WO2006025532A1 - Scan optical system, image formation device using the scan optical system, and image read device using the scan optical system - Google Patents

Scan optical system, image formation device using the scan optical system, and image read device using the scan optical system Download PDF

Info

Publication number
WO2006025532A1
WO2006025532A1 PCT/JP2005/016128 JP2005016128W WO2006025532A1 WO 2006025532 A1 WO2006025532 A1 WO 2006025532A1 JP 2005016128 W JP2005016128 W JP 2005016128W WO 2006025532 A1 WO2006025532 A1 WO 2006025532A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
scanning
image
light source
lens
Prior art date
Application number
PCT/JP2005/016128
Other languages
French (fr)
Japanese (ja)
Inventor
Daizaburo Matsuki
Motonobu Yoshikawa
Michihiro Yamagata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006025532A1 publication Critical patent/WO2006025532A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4227Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant in image scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4283Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major temperature dependent properties

Definitions

  • the present invention relates to a scanning optical system that scans a laser beam, and more specifically, an exposure optical system of an image forming apparatus such as a laser printer, a laser facsimile, or a digital copying machine, or a reading of an image reading apparatus such as a scanner.
  • the present invention relates to a scanning optical system used in an optical system.
  • the present invention also relates to an image forming apparatus and an image reading apparatus provided with a scanning optical system.
  • a scanning optical system is incorporated in an apparatus that reads and writes an image mainly by scanning a light beam.
  • the scanning optical system is especially useful for image forming devices such as laser printers, laser facsimiles, and digital copiers! It is used in an exposure optical system for forming images.
  • the scanning optical system is also used as a reading optical system of an image reading apparatus such as a scanner.
  • a conventional scanning optical system used in the image forming apparatus as described above includes a semiconductor laser, a polygon mirror, and a scanning lens.
  • the spot diameter tends to become smaller, and the optical performance required for the scanning optical system has been remarkably improved.
  • the influence of focus fluctuation due to changes in environmental temperature has become a major issue. Therefore, many technologies have been proposed for the purpose of suppressing focus fluctuations in conventional force scanning optical systems.
  • Patent Document 1 discloses a scanning optical system using a diffractive surface.
  • the scanning optical system described in Patent Document 1 is provided with at least two diffractive surfaces on the scanning lens, so that focus change (aberration fluctuation) does not occur even if environmental changes (especially temperature changes) occur! As! /
  • Patent Document 2 discloses a scanning optical system using a correction lens.
  • the scanning optical system described in Patent Document 2 includes an imaging optical system composed of a plastic lens and an image plane. And a correction lens composed of a single plastic lens arranged on the side, so that the variation in focus due to temperature changes is kept within the depth of focus.
  • Patent Document 1 JP-A-11 119133
  • Patent Document 2 Japanese Patent No. 3072146
  • the optical element having a diffractive surface included in the scanning optical system described in Patent Document 1 has a complicated shape that is not rotationally symmetric, it is difficult to produce a mold for manufacturing. There was a problem that the machining accuracy of the mold was severe.
  • the scanning optical system described in Patent Document 1 is difficult to manufacture a diffractive surface because the scanning lens is large.
  • the scanning lens described in Patent Document 1 employs a method of forming a lattice layer by applying an ultraviolet curable resin on the surface as its manufacturing method. There was a problem.
  • the scanning optical system disclosed in Patent Document 2 has a problem that the correction lens is disposed close to the surface to be scanned and is thus increased in size, which makes it difficult to reduce the size and increases costs.
  • the scanning optical system disclosed in Patent Document 2 has led to an increase in cost, which makes it difficult to arrange and adjust the correction lens during assembly.
  • the scanning optical system of the present invention is a scanning optical system that forms and scans a beam emitted from a light source as a spot on a surface to be scanned, and reflects and deflects the light source power beam by a reflecting surface.
  • the first scanning optical system that forms a beam in the main scanning direction in the vicinity of the deflecting surface of the deflector and the main scanning in the vicinity of the reflecting surface of the polarizer
  • a first imaging optical system comprising a single scanning lens for re-imaging a linearly-formed image beam extending in the direction as a spot on the surface to be scanned. But the divergent behavior from the light source
  • a positive power optical system that converts the beam into a collimated beam or a convergent beam, the positive optical system having a surface made of a resin and having optical power by diffraction.
  • the scanning lens is made of a resin.
  • the surface having optical power by the bending of the positive power optical system has a rotational axis symmetrical shape.
  • the positive optical system converts the divergent beam from the light source into a convergent beam, and the beam incident on the scanning lens has a convergence in the main scanning direction.
  • the scanning lens has an anamorphic surface.
  • the anamorphic surface is preferably a free-form surface, and is more preferably a free-form surface that is a curved non-circular line connecting the centers of curvature in the sub-scanning direction.
  • the scanning lens has a cylindrical surface.
  • the cylindrical surface may be formed on the scanned surface side or on the deflector side.
  • the m is more preferably in the range represented by the following conditional expression.
  • the LZf is more preferably in the range represented by the following conditional expression.
  • the thickness of the lens when the thickness of the lens is measured in a direction parallel to the optical axis, the thickness of the thinnest portion is t, and the thickness of the center of the scanning lens is T, the following conditional expression ( 3): 0.15 ⁇ t / T ⁇ 0.3 (3)
  • the tZT is more preferably in the range represented by the following conditional expression. 0. 19 ⁇ t / T (3) '
  • the image forming apparatus of the present invention is an image forming apparatus that forms an image based on an image signal, and a light source that controls a beam to be emitted based on an input image signal, and a light source that is emitted from the light source.
  • An exposure optical system that forms an electrostatic latent image on an electrostatic latent image carrier based on a beam; and developing means that develops the electrostatic latent image formed by the exposure optical system, the exposure optical system comprising: A scanning optical system, wherein the scanning optical system reflects a beam of light source power by reflecting it on the reflecting surface and deflects it, and a beam from the light source is scanned near the reflecting surface of the deflector in the main scanning direction.
  • the first image-forming optical system that forms an image in a linear line extending in the direction and the beam formed in a linear form extending in the main scanning direction in the vicinity of the reflecting surface of the polarizer are again connected as spots on the surface to be scanned.
  • a second imaging optical system comprising a single scanning lens for imaging,
  • the first imaging optical system includes a positive power optical system that converts a divergent beam from a light source into a collimated beam or a convergent beam. It has a surface with dynamic power.
  • the image reading apparatus of the present invention is an image reading apparatus that reads a two-dimensional image and forms an electrical image signal, and includes a light source that controls a beam to be emitted based on an input image signal, and a light source
  • the scanning optical system extends a beam from the light source in the main scanning direction near the reflecting surface of the deflector and a deflector that performs main scanning by reflecting and deflecting the beam of the light source by the reflecting surface.
  • the first image-forming optical system that forms an image in a linear shape and the linearly-formed image that extends in the main scanning direction near the reflecting surface of the polarizer are re-imaged as spots on the surface to be scanned.
  • Second consisting of a single scanning lens An image optical system, and a positive power optical system that converts the divergent beam from the first imaging optical system light source into a parallel beam or a convergent beam. As a material, it has a surface with optical power due to diffraction.
  • the present invention it is possible to provide a compact and low-cost scanning optical system in which performance deterioration due to temperature change is small. Further, according to the present invention, it is possible to provide an image forming apparatus and an image reading apparatus including a small and low-cost scanning optical system in which performance deterioration due to temperature change is small.
  • FIG. 1 is a configuration diagram of a scanning optical system according to a first embodiment.
  • FIG. 2 is an optical configuration diagram in the vicinity of a light source of the scanning optical system according to the first embodiment.
  • FIG. 3 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 1 in the sub-scanning direction.
  • FIG. 4 is a cross-sectional view in the sub-scanning direction of a modification of the second imaging optical system of the scanning optical system according to Embodiment 1.
  • FIG. 5 is a configuration diagram of a scanning optical system according to the second embodiment.
  • FIG. 6 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 2 in the sub-scanning direction.
  • FIG. 7 is a cross-sectional view showing a configuration of an image forming apparatus according to Embodiment 3.
  • FIG. 8 is an optical configuration diagram of a scanning optical system applied to the image reading apparatus according to the fourth embodiment.
  • FIG. 9 is an aberration diagram showing f ⁇ error on the surface to be scanned of Example 1.
  • FIG. 10 is an aberration diagram showing field curvature in the main scanning direction on the surface to be scanned of Example 1.
  • FIG. 11 is an aberration diagram showing field curvature in the sub-scanning direction on the surface to be scanned of Example 1.
  • FIG. 12 is an aberration diagram showing f ⁇ error on the scanned surface of Example 2.
  • FIG. 13 is an aberration diagram showing field curvature in the main scanning direction on the surface to be scanned of Example 2.
  • FIG. 14 is an aberration diagram showing field curvature in the sub-scanning direction on the surface to be scanned of Example 2. Explanation of symbols
  • FIG. 1 is a configuration diagram of a scanning optical system according to the first embodiment.
  • the scanning optical system includes a collimating lens 2, a cylindrical lens 3, a polygon mirror 4, and a scanning lens 6.
  • the collimating lens 2 and the cylindrical lens 3 constitute a first imaging optical system
  • the scanning lens 6 constitutes a second imaging optical system.
  • the first imaging optical system and the second imaging optical system are different in V and displacement in the main scanning direction and the sub scanning direction orthogonal to the main scanning direction, respectively. This is an anamorphic optical system with optical power.
  • the main scanning surface for performing the main scanning by the polygon mirror 4 and the plane including the optical axis of the scanning optical system are described so as to be parallel to the paper surface.
  • the collimator lens 2 converts a divergent laser beam emitted from the semiconductor laser 1 as a light source into a convergent laser beam.
  • the collimating lens 2 is a lens having a rotational axis symmetrical shape with respect to the optical axis on both the light source side and the polygon mirror side. Further, the collimating lens 2 is made of resin, and a diffractive surface having optical power by diffraction is formed on the surface of the polygon mirror side. The operation of this diffractive surface will be described later.
  • a cover glass 8 which is a parallel plate is disposed between the semiconductor laser 1 and the collimating lens 2.
  • FIG. 2 is an optical configuration diagram in the vicinity of the light source of the scanning optical system according to the first embodiment.
  • the emission point of the semiconductor laser 1 corresponds to the symbol SO.
  • the cover glass 8 corresponds to the surface S1 and the surface S2.
  • collimating lens 2 corresponds to surface S3, surface S4, and surface S5.
  • the surface S4 represents a surface having optical power due to refraction of the collimating lens 2
  • the surface S5 represents a surface having optical power due to diffraction of the collimating lens 2.
  • the cylindrical lens 3 is made of resin and has a flat surface on the light source side and a cylindrical surface that has optical power only in the sub-scanning direction and is formed on the polygon mirror side.
  • the cylindrical lens 3 acts only in the sub-scanning direction of the converging laser beam emitted from the collimating lens 2 and condenses in a linear shape extending in the main scanning direction near the reflection surface of the polygon mirror 4.
  • the polygon mirror 4 is a rotating polygon mirror that is driven to rotate about the rotation axis 5.
  • the polygon mirror 4 is driven to rotate about the rotation axis 5 to deflect the incident laser beam.
  • the polygon mirror 4 is arranged such that the optical axis of the laser beam incident on the polygon mirror 4 and the scanning center of the laser beam reflected by the reflecting surface in the main scanning direction form a predetermined finite angle.
  • the scanning lens 6 forms an image of the laser beam deflected and scanned on the surface to be scanned 7 by reflection on the reflecting surface of the polygon mirror 4.
  • the scanning lens 6 has an f ⁇ characteristic, and scans a laser beam deflected at a constant angular speed by the polygon mirror 4 on the surface to be scanned 7 at a constant speed.
  • the scanning lens 6 is made of resin and has optical power only in the main scanning direction.
  • FIG. 3 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 1 in the sub-scanning direction.
  • the reflection surface of the polygon mirror 4 and the surface to be scanned 7 are optically conjugate in the sub-scan section. This conjugate relationship realizes so-called surface tilt correction. Even if the reflection surface of the polygon mirror 4 tilts with respect to the rotation axis 5, the sub surface on the surface to be scanned 7 formed by the scanning lens 6 can be obtained.
  • the imaging position in the scanning direction does not change.
  • the divergent laser beam emitted from the semiconductor laser 1 enters the collimating lens 2 via the force bar glass 8 and is converted into a convergent laser beam.
  • the laser beam is then imaged by the cylindrical lens 3 into a linear shape extending in the main scanning direction in the vicinity of the reflection surface of the polygon mirror 4. After that, the laser beam is incident on the scanning lens 6 as a divergent laser beam in the sub-scanning direction while maintaining the convergence in the main scanning direction, and is scanned at a constant speed by the scanning lens 6. And imaged as a spot.
  • the collimating lens 2, the cylindrical lens 3, and the scanning lens 6 are all made of resin, when the environmental temperature changes, the shape of the lens itself and the refractive index of the resin change. Due to this change, the optical power due to refraction of each lens also changes, and the spot position is formed at a position shifted from the scanned surface 7.
  • the change in optical power caused by the change in ambient temperature is canceled by the surface having optical power due to diffraction formed in the collimator lens 2.
  • the surface having the optical power by diffraction is integrally formed on the refracting surface of the collimating lens 2 so that the shape of the lens itself when the environmental temperature changes is formed.
  • the power change due to the refraction of the lens due to the change in the refractive index of the resin and the resin is offset by the power change due to diffraction!
  • a collimating lens 2 having a small effective diameter is formed with a surface having optical power due to rotationally symmetric diffraction. This makes it easy to manufacture and assemble the diffractive surface, increasing costs. Do not invite.
  • the scanning optical system according to Embodiment 1 forms the collimating lens 2 by means of grease, the refracting surface and the diffractive surface can be formed simultaneously, and a high-precision optical surface can be easily formed. can do.
  • the scanning optical system according to Embodiment 1 has a configuration in which convergent light is formed in the main scanning direction by the collimating lens 2 and is incident on the scanning lens 6, the focal distance of the scanning lens 6
  • the to-be-scanned surface 7 can be arranged at a shorter position.
  • the anamorphic surface of the scanning lens 6 is a free-form surface. It is desirable that By configuring the scanning lens in this way, it is possible to satisfactorily correct the f ⁇ error and the field curvature.
  • the anamorphic surface of the scanning lens 6 introduces an odd-order term into the surface shape.
  • the curve connecting the curvature centers in the sub-scanning plane is asymmetric with respect to the optical axis, and the image plane curve in the sub-scanning direction that occurs asymmetrically can be highly corrected.
  • the scanning lens 6 is made of resin and has a cylindrical surface, it is easy to manufacture and assemble and adjust the lens including mold processing. This comes out.
  • Each condition described below is preferably satisfied at the same time, but is not limited to this.
  • Each condition can have a corresponding effect by satisfying only the individual conditions.
  • the scanning optical system according to Embodiment 1 has the following conditional expression (1), where m is the magnification in the sub-scanning direction in the second imaging optical system:
  • conditional expression (1) it is possible to achieve a configuration in which the amount of jitter generated on the surface to be scanned is suppressed in a well-balanced manner due to the vibration of the scanning lens and polygon mirror.
  • the lower limit of conditional expression (1) is exceeded, the amount of jitter generated due to the tilting of the polygon mirror is reduced. Therefore, the pitch unevenness occurs between the scanning lines in the sub-scanning direction on the surface to be scanned, and a uniform image cannot be obtained.
  • the upper limit of conditional expression (1) is exceeded, the amount of jitter generated due to lens vibration increases, resulting in uneven pitch between scanning lines in the sub-scanning direction on the surface to be scanned. I can't get it.
  • the scanning optical system according to Embodiment 1 has the reflecting surface force of the polygon mirror as the distance to the surface to be scanned where the laser beam forms an image L, and the focal length of the scanning lens in the main scanning direction as f.
  • conditional expression (2) it is possible to realize a scanning optical system that is compact and lightweight and has good aberration correction.
  • conditional expression (2) it is possible to realize a scanning optical system that is compact and lightweight and has good aberration correction.
  • the distance from the deflector to the surface to be scanned becomes very short and the size of the apparatus can be reduced, but the amount of field curvature in the main scanning direction and the amount of f ⁇ error Becomes larger.
  • variations in the beam spot diameter and pitch unevenness in the main scanning direction occur on the surface to be scanned, so that a uniform image cannot be obtained.
  • the upper limit of conditional expression (2) is exceeded, the distance between the reflective surface force of the polygon mirror and the surface to be scanned becomes longer, and the apparatus becomes larger.
  • the upper limit of conditional expression (2) is exceeded, the amount of jitter generated on the scanned surface due to the vibration of the scanning lens and polygon mirror increases in proportion to the magnification in the sub-scanning direction with respect to the vibration amount. Reflective surface force of mirror As the distance to the surface to be driven becomes longer, it becomes difficult to maintain the same magnification in the sub-scanning direction. If the upper limit of conditional expression (2) is exceeded, the negative refractive power of the scanning lens must be increased in order to maintain the scanning lens magnification in the sub-scanning direction at the same value, and as a result, Tolerances during scanning lens mounting and caking are severe and undesirable. [0042] It should be noted that when the LZf is in a range represented by any of the following conditional expressions, the above-described effects can be achieved more remarkably.
  • FIG. 4 is a cross-sectional view in the sub-scanning direction of a modification of the second imaging optical system of the scanning optical system according to Embodiment 1. As shown in FIG. 4, a scanning lens 6 ′ having a cylindrical surface having an optical power only in the main scanning surface may be arranged on the surface to be scanned 7 side.
  • the collimator lens of the scanning optical system according to Embodiment 1 converts a divergent beam from a light source into a force-parallel beam that was used to convert the beam into a convergent beam. Also good.
  • the first imaging optical system of the scanning optical system becomes large, but the sensitivity of the alignment of the polygonal mirror decreases with the cylindrical lens, so that the assembly and adjustment of the scanning optical system becomes easy. There is.
  • FIG. 5 is a configuration diagram of a scanning optical system according to the second embodiment.
  • FIG. 6 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 2 in the sub-scanning direction.
  • the scanning optical system according to Embodiment 2 has a schematic configuration similar to that of the scanning optical system according to Embodiment 1. Since they are equal, only the differences will be described. 5 and FIG. 6, the configurations with the same reference numerals are the same as those described in the first embodiment.
  • the scanning optical system according to the first embodiment and the scanning lens 16 of the second imaging optical system are anamorphic on both sides of the polygon mirror side and the scanned surface side. It differs in that it has a surface.
  • the scanning lens 16 since the scanning lens 16 has two anamorphic surfaces, aberration correction can be performed more favorably than the degree of freedom for aberration correction is large.
  • FIG. 7 is a cross-sectional view showing the configuration of the image forming apparatus according to the third embodiment.
  • This image forming apparatus is a printer apparatus that forms a monochrome image based on a data signal input from an external camera.
  • the image forming apparatus according to the third embodiment may be mounted with the scanning optical system according to the first embodiment as the exposure optical system 21.
  • the image forming apparatus is a known electrophotographic printer, and includes a primary charger 20, an exposure optical system 21, a developer 22, a transfer charger 23, a cleaner 24, and a fixing device. It includes a device 25, a paper feed cassette 26, and a photosensitive drum 27 (electrostatic latent image carrier).
  • the exposure optical system 21 forms an electrostatic latent image, and print information is written on the photosensitive drum 27 as an electrostatic latent image.
  • the surface of the photosensitive drum 27 is covered with a photosensitive member that changes its charge when irradiated with light.
  • electrostatic ions adhere to the surface of the photosensitive drum 27 and are charged.
  • the charged photosensitive drum 27 is imaged by the developing unit 22 with the charged toner attached to the printing unit.
  • the toner adhering to the photosensitive drum 27 is transferred onto the paper supplied from the paper feed cassette 26 by the transfer charger 23.
  • the transferred toner is fixed on the paper by the fixing device 25.
  • the remaining toner is removed by the cleaner 24.
  • the image forming apparatus uses the scanning optical system according to the first embodiment, it is easy to manufacture and can form a high-quality image.
  • the scanning optical system according to the second embodiment may be used instead of the scanning optical system according to the first embodiment.
  • FIG. 8 is an optical configuration diagram of a scanning optical system applied to the image reading apparatus according to the fourth embodiment.
  • the image reading apparatus according to the fourth embodiment includes the scanning optical system described in the first embodiment. Is mounted as an image reading optical system.
  • the scanning optical system of the image reading apparatus according to the fourth embodiment has the same schematic configuration as the scanning optical system according to the first embodiment, so only the differences will be described. Note that, in FIG. 8, configurations with the same reference numerals are the same as those described in the first embodiment.
  • the scanning optical system applied to the image reading apparatus includes a half mirror 11, a detector 12, and a detection optical system 13 in addition to the scanning optical system according to the first embodiment. It is equipped with.
  • the half mirror 11 transmits the laser beam from the semiconductor laser 1 and illuminates the reading surface 10 which is a two-dimensional image to be read, and reflects the return light from the reading surface 10 toward the detection optical system 13.
  • the detection optical system 13 returns the light to the detector 12 reflected by the half mirror.
  • the image reading apparatus uses the scanning optical system according to the first embodiment, it is easy to manufacture and can read a high-quality image.
  • the scanning optical system according to the second embodiment may be used instead of the scanning optical system according to the first embodiment.
  • the collimating lens is not limited to this force, which is a single lens having a rotational axis symmetry shape.
  • the collimating lens may be configured to include a plurality of rotationally symmetrical lenses, and any lens surface may have a surface having an optical power due to diffraction.
  • the collimating lens may include a prism or a mirror in the optical path. That is, instead of the collimating lens, a configuration that functions as a positive power optical system that converts a divergent beam of light source power into a convergent beam or a parallel beam can be used.
  • the laser beam is deflected by a polygon mirror.
  • the deflector may be a galvanometer mirror. That is, a configuration that functions as a polarizer having a reflecting surface that deflects an incident beam can be used instead of a polygon mirror.
  • the wavelength of the laser beam is not particularly limited, and a beam having any wavelength such as an infrared region, a visible red region, or a visible blue region is used.
  • Example 1 is a numerical example that embodies the first embodiment shown in FIGS. 1 to 3
  • Example 2 is a numerical example that embodies the second embodiment shown in FIGS. 5 and 6. It is.
  • the sub-scanning direction coordinate with the vertex of the surface as the origin is represented by X
  • the main scanning direction coordinate is y (mm)
  • the sag amount z (mm) of the apex force is defined by the following formula, where the directional force direction of the incident beam is positive.
  • P (y) is the shape in the main scanning plane including the optical axis
  • RDy (mm) is the radius of curvature in the main scanning plane
  • K is the conic constant contributing to the main scanning direction
  • AD, AE, AF and AG Is an even-order constant contributing to the main scanning direction
  • AOD, AOE, AOF and AOG are odd-order constants
  • RDx is a function representing the radius of curvature in the sub-scanning plane at each y coordinate
  • RDs (mm) is the center
  • BC, BD, BE, BF, and BG are even-order constants
  • BOC, BOD, BOE, BOF, and BOG are odd-order constants.
  • the collimating lens and the cylindrical lens are aspherical surfaces, and the shapes thereof are expressed by the following equations.
  • phase grating formed on the diffractive surface of the surface S5 is expressed by the ultrahigh refractive index method (ultrahigh William C. Sweatt "Describing holographic optical elements as lenses (Journal of Optical Society of America, Vol. 6 i, No. 6, June 1977 Holographic Optical Element Ranges, Journal of Optical Society USA, 67th, 6th, June 1977)).
  • a similar phase grating shape can also be expressed by a known phase function method.
  • Si represents the surface number
  • ryi represents the radius of curvature in the main scanning plane
  • rxi represents the radius of curvature of the cross section in the sub-scanning direction
  • di represents the axial top surface spacing
  • ni represents the refractive index of the optical material.
  • the design wavelength is 780 nm
  • the unit of f, L, ryi, rxi, di, RDy and RDs is (mm)
  • the unit of ⁇ max is (deg).
  • the surface S8 corresponds to the reflective surface of the polygon mirror.
  • f is the focal length of the scanning lens
  • ⁇ max is the maximum deflection angle
  • L is the distance between the deflection reflecting surface and the scanned surface.
  • Table 1 shows the parameters of the first imaging optical system
  • Table 2 shows the coefficients of the surfaces included in the first imaging optical system
  • Table 3 shows the parameters of the second imaging optical system
  • Table 4 shows the parameters related to the shape of the scanning lens.
  • FIGS. 9 to 11 are aberration diagrams on the surface to be scanned of Example 1.
  • the optical performance at normal temperature (environmental temperature of the scanning optical system corresponds to 25 ° C) is different from the optical performance at high temperature (environmental temperature of the scanning optical system corresponds to 55 ° C). Shown with lines.
  • Figure 9 shows the f ⁇ error on the scanned surface, where the side where the f ⁇ characteristic is compressed is negative and the side where it is stretched is positive.
  • Figure 10 shows the curvature of field in the main scanning direction on the surface to be scanned, where positive is when the imaging position is ahead of the ideal image plane position, and there is an imaging position behind the ideal image plane position.
  • Fig. 11 shows the field curvature in the sub-scanning direction on the surface to be scanned. The case where the imaging position is in front of the ideal image plane position is positive, and the case where the imaging position is in the rear side of the ideal image plane position. Negative.
  • Example 2 the parameters of the first imaging optical system are shown in Table 5
  • the coefficients of the surfaces included in the first imaging optical system are shown in Table 6
  • the parameters of the second imaging optical system are shown in Table 7
  • Table 8 shows the parameters related to the shape of the scanning lens.
  • FIG. 12 to 14 are aberration diagrams on the surface to be scanned of Example 2.
  • the optical performance at normal temperature (environmental temperature of the scanning optical system corresponds to 25 ° C) is different from the optical performance at high temperature (environmental temperature of the scanning optical system corresponds to 55 ° C).
  • Figure 12 shows the f ⁇ error on the scanned surface, where the f ⁇ characteristic is compressed on the negative side and the stretched side is positive.
  • Fig. 13 shows the curvature of field in the main scanning direction on the surface to be scanned.
  • the image forming position is positive when the image forming position is in front of the ideal image surface position, and the image forming position is behind the ideal image surface position. Some cases are negative.
  • Fig. 14 shows the field curvature in the sub-scanning direction on the surface to be scanned. The case where the imaging position is in front of the ideal image plane position is positive, and the case where the imaging position is in the rear side of the ideal image plane position. Negative.
  • Example 1 the main optical parameters and the corresponding values of the conditional expressions (1) and (2) are shown in Table 9.
  • the present invention is suitable for image forming apparatuses such as laser printers, laser facsimiles, and digital copying machines, and image reading apparatuses such as scanners.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

It is possible to provide a small-size scan optical system having little performance deterioration by temperature change at a reasonable cost. The scan optical system forms an image by spotting the beam emitted from a light source onto a surface to be scanned. The scan optical system includes: a deflector for performing main scan by reflecting the beam from the light source by a reflection surface so as to be deflected; a first image formation optical system for forming the beam from the light source into a linear image extending in the main scan direction in the vicinity of the reflection surface of the deflector; and a second image formation optical system formed by a single scan lens for again forming the beam of the linear image extending in the main scan direction in the vicinity of the reflection surface of the deflector again into a spot on the surface to be scanned. The first image formation optical system includes a positive power optical system for converting a diverging beam from the light source into a parallel or converging beam. The positive power optical system has a surface made from resin and having optical power by diffraction.

Description

走査光学系、走査光学系を備える画像形成装置、走査光学系を備える 画像読取装置  Scanning optical system, image forming apparatus including scanning optical system, and image reading apparatus including scanning optical system
技術分野  Technical field
[0001] 本発明は、レーザビームを走査する走査光学系に関し、特定的には、レーザプリン タ、レーザファクシミリ、デジタル複写機等の画像形成装置の露光光学系やスキャナ 等の画像読取装置の読取光学系に用いられる走査光学系に関する。また本発明は 、走査光学系を備える画像形成装置及び画像読取装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a scanning optical system that scans a laser beam, and more specifically, an exposure optical system of an image forming apparatus such as a laser printer, a laser facsimile, or a digital copying machine, or a reading of an image reading apparatus such as a scanner. The present invention relates to a scanning optical system used in an optical system. The present invention also relates to an image forming apparatus and an image reading apparatus provided with a scanning optical system.
背景技術  Background art
[0002] 走査光学系は、主として光束を走査することにより画像の読み込みや書き込みを行 う装置に組み込まれている。走査光学系は、特にレーザプリンタ、レーザファクシミリ、 デジタル複写機等の画像形成装置にお!ヽて、画像を形成するための露光光学系に 用いられている。また走査光学系は、スキャナ等の画像読取装置の読取光学系とし ても使用される。  A scanning optical system is incorporated in an apparatus that reads and writes an image mainly by scanning a light beam. The scanning optical system is especially useful for image forming devices such as laser printers, laser facsimiles, and digital copiers! It is used in an exposure optical system for forming images. The scanning optical system is also used as a reading optical system of an image reading apparatus such as a scanner.
[0003] 上記のような画像形成装置に用いられる従来の走査光学系は、半導体レーザと、 ポリゴンミラーと、走査レンズとを含んでいる。近年、画像形成装置や画像読取装置 の高解像ィ匕が進展してきたため、スポット径カ 、さくなる傾向にあり、走査光学系に 求められる光学性能も格段に向上している。このため、走査光学系において、環境 温度の変化による焦点変動の影響が大きな課題となってきている。したがって、従来 力 走査光学系の焦点変動を抑えることを目的とした数多くの技術が提案されている  [0003] A conventional scanning optical system used in the image forming apparatus as described above includes a semiconductor laser, a polygon mirror, and a scanning lens. In recent years, since the high resolution of image forming apparatuses and image reading apparatuses has progressed, the spot diameter tends to become smaller, and the optical performance required for the scanning optical system has been remarkably improved. For this reason, in the scanning optical system, the influence of focus fluctuation due to changes in environmental temperature has become a major issue. Therefore, many technologies have been proposed for the purpose of suppressing focus fluctuations in conventional force scanning optical systems.
[0004] 例えば、特許文献 1は、回折面を用いた走査光学系を開示している。特許文献 1に 記載された走査光学系は、走査レンズに少なくとも 2つの回折面を設けることで、環 境変化 (特に温度変化)が生じてもピント変化 (収差変動)が生じな!/、構成として!/、る [0004] For example, Patent Document 1 discloses a scanning optical system using a diffractive surface. The scanning optical system described in Patent Document 1 is provided with at least two diffractive surfaces on the scanning lens, so that focus change (aberration fluctuation) does not occur even if environmental changes (especially temperature changes) occur! As! /
[0005] さらに、特許文献 2は、補正レンズを用いた走査光学系を開示している。特許文献 2 に記載された走査光学系は、プレスチックレンズから構成される結像光学系と、像面 側に配置された単一のプラスチックレンズから構成される補正レンズとを備え、温度 変化による焦点変動を焦点深度内に収めるようにしている。 [0005] Further, Patent Document 2 discloses a scanning optical system using a correction lens. The scanning optical system described in Patent Document 2 includes an imaging optical system composed of a plastic lens and an image plane. And a correction lens composed of a single plastic lens arranged on the side, so that the variation in focus due to temperature changes is kept within the depth of focus.
特許文献 1 :特開平 11 119133号公報  Patent Document 1: JP-A-11 119133
特許文献 2:特許第 3072146号公報  Patent Document 2: Japanese Patent No. 3072146
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、特許文献 1に記載された走査光学系に含まれる回折面を持つ光学素子は 、回転軸対称でない複雑な形状であるため、製造するための金型作成が困難であり 、金型の加工精度が厳しいという問題があった。また特許文献 1に記載された走査光 学系は、走査レンズが大型であるため、回折面の製造が容易ではな力つた。さらに特 許文献 1に記載された走査レンズは、その製法として表面に紫外線硬化榭脂を塗布 して格子層を形成する方法が採用されるため、加工に手間がかかり、量産性が厳し いという問題があった。 However, since the optical element having a diffractive surface included in the scanning optical system described in Patent Document 1 has a complicated shape that is not rotationally symmetric, it is difficult to produce a mold for manufacturing. There was a problem that the machining accuracy of the mold was severe. In addition, the scanning optical system described in Patent Document 1 is difficult to manufacture a diffractive surface because the scanning lens is large. Furthermore, the scanning lens described in Patent Document 1 employs a method of forming a lattice layer by applying an ultraviolet curable resin on the surface as its manufacturing method. There was a problem.
[0007] 一方特許文献 2に開示された走査光学系では、補正レンズが被走査面に近接して 配置されるため大型化してしまい、小型化が難しくコストアップに繋がるという問題が あった。また特許文献 2に開示された走査光学系は、組立ての際に補正レンズを配 置調整することが容易ではなぐコストアップを招来していた。  [0007] On the other hand, the scanning optical system disclosed in Patent Document 2 has a problem that the correction lens is disposed close to the surface to be scanned and is thus increased in size, which makes it difficult to reduce the size and increases costs. In addition, the scanning optical system disclosed in Patent Document 2 has led to an increase in cost, which makes it difficult to arrange and adjust the correction lens during assembly.
[0008] 本発明の目的は、温度変化による性能劣化が小さぐ小型で低コストな走査光学系 を提供することである。また本発明の別の目的は、かかる走査光学系を備える画像形 成装置及び画像読取装置を提供することである。  An object of the present invention is to provide a small-sized and low-cost scanning optical system in which performance deterioration due to temperature change is small. Another object of the present invention is to provide an image forming apparatus and an image reading apparatus provided with such a scanning optical system.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的は、以下の走査光学系により達成される。すなわち本発明の走査光学系 は、光源から出射されるビームを被走査面上にスポットとして結像し走査する走査光 学系であって、光源力 のビームを反射面により反射して偏向することにより主走査 する偏向器と、光源からのビームを、偏向器の反射面近傍で主走査方向に延びた線 状に結像する第 1結像光学系と、偏光器の反射面近傍で主走査方向に延びた線状 に結像されたビームを、被走査面上にスポットとして再び結像させる単一の走査レン ズからなる第 2結像光学系とを備え、前記第 1結像光学系が、光源からの発散性のビ ームを平行ビーム又は収束性のビームに変換する正パワー光学系を含み、該正パヮ 一光学系が、榭脂を材料とし、回折による光学的パワーを持つ面を有する。 The above object is achieved by the following scanning optical system. In other words, the scanning optical system of the present invention is a scanning optical system that forms and scans a beam emitted from a light source as a spot on a surface to be scanned, and reflects and deflects the light source power beam by a reflecting surface. The first scanning optical system that forms a beam in the main scanning direction in the vicinity of the deflecting surface of the deflector and the main scanning in the vicinity of the reflecting surface of the polarizer A first imaging optical system comprising a single scanning lens for re-imaging a linearly-formed image beam extending in the direction as a spot on the surface to be scanned. But the divergent behavior from the light source A positive power optical system that converts the beam into a collimated beam or a convergent beam, the positive optical system having a surface made of a resin and having optical power by diffraction.
[0010] 好ましくは、走査レンズが榭脂を材料とする。また好ましくは、正パワー光学系の回 折による光学的パワーを持つ面が、回転軸対称形状である。また好ましくは、正パヮ 一光学系が、光源からの発散性のビームを収束性のビームに変換し、走査レンズに 入射するビームが、主走査方向に関して収束性を有する。  [0010] Preferably, the scanning lens is made of a resin. Preferably, the surface having optical power by the bending of the positive power optical system has a rotational axis symmetrical shape. Preferably, the positive optical system converts the divergent beam from the light source into a convergent beam, and the beam incident on the scanning lens has a convergence in the main scanning direction.
[0011] 好ましくは、走査レンズがアナモフィック面を有する。該アナモフィック面は自由曲面 であることが望ましぐ副走査方向の曲率中心を結んだ線が湾曲した非円弧となる自 由曲面であることがさらに望ましい。  [0011] Preferably, the scanning lens has an anamorphic surface. The anamorphic surface is preferably a free-form surface, and is more preferably a free-form surface that is a curved non-circular line connecting the centers of curvature in the sub-scanning direction.
[0012] 好ましくは、走査レンズがシリンドリカル面を有する。該シリンドリカル面は、偏向器 側に形成されてもよぐ被走査面側に形成されてもよい。  [0012] Preferably, the scanning lens has a cylindrical surface. The cylindrical surface may be formed on the scanned surface side or on the deflector side.
[0013] 好ましくは、第 2結像光学系における副走査方向の倍率を mとしたとき、以下の条 件式 (1) :  [0013] Preferably, when the magnification in the sub-scanning direction in the second imaging optical system is m, the following conditional expression (1):
1. 2<m<4. 5 (1)  1. 2 <m <4.5 (1)
を満足する。該 mは、以下の条件式で表す範囲にあるとさらに望ましい。  Satisfied. The m is more preferably in the range represented by the following conditional expression.
1. 7<m (1),  1. 7 <m (1),
2. 2<m (1) "  2. 2 <m (1) "
m< 3. 9 (1) " '  m <3.9 (1) "'
[0014] 好ましくは、偏光器の反射面から被走査面までの距離を L、走査レンズの持つ主走 查方向の焦点距離を fとしたとき、以下の条件式 (2):  [0014] Preferably, when the distance from the reflecting surface of the polarizer to the surface to be scanned is L and the focal length of the scanning lens in the main scanning direction is f, the following conditional expression (2):
0. 5<L/f< l. 2 (2)  0. 5 <L / f <l. 2 (2)
を満足する。該 LZfは、以下の条件式で表す範囲にあるとさらに望ましい。  Satisfied. The LZf is more preferably in the range represented by the following conditional expression.
0. 7<L/f (2) '  0. 7 <L / f (2) '
L/f< l. 0 (2) "  L / f <l. 0 (2) "
[0015] 好ましくは、走査レンズにおいて、光軸と平行な方向にレンズの厚みを計測し、最も 薄い箇所の厚みを t、該走査レンズの中心の厚みを Tとしたとき、以下の条件式(3): 0. 15<t/T<0. 3 (3)  Preferably, in the scanning lens, when the thickness of the lens is measured in a direction parallel to the optical axis, the thickness of the thinnest portion is t, and the thickness of the center of the scanning lens is T, the following conditional expression ( 3): 0.15 <t / T <0.3 (3)
を満足する。該 tZTは、以下の条件式で表す範囲にあるとさらに望ましい。 0. 19<t/T (3) ' Satisfied. The tZT is more preferably in the range represented by the following conditional expression. 0. 19 <t / T (3) '
t/T< 0. 26 (3) "  t / T <0. 26 (3) "
[0016] 上記目的は、以下の画像形成装置により達成される。すなわち本発明の画像形成 装置は、画像信号に基づいて画像を形成する画像形成装置であって、入力される画 像信号に基づいて出射すべきビームが制御される光源と、光源から出射されるビー ムに基づいて静電潜像担持体に静電潜像を形成する露光光学系と、露光光学系に より形成された静電潜像を現像する現像手段とを備え、前記露光光学系が走査光学 系であり、該走査光学系が、光源力 のビームを反射面により反射して偏向すること により主走査する偏向器と、光源からのビームを、偏向器の反射面近傍で主走査方 向に延びた線状に結像する第 1結像光学系と、偏光器の反射面近傍で主走査方向 に延びた線状に結像されたビームを、被走査面上にスポットとして再び結像させる単 一の走査レンズからなる第 2結像光学系とを備え、前記第 1結像光学系が、光源から の発散性のビームを平行ビーム又は収束性のビームに変換する正パワー光学系を 含み、該正パワー光学系が、榭脂を材料とし、回折による光学的パワーを持つ面を 有する。  The above object is achieved by the following image forming apparatus. That is, the image forming apparatus of the present invention is an image forming apparatus that forms an image based on an image signal, and a light source that controls a beam to be emitted based on an input image signal, and a light source that is emitted from the light source. An exposure optical system that forms an electrostatic latent image on an electrostatic latent image carrier based on a beam; and developing means that develops the electrostatic latent image formed by the exposure optical system, the exposure optical system comprising: A scanning optical system, wherein the scanning optical system reflects a beam of light source power by reflecting it on the reflecting surface and deflects it, and a beam from the light source is scanned near the reflecting surface of the deflector in the main scanning direction. The first image-forming optical system that forms an image in a linear line extending in the direction and the beam formed in a linear form extending in the main scanning direction in the vicinity of the reflecting surface of the polarizer are again connected as spots on the surface to be scanned. A second imaging optical system comprising a single scanning lens for imaging, The first imaging optical system includes a positive power optical system that converts a divergent beam from a light source into a collimated beam or a convergent beam. It has a surface with dynamic power.
[0017] 上記目的は、以下の画像読取装置により達成される。すなわち本発明の画像読取 装置は、 2次元画像を読取り、電気的な画像信号を形成する画像読取装置であって 、入力される画像信号に基づいて出射すべきビームが制御される光源と、光源から 出射されるビームにより読取るべき 2次元画像を照明する読取光学系と、読取光学系 により照明された 2次元画像力もの戻りビームを検出する検出器とを備え、前記読取 光学系が走査光学系であり、該走査光学系が、光源力 のビームを反射面により反 射して偏向することにより主走査する偏向器と、光源からのビームを、偏向器の反射 面近傍で主走査方向に延びた線状に結像する第 1結像光学系と、偏光器の反射面 近傍で主走査方向に延びた線状に結像されたビームを、被走査面上にスポットとし て再び結像させる単一の走査レンズからなる第 2結像光学系とを備え、前記第 1結像 光学系力 光源からの発散性のビームを平行ビーム又は収束性のビームに変換する 正パワー光学系を含み、該正パワー光学系が、榭脂を材料とし、回折による光学的 パワーを持つ面を有する。 発明の効果 The above object is achieved by the following image reading apparatus. That is, the image reading apparatus of the present invention is an image reading apparatus that reads a two-dimensional image and forms an electrical image signal, and includes a light source that controls a beam to be emitted based on an input image signal, and a light source A reading optical system for illuminating a two-dimensional image to be read by a beam emitted from the detector, and a detector for detecting a return beam of two-dimensional image power illuminated by the reading optical system, wherein the reading optical system is a scanning optical system The scanning optical system extends a beam from the light source in the main scanning direction near the reflecting surface of the deflector and a deflector that performs main scanning by reflecting and deflecting the beam of the light source by the reflecting surface. The first image-forming optical system that forms an image in a linear shape and the linearly-formed image that extends in the main scanning direction near the reflecting surface of the polarizer are re-imaged as spots on the surface to be scanned. Second consisting of a single scanning lens An image optical system, and a positive power optical system that converts the divergent beam from the first imaging optical system light source into a parallel beam or a convergent beam. As a material, it has a surface with optical power due to diffraction. The invention's effect
[0018] 本発明によれば、温度変化による性能劣化が小さぐ小型で低コストな走査光学系 を提供することができる。また本発明によれば、温度変化による性能劣化が小さぐ小 型で低コストな走査光学系を備える画像形成装置及び画像読取装置を提供すること ができる。  [0018] According to the present invention, it is possible to provide a compact and low-cost scanning optical system in which performance deterioration due to temperature change is small. Further, according to the present invention, it is possible to provide an image forming apparatus and an image reading apparatus including a small and low-cost scanning optical system in which performance deterioration due to temperature change is small.
図面の簡単な説明  Brief Description of Drawings
[0019] [図 1]図 1は、実施の形態 1に係る走査光学系の構成図である。 FIG. 1 is a configuration diagram of a scanning optical system according to a first embodiment.
[図 2]図 2は、実施の形態 1に係る走査光学系の光源近傍の光学構成図である。  FIG. 2 is an optical configuration diagram in the vicinity of a light source of the scanning optical system according to the first embodiment.
[図 3]図 3は、実施の形態 1に係る走査光学系の第 2結像光学系の副走査方向の断 面図である。  FIG. 3 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 1 in the sub-scanning direction.
[図 4]図 4は、実施の形態 1に係る走査光学系の第 2結像光学系の変形例の副走査 方向の断面図である。  FIG. 4 is a cross-sectional view in the sub-scanning direction of a modification of the second imaging optical system of the scanning optical system according to Embodiment 1.
[図 5]図 5は、実施の形態 2に係る走査光学系の構成図である。  FIG. 5 is a configuration diagram of a scanning optical system according to the second embodiment.
[図 6]図 6は、実施の形態 2に係る走査光学系の第 2結像光学系の副走査方向の断 面図である。  FIG. 6 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 2 in the sub-scanning direction.
[図 7]図 7は、実施の形態 3に係る画像形成装置の構成を示す断面図である。  FIG. 7 is a cross-sectional view showing a configuration of an image forming apparatus according to Embodiment 3.
[図 8]図 8は、実施の形態 4に係る画像読取装置に適用された走査光学系の光学構 成図である。  FIG. 8 is an optical configuration diagram of a scanning optical system applied to the image reading apparatus according to the fourth embodiment.
[図 9]図 9は、実施例 1の被走査面における f Θ誤差を表す収差図である。  FIG. 9 is an aberration diagram showing f Θ error on the surface to be scanned of Example 1.
[図 10]図 10は、実施例 1の被走査面における主走査方向の像面湾曲を表す収差図 である。  FIG. 10 is an aberration diagram showing field curvature in the main scanning direction on the surface to be scanned of Example 1.
[図 11]図 11は、実施例 1の被走査面における副走査方向の像面湾曲を表す収差図 である。  FIG. 11 is an aberration diagram showing field curvature in the sub-scanning direction on the surface to be scanned of Example 1.
[図 12]図 12は、実施例 2の被走査面における f Θ誤差を表す収差図である。  FIG. 12 is an aberration diagram showing f Θ error on the scanned surface of Example 2.
[図 13]図 13は、実施例 2の被走査面における主走査方向の像面湾曲を表す収差図 である。  FIG. 13 is an aberration diagram showing field curvature in the main scanning direction on the surface to be scanned of Example 2.
[図 14]図 14は、実施例 2の被走査面における副走査方向の像面湾曲を表す収差図 である。 符号の説明 FIG. 14 is an aberration diagram showing field curvature in the sub-scanning direction on the surface to be scanned of Example 2. Explanation of symbols
1 半導体レーザ  1 Semiconductor laser
2 コリメートレンズ 2 Collimating lens
3 シリンドリカノレレンズ 3 Cylindrical lens
4 ポリゴンミラー 4 Polygon mirror
5 回転軸 5 Rotating axis
6、 6'、 16 走査レンズ  6, 6 ', 16 scanning lens
7 被走査面 7 Scanned surface
8 カバーガラス 8 Cover glass
10 読取り面  10 Reading surface
11 ノヽーフミラー  11 Noof mirror
12 検出器  12 Detector
13 検出光学系  13 Detection optics
20 一次帯電器  20 Primary charger
21 露光光学系  21 Exposure optics
22 現像器  22 Developer
23 転写帯電器  23 Transfer charger
24 クリーナー  24 cleaner
25 定着装置  25 Fixing device
26 給紙カセット  26 Paper cassette
27 感光ドラム  27 Photosensitive drum
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1) (Embodiment 1)
図 1は、実施の形態 1に係る走査光学系の構成図である。走査光学系は、コリメート レンズ 2と、シリンドリカルレンズ 3と、ポリゴンミラー 4と、走査レンズ 6とを備える。走査 光学系は、コリメートレンズ 2とシリンドリカルレンズ 3とにより第 1結像光学系を構成し 、走査レンズ 6により第 2結像光学系を構成する。第 1結像光学系及び第 2結像光学 系は、 V、ずれも主走査方向及び主走査方向に直交する副走査方向にそれぞれ異な る光学的パワーを持つアナモフィック光学系である。なお図 1は、ポリゴンミラー 4によ る主走査を行う主走査面及び走査光学系の光軸を含む平面と紙面とが平行になるよ うに記載されている。 FIG. 1 is a configuration diagram of a scanning optical system according to the first embodiment. The scanning optical system includes a collimating lens 2, a cylindrical lens 3, a polygon mirror 4, and a scanning lens 6. In the scanning optical system, the collimating lens 2 and the cylindrical lens 3 constitute a first imaging optical system, and the scanning lens 6 constitutes a second imaging optical system. The first imaging optical system and the second imaging optical system are different in V and displacement in the main scanning direction and the sub scanning direction orthogonal to the main scanning direction, respectively. This is an anamorphic optical system with optical power. In FIG. 1, the main scanning surface for performing the main scanning by the polygon mirror 4 and the plane including the optical axis of the scanning optical system are described so as to be parallel to the paper surface.
[0022] コリメートレンズ 2は、光源である半導体レーザ 1から出射された発散性のレーザビ ームを収束性のレーザビームに変換する。コリメートレンズ 2は、光源側及びポリゴンミ ラー側とも光軸について回転軸対称形状のレンズである。また、コリメートレンズ 2は、 榭脂製であり、ポリゴンミラー側の面に回折による光学的パワーを備えた回折面が形 成されている。この回折面の作用については、後述する。なお、半導体レーザ 1とコリ メートレンズ 2との間には平行平板であるカバーガラス 8が配置される。  The collimator lens 2 converts a divergent laser beam emitted from the semiconductor laser 1 as a light source into a convergent laser beam. The collimating lens 2 is a lens having a rotational axis symmetrical shape with respect to the optical axis on both the light source side and the polygon mirror side. Further, the collimating lens 2 is made of resin, and a diffractive surface having optical power by diffraction is formed on the surface of the polygon mirror side. The operation of this diffractive surface will be described later. A cover glass 8 which is a parallel plate is disposed between the semiconductor laser 1 and the collimating lens 2.
[0023] 図 2は、実施の形態 1に係る走査光学系の光源近傍の光学構成図である。図 2中、 半導体レーザ 1の発光点は、符号 SOに対応する。また、カバーガラス 8は、面 S1と、 面 S2と〖こ対応する。さら〖こ、コリメートレンズ 2は、面 S3と、面 S4と、面 S5と〖こ対応す る。面 S4は、コリメートレンズ 2の屈折による光学的パワーを持つ面を表し、面 S5はコ リメ一トレンズ 2の回折による光学的パワーを持つ面を表す。  FIG. 2 is an optical configuration diagram in the vicinity of the light source of the scanning optical system according to the first embodiment. In FIG. 2, the emission point of the semiconductor laser 1 corresponds to the symbol SO. Further, the cover glass 8 corresponds to the surface S1 and the surface S2. Furthermore, collimating lens 2 corresponds to surface S3, surface S4, and surface S5. The surface S4 represents a surface having optical power due to refraction of the collimating lens 2, and the surface S5 represents a surface having optical power due to diffraction of the collimating lens 2.
[0024] シリンドリカルレンズ 3は、榭脂製であり、光源側の平面と、副走査方向にのみ光学 的パワーを備えポリゴンミラー側に形成されたシリンドリカル面とを持つ。シリンドリカ ルレンズ 3は、コリメートレンズ 2から出射された収束性のレーザビームの副走査方向 にのみ作用し、ポリゴンミラー 4の反射面近傍で主走査方向に延びた線状に集光す る。  The cylindrical lens 3 is made of resin and has a flat surface on the light source side and a cylindrical surface that has optical power only in the sub-scanning direction and is formed on the polygon mirror side. The cylindrical lens 3 acts only in the sub-scanning direction of the converging laser beam emitted from the collimating lens 2 and condenses in a linear shape extending in the main scanning direction near the reflection surface of the polygon mirror 4.
[0025] ポリゴンミラー 4は、回転軸 5を中心に回転駆動される回転多面鏡である。ポリゴンミ ラー 4は、回転軸 5を中心に回転駆動されることにより、入射したレーザビームを偏向 する。ポリゴンミラー 4は、ポリゴンミラー 4へ入射するレーザビームの光軸と、反射面 により反射されたレーザビームの主走査方向の走査中心とが所定の有限角度をなす ように配置される。  The polygon mirror 4 is a rotating polygon mirror that is driven to rotate about the rotation axis 5. The polygon mirror 4 is driven to rotate about the rotation axis 5 to deflect the incident laser beam. The polygon mirror 4 is arranged such that the optical axis of the laser beam incident on the polygon mirror 4 and the scanning center of the laser beam reflected by the reflecting surface in the main scanning direction form a predetermined finite angle.
[0026] 走査レンズ 6は、ポリゴンミラー 4の反射面で反射することにより偏向走査されたレー ザビームを被走査面 7上に結像する。走査レンズ 6は、 f Θ特性を持ち、ポリゴンミラー 4により等角速度で偏向されるレーザビームを、被走査面 7上にお 、て等速度で走査 する。また、走査レンズ 6は、榭脂製であり、主走査方向にのみ光学的パワーを備え ポリゴンミラー側に形成されたシリンドリカル面と、主走査方向及び副走査方向に光 学的パワーを備え被走査面側に形成されたアナモフィック面とを有する。 The scanning lens 6 forms an image of the laser beam deflected and scanned on the surface to be scanned 7 by reflection on the reflecting surface of the polygon mirror 4. The scanning lens 6 has an f Θ characteristic, and scans a laser beam deflected at a constant angular speed by the polygon mirror 4 on the surface to be scanned 7 at a constant speed. The scanning lens 6 is made of resin and has optical power only in the main scanning direction. A cylindrical surface formed on the polygon mirror side, and an anamorphic surface formed on the scanned surface side with optical power in the main scanning direction and the sub-scanning direction.
[0027] 図 3は、実施の形態 1に係る走査光学系の第 2結像光学系の副走査方向の断面図 である。走査光学系の第 2結像光学系は、図 3に示すように、副走査断面において、 ポリゴンミラー 4の反射面と被走査面 7とが光学的に共役な関係にある。この共役関 係により、いわゆる面倒れ補正を実現しており、ポリゴンミラー 4の反射面が回転軸 5 に対してティルトして 、ても、走査レンズ 6が形成する被走査面 7上での副走査方向 の結像位置が変化しない。  FIG. 3 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 1 in the sub-scanning direction. In the second imaging optical system of the scanning optical system, as shown in FIG. 3, the reflection surface of the polygon mirror 4 and the surface to be scanned 7 are optically conjugate in the sub-scan section. This conjugate relationship realizes so-called surface tilt correction. Even if the reflection surface of the polygon mirror 4 tilts with respect to the rotation axis 5, the sub surface on the surface to be scanned 7 formed by the scanning lens 6 can be obtained. The imaging position in the scanning direction does not change.
[0028] 以上の構成において、半導体レーザ 1から出射された発散性のレーザビームは、力 バーガラス 8を介してコリメートレンズ 2に入射し、収束性のレーザビームに変換される 。レーザビームは、その後、シリンドリカルレンズ 3によりポリゴンミラー 4の反射面近傍 に主走査方向に延びた線状に結像される。その後、レーザビームは、主走査方向に つ!、て収束性のまま、副走査方向につ!、ては発散性のレーザビームとして走査レン ズ 6に入射し、走査レンズ 6により等速に走査され、スポットとして結像される。  In the above configuration, the divergent laser beam emitted from the semiconductor laser 1 enters the collimating lens 2 via the force bar glass 8 and is converted into a convergent laser beam. The laser beam is then imaged by the cylindrical lens 3 into a linear shape extending in the main scanning direction in the vicinity of the reflection surface of the polygon mirror 4. After that, the laser beam is incident on the scanning lens 6 as a divergent laser beam in the sub-scanning direction while maintaining the convergence in the main scanning direction, and is scanned at a constant speed by the scanning lens 6. And imaged as a spot.
[0029] 次に、実施の形態 1に係る走査光学系における環境温度変化に対する補償方法に ついて説明する。前述のように、コリメートレンズ 2、シリンドリカルレンズ 3、走査レンズ 6は、いずれも榭脂製であるので、環境温度が変化するとレンズ自体の形状と榭脂の 屈折率とが変化する。この変化により、各レンズの屈折による光学的パワーも併せて 変化し、スポット位置が被走査面 7からずれた位置に形成されるようになる。  Next, a compensation method for environmental temperature changes in the scanning optical system according to Embodiment 1 will be described. As described above, since the collimating lens 2, the cylindrical lens 3, and the scanning lens 6 are all made of resin, when the environmental temperature changes, the shape of the lens itself and the refractive index of the resin change. Due to this change, the optical power due to refraction of each lens also changes, and the spot position is formed at a position shifted from the scanned surface 7.
[0030] 実施の形態 1に係る走査光学系は、環境温度の変化に起因する光学的パワーの 変化を、コリメートレンズ 2に形成された回折による光学的パワーを持つ面により相殺 させている。実施の形態 1に係る走査光学系は、回折による光学的パワーを持つ面 を、コリメートレンズ 2の屈折面上に一体的に形成することにより、環境温度が変化し た際の、レンズ自体の形状と榭脂の屈折率との変化に起因するレンズの屈折による パワーの変化を、回折によるパワーの変化により相殺して!/、るのである。  In the scanning optical system according to the first embodiment, the change in optical power caused by the change in ambient temperature is canceled by the surface having optical power due to diffraction formed in the collimator lens 2. In the scanning optical system according to the first embodiment, the surface having the optical power by diffraction is integrally formed on the refracting surface of the collimating lens 2 so that the shape of the lens itself when the environmental temperature changes is formed. The power change due to the refraction of the lens due to the change in the refractive index of the resin and the resin is offset by the power change due to diffraction!
[0031] 実施の形態 1に係る走査光学系は、コリメートレンズ 2という有効径の小さなレンズに 、回転軸対称の回折による光学的パワーを持つ面を形成しているので、金型の加工 を含めた回折面の製造及び組立て調整をともに容易に行うことができ、コストアップを 招かない。また、実施の形態 1に係る走査光学系は、榭脂によりコリメートレンズ 2を形 成しているので、屈折面と回折面とを同時に成形することができ、高精度の光学面を 容易に形成することができる。 [0031] In the scanning optical system according to the first embodiment, a collimating lens 2 having a small effective diameter is formed with a surface having optical power due to rotationally symmetric diffraction. This makes it easy to manufacture and assemble the diffractive surface, increasing costs. Do not invite. In addition, since the scanning optical system according to Embodiment 1 forms the collimating lens 2 by means of grease, the refracting surface and the diffractive surface can be formed simultaneously, and a high-precision optical surface can be easily formed. can do.
[0032] また、実施の形態 1に係る走査光学系は、コリメートレンズ 2により主走査方向にお いて収束光を形成し、走査レンズ 6に入射させる構成を持つので、走査レンズ 6の焦 点距離よりも短い位置に被走査面 7を配置することができる。 In addition, since the scanning optical system according to Embodiment 1 has a configuration in which convergent light is formed in the main scanning direction by the collimating lens 2 and is incident on the scanning lens 6, the focal distance of the scanning lens 6 The to-be-scanned surface 7 can be arranged at a shorter position.
[0033] また、実施の形態 1において、走査レンズ 6のアナモフィック面は、自由曲面である ことが望ましぐ特に、副走査方向の曲率中心を結んだ線が湾曲した非円弧となる自 由曲面であることが望ましい。走査レンズをこのように構成することにより、 f Θ誤差と 像面湾曲とを良好に補正することが可能である。 [0033] In the first embodiment, it is desirable that the anamorphic surface of the scanning lens 6 is a free-form surface. It is desirable that By configuring the scanning lens in this way, it is possible to satisfactorily correct the fΘ error and the field curvature.
[0034] また、実施の形態 1において、走査レンズ 6のアナモフィック面は、面形状に奇数次 項を導入することが望ましい。奇数次項を導入することにより、副走査面内の曲率中 心を結んだ曲線が光軸に関して非対称であり、非対称に生じる副走査方向の像面湾 曲を高度に補正することができる。 In Embodiment 1, it is desirable that the anamorphic surface of the scanning lens 6 introduces an odd-order term into the surface shape. By introducing odd-order terms, the curve connecting the curvature centers in the sub-scanning plane is asymmetric with respect to the optical axis, and the image plane curve in the sub-scanning direction that occurs asymmetrically can be highly corrected.
[0035] また、実施の形態 1に係る走査光学系は、走査レンズ 6が榭脂製であり、シリンドリカ ル面を持つので、金型の加工を含めたレンズの製造及び組立て調整を容易に行うこ とがでさる。 In the scanning optical system according to the first embodiment, since the scanning lens 6 is made of resin and has a cylindrical surface, it is easy to manufacture and assemble and adjust the lens including mold processing. This comes out.
[0036] 次に、実施の形態 1に係る走査光学系が満足すべき数値的な条件を説明する。以 下に説明する各条件は、すべてを同時に満足することが望ましいが、これに限られな い。各条件は、個々の条件のみを満足することによって対応する効果を得ることが可 能である。  Next, numerical conditions that should be satisfied by the scanning optical system according to Embodiment 1 will be described. Each condition described below is preferably satisfied at the same time, but is not limited to this. Each condition can have a corresponding effect by satisfying only the individual conditions.
[0037] 実施の形態 1に係る走査光学系は、第 2結像光学系における副走査方向の倍率を mとしたとき、以下の条件式(1):  The scanning optical system according to Embodiment 1 has the following conditional expression (1), where m is the magnification in the sub-scanning direction in the second imaging optical system:
1. 2<m<4. 5 (1)  1. 2 <m <4.5 (1)
を満足することが好ましい。  Is preferably satisfied.
[0038] 条件式(1)を満足することにより、走査レンズやポリゴンミラーの振動により、被走査 面上で発生するジッター量をバランス良く抑えた構成とすることができる。すなわち、 条件式(1)の下限を超えると、ポリゴンミラーの面倒れに起因するジッター発生量が 大きくなるため、被走査面上において副走査方向における走査線間のピッチムラが 発生し、均質な画像が得られない。また、条件式(1)の上限を超えると、レンズの振 動に起因するジッター発生量が大きくなるため、被走査面上において副走査方向に おける走査線間のピッチムラが発生し、均質な画像が得られな 、。 By satisfying conditional expression (1), it is possible to achieve a configuration in which the amount of jitter generated on the surface to be scanned is suppressed in a well-balanced manner due to the vibration of the scanning lens and polygon mirror. In other words, if the lower limit of conditional expression (1) is exceeded, the amount of jitter generated due to the tilting of the polygon mirror is reduced. Therefore, the pitch unevenness occurs between the scanning lines in the sub-scanning direction on the surface to be scanned, and a uniform image cannot be obtained. If the upper limit of conditional expression (1) is exceeded, the amount of jitter generated due to lens vibration increases, resulting in uneven pitch between scanning lines in the sub-scanning direction on the surface to be scanned. I can't get it.
[0039] なお、前記 mが以下のいずれかの条件式で表す範囲にある場合、上記の効果をよ り顕著に奏功させることが可能である。  [0039] It should be noted that when the m is in the range represented by any of the following conditional expressions, the above-described effect can be achieved more significantly.
1. 7<m (1),  1. 7 <m (1),
2. 2<m (1) "  2. 2 <m (1) "
m< 3. 9 (1) " '  m <3.9 (1) "'
[0040] また、実施の形態 1に係る走査光学系は、ポリゴンミラーの反射面力 レーザビーム が結像する被走査面までの距離を L、走査レンズの持つ主走査方向の焦点距離を f としたとき、以下の条件式(2) :  [0040] Further, the scanning optical system according to Embodiment 1 has the reflecting surface force of the polygon mirror as the distance to the surface to be scanned where the laser beam forms an image L, and the focal length of the scanning lens in the main scanning direction as f. When the following conditional expression (2):
0. 5<L/f< l. 2 (2)  0. 5 <L / f <l. 2 (2)
を満足することが望ましい。力かる条件式 (2)の上限を超えても下限を超えても、適 切な走査光学系を実現することが困難となる。  It is desirable to satisfy If the upper limit or the lower limit of conditional expression (2) is exceeded, it will be difficult to realize an appropriate scanning optical system.
[0041] 条件式 (2)を満足することにより、小型、軽量で収差補正が良好な走査光学系を実 現することができる。すなわち、条件式 (2)の下限を超えると、前記偏向器から前記 被走査面までの距離が非常に短くなり装置の小型化が狙えるが、主走査方向の像面 湾曲量や f Θ誤差量が大きくなる。その結果、被走査面上においてビームスポット径 のバラツキや主走査方向についてのピッチムラが発生するため、均質な画像が得ら れない。また、条件式 (2)の上限を超えると、ポリゴンミラーの反射面力 被走査面ま での距離が長くなり、装置が大型化する。さらに、条件式 (2)の上限を超えると、走査 レンズやポリゴンミラーの振動により被走査面上で発生するジッター量は、振動量に 対して副走査方向倍率に比例して大きくなるため、ポリゴンミラーの反射面力 被走 查面までの距離が長くなるに伴って、副走査方向倍率を同じ値に維持することが困 難となる。そして、条件式 (2)の上限を超えると、走査レンズの副走査方向倍率を同 じ値に維持するために、走査レンズの持つ負の屈折力を大きくしなければならず、そ の結果、走査レンズの取り付けやカ卩ェ時の公差が厳しくなり望ましくない。 [0042] なお、前記 LZfが以下のいずれかの条件式で表す範囲にある場合、上記の効果 をより顕著に奏功させることが可能である。 By satisfying conditional expression (2), it is possible to realize a scanning optical system that is compact and lightweight and has good aberration correction. In other words, if the lower limit of conditional expression (2) is exceeded, the distance from the deflector to the surface to be scanned becomes very short and the size of the apparatus can be reduced, but the amount of field curvature in the main scanning direction and the amount of fΘ error Becomes larger. As a result, variations in the beam spot diameter and pitch unevenness in the main scanning direction occur on the surface to be scanned, so that a uniform image cannot be obtained. If the upper limit of conditional expression (2) is exceeded, the distance between the reflective surface force of the polygon mirror and the surface to be scanned becomes longer, and the apparatus becomes larger. Furthermore, if the upper limit of conditional expression (2) is exceeded, the amount of jitter generated on the scanned surface due to the vibration of the scanning lens and polygon mirror increases in proportion to the magnification in the sub-scanning direction with respect to the vibration amount. Reflective surface force of mirror As the distance to the surface to be driven becomes longer, it becomes difficult to maintain the same magnification in the sub-scanning direction. If the upper limit of conditional expression (2) is exceeded, the negative refractive power of the scanning lens must be increased in order to maintain the scanning lens magnification in the sub-scanning direction at the same value, and as a result, Tolerances during scanning lens mounting and caking are severe and undesirable. [0042] It should be noted that when the LZf is in a range represented by any of the following conditional expressions, the above-described effects can be achieved more remarkably.
0. 7<L/f (2) '  0. 7 <L / f (2) '
L/f< l. 0 (2) "  L / f <l. 0 (2) "
[0043] 走査レンズにお 、て、光軸と平行な方向にレンズの厚みを計測し、最も薄 、箇所の 厚みを t、該走査レンズの中心の厚みを Tとしたとき、以下の条件式(3):  In the scanning lens, when the thickness of the lens is measured in a direction parallel to the optical axis, and the thickness of the thinnest part is t, and the thickness of the center of the scanning lens is T, the following conditional expression (3):
0. 15<t/T<0. 3 (3)  0. 15 <t / T <0. 3 (3)
を満足することが好ましい。力かる条件式(3)の上限を超えても下限を超えても、走 查レンズの焦点距離が適切な範囲から外れることになり、好ましくない。  Is preferably satisfied. If the upper limit or the lower limit of conditional expression (3) is exceeded, the focal length of the scanning lens will be out of the appropriate range, which is not preferable.
[0044] なお、前記 tZTが以下の 、ずれかの条件式で表す範囲にある場合、上記の効果 をより顕著に奏功させることが可能である。 [0044] It should be noted that when the tZT is in the range represented by the following conditional expression, the above effect can be achieved more remarkably.
0. 19<t/T (3) '  0. 19 <t / T (3) '
t/T<0. 26 (3) "  t / T <0. 26 (3) "
[0045] なお、実施の形態 1に係る走査光学系の走査レンズは、ポリゴンミラー側に主走査 面内のみ光学的パワーを持つシリンドリカル面を有する構成としたが、これに限られ ない。図 4は、実施の形態 1に係る走査光学系の第 2結像光学系の変形例の副走査 方向の断面図である。図 4に示すように、被走査面 7側に主走査面内のみ光学的パ ヮーを持つシリンドリカル面を有する走査レンズ 6'を配置する構成としても良い。  Note that the scanning lens of the scanning optical system according to Embodiment 1 is configured to have a cylindrical surface having optical power only on the main scanning surface on the polygon mirror side, but is not limited thereto. FIG. 4 is a cross-sectional view in the sub-scanning direction of a modification of the second imaging optical system of the scanning optical system according to Embodiment 1. As shown in FIG. 4, a scanning lens 6 ′ having a cylindrical surface having an optical power only in the main scanning surface may be arranged on the surface to be scanned 7 side.
[0046] また、実施の形態 1に係る走査光学系のコリメータレンズは、光源からの発散性のビ ームを収束性のビームに変換するものであった力 平行ビームに変換するものであつ てもよい。この場合、走査光学系の第 1結像光学系が大きくなるが、シリンドリカルレン ズゃポリゴンミラーの位置合わせの感度が低下するので、走査光学系の組立ておよ び調整が容易になると 、う効果がある。  In addition, the collimator lens of the scanning optical system according to Embodiment 1 converts a divergent beam from a light source into a force-parallel beam that was used to convert the beam into a convergent beam. Also good. In this case, the first imaging optical system of the scanning optical system becomes large, but the sensitivity of the alignment of the polygonal mirror decreases with the cylindrical lens, so that the assembly and adjustment of the scanning optical system becomes easy. There is.
[0047] (実施の形態 2)  [0047] (Embodiment 2)
次に、実施の形態 2に係る走査光学系を図 5及び図 6を参照して説明する。図 5は、 実施の形態 2に係る走査光学系の構成図である。また図 6は、実施の形態 2に係る走 查光学系の第 2結像光学系の副走査方向の断面図である。  Next, the scanning optical system according to the second embodiment will be described with reference to FIGS. FIG. 5 is a configuration diagram of a scanning optical system according to the second embodiment. FIG. 6 is a sectional view of the second imaging optical system of the scanning optical system according to Embodiment 2 in the sub-scanning direction.
[0048] 実施の形態 2に係る走査光学系は、実施の形態 1に係る走査光学系と概略構成が 等しいので、相違点のみを説明する。なお、図 5及び図 6において、同じ符号が付さ れた構成は、実施の形態 1で説明した構成と同一である。 [0048] The scanning optical system according to Embodiment 2 has a schematic configuration similar to that of the scanning optical system according to Embodiment 1. Since they are equal, only the differences will be described. 5 and FIG. 6, the configurations with the same reference numerals are the same as those described in the first embodiment.
[0049] 実施の形態 2に係る走査光学系は、実施の形態 1に係る走査光学系と、第 2結像光 学系の走査レンズ 16が、ポリゴンミラー側及び被走査面側の両側にアナモフィック面 を有する点で相違する。実施の形態 2に係る走査光学系は、走査レンズ 16が 2面の アナモフィック面を有するので、収差補正のための自由度が大きぐより良好に収差 補正を行うことができる。  [0049] In the scanning optical system according to the second embodiment, the scanning optical system according to the first embodiment and the scanning lens 16 of the second imaging optical system are anamorphic on both sides of the polygon mirror side and the scanned surface side. It differs in that it has a surface. In the scanning optical system according to the second embodiment, since the scanning lens 16 has two anamorphic surfaces, aberration correction can be performed more favorably than the degree of freedom for aberration correction is large.
[0050] (実施の形態 3)  [0050] (Embodiment 3)
図 7は、実施の形態 3に係る画像形成装置の構成を示す断面図である。この画像 形成装置は、外部カゝら入力されるデータ信号に基づいて、モノクロ画像を形成するプ リンター装置である。実施の形態 3に係る画像形成装置は、実施の形態 1に係る走査 光学系を露光光学系 21として搭載して ヽる。  FIG. 7 is a cross-sectional view showing the configuration of the image forming apparatus according to the third embodiment. This image forming apparatus is a printer apparatus that forms a monochrome image based on a data signal input from an external camera. The image forming apparatus according to the third embodiment may be mounted with the scanning optical system according to the first embodiment as the exposure optical system 21.
[0051] 実施の形態 3に係る画像形成装置は、公知の電子写真プリンターであり、一次帯電 器 20と、露光光学系 21と、現像器 22と、転写帯電器 23と、クリーナー 24と、定着装 置 25と、給紙カセット 26と、感光ドラム 27 (静電潜像担持体)とを含む。露光光学系 2 1によって、静電潜像が形成され印字情報が静電潜像として感光ドラム 27上に書き 込まれる。感光ドラム 27は、光が照射されると電荷が変化する感光体が表面を覆って いる。一次帯電器 20によって、感光ドラム 27の表面に静電気イオンが付着し帯電す る。帯電した感光ドラム 27は、現像器 22によって、印字部に帯電トナーが付着して現 像される。感光ドラム 27に付着したトナーは、転写帯電器 23によって、給紙カセット 2 6から供給された用紙に転写される。転写されたトナーは、定着装置 25によって、用 紙に定着される。残ったトナーは、クリーナー 24によって除去される。  [0051] The image forming apparatus according to Embodiment 3 is a known electrophotographic printer, and includes a primary charger 20, an exposure optical system 21, a developer 22, a transfer charger 23, a cleaner 24, and a fixing device. It includes a device 25, a paper feed cassette 26, and a photosensitive drum 27 (electrostatic latent image carrier). The exposure optical system 21 forms an electrostatic latent image, and print information is written on the photosensitive drum 27 as an electrostatic latent image. The surface of the photosensitive drum 27 is covered with a photosensitive member that changes its charge when irradiated with light. By the primary charger 20, electrostatic ions adhere to the surface of the photosensitive drum 27 and are charged. The charged photosensitive drum 27 is imaged by the developing unit 22 with the charged toner attached to the printing unit. The toner adhering to the photosensitive drum 27 is transferred onto the paper supplied from the paper feed cassette 26 by the transfer charger 23. The transferred toner is fixed on the paper by the fixing device 25. The remaining toner is removed by the cleaner 24.
[0052] 実施の形態 3に係る画像形成装置は、実施の形態 1に係る走査光学系を用いてい るので、製造が容易で高品位の画像を形成することができる。なお、実施の形態 1に 係る走査光学系に換えて実施の形態 2に係る走査光学系を用いてもょ ヽ。  [0052] Since the image forming apparatus according to the third embodiment uses the scanning optical system according to the first embodiment, it is easy to manufacture and can form a high-quality image. Note that the scanning optical system according to the second embodiment may be used instead of the scanning optical system according to the first embodiment.
[0053] (実施の形態 4)  [0053] (Embodiment 4)
図 8は、実施の形態 4に係る画像読取装置に適用された走査光学系の光学構成図 である。実施の形態 4に係る画像読取装置は、実施の形態 1で説明した走査光学系 を画像読取光学系として搭載している。なお図 8において、実施の形態 4に係る画像 読取装置の走査光学系は、実施の形態 1に係る走査光学系と概略構成が等しいの で、相違点のみを説明する。なお図 8において、同じ符号が付された構成は、実施の 形態 1で説明した構成と同一である。 FIG. 8 is an optical configuration diagram of a scanning optical system applied to the image reading apparatus according to the fourth embodiment. The image reading apparatus according to the fourth embodiment includes the scanning optical system described in the first embodiment. Is mounted as an image reading optical system. In FIG. 8, the scanning optical system of the image reading apparatus according to the fourth embodiment has the same schematic configuration as the scanning optical system according to the first embodiment, so only the differences will be described. Note that, in FIG. 8, configurations with the same reference numerals are the same as those described in the first embodiment.
[0054] 実施の形態 4に係る画像読取装置に適用された走査光学系は、実施の形態 1に係 る走査光学系に加えて、ハーフミラー 11と、検出器 12と、検出光学系 13とを備えて いる。ハーフミラー 11は、半導体レーザ 1からのレーザビームを透過させ、読取るべき 2次元画像である読取り面 10を照明するとともに、読取り面 10からの戻り光を検出光 学系 13に向けて反射する。検出光学系 13は、ハーフミラーで反射された検出器 12 に戻り光を導く。 The scanning optical system applied to the image reading apparatus according to the fourth embodiment includes a half mirror 11, a detector 12, and a detection optical system 13 in addition to the scanning optical system according to the first embodiment. It is equipped with. The half mirror 11 transmits the laser beam from the semiconductor laser 1 and illuminates the reading surface 10 which is a two-dimensional image to be read, and reflects the return light from the reading surface 10 toward the detection optical system 13. The detection optical system 13 returns the light to the detector 12 reflected by the half mirror.
[0055] 実施の形態 4に係る画像読取装置は、実施の形態 1に係る走査光学系を用いてい るので、製造が容易で高品位の画像を読取ることができる。なお、実施の形態 1に係 る走査光学系に換えて実施の形態 2に係る走査光学系を用いてもょ 、。  [0055] Since the image reading apparatus according to the fourth embodiment uses the scanning optical system according to the first embodiment, it is easy to manufacture and can read a high-quality image. Note that the scanning optical system according to the second embodiment may be used instead of the scanning optical system according to the first embodiment.
[0056] なお、上記各実施の形態において、コリメートレンズは、回転軸対称形状の単一の レンズであった力 これに限られない。例えば、コリメートレンズは、回転軸対称形状 の複数のレンズを含む構成であってもよぐいずれかのレンズ面に回折による光学パ ヮーを持つ面が形成されていればよい。また、コリメートレンズは、光路中にプリズム やミラーなどを含む構成であってもよい。すなわち、コリメートレンズの換わりに、光源 力 の発散性のビームを収束性のビーム又は平行ビームに変換する正パワー光学 系として機能する構成を用いることができる。  In each of the above embodiments, the collimating lens is not limited to this force, which is a single lens having a rotational axis symmetry shape. For example, the collimating lens may be configured to include a plurality of rotationally symmetrical lenses, and any lens surface may have a surface having an optical power due to diffraction. Further, the collimating lens may include a prism or a mirror in the optical path. That is, instead of the collimating lens, a configuration that functions as a positive power optical system that converts a divergent beam of light source power into a convergent beam or a parallel beam can be used.
[0057] なお、上記各実施の形態において、レーザビームの偏向は、ポリゴンミラーにより行 われていたが、これに限られない。例えば、偏向器は、ガルバノミラー等であってもよ い。すなわち、ポリゴンミラーの換わりに、入射するビームを偏向する反射面を持つ偏 光器として機能する構成を用いることができる。  In each of the above embodiments, the laser beam is deflected by a polygon mirror. However, the present invention is not limited to this. For example, the deflector may be a galvanometer mirror. That is, a configuration that functions as a polarizer having a reflecting surface that deflects an incident beam can be used instead of a polygon mirror.
[0058] なお、レーザビームの波長は、特に限定されるものではなぐ赤外域、可視の赤色 域、可視の青色域等のあらゆる波長のビームを用いてょ 、。  [0058] Note that the wavelength of the laser beam is not particularly limited, and a beam having any wavelength such as an infrared region, a visible red region, or a visible blue region is used.
実施例  Example
[0059] 以下に、上述した実施の形態 1及び実施の形態 2に係る走査光学系について、具 体的な数値実施例を示す。実施例 1は、図 1〜図 3に示した実施の形態 1を具体化し た数値例であり、実施例 2は、図 5及び図 6に示した実施の形態 2を具体ィ匕した数値 例である。 [0059] The scanning optical system according to Embodiment 1 and Embodiment 2 described above is described below. A physical numerical example is shown. Example 1 is a numerical example that embodies the first embodiment shown in FIGS. 1 to 3, and Example 2 is a numerical example that embodies the second embodiment shown in FIGS. 5 and 6. It is.
[0060] 走査レンズのレンズ面の形状に関して、面の頂点を原点とする副走査方向座標を X  [0060] With respect to the shape of the lens surface of the scanning lens, the sub-scanning direction coordinate with the vertex of the surface as the origin is represented by X
(mm)、主走査方向座標を y (mm)とし、頂点力ゝらのサグ量 z (mm)を、入射ビームの 向力 方向を正として、以下の式により定義する。  (mm), the main scanning direction coordinate is y (mm), and the sag amount z (mm) of the apex force is defined by the following formula, where the directional force direction of the incident beam is positive.
+ ρ+ ρ
Figure imgf000016_0001
Figure imgf000016_0001
+ ACDx ACEX ACFX y1 + AOGx y 9 + ACDx ACEX ACFX y 1 + AOG xy 9
ΚΕλ: (1 + + χ  ΚΕλ: (1 + + χ
y7 + y 7 +
ただし、 P(y)は光軸を含む主走査面内の形状、 RDy(mm)は主走査面内の曲率半 径、 Kは主走査方向に寄与する円錐定数、 AD、 AE、 AF及び AGは主走査方向に 寄与する偶数次定数、 AOD、 AOE、 AOF及び AOGは奇数次定数、 RDxは各 y座 標における副走査面内の曲率半径を表す関数であり、 RDs(mm)は中心の副走査 面内の曲率半径、 BC、 BD、 BE、 BF及び BGは偶数次定数、 BOC、 BOD、 BOE、 BOF及び BOGは奇数次定数である。  Where P (y) is the shape in the main scanning plane including the optical axis, RDy (mm) is the radius of curvature in the main scanning plane, K is the conic constant contributing to the main scanning direction, AD, AE, AF and AG Is an even-order constant contributing to the main scanning direction, AOD, AOE, AOF and AOG are odd-order constants, RDx is a function representing the radius of curvature in the sub-scanning plane at each y coordinate, and RDs (mm) is the center The radius of curvature in the sub-scanning plane, BC, BD, BE, BF, and BG are even-order constants, and BOC, BOD, BOE, BOF, and BOG are odd-order constants.
[0061] また、実施例 1及び実施例 2において、コリメートレンズ及びシリンドリカルレンズは 非球面であるので、その形状を以下の式で表す。  Further, in Example 1 and Example 2, the collimating lens and the cylindrical lens are aspherical surfaces, and the shapes thereof are expressed by the following equations.
s =—— Ch = + A4x.hA +A6x.h6 +A8xhs +Al0x.hw s = —— Ch = + A4x.h A + A6x.h 6 + A8xh s + Al0x.h w
\ + ^l-(\ + k)c2h2 \ + ^ l-(\ + k) c 2 h 2
ただし、サグ量 s (mm)は光軸からの高さが hの非球面上の点の非球面頂点の接平 面からの距離、 hは光軸力もの高さ、 cは非球面頂点の曲率 (cj = lZR、ただしシリン ドリカルレンズは副走査方向のみ)、 kは円錐定数、 Anは対物レンズの第 j面の n次の 非球面係数である。  However, the sag amount s (mm) is the distance from the tangential plane of the aspherical vertex of the point on the aspherical surface whose height from the optical axis is h, h is the height of the optical axis force, c is the aspherical vertex Curvature (cj = lZR, but the cylindrical lens is only in the sub-scanning direction), k is the conic constant, and An is the nth-order aspheric coefficient of the jth surface of the objective lens.
[0062] また、面 S5の回折面に形成される位相格子は超高屈折率法により表現した (超高 屈折率法につ ヽて ίま、 William C. Sweatt"Describing holographic optical elements as lenses (Journal of Optical Society of America, Vol. 6 i , No. 6, June 1977 (ウィリアム シ一'スウエットによる「デスクライビング ホログラ フィック オプティカル エレメンッ ァズ レンジイーズ」ジャーナル ォブ ォプティカ ル ソサイエティ ォブ アメリカ、第 67卷、第 6号、 1977年 6月)参照)。なお、同様 の位相格子の形状は公知の位相関数法によっても表現することが可能である。 [0062] The phase grating formed on the diffractive surface of the surface S5 is expressed by the ultrahigh refractive index method (ultrahigh William C. Sweatt "Describing holographic optical elements as lenses (Journal of Optical Society of America, Vol. 6 i, No. 6, June 1977 Holographic Optical Element Ranges, Journal of Optical Society USA, 67th, 6th, June 1977)). A similar phase grating shape can also be expressed by a known phase function method.
[0063] さらに、各表において、 Siは面番号、 ryiは主走査面内の曲率半径、 rxiは副走査 方向断面の曲率半径、 diは軸上面間隔、 niは光学材料の屈折率をそれぞれ表して いる。設計波長は 780nmであり、 f、 L、 ryi、 rxi、 di、 RDy及び RDsの単位は(mm) で、 Θ maxの単位は(deg)である。なお、面 S8はポリゴンミラーの反射面に対応する 。また、表 3及び表 7中、 fは走査レンズの焦点距離、 Θ maxは最大偏向角、 Lは偏向 反射面と被走査面と間の距離を表して 、る。  [0063] Further, in each table, Si represents the surface number, ryi represents the radius of curvature in the main scanning plane, rxi represents the radius of curvature of the cross section in the sub-scanning direction, di represents the axial top surface spacing, and ni represents the refractive index of the optical material. ing. The design wavelength is 780 nm, the unit of f, L, ryi, rxi, di, RDy and RDs is (mm), and the unit of Θmax is (deg). The surface S8 corresponds to the reflective surface of the polygon mirror. In Tables 3 and 7, f is the focal length of the scanning lens, Θ max is the maximum deflection angle, and L is the distance between the deflection reflecting surface and the scanned surface.
[0064] (実施例 1)  [0064] (Example 1)
実施例 1の具体的数値について、第 1結像光学系のパラメータを表 1、第 1結像光 学系に含まれる面の係数を表 2、第 2結像光学系のパラメータを表 3、走査レンズの 形状に関するパラメータを表 4に示す。 第 1結像光学系  For the specific values of Example 1, Table 1 shows the parameters of the first imaging optical system, Table 2 shows the coefficients of the surfaces included in the first imaging optical system, and Table 3 shows the parameters of the second imaging optical system. Table 4 shows the parameters related to the shape of the scanning lens. First imaging optical system
Figure imgf000017_0002
Figure imgf000017_0002
^2  ^ 2
Figure imgf000017_0001
第 2結像光学系
Figure imgf000017_0001
Second imaging optical system
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0002
[0065] 図 9〜図 11は、実施例 1の被走査面における収差図である。各図において、縦軸 は被走査面における最大偏向角に対応する走査幅を表す。また各図において、常 温 (走査光学系の環境温度が 25°Cに対応)での光学性能と、高温 (走査光学系の環 境温度が 55°Cに対応)での光学性能とを異なる線で示している。図 9は、被走査面 における f Θ誤差を表し、 f Θ特性が圧縮されている側を負とし、伸張されている側を 正としている。図 10は、被走査面における主走査方向の像面湾曲を表し、理想像面 位置より前側に結像位置がある場合を正とし、理想像面位置より後側に結像位置が ある場合を負としている。図 11は、被走査面における副走査方向の像面湾曲を表し 、理想像面位置より前側に結像位置がある場合を正とし、理想像面位置より後側に 結像位置がある場合を負としている。  FIGS. 9 to 11 are aberration diagrams on the surface to be scanned of Example 1. FIG. In each figure, the vertical axis represents the scanning width corresponding to the maximum deflection angle on the surface to be scanned. In each figure, the optical performance at normal temperature (environmental temperature of the scanning optical system corresponds to 25 ° C) is different from the optical performance at high temperature (environmental temperature of the scanning optical system corresponds to 55 ° C). Shown with lines. Figure 9 shows the f Θ error on the scanned surface, where the side where the f Θ characteristic is compressed is negative and the side where it is stretched is positive. Figure 10 shows the curvature of field in the main scanning direction on the surface to be scanned, where positive is when the imaging position is ahead of the ideal image plane position, and there is an imaging position behind the ideal image plane position. Negative. Fig. 11 shows the field curvature in the sub-scanning direction on the surface to be scanned. The case where the imaging position is in front of the ideal image plane position is positive, and the case where the imaging position is in the rear side of the ideal image plane position. Negative.
[0066] (実施例 2)  [0066] (Example 2)
実施例 2の具体的数値について、第 1結像光学系のパラメータを表 5、第 1結像光 学系に含まれる面の係数を表 6、第 2結像光学系のパラメータを表 7、走査レンズの 形状に関するパラメータを表 8に示す。 第 1結像光学系 Regarding specific numerical values of Example 2, the parameters of the first imaging optical system are shown in Table 5, the coefficients of the surfaces included in the first imaging optical system are shown in Table 6, the parameters of the second imaging optical system are shown in Table 7, Table 8 shows the parameters related to the shape of the scanning lens. First imaging optical system
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000019_0002
第 2結像光学系
Figure imgf000019_0002
Second imaging optical system
f=155. 0, 2 0 max=12O. 4, L=126. 3
Figure imgf000019_0003
f = 155. 0, 2 0 max = 12O. 4, L = 126. 3
Figure imgf000019_0003
Figure imgf000019_0004
Figure imgf000019_0004
図 12〜図 14は、実施例 2の被走査面における収差図である。各図において、縦軸 は被走査面における最大偏向角に対応する走査幅を表す。また各図において、常 温 (走査光学系の環境温度が 25°Cに対応)での光学性能と、高温 (走査光学系の環 境温度が 55°Cに対応)での光学性能とを異なる線で示している。図 12は、被走査面 における f Θ誤差を表し、 f Θ特性が圧縮されている側を負とし、伸張されている側を 正としている。図 13は、被走査面における主走査方向の像面湾曲を表し、理想像面 位置より前側に結像位置がある場合を正とし、理想像面位置より後側に結像位置が ある場合を負としている。図 14は、被走査面における副走査方向の像面湾曲を表し 、理想像面位置より前側に結像位置がある場合を正とし、理想像面位置より後側に 結像位置がある場合を負としている。 12 to 14 are aberration diagrams on the surface to be scanned of Example 2. FIG. In each figure, the vertical axis represents the scanning width corresponding to the maximum deflection angle on the surface to be scanned. In each figure, the optical performance at normal temperature (environmental temperature of the scanning optical system corresponds to 25 ° C) is different from the optical performance at high temperature (environmental temperature of the scanning optical system corresponds to 55 ° C). Shown with lines. Figure 12 shows the f Θ error on the scanned surface, where the f Θ characteristic is compressed on the negative side and the stretched side is positive. Fig. 13 shows the curvature of field in the main scanning direction on the surface to be scanned. The image forming position is positive when the image forming position is in front of the ideal image surface position, and the image forming position is behind the ideal image surface position. Some cases are negative. Fig. 14 shows the field curvature in the sub-scanning direction on the surface to be scanned. The case where the imaging position is in front of the ideal image plane position is positive, and the case where the imaging position is in the rear side of the ideal image plane position. Negative.
[0068] 実施例 1及び実施例 2について、主要な光学パラメータと条件式(1)及び(2)の対 応値を表 9に示す。
Figure imgf000020_0001
For Example 1 and Example 2, the main optical parameters and the corresponding values of the conditional expressions (1) and (2) are shown in Table 9.
Figure imgf000020_0001
[0069] なお、実施例において用いたレンズ形状を表す式の表現形式は一例であり、同様 の形状を表すことができれば他の表現形式を用いてもょ ヽ。  [0069] It should be noted that the expression format of the expression representing the lens shape used in the examples is merely an example, and other expression formats may be used as long as the same shape can be expressed.
産業上の利用可能性  Industrial applicability
[0070] 本発明は、レーザプリンタ、レーザファクシミリ、デジタル複写機等の画像形成装置 や、スキャナ等の画像読取装置に好適である。 The present invention is suitable for image forming apparatuses such as laser printers, laser facsimiles, and digital copying machines, and image reading apparatuses such as scanners.

Claims

請求の範囲 The scope of the claims
[I] 光源から出射されるビームを被走査面上にスポットとして結像し走査する走査光学 系であって、  [I] A scanning optical system that images and scans a beam emitted from a light source as a spot on a surface to be scanned,
光源からのビームを反射面により反射して偏向することにより主走査する偏向器と、 光源からのビームを、偏向器の反射面近傍で主走査方向に延びた線状に結像する 第 1結像光学系と、  A deflector that performs main scanning by reflecting and deflecting a beam from a light source by a reflecting surface, and a beam from the light source forms an image in the vicinity of the reflecting surface of the deflector in a line extending in the main scanning direction. An image optical system;
偏光器の反射面近傍で主走査方向に延びた線状に結像されたビームを、被走査面 上にスポットとして再び結像させる単一の走査レンズからなる第 2結像光学系とを備 え、  A second imaging optical system comprising a single scanning lens that re-images a linearly focused beam extending in the main scanning direction near the reflecting surface of the polarizer as a spot on the surface to be scanned; e,
前記第 1結像光学系が、光源からの発散性のビームを平行ビーム又は収束性のビー ムに変換する正パワー光学系を含み、該正パワー光学系が、榭脂を材料とし、回折 による光学的パワーを持つ面を有する、走査光学系。  The first imaging optical system includes a positive power optical system that converts a divergent beam from a light source into a parallel beam or a converging beam, and the positive power optical system is made of a resin and is diffracted. A scanning optical system having a surface with optical power.
[2] 走査レンズが榭脂を材料とする、請求項 1に記載の走査光学系。 2. The scanning optical system according to claim 1, wherein the scanning lens is made of a resin.
[3] 正パワー光学系の回折による光学的パワーを持つ面が、回転軸対称形状である、 請求項 1に記載の走査光学系。 [3] The scanning optical system according to [1], wherein the surface having optical power due to diffraction of the positive power optical system has a rotational axis symmetrical shape.
[4] 正パワー光学系が、光源からの発散性のビームを収束性のビームに変換し、 走査レンズに入射するビームが、主走査方向に関して収束性を有する、請求項 1〖こ 記載の走査光学系。 [4] The scanning according to claim 1, wherein the positive power optical system converts the divergent beam from the light source into a converging beam, and the beam incident on the scanning lens has convergence in the main scanning direction. Optical system.
[5] 走査レンズがアナモフィック面を有する、請求項 1に記載の走査光学系。  5. The scanning optical system according to claim 1, wherein the scanning lens has an anamorphic surface.
[6] アナモフィック面が自由曲面である、請求項 5に記載の走査光学系。  6. The scanning optical system according to claim 5, wherein the anamorphic surface is a free-form surface.
[7] アナモフィック面が、副走査方向の曲率中心を結んだ線が湾曲した非円弧となる自 由曲面である、請求項 6に記載の走査光学系。  [7] The scanning optical system according to [6], wherein the anamorphic surface is a free-form curved surface in which a line connecting the centers of curvature in the sub-scanning direction is a curved non-arc.
[8] 走査レンズがシリンドリカル面を有する、請求項 1に記載の走査光学系。 8. The scanning optical system according to claim 1, wherein the scanning lens has a cylindrical surface.
[9] シリンドリカル面が偏向器側に形成される、請求項 8に記載の走査光学系。 9. The scanning optical system according to claim 8, wherein the cylindrical surface is formed on the deflector side.
[10] シリンドリカル面が被走査面側に形成される、請求項 8に記載の走査光学系。 10. The scanning optical system according to claim 8, wherein the cylindrical surface is formed on the surface to be scanned.
[II] 第 2結像光学系における副走査方向の倍率を mとしたとき、以下の条件式(1):  [II] When the magnification in the sub-scanning direction in the second imaging optical system is m, the following conditional expression (1):
1. 2<m<4. 5 (1)  1. 2 <m <4.5 (1)
を満足する、請求項 1に記載の走査光学系。 The scanning optical system according to claim 1, wherein:
[12] 以下の条件式(1)': [12] The following conditional expression (1) ':
1.7<m (1),  1.7 <m (1),
を満足する、請求項 11に記載の走査光学系。  The scanning optical system according to claim 11, wherein:
[13] 以下の条件式(1)'': [13] The following conditional expression (1) '':
2.2<m (1)"  2.2 <m (1) "
を満足する、請求項 11に記載の走査光学系。  The scanning optical system according to claim 11, wherein:
[14] 以下の条件式(1)'": [14] The following conditional expression (1) '":
m<3.9 (1)"'  m <3.9 (1) "'
を満足する、請求項 11に記載の走査光学系。  The scanning optical system according to claim 11, wherein:
[15] 偏光器の反射面力 被走査面までの距離を L、走査レンズの持つ主走査方向の焦 点距離を fとしたとき、以下の条件式 (2): [15] Reflector surface force of the polarizer If the distance to the surface to be scanned is L and the focal length of the scanning lens in the main scanning direction is f, the following conditional expression (2):
0.5<L/f<l.2 (2)  0.5 <L / f <l.2 (2)
を満足する、請求項 1に記載の走査光学系。  The scanning optical system according to claim 1, wherein:
[16] 以下の条件式 (2)': [16] The following conditional expression (2) ':
0.7<L/f (2)'  0.7 <L / f (2) '
を満足する、請求項 15に記載の走査光学系。  The scanning optical system according to claim 15, wherein:
[17] 以下の条件式 (2)'': [17] The following conditional expression (2) '':
L/f<l.0 (2)"  L / f <l.0 (2) "
を満足する、請求項 15に記載の走査光学系。  The scanning optical system according to claim 15, wherein:
[18] 走査レンズにおいて、光軸と平行な方向にレンズの厚みを計測し、最も薄い箇所の 厚みを t、該走査レンズの中心の厚みを Tとしたとき、以下の条件式(3): [18] In the scanning lens, the thickness of the lens is measured in the direction parallel to the optical axis, where t is the thickness of the thinnest part and T is the thickness of the center of the scanning lens, the following conditional expression (3):
0.15<t/T<0.3 (3)  0.15 <t / T <0.3 (3)
を満足する、請求項 1に記載の走査光学系。  The scanning optical system according to claim 1, wherein:
[19] 以下の条件式 (3)': [19] The following conditional expression (3) ':
0.19<t/T (3)'  0.19 <t / T (3) '
を満足する、請求項 18に記載の走査光学系。  The scanning optical system according to claim 18, wherein:
[20] 以下の条件式 (3)'': [20] The following conditional expression (3) '':
t/T<0.26 (3)" を満足する、請求項 18に記載の走査光学系。 t / T <0.26 (3) " The scanning optical system according to claim 18, wherein:
[21] 画像信号に基づ ヽて画像を形成する画像形成装置であって、 [21] An image forming apparatus for forming an image based on an image signal,
入力される画像信号に基づいて出射すべきビームが制御される光源と、  A light source in which a beam to be emitted is controlled based on an input image signal;
光源から出射されるビームに基づいて静電潜像担持体に静電潜像を形成する露光 光学系と、  An exposure optical system for forming an electrostatic latent image on an electrostatic latent image carrier based on a beam emitted from a light source;
露光光学系により形成された静電潜像を現像する現像手段とを備え、  Development means for developing the electrostatic latent image formed by the exposure optical system,
前記露光光学系が走査光学系であり、該走査光学系が  The exposure optical system is a scanning optical system, and the scanning optical system is
光源力 のビームを反射面により反射して偏向することにより主走査する偏向器と 光源力 のビームを、偏向器の反射面近傍で主走査方向に延びた線状に結像す る第 1結像光学系と、  A deflector that performs main scanning by reflecting and deflecting a beam of light source power by a reflecting surface and a beam of light source power form a linear image extending in the main scanning direction in the vicinity of the reflecting surface of the deflector. An image optical system;
偏光器の反射面近傍で主走査方向に延びた線状に結像されたビームを、被走査 面上にスポットとして再び結像させる単一の走査レンズからなる第 2結像光学系とを 備え、  A second imaging optical system comprising a single scanning lens that re-images a linearly focused beam extending in the main scanning direction near the reflecting surface of the polarizer as a spot on the surface to be scanned ,
前記第 1結像光学系が、光源からの発散性のビームを平行ビーム又は収束性の ビームに変換する正パワー光学系を含み、該正パワー光学系が、榭脂を材料とし、 回折による光学的パワーを持つ面を有する、  The first imaging optical system includes a positive power optical system that converts a divergent beam from a light source into a parallel beam or a convergent beam. Having a surface with dynamic power,
画像形成装置。  Image forming apparatus.
[22] 2次元画像を読取り、電気的な画像信号を形成する画像読取装置であって、  [22] An image reading device for reading a two-dimensional image and forming an electrical image signal,
入力される画像信号に基づいて出射すべきビームが制御される光源と、  A light source in which a beam to be emitted is controlled based on an input image signal;
光源から出射されるビームにより読取るべき 2次元画像を照明する読取光学系と、 読取光学系により照明された 2次元画像力 の戻りビームを検出する検出器とを備え 前記読取光学系が走査光学系であり、該走査光学系が  A reading optical system for illuminating a two-dimensional image to be read by a beam emitted from a light source; and a detector for detecting a return beam of the two-dimensional image force illuminated by the reading optical system. And the scanning optical system is
光源力 のビームを反射面により反射して偏向することにより主走査する偏向器と 光源力 のビームを、偏向器の反射面近傍で主走査方向に延びた線状に結像す る第 1結像光学系と、 偏光器の反射面近傍で主走査方向に延びた線状に結像されたビームを、被走査 面上にスポットとして再び結像させる単一の走査レンズからなる第 2結像光学系とを 備え、 A deflector that performs main scanning by reflecting and deflecting a beam of light source power by a reflecting surface and a beam of light source power form a linear image extending in the main scanning direction in the vicinity of the reflecting surface of the deflector. An image optical system; A second imaging optical system consisting of a single scanning lens that re-images a linearly focused beam extending in the main scanning direction near the reflecting surface of the polarizer as a spot on the surface to be scanned ,
前記第 1結像光学系が、光源からの発散性のビームを平行ビーム又は収束性の ビームに変換する正パワー光学系を含み、該正パワー光学系が、榭脂を材料とし、 回折による光学的パワーを持つ面を有する、  The first imaging optical system includes a positive power optical system that converts a divergent beam from a light source into a parallel beam or a convergent beam. Having a surface with dynamic power,
画像読取装置。 Image reading device.
PCT/JP2005/016128 2004-09-03 2005-09-02 Scan optical system, image formation device using the scan optical system, and image read device using the scan optical system WO2006025532A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-257648 2004-09-03
JP2004257648 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025532A1 true WO2006025532A1 (en) 2006-03-09

Family

ID=36000177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016128 WO2006025532A1 (en) 2004-09-03 2005-09-02 Scan optical system, image formation device using the scan optical system, and image read device using the scan optical system

Country Status (1)

Country Link
WO (1) WO2006025532A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118346A (en) * 1992-10-02 1994-04-28 Minolta Camera Co Ltd Laser beam light source unit and laser beam scanning optical system
JPH10288745A (en) * 1997-02-17 1998-10-27 Ricoh Co Ltd Optical scanning lens and optical scanner
JP2002328324A (en) * 2002-02-13 2002-11-15 Canon Inc Scanning optical device
JP2003295103A (en) * 2002-04-01 2003-10-15 Sony Corp Code reader and method of driving the same
JP2004004154A (en) * 2002-03-22 2004-01-08 Ricoh Co Ltd Scanning optical system, optical scanner, and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118346A (en) * 1992-10-02 1994-04-28 Minolta Camera Co Ltd Laser beam light source unit and laser beam scanning optical system
JPH10288745A (en) * 1997-02-17 1998-10-27 Ricoh Co Ltd Optical scanning lens and optical scanner
JP2002328324A (en) * 2002-02-13 2002-11-15 Canon Inc Scanning optical device
JP2004004154A (en) * 2002-03-22 2004-01-08 Ricoh Co Ltd Scanning optical system, optical scanner, and image forming apparatus
JP2003295103A (en) * 2002-04-01 2003-10-15 Sony Corp Code reader and method of driving the same

Similar Documents

Publication Publication Date Title
US6791729B2 (en) Adjusting imaging position of optical beam spot in main and sub-scanning directions by individually and/or collectively adjusting position(s) of temperature-compensating lens(es)
JP3330248B2 (en) Optical scanning device, image forming device, and image reading device
KR20010107742A (en) Optical scanning apparatus and image forming apparatus using the same
US20040027446A1 (en) Optical scanning apparatus, and image forming apparatus using such optical scanning apparatus
JP2004126192A (en) Optical scanner and image forming apparatus using the same
JP3420956B2 (en) Optical scanning device, image reading device and image forming device using the same
JP4617004B2 (en) Scanning optical device and image forming apparatus using the same
KR100676811B1 (en) Optical element and scanning optical system having the same, and image forming apparatus
JP2623147B2 (en) Optical system for light beam scanning
JP2003107382A (en) Scanning optical system
JP2010276860A (en) Scanning optical system in image forming apparatus
JP6425752B2 (en) Optical scanning device and image forming apparatus provided with the same
WO2006025532A1 (en) Scan optical system, image formation device using the scan optical system, and image read device using the scan optical system
JP2016194675A (en) Optical scanner
JP4902279B2 (en) Image forming apparatus
JP4240777B2 (en) Scanning optical device and image forming apparatus using the same
JP3390118B2 (en) Optical scanning device, image reading device and image forming device using the same
JP2010014768A (en) Scanning optical system, image forming apparatus having scanning optical system and image reading apparatus having scanning optical system
JP2008310257A (en) Scanning optical system and optical scanner and image forming apparatus equipped with the same
JP4378416B2 (en) Scanning optical device and image forming apparatus using the same
JP2017191143A (en) Optical scanner and image forming apparatus including the same
JP2004066612A (en) Lens molding device, optical element made using the device, and optical scanner
JPH07146437A (en) Light beam scanning optical system
JP2007108766A (en) Multibeam exposure apparatus
JP2000338435A (en) Scanning optical device and image forming device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP