspondence time between reference data and target data: SI 13)
処理部 43は、テンプレートに対し、対象データの演算対象となる全時刻との類似度 が得られたので、この中で類似度が最大の時刻を対応時刻とする。処理部 43は、同 種神経別試行対応時刻データファイル 15に、神経 、データ種別 (神経データ、時 間変動データ、次元データ、左右対称度データ等)、参照データ ID、対象データ ID 、異なる試行の同一神経における神経情報の対応時刻を示す参照データ時刻及び 対象データ対応時刻、その時刻における相関値を含む同種神経別試行対応時刻デ ータを対応して記憶する。以上により、処理部 43は、神経レベルの運動のパターンと タイミングの違 、を計算することができる。  The processing unit 43 obtains the similarity to all the times that are the calculation target of the target data for the template, and the time having the maximum similarity is set as the corresponding time. The processing unit 43 stores the nerve, data type (neural data, time variation data, dimension data, left / right symmetry data, etc.), reference data ID, target data ID, different trials in the homologous trial-specific time data file 15. The reference data time indicating the corresponding time of the nerve information in the same nerve, the corresponding time corresponding to the target data, and the same nerve type trial corresponding time data including the correlation value at that time are stored correspondingly. As described above, the processing unit 43 can calculate the difference between the movement pattern and timing at the nerve level.
[0067] (繰返し処理: S115、 S117) [0067] (Repeated processing: S115, S117)
処理部 43は、参照データにおけるテンプレートの切り出しについて、最終時刻か判 断し (S115)、テンプレート開始時刻を最終時刻まで単位時刻分時刻を進めて(S 11 7)、ステップ S 109、 Sl l l、 SI 13を繰り返す。最終時刻は、前処理により得られるも の、またはデータの最終時刻を用いる。ただしいずれもテンプレートの長さ Nを引く。 (複数のデータ属性にっ 、ての繰返し処理: S116、S118)  The processing unit 43 determines whether the extraction of the template in the reference data is the final time (S115), advances the template start time to the final time by the unit time (S117), steps S109, Slll, Repeat SI 13. The last time is obtained by preprocessing or the last time of data. However, in all cases, the length N of the template is subtracted. (Multiple data attributes, repeated processing: S116, S118)
処理部 43は、複数の神経について処理を繰り返す場合 (S116)、初期設定 (S10 1)で設定したデータ属性、又は、入力部 42又は他の装置で設定したデータ属性を 用い他の部位にっ 、て同様の処理をして同種神経別試行対応時刻データファイル 1 5にデータを記憶する。  When the processing unit 43 repeats the processing for a plurality of nerves (S116), the data attribute set in the initial setting (S101) or the data attribute set in the input unit 42 or another device is used for another part. Then, the same processing is performed and the data is stored in the time data file 15 corresponding to the same-type nerve trials.
[0068] (後処理: S119) [0068] (Post-processing: S119)
処理部 43は、同種神経別試行対応時刻データファイル 15から、同種神経別試行 対応時刻データを複数読み込み、対応付ける。例えば、処理部 43は、参照データで ある神経 1の試行 1の時刻を基準に、試行 2における神経 1と神経 2の対応時刻を計 算する。例えば、処理部 43は、神経 1試行 1及び試行 2の対応時間を含む同種神経 別試行対応時刻データと、神経 2試行 1及び試行 2の対応時間を含む同種神経別試 行対応時刻データとを、用いる場合、処理部 43は、神経 1の ID、神経 1試行 2のデー タである参照データ ID、神経 2の ID、神経 2試行 2のデータである対象データ ID、デ ータ種別、同一試行の異なる神経における神経情報の対応時刻を示す参照データ 時刻及び対象データ対応時刻、その時刻における相関値を対応させたものを、異種 神経同一試行対応時刻データとして異種神経同一試行対応時刻データファイル 17 に記憶する。これにより、試行 1において同一時刻に生起した、異なる部位における データが、試行 2においてどのくらいずれる力 即ち位相差が分かる。 The processing unit 43 reads a plurality of homogeneous nerve trial-response time data from the homogeneous nerve trial-response time data file 15 and associates them. For example, the processing unit 43 calculates the corresponding times of nerve 1 and nerve 2 in trial 2 based on the time of trial 1 of nerve 1 as reference data. For example, the processing unit 43 generates homologous nerve-specific trial response time data including the corresponding times of nerve 1 trial 1 and trial 2 and homogenous nerve-specific trial response time data including corresponding times of nerve 2 trial 1 and trial 2. In this case, the processing unit 43 uses the same ID for Nerve 1, the reference data ID that is the data for Nerve 1 trial 2, the ID for Nerve 2, the target data ID that is the data for Nerve 2 trial, the data type, and the like. Reference data indicating the corresponding time of neural information in different trial nerves The time corresponding to the target data corresponding time and the correlation value at that time are stored in the heterogeneous nerve same trial corresponding time data file 17 as the different nerve same trial corresponding time data. As a result, it is possible to know how much the data at different parts that occurred at the same time in trial 1 shifts in trial 2, that is, the phase difference.
[0069] (処理結果の提示: S121) [0069] (Presentation of processing result: S121)
処理部 43は、同種神経別試行対応時刻データファイル 15及び Z又は異種神経同 一試行対応時刻データ 16から対応時刻データを読み出し、表示処理を実行して、 表示部 41に表示する。提示に用いるグラフをプロットする手順の例(プロット(1)〜(3 ) )をそれぞれ以下に示す。 プロット(1)  The processing unit 43 reads the corresponding time data from the homologous nerve-specific trial corresponding time data file 15 and Z or the heterogeneous nerve same trial corresponding time data 16, executes display processing, and displays it on the display unit 41. Examples of procedures for plotting graphs used for presentation (plots (1) to (3)) are shown below. Plot (1)
対応時刻及びその時刻における類似度の提示方法について述べる。まず、処理部 43は、同種神経別試行対応時刻データを同種神経別試行対応時刻データファイル 15から読み込み、横軸に参照データの時刻、縦軸に対応データの時刻および類似 度をとる、又は、横軸に参照データの時刻、縦軸に対応データの類似度又は誤差を とったグラフを表示する。対応時刻と類似度を同一グラフにプロットしてもよい。類似 度は極めて高く 1に近 、ので、 1から類似度を引いた誤差の値を実際にはプロットす ることもできる。誤差は、対応時刻の確からしさを示す。誤差が小さい時刻における対 応時刻は確力もしいと言える。  The correspondence time and the method of presenting the similarity at that time are described. First, the processing unit 43 reads homogenous nerve-specific trial corresponding time data from the homogenous nerve-specific trial corresponding time data file 15, and takes the time of the reference data on the horizontal axis and the time and similarity of the corresponding data on the vertical axis, or A graph with the time of reference data on the horizontal axis and the similarity or error of the corresponding data on the vertical axis is displayed. The corresponding time and similarity may be plotted on the same graph. Since the similarity is extremely high and close to 1, the error value obtained by subtracting the similarity from 1 can actually be plotted. The error indicates the likelihood of the corresponding time. It can be said that the response time at the time when the error is small is accurate.
[0070] プロット(2) [0070] Plot (2)
処理部 43は、同種神経別試行対応時刻データを同種神経別試行対応時刻デー タファイル 15から読み込む。処理部 43は、タイミングの違いをより明確にするため、 時間軸を横に取り、参照データと対象データを縦に並べて、対応時刻を線で結ぶよう にしてもよい。これにより、すべての対応時刻同士を結ぶと対応時刻が見えづらくなる ので、任意の時間幅 ΔΤ毎に対応時刻同士線で結ぶようにしてもよい。これにより、 時間の進み遅れを視覚的に提示することができる。  The processing unit 43 reads the homogenous nerve-specific trial corresponding time data from the homogenous nerve-specific trial corresponding time data file 15. In order to clarify the difference in timing, the processing unit 43 may take the time axis horizontally, arrange the reference data and the target data vertically, and connect the corresponding times with a line. As a result, when all the corresponding times are connected, it becomes difficult to see the corresponding times. Therefore, the corresponding times may be connected by a line for each arbitrary time width ΔΤ. As a result, time advance and delay can be visually presented.
[0071] プロット(3) [0071] Plot (3)
処理部 43は、異種神経同一試行対応時刻データファイルを異種神経同一試行対 応時刻データ 17から読み込む。処理部 43は、異なる部位同士の位相差を分力りや すく提示するため、対象データの異なる部位同士の対応時刻を、参照データの時刻 を用いて線で結ぶようにしてもよい。これにより、すべての対応時刻同士を結ぶと対 応時刻が見えづらくなるので、任意の時間幅 ΔΤ毎に対応時刻同士線で結ぶように してもよい。これにより各部位の異なる試行における位相差を視覚的に提示すること ができる。 The processing unit 43 converts the heterogeneous nerve identical trial corresponding time data file to the heterogeneous nerve identical trial pair. Read from the time data 17. Since the processing unit 43 easily presents the phase difference between different parts, the corresponding times of the different parts of the target data may be connected with a line using the time of the reference data. As a result, when all the corresponding times are connected, it becomes difficult to see the corresponding times. Therefore, the corresponding times may be connected by a line between the corresponding time intervals ΔΤ. This makes it possible to visually present the phase difference of each part in different trials.
[0072] 図 20に、プロット(1)の実施例を示す。  FIG. 20 shows an example of plot (1).
同一脊髄神経および末梢神経同士の神経情報の類似度と対応時刻をプロットした ものである。類似度は菱形、対応時刻は丸で描かれている。図 20 (a)、(b)は第五頸 神経 (C5)と第二腰神経 (L2)、図 20 (c)、(d)は筋皮神経と閉鎖神経に対応してい る。横軸は試行 1の時刻、縦軸は試行 2の対応時刻と、その時刻同士の類似度を表 す。類似度が極めて高力つたので、完全に一致した場合(1)からの差分を取り、 104 倍した誤差を同時にプロットした。値が大きいほど、パターンの差が大きいことを意味 する。 This is a plot of the similarity of neural information between the same spinal nerve and peripheral nerve and the corresponding time. The degree of similarity is drawn with a diamond, and the corresponding time is drawn with a circle. Figures 20 (a) and (b) correspond to the fifth cervical nerve (C5) and the second lumbar nerve (L2), and Figures 20 (c) and (d) correspond to the myofascial nerve and the obturator nerve. The horizontal axis represents the time of trial 1, the vertical axis represents the corresponding time of trial 2, and the similarity between the times. A degree of similarity is extremely high strength Tsutano, fully taking the difference from when they match (1) and plotted 104 times the error simultaneously. The larger the value, the greater the pattern difference.
[0073] 脊髄神経と末梢神経の類似度を比較すると、脊髄の方が比較的時刻の対応をなめ らかに取れるがパターンの違いが大きい。一方末梢神経の方が、時刻の対応がなめ らかではないが、脊髄に比べ誤差が小さい (類似度が高い)傾向が見られる。第五頸 神経 (C5)の対応時刻プロット(図 20 (a) )は、前半なだらかで傾きは 1以下である。後 半 75 [frame]以降は傾きがほぼ 1になる。試行 2は試行 1に比べ、前半の変化速度 が大きいことを示している。これに対し、第二腰神経 (L2) (図 20 (b) )は、 65 [frame] と 70 [frame]の間の傾きが急で、それ以外の時刻の傾きはなだらかである。試行 2は 試行 1に比べ、傾きが急な部分については変化速度が小さ力つたと言える。筋皮神 経(図 20 (c) )は、 65 [frame]付近で対応時刻に大きなギャップがある。またその前 後で、対応時刻がしばらく一定の値をとる。誤差の値はその前後と比べ高ぐ 60から 70 [frame]間の対応時刻はあまり信頼できな 、。閉鎖神経 (図 20 (d) )は第二腰神 経 (L2)と類似の傾向が見られ、 65 [frame]付近に傾斜の急な部分がある。  [0073] When the degree of similarity between the spinal nerve and the peripheral nerve is compared, the spinal cord can take time relatively smoothly, but the pattern difference is large. On the other hand, peripheral nerves tend to have smaller errors (higher similarity) than the spinal cord, although the time correspondence is not smooth. The corresponding time plot of the fifth cervical nerve (C5) (Fig. 20 (a)) has a gentle slope of 1 or less in the first half. The slope becomes almost 1 after the latter half 75 [frame]. Trial 2 shows that the rate of change in the first half is larger than Trial 1. On the other hand, in the second lumbar nerve (L2) (Fig. 20 (b)), the slope between 65 [frame] and 70 [frame] is steep, and the slope at other times is gentle. Compared to Trial 1, Trial 2 has a slower rate of change for the steep part. Myoderma (Fig. 20 (c)) has a large gap in the corresponding time around 65 [frame]. Also, before and after that, the corresponding time takes a constant value for a while. The value of the error is higher than before and after that, and the corresponding time between 60 and 70 [frame] is not reliable. The obturator nerve (Fig. 20 (d)) shows a tendency similar to that of the second lumbar nerve (L2), with a steep portion near 65 [frame].
[0074] 対応時刻プロットの見方を整理する。参照データの時刻を横軸に、対象データの時 刻を縦軸に取った場合について説明する。傾きが 1より大きい場合は、同一の変化が 対象データにおいて参照データと比べて長い時間で生じたことを示す。即ち、対象 データは参照データと比べて速度が遅い。逆に、傾きが 1より小さい場合は、同一の 変化が対象データにぉ 、て参照データと比べて短 、時間で生じたことを示す。即ち 、対象データは参照データと比べて速度が速い。このような局所的な速度の変化が 傾きで示される。 [0074] How to read the corresponding time plot is arranged. The case where the horizontal axis represents the time of reference data and the vertical axis represents the time of target data will be described. If the slope is greater than 1, the same change This shows that the target data occurred in a longer time than the reference data. In other words, the target data is slower than the reference data. Conversely, if the slope is less than 1, it indicates that the same change occurred in the target data, but in a shorter time than the reference data. That is, the target data is faster than the reference data. Such a local speed change is indicated by a slope.
[0075] 図 21に、プロット(2)、(3)の実施例を示す。  FIG. 21 shows an example of plots (2) and (3).
二回の試行に関するタイムチャートを描いたのが図 21である。図 21 (a)、(b)、 (d) 、 (e)については、横軸上段が試行 1の時刻、横軸下段が試行 2の対応時刻である。 図 21 (c)は図 21 (a)、 (b)の試行 1の時刻を基準にした試行 2の、図 21 (c)は図 21 ( a)、(b)の試行 1の時刻を基準にした試行 2の、異なる神経間の対応時刻を表す。図 21 (c)の横軸上段は第五頸神経 (C5)の時刻、横軸下段は第二腰神経 (L2)の対応 時刻である。図 21 (f)の横軸上段は筋皮神経の時刻、横軸下段は閉鎖神経の対応 時刻である。対応時刻は、 5 [frame]おきに取った。筋皮神経の試行 1、 60から 75 [f rame]対応時刻は信頼性が高くないので、対応時刻を結ぶ線を点線で描き、それ以 外は実線で描いた。  Figure 21 shows a time chart for the two trials. In Fig. 21 (a), (b), (d), and (e), the upper horizontal axis is the time of trial 1, and the lower horizontal axis is the time of trial 2. Figure 21 (c) is based on the time of trial 1 in Figure 21 (a) and (b), and Figure 21 (c) is based on the time of trial 1 in Figures 21 (a) and (b). Represents the corresponding time between different nerves in trial 2. In Fig. 21 (c), the upper horizontal axis is the time of the fifth cervical nerve (C5), and the lower horizontal axis is the corresponding time of the second lumbar nerve (L2). In Fig. 21 (f), the upper part of the horizontal axis is the time of the myelinated nerve and the lower part of the horizontal axis is the corresponding time of the closed nerve. The corresponding time was taken every 5 [frames]. Muscle skin trial 1, 60-75 [frame] The corresponding time is not reliable, so the line connecting the corresponding times is drawn with a dotted line, and the others are drawn with a solid line.
[0076] 第五頸神経 (C5)のタイミングのずれは前半に集中している(図 21 (a) )。試行 1で は、 50から 70 [frame]までの 20 [frame]力 試行 2では 26から 36 [frame]までの 1 0[frame]に対応し、半分の時間である。即ち、 2倍の速度で類似のパターンが現れ たことになる。これに対し後半は、試行 1の 70から 80 [frame]に対し、 36力 46 [fra me]が対応し、同じ速度である。第二腰神経 (L2)のタイミングのずれは、前半と後半 に少しずつ見られる(図 21 (b) )。試行 1の 65から 70 [frame]までは試行 1の 35から 40 [frame]に対応しており、平均して同一の速度である。その前後は、 15 [frame] に対し l l [frame]、 10[frame]に対して 7[frame]分の時間が力かっており、始めと 終わりの速度が若干速いことが分かる。試行 2における C5と L2の対応時刻を見ると( 図 21 (c) )、 C5の活動は L2に比べ遅く始まり、その分早く進み、後半は逆に L2より 遅く進む。筋皮神経については(図 21 (d) )、 C5と同様の傾向が見られるが、試行 1 の 60から 70 [frame]については対応が明らかでなく分からない。それ以外の時刻の 対応を見ても、全体として速度が速くなつている。閉鎖神経の対応時刻を比較すると (図 21 (e) )、試行 1の 60から 65 [frame]に試行 1の 30から 37 [frame]が対応し、速 度が若干遅くなつていることが特徴的である。それ以外は少しずつ速度が速ぐ全体 としても短!、時間で終了して ヽる。試行 2における筋皮神経と閉鎖神経の対応時刻を 見ると(図 21 (f) )、最初と最後の平均速度が一致しており、その間の時間は筋皮神 経の方が全体として短い。 [0076] The timing shift of the fifth cervical nerve (C5) is concentrated in the first half (FIG. 21 (a)). In trial 1, 20 [frame] force from 50 to 70 [frame] In trial 2, it corresponds to 10 [frame] from 26 to 36 [frame], which is half the time. In other words, a similar pattern appeared twice as fast. On the other hand, in the second half, 36 forces 46 [fra me] correspond to 70 to 80 [frame] in trial 1, and the speed is the same. Deviations in the timing of the second lumbar nerve (L2) can be seen little by little in the first and second half (Fig. 21 (b)). Trial 1 from 65 to 70 [frame] corresponds to Trial 1 from 35 to 40 [frame], and the average speed is the same. Before and after that, it takes ll [frame] for 15 [frame] and 7 [frame] for 10 [frame], and the start and end speeds are slightly faster. Looking at the correspondence time between C5 and L2 in trial 2 (Fig. 21 (c)), the activity of C5 starts later than L2 and proceeds earlier, and the second half progresses later than L2. The myocutaneous nerve (Fig. 21 (d)) shows the same trend as C5, but the correspondence between 60 and 70 [frame] in trial 1 is not clear and unknown. Looking at the correspondence at other times, the overall speed is increasing. When comparing the corresponding time of the closed nerve (Fig. 21 (e)), 60-65 [frame] of trial 1 corresponds to 30-37 [frame] of trial 1, and the speed is a little slow. Other than that, the speed increases little by little as a whole! It ends in time. Looking at the corresponding times of the musculoskeletal and obturator nerves in Trial 2 (Fig. 21 (f)), the average speeds of the first and the last are the same, and the time between them is shorter for the muscular skin as a whole.
以上、本実施例の試行において、神経毎の時空間パターンが類似しており、発生 するタイミングが異なることが分力つた。  As described above, in the trial of this example, it was found that the spatio-temporal patterns for each nerve are similar and the generation timing is different.
[0077] 2. 2 第 2の実施の形態の運動学習支援処理 [0077] 2.2 Motor learning support processing according to the second embodiment
図 22に、第 2の実施の形態の運動学習支援処理のフローチャートを示す。 第 2の実施の形態では、第 1の実施の形態と比べて、参照データからテンプレート を切り出すステップ S 109を省略し、処理部 43は、所定時刻幅ではなぐ参照データ の演算対象となる全体時間と対象データの同じく全体時間との相関を直接計算する (S112)。そして、処理部 43は、参照データと対象データと全体的な相関値の組を 記憶する(S114)。これに付随して、初期時刻設定 S107、最終時刻かの判断 S115 、最終時刻まで単位時刻分時刻を進める S 117が省略される。なお、図 18で述べた 対応時刻の計算を図 22の前処理 (S 105)として、ある時刻において対応時刻を合わ せて力も相関を計算してもよい。すなわち、ステップ S101では、テンプレートに関す る設定を省略することができる。また、ステップ S112では、処理部 43は、公知又は周 知の方法で相関計算を実行し、ステップ S114では、処理部 43は、参照データ ID及 び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経 IDの神経に支配さ れる筋番号と第 2の神経 IDに支配される筋番号との相関値を対応づけて協調度デ ータファイル 23に記憶する。  FIG. 22 is a flowchart of the motor learning support process according to the second embodiment. In the second embodiment, compared to the first embodiment, step S109 for cutting out the template from the reference data is omitted, and the processing unit 43 performs the entire time for which the reference data is not calculated within the predetermined time width. The correlation between the target data and the total time is directly calculated (S112). Then, the processing unit 43 stores a set of reference data, target data, and an overall correlation value (S114). Accompanying this, the initial time setting S107, the determination of whether the final time is S115, and the step S117 of advancing the unit time by the final time are omitted. Note that the calculation of the corresponding time described in FIG. 18 may be performed as preprocessing (S105) in FIG. 22, and the force and correlation may be calculated by matching the corresponding times at a certain time. In other words, in step S101, settings related to the template can be omitted. In step S112, the processing unit 43 executes correlation calculation by a known or known method, and in step S114, the processing unit 43 performs the reference data ID, the first nerve ID, the target data ID, and the second data ID. Correlation values between the muscle number controlled by the nerve ID of the first nerve ID and the muscle number controlled by the nerve of the first nerve ID and the muscle number controlled by the second nerve ID are associated and stored in the cooperation degree data file.
[0078] 2. 3 前処理の変形例 [0078] 2.3 Modified example of preprocessing
以下の前処理 (S105)の例は図 22の運動支援処理の第 2の実施の形態において 、実行され得るバリエーションであり、例えば、初期設定 (S101)等により予め選択す ることができる。なお、図 18の第 1の実施の形態の運動支援処理において適用しても よい。 The following example of pre-processing (S105) is a variation that can be executed in the second embodiment of the exercise support processing of FIG. 22, and can be selected in advance by, for example, initial setting (S101). Note that even if applied in the exercise support processing of the first embodiment in FIG. Good.
[0079] (前処理 時間変動度の計算: S105)  [0079] (Calculation of pre-processing time variability: S105)
図 23に、前処理 S105において実行される時間変動度の計算法の説明図を示す。 処理部 43は、参照データ、対象データ各々の時間変動度を求めるためには、参照 データまたは対象データのある時刻 tから t+Nまでをテンプレートとして切り出し、こ れと同一データの時刻 t+ S tから t+ S t+Nまでのデータとの相関を計算する。これ を初期時刻から終了時刻まで順に繰り返す。処理部 43は、神経 、参照データ ID 又は対象データ ID、時刻に対する時間変動度を含む時間変動度データを時間変動 度ファイル 19に記憶する。  FIG. 23 is an explanatory diagram of the time variation calculation method executed in the preprocessing S105. In order to obtain the time variability of each of the reference data and the target data, the processing unit 43 cuts out the reference data or the target data from time t to t + N as a template, and times t + S t of the same data. To the correlation between t + S t + N. This is repeated in order from the initial time to the end time. The processing unit 43 stores the time variability data including the nerve, the reference data ID or the target data ID, and the time variability with respect to time in the time variability file 19.
[0080] 相関の計算には様々な手法が知られている力 例としてノイズに強い類似度を用い る。類似度を用いる場合、—1から 1までの値をとる。多くの場合、神経情報の相関は 総じて大きく 1に近い。そこで時間変動の様子を見るために、 1から類似度を引いた 値を計算し、時間変動度を求める。類似度が大きいほど、変動度は小さくなる。以上 により、一時間ステップ前との変動の度合いを検出することができる。テンプレートの 時間幅 Nを変化させることにより、変動度の計算対象を変えることができる。 N= lの 場合絶対値を、 N = 3の場合速度を、 N = 5の場合加速度を、 N = 7の場合加速度の 時間微分までを考慮に入れて変化を検出することになる。 [0080] A strong similarity to noise is used as a powerful example of the correlation calculation. When using similarity, it takes a value between -1 and 1. In many cases, the correlation of neural information is generally large and close to 1. Therefore, in order to see how the time fluctuates, the value obtained by subtracting the similarity from 1 is calculated to obtain the time fluctuation. The greater the similarity, the smaller the variation. As described above, it is possible to detect the degree of fluctuation from the one hour step. By changing the time width N of the template, the calculation target of the variability can be changed. Changes are detected by taking into account absolute values when N = l, speed when N = 3, acceleration when N = 5, and time differential of acceleration when N = 7.
なお、どの筋が特に状態遷移しているかを調べるときには、神経が支配する筋 1つ ずつについての運動情報の時間変動度を計算すればよい。特に、どの筋の運動情 報が大きく変化して 、る力を調べることができる。  When investigating which muscles are in particular state transitions, it is only necessary to calculate the temporal variation of movement information for each muscle that is controlled by the nerve. In particular, it is possible to examine the strength of which muscle information changes greatly.
[0081] 図 24に実施例として、袈裟斬り動作時の神経情報の時間変動度を示す。 FIG. 24 shows, as an example, the degree of temporal fluctuation of nerve information during the slashing operation.
脊髄の頸膨大部 (C4 C8)と腰膨大部 (L2— L5、 SI)付近に入力される神経情 報の時間変動を示す。図 24 (a) - (e)が C4— C8にそれぞれ対応し、図 24 (f) - (j) 力 SL2— L5, S1にそれぞれ対応している。ここでは、時間幅 N = 9としている。脊髄の 頸膨大部と腰膨大部はそれぞれ、上肢と下肢を支配する。頸膨大部と腰膨大部の変 動度を比較すると、頸膨大部の方が大きぐいずれも二峰性になっている。頸膨大部 においては、上部に位置するほど前半に対し後半のピークが大きい。逆に腰膨大部 では、下部ほど後半のピークが大きい。変動は腰膨大部の方が頸膨大部よりもなめら かである。前半のピーク時刻は C4を除き頸膨大部の方が早ぐ後半のピーク時刻は 腰膨大部の方が早い。筋の活動は脊髄毎に同期して変化しており、同期のタイミング が少しずつ異なることが分力つた。ピークの時刻と大きさが神経により異なることが分 かる。全身協調動作の大局的な違いを神経という局所的なまとまり毎に比較すること 力 Sできる。時間変動度が極大を取る時刻が神経データの状態遷移時刻になる。 It shows the time variation of the neural information input near the cervical enormous part (C4 C8) and the lumbar enormous part (L2- L5, SI) of the spinal cord. Figures 24 (a)-(e) correspond to C4-C8, respectively, and Figure 24 (f)-(j) forces SL2-L5, S1 respectively. Here, the time width N = 9. The cervical and lumbar regions of the spinal cord dominate the upper and lower limbs, respectively. Comparing the degree of variability between the cervical and lumbar areas, the cervical areas are more bimodal. In the cervical enormous part, the peak in the second half is larger than the first half in the upper part. On the contrary, in the lumbar region, the lower peak is larger at the lower part. Fluctuation is smoother in the hips than in the necks It is. The peak time in the first half is earlier in the cervical enormous area except for C4, and the peak time in the latter half is earlier in the lumbar enormous area. The muscle activity changes synchronously from spinal cord to spinal cord, and the synchronization timing is slightly different. It can be seen that the peak time and size differ depending on the nerve. It is possible to compare the global differences in whole-body cooperative behavior for each local unit of nerves. The time when the time variation takes the maximum is the state transition time of the neural data.
[0082] (前処理 次元の計算: S 105) [0082] (Preprocessing Dimension calculation: S 105)
図 30に、次元についての説明図を示す。  FIG. 30 shows an explanatory diagram of dimensions.
前処理 S 105にお 、て実行される次元の計算法を示す。  The pre-processing S 105 shows the dimension calculation method executed.
処理部 43は、神経データ(参照データ、対象データ)に、公知又は周知の主成分 分析を行うことで、次元を計算する。この例では、具体的には、累積寄与率が閾値を 超える要素の数を計算する。処理部 43は、神経 ID、参照データ ID又は対象データ I D、神経 IDに対応する次元データを次元データファイル 23に記憶する。もとの要素 数に対し、主成分分析により得られる次元が小さいほど、協調度が大きい事を意味し ている。  The processing unit 43 calculates dimensions by performing known or well-known principal component analysis on the neural data (reference data, target data). In this example, specifically, the number of elements whose cumulative contribution rate exceeds the threshold is calculated. The processing unit 43 stores the dimension data corresponding to the nerve ID, the reference data ID or the target data ID, and the nerve ID in the dimension data file 23. The smaller the dimension obtained by principal component analysis with respect to the original number of elements, the greater the degree of cooperation.
[0083] このステップでは、処理部 43は、例えば、各神経情報について、次元を求める。主 成分分析を行い、元の要素数で次元を割ったものを縮約率と呼ぶ。処理部 43は、こ れを各神経毎に計算する。協調の大局的な度合いを、次元という形で表現し、比較 することができる。同一の運動について、人により次元が大きく異なる場合は、運動の 協調度が大きく異なることになる。  In this step, the processing unit 43 obtains a dimension for each neural information, for example. The principal component analysis and the dimension divided by the original number of elements is called the contraction rate. The processing unit 43 calculates this for each nerve. The global degree of cooperation can be expressed and compared in the form of dimensions. If the dimensions of the same movement differ greatly from person to person, the degree of coordination of the movement will vary greatly.
[0084] なお、主成分分析とは、互いに相関のある多種類の変数の情報を、互いに無相関 な少数個の総合特性値に要約する方法である。 n変量 (n次元)の観測値を m個 (m 次元)の総合的指標 (主成分)で代表させる。各主成分が元のデータに含まれる特徴 をどの程度表現しているの力、あるいは何個の主成分を採用すれば元のデータに含 まれる特徴を十分に表現できるのかを示す指標として、累積寄与率がある。第 m主成 分までの分散の和が分散の総和に占める割合で定義される。  Note that the principal component analysis is a method of summarizing information on many types of variables that are correlated with each other into a small number of comprehensive characteristic values that are uncorrelated with each other. Let n variables (n dimensions) observations be represented by m (m dimensions) comprehensive indices (principal components). As an indicator of how much each principal component represents the features included in the original data, or how many principal components can be used to sufficiently represent the features included in the original data, There is a cumulative contribution rate. The sum of the variances up to the m-th principal component is defined as the proportion of the total variance.
[0085] 図 25に、次元の計算の実施例を示す。  FIG. 25 shows an example of dimension calculation.
袈裟斬り動作について、体性神経情報の脊髄頸膨大部 (C4— C8)および腰膨大 部 (L2— S1)における主成分の次元を求めた。累積寄与率が 0. 8を超える要素の数 を計算し、 3から 7となった。主成分分析で得られる次元を要素数で割った縮約率は 脊髄の位置によらず 0. 1前後であった。各神経の次元を、それぞれ線グラフ、棒ダラ フの形でプロットしたものが図 25 (a)と(c)である。縮約率をプロットしたのが図 25 (b) である。同様に、上段蹴り動作について計算したところ、脊髄毎の神経情報の次元は 6— 10、縮約率は 0. 2前後であった。得られた結果は、線形ベクトルで時間パターン を近似する際に必要なデータの次元を表して 、る。全身運動時の体性神経情報は、 脊髄毎に極めて縮退しており、協調の度合いが大きいということが分力つた。さらに、 実験を行った二種類の動作にぉ 、ては、縮退の度合 、が脊髄の位置によらな 、こと も分力つた。これは、脊髄神経回路網により、神経情報が内部的にカップリングして いるためと考えられる。 Regarding the slashing action, the dimensions of the principal component in the spinal neck enormous area (C4–C8) and the lumbar area (L2–S1) of somatic nerve information were obtained. Number of elements whose cumulative contribution exceeds 0.8 From 3 to 7. The contraction rate obtained by dividing the dimension obtained by principal component analysis by the number of elements was around 0.1 regardless of the position of the spinal cord. Figures 25 (a) and 25 (c) plot the dimensions of each nerve in the form of a line graph and a bar graph. Figure 25 (b) shows the reduction ratio. Similarly, when the upper kicking motion was calculated, the nerve information dimension for each spinal cord was 6-10, and the contraction rate was around 0.2. The results obtained represent the dimensions of the data needed to approximate the time pattern with a linear vector. The information on somatic nerves during whole body exercise was extremely degenerate for each spinal cord, and the degree of coordination was high. In addition, the two types of motions that were tested also showed that the degree of degeneration depends on the position of the spinal cord. This is thought to be because neural information is internally coupled by the spinal cord neural network.
[0086] (前処理 左右対称度の計算: S105) [0086] (Preprocessing symmetric calculation: S105)
図 31に、対称性についての説明図を示す。  FIG. 31 shows an explanatory diagram of symmetry.
前処理 S 105にお 、て実行される左右対称度の計算法を示す。  In the pre-processing S 105, the calculation method of the left-right symmetry executed is shown.
入力された神経データを、左半身の神経情報と右半身の神経情報に分割し、左右 対称で同一部位を支配する筋運動データ同士を対応させて神経情報の差分を取る ことで得られる。絶対値が小さいほど対称性が高いことを表す。処理部 43は、神経 I D、参照データ ID又は対象データ ID、神経 IDに対応する差分を左右対称度データ として左右対称度データファイル 25に記憶する。  The input neural data is obtained by dividing the neural information of the left half of the body and the information of the right half of the body, and by correlating the muscle movement data that are symmetrical and controlling the same part, and taking the difference of the neural information. The smaller the absolute value, the higher the symmetry. The processing unit 43 stores the difference corresponding to the nerve ID, reference data ID or target data ID, and nerve ID in the left-right symmetry data file 25 as left-right symmetry data.
[0087] 神経情報の対称性を計算するには、ある時刻 tから t+Nまでの左半分のデータを テンプレートとして切り出し、これと同一神経情報の時刻 tから t + Nまでの右半分の データとの相関を計算する。これを t=T (初期時刻)から t=T (終了時刻)まで順に [0087] In order to calculate the symmetry of the neural information, the left half data from a certain time t to t + N is cut out as a template, and the right half data from the time t to t + N of the same neural information is extracted. Calculate the correlation with. From t = T (initial time) to t = T (end time)
0 1  0 1
繰り返す。相関の計算には時間変動度と同様に類似度を用いる。得られる結果を対 称度と呼び、 1から類似度を引いた値を非対称度と呼ぶ。類似度が大きいほど、対称 度は大きぐ非対称度は小さくなる。ここで、テンプレートの時間幅 Nを変化させること により、対称度および非対称度の計算対象を変えることができる。 N= lの場合絶対 値を、 N = 3の場合速度を、 N = 5の場合加速度を、 N = 7の場合加速度の時間微分 までを考慮に入れて対称性を検出することになる。  repeat. Similarity is used for correlation calculation as well as temporal variation. The result obtained is called the degree of symmetry, and the value obtained by subtracting the similarity from 1 is called the degree of asymmetry. The greater the degree of similarity, the greater the degree of symmetry and the smaller the degree of asymmetry. Here, by changing the time width N of the template, the object of calculation of symmetry and asymmetry can be changed. The symmetry is detected by taking into account the absolute value when N = l, the speed when N = 3, the acceleration when N = 5, and the time derivative of acceleration when N = 7.
[0088] 連続的な動作を行う際、たとえば井桁崩し、体転換、袈裟斬りといった武道の基本 動作において、初期状態と最終状態では姿勢が左右反転する場合が多くある。この 時、初期状態力 最終状態に遷移するタイミングは、筋や神経によって様々である。 体転換では、できるだけ正面を向いている時間を短くすることが奨励される。これを実 現するためには、各筋をタイミングよく切り替えなければならない。このタイミングがい つどこであり、直接最終状態へと最短で到達するのか、中間状態を通るのかは部位 によるが、これらの動作は、筋の切り替えタイミングを意識することによって向上させる ことができる。参照データと対象データの左右対称度の相関を計算し、異なる部分が 、左右反転のタイミングが異なる部分であると言える。 [0088] When performing continuous movements, for example, the basics of martial arts, such as breaking the girder, changing body, and cutting the sword In operation, the posture is often reversed left and right in the initial state and the final state. At this time, the timing of transition to the initial state force final state varies depending on the muscle and nerve. In transition, it is encouraged to keep the front facing as short as possible. To achieve this, each line must be switched in a timely manner. The timing of when and when to reach the final state in the shortest time or through the intermediate state depends on the region, but these actions can be improved by being aware of the timing of muscle switching. The correlation between the reference data and the target data is calculated, and it can be said that the different part is the part where the horizontal flip timing is different.
[0089] 2. 4 相関演算の変形例 [0089] 2.4 Modification of correlation calculation
以下の相関演算のバリエーションは、主に第 2の実施の形態の運動学習支援処理 のステップ S112についてである力 同様の処理を第 1の実施の形態の運動学習支 援処理のステップ S 119の後処理にお!、て実行してもよ!/、。  The following variation of the correlation calculation is mainly the force which is the step S112 of the motor learning support process of the second embodiment. The same process is performed after the step S 119 of the motor learning support process of the first embodiment. You can do it for processing!
[0090] (相関演算 協調度の計算: S112) [0090] (Correlation calculation Cooperation degree calculation: S112)
図 32に、協調度についての説明図を示す。  Fig. 32 shows an illustration of the degree of cooperation.
図 26に、参照データと対象データの相関演算 S112において実施される、協調度 の計算法を示す。  FIG. 26 shows a calculation method of the degree of cooperation performed in the correlation calculation S112 between the reference data and the target data.
参照データと対象データはそれぞれ、神経データファイル 13または 14の(時空間 画像)形式とする。処理部 43は、神経データファイルについて、支配する筋運動デー タ同士の相関を一つずつ計算する。処理部 43は、参照データから切り出すテンプレ 一トを筋番号 (横方向)に沿って順にずらす。参照データと対象データに含まれるす ベての筋運動情報同士の相関を計算することになる。以上により、ある神経に支配さ れる筋同士の運動情報の協調度が検出される。類似度が高いほど筋同士の協調度 が高ぐ低いほど協調度が低い。これは、局所的な神経内協調度を表す。処理部 43 は、得られる協調度を図のように各筋番号のマトリクス状に配置し、参照データ ID及 び第 1の神経 ID、対象データ ID及び第 2の神経 IDとともに協調度ファイル 18に記憶 する。  The reference data and the target data are in the (spatio-temporal image) format of the neural data file 13 or 14, respectively. The processing unit 43 calculates the correlation between the dominating muscle movement data one by one for the nerve data file. The processing unit 43 sequentially shifts the template cut out from the reference data along the streak number (horizontal direction). The correlation between all the muscle movement information included in the reference data and the target data is calculated. As described above, the degree of coordination of movement information between muscles controlled by a certain nerve is detected. The higher the degree of similarity, the lower the degree of cooperation between the muscles, and the lower the degree of cooperation. This represents a local degree of cooperation within the nerve. The processing unit 43 arranges the obtained cooperation degree in a matrix of each muscle number as shown in the figure, and stores it in the cooperation degree file 18 together with the reference data ID, the first nerve ID, the target data ID, and the second nerve ID. Remember.
[0091] 図 27 (a)に、対応させた参照データを縦軸に、対象データを横軸に取り、神経内協 調度を平面に配置した様子を示す。神経データの要素数は必ずしも一致して 、なく てもよく、同一神経でなくてもよい。このため、異なる神経同士の相関を計算すること ができる。相関には類似度を用いた。前処理の段階で時間変動度を求めておき、参 照データと対象データの時間変動度の相関を計算してもよい。輝度が大きいほど協 調度が高いことを表している。各点の輝度は、同一神経支配筋同士の運動情報の協 調度を表している。なお、神経データの時間変動度を協調度の計算の入力として用 いてもよい。これをさらに、ピーク値が 1で揃うように正規ィ匕したものを用いてもよい。 以上のような前処理を施すことにより、変化量の絶対値の大きさによらず、状態遷移 時刻と遷移過程の協調度を調べることができる。 [0091] Figure 27 (a) shows the corresponding reference data on the vertical axis and the target data on the horizontal axis. A state where the furniture is arranged on a plane is shown. The number of elements of the neural data is not necessarily the same, and may not be the same nerve. For this reason, the correlation between different nerves can be calculated. Similarity was used for correlation. The time variability may be obtained at the preprocessing stage, and the correlation between the reference data and the time variability of the target data may be calculated. The higher the brightness, the higher the degree of coordination. The brightness of each point represents the degree of coordination of movement information between the same innervating muscles. Note that the time variation of neural data may be used as an input for calculating the degree of cooperation. In addition, a normal value obtained so that peak values are aligned at 1 may be used. By performing the pre-processing as described above, it is possible to examine the degree of cooperation between the state transition time and the transition process regardless of the absolute value of the change amount.
[0092] 2. 5 後処理、提示処理の変換例 [0092] 2.5 Post-processing and presentation processing conversion examples
(後処理 神経間協調度の計算: S119)  (Post-processing Calculation of inter-nerve coordination: S119)
第 2の実施の形態の運動学習支援処理のステップ S112協調度の計算の後処理 S 119にお 、て実行される神経間協調度の計算法を示す。  Step S112 of the motor learning support process according to the second embodiment After the calculation of the degree of cooperation S119, a calculation method of the degree of cooperation between nerves executed is shown.
[0093] 処理部は、参照データ IDと第 1の神経 ID、対象データ IDと第 2の神経 IDで特定さ れる協調度データファイル 18から相関値を読み込み、協調度データファイル 18に記 憶されたマトリクス上の相関値の平均を計算し、神経間協調度データファイル 21に記 憶する。すなわち、処理部は、予め定められた参照データ IDにおける複数の第 1の 神経 IDの組と、予め定められた対象データ IDにおける複数の第 2の神経 IDの組との マトリクス上に相関値の平均を、神経間協調度データファイル 21に記憶する。この平 均は、同一神経に支配される複数の筋同士の相関値の平均である。例えば、神経間 協調度のマトリクス(図 27 (b) )のひとつの升目の値は、神経協調度マトリクス(図 27 ( a) )の全体の升目の値の平均値になる。処理部は、これを、第 1の神経 IDの組と第 2 の神経 IDの組の組み合わせすべてに対して繰り返し行う。すなわち、処理部は、予 め定められた参照データ IDにおける他の第 1の各神経 IDと、予め定められた対象デ ータ IDにおける他の第 2の各神経 IDについて、平均値の演算及び記憶を繰り返す。  [0093] The processing unit reads the correlation value from the cooperation degree data file 18 specified by the reference data ID and the first nerve ID, the target data ID and the second nerve ID, and stores the correlation value in the cooperation degree data file 18. The average of the correlation values on the matrix is calculated and stored in the interneuronal cooperation data file 21. That is, the processing unit has a correlation value on a matrix of a plurality of first nerve ID sets in a predetermined reference data ID and a plurality of second nerve ID sets in a predetermined target data ID. The average is stored in the interneuronal cooperation data file 21. This average is the average of the correlation values of multiple muscles controlled by the same nerve. For example, the value of one cell in the matrix of nerve coordination (FIG. 27 (b)) is the average value of all the cells in the nerve coordination matrix (FIG. 27 (a)). The processing unit repeats this process for all combinations of the first nerve ID group and the second nerve ID group. That is, the processing unit calculates an average value for each of the other first nerve IDs in the predetermined reference data ID and the other second nerve IDs in the predetermined target data ID. Repeat the memory.
[0094] つぎに、処理部は、神経間協調度データファイル 21からデータを読み込み、第 1及 び第 2の神経 IDの組で特定される神経間協調度を表す相関値をマトリクス状に表示 部に表示する。このように、神経同士の相関を計算することにより、全身動作における 大局的な神経間協調度を求めることができ、図 45で示される神経間協調度データフ アイル 21が得られる。 [0094] Next, the processing unit reads data from the inter-neuron cooperation degree data file 21 and displays the correlation values representing the inter-nerve cooperation degree specified by the first and second nerve ID pairs in a matrix form. To display. In this way, by calculating the correlation between nerves, it is possible to obtain a global degree of cooperation between nerves in the whole body movement, and the inter-nerve cooperation degree data file 21 shown in FIG. 45 is obtained.
[0095] 図 27 (b)は、第 1及び第 2の神経 IDの組で特定される神経間協調度を表す相関値 をマトリクス状に前記表示部に表したものである。即ち、神経毎に分けて階層的に協 調度を計算することにより、局所的かつ大局的な協調の状態を計算することが可能と なる。  [0095] FIG. 27 (b) shows the correlation values representing the degree of cooperation between nerves specified by the set of the first and second nerve IDs in a matrix on the display unit. In other words, it is possible to calculate the state of local and global cooperation by calculating the degree of cooperation hierarchically for each nerve.
[0096] (提示 画像提示: S121)  [0096] (Presentation Image presentation: S121)
提示 S 121にお ヽて実行される画像提示法を示す。  Presentation The image presentation method executed in S121 is shown.
処理結果を線グラフ、棒グラフ、平面プロットするほかに、参照データと対象データ を重ねて表示したり、並べて表示したり、相関や差分を表示したりするようにしてもよ い。学習者は、参照データである上級者の神経データに近づくように、あるいはうまく いった時のパターンに向かってそれを超えるような運動を生成するように練習を行う。  In addition to displaying the processing results as line graphs, bar graphs, or plane plots, the reference data and the target data may be displayed in an overlapping manner, displayed side by side, or correlations and differences may be displayed. The learner will practice to approach the advanced neural data, which is the reference data, or to generate a movement that goes beyond that towards the pattern of success.
[0097] (提示 音声提示: S121) [0097] (Presentation voice presentation: S121)
提示 S 121にお 、て実行される音声提示法を示す。  In Presentation S121, the voice presentation method executed is shown.
筋、神経レベルで解析を行ったとしても、これをもう一度学習者に自覚できる形で提 示することが課題となる。視覚的に見ただけでは分力りづらい場合があり、処理部 43 は、その場合は音声に変換することができる。神経情報を音声情報に変換する方法 の例を示す。このこと〖こより、学習者が体性感覚を体性感覚野だけでなぐ聴覚野で 処理することができるよう〖こなる。  Even if analysis is performed at the muscle or nerve level, it is a challenge to present this in a form that the learner can recognize again. In some cases, it may be difficult to apply force by visual observation. In this case, the processing unit 43 can convert the sound into speech. An example of how to convert neural information into speech information is shown. This makes it possible for learners to process somatosensory sensations in the auditory cortex, which is limited to the somatosensory cortex.
•処理部 43は、神経毎あるいは筋毎に周波数の異なる音を割り当てて、神経情報の 大きさ又は変化を音圧、音量に変換する。  • The processing unit 43 assigns sounds having different frequencies for each nerve or muscle, and converts the magnitude or change of nerve information into sound pressure and volume.
[0098] この時、学習者は同じ和音が出るように運動する。 [0098] At this time, the learner exercises to produce the same chord.
•処理部 43は、主動筋に注目し、主動筋や主動筋を含む神経情報の時間変動度が ピークとなる時刻に音色又は音量が少しずつ異なる打楽器などを用いて音を鳴らす  • The processing unit 43 pays attention to the main muscles and plays sounds using percussion instruments with slightly different timbre or volume at the time when the temporal fluctuation of neural information including the main muscles and main muscles reaches a peak.
•処理部 43は、主動筋に注目し、主動筋や主動筋を含む神経情報の左右対称度が ピークとなる時刻に音色又は音量が少しずつ異なる打楽器などを用いて音を鳴らす [0099] 音が聞こえて力も反応するまでに時間が力かるので、学習者はあら力じめ音色ゃリ ズムを先に聞いておき、次に同じタイミングで同じ音色やリズムが出せるように変化さ せていく。本手法は、筋や神経のレベルで詳細な運動を視覚障害者の人に伝えるこ とができる。ダンスなどの習得に効果が期待される。従って、本手法はユニバーサル デザインを実現する。視覚障害者でなくても、画面を見入ることができず、ヘッドマウ ントディスプレイをかぶることのできないようなダイナミックな運動を、運動中の学習者 に提示することができる。 • The processing unit 43 pays attention to the main muscles and plays sounds using percussion instruments with slightly different tones or volumes at times when the left and right symmetry of the nerve information including the main muscles and the main muscles peaks. [0099] Since it takes time to hear the sound and react to the power, the learner listens to the timbre rhythm first and then changes so that the same timbre and rhythm can be produced at the same timing. Let me. This method can convey detailed movements to visually impaired people at the muscle and nerve level. It is expected to be effective in learning dance. Therefore, this method realizes universal design. Even if you are not visually impaired, you can present dynamic exercises to the learners who are unable to see the screen and wear the head-mounted display.
[0100] 2. 6 参照データに関する初期設定の変形例および設定のための評価値計算法 ここで、運動学習メカニズムに基づく参照データの選び方について述べる。運動学 習には大きく分けて二種類ある。ひとつは、手本をまねて型を身につける教師有学習 である。もう一つは、繰り返し練習により自分の体に合った動きを探る教師なし学習、 または強化学習である。特に後者は、結果が目的にかなうかどうかを評価しながら目 的に近づけようとする。前者は小脳で、後者は大脳基底核で主に行われているという 脳科学の知見がある。そこで参照データには、例えば、上級者や達人や師範の模範 試行をあら力じめ蓄えておくことができる。また、他の例では、参照データには、運動 学習過程における学習者自身の試行を、繰り返し学習の進行とともに蓄えていき、評 価を行い、自己最高または最低の試行を整理しておくことができる。客観的な評価基 準は、運動の種類により異なるが、例えば袈裟斬り動作であれば、剣先の(a)始点及 び (b)終点の位置、(c)始点と終点をつなぐ軌道の直進性, (d)全身特に腕部の適 度な弛緩、(e)全身の動的安定性、(f)腰の高さの一定性などがある。参照データに 模範試行を選択し、学習者の試行と比較する場合は、教師有学習過程を支援する。 自己最高または最低評価時の試行を選択し、学習者の試行と比較する場合は、教 師なし強化学習過程を支援する。 [0100] 2.6 Initial variation on reference data and evaluation value calculation method for setting Here we describe how to select reference data based on the motor learning mechanism. There are two types of kinematics. One is supervised learning that imitates models and learns patterns. The other is unsupervised learning or reinforcement learning in which repeated exercises are used to search for movements that suit your body. The latter, in particular, tries to get closer to the objective while assessing whether the results meet the purpose. There is brain science knowledge that the former is mainly performed in the cerebellum and the latter in the basal ganglia. Therefore, for example, advanced trials, masters, and teachers can be stored in the reference data. In another example, the reference data may store the learner's own trials in the motor learning process as iterative learning progresses, evaluate them, and organize the best or lowest trials. it can. The objective evaluation criteria differ depending on the type of movement. For example, in the case of a slashing action, (a) the start point and (b) the position of the end point of the sword tip, (c) the straightness of the trajectory connecting the start point and the end point, (D) adequate relaxation of the whole body, especially the arm, (e) dynamic stability of the whole body, (f) constant waist height, etc. Supporting the supervised learning process when model trials are selected for reference data and compared with learner trials. Support the unsupervised reinforcement learning process when choosing a self-highest or lowest evaluation trial and comparing it to a learner trial.
[0101] 以下の評価値計算法では、第 1及び第 2の実施の形態の運動学習支援処理に適 用されるものであり、主な変更ステップについて以下に説明する。  The following evaluation value calculation method is applied to the motor learning support processing of the first and second embodiments, and the main change steps will be described below.
なお、教師なし学習過程または教師あり学習過程のいずれを支援するかの設定は 、例えば、ステップ S101の初期設定又は適宜のステップにおいて、入力部、記憶部 又は他の装置等から、適宜設定することができる。 Note that the setting of whether to support an unsupervised learning process or a supervised learning process is For example, in the initial setting in step S101 or in an appropriate step, the setting can be made as appropriate from the input unit, the storage unit, or another device.
[0102] (初期設定 動作定義: S101)  [0102] (Initial setting operation definition: S101)
教師有学習過程を支援する際、処理部 43は、動作定義データ 26を読み込む。図 42に、動作定義データ 26の例を示す。試行 IDと動作名と動作者が対応して記憶さ れている。動作名と動作者を設定すると、処理部 43は対応する試行 IDを探し出し、 参照データの特定に用いる。動作者としては、動作の熟練者である、師範、達人、上 級者を設定するとよい。  When supporting the supervised learning process, the processing unit 43 reads the motion definition data 26. FIG. 42 shows an example of the action definition data 26. The trial ID, action name, and operator are stored in correspondence. When an action name and an operator are set, the processing unit 43 searches for a corresponding trial ID and uses it to identify reference data. As an operator, it is recommended to set a teacher, a master, and an expert who are skilled in operation.
[0103] (初期設定 評価項目: S101) [0103] (Initial setting Evaluation item: S101)
教師なし学習過程を支援する際、処理部 43は、試行評価データ 28を読み込む。 図 43に、試行評価データ 28の例を示す。試行 IDと、評価項目に対応する評価値が 対応して記憶されている。評価項目を設定すると、処理部 43は評価値が最大または 最小となる試行 IDを探し出し、参照データの特定に用いる。  When supporting the unsupervised learning process, the processing unit 43 reads the trial evaluation data 28. Figure 43 shows an example of trial evaluation data28. The trial ID and the evaluation value corresponding to the evaluation item are stored correspondingly. When the evaluation item is set, the processing unit 43 searches for the trial ID having the maximum or minimum evaluation value and uses it for specifying the reference data.
[0104] (初期設定 評価関数: S101) [0104] (Initial setting evaluation function: S101)
教師なし学習過程を支援する際、処理部 43は、位置 姿勢一力データ 27を読み 込む。図 44に、位置 姿勢一力データ 27の例を示す。時刻に対して、身体または 身体運動の際に用いる道具の任意の位置及び Z又は姿勢及び Z又は発生力を表 す情報と、身体または道具の部位を定めるためのデータ IDと、試行を定めるための データ IDとが記憶されている。評価関数を設定し、位置 姿勢一力データまたは神 経データから試行の評価値を計算する方法を特定する。  When supporting the unsupervised learning process, the processing unit 43 reads the position and orientation power data 27. Fig. 44 shows an example of position / posture force data27. To determine the position of the body or any tool used for body movement, Z or posture, Z or generated force, data ID for defining the body or tool part, and trial The data ID is stored. Establish an evaluation function and specify how to calculate the evaluation value of trial from position / posture force data or neural data.
なお、位置一姿勢一力データは、モーションキヤプチャ装置及び Z又は筋'腱 '靭 帯等運動器官の長さ及び発生力 (運動情報)を計算する運動情報計算装置及び Z 又は記憶装置と接続することで取得することができる。  The position / posture / force data is connected to the motion capture device and the motion information calculation device that calculates the length and force (motion information) of the motion organ such as Z or muscle 'tendon' ligament. You can get it.
[0105] (後処理 評価: S119) [0105] (Post-processing evaluation: S119)
教師なし学習過程を支援する際、処理部 43は、位置 姿勢一力データまたは神 経データから評価関数を用いて試行の評価値を計算し、試行評価データファイル 28 に試行 IDと評価項目と評価値を対応づけて記憶する。評価値としては、例えば、各 項目の所定のデータを用いた適宜の評価関数を用いることで計算することができる。 [0106] 具体例として、袈裟斬り動作の例を用いて説明する。袈裟斬り動作において、足を 踏みかえる際、腰の高さができるだけ変化しない方がよいとされる。初心者は足を踏 みかえる際、腰が一瞬浮いて、腰の高さが高くなり、最初と最後は低い傾向にある。こ れに対し熟練者は腰の高さが低ぐ高さを大きく変化させずに足を踏み替える。この ため、足を踏みかえる瞬間においても全身が安定している。このような、袈裟斬り動作 の評価項目(f)腰の高さの一定性の評価関数は、次のように定める。床から重力に逆 向きに Z軸を取ると、腰の高さは腰の位置の Z成分で表される。腰の位置の Z成分時系 列を [z (0)、 Z (1)、 Z (2)、 、 z (n) ]と表現すると、腰の高さの高さ方向変化の 総和は、 When supporting the unsupervised learning process, the processing unit 43 calculates an evaluation value of the trial using the evaluation function from the position / posture power data or the neural data, and the trial evaluation data file 28 stores the trial ID, the evaluation item, and the evaluation. The values are stored in association with each other. The evaluation value can be calculated, for example, by using an appropriate evaluation function using predetermined data for each item. [0106] As a specific example, description will be given using an example of a slashing operation. It is recommended that the hip height should not change as much as possible when stepping on the slashing action. Beginners tend to float for a moment when they step on their feet, with their hips becoming taller and lower at the beginning and end. In contrast, the skilled person changes his / her foot without greatly changing the height at which the waist is low. For this reason, the whole body is stable at the moment of stepping. Such an evaluation function for the slashing action (f) The evaluation function for the constant waist height is defined as follows. Taking the Z axis from the floor in the direction opposite to gravity, the waist height is expressed by the Z component of the waist position. If the Z component time series of the waist position is expressed as [z (0), Z (1), Z (2), z (n)], the total sum of changes in the height direction of the waist height is
[0107] [数 1] [0107] [Equation 1]
^\z(i -z(i-l)\ で表される。これが小さい程、腰の高さの上下動が小さいことになるので、評価関数 f (z)は、例えば、 ^ \ z (i -z (i-l) \. The smaller this is, the smaller the vertical movement of the waist height, so the evaluation function f (z) is, for example,
[0108] [数 2] f(z) = -∑\z(i)-z(i-\)\  [0108] [Equation 2] f (z) = -∑ \ z (i) -z (i-\) \
i=l  i = l
又は、  Or
f(z)^\/^\z(i)-z(i-l)\  f (z) ^ \ / ^ \ z (i) -z (i-l) \
(ただし、 分母が 0のとき、 は所定値) 等となる。即ち、この例において、評価値を定めるための入力データは位置 姿勢 力データのうちの位置データの時系列の Z成分となる。評価値は、位置データの時系 列の Z成分を評価関数 f(z)に代入することで計算される。 (However, when the denominator is 0, is a predetermined value.) That is, in this example, the input data for determining the evaluation value is the time-series Z component of the position data of the position / orientation / force data. The evaluation value is calculated by substituting the time component Z component of the position data into the evaluation function f (z).
このようにして、運動学習の過程の試行データを毎回評価しながら蓄積し、次回以 降の試行の際に結果を用いることができるようになる。  In this way, trial data on the process of motor learning can be accumulated while being evaluated each time, and the results can be used in subsequent trials.
[0109] (提示 評価値: S121) 教師なし学習過程を支援する際、処理部は、試行評価データファイル 28からデー タを読み込み、試行 IDと評価項目と評価値の組を表示部に表示する。繰り返し試行 を行う際、学習者は毎回の試行がよ力つたのか悪力つたのかを確かめながら運動学 習を実施することができるようになる。 [0109] (Presentation evaluation value: S121) When supporting the unsupervised learning process, the processing unit reads data from the trial evaluation data file 28 and displays a combination of trial ID, evaluation item, and evaluation value on the display unit. During repeated trials, the learner will be able to carry out kinematic learning while confirming whether each trial is strong or bad.
[0110] C.運動情報 神経情報変換装置 [0110] C. Motor information Neural information converter
運動情報 神経情報変換装置については、本発明者らによる特許出願 (特願 200 4—176455、 2004年 6月 15日出願)があり、本明細書にその技術内容を参照して インコーポレートする(組み込む)ことができる。  Exercise Information Regarding the nerve information conversion device, there is a patent application by the present inventors (Japanese Patent Application No. 2004-176455, filed on June 15, 2004). Can be incorporated).
[0111] 1.ハードウェア [0111] 1. Hardware
図 33に、運動情報 神経情報変換装置 30のハード構成図を示す。  FIG. 33 shows a hardware configuration diagram of the exercise information / neural information conversion apparatus 30.
この装置は例えば、オフライン '脊髄断面画像表示の場合のハード構成を示し、表 示部 31、入力部 32、処理部(CPU) 33、インタフ ース部 (I/F) 34、記憶部 35を備 える。  This device shows, for example, a hardware configuration in the case of offline 'spinal cord cross-sectional image display, and includes a display unit 31, an input unit 32, a processing unit (CPU) 33, an interface unit (I / F) 34, and a storage unit 35. Prepare.
記憶部 35は、神経幾何データファイル 1、神経特徴データファイル 2、神経伝導時 間データファイル 3、神経一筋対応データファイル 4、神経分岐データファイル 5、筋 順位データファイル 6、筋特徴データファイル 7、伸筋 屈筋対応データファイル 8、 筋運動データファイル 9、脊髄神経断面座標データファイル 11、神経データファイル 12〜14を含む。  The storage unit 35 includes a nerve geometry data file 1, a nerve feature data file 2, a nerve conduction time data file 3, a nerve one-corresponding data file 4, a nerve branch data file 5, a muscle rank data file 6, a muscle feature data file 7, Extensor flexor muscle data file 8, muscle movement data file 9, spinal nerve cross-section coordinate data file 11, and nerve data files 12-14.
なお、記憶部 35は又は処理部 33等は、運動学習支援装置の記憶部 45又は処理 部 43等と、一部又は全部について共有の記憶部又は処理部等としてもよい。  Note that the storage unit 35 or the processing unit 33 or the like may be partly or entirely shared with the storage unit 45 or the processing unit 43 or the like of the motor learning support device.
[0112] 以下に、記憶部 35に含まれるデータファイルについて説明する。 [0112] The data file included in the storage unit 35 will be described below.
図 34に、神経幾何データファイル 1 (入力データ又は中間データ)の説明図を示す 表 1で示すように、神経幾何データファイル 1が記憶する神経幾何データは、神経 番号、対応する脊髄名、筋名、脊髄と筋肉とこの間の神経線名(列)が対応して記憶 されたものである。神経線名は、点列として神経を定義することも可能である。なお、 神経線は伝導速度や伝導時間など特性を持っため、神経線を神経点とは別に定義 する。表 2では、神経線名に対して、始点名と終点名が記憶される。神経線の始点、 終点を総称して神経点と呼ぶ。表 2は、表 3で示すような、神経点名と神経点座標を 対応づけるデータと組み合わせて用いられる。 Fig. 34 shows an explanatory diagram of the neurogeometric data file 1 (input data or intermediate data). As shown in Table 1, the neurogeometric data stored in the neurogeometric data file 1 includes the nerve number, the corresponding spinal cord name, muscle Name, spinal cord and muscle, and nerve line names (columns) between them are stored in correspondence. A nerve line name can also define a nerve as a point sequence. In addition, Since nerve lines have characteristics such as conduction velocity and conduction time, nerve lines are defined separately from nerve points. In Table 2, the start point name and the end point name are stored for the nerve line name. The start and end points of nerve lines are collectively called nerve points. Table 2 is used in combination with data that correlates nerve point names and nerve point coordinates as shown in Table 3.
[0113] 図 35 (A)に、神経特徴データファイル 2 (入力データ)の説明図を示す。  FIG. 35 (A) shows an explanatory diagram of the nerve feature data file 2 (input data).
神経特徴データファイル 2が記憶する神経幾何データは、表 1に示すように、末梢 神経名と神経線列が対応して記憶されたものと、表 2に示すように、神経線名と伝導 速度が、対応して記憶されたもので構成される。伝導速度としては、求心性と遠心性 の神経伝導速度がある。なお、この例では、神経幾何データと神経特徴データを分 離して構成したが、一例にすぎず分離しないで適宜構成してもよい。また、一例とし て、ここでは求心性神経伝導速度のみ用いる。  The neural geometry data stored in the nerve feature data file 2 is the one in which peripheral nerve names and nerve line trains are stored correspondingly as shown in Table 1, and the nerve line name and conduction velocity as shown in Table 2. Are configured correspondingly. The conduction velocity includes centripetal and centrifugal nerve conduction velocities. In this example, the neural geometric data and the neural feature data are separated from each other. However, the neural geometric data and the neural characteristic data are only examples, and may be appropriately configured without being separated. As an example, only the afferent nerve conduction velocity is used here.
[0114] 図 35 (B)に、神経伝導時間データファイル 3 (出力データ)の説明図を示す。  FIG. 35 (B) shows an explanatory diagram of nerve conduction time data file 3 (output data).
神経伝導時間データは、神経番号に対し、神経伝導時間が対応して記憶されたも のである。  The nerve conduction time data is stored in correspondence with the nerve number for the nerve number.
[0115] 図 36 (A)に、神経-筋対応データファイル 4 (中間データ)の説明図を示す。  FIG. 36 (A) shows an explanatory diagram of the nerve-muscle correspondence data file 4 (intermediate data).
神経一筋対応データは、筋名と、筋を支配する脊髄神経 (横軸)と末梢神経 (縦軸) の情報が対になったものである。図には、一例として、脊髄神経 (C8)関連の神経 筋対応データを示す。ここでは、全身の神経一筋対応のうち一部を示すが、実際に は全身について定義することができる。このような対応表は解剖学の専門書に基づ いて作成することができる。また、神経幾何データ力も各情報を用いて計算で求める こともできる。処理部 33は、このデータを用いて、注目する脊髄神経が支配する筋と 、その筋を支配する末梢神経とを検索することができる。例えば、脊髄神経 C8に注 目する場合、筋の検索は縦矢印に対応して尺側手根屈筋が求められ、末梢神経の 検索は横矢印に対応して尺骨神経が求められる。  The data corresponding to a single nerve is a combination of the muscle name and information on the spinal nerve (horizontal axis) and peripheral nerve (vertical axis) that control the muscle. As an example, the figure shows neuromuscular data related to spinal nerve (C8). Here, a part of the whole-body neuromuscular correspondence is shown, but in fact it can be defined for the whole body. Such correspondence tables can be created based on specialized anatomy books. In addition, the neurogeometric data force can also be calculated by using each information. Using this data, the processing unit 33 can search for the muscle that is controlled by the spinal nerve of interest and the peripheral nerve that controls the muscle. For example, when focusing on the spinal nerve C8, the search for muscles requires the ulnar carpal flexor corresponding to the vertical arrow, and the search for peripheral nerves requires the ulnar nerve corresponding to the horizontal arrow.
[0116] 図 36 (B)に、神経分岐データファイル 5 (入力データ)の説明図を示す。  FIG. 36 (B) shows an explanatory diagram of the nerve branch data file 5 (input data).
神経分岐データは、脊髄神経系を、脊髄を根とし、筋を葉とする木構造で表現した ものである。接点は神経経由点または始点 (脊髄)、終点(筋)、分岐点を、枝は神経 経路を表す。なお、ここでは神経経路を枝としているが、神経経路自体も接点と表現 する方法もある。 Nerve bifurcation data is a representation of the spinal nervous system in a tree structure with the spinal cord as the root and the muscle as the leaf. A contact point represents a via point or a start point (spinal cord), an end point (muscle), a branch point, and a branch represents a nerve pathway. Here, the nerve pathway is taken as a branch, but the nerve pathway itself is also expressed as a contact point. There is also a way to do it.
[0117] 図 37 (A)に、筋順位データファイル 6 (出力データ)の説明図を示す。  FIG. 37 (A) shows an explanatory diagram of the muscle rank data file 6 (output data).
筋順位データは、筋順位、筋の特徴を表す情報 (左右、伸筋屈筋の別、筋部位の 分類)、筋名とを対応して記憶したものである。ここでは、全身の筋のうち一部を示す 力 実際には全身について定義することができる。  The muscle ranking data stores information indicating muscle ranking, muscle characteristics (left and right, extensor flexor muscle classification, muscle region classification), and muscle name. Here, the force that shows a part of the muscles of the whole body can actually be defined for the whole body.
[0118] 図 37 (B)に、筋特徴データファイル 7 (入力データ)の説明図を示す。  FIG. 37 (B) shows an explanatory diagram of the muscle feature data file 7 (input data).
筋特徴データは、筋名に対して、筋の特徴を表す情報 (左右、伸筋屈筋の別、筋部 位の分類)を記憶したものである。ここでは、全身の筋のうち一部を示す力 実際には 全身について定義することができる。筋部位は、例えば、次の 6つに分類される: 1) 体幹, 2)体幹〜四肢, 3)肢帯〜四肢, 4)上腕,大腿, 5)前腕,下腿, 6)手および 足。  The muscle feature data stores information representing muscle characteristics (left and right, extensor flexor muscle classification, muscle part classification) for the muscle name. Here, the force showing a part of the muscles of the whole body can actually be defined for the whole body. The muscle parts are classified into, for example, the following six types: 1) trunk, 2) trunk to limb, 3) limb band to limb, 4) upper arm, thigh, 5) forearm, lower leg, 6) hand and leg.
[0119] 図 37 (C)に、伸筋-屈筋対応データファイル 8 (入力データ)の説明図を示す。  FIG. 37 (C) shows an explanatory diagram of the extensor-flexor correspondence data file 8 (input data).
伸筋 屈筋対応データは、対応する屈筋群と伸筋群に属する筋名が対になったも のである。対応する筋肉は、ほぼ同一部位同士で対応すると考えられる力 同一部 位だからと言って対になるとは限らない。逆に、複数の部位にまたがって対応する場 合もある。このため、伸筋 屈筋対応データに含まれる部位ごとまとめて結合する。  Extensor flexor muscle correspondence data is a pair of muscle names belonging to the corresponding flexor muscle group and extensor muscle group. Corresponding muscles are not necessarily paired just because they have the same force that is considered to correspond to each other at almost the same site. On the other hand, there are cases where the response is made across multiple sites. For this reason, the parts included in the extensor flexor muscle data are combined together.
[0120] 図 38 (A)に、筋運動データファイル 9 (入力データ)の説明図を示す。  FIG. 38 (A) shows an explanatory diagram of the muscle movement data file 9 (input data).
筋運動データは、時刻と、ある時刻における任意の筋の長さ、長さ変化速度、力、 力変化速度等の筋長 ·筋長変化 ·筋張力の!、ずれか又は複数につ!、ての筋運動情 報が対になったものである。同一ファイルに複数の情報 (力と長さ)を配置したり、複 数の筋の情報を配置する形式や、ある時刻における複数の情報を一つにまとめる形 式も考えられる。ここでは、ファイル名が筋の名前となっており、筋の名前を指定する ことでファイルの内容カ モリに読み込まれる。図では、一例として、上腕二頭筋の筋 長の時間変化を示している。また、長さは絶対値の場合と、初期姿勢や標準姿勢の 長さで規格ィ匕した値の場合とがある。筋長変化についても同様である。  Muscle movement data includes the time and length of any muscle at a certain time, length change speed, force, force change speed, etc. All muscle movement information is a pair. There can be a format in which multiple pieces of information (force and length) are placed in the same file, multiple pieces of information are placed, and multiple pieces of information at a certain time are combined. Here, the file name is the name of the line, and by specifying the name of the line, it is read into the file contents cache. In the figure, as an example, the time change of the length of the biceps is shown. The length may be an absolute value or a value that is standardized by the length of the initial posture or standard posture. The same applies to changes in muscle length.
[0121] 図 38 (B)に、脊髄神経断面座標データファイル 11 (出力データ)の説明図を示す。  FIG. 38 (B) shows an explanatory diagram of the spinal nerve sectional coordinate data file 11 (output data).
脊髄神経断面座標データは、神経番号に対し、脊髄断面における神経の空間配 置を記憶したものである。また、 2次元平面上の座標データは、 X— y座標系でも r Θ座標系でもよい。さら〖こ、座標データの代わりに、空間配置の位置を示す識別情 報を用いてもよい。 The spinal nerve cross-section coordinate data stores the spatial arrangement of nerves in the spinal cord cross-section with respect to the nerve number. Also, coordinate data on the 2D plane is r The Θ coordinate system may be used. Furthermore, instead of the coordinate data, identification information indicating the position of the spatial arrangement may be used.
[0122] 2.ソフトウェア [0122] 2. Software
2. 1 メインフロー  2.1 Main flow
図 39に、メインフローチャートを示す。  Figure 39 shows the main flowchart.
処理部 33は、処理が開始されると、初期設定を行う(S101)。その後、処理部 33は 、神経伝導時間計算 (S103)、筋順位計算 (S105)、神経断面の空間配置計算 (S1 07)を実行する。つぎに、処理部 33は、初期時刻を設定し (S109)、運動情報から 神経情報への変換処理を実行し (S 111)、その結果を表示部 11に提示 (表示)する (S113)。処理部 33は、最終時刻か判断し (S 115)、最終時刻まで単位時刻分時刻 を進めて(S117)、ステップ S111、 S113を繰り返し、処理を終了する。なお、各ステ ップの詳細は、後述する。  When the processing is started, the processing unit 33 performs initial setting (S101). Thereafter, the processing unit 33 executes nerve conduction time calculation (S103), muscle rank calculation (S105), and nerve cross section spatial arrangement calculation (S107). Next, the processing unit 33 sets an initial time (S109), executes conversion processing from exercise information to nerve information (S111), and presents (displays) the result on the display unit 11 (S113). The processing unit 33 determines whether it is the final time (S115), advances the unit time by the unit time until the final time (S117), repeats steps S111 and S113, and ends the processing. Details of each step will be described later.
[0123] 2. 2 各ステップの処理 [0123] 2.2 Processing of each step
以下に各ステップについて詳細を説明する。  Details of each step will be described below.
(初期設定: S101)  (Initial setting: S101)
初期設定として、処理部が、解析する際に、あらかじめ設定すべき事項は次の通り である。処理部 33は、これら設定値を、入力部又は IZFを介して他の装置力 入力 してもょ 、し、予め記憶されたデータを記憶部力も読み取ってもよ 、。  As initial settings, the following should be set in advance when the processing unit performs analysis. The processing unit 33 may input these set values via another input device or IZF, and may read the stored data from the prestored data.
(1)神経 (脊髄等)断面を表す脊髄名を選択。例えば、脊髄は、頸神経 8、胸神経 12 、腰神経 5、仙骨神経 5、尾骨神経 1の計 31で構成される。  (1) Select the spinal cord name representing the nerve (spinal cord, etc.) cross section. For example, the spinal cord is composed of a total of 31 cervical nerves, 12 thoracic nerves, 5 lumbar nerves, 5 sacral nerves, and 1 coccyal nerve.
(2)運動データ (投げ、跳び、運動特性 (速度、力等))を選択。  (2) Select motion data (throw, jump, motion characteristics (speed, force, etc.)).
(3)表示形式を選択。例えば、出力される空間配置等のデータ形式 (断面、時空間 等)や単数又は複数等を選択。例えば、神経データファイル 12〜 14のパターンを選 択する。時空間の場合、ある時刻における情報は横一列に配置され、縦方向に時刻 を表すか、あるいはその逆になる。また、複数の運動の同じ時刻における神経情報や 、単一の運動の複数時刻における神経情報を並列に配置する、といった形式がある [0124] (神経伝導時間計算: S 103) (3) Select the display format. For example, select the data format (cross section, spatiotemporal, etc.) and the singular or plural of the output spatial arrangement. For example, select the pattern of neural data files 12-14. In the case of space-time, information at a certain time is arranged in a horizontal row, and represents the time in the vertical direction or vice versa. In addition, there is a form in which neural information at the same time of multiple movements and neural information at multiple times of a single movement are arranged in parallel [0124] (Nerve conduction time calculation: S 103)
処理部 33は、処理が開始されると、初期設定 S101で選択された神経 (脊髄等)断 面を表す脊髄名に基づき、各神経番号について、神経幾何データファイル 1 (表 1) から、脊髄名と脊髄神経等支配筋の筋名の組と神経線名(列)を抽出する。神経に応 じてひとつ又は複数の神経線名の列が含まれる。つぎに、処理部 33は、抽出した神 経線名(列)に基づき、神経幾何データファイル 1 (表 2)から神経線の始点名と終点 名を求め、さらに、始点名及び終点名の神経点に基づき、神経幾何データファイル 1 (表 3)から神経点座標を検索することにより、各神経線 (列)の長さを計算する。処理 部 33は、各神経線 (列)の長さと、各神経線 (列)に従い神経特徴データファイル 2 ( 表 2)力 読み出した神経特徴データの求心性 (又は遠心性)神経伝導速度力 各神 経線 (列)の伝導時間を計算する。さらに、処理部 33は、ひとつ又は複数の神経線( 列)で表された任意の脊髄力 任意の筋までの神経路全体の神経信号伝導時間を 計算する。このようにして、処理部 33は、神経番号に対応して神経信号伝導時間を 神経伝導時間データ 3に記憶する。  When the processing is started, the processing unit 33 obtains the spinal cord from the neural geometric data file 1 (Table 1) for each nerve number based on the spinal cord name representing the nerve (spinal cord, etc.) section selected in the initial setting S101. The name and the name of the nerve line (column) are extracted. Depending on the nerve, one or more strings of nerve line names are included. Next, the processing unit 33 obtains the starting point name and the ending point name of the neural line from the neural geometric data file 1 (Table 2) based on the extracted neural line name (column), and further, the neural point of the starting point name and the ending point name. Based on the above, the length of each nerve line (column) is calculated by retrieving the nerve point coordinates from the neural geometric data file 1 (Table 3). The processing unit 33 determines the length of each nerve line (column) and the nerve feature data file 2 (Table 2) force according to each nerve line (column). The centripetal (or efferent) nerve conduction velocity force of the read nerve feature data Calculate the conduction time of the nerve line (column). Further, the processing unit 33 calculates the nerve signal conduction time of the entire nerve path to any arbitrary spinal force represented by one or more nerve lines (rows). In this way, the processing unit 33 stores the nerve signal conduction time in the nerve conduction time data 3 corresponding to the nerve number.
[0125] (筋順位計算: S 105)  [0125] (Straight ranking calculation: S 105)
筋順位計算では、処理部 33は、伸筋—屈筋の分類や、部位による分類を行った後 、同一部位に属する筋の順位を計算し、さらに、同一筋内での順位を計算する。この 処理は、空間配置を決める上で必要になる。  In the muscle rank calculation, the processing unit 33 calculates the rank of muscles belonging to the same region after classifying the extensor and flexor muscles and the region, and further calculates the rank within the same muscle. This process is necessary to determine the spatial arrangement.
[0126] 処理部 33は、筋順位計算が開始されると、初期設定 S101で選択された脊髄名に 基づき、神経一筋対応データファイル 4の神経一筋対応データを参照して選択され た脊髄が支配する筋名を求め、その筋名に対応する末梢神経を求め、さらに末梢神 経によりその筋名を分類する。処理部 33は、分類された筋名について、さらに、筋特 徴データファイル 7の筋特徴データを参照して、筋名により伸筋 ·屈筋の別を求め、 分類する。処理部 33は、神経分岐データファイル 5の木構造の神経分岐データを参 照して、同一末梢神経内で根元力も分岐する葉順 (たとえば、根元に近い順又は介 在する接点が少ない順)に並べ替える。処理部 33は、各神経番号に対応する筋名 について、神経伝導時間データ 3を参照して、神経伝導時間に基づいて、同一部位 の異なる末梢神経間で伝導時間が短い順に並べ替える。このとき、例えば、同一分 類の異なる末梢神経間では、最短伝導時間同士を比較し、短い方の末梢神経を先 に並べる。このようにして、処理部 33は、並び替えられた筋順位、左右、伸筋'屈筋、 筋部位番号、筋名を対応して筋順位データを筋順位データファイル 6に記憶する。ま た処理部 33は、作成された脊髄断面座標データを必要に応じて、表示部に表示又 は IZF部を介して出力する。 [0126] When the muscle rank calculation is started, the processing unit 33 controls the spinal cord selected with reference to the single nerve-corresponding data in the single nerve-corresponding data file 4 based on the spinal cord name selected in the initial setting S101. The peripheral nerve corresponding to the muscle name is obtained, and the muscle name is further classified according to peripheral nerves. The processing unit 33 refers to the muscle feature data in the muscle feature data file 7 for the classified muscle names, and determines and classifies the extensor and flexor muscles based on the muscle names. The processing unit 33 refers to the tree branching data of the nerve branch data file 5 and the leaf order in which the root force also branches in the same peripheral nerve (for example, the order close to the root or the order in which there are few contacts) Sort by. The processing unit 33 refers to the nerve conduction time data 3 for the muscle name corresponding to each nerve number, and based on the nerve conduction time, the same part Sort them in order of short conduction time between different peripheral nerves. At this time, for example, between the same types of different peripheral nerves, the shortest conduction times are compared, and the shorter peripheral nerve is arranged first. In this way, the processing unit 33 stores the muscle rank data in the muscle rank data file 6 in association with the rearranged muscle rank, left and right, extensor 'flexor, muscle part number, and muscle name. In addition, the processing unit 33 displays the created spinal cord cross-sectional coordinate data on the display unit or outputs it via the IZF unit as necessary.
[0127] 筋順位は、筋幾何データを用い、体幹に近い'深い順に定めることができる。また、 筋順位は、神経幾何データから求められる神経伝導時間が短い順で順位を決めると いう方法も考えられる。これらに限らず、逆の順に決めてもよいし、筋と神経の幾何デ 一タの 、ずれかを用いて順位を決めるなど、適宜のあら力じめ定められた順位で定 めてもよい。  [0127] The muscle ranking can be determined in the order of 'deepness close to the trunk, using muscle geometric data. In addition, the muscle rank may be determined in the order of short nerve conduction time determined from the neural geometry data. Not limited to these, it may be determined in the reverse order, or may be determined in an order that is determined according to appropriate arrangement, such as determining the order using the displacement of the geometric data of muscle and nerve. .
[0128] (神経断面の空間配置計算: S107)  [0128] (Spatial layout calculation of nerve section: S107)
また、図 40は、空間配置時のデータの様子の一例を示す説明図である。 処理部 33は、筋順位データファイル 6から読み出した筋順位データに基づき、各レ コード (筋名に相当)を、左右、伸筋'屈筋、筋部位で分類し、予め定められた神経( 脊髄等)断面に関する空間に配置する。この配置する空間は、記憶部に記憶され、 各神経 (脊髄等)断面につ!ヽて異なる領域形状でもよ!ヽし、同一の領域形状や複数 の領域形状を用いてもよい。この例では、脊髄灰白質を模擬した形状で、各筋名を 配置するセルをマトリクスに区分している。空間配置は、まず、図 40に示されるように 、左右、上下 (屈筋'伸筋)に 4種類に分類し、さらに、横方向に 6つの部位で分類し て、該当する位置に各筋名を配置する。そして、処理部 33は、筋順位に従い、中心 軸から離れるにつれて、筋順位の高 ヽ(短 、;)もの力 低 ヽ (長 、;)ものを並び替え配 置する。これは、筋分類と筋配置力 体幹に近い順に並べ替える方法とほぼ等価で ある。さらに、処理部 33は、伸筋—屈筋対応データファイル 8から読み出した伸筋- 屈筋対応データにより筋支配神経を結合し、上 (屈筋)下 (伸筋)に再配置する。こう して、同一の機能を持つ複数の筋が逆の機能を持つ複数の筋に対応づけられる。な お、対応する筋群が二つの部位にまたがる場合は縦に重ねる。  FIG. 40 is an explanatory diagram showing an example of a state of data at the time of space arrangement. Based on the muscle rank data read from the muscle rank data file 6, the processing unit 33 classifies each record (corresponding to a muscle name) into left and right, extensor 'flexor muscles, and muscle parts, and sets a predetermined nerve (spinal cord). Etc.) Place in a space related to the cross section. The space to be placed is stored in the memory unit and connected to each nerve (spinal cord, etc.) cross section! Different region shapes may be used, and the same region shape or a plurality of region shapes may be used. In this example, the cells where each muscle name is placed are divided into a matrix in a shape simulating spinal cord gray matter. First, as shown in Fig. 40, the spatial arrangement is classified into 4 types, left and right, up and down (flexor's extensor), and further classified into 6 parts in the horizontal direction, and each muscle name at the corresponding position. Place. Then, the processing unit 33 rearranges and arranges the muscles with high (low, long) and low (long, short) muscles according to the muscle ranking and away from the central axis. This is almost equivalent to the method of rearrangement in the order of muscle classification and muscle placement strength. Further, the processing unit 33 combines the muscle control nerves by the extensor-flexor muscle correspondence data read from the extensor-flexor correspondence data file 8, and rearranges them in the upper (flexor) and lower (extensor). Thus, a plurality of muscles having the same function are associated with a plurality of muscles having opposite functions. If the corresponding muscle group spans two parts, they are stacked vertically.
[0129] つぎに、処理部 33は、分類した筋支配神経群を予め定められた空間に整合させる 。すなわち、処理部 33は、分類した筋支配神経群が予め設定された数 Nを超えるか どうか判断する。これは、高さが極端に増減しないための工夫で、 Nの数は任意に決 められる。処理部 33は、 Nを超える場合は、 Nを下回る最大数になるよう分割する。こ のとき、設定した高さ Nを超えない高さに等分割し、等分割できないときは X座標絶対 値が大きい方を余りにする。また、伸筋 ·屈筋いずれか一方が Nを超える場合、残りの 筋支配神経群も同一数に分割する。一方、処理部 33は、設定した高さ Nに満たない 場合は、 X座標絶対値が小さい順に、超えない高さに結合する。このとき、 Nを下回る 最大数になるよう結合することができる。また、屈筋 ·伸筋ともに対応させて結合し、い ずれも Nを上回らない時結合するようにしてもよい。さらに、処理部 33は、隙間があつ たら対称軸である y軸に向かって X座標絶対値が小さい方向に詰める。処理部 33は 、こうしてできあがった空間配置にしたカ^、、脊髄断面座標データを作成し、脊髄神 経断面座標データファイル 11に記憶する。また処理部 33は、作成された脊髄断面 座標データを必要に応じて、表示部に表示又は IZF部を介して出力する。なお、脊 髄断面座標データは、空間配置内のセルの位置を識別するための識別情報を用い てもよい。 [0129] Next, the processing unit 33 matches the classified muscle innervating nerve group with a predetermined space. . That is, the processing unit 33 determines whether or not the classified muscle innervating nerve group exceeds a preset number N. This is a device to prevent the height from increasing or decreasing extremely, and the number of N can be determined arbitrarily. If the processing unit 33 exceeds N, the processing unit 33 divides the number so that the maximum number is less than N. At this time, divide equally into heights that do not exceed the set height N. If equal division is not possible, the larger X coordinate absolute value is left as the remainder. If either the extensor or flexor muscle exceeds N, the remaining muscular control nerve group is also divided into the same number. On the other hand, when the height N is less than the set height N, the processing unit 33 combines the heights that do not exceed the X coordinate absolute value in ascending order. At this time, it can be combined so that the maximum number is less than N. In addition, the flexor and extensor muscles may be connected in correspondence, and may be connected when neither exceeds N. Furthermore, if there is a gap, the processing unit 33 packs the X coordinate absolute value in the direction of decreasing toward the y axis that is the symmetry axis. The processing unit 33 creates the spinal cord cross-sectional coordinate data and the spinal cord neurological cross-sectional coordinate data file 11 in the spatial arrangement thus created. In addition, the processing unit 33 displays the generated spinal cord cross-sectional coordinate data on the display unit or outputs it via the IZF unit as necessary. The spinal cord coordinate data may use identification information for identifying the position of the cell in the spatial arrangement.
他に、空間配置計算のフローチャートの他の実施の形態としては、処理部 33は、神 経断面の空間配置計算のうち、設定数 Nで分けずにフラットに配置するようにしても よい。  In addition, as another embodiment of the flowchart of the spatial arrangement calculation, the processing unit 33 may be arranged in a flat manner without dividing by the set number N in the spatial arrangement calculation of the neural section.
[0130] 図 41に、時空間パターン作成のための並べ替え 1の説明図を示す。並べ替え 1で は、処理部 33は、伸筋、屈筋の分類を保ちつつその中で筋部位順に並べ替える。  FIG. 41 shows an explanatory diagram of rearrangement 1 for creating a spatiotemporal pattern. In rearrangement 1, the processing unit 33 rearranges the extensor and flexor muscles while rearranging them in the order of the muscle parts.
[0131] (運動情報から神経情報への変換処理: S 111)  [0131] (Transformation from motor information to neural information: S 111)
処理部 33は、単位時刻分時刻を進めて、運動情報から神経情報への変換処理を 実行し (S 111)、その結果を表示部 11に提示 (表示)する(S 113)。  The processing unit 33 advances the time by the unit time, executes the conversion process from the exercise information to the nerve information (S111), and presents (displays) the result on the display unit 11 (S113).
処理部 33は、運動情報から神経情報への変換を開始すると、神経伝導時間デー タ 3から読み出した神経伝導時間データからそれぞれの神経番号に対応する神経に ついての伝導時間を抽出する。処理部 33は、初期設定 S 101で設定された運動デ ータに従い、神経幾何データファイル 1を参照して各神経番号に対する筋名を求め、 その筋名について、筋運動データファイル 9に設定された運動特性の運動データを BJCみ出す。 When the conversion from the motion information to the nerve information is started, the processing unit 33 extracts the conduction time for the nerve corresponding to each nerve number from the nerve conduction time data read from the nerve conduction time data 3. The processing unit 33 obtains a muscle name for each nerve number with reference to the neurogeometric data file 1 according to the exercise data set in the initial setting S 101, and the muscle name is set in the muscle exercise data file 9. Motion data BJC sticks out.
[0132] ここで、処理部 33は、伝導時間遅れを考慮する力否力判断する。処理部 33は、遅 れを考慮する場合、求める時刻から伝導時間前のデータを抽出し、該当する時刻の データが存在しない場合は補間により運動データを計算する。一方、処理部 33は、 遅れを考慮しない場合、筋運動データファイル 9から求める時刻の運動データを抽出 する。  [0132] Here, the processing unit 33 determines whether or not the force is in consideration of the conduction time delay. When considering the delay, the processing unit 33 extracts data before the conduction time from the obtained time, and calculates motion data by interpolation when there is no data at the corresponding time. On the other hand, the processor 33 extracts the motion data at the time obtained from the muscle motion data file 9 when the delay is not considered.
[0133] つぎに、処理部 33は、脊髄神経断面座標データファイル 11から読み出した脊髄断 面座標データを用いて運動データを神経データへ写像する。例えば、脊髄断面座標 データで定められたその神経番号の神経の位置に、各神経番号に対する筋名と各 時刻により、筋運動データで定められた筋運動情報の値に応じて、明暗又は色の変 化を与える。処理部 33は、こうして出来上がった神経データを神経データファイル 12 B己 ΐ す 0  Next, the processing unit 33 uses the spinal cord cross-section coordinate data read from the spinal nerve nerve cross-section coordinate data file 11 to map the movement data to the nerve data. For example, depending on the value of the muscle movement information determined in the muscle movement data by the muscle name and each time for each nerve number at the position of the nerve of the nerve number determined in the spinal cord cross-section coordinate data, Give changes. The processing unit 33 converts the neural data thus created into the neural data file 12 B 0
なお、神経データファイル 13 14も同様に、適宜並びかえることにより作成すること ができる。  Similarly, the neural data file 13 14 can be created by rearranging as appropriate.
D. おわりに D. Conclusion
本実施の形態で述べたことは、主に、以下のようにまとめられる。  What has been described in the present embodiment is mainly summarized as follows.
'神経系、特に脊髄の解剖学的構造について概観した。脊髄前角細胞の幾何学的 構造や末梢神経系の構造を用いて、筋運動情報を写像し、得られる脊髄神経情報、 末梢神経情報を処理する手法を提案した。  'An overview of the anatomy of the nervous system, especially the spinal cord. Using the geometric structure of the anterior horn cells of the spinal cord and the structure of the peripheral nervous system, we proposed a method for mapping muscle movement information and processing the spinal nerve information and peripheral nerve information obtained.
•身体運動を身体の内側の神経系から観測した時の類似度を計算する方法を提案し た。全身運動の観測データから、神経情報の時空間パターンを抽出し、神経情報の 局所的なパターンの類似度を計算した。類似度から、異なる試行同士の対応する時 刻を求め、類似パターンが生成するタイミングの違いを比較する方法を提案した。同 一人物、同一動作の異なる試行について処理を行い、類似のパターンが異なるタイ ミングで発生することを発見し、本発明の有効性を示した。  • We proposed a method to calculate the similarity when body movements are observed from the inner nervous system. We extracted the spatiotemporal pattern of the neural information from the observation data of the whole body movement, and calculated the local pattern similarity of the neural information. We proposed a method to find the corresponding time between different trials from the similarity and compare the difference in the timing of the generation of similar patterns. By processing different trials of the same person and the same action, we found that similar patterns occur at different timings, and showed the effectiveness of the present invention.
•神経情報の時間変動を求める手法を提案した。本手法により、神経系から観測した 全身運動の特徴を抽出することができる。実験を行い、脊髄に入力される求心性神 経情報の時空間パターンを処理した。全身協調動作時に、ピークの大きさとタイミン グの違いを求められることを明らかにし、本発明の有効性を示した。ここでは、最も基 本的な類似度の計算により対応時刻を求めたが、パターン認識の様々な手法を適用 することで、さらにロバストに処理することが可能であろう。 • Proposed a method for obtaining temporal changes in neural information. This technique can extract the characteristics of whole body movement observed from the nervous system. An afferent god who conducts experiments and enters the spinal cord A temporal and spatial pattern of trans-information was processed. It was clarified that the difference in peak size and timing is required during the whole body coordinated action, and the effectiveness of the present invention was shown. Here, the corresponding time was obtained by the most basic calculation of similarity, but it would be possible to process more robustly by applying various methods of pattern recognition.
•全身協調動作時の筋運動データを支配脊髄毎に分類し、神経毎の次元を計算す る手法を提案した。  • We proposed a method to classify muscle movement data during whole body coordinated action by dominant spinal cord and calculate the dimension of each nerve.
•支配脊髄毎に、左右対称度を計算し、左右が入れ替わるタイミングを検出する手法 を提案した。  • We proposed a method to calculate the left / right symmetry for each dominant spinal cord and detect when the left and right are switched.
•同一神経に支配される筋同士の協調度、異なる神経同士の協調度を計算する手法 を提案した。  • We proposed a method to calculate the degree of cooperation between muscles controlled by the same nerve and the degree of cooperation between different nerves.
•これら神経活動パターンレベルの違いを画像、音声等で提示することにより、運動 学習を支援する手法を提案した。  • We proposed a method to support motor learning by presenting these differences in neural activity pattern levels with images, sounds, etc.
[0135] 本発明の特徴は、神経解剖学の知見に基づいて、全身運動パターンを神経毎の 基底パターンにあら力じめ分割して、ノターン間の比較を行う点にある。全身の体性 感覚情報は、末梢神経毎に束ねられて脊髄に送られ、体性感覚情報は、神経レべ ルである程度局所的に処理されている。同一動作の異なる試行について、神経毎に 流れる情報の時空間パターンを比較すると、例えば以下のような問いに対する答え が得られる:時空間パターンはどの位異なるのか?ある 、は、神経毎の時空間パター ンは類似しており、神経毎にパターンが発生するタイミングが異なるのか?  [0135] A feature of the present invention is that, based on knowledge of neuroanatomy, a whole body movement pattern is divided into base patterns for each nerve, and comparison between noturns is performed. Somatosensory information of the whole body is bundled for each peripheral nerve and sent to the spinal cord, and somatosensory information is processed to some extent locally at the nerve level. Comparing the spatio-temporal patterns of information flowing from one nerve to another for different trials of the same action, for example, the following question can be answered: How different are the spatio-temporal patterns? Is the spatiotemporal pattern of each nerve similar, and is the timing of pattern generation different for each nerve?
[0136] 本実施例では特に、二つの試行の類似度を比較する例を示した力 同一人物が反 復練習を行う際の一連の動作を比較することで、動作のチューニングの仕方の傾向 を見ることができるようになる。優れた身体技能を持つ達人のチューニング方法を抽 出することができれば、達人の技へ近づくための訓練方法の開発につながる。本手 法は、異なる人間による同一動作や、異なる動作同士を比較できるように拡張するこ とが可能である。  [0136] In this embodiment, in particular, the ability to compare the similarity of two trials is shown. By comparing a series of actions when the same person performs repetitive practice, the tendency of how to tune the action is shown. You can see it. If you can extract the tuning method of a master with excellent physical skills, it will lead to the development of a training method to approach the master's skill. This method can be extended so that different humans can compare the same actions or different actions.
[0137] 運動学習において、目的の運動の実現を妨げる要因は大きく三段階に分けられる 第一段階 結果の運動を正しく感知できないこと 第二段階 運動を感知しても修正の仕方が分力 ないこと [0137] In motor learning, the factors that hinder the realization of the target movement can be broadly divided into three stages. First stage Inability to correctly detect the resulting movement Second stage Even if motion is detected, there is no way to correct it
第三段階 修正の仕方が分力つても筋が思 、通り動力な 、こと  The third stage
客観評価と神経データの組を対応付け、神経データのレベルで比較を行うことにより By associating a set of objective evaluation and neural data, and comparing at the level of neural data
、第一段階、第二段階の要因を取り除く助けとなる。 , Helps to remove the first and second stage factors.
[0138] 本発明は、運動計測という非侵襲の方法で、運動中の脊髄神経情報に到達する手 段を提供する。運動計測は脳神経計測手段のな力つた時代力 ある古典的な方法 である。しかし、本発明と組み合わせることで、直接神経計測とも PETや fMRIなどの 脳計測とも異なる、第三の脳神経計測技術となる可能性がある。  The present invention provides a means for reaching spinal nerve information during exercise by a non-invasive method called exercise measurement. Motion measurement is a classic method with the power of the times that is a powerful means of measuring cranial nerves. However, in combination with the present invention, there is a possibility that it becomes a third cranial nerve measurement technique that is different from direct nerve measurement and brain measurement such as PET and fMRI.
[0139] 本発明の運動学習支援方法又は運動学習支援装置 ·システムは、その各手順をコ ンピュータに実行させるための運動学習支援プログラム、運動学習支援プログラムを 記録したコンピュータ読み取り可能な記録媒体、運動学習支援プログラムを含みコン ピュータの内部メモリにロード可能なプログラム製品、そのプログラムを含むサーバ等 のコンピュータ、等により提供されることができる。  [0139] The motor learning support method or the motor learning support apparatus / system of the present invention includes a motor learning support program for causing a computer to execute each procedure, a computer-readable recording medium storing the motor learning support program, and a motor It can be provided by a program product that includes a learning support program and can be loaded into the internal memory of the computer, or a computer such as a server that includes the program.

Claims

請求の範囲 The scope of the claims
時刻に対して、神経 IDと、時刻毎の脊髄断面画像又は時刻毎の体幹カゝら末端へ の神経に支配される筋の位置空間に配置された神経情報と、試行を定めるためのデ ータ IDとを含む神経データを記憶した神経データファイルと、  With respect to time, nerve ID, spinal cross-sectional images at each time or nerve information placed in the position space of muscles controlled by nerves at the trunk and terminal at each time, and data for determining trials A neural data file storing neural data including the data ID,
異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行につ!、て記憶する第 1対応時刻データフアイ ルと、  Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve The first corresponding time data file to be stored,
神経又は試行間の対応関係を表示する表示部と、  A display for displaying the correspondence between nerves or trials;
前記神経データファイル、前記第 1対応時刻データファイルに対して読出し及び Z 又は書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係 を表示し、前記第 1対応時刻データファイルに記憶するための処理部と  Reading and Z or writing to the neural data file and the first corresponding time data file, obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file And a processing unit for storing
を備え、 With
処理部は、初期設定として、入力部又は他の装置から、神経 、異なる試行をそれ ぞれ定めるための参照データ ID及び対象データ IDを含むデータ属性を設定する手 段と、  The processing unit, as an initial setting, sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
処理部は、初期設定において選択したデータ属性に従い、異なる試行における同 一部位の神経データを参照データと対象データとして、前記神経データファイルから 読み込む手段と、  The processing unit reads, from the neural data file, as reference data and target data, the same portion of neural data in different trials according to the data attribute selected in the initial setting.
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行う手段と、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データ力 指定時間幅分の長さのデータを切り出してテンプレート を作成し、対象データの演算対象となる初期時刻から最終時刻までテンプレートを用 いて走査して、テンプレートと対象データとの時刻毎の相関値を繰り返し演算する手 段と、  The processing unit creates a template by cutting out data with a length corresponding to the reference data force specified time width, scans the template from the initial time to the final time, which is the calculation target of the target data, and scans the template and the target data. A means of repeatedly calculating the correlation value for each time,
処理部は、テンプレートに対し、参照データと対象データとの相関値が最大の時刻 を対応時刻とし、前記第 1対応時刻データファイルに、参照データ IDと、対象データ I Dと、神経 IDと、異なる試行の同一神経における神経情報の対応時刻を示す参照デ ータ時刻及び対象データ時刻と、対応時刻における相関値を対応して記憶する手段 と、 The processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file. Reference data indicating the corresponding time of neural information in the same nerve of the trial Data time and target data time, and means for storing the correlation value at the corresponding time correspondingly,
処理部は、参照データにおける最終時刻まで所定時刻分時刻を進めてテンプレー トを作成し、前記演算する手段と前記記憶する手段とを繰り返す手段と、  The processing unit creates a template by advancing a predetermined time until the final time in the reference data, and repeats the means for calculating and the means for storing;
処理部は、前記第 1対応時刻データファイルからデータを読み込み、参照データ時 刻と、対象データ時刻との対応関係を前記表示部に表示する手段と、  The processing unit reads data from the first corresponding time data file, and displays a correspondence relationship between the reference data time and the target data time on the display unit,
を有する運動学習支援装置。  A motor learning support device.
[2] 前記表示する手段において、  [2] In the display means,
前記処理部は、複数の参照データ時刻にそれぞれ対応する複数の対象データ時 刻及び Z又は相関値若しくは誤差を示す関係を、前記表示部に表示する請求項 1 に記載の運動学習支援装置。  The motor learning support device according to claim 1, wherein the processing unit displays a plurality of target data times corresponding to a plurality of reference data times and a relationship indicating Z or a correlation value or an error on the display unit.
[3] 前記表示する手段において、 [3] In the display means,
処理部は、時間軸に対して、時刻に対応して参照データと対象データとの対応時 刻の関係を表示する請求項 1に記載の運動学習支援装置。  2. The motor learning support device according to claim 1, wherein the processing unit displays a relationship between corresponding times of the reference data and the target data with respect to time on the time axis.
[4] 同一試行の異なる神経における神経情報の対応時刻を示す参照データ時刻及び 対象データ時刻と、対応時刻におけるそれぞれの神経に関する第 1及び第 2の相関 値と、参照データ ID及びその神経 IDと、対象データ ID及びその神経 IDとを、異種神 経の同一試行について記憶する第 2対応時刻データファイル [4] Reference data time and target data time indicating the corresponding time of nerve information in different nerves of the same trial, first and second correlation values for each nerve at the corresponding time, reference data ID and its nerve ID The second corresponding time data file that stores the target data ID and its nerve ID for the same trial of different types of nerves
をさらに備え、  Further comprising
処理部は、第 1の神経において、参照データを第 1の試行、対象データを第 2の試 行として求めた第 1の同種神経別試行対応時刻データと、第 2の神経において、参 照データを前記第 1の試行、対象データを前記第 2の試行として求めた第 2の同種神 経別試行対応時刻データとを、前記第 1対応時刻データファイルから読み取る手段 と、  In the first nerve, the processing unit obtains the first homologous trial-specific time data obtained using the reference data as the first trial and the target data as the second trial, and the reference data in the second nerve. Means for reading from the first corresponding time data file, the second same-type neurobiological trial corresponding time data obtained as the first trial and the target data as the second trial;
処理部は、参照データである前記第 1又は第 2の試行のいずれかの参照データ時 刻を基準に、第 1の神経と第 2の神経についての対象データである前記第 2の試行 の対応時刻を求める手段と、  Based on the reference data time of either the first or second trial that is the reference data, the processing unit takes the correspondence of the second trial that is the target data for the first nerve and the second nerve. A means of obtaining the time;
処理部は、第 1の神経の第 2の試行のデータ時刻を参照データ時刻、第 2の神経の 第 2の試行のデータ時刻を対象データ時刻として、第 1及び第 2の神経 ID、参照デ ータ ID、対象データ ID、対応時刻における第 1の神経における第 1と第 2の試行に ついての第 1の相関値及び第 2の神経における第 1と第 2の試行についての第 2の相 関値を対応させて前記第 2対応時刻データファイルに記憶する手段と、 The processing unit obtains the data time of the second trial of the first nerve, the reference data time, and the data time of the second nerve. With the data time of the second trial as the target data time, the first and second nerve IDs, reference data ID, target data ID, and the first and second trials in the first nerve at the corresponding time Means for associating and storing the first correlation value and the second correlation value for the first and second trials in the second nerve in the second corresponding time data file;
処理部は、前記第 2対応時刻データファイル力 データを読み込み、同一試行の 異なる神経における対応時刻を前記表示部に表示する手段と  The processing unit reads the second corresponding time data file force data, and displays the corresponding time in different nerves of the same trial on the display unit.
をさらに備えた請求項 1に記載の運動学習支援装置。 The motor learning support device according to claim 1, further comprising:
時刻に対して、神経 IDと、時刻毎の体幹力 末端への神経に支配される筋の位置 を示す筋番号の空間に配置された神経情報と、試行を定めるためのデータ IDとを含 む神経データを記憶した神経データファイルと、  For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
参照データ ID及び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経に 支配される筋番号により特定される神経データと第 2の神経に支配される筋番号によ り特定される神経データとの相関値を対応付けて記憶する協調度データファイルと、 神経又は試行間の対応関係を表示する表示部と、  Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
前記神経データファイルと前記協調度データファイルに対して読出し及び Z又は 書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係を表 示し、前記協調度データファイルに記憶するための処理部と  To read and Z or write to the nerve data file and the cooperation degree data file, obtain the correspondence between nerves or trials, display the correspondence on the display unit, and store it in the cooperation degree data file And the processing part
を備え、 With
処理部は、初期設定として、入力部又は他の装置から、第 1及び第 2の神経 ID、試 行を定めるためのデータ IDを含むデータ属性を設定する手段と、  The processing unit, as an initial setting, sets, from the input unit or other device, a data attribute including first and second nerve IDs and a data ID for determining a trial, and
処理部は、初期設定において選択したデータ属性に従い、異なる神経における同 一試行神経データを参照データと対象データとして、前記神経データファイルから読 み込む手段と、  The processing unit reads the same trial nerve data in different nerves as reference data and target data from the nerve data file according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行う手段と、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データから筋番号毎に演算対象となる全時間の神経データを切り 出してテンプレートを作成し、対象データの筋番号ごとに演算対象となる全時間につ いてテンプレートを用いて走査して、テンプレートと対象データとの筋番号毎の相関 値を繰り返し演算する手段と、 The processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. Correlation between the template and target data for each muscle number Means for repeatedly calculating a value;
処理部は、前記協調度データファイルに、参照データ ID、対象データ ID、第 1及び 第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配される筋番号との マトリクス上に相関値を記憶する手段と、  The processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. Means for storing correlation values on a matrix of
処理部は、参照データにおける各筋番号についてテンプレートを作成し、前記演 算する手段と前記記憶する手段とを繰り返す手段と、  The processing unit creates a template for each muscle number in the reference data, and repeats the means for calculating and the means for storing;
処理部は、前記協調度データファイルからデータを読み込み、第 1及び第 2神経に 支配される各筋の運動協動度を表す相関値をマトリクス状に前記表示部に表示する 手段と、  The processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of movement cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
を有する運動学習支援装置。  A motor learning support device.
[6] 神経 IDは、神経断面を表す脊髄名又は末梢神経名を含む請求項 1又は 5に記載 の運動学習支援装置。 6. The motor learning support device according to claim 1 or 5, wherein the nerve ID includes a spinal cord name or a peripheral nerve name representing a nerve cross section.
[7] 神経情報は、筋長、筋伸長速度、筋張力のいずれかの情報である請求項 1又は 5 に記載の運動学習支援装置。  7. The motor learning support device according to claim 1, wherein the nerve information is any one of muscle length, muscle extension speed, and muscle tension.
[8] 前記前処理を行う手段において、処理部は、参照データ又は対象データのある所 定時間幅をテンプレートとして切り出し、所定時刻ずらした参照データ又は対象デー タとの相関値を時間変動度として繰り返し求めて、神経 ID、参照データ ID又は対象 データ ID、時刻に対する時間変動度を時間変動度データファイルに記憶し、 前記読み込む手段において、処理部は、参照データ及び対象データを時間変動 度データファイル力 読み込み、その後の処理を実行する請求項 1又は 5に記載の 運動学習支援装置。  [8] In the preprocessing means, the processing unit extracts a predetermined time width of the reference data or the target data as a template, and uses a correlation value with the reference data or the target data shifted by a predetermined time as the time variability. The nerve ID, the reference data ID or the target data ID, the time variability with respect to the time are stored in the time variability data file, and the processing unit reads the reference data and the target data in the time variability data file. The motor learning support device according to claim 1, wherein force reading is performed and subsequent processing is executed.
[9] 前記前処理を行う手段において、処理部は、参照データ又は対象データに対して 主成分分析を実行して、神経 ID、参照データ ID又は対象データ ID、神経信号に対 する次元データを次元データファイルに記憶し、  [9] In the means for performing the preprocessing, the processing unit performs principal component analysis on the reference data or the target data, and obtains the nerve ID, the reference data ID or the target data ID, and dimension data for the nerve signal. Stored in a dimensional data file,
前記読み込む手段において、処理部は、参照データ及び対象データを次元デー タフアイルカ 読み込み、その後の処理を実行する請求項 1又は 5に記載の運動学 習支援装置。  6. The kinematics learning support device according to claim 1, wherein in the reading means, the processing unit reads the reference data and the target data from the dimensional data dolphins and executes the subsequent processing.
[10] 前記前処理を行う手段において、処理部は、左右対称で同一神経の神経情報を 記憶した神経データについて差分をとり、神経 ID、データ ID、差分を左右対称度デ ータファイルに記憶し、 [10] In the means for performing the preprocessing, the processing unit is symmetrical and displays neural information of the same nerve. The difference is taken for the stored nerve data, and the nerve ID, data ID, and difference are stored in the right / left symmetry data file,
前記読み込む手段において、処理部は、参照データ及び対象データを左右対称 度データファイル力 読み込み、その後の処理を実行する請求項 1又は 5に記載の 運動学習支援装置。  6. The motor learning support device according to claim 1 or 5, wherein in the reading means, the processing unit reads the reference data and the target data from the left / right symmetry data file, and executes the subsequent processing.
[11] 処理部は、神経毎又は筋毎に異なる種類の音を割り当て、神経情報の大きさ又は 変化を、音圧 '音量に変換し、前記表示部により可聴表示する請求項 1又は 5に記載 の運動学習支援装置。  [11] The processing unit according to claim 1 or 5, wherein the processing unit assigns a different type of sound to each nerve or muscle, converts the magnitude or change of the nerve information into a sound pressure level, and audibly displays the sound on the display unit. The motor learning support device according to the description.
[12] 処理部は、神経又は主動筋の時間変動度がピークとなる時刻に、音色又は音量が 異なるように、前記表示部により可聴表示する請求項 1又は 5に記載の運動学習支 援装置。  [12] The motor learning support device according to claim 1 or 5, wherein the processing unit displays an audible display by the display unit so that a tone color or a sound volume is different at a time when the temporal variation degree of the nerve or the main muscle becomes a peak. .
[13] 処理部は、神経又は主動筋の左右対称度がピークとなる時刻に、音色又は音量が 異なるように、前記表示部により可聴表示する請求項 1又は 5に記載の運動学習支 援装置。  [13] The motor learning support device according to claim 1 or 5, wherein the processing unit displays an audible display by the display unit so that a tone color or a sound volume is different at a time when the left-right symmetry of the nerve or the main muscles reaches a peak. .
[14] 試行を定めるためのデータ IDに対し、動作の種類及び Zまたは動作者を対応づけ て記憶する動作定義データファイルをさらに備え、  [14] An action definition data file is further provided for storing the action type and Z or the action person in association with the data ID for defining the trial.
処理部は、初期設定として、入力部又は他の装置から動作の種類及び Zまたは動 作者を設定する手段と、  The processing unit, as an initial setting, means for setting the type of operation and Z or the operator from the input unit or other device,
処理部は、前記動作定義データファイルを読み込む手段と、  A processing unit that reads the operation definition data file;
処理部は、初期設定において選択した動作の種類及び Zまたは動作者に従い、 動作定義データを用いて対応する試行のデータ IDを特定し、これを用いて参照デー タ IDを設定する手段  The processing unit specifies the data ID of the corresponding trial using the action definition data according to the type of action and Z or operator selected in the initial setting, and uses this to set the reference data ID
をさらに備えた請求項 1または 5に記載の運動学習支援装置。  The motor learning support device according to claim 1 or 5, further comprising:
[15] 処理部は、初期設定として、動作の熟練者である師範、達人、上級者等を動作者と して設定する手段 [15] The processing unit, as an initial setting, sets a teacher, master, expert, etc. who are skilled in operation as an operator.
をさらに備えた請求項 14に記載の運動学習支援装置。  15. The motor learning support device according to claim 14, further comprising:
[16] 試行を定めるためのデータ IDと評価項目毎の試行の評価値を記憶した試行評価 データファイルをさらに備え、 処理部は、初期設定において入力部又は他の装置から評価項目を設定する手段 と、 [16] A trial evaluation data file storing a data ID for defining a trial and an evaluation value of the trial for each evaluation item is further provided. The processing unit has means for setting evaluation items from the input unit or other device in the initial setting; and
処理部は、試行を定めるためのデータ IDと評価項目に対応する試行の評価値の 組を読み込む手段と、  The processing unit reads a combination of a data ID for determining a trial and a trial evaluation value corresponding to the evaluation item, and
処理部は、設定した評価項目の評価値が最大または最小となる試行のデータ IDを 特定し、これを用いて参照データを設定する手段  The processing unit identifies the trial data ID that maximizes or minimizes the evaluation value of the set evaluation item, and uses this to set reference data
をさらに備えた請求項 1または 5に記載の運動学習支援装置。  The motor learning support device according to claim 1 or 5, further comprising:
[17] 時刻に対して、身体または身体運動の際に用いる道具の任意の位置及び Z又は 姿勢及び Z又は発生力を表す情報と、身体または道具の部位を定めるためのデー タ IDと、試行を定めるためのデータ IDとを含む位置—姿勢—力データを記憶した位 置 姿勢一力データファイルをさらに備え、 [17] Information on the arbitrary position and Z or posture and Z or generated force of the tool used for the body or body movement with respect to the time, the data ID for determining the body or tool part, and trial A position-posture-force data file containing a position-posture-force data including a data ID for determining
処理部は、位置―姿勢—力データを前記位置―姿勢—力データファイル力 読み 込む手段と、  The processing unit includes means for reading the position-posture-force data into the position-posture-force data file force,
処理部は、初期設定において評価項目に基づいて評価関数を設定する手段と、 処理部は、評価関数を用いて位置—姿勢—力データまたは神経データ力も試行の 評価値を計算する手段と、  The processing unit is a means for setting an evaluation function based on an evaluation item in an initial setting, and the processing unit is a means for calculating an evaluation value of a trial of position-posture-force data or neural data force using the evaluation function;
処理部は、前記試行評価データファイルに試行 IDと評価項目と評価値を対応づけ て記憶する手段と、  The processing unit stores a trial ID, an evaluation item, and an evaluation value in the trial evaluation data file in association with each other, and
処理部は、前記試行評価データファイルからデータを読み込み、試行 IDと評価項 目と評価値の組を表示部に表示する手段  The processing unit reads data from the trial evaluation data file, and displays a combination of trial ID, evaluation item, and evaluation value on the display unit.
をさらに備えた請求項 16に記載の運動学習支援装置。  The motor learning support device according to claim 16, further comprising:
[18] 処理部は、モーションキヤプチャ装置、及び Z又は、筋'腱 '靭帯等運動器官の長 さ並びに発生力'運動情報を計算する運動情報計算装置、及び Z又は、記憶装置 から位置 姿勢一力データを取得する手段と、 [18] The processing unit is a motion capture device, and a motion information calculation device that calculates motion information of Z or muscle 'tendon' ligaments such as length and generated force 'motion information, and a position and orientation from Z or storage device. A means of acquiring one-off data;
位置 姿勢一力データを位置 姿勢一力データファイルに記憶する手段 をさらに備えた請求項 17に記載の運動学習支援装置。  The motor learning support device according to claim 17, further comprising means for storing position / posture first effort data in a position / posture first effort data file.
[19] 参照データ ID及び第 1の神経 IDの組、対象データ ID及び第 2の神経 IDの組、第 1 の神経 IDの組のうち任意の神経 IDの神経データと第 2の神経 IDの組のうち任意の 神経 IDの神経データとその間の相関値を対応づけて記憶する神経間協調度データ ファイル [19] Among the reference data ID and first nerve ID pair, the target data ID and second nerve ID pair, and the first nerve ID pair, the neural data of any nerve ID and the second nerve ID Any of the pair Interneuronal cooperation data file that stores neural ID neural data and correlation values between them
をさらに備え、 Further comprising
処理部は、参照データ IDと第 1の神経 ID、対象データ IDと第 2の神経 IDで特定さ れる前記協調度データファイルから相関値を読み込む手段と、  The processing unit reads a correlation value from the cooperation degree data file specified by the reference data ID and the first nerve ID, the target data ID and the second nerve ID,
処理部は、前記協調度データファイルに記憶されたマトリクス上の相関値の平均を 計算する手段と、  The processing unit calculates a mean of correlation values on a matrix stored in the cooperation degree data file;
処理部は、予め定められた参照データ IDにおける複数の第 1の神経 IDの組と、予 め定められた対象データ IDにおける複数の第 2の神経 IDの組とのマトリクス上に相 関値の平均を、前記神経間協調度データファイルに記憶する手段と、  The processing unit displays correlation values on a matrix of a plurality of first nerve ID sets in a predetermined reference data ID and a plurality of second nerve ID sets in a predetermined target data ID. Means for storing the average in the inter-nerve coordination data file;
処理部は、予め定められた参照データ IDにおける他の第 1の各神経 IDと、予め定 められた対象データ IDにおける他の第 2の各神経 IDについて、前記演算する手段と 前記記憶する手段とを繰り返す手段と、  The processing unit calculates the means and the means for storing each of the other first nerve IDs in the predetermined reference data ID and each of the other second nerve IDs in the predetermined target data ID. Means to repeat and
処理部は、前記神経間協調度データファイル力 データを読み込み、第 1及び第 2 の神経 IDの組で特定される神経間協調度を表す相関値をマトリクス状に前記表示部 に表示する手段  The processing unit reads the inter-neuron cooperation degree data file force data, and displays the correlation values representing the inter-nerve cooperation degree specified by the set of the first and second nerve IDs in a matrix on the display unit.
をさらに備えた請求項 5に記載の運動学習支援装置。 The motor learning support device according to claim 5, further comprising:
時刻に対して、神経 IDと、時刻毎の脊髄断面画像又は時刻毎の体幹カゝら末端へ の神経に支配される筋の位置空間に配置された神経情報と、試行を定めるためのデ ータ IDとを含む神経データを記憶した神経データファイルと、  With respect to time, nerve ID, spinal cross-sectional images at each time or nerve information placed in the position space of muscles controlled by nerves at the trunk and terminal at each time, and data for determining trials A neural data file storing neural data including the data ID,
異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行につ!、て記憶する第 1対応時刻データフアイ ルと、  Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve The first corresponding time data file to be stored,
神経又は試行間の対応関係を表示する表示部と、  A display for displaying the correspondence between nerves or trials;
前記神経データファイル、前記第 1対応時刻データファイルに対して読出し及び Z 又は書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係 を表示し、前記第 1対応時刻データファイルに記憶するための処理部と を備えた運動学習支援装置を用いた運動学習支援方法にぉ 、て、 Reading and Z or writing to the neural data file and the first corresponding time data file, obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file And a processing unit for storing A motor learning support method using a motor learning support device equipped with
処理部は、初期設定として、入力部又は他の装置から、神経 、異なる試行をそれ ぞれ定めるための参照データ ID及び対象データ IDを含むデータ属性を設定するス テツプと、  The processing unit, as an initial setting, sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
処理部は、初期設定において選択したデータ属性に従い、異なる試行における同 一部位の神経データを参照データと対象データとして、前記神経データファイルから 読み込むステップと、  The processing unit reads the neural data of the same part in different trials from the neural data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データ力 指定時間幅分の長さのデータを切り出してテンプレート を作成し、対象データの演算対象となる初期時刻から最終時刻までテンプレートを用 いて走査して、テンプレートと対象データとの時刻毎の相関値を繰り返し演算するス テツプと、  The processing unit creates a template by cutting out data with a length corresponding to the reference data force specified time width, scans the template from the initial time to the final time, which is the calculation target of the target data, and scans the template and the target data. A step of repeatedly calculating a correlation value for each time of
処理部は、テンプレートに対し、参照データと対象データとの相関値が最大の時刻 を対応時刻とし、前記第 1対応時刻データファイルに、参照データ IDと、対象データ I Dと、神経 IDと、異なる試行の同一神経における神経情報の対応時刻を示す参照デ ータ時刻及び対象データ時刻と、対応時刻における相関値を対応して記憶するステ ップと、  The processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file. A step of storing the reference data time and the target data time indicating the corresponding time of the neural information in the same nerve of the trial, and the correlation value at the corresponding time correspondingly stored;
処理部は、参照データにおける最終時刻まで所定時刻分時刻を進めてテンプレー トを作成し、前記演算するステップと前記記憶するステップとを繰り返すステップと、 処理部は、前記第 1対応時刻データファイルからデータを読み込み、参照データ時 刻と、対象データ時刻との対応関係を前記表示部に表示するステップと、  The processing unit advances a predetermined time by a predetermined time until the final time in the reference data, creates a template, repeats the calculating step and the storing step, and the processing unit starts from the first corresponding time data file. Reading the data and displaying the correspondence between the reference data time and the target data time on the display unit;
を含む運動学習支援方法。 Motor learning support method including.
時刻に対して、神経 IDと、時刻毎の体幹力 末端への神経に支配される筋の位置 を示す筋番号の空間に配置された神経情報と、試行を定めるためのデータ IDとを含 む神経データを記憶した神経データファイルと、  For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
参照データ ID及び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経に 支配される筋番号により特定される神経データと第 2の神経に支配される筋番号によ り特定される神経データとの相関値を対応付けて記憶する協調度データファイルと、 神経又は試行間の対応関係を表示する表示部と、 The reference data ID, the first nerve ID, the target data ID, the second nerve ID, the nerve data specified by the muscle number controlled by the first nerve, and the muscle number controlled by the second nerve. A degree-of-cooperation data file that stores a correlation value with the specified nerve data, a display unit that displays the correspondence between nerves or trials, and
前記神経データファイルと前記協調度データファイルに対して読出し及び Z又は 書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係を表 示し、前記協調度データファイルに記憶するための処理部と  To read and Z or write to the nerve data file and the cooperation degree data file, obtain the correspondence between nerves or trials, display the correspondence on the display unit, and store it in the cooperation degree data file And the processing part
を備え運動学習支援装置を用いた運動学習支援方法にぉ 、て、 In a motor learning support method using a motor learning support device,
処理部は、初期設定として、入力部又は他の装置から、第 1及び第 2の神経 ID、試 行を定めるためのデータ IDを含むデータ属性を設定するステップと、  The processing unit sets, as an initial setting, a data attribute including the first and second nerve IDs and a data ID for determining a trial from the input unit or another device; and
処理部は、初期設定において選択したデータ属性に従い、異なる神経における同 一試行神経データを参照データと対象データとして、前記神経データファイルから読 み込むステップと、  The processing unit reads the same trial nerve data in different nerves from the nerve data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データから筋番号毎に演算対象となる全時間の神経データを切り 出してテンプレートを作成し、対象データの筋番号ごとに演算対象となる全時間につ いてテンプレートを用いて走査して、テンプレートと対象データとの筋番号毎の相関 値を繰り返し演算するステップと、  The processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. A step of repeatedly calculating a correlation value for each muscle number between the template and the target data,
処理部は、前記協調度データファイルに、参照データ ID、対象データ ID、第 1及び 第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配される筋番号との マトリクス上に相関値を記憶するステップと、  The processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. Storing correlation values on a matrix of
処理部は、参照データにおける各筋番号についてテンプレートを作成し、前記演 算するステップと前記記憶するステップとを繰り返すステップと、  The processing unit creates a template for each muscle number in the reference data, repeats the calculating step and the storing step,
処理部は、前記協調度データファイルからデータを読み込み、第 1及び第 2神経に 支配される各筋の運動協動度を表す相関値をマトリクス状に前記表示部に表示する ステップと、  The processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of motor cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
を含む運動学習支援方法。 Motor learning support method including.
時刻に対して、神経 IDと、時刻毎の脊髄断面画像又は時刻毎の体幹カゝら末端へ の神経に支配される筋の位置空間に配置された神経情報と、試行を定めるためのデ ータ IDとを含む神経データを記憶した神経データファイルと、 With respect to time, nerve ID, spinal cross-sectional images at each time or nerve information placed in the position space of muscles controlled by nerves at the trunk and terminal at each time, and data for determining trials A neural data file storing neural data including the data ID,
異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行につ!、て記憶する第 1対応時刻データフアイ ルと、  Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve The first corresponding time data file to be stored,
神経又は試行間の対応関係を表示する表示部と、  A display for displaying the correspondence between nerves or trials;
前記神経データファイル、前記第 1対応時刻データファイルに対して読出し及び Z 又は書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係 を表示し、前記第 1対応時刻データファイルに記憶するための処理部と  Reading and Z or writing to the neural data file and the first corresponding time data file, obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file And a processing unit for storing
を備えた運動学習支援装置における運動学習支援プログラムにおいて、 In a motor learning support program in a motor learning support device equipped with
処理部は、初期設定として、入力部又は他の装置から、神経 、異なる試行をそれ ぞれ定めるための参照データ ID及び対象データ IDを含むデータ属性を設定するス テツプと、  The processing unit, as an initial setting, sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
処理部は、初期設定において選択したデータ属性に従い、異なる試行における同 一部位の神経データを参照データと対象データとして、前記神経データファイルから 読み込むステップと、  The processing unit reads the neural data of the same part in different trials from the neural data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データ力 指定時間幅分の長さのデータを切り出してテンプレート を作成し、対象データの演算対象となる初期時刻から最終時刻までテンプレートを用 いて走査して、テンプレートと対象データとの時刻毎の相関値を繰り返し演算するス テツプと、  The processing unit creates a template by cutting out data with a length corresponding to the reference data force specified time width, scans the template from the initial time to the final time, which is the calculation target of the target data, and scans the template and the target data. A step of repeatedly calculating a correlation value for each time of
処理部は、テンプレートに対し、参照データと対象データとの相関値が最大の時刻 を対応時刻とし、前記第 1対応時刻データファイルに、参照データ IDと、対象データ I Dと、神経 IDと、異なる試行の同一神経における神経情報の対応時刻を示す参照デ ータ時刻及び対象データ時刻と、対応時刻における相関値を対応して記憶するステ ップと、  The processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file. A step of storing the reference data time and the target data time indicating the corresponding time of the neural information in the same nerve of the trial, and the correlation value at the corresponding time correspondingly stored;
処理部は、参照データにおける最終時刻まで所定時刻分時刻を進めてテンプレー トを作成し、前記演算するステップと前記記憶するステップとを繰り返すステップと、 処理部は、前記第 1対応時刻データファイルからデータを読み込み、参照データ時 刻と、対象データ時刻との対応関係を前記表示部に表示するステップと、 をコンピュータに実行させるための運動学習支援プログラム。 The processing unit advances the time by a predetermined time until the final time in the reference data, and the template And a step of repeating the calculating step and the storing step, the processing unit reads data from the first corresponding time data file, and determines a correspondence relationship between the reference data time and the target data time. An exercise learning support program for causing a computer to execute the step of displaying on the display unit;
時刻に対して、神経 IDと、時刻毎の体幹力 末端への神経に支配される筋の位置 を示す筋番号の空間に配置された神経情報と、試行を定めるためのデータ IDとを含 む神経データを記憶した神経データファイルと、  For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
参照データ ID及び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経に 支配される筋番号により特定される神経データと第 2の神経に支配される筋番号によ り特定される神経データとの相関値を対応付けて記憶する協調度データファイルと、 神経又は試行間の対応関係を表示する表示部と、  Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
前記神経データファイルと前記協調度データファイルに対して読出し及び Z又は 書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係を表 示し、前記協調度データファイルに記憶するための処理部と  To read and Z or write to the nerve data file and the cooperation degree data file, obtain the correspondence between nerves or trials, display the correspondence on the display unit, and store it in the cooperation degree data file And the processing part
を備え運動学習支援装置における運動学習支援プログラムにおいて、 In the motor learning support program in the motor learning support device,
処理部は、初期設定として、入力部又は他の装置から、第 1及び第 2の神経 ID、試 行を定めるためのデータ IDを含むデータ属性を設定するステップと、  The processing unit sets, as an initial setting, a data attribute including the first and second nerve IDs and a data ID for determining a trial from the input unit or another device; and
処理部は、初期設定において選択したデータ属性に従い、異なる神経における同 一試行神経データを参照データと対象データとして、前記神経データファイルから読 み込むステップと、  The processing unit reads the same trial nerve data in different nerves from the nerve data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データから筋番号毎に演算対象となる全時間の神経データを切り 出してテンプレートを作成し、対象データの筋番号ごとに演算対象となる全時間につ いてテンプレートを用いて走査して、テンプレートと対象データとの筋番号毎の相関 値を繰り返し演算するステップと、  The processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. A step of repeatedly calculating a correlation value for each muscle number between the template and the target data,
処理部は、前記協調度データファイルに、参照データ ID、対象データ ID、第 1及び 第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配される筋番号との マトリクス上に相関値を記憶するステップと、 The processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. of Storing correlation values on a matrix;
処理部は、参照データにおける各筋番号についてテンプレートを作成し、前記演 算するステップと前記記憶するステップとを繰り返すステップと、  The processing unit creates a template for each muscle number in the reference data, repeats the calculating step and the storing step,
処理部は、前記協調度データファイルからデータを読み込み、第 1及び第 2神経に 支配される各筋の運動協動度を表す相関値をマトリクス状に前記表示部に表示する ステップと、  The processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of motor cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
をコンピュータに実行させるための運動学習支援プログラム。 A motor learning support program to make a computer execute.
時刻に対して、神経 IDと、時刻毎の脊髄断面画像又は時刻毎の体幹カゝら末端へ の神経に支配される筋の位置空間に配置された神経情報と、試行を定めるためのデ ータ IDとを含む神経データを記憶した神経データファイルと、  With respect to time, nerve ID, spinal cross-sectional images at each time or nerve information placed in the position space of muscles controlled by nerves at the trunk and terminal at each time, and data for determining trials A neural data file storing neural data including the data ID,
異なる試行の同一神経における神経情報の対応時刻を表す参照データ時刻及び 対象データ時刻と、対応時刻における相関値と、参照データ IDと、対象データ IDと、 神経 IDとを、同種神経別の異なる試行につ!、て記憶する第 1対応時刻データフアイ ルと、  Reference data time and target data time representing the corresponding time of neural information in the same nerve in different trials, correlation values at the corresponding time, reference data ID, target data ID, and nerve ID, different trials for the same type of nerve The first corresponding time data file to be stored,
神経又は試行間の対応関係を表示する表示部と、  A display for displaying the correspondence between nerves or trials;
前記神経データファイル、前記第 1対応時刻データファイルに対して読出し及び Z 又は書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係 を表示し、前記第 1対応時刻データファイルに記憶するための処理部と  Reading and Z or writing to the neural data file and the first corresponding time data file, obtaining the correspondence between nerves or trials, displaying the correspondence on the display unit, and the first corresponding time data file And a processing unit for storing
を備えた運動学習支援装置における運動学習支援プログラムを記録したコンビユー タ読み取り可能な記録媒体であって、 A computer-readable recording medium that records a motor learning support program in a motor learning support device equipped with
処理部は、初期設定として、入力部又は他の装置から、神経 、異なる試行をそれ ぞれ定めるための参照データ ID及び対象データ IDを含むデータ属性を設定するス テツプと、  The processing unit, as an initial setting, sets a data attribute including a reference data ID and a target data ID for determining nerves and different trials from the input unit or other devices, and
処理部は、初期設定において選択したデータ属性に従い、異なる試行における同 一部位の神経データを参照データと対象データとして、前記神経データファイルから 読み込むステップと、  The processing unit reads the neural data of the same part in different trials from the neural data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、 処理部は、参照データ力 指定時間幅分の長さのデータを切り出してテンプレート を作成し、対象データの演算対象となる初期時刻から最終時刻までテンプレートを用 いて走査して、テンプレートと対象データとの時刻毎の相関値を繰り返し演算するス テツプと、 The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation, The processing unit creates a template by cutting out data with a length corresponding to the reference data force specified time width, scans the template from the initial time to the final time, which is the calculation target of the target data, and scans the template and the target data. A step of repeatedly calculating a correlation value for each time of
処理部は、テンプレートに対し、参照データと対象データとの相関値が最大の時刻 を対応時刻とし、前記第 1対応時刻データファイルに、参照データ IDと、対象データ I Dと、神経 IDと、異なる試行の同一神経における神経情報の対応時刻を示す参照デ ータ時刻及び対象データ時刻と、対応時刻における相関値を対応して記憶するステ ップと、  The processing unit sets the time when the correlation value between the reference data and the target data is the maximum for the template as the corresponding time, and the reference data ID, the target data ID, and the nerve ID are different in the first corresponding time data file. A step of storing the reference data time and the target data time indicating the corresponding time of the neural information in the same nerve of the trial, and the correlation value at the corresponding time correspondingly stored;
処理部は、参照データにおける最終時刻まで所定時刻分時刻を進めてテンプレー トを作成し、前記演算するステップと前記記憶するステップとを繰り返すステップと、 処理部は、前記第 1対応時刻データファイルからデータを読み込み、参照データ時 刻と、対象データ時刻との対応関係を前記表示部に表示するステップと、  The processing unit advances a predetermined time by a predetermined time until the final time in the reference data, creates a template, repeats the calculating step and the storing step, and the processing unit starts from the first corresponding time data file. Reading the data and displaying the correspondence between the reference data time and the target data time on the display unit;
をコンピュータに実行させるための運動学習支援プログラムを記録したコンピュータ 読み取り可能な記録媒体。 A computer-readable recording medium on which a motor learning support program for causing a computer to execute is recorded.
時刻に対して、神経 IDと、時刻毎の体幹力 末端への神経に支配される筋の位置 を示す筋番号の空間に配置された神経情報と、試行を定めるためのデータ IDとを含 む神経データを記憶した神経データファイルと、  For the time, the nerve ID, the nerve information arranged in the muscle number space indicating the position of the muscle governed by the nerve to the end of the trunk strength at each time, and the data ID for defining the trial A neural data file storing neural data,
参照データ ID及び第 1の神経 ID、対象データ ID及び第 2の神経 ID、第 1の神経に 支配される筋番号により特定される神経データと第 2の神経に支配される筋番号によ り特定される神経データとの相関値を対応付けて記憶する協調度データファイルと、 神経又は試行間の対応関係を表示する表示部と、  Reference data ID, first nerve ID, target data ID, second nerve ID, nerve data specified by the muscle number controlled by the first nerve, and muscle number controlled by the second nerve A degree-of-cooperation data file that stores the correlation value with the specified nerve data in association with each other; a display unit that displays the correspondence between nerves or trials;
前記神経データファイルと前記協調度データファイルに対して読出し及び Z又は 書き込みを行い、神経又は試行間の対応関係を求めて前記表示部に対応関係を表 示し、前記協調度データファイルに記憶するための処理部と  To read and Z or write to the nerve data file and the cooperation degree data file, obtain the correspondence between nerves or trials, display the correspondence on the display unit, and store it in the cooperation degree data file And the processing part
を備え運動学習支援装置における運動学習支援プログラムを記録したコンピュータ 読み取り可能な記録媒体であって、 A computer-readable recording medium that records a motor learning support program in a motor learning support device,
処理部は、初期設定として、入力部又は他の装置から、第 1及び第 2の神経 ID、試 行を定めるためのデータ IDを含むデータ属性を設定するステップと、 As an initial setting, the processing unit receives the first and second nerve IDs and the test from the input unit or other devices. Setting a data attribute including a data ID for defining a row;
処理部は、初期設定において選択したデータ属性に従い、異なる神経における同 一試行神経データを参照データと対象データとして、前記神経データファイルから読 み込むステップと、  The processing unit reads the same trial nerve data in different nerves from the nerve data file as reference data and target data according to the data attribute selected in the initial setting,
処理部は、参照データと対象データについて、相関計算のための初期時刻の設定 を含む前処理を行うステップと、  The processing unit performs preprocessing for the reference data and the target data, including setting an initial time for correlation calculation,
処理部は、参照データから筋番号毎に演算対象となる全時間の神経データを切り 出してテンプレートを作成し、対象データの筋番号ごとに演算対象となる全時間につ いてテンプレートを用いて走査して、テンプレートと対象データとの筋番号毎の相関 値を繰り返し演算するステップと、  The processing unit creates a template by cutting out the neural data for the entire time to be calculated for each muscle number from the reference data, and scans using the template for the entire time to be calculated for each muscle number of the target data. A step of repeatedly calculating a correlation value for each muscle number between the template and the target data,
処理部は、前記協調度データファイルに、参照データ ID、対象データ ID、第 1及び 第 2の神経 ID、第 1の神経に支配される筋番号と第 2の神経に支配される筋番号との マトリクス上に相関値を記憶するステップと、  The processing unit includes, in the cooperation degree data file, a reference data ID, a target data ID, first and second nerve IDs, a muscle number controlled by the first nerve, and a muscle number controlled by the second nerve. Storing correlation values on a matrix of
処理部は、参照データにおける各筋番号についてテンプレートを作成し、前記演 算するステップと前記記憶するステップとを繰り返すステップと、  The processing unit creates a template for each muscle number in the reference data, repeats the calculating step and the storing step,
処理部は、前記協調度データファイルからデータを読み込み、第 1及び第 2神経に 支配される各筋の運動協動度を表す相関値をマトリクス状に前記表示部に表示する ステップと、  The processing unit reads data from the cooperation degree data file, and displays the correlation values representing the degree of motor cooperation of each muscle controlled by the first and second nerves in a matrix on the display unit;
をコンピュータに実行させるための運動学習支援プログラムを記録したコンピュータ 読み取り可能な記録媒体。 A computer-readable recording medium on which a motor learning support program for causing a computer to execute is recorded.
PCT/JP2005/007444 2004-09-10 2005-04-19 Movement learning assisting device and method, movement learning assisting program, and recording medium on which the program is recorded WO2006027869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-263636 2004-09-10
JP2004263636A JP4054879B2 (en) 2004-09-10 2004-09-10 Motor learning support apparatus and method, motor learning support program, and recording medium recording the program

Publications (1)

Publication Number Publication Date
WO2006027869A1 true WO2006027869A1 (en) 2006-03-16

Family

ID=36036163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007444 WO2006027869A1 (en) 2004-09-10 2005-04-19 Movement learning assisting device and method, movement learning assisting program, and recording medium on which the program is recorded

Country Status (2)

Country Link
JP (1) JP4054879B2 (en)
WO (1) WO2006027869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104720819A (en) * 2015-03-24 2015-06-24 赵君雄 Sleeping process recorder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100009329A1 (en) * 2006-09-29 2010-01-14 Waseda University Medical technique evaluation system, technique evaluation device, technique evaluation device program
JP5229796B2 (en) * 2008-07-27 2013-07-03 国立大学法人 東京大学 Muscle tension database construction method, muscle tension calculation method and apparatus using muscle tension database
WO2010095636A1 (en) * 2009-02-20 2010-08-26 国立大学法人東京大学 Method and device for estimating muscle tension
JP2019141262A (en) * 2018-02-19 2019-08-29 国立大学法人 筑波大学 Method for analyzing motion of martial art

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120351A (en) * 1997-10-15 1999-04-30 Fujitsu Ltd Image matching device and storage medium to store image matching program
JP2004112144A (en) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd Front car tracking system and method for tracking front car
JP2004158043A (en) * 2004-02-06 2004-06-03 Mitsubishi Electric Corp Image processor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11120351A (en) * 1997-10-15 1999-04-30 Fujitsu Ltd Image matching device and storage medium to store image matching program
JP2004112144A (en) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd Front car tracking system and method for tracking front car
JP2004158043A (en) * 2004-02-06 2004-06-03 Mitsubishi Electric Corp Image processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTAKE M. AND NAKAMURA Y.: "Shinkei Kaibogaku no Kin Shihai Model", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS ROBOTICS MECHATRONICS KOENKAI '04 RONSBUNSHU, vol. 2P2-H-60, 8 June 2004 (2004-06-08) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104720819A (en) * 2015-03-24 2015-06-24 赵君雄 Sleeping process recorder

Also Published As

Publication number Publication date
JP2006075398A (en) 2006-03-23
JP4054879B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US11763697B2 (en) User interface system for movement skill analysis and skill augmentation
Taborri et al. Feasibility of muscle synergy outcomes in clinics, robotics, and sports: a systematic review
Land et al. From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control
Figueiredo et al. Front crawl sprint performance: A cluster analysis of biomechanics, energetics, coordinative, and anthropometric determinants in young swimmers
US20190009133A1 (en) Systems and methods for data-driven movement skill training
Mountcastle The sensory hand: neural mechanisms of somatic sensation
Dawson et al. Myoelectric training systems
Barzilay et al. Adaptive rehabilitation games
WO2019130755A1 (en) Information processing device, information processing method, and program
WO2011030781A1 (en) Muscle synergy analysis method, muscle synergy analyzer, and muscle synergy interface
JPH01502005A (en) Apparatus and method for analyzing coordination of movements
Prentice et al. Artificial neural network model for the generation of muscle activation patterns for human locomotion
WO2006027869A1 (en) Movement learning assisting device and method, movement learning assisting program, and recording medium on which the program is recorded
Haggard et al. Hand and brain: the neurophysiology and psychology of hand movements
CN109126045A (en) intelligent motion analysis and training system
CN106691478A (en) Sub-site hand function rehabilitation evaluation method and device
Gilles et al. Grasping an object at floor-level: Is movement strategy a matter of age?
JP4016112B2 (en) Exercise information-neural information conversion apparatus and method, exercise information-neural information conversion program, and recording medium recording the program
González et al. Multichannel audio biofeedback for dynamical coupling between prosthetic hands and their users
Mack et al. Movement prototypes and their relationship in the performance of a gymnastics floor routine
Wochner The benefit of muscle-actuated systems: internal mechanics, optimization and learning
Bakke Different Strokes for Different Folks: Patient-Specific Gait Modelling and Post-Stroke Rehabilitation
Ma et al. Simulation analysis of sports training process optimisation based on motion biomechanical analysis
Pogrzeba et al. Towards a vocabulary for describing 3d motion data in functionally oriented music therapy
Li et al. Current status and clinical perspectives of extended reality for myoelectric prostheses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase