WO2006025518A1 - Hydraulic drive device and speed change method in hydraulic drive device - Google Patents

Hydraulic drive device and speed change method in hydraulic drive device Download PDF

Info

Publication number
WO2006025518A1
WO2006025518A1 PCT/JP2005/016090 JP2005016090W WO2006025518A1 WO 2006025518 A1 WO2006025518 A1 WO 2006025518A1 JP 2005016090 W JP2005016090 W JP 2005016090W WO 2006025518 A1 WO2006025518 A1 WO 2006025518A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hydraulic
hydraulic pump
pump
capacity
Prior art date
Application number
PCT/JP2005/016090
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Ishizaki
Hikosaburou Hiraki
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO2006025518A1 publication Critical patent/WO2006025518A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/452Selectively controlling multiple pumps or motors, e.g. switching between series or parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/448Control circuits for tandem pumps or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery

Definitions

  • Hydraulic drive device and speed change method in hydraulic drive device are Hydraulic drive device and speed change method in hydraulic drive device
  • the present invention relates to a hydraulic drive device in which a closed circuit is configured by a hydraulic pump and a hydraulic motor, and a speed change method in the hydraulic drive device.
  • a hydraulic drive device used in, for example, a vehicle a hydraulic drive device in which a hydraulic pump driven by an engine and a hydraulic motor are combined is widely used.
  • a hydraulic drive device using a hydraulic pump and two hydraulic motors a hydraulic drive device shown in FIG. 12 (see, for example, Patent Document 1) has been conventionally known.
  • FIG. 10 A hydraulic drive device le shown in FIG. 10 will be described as Conventional Example 1 in the present invention.
  • the rotational output of the engine power that is the drive source 42 is transmitted to the variable displacement hydraulic pump 44 via the drive shaft 43.
  • the variable displacement hydraulic motor 45 including the output shaft 46 is rotationally driven by the discharge hydraulic oil from the variable displacement hydraulic pump 44.
  • variable displacement hydraulic pump 44 and the variable displacement hydraulic motor 45 are configured in a closed circuit via oil passages 47 and 48.
  • the drive source 42 is started to increase the discharge capacity of the variable displacement hydraulic pump 44, the rotational speed of the variable displacement hydraulic motor 45 increases. Therefore, the vehicle traveling by the rotational force from the output shaft of the variable capacity hydraulic motor 45 is accelerated.
  • the vehicle When the capacity of the state force variable displacement hydraulic motor 45 is decreased, the vehicle can be further accelerated. By tilting the swash plate of the variable displacement hydraulic pump 44 in one side direction, the vehicle can be driven forward, and the swash plate of the variable displacement hydraulic pump 44 is moved to the other side opposite to the one side direction. By tilting in the direction, the vehicle can be driven backwards
  • all the horizontal axes are speed command values that are commands for adjusting the displacement of the variable displacement hydraulic pump 44 and the variable displacement hydraulic motor 45.
  • the vertical axis of the graph (g) indicates the capacity of the variable displacement hydraulic motor 45
  • the vertical axis of the graph (h) indicates the capacity of the variable displacement hydraulic pump 44.
  • the vertical axis of graph (j) indicates the rotational speed of output shaft 46
  • the vertical axis of graph (k) indicates the volumetric efficiency 7?
  • variable displacement hydraulic pump 44 and variable displacement hydraulic motor 45 that is, The power transmission efficiency in the hydraulic drive device is shown.
  • the capacity of the variable displacement hydraulic pump 44 is adjusted so that the maximum capacity V44max is obtained by increasing the capacity of the zero capacity. That is, the capacity of the variable displacement hydraulic pump 44 is increased together with the speed command value so that the speed command value A reaches the maximum capacity V44ma X.
  • the rotation speed of the output shaft 46 is increased from the state where the rotation speed is zero at the speed command value A to the rotation speed N2, and at the speed command value B, Becomes the maximum speed N3.
  • the volumetric efficiency r? Increases as the capacity increases in the variable displacement hydraulic pump 44.
  • the volumetric efficiency can be maximized at the maximum capacity V44max. Therefore, the volumetric efficiency becomes r? 2 at the speed command value A.
  • the volumetric efficiency of the variable displacement hydraulic motor 45 decreases as the capacity is reduced, the volumetric efficiency is 7 to 1 at the speed command value B.
  • FIG. 12 A hydraulic drive device If shown in FIG. 12 will be described as Conventional Example 2 in the present invention.
  • a variable displacement hydraulic pump 54 that is rotationally driven by a drive source such as an engine (not shown) is connected to a fixed displacement hydraulic motor 55 and a variable displacement hydraulic motor 60 via oil passages 57 and 58, respectively. A closed circuit is formed between them.
  • the motor shaft 55a of the fixed displacement hydraulic motor 55 is connected to the output shaft 56 via a gear device 62.
  • the motor shaft 60 a of the variable displacement hydraulic motor 60 is connected to the output shaft 56 via a gear device 63 and a clutch 64.
  • the horizontal axis is all speed command values.
  • the vertical axis of the graph (m) indicates the capacity of the fixed displacement hydraulic motor 55
  • the vertical axis of the graph (n) indicates the capacity of the variable displacement hydraulic pump 54
  • the vertical axis of the graph (p) indicates the variable displacement hydraulic pressure.
  • the capacity of the motor 60 is shown.
  • the vertical axis of the graph (q) indicates the rotational speed of the output shaft 56
  • the vertical axis of the graph (r) indicates the volumetric efficiency in the hydraulic drive device le.
  • the capacity of the fixed displacement hydraulic motor 55 is the capacity V55.
  • the capacity of the variable displacement hydraulic pump 54 is set to zero, and the capacity of the variable displacement hydraulic motor 60 is adjusted to the maximum capacity V60max. Further, the clutch 64 is kept in the engaged state.
  • the rotation speed of the output shaft 56 is increased from the zero rotation speed state to the rotation speed N1 at the speed command value A, and the maximum speed is reached at the speed command value B.
  • the number of turns becomes N2.
  • the volumetric efficiency increases from 7 to 2 between the speed command value zero and the speed command value A. Volume efficiency drops to 7 ⁇ 0 until B.
  • the variable displacement hydraulic motor 60 is disconnected from the output shaft 56 by releasing the clutch 64, and the output shaft 56 is switched to drive only by the fixed displacement hydraulic motor 55. As a result, the volumetric efficiency can be increased to 7-2.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-240442
  • a continuously variable transmission can be performed to increase the vehicle speed to a predetermined speed.
  • the hydraulic drive apparatus shown in the conventional example 1 has a problem that the volumetric efficiency is lowered when the rotational speed of the output shaft 46 is increased, that is, when the vehicle is traveling at high speed.
  • the gear ratio obtained by continuously variable transmission is about three times the gear ratio, and the force cannot be obtained.
  • a mechanical transmission device was further provided, and it was necessary to perform two-stage gear shifting by a hydraulic drive device and a mechanical device.
  • a space for mounting the mechanical mission device is required. It has been difficult to secure a space for mounting a mechanical mission device on a traveling vehicle.
  • the output torque must be cut off by the clutch without fail when the gear ratio is switched. For this reason, at the time of shifting in the mechanical transmission device, a so-called torque out phenomenon occurs in which the output torque is not transmitted to the tire. For example, if the gear ratio of the mechanical transmission device is switched while climbing up, the vehicle may temporarily decelerate. In addition, a shift shock occurs in the mechanical transmission device, which adversely affects riding comfort.
  • the present invention has been made paying attention to the above-described problems, and is used in a hydraulic drive device. It is an object of the present invention to provide a hydraulic drive device and a speed change method in the hydraulic drive device that can increase the gear ratio of the continuously variable transmission and increase the volumetric efficiency when the vehicle is traveling at high speed.
  • the hydraulic pump driven by the drive source is connected to the hydraulic pump in a closed circuit, and is connected to the output shaft.
  • Hydraulic motor, variable displacement hydraulic pump connected in parallel with the hydraulic pump and the hydraulic motor in a closed circuit 'motor, pump shaft of the hydraulic pump and the variable displacement hydraulic pump ⁇ motor pump ⁇
  • the main feature is that a first clutch that connects and disconnects the motor shaft and a second clutch that connects and disconnects the pump motor shaft and the motor shaft of the hydraulic motor are provided.
  • the most main feature is that a transmission gear is further provided at the connecting portion between the pump shaft and the pump / motor shaft.
  • the main feature is that a transmission gear is further provided at the connecting portion between the pump motor shaft and the motor shaft.
  • a hydraulic pump driven by the drive source a hydraulic motor connected to the hydraulic pump in a closed circuit and connected to an output shaft, and the closed circuit
  • a single tilting / variable displacement hydraulic pump / motor connected in a closed circuit in parallel with the hydraulic pump and the hydraulic motor via the connected first oil passage and second oil passage
  • a switching valve for switching the flow direction of pressure oil in the oil passage and the second oil passage, and the pump shaft of the hydraulic pump and the one-side tilt, variable displacement hydraulic pump, motor pump, and motor shaft are connected and disconnected.
  • the most important feature is that a first clutch and a second clutch that connects and disconnects the pump motor shaft and the motor shaft of the hydraulic motor are provided.
  • variable displacement hydraulic pump motor can be used as a pump after being used as a motor. For this reason, it is possible to reduce the space as compared with the case where the hydraulic motor and the hydraulic pump are individually provided, and the number of the hydraulic motors or hydraulic pumps can be reduced.
  • the gear ratio of the transmission gear can be selected as appropriate, and the hydraulic pump and the variable displacement hydraulic pump 'motor can be used at their respective optimum rotational speeds. Therefore, the efficiency can be improved over the entire vehicle speed of the vehicle.
  • the gear ratio of the transmission gear can be selected as appropriate, so that the hydraulic motor and the variable displacement hydraulic pump motor are used at their optimum rotational speeds. It becomes possible. Therefore, the efficiency can be improved over the entire vehicle speed.
  • variable displacement hydraulic pump / motor instead of configuring the variable displacement hydraulic pump / motor as a double-tilt type, it is possible to use a single-tilt type that is inexpensive and has a simple structure.
  • FIG. 1 is a schematic configuration diagram of a hydraulic drive device. (Example 1)
  • FIG. 2 is a graph for explaining a speed change method of the hydraulic drive device.
  • Example 1 [FIG. 3]
  • FIG. 3 is a flowchart for explaining a speed change method of the hydraulic drive device. (Example 1)
  • FIG. 4 is a schematic configuration diagram of a hydraulic drive device using a variable displacement hydraulic motor. (Example 1)
  • FIG. 5 is another schematic configuration diagram of the hydraulic drive device. (Example 1)
  • FIG. 6 is another schematic configuration diagram of the hydraulic drive device. (Example 1)
  • FIG. 7 is a schematic configuration diagram of a hydraulic drive device. (Example 2)
  • FIG. 8 is a schematic configuration diagram of a hydraulic drive device. (Example 3)
  • FIG. 9 is a schematic configuration diagram of a hydraulic drive device. (Example 4)
  • FIG. 10 is a schematic configuration diagram of a hydraulic drive device. (Conventional example 1)
  • FIG. 11 is a graph for explaining a speed change method of the hydraulic drive device. (Conventional example 1 )
  • FIG. 12 is a schematic configuration diagram of a hydraulic drive device. (Conventional example 2)
  • FIG. 13 is a graph for explaining a speed change method of the hydraulic drive device. (Conventional example 2
  • HST device The present invention can also be suitably applied to other hydraulic drive devices and speed change methods thereof. Embodiments of a hydraulic drive device and a speed change method thereof according to the present invention will be described below with reference to the drawings.
  • FIG. 1 is a schematic configuration diagram of a hydraulic drive device 1 according to the first embodiment.
  • a drive source for example, an engine
  • a swash plate-type double displacement type variable displacement hydraulic pump as a hydraulic pump 4 are connected by a drive shaft 3.
  • the fixed displacement hydraulic motor as the hydraulic motor 5 includes an output shaft 6 and can transmit the rotation of the hydraulic motor 5 to the wheels of a running vehicle (not shown).
  • the hydraulic pump 4 and the hydraulic motor 5 are configured in a closed circuit via oil passages 7 and 8.
  • the swash plate type bi-directional variable displacement hydraulic pump “motor” as the hydraulic pump “motor 10” is connected between the oil passages 7 and 8 via the first oil passage 11 and the second oil passage 12.
  • the first shaft 10 a which is the pump motor shaft of the hydraulic pump motor 10 is connected to the pump shaft 4 a of the hydraulic pump 4 via the first clutch 14.
  • the second shaft 10 b which is the motor shaft of the hydraulic pump “motor 10” is connected to the motor shaft 5 a of the hydraulic motor 5 via the second clutch 16.
  • the shaft that transmits the driving force from the driving source is referred to as a driving shaft, and is connected to the hydraulic pump to form a hydraulic pump motor.
  • the shaft that transmits rotation is called the pump shaft.
  • the shaft that can be connected to the pump shaft by connecting to the hydraulic pump motor is the first shaft, and the shaft that transmits rotation to the output shaft via the hydraulic motor by connecting to the hydraulic pump motor or directly. This is called the second axis.
  • the shaft that can be connected to the second shaft by connecting to the hydraulic motor is called the motor shaft or output shaft.
  • the shaft that is connected to the motor shaft and transmits the rotation to the outside is called the output shaft.
  • the drive shaft and the pump shaft may be configured by the same shaft.
  • the first shaft and the second shaft or the motor shaft and the output shaft may be constituted by the same shaft. Therefore, the motor shaft and the pump shaft are configured by the same shaft, the first shaft and the second shaft are configured by the same shaft, and the motor shaft and the output shaft are configured by the same shaft.
  • the configured structure is also included in the present invention including Examples 1 to 4 described below. [0039] Next, the operation will be described. In FIG. 1, the first clutch 14 is released, the second clutch 16 is engaged, and the hydraulic pump / motor 10 is operated as a motor. At this time, the capacity of the hydraulic pump 4 is set to zero capacity, and the capacity of the hydraulic pump motor 10 is set to the maximum capacity.
  • the hydraulic pump 4 is driven by the drive source 2 via the drive shaft 3.
  • the pressure oil discharged from the hydraulic pump 4 flows into the hydraulic motor 5 and the hydraulic pump 'motor 10 through the oil passage 7 (or the oil passage 8), and drives the hydraulic motor 5 and the hydraulic pump / motor 10. Then, power is output to the output shaft 6 to rotate the output shaft 6. Therefore, as the discharge amount of the hydraulic pump 4 increases, the rotation speed of the output shaft 6 increases.
  • the pressure oil discharged from the hydraulic motor 5 and the hydraulic pump 'motor 10 flows through the oil passage 8 (or the oil passage 7) serving as a discharge passage.
  • the hydraulic pump 'motor 10 can now act as a pump driven by the drive source 2.
  • the flow rate of the hydraulic oil supplied to the hydraulic motor 5 can be increased by increasing the capacity of the hydraulic pump motor 10 to the maximum capacity. it can. That is, in addition to the discharge amount of the hydraulic pump 4, the discharge amount from the hydraulic pump / motor 10 can be supplied to the hydraulic motor 5.
  • the rotational speed of the hydraulic motor 5 can be further increased, and the rotational speed of the output shaft 6 can be further increased. If the swash plate tilt direction in the hydraulic pump 4 is tilted in the direction opposite to the above description, the hydraulic motor 5 may rotate in the direction opposite to the above description to cause the vehicle to travel backward. it can.
  • the horizontal axes are speed command values that are commands for capacity adjustment of the hydraulic pump 4, the hydraulic motor 5, and the hydraulic pump motor 10.
  • the vertical axis of the graph (a) indicates the capacity of the hydraulic motor 5
  • the vertical axis of the graph (b) indicates the capacity of the hydraulic pump 4
  • the graph (c) The vertical axis shows the capacity of the hydraulic pump / motor 10.
  • the vertical axis of the graph (d) indicates the total capacity of the hydraulic motor 5 and the hydraulic pump 'motor 10 when operated as a motor.
  • the vertical axis of the graph (e) indicates the rotational speed of the output shaft 6, and the vertical axis of the graph (f) indicates the volumetric efficiency r? In the hydraulic drive device 1.
  • FIG. 3 shows a control flow of the hydraulic drive device 1.
  • the speed command value the operation amount of the speed adjustment operation lever, the rotation speed of the drive source 2, etc. can be used.
  • the hydraulic pump 4 in FIG. 1 is in a zero swash plate state, that is, zero capacity. Further, the swash plate angle of the hydraulic pump / motor 10 is in the maximum angle state, that is, the maximum capacity state. Further, in order to make the hydraulic pump motor 10 act as a motor, the first clutch 14 is released and the second clutch 16 is engaged. At this time, as shown in the graph (e), the rotation of the output shaft 6 to the traveling vehicle is in a zero state.
  • step 1 in FIG. 3 by increasing the swash plate angle of the hydraulic pump 1 shown in FIG. 1, the capacity of the hydraulic pump 1 is also increased to the maximum capacity Vlmax.
  • Vlmax the capacity of the hydraulic pump 1 is also increased to the maximum capacity Vlmax.
  • the rotation output from the hydraulic motor 5 drives the output shaft 6 to rotate.
  • the rotational output from the hydraulic pump-motor 10 rotationally drives the output shaft 6 connected to the hydraulic motor 5 via the second shaft 10b and the second clutch 16. Therefore, the output shaft 6 is driven by the resultant force of the rotational output from the hydraulic motor 5 and the rotational output from the hydraulic pump / motor 10 and can output a high torque required at the time of running start.
  • This state can be shown as a section in which the speed command value in FIG.
  • the capacity of the hydraulic pump 4 increases from zero capacity to the maximum capacity Vlmax.
  • the capacities of the hydraulic motor 5 and the hydraulic pump 'motor 10 are the capacity V2 and the maximum capacity V3max, respectively.
  • the total capacity of the motor is in the V2 + V3max state as shown in graph (d).
  • step 2 of FIG. 3 it is determined whether or not the capacity of the hydraulic pump 4 has reached the maximum capacity Vlmax.
  • the capacity of the hydraulic pump 4 is not the maximum capacity, the capacity of the hydraulic pump 4 is increased.
  • the capacity of the hydraulic pump 4 reaches the maximum capacity Vlmax, go to step 3.
  • step 3 of FIG. 3 the swash plate angle of the hydraulic pump / motor 10 is controlled so that the maximum angular force is also zero.
  • the flow rate of the pressure oil discharged from the hydraulic pump 4 to the oil passage 7 is constant, but the capacity of the hydraulic pump / motor 10 is controlled to be reduced from the maximum capacity V3max to zero capacity.
  • the flow rate supplied to the hydraulic motor 5 increases, and the rotation of the output shaft 6 can be increased by further increasing the rotation of the hydraulic motor 5.
  • This state can be shown as a section in FIG. 2 where the speed command value of the state force A is in the state B.
  • the capacity of the hydraulic pump 'motor 10 is reduced from the maximum capacity V3max to zero capacity.
  • the capacity of the hydraulic motor 5 is a constant capacity, and the capacity of the hydraulic pump 4 is maintained at the maximum capacity state.
  • the total capacity of the motor decreases to the state of the state force V2 of V2 + V3max. Further, as shown in the graph (e), the rotational speed of the output shaft 6 increases to N2, and the vehicle speed of the traveling vehicle further increases. Also, as shown in the graph (f), the volumetric efficiency decreases from the r? 2 state to the 7? 0 state.
  • step 4 of FIG. 3 it is determined whether or not the capacity of the hydraulic pump / motor 10 has reached zero capacity.
  • the capacity of the hydraulic pump 'motor 10 is not zero, Reduce pump 10 motor capacity.
  • the capacity of the hydraulic pump motor 10 reaches zero, go to step 5.
  • Step 5 of FIG. 3 the second clutch 16 is disconnected and the first clutch 14 is connected. That is, the first shaft 10 a of the hydraulic pump motor 10 and the drive shaft 3 are connected via the first clutch 14. At this time, the capacity of the hydraulic pump / motor 10 is zero. For this reason, the hydraulic pump 'motor
  • Step 6 of FIG. 3 the hydraulic pump / motor 10 is caused to function as a pump.
  • Hydraulic pump • Increase the capacity of motor 10 to the maximum capacity V3max with zero capacity.
  • the flow rate of the pressure oil discharged from the hydraulic pump 4 to the oil passage 7 is constant.
  • the hydraulic motor 5 can also be supplied with the hydraulic oil discharged from the hydraulic pump and motor 10, The flow rate of the pressure oil supplied to the hydraulic motor 5 can be increased.
  • the hydraulic pump / motor 10 can be used as a pump together with the hydraulic pump 4, so that a large pump capacity can be obtained. Accordingly, the flow rate of the pressure oil supplied to the hydraulic motor 5 is increased, and the hydraulic motor 5 can be rotated at a higher speed. In this way, the variable displacement hydraulic motor, which has reached zero capacity as in the past, is reused as a hydraulic pump without being discarded. This makes it possible to increase the vehicle traveling speed to a higher speed.
  • the hydraulic pump 4 and the hydraulic pump / motor 10 drive the hydraulic motor 5 in the maximum capacity state, so that high capacity efficiency can be obtained. Further, when the hydraulic pump motor 10 is switched from the motor operation to the pump operation, the displacement of the hydraulic pump / motor 10 is performed in the zero capacity state, so that the switching shock accompanying the switching does not occur.
  • step 6 in FIG. 3 can be indicated by a section in which the speed command value in FIG.
  • the capacities of the hydraulic motor 5 and the hydraulic pump 4 are maintained at the capacity V2 and the maximum capacity Vlmax, respectively.
  • the capacity of the hydraulic pump motor 10 increases from zero capacity to the maximum capacity V3max.
  • the capacity of the motor is maintained at the maximum capacity V2 of the hydraulic motor 5 alone.
  • the motor capacity is the sum of the motor capacities in the hydraulic motor 5 and the hydraulic pump / motor 10 between the start time and the speed command value A.
  • the value is V2 + V3max.
  • the capacity of the hydraulic motor 5 alone is V2, and then the capacity state of V2 is maintained.
  • the rotational speed of the output shaft 6 is increased to N1 at the speed command value A by increasing the capacity of the hydraulic pump 4, and at the speed command value B, the speed of the hydraulic pump motor 10 is increased. Increased to N2 due to motor capacity reduction. Furthermore, with the speed command value C, the speed can be increased to N3 as the pump capacity of the hydraulic pump motor 10 that has performed the pump function increases, and the maximum rotational speed can be reached.
  • the motor capacity can be increased at low speeds, high torque can be output to the output shaft 6.
  • the speed of the output shaft 6 can be increased to the maximum speed, which makes it possible to drive the traveling vehicle at a high speed.
  • the volumetric efficiency can be set to r? 2, which is the maximum volumetric efficiency state, as the capacity of the hydraulic pump 4 increases.
  • the speed command value B the force decreases by a decrease in the motor capacity of the hydraulic pump 'motor 10 and decreases to 7? 0.
  • the pump capacity of the hydraulic pump' motor 10 increases Again, it can recover to 7-2. That is, high volumetric efficiency can be obtained even during high-speed traveling.
  • variable displacement hydraulic motor 5 having the maximum capacity V2 as shown in FIG. 4 when the variable displacement hydraulic motor 5 having the maximum capacity V2 as shown in FIG. 4 is used, the capacity of the hydraulic pump / motor 10 acting as a pump is increased to the maximum capacity V3max. Thereafter, it is possible to perform control to reduce the capacity of the hydraulic motor 5 from the maximum capacity V2 state to, for example, a half capacity. Thereby, the vehicle speed of the traveling vehicle can be further increased.
  • the reduction gear ratio is set as the transmission gear ratio of the transmission gear unit 24
  • the rotation of the motor shaft 5a can be decelerated and transmitted to the output shaft 6, and high torque is transmitted to the output shaft 6. can do. That is, it is possible to sufficiently supply the output shaft 6 with the high torque required when the vehicle is driven at low speed.
  • the speed increasing ratio is set as the speed ratio of the transmission gear unit 24
  • the rotation of the motor shaft 5a can be rotated at an increased speed and transmitted to the output shaft 6, and the rotational speed of the output shaft 6 can be increased.
  • the vehicle can be driven at high speed.
  • the swash plate type variable displacement hydraulic pump 4 and the swash plate type variable displacement hydraulic pump motor 10 are used.
  • the present invention can be appropriately selected and implemented even in an apparatus having a similar capacity variable mechanism.
  • the rotation speed of the fixed displacement hydraulic pump is continuously increased by variably controlling the output rotation speed from the drive source 2.
  • Speed or deceleration can be controlled. This makes it possible to continuously increase or decrease the discharge amount from the hydraulic pump that is a fixed displacement hydraulic pump.
  • the discharge amount of the fixed displacement hydraulic pump force can be continuously increased or decreased. That is, the discharge capacity discharged from the hydraulic pump as the fixed displacement hydraulic pump can be continuously controlled between the zero discharge state and the maximum discharge state. [0080] Further, after the vehicle has reached the maximum speed with the clutch 17 and the first clutch 14 engaged and the second clutch 16 disengaged, the second clutch 16 is engaged so that the drive shaft 3 and the output shaft 6 can be directly connected. As a result, the drive source 2 and the output shaft 6 are connected to each other, and higher power transmission efficiency can be obtained.
  • the motor capacity in FIG. 2 is expressed using the equivalent capacity of the motor. be able to.
  • the equivalent capacity can be obtained by multiplying the capacity of the hydraulic pump or hydraulic pump / motor by the gear ratio of the respective transmission gear unit.
  • the hydraulic drive unit lb according to the second embodiment includes a variable displacement hydraulic pump as the hydraulic pump 4 and a variable displacement hydraulic pump as the motor 20. It has become. Further, in FIG. 1 of the first embodiment, a force that uses a fixed displacement hydraulic motor as the hydraulic motor 5 In the second embodiment, a variable displacement hydraulic motor is used as shown in FIG. 4 of the first embodiment. It becomes the configuration used! The other configuration is the same as that of the hydraulic drive device 1 in the first embodiment.
  • the hydraulic pump / motor 20 in the second embodiment has a force similar to that of the hydraulic pump / motor 10 in the first embodiment. From the meaning of distinguishing the first embodiment from the second embodiment, the second embodiment will be described. Uses the symbol of the hydraulic pump motor 20. Further, the first shaft and the second shaft, which are the pump's motor shafts connected to the hydraulic pump'motor 20, are referred to by using the symbols of the first shaft 20a and the second shaft 20b.
  • a transmission gear device 22 is disposed between the pump shaft 4 a of the hydraulic pump 4 and the first shaft 20 a of the hydraulic pump / motor 20.
  • the transmission gear unit 22 may be configured to increase the rotation of the pump shaft 4a and transmit it to the first shaft 20a, or to reduce the rotation of the pump shaft 4a and transmit it to the first shaft 20a. You can also.
  • a configuration in which the rotation of the pump shaft 4a is decelerated and transmitted to the first shaft 20a is shown.
  • the hydraulic drive device la shown in FIG. 7 can be operated in the same manner as the hydraulic drive device 1 described in the first embodiment. That is, with the first clutch 14 disconnected and the second clutch 16 connected, the capacities of the hydraulic pump motor 20 and the hydraulic motor 5 are brought to the maximum capacity state. By increasing the capacity of the state force hydraulic pump 4 to the maximum capacity of zero capacity force, the rotation of the output shaft 6 can be rotated at an increased speed.
  • the capacity of the hydraulic pump motor 20 is reduced to the maximum capacity force zero capacity while maintaining the connected state of the first clutch 14 and the second clutch 16. .
  • the flow rate of the pressure oil supplied to the hydraulic motor 5 can be increased.
  • the output shaft 6 further rotates at a higher speed.
  • the rated rotational speed of the hydraulic pump 4 and the rated rotational speed of the hydraulic pump motor 20 are different, the rated rotational speed can be adjusted by adjusting the reduction ratio of the transmission gear unit 22. The difference can be absorbed.
  • Switching by the transmission gear device 22 can be performed in a state where the capacity of the hydraulic pump motor 20 is zero. For this reason, it is possible to prevent the occurrence of a shift shock associated with the switching by the transmission gear device 22. That is, the switching can be performed smoothly without a shift shock.
  • the hydraulic pump motor 20 connected to the drive shaft 3 acts as a hydraulic pump.
  • the discharge amount from the hydraulic pump / motor 20 is added to the discharge amount from the hydraulic pump 4 and supplied to the hydraulic motor 5.
  • the hydraulic motor 5 further rotates at a higher speed
  • the output shaft 6 further rotates at a higher speed.
  • the output shaft 6 can be rotated at a higher speed by reducing the capacity of the hydraulic motor 5 to, for example, the maximum capacity state force, half capacity, etc. Can do.
  • the output shaft 6 can be controlled by controlling each of them in the reverse order to that at the time of increased speed rotation described above.
  • FIG. 7 when the first clutch 14 is connected and the second clutch 16 is disconnected, the rotational direction of the pump shaft 4a and the hydraulic pump by using the three gears constituting the transmission gear device 22 A configuration is shown in which the rotation direction of the motor 20 is the same rotation direction.
  • both the tilting / variable displacement hydraulic pump / motor and the tilting / variable displacement hydraulic motor are used as the hydraulic pump motor 20 and the hydraulic motor 5, respectively, even if the same hydraulic circuit is used
  • the rotation direction of the hydraulic pump motor 20 and the hydraulic motor 5 performing the above can be easily reversed from the rotation direction of the hydraulic pump 4 by appropriately selecting the direction in which the angle of the swash plate is swung.
  • the configuration of the transmission gear device 22 may be configured by, for example, two gears.
  • a variable displacement hydraulic motor is used as the hydraulic motor 5 has been described.
  • the hydraulic motor 5 may be configured to use a fixed displacement hydraulic motor. In this case, after returning the capacity of the hydraulic pump motor 20 to the maximum capacity, the capacity of the hydraulic motor 5 cannot be decreased to further increase the rotation speed of the output shaft 6, but the hydraulic motor 5 Can use inexpensive fixed displacement hydraulic motors.
  • the hydraulic drive device lc has an arrangement configuration in which a transmission gear device 23 is interposed between a hydraulic pump 'variable displacement hydraulic pump as motor 30' and a variable displacement hydraulic motor as hydraulic motor 5. It has become.
  • the force is a configuration using a fixed displacement hydraulic motor as the hydraulic motor 5.
  • a variable displacement hydraulic motor is used.
  • the other configuration is the same as that of the hydraulic drive device 1 in the first embodiment.
  • the hydraulic pump / motor 30 in the third embodiment has a force similar to that of the hydraulic pump / motor 10 in the first embodiment, so that the first embodiment and the third embodiment are distinguished from each other.
  • the symbol “hydraulic pump motor 30” is used.
  • the first shaft and the second shaft, which are the pump's motor shafts connected to the hydraulic pump'motor 30, are referred to using the symbols of the first shaft 30a and the second shaft 30b.
  • a transmission gear unit 23 is disposed between the second shaft 30 b of the hydraulic pump motor 30 and the output shaft 6 of the hydraulic motor 5.
  • the transmission gear unit 23 may be configured to increase the speed of the rotation of the second shaft 30b and transmit it to the output shaft 6, or to reduce the rotation of the second shaft 30b and transmit it to the output shaft 6. it can.
  • a configuration in which the rotation of the second shaft 30b is decelerated and transmitted to the output shaft 6 will be described.
  • the hydraulic drive device lc shown in FIG. 8 can also be operated in the same manner as the hydraulic drive devices 1 and lb described in the first and second embodiments. That is, with the first clutch 14 disconnected and the second clutch 16 connected, the capacities of the hydraulic pump motor 30 and the hydraulic motor 5 are set to the maximum capacity state. By increasing the capacity of the hydraulic pump 4 from the zero capacity to the maximum capacity from this state, the rotation of the output shaft 6 can be rotated at the speed of the rotation stop state force.
  • the reduction ratio or By adjusting the speed increasing ratio the difference in the maximum rotational speed can be adjusted. Further, by using the transmission gear device 23, the rotation ratio can be appropriately selected between the rotation of the hydraulic pump motor 30 and the rotation of the hydraulic motor 5.
  • the capacity of the hydraulic pump 'motor 30 is reduced to the maximum capacity force zero capacity while maintaining the connected state of the first clutch 14 and the second clutch 16. Reduce.
  • the flow rate of the pressure oil supplied to the hydraulic motor 5 can be increased.
  • the output shaft 6 further rotates at a higher speed.
  • the hydraulic pump 'motor 30 connected to the drive shaft 3 functions as a hydraulic pump.
  • the amount of discharge from the hydraulic pump / motor 30 is added to the amount of discharge from the hydraulic pump 4 and supplied to the hydraulic motor 5.
  • the hydraulic motor 5 further rotates at a higher speed
  • the output shaft 6 further rotates at a higher speed.
  • the output shaft 6 can be further rotated at a reduced speed by reducing the capacity of the hydraulic motor 5 to, for example, the maximum capacity state force half state. Can do.
  • the output shaft 6 When the output shaft 6 is decelerating at the time of increased speed rotation, it can be controlled by controlling each of them in the reverse order to that at the time of increased speed rotation described above.
  • a fixed displacement hydraulic motor can also be used as the hydraulic motor 5 as described in Fig. 4 of the first embodiment. .
  • a fixed displacement hydraulic motor can be used.
  • the gear configuration of the transmission gear unit 23 is, for example, a configuration using two gears.
  • a hydraulic drive unit Id according to the fourth embodiment of the present invention will be described with reference to FIG.
  • a hydraulic pump 'motor 40 as a single tilting / variable displacement hydraulic pump' motor is used, and a switching valve 25 is provided in the first oil passage 11 and the second oil passage 12. It has become the composition.
  • the other configuration is the same as that of the hydraulic drive device 1 in the first embodiment.
  • the hydraulic pump'motors 10, 20, and 30 shown in the first to third embodiments by using a bi-tilting' variable displacement hydraulic pump 'motor, the hydraulic pump' motors 10, 20, and 30 are It can be operated as a hydraulic motor and a hydraulic pump, and the rotation control of the output shaft 6 can be performed steplessly.
  • Example 4 instead of using a hydraulic pump 'motor as a double tilting' variable displacement type hydraulic pump 'motor, a single tilting ⁇ variable displacement type hydraulic pump ⁇ using a motor as both tilting ⁇ variable displacement type The same action as when using a hydraulic pump motor is performed. For this reason, the switching valve 25 is disposed in the first oil passage 11 and the second oil passage 12 in accordance with the use of the unidirectionally inclined “variable displacement hydraulic pump” motor.
  • the same constituent members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the hydraulic pump 'motor 40 is used as the symbol for the hydraulic pump' motor.
  • the first axis and the second axis which are the motor shafts of the hydraulic pump 'pump connected to the motor 40', the symbols of the first shaft 40a and the second shaft 40b are used.
  • the switching valve 25 can be switched at two positions and four ports.
  • the port 40c of the hydraulic pump motor 40 can be connected to the oil passage 7 via the oil passage 11a and the oil passage 11.
  • the port 40d of the hydraulic pump / motor 40 can be connected to the oil passage 8 via the oil passage 12a and the oil passage 12.
  • the port 40c of the hydraulic pump / motor 40 can be connected to the oil passage 8 via the oil passage 11a and the oil passage 12.
  • the port 40d of the hydraulic pump motor 40 can be connected to the oil passage 7 via the oil passage 12a and the oil passage 11.
  • One side tilt ⁇ Variable displacement hydraulic pump ⁇ Hydraulic pump composed of motor ⁇ Motor 40 When hydraulic pump ⁇ motor 40 is operated as a hydraulic motor, pressure oil is supplied from port 40c and hydraulic pressure When operated as a pump, pressure oil is discharged from the port 40d.
  • the switching valve 25 it is necessary to dispose the switching valve 25 to switch the switching valve 25.
  • the port 40c can function as an introduction port for introducing pressure oil
  • the port 40d is a discharge port to the oil passage 8. Can function as.
  • the port 40c is an introduction port for introducing the pressure oil in the oil passage 8 into the hydraulic pump / motor 40.
  • Can function as The port 40d can function as a discharge port for the pressure oil from the hydraulic pump / motor 40, and the pressure oil discharged from the port 40d can be supplied to the oil passage 7.
  • the hydraulic pump motor 40 By switching the switching valve 25 without changing the function of the port 40c as the introduction port, it is possible to cause the hydraulic pump motor 40 to act as a motor or to function as a pump. Furthermore, as the configuration of the hydraulic motor 5, as described with reference to FIG. 1 in the first embodiment, a configuration using a fixed capacity hydraulic motor may be used. In this case, after returning the capacity of the hydraulic pump motor 40 to the maximum capacity, the capacity of the hydraulic motor 5 cannot be reduced to further increase the rotation speed of the output shaft 6. An inexpensive fixed displacement hydraulic motor can be used.
  • the second clutch 16 is disconnected and the hydraulic pump' pump of the motor 40 'motor shaft 4 Ob
  • the connection between the hydraulic motor 5 and the motor shaft 5a can be released.
  • the disconnected first clutch 14 can be connected to connect the pump motor shaft 40 a and the drive shaft 3.
  • the fixed displacement hydraulic pump is used instead of the variable displacement hydraulic pump, as described in Example 1, when the fixed displacement hydraulic pump is used.
  • a pump can also be used.
  • the use of a fixed displacement hydraulic pump as the hydraulic pump 4 can be suitably applied to the configurations of the second to fourth embodiments.
  • each of the hydraulic pump 4, the hydraulic pump motors 10 to 40, the hydraulic motor 5, the first clutch 14, the second clutch 16, and the transmission gear devices 22 and 23 departs from the spirit of the present invention. As long as they are not, they can be combined with each other. Furthermore, although the description has been made using the configuration in which the output shaft 6 is connected to the hydraulic motor 5, the output shaft 6 is connected to the hydraulic motor. A configuration in which the motor shaft is connected to the five motor shafts via a transmission gear device or the like can also be adopted.
  • the second shafts 10b to 40b of the hydraulic pumps and motors 10 to 40 and the output shaft 6 may be connected via a transmission gear device or the like.
  • the present invention has a configuration in which the output shaft 6 and the motor shaft 5a are connected via a transmission gear device or the like, and a configuration in which the pump 'motor shaft and the output shaft are connected via a transmission gear device or the like. It is included. Industrial applicability
  • the present invention can be suitably applied to a hydraulic drive device capable of continuously variable transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

A hydraulic pump connected to a drive source and a hydraulic motor are connected to a closed circuit via oil paths. A hydraulic pump-motor connected to each oil path is connected to the hydraulic pump through a first clutch. The hydraulic pump-motor and the hydraulic motor are connected through a second clutch. At the time of starting the drive source, the capacity of the hydraulic pump is set to zero, the capacity of the hydraulic pump-motor to the maximum, the first clutch to OFF, and the second clutch to ON. The capacity of the hydraulic pump is increased to the maximum to increase the rotation speed of an output shaft connected to the hydraulic motor. After the capacity of the hydraulic pump is at the maximum, the hydraulic pump-motor is caused to perform motor function to reduce the capacity from the maximum to zero and the rotation speed of the output shaft is further increased. After the capacity of the hydraulic pump-motor reaches zero, the first clutch is set to ON and the second clutch is set to OFF. This causes the hydraulic pump-motor to perform pump function to increase the capacity from zero to the maximum, further increasing the rotation speed of the output shaft. A hydraulic drive device that has high efficiency in high speed traveling, that has excellent acceleration characteristics both in low and high speeds, and in which the output shaft can be rotated at a high speed is provided.

Description

油圧駆動装置及び油圧駆動装置における変速方法  Hydraulic drive device and speed change method in hydraulic drive device
技術分野  Technical field
[0001] 本発明は、油圧ポンプと油圧モータとにより閉回路を構成した油圧駆動装置及び 油圧駆動装置における変速方法に関するものである。  The present invention relates to a hydraulic drive device in which a closed circuit is configured by a hydraulic pump and a hydraulic motor, and a speed change method in the hydraulic drive device.
背景技術  Background art
[0002] 従来、例えば車両に用いられる油圧駆動装置としては、エンジンにて駆動される油 圧ポンプと油圧モータとを組み合わせた油圧駆動装置が広く用いられている。また、 油圧ポンプと 2個の油圧モータとを用いた油圧駆動装置としては、図 12に示す油圧 駆動装置 (例えば、特許文献 1参照。)が従来から知られている。  Conventionally, as a hydraulic drive device used in, for example, a vehicle, a hydraulic drive device in which a hydraulic pump driven by an engine and a hydraulic motor are combined is widely used. As a hydraulic drive device using a hydraulic pump and two hydraulic motors, a hydraulic drive device shown in FIG. 12 (see, for example, Patent Document 1) has been conventionally known.
[0003] 従来、油圧ポンプと油圧モータとをそれぞれ 1個用いた油圧駆動装置としては、図 10に示すような構成となっている。図 10に示す油圧駆動装置 leを本発明における 従来例 1として説明する。図 10において、駆動源 42であるエンジン力もの回転出力 は、駆動軸 43を介して可変容量型油圧ポンプ 44に伝達される。可変容量型油圧ポ ンプ 44が回転駆動されると、可変容量型油圧ポンプ 44からの吐出圧油によって、出 力軸 46を備えた可変容量型油圧モータ 45が回転駆動される。  Conventionally, a hydraulic drive apparatus using one hydraulic pump and one hydraulic motor has a configuration as shown in FIG. A hydraulic drive device le shown in FIG. 10 will be described as Conventional Example 1 in the present invention. In FIG. 10, the rotational output of the engine power that is the drive source 42 is transmitted to the variable displacement hydraulic pump 44 via the drive shaft 43. When the variable displacement hydraulic pump 44 is rotationally driven, the variable displacement hydraulic motor 45 including the output shaft 46 is rotationally driven by the discharge hydraulic oil from the variable displacement hydraulic pump 44.
[0004] 可変容量型油圧ポンプ 44と可変容量型油圧モータ 45とは、油路 47、 48を介して 閉回路に構成されている。駆動源 42を始動して、可変容量型油圧ポンプ 44の吐出 容量を増大させると可変容量型油圧モータ 45の回転数は増大する。従って、可変容 量型油圧モータ 45の出力軸からの回転力によって走向する車両は、増速することに なる。  [0004] The variable displacement hydraulic pump 44 and the variable displacement hydraulic motor 45 are configured in a closed circuit via oil passages 47 and 48. When the drive source 42 is started to increase the discharge capacity of the variable displacement hydraulic pump 44, the rotational speed of the variable displacement hydraulic motor 45 increases. Therefore, the vehicle traveling by the rotational force from the output shaft of the variable capacity hydraulic motor 45 is accelerated.
[0005] この状態力 可変容量型油圧モータ 45の容量を減少させると、車両は更に増速す ることができる。可変容量型油圧ポンプ 44の斜板を一側方向に傾転させることにより 、車両を前進走向させることができ、前記可変容量型油圧ポンプ 44の斜板を前記一 側方向とは逆の他側方向に傾転させることにより、車両を後進走向させることができる  [0005] When the capacity of the state force variable displacement hydraulic motor 45 is decreased, the vehicle can be further accelerated. By tilting the swash plate of the variable displacement hydraulic pump 44 in one side direction, the vehicle can be driven forward, and the swash plate of the variable displacement hydraulic pump 44 is moved to the other side opposite to the one side direction. By tilting in the direction, the vehicle can be driven backwards
[0006] 次に、油圧駆動装置 leの変速方法及び作用について図 11を参照して説明する。 図 11にお 、て、横軸は全て可変容量型油圧ポンプ 44及び可変容量型油圧モータ 4 5の容量調整の指令である速度指令値である。グラフ (g)の縦軸は、可変容量型油 圧モータ 45の容量を示し、グラフ(h)の縦軸は可変容量型油圧ポンプ 44の容量示し ている。また、グラフ (j)の縦軸は出力軸 46の回転数を示し、グラフ (k)の縦軸は、可 変容量型油圧ポンプ 44及び可変容量型油圧モータ 45での容積効率 7?、即ち、油 圧駆動装置における動力伝達効率を示している。 Next, a speed change method and operation of the hydraulic drive device le will be described with reference to FIG. In FIG. 11, all the horizontal axes are speed command values that are commands for adjusting the displacement of the variable displacement hydraulic pump 44 and the variable displacement hydraulic motor 45. The vertical axis of the graph (g) indicates the capacity of the variable displacement hydraulic motor 45, and the vertical axis of the graph (h) indicates the capacity of the variable displacement hydraulic pump 44. The vertical axis of graph (j) indicates the rotational speed of output shaft 46, and the vertical axis of graph (k) indicates the volumetric efficiency 7? In variable displacement hydraulic pump 44 and variable displacement hydraulic motor 45, that is, The power transmission efficiency in the hydraulic drive device is shown.
[0007] 図 11におけるグラフ (g)、(h)を中心に説明すると、  [0007] Referring to the graphs (g) and (h) in FIG.
1)駆動源 42の始動時には、可変容量型油圧モータ 45の容量を最大容量 V45max とし、可変容量型油圧ポンプ 44の容量をゼロ容量に調整しておく。  1) When starting the drive source 42, the capacity of the variable displacement hydraulic motor 45 is set to the maximum capacity V45max, and the capacity of the variable displacement hydraulic pump 44 is adjusted to zero capacity.
[0008] 2)車両を増速させるときには、可変容量型油圧ポンプ 44の容量をゼロ容量力 増 大させて最大容量 V44maxとなるように調整する。即ち、可変容量型油圧ポンプ 44の 容量を速度指令値と共に増大させて、速度指令値 Aにお 、て最大容量 V44maXとな るようにする。 2) When accelerating the vehicle, the capacity of the variable displacement hydraulic pump 44 is adjusted so that the maximum capacity V44max is obtained by increasing the capacity of the zero capacity. That is, the capacity of the variable displacement hydraulic pump 44 is increased together with the speed command value so that the speed command value A reaches the maximum capacity V44ma X.
[0009] 3)次に、速度指令値を速度指令値 Aよりも増大させることにより、可変容量型油圧 モータ 45の容量が最大容量 V45max力も低減するように調整する。即ち、可変容量 型油圧モータ 45の容量を速度指令値の増大にともなって、最大容量 V45maxから低 減させ、速度指令値 Bにお 、て所定の最小容量 V45minにする。  [0009] 3) Next, by increasing the speed command value above the speed command value A, the capacity of the variable displacement hydraulic motor 45 is adjusted so as to reduce the maximum capacity V45max force. That is, the capacity of the variable displacement hydraulic motor 45 is decreased from the maximum capacity V45max as the speed command value increases, and the speed command value B is set to a predetermined minimum capacity V45min.
[0010] その結果、グラフ (j)に示すように、出力軸 46の回転数は速度指令値 Aにおいて回 転数がゼロの状態から回転数が N2にまで増速され、速度指令値 Bにおいては最高 回転数 N3になる。また、容積効率 r?は、グラフ (k)で示すように、可変容量型油圧ポ ンプ 44では容量の増大に伴い容積効率は上昇する。そして、最大容量 V44maxにお いて容積効率は最高になることができる。従って、容積効率は速度指令値 Aにおい て r? 2になる。一方、可変容量型油圧モータ 45では容量の低減に伴い容積効率は 低下するため、速度指令値 Bにおいて容積効率は 7? 1となる。  As a result, as shown in the graph (j), the rotation speed of the output shaft 46 is increased from the state where the rotation speed is zero at the speed command value A to the rotation speed N2, and at the speed command value B, Becomes the maximum speed N3. Further, as shown in the graph (k), the volumetric efficiency r? Increases as the capacity increases in the variable displacement hydraulic pump 44. The volumetric efficiency can be maximized at the maximum capacity V44max. Therefore, the volumetric efficiency becomes r? 2 at the speed command value A. On the other hand, since the volumetric efficiency of the variable displacement hydraulic motor 45 decreases as the capacity is reduced, the volumetric efficiency is 7 to 1 at the speed command value B.
[0011] 図 12に示す油圧駆動装置 Ifを本発明における従来例 2として説明する。図 12で は、図示せぬエンジン等の駆動原により回転駆動される可変容量型油圧ポンプ 54 は、油路 57、 58を介してそれぞれ固定容量型油圧モータ 55及び可変容量型油圧 モータ 60との間で閉回路を構成している。 [0012] 固定容量型油圧モータ 55のモータ軸 55aは、歯車装置 62を介して出力軸 56に連 結している。可変容量型油圧モータ 60のモータ軸 60aは、歯車装置 63及びクラッチ 64を介して出力軸 56に連結している。 A hydraulic drive device If shown in FIG. 12 will be described as Conventional Example 2 in the present invention. In FIG. 12, a variable displacement hydraulic pump 54 that is rotationally driven by a drive source such as an engine (not shown) is connected to a fixed displacement hydraulic motor 55 and a variable displacement hydraulic motor 60 via oil passages 57 and 58, respectively. A closed circuit is formed between them. [0012] The motor shaft 55a of the fixed displacement hydraulic motor 55 is connected to the output shaft 56 via a gear device 62. The motor shaft 60 a of the variable displacement hydraulic motor 60 is connected to the output shaft 56 via a gear device 63 and a clutch 64.
[0013] 次に油圧駆動装置 Ifの変速方法及び作用について図 13を参照して説明する。図 13において、横軸は全て速度指令値である。グラフ (m)の縦軸は固定容量型油圧 モータ 55の容量を示し、グラフ(n)の縦軸は可変容量型油圧ポンプ 54の容量を示し 、グラフ (p)の縦軸は可変容量型油圧モータ 60の容量を示している。また、グラフ(q )の縦軸は出力軸 56の回転数を示し、グラフ (r)の縦軸は油圧駆動装置 leにおける 容積効率を示している。  Next, a speed change method and operation of the hydraulic drive device If will be described with reference to FIG. In FIG. 13, the horizontal axis is all speed command values. The vertical axis of the graph (m) indicates the capacity of the fixed displacement hydraulic motor 55, the vertical axis of the graph (n) indicates the capacity of the variable displacement hydraulic pump 54, and the vertical axis of the graph (p) indicates the variable displacement hydraulic pressure. The capacity of the motor 60 is shown. Further, the vertical axis of the graph (q) indicates the rotational speed of the output shaft 56, and the vertical axis of the graph (r) indicates the volumetric efficiency in the hydraulic drive device le.
[0014] 図 13におけるグラフ (m)、(n)、(p)を中心に説明すると、  [0014] Referring to the graphs (m), (n), and (p) in FIG.
1)図示せぬ駆動源の始動時には、固定容量型油圧モータ 55の容量は容量 V55と なっている。また、可変容量型油圧ポンプ 54の容量をゼロ容量とし、可変容量型油 圧モータ 60の容量を最大容量 V60maxに調整しておく。更に、クラッチ 64を係合状 態にしておく。  1) At the start of a drive source (not shown), the capacity of the fixed displacement hydraulic motor 55 is the capacity V55. The capacity of the variable displacement hydraulic pump 54 is set to zero, and the capacity of the variable displacement hydraulic motor 60 is adjusted to the maximum capacity V60max. Further, the clutch 64 is kept in the engaged state.
[0015] 2)車両を増速させるときには、可変容量型油圧ポンプ 54の容量をゼロ容量力も増 大させて最大容量 V54maxとなるように調整する。即ち、可変容量型油圧ポンプ 54 の容量を速度指令値と共に増大させて、速度指令値 Aにお 、て最大容量 V54maxと なるようにする。  [0015] 2) When accelerating the vehicle, the displacement of the variable displacement hydraulic pump 54 is adjusted so that the maximum displacement V54max is obtained by increasing the zero displacement force. That is, the capacity of the variable displacement hydraulic pump 54 is increased together with the speed command value so that the speed command value A reaches the maximum capacity V54max.
[0016] 3)次に、速度指令値を速度指令値 Aよりも増大させることにより、可変容量型油圧 モータ 60の容量が、最大容量 V60max力もゼロ容量に低減するように調整する。即 ち、可変容量型油圧モータ 60の容量を速度指令値の増大にともなって、最大容量 V 60max力も低減させ、速度指令値 Bにおいてゼロ容量にする。可変容量型油圧モー タ 60の容量がゼロ容量になった後、クラッチ 64を開放して、出力軸 56に対する回転 駆動は、固定容量型油圧モータ 55のみによる駆動に切換える。  [0016] 3) Next, by increasing the speed command value over the speed command value A, the capacity of the variable displacement hydraulic motor 60 is adjusted so that the maximum capacity V60max force is also reduced to zero capacity. That is, the capacity of the variable displacement hydraulic motor 60 is reduced to the maximum capacity V 60max force as the speed command value increases, and the speed command value B is set to zero capacity. After the capacity of the variable displacement hydraulic motor 60 reaches zero, the clutch 64 is released and the rotational drive for the output shaft 56 is switched to the drive by the fixed displacement hydraulic motor 55 alone.
[0017] その結果、グラフ(q)で示すように、出力軸 56の回転数は速度指令値 Aにおいて 回転数ゼロの状態から回転数 N1にまで増速され、速度指令値 Bにおいては最高回 転数 N2になる。容積効率 7?としてはグラフ (r)で示すように、速度指令値ゼロから速 度指令値 Aまでの間に容積効率は 7? 2にまで上昇し、速度指令値 Aから速度指令値 Bまでの間において容積効率は 7? 0にまで低下する。しかし、速度指令値 Bにおいて 可変容量型油圧モータ 60はクラッチ 64の開放により出力軸 56から切り離され、出力 軸 56は固定容量型油圧モータ 55のみによる駆動に切換えられる。これによつて、容 積効率は 7? 2にまで上昇することができる。 As a result, as shown in the graph (q), the rotation speed of the output shaft 56 is increased from the zero rotation speed state to the rotation speed N1 at the speed command value A, and the maximum speed is reached at the speed command value B. The number of turns becomes N2. As shown in the graph (r), the volumetric efficiency increases from 7 to 2 between the speed command value zero and the speed command value A. Volume efficiency drops to 7 ~ 0 until B. However, at the speed command value B, the variable displacement hydraulic motor 60 is disconnected from the output shaft 56 by releasing the clutch 64, and the output shaft 56 is switched to drive only by the fixed displacement hydraulic motor 55. As a result, the volumetric efficiency can be increased to 7-2.
特許文献 1:特開平 2— 240442号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-240442
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0018] 従来例 1、 2に記載された油圧駆動装置では、無段変速を行って車速がゼロの状 態力 所定の速度まで増速することができる。しかし、従来例 1で示した油圧駆動装 置では、出力軸 46の回転数を大きくしたとき、即ち、車両が高速走行を行っている時 の容積効率が低くなつてしまう問題があった。また、一般に容量力 S小さくなるにつれて 容積効率が極端に低下するため、無段変速により得られる変速比としては、 3倍程度 の変速比し力得られな力つた。 [0018] In the hydraulic drive devices described in the conventional examples 1 and 2, a continuously variable transmission can be performed to increase the vehicle speed to a predetermined speed. However, the hydraulic drive apparatus shown in the conventional example 1 has a problem that the volumetric efficiency is lowered when the rotational speed of the output shaft 46 is increased, that is, when the vehicle is traveling at high speed. In general, as the capacity force S decreases, the volumetric efficiency decreases drastically. Therefore, the gear ratio obtained by continuously variable transmission is about three times the gear ratio, and the force cannot be obtained.
[0019] 従来例 2に示すような油圧駆動装置では、 1つの油圧ポンプと 2つの油圧モータと を用いているので、無段変速により得られる変速比を多少改善させることができるが、 それでも、 5〜6倍程度の変速比しか得られな力つた。  [0019] In the hydraulic drive device as shown in Conventional Example 2, since one hydraulic pump and two hydraulic motors are used, the gear ratio obtained by continuously variable transmission can be improved somewhat. Only 5-6 times the gear ratio was obtained.
[0020] 更に、大きな変速比を得るためには、メカ-カルミッション装置を更に設けて、油圧 駆動装置とメカ-カルによる 2段階の変速を行わなければならな力つた。しかし、メカ 二カルミッション装置を更に配設するためには、メカ-カルミッション装置を載置する 場積が必要となる。走行車両にぉ 、てメカ-カルミッション装置を載置するための場 積を確保することは難し力つた。  [0020] Further, in order to obtain a large gear ratio, a mechanical transmission device was further provided, and it was necessary to perform two-stage gear shifting by a hydraulic drive device and a mechanical device. However, in order to further arrange the mechanical mission device, a space for mounting the mechanical mission device is required. It has been difficult to secure a space for mounting a mechanical mission device on a traveling vehicle.
[0021] また、メカ-カルミッション装置では、変速比の切換え時に必ず出力トルクをクラッチ によってー且切断しなければならなかった。このため、メカ-カルミッション装置にお ける変速の切換え時には、出力トルクがタイヤに伝達されない、所謂トルク切れ現象 が発生してしまう。例えば、登坂途中でメカ-カルミッション装置の変速比を切換える と、車両が一時的に減速してしまう事態が発生する。また、メカニカルミッション装置で の変速ショックが発生し、乗り心地に悪影響を与えてしまうことになる。  [0021] Further, in the mechanical transmission device, the output torque must be cut off by the clutch without fail when the gear ratio is switched. For this reason, at the time of shifting in the mechanical transmission device, a so-called torque out phenomenon occurs in which the output torque is not transmitted to the tire. For example, if the gear ratio of the mechanical transmission device is switched while climbing up, the vehicle may temporarily decelerate. In addition, a shift shock occurs in the mechanical transmission device, which adversely affects riding comfort.
[0022] 本発明は、上述の問題点に着目してなされたものであって、油圧駆動装置におけ る無段変速の変速比を拡大することができ、車両の高速走行時における容積効率を 高くすることのできる油圧駆動装置及び油圧駆動装置における変速方法を提供する ことにある。 [0022] The present invention has been made paying attention to the above-described problems, and is used in a hydraulic drive device. It is an object of the present invention to provide a hydraulic drive device and a speed change method in the hydraulic drive device that can increase the gear ratio of the continuously variable transmission and increase the volumetric efficiency when the vehicle is traveling at high speed.
課題を解決するための手段  Means for solving the problem
[0023] 上記目的を達成するため、第 1発明では油圧駆動装置において、前記駆動源によ り駆動される油圧ポンプと、前記油圧ポンプと閉回路を構成して接続され、出力軸に 連結した油圧モータと、前記油圧ポンプ及び前記油圧モータと並列に閉回路を構成 して接続された可変容量型油圧ポンプ 'モータと、前記油圧ポンプのポンプ軸と前記 可変容量型油圧ポンプ ·モータのポンプ ·モータ軸とを連結遮断する第 1クラッチと、 前記ポンプ ·モータ軸と前記油圧モータのモータ軸とを連結遮断する第 2クラッチと、 を設けたことを最も主要な特徴となして 、る。  [0023] In order to achieve the above object, in the first aspect of the invention, in the hydraulic drive device, the hydraulic pump driven by the drive source is connected to the hydraulic pump in a closed circuit, and is connected to the output shaft. Hydraulic motor, variable displacement hydraulic pump connected in parallel with the hydraulic pump and the hydraulic motor in a closed circuit 'motor, pump shaft of the hydraulic pump and the variable displacement hydraulic pump · motor pump · The main feature is that a first clutch that connects and disconnects the motor shaft and a second clutch that connects and disconnects the pump motor shaft and the motor shaft of the hydraulic motor are provided.
[0024] 第 2発明では第 1発明と同様の構成である油圧駆動装置において、ポンプ軸とボン プ ·モータ軸との連結部に変速歯車を更に設けたことを最も主要な特徴となしている  [0024] In the second invention, in the hydraulic drive device having the same configuration as that of the first invention, the most main feature is that a transmission gear is further provided at the connecting portion between the pump shaft and the pump / motor shaft.
また、第 3発明では第 1発明と同様の構成である油圧駆動装置において、ポンプ' モータ軸とモータ軸との連結部に変速歯車を更に設けたことを最も主要な特徴となし ている。 In the third aspect of the invention, in the hydraulic drive apparatus having the same configuration as that of the first aspect, the main feature is that a transmission gear is further provided at the connecting portion between the pump motor shaft and the motor shaft.
[0025] 第 4発明では油圧駆動装置において、前記駆動源により駆動される油圧ポンプと、 前記油圧ポンプと閉回路を構成して接続され、出力軸に連結した油圧モータと、前 記閉回路に接続した第 1油路及び第 2油路を介して、前記油圧ポンプ及び前記油圧 モータと並列に閉回路を構成して接続された片傾転 ·可変容量型油圧ポンプ ·モー タと、前記第 1油路及び前記第 2油路における圧油の流れ方向を切換える切換弁と、 前記油圧ポンプのポンプ軸と前記片傾転 ·可変容量型油圧ポンプ ·モータのポンプ · モータ軸とを連結遮断する第 1クラッチと、前記ポンプ'モータ軸と前記油圧モータの モータ軸とを連結遮断する第 2クラッチとを設けたことを最も主要な特徴となしている。  [0025] In the fourth invention, in the hydraulic drive device, a hydraulic pump driven by the drive source, a hydraulic motor connected to the hydraulic pump in a closed circuit and connected to an output shaft, and the closed circuit A single tilting / variable displacement hydraulic pump / motor connected in a closed circuit in parallel with the hydraulic pump and the hydraulic motor via the connected first oil passage and second oil passage, (1) A switching valve for switching the flow direction of pressure oil in the oil passage and the second oil passage, and the pump shaft of the hydraulic pump and the one-side tilt, variable displacement hydraulic pump, motor pump, and motor shaft are connected and disconnected. The most important feature is that a first clutch and a second clutch that connects and disconnects the pump motor shaft and the motor shaft of the hydraulic motor are provided.
[0026] 第 5発明では第 1発明と同様の構成である油圧駆動装置における変速方法におい て、可変容量型油圧ポンプ ·モータの容量がゼロ容量のとき、第 1クラッチを開放し、 かつ第 2クラッチを接続してなることを最も主要な特徴となしている。 発明の効果 [0026] In the fifth invention, in the speed change method in the hydraulic drive apparatus having the same configuration as in the first invention, when the displacement of the variable displacement hydraulic pump motor is zero, the first clutch is released, and the second The main feature is that the clutch is connected. The invention's effect
[0027] 第 1発明、第 5発明によると、可変容量型油圧ポンプ ·モータをモータとして使用し た後に、ポンプとして使用することができる。このため、油圧モータ及び油圧ポンプを 個別に配設する場合に比べて場積も少なくてすみ、しかも油圧モータ又は油圧ボン プの配設数を減らすことができる。  [0027] According to the first and fifth inventions, the variable displacement hydraulic pump motor can be used as a pump after being used as a motor. For this reason, it is possible to reduce the space as compared with the case where the hydraulic motor and the hydraulic pump are individually provided, and the number of the hydraulic motors or hydraulic pumps can be reduced.
[0028] 第 2発明によると、変速歯車の変速比を適宜選定することができ、油圧ポンプ及び 可変容量型油圧ポンプ'モータをそれぞれの最適の回転数状態で使用することが可 能になる。従って、車両の車速全域に亘つて効率を向上させることができる。  [0028] According to the second invention, the gear ratio of the transmission gear can be selected as appropriate, and the hydraulic pump and the variable displacement hydraulic pump 'motor can be used at their respective optimum rotational speeds. Therefore, the efficiency can be improved over the entire vehicle speed of the vehicle.
[0029] また、第 3発明にお 、ても変速歯車の変速比を適宜選定することができるので、油 圧モータ及び可変容量型油圧ポンプ ·モータをそれぞれの最適の回転数状態で使 用することが可能になる。従って、車両の車速全域に亘つて効率を向上させることが できる。  [0029] In the third invention as well, the gear ratio of the transmission gear can be selected as appropriate, so that the hydraulic motor and the variable displacement hydraulic pump motor are used at their optimum rotational speeds. It becomes possible. Therefore, the efficiency can be improved over the entire vehicle speed.
[0030] 第 4発明によると、可変容量型油圧ポンプ ·モータの構成を両傾転型で構成する代 わりに、廉価で構造が簡単な片傾転型を用いることができる。  [0030] According to the fourth aspect of the invention, instead of configuring the variable displacement hydraulic pump / motor as a double-tilt type, it is possible to use a single-tilt type that is inexpensive and has a simple structure.
図面の簡単な説明  Brief Description of Drawings
[0031] [図 1]図 1は、油圧駆動装置の概略構成図である。(実施例 1) FIG. 1 is a schematic configuration diagram of a hydraulic drive device. (Example 1)
[図 2]図 2は、油圧駆動装置の変速方法を説明するためのグラフである。(実施例 1) [図 3]図 3は、油圧駆動装置の変速方法を説明するためのフローチャートである。(実 施例 1)  FIG. 2 is a graph for explaining a speed change method of the hydraulic drive device. (Example 1) [FIG. 3] FIG. 3 is a flowchart for explaining a speed change method of the hydraulic drive device. (Example 1)
[図 4]可変容量型油圧モータを用いた油圧駆動装置の概略構成図である。(実施例 1 )  FIG. 4 is a schematic configuration diagram of a hydraulic drive device using a variable displacement hydraulic motor. (Example 1)
[図 5]図 5は、油圧駆動装置の別の概略構成図である。(実施例 1)  FIG. 5 is another schematic configuration diagram of the hydraulic drive device. (Example 1)
[図 6]図 6は、油圧駆動装置の他の概略構成図である。(実施例 1)  FIG. 6 is another schematic configuration diagram of the hydraulic drive device. (Example 1)
[図 7]図 7は、油圧駆動装置の概略構成図である。(実施例 2)  FIG. 7 is a schematic configuration diagram of a hydraulic drive device. (Example 2)
[図 8]図 8は、油圧駆動装置の概略構成図である。(実施例 3)  FIG. 8 is a schematic configuration diagram of a hydraulic drive device. (Example 3)
[図 9]図 9は、油圧駆動装置の概略構成図である。(実施例 4)  FIG. 9 is a schematic configuration diagram of a hydraulic drive device. (Example 4)
[図 10]図 10は、油圧駆動装置の概略構成図である。(従来例 1)  FIG. 10 is a schematic configuration diagram of a hydraulic drive device. (Conventional example 1)
[図 11]図 11は、油圧駆動装置の変速方法を説明するためのグラフである。(従来例 1 ) FIG. 11 is a graph for explaining a speed change method of the hydraulic drive device. (Conventional example 1 )
[図 12]図 12は、油圧駆動装置の概略構成図である。(従来例 2)  FIG. 12 is a schematic configuration diagram of a hydraulic drive device. (Conventional example 2)
[図 13]図 13は、油圧駆動装置の変速方法を説明するためのグラフである。(従来例 2 FIG. 13 is a graph for explaining a speed change method of the hydraulic drive device. (Conventional example 2
) )
符号の説明  Explanation of symbols
[0032] 1、 la、 lbゝ lc、 ld、 le、 If- ··油圧駆動装置  [0032] 1, la, lb ゝ lc, ld, le, If-… Hydraulic drive
4···油圧ポンプ  4 ... Hydraulic pump
5···油圧モータ  5 ... Hydraulic motor
6···出力軸  6 Output shaft
10、 20、 30、 40· ··可変容量型油圧ポンプ'モータ  10, 20, 30, 40 ... Variable displacement hydraulic pump motor
22、 23··変速歯車装置  22, 23 ... Transmission gearing
25…切換弁  25 ... Switch valve
44· ··可変容量型油圧ポンプ  44 ···· Variable displacement hydraulic pump
45···可変容量型油圧モータ  45 ... Variable displacement hydraulic motor
46···出力軸  46 ··· Output shaft
54· ··可変容量型油圧ポンプ  54 ... Variable displacement hydraulic pump
55···固定用量型油圧モータ  55 .. Fixed dose hydraulic motor
56···出力軸  56 ... Output shaft
60· ··可変容量型油圧モータ  60 ... Variable displacement hydraulic motor
62、 63···歯車装置。  62, 63 ... Gearing.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 本発明の好適な実施の形態について、以下において添付図面に基づいて具体的 に説明する。本願発明の油圧駆動装置及び油圧駆動装置における変速方法の構成 としては、以下では HST装置における油圧駆動装置及びその変速方法を例に挙げ て説明する。しかし、本発明の油圧駆動装置及びその変速方法としては、以下で説 明する形状、配置構成以外にも本願発明の課題を解決することができる形状、配置 構成であれば、それらの形状、配置構成を採用することができるものである。  [0033] Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings. The configuration of the hydraulic drive device and the speed change method in the hydraulic drive device of the present invention will be described below by taking the hydraulic drive device and the speed change method in the HST device as examples. However, as to the hydraulic drive device and the speed change method thereof according to the present invention, in addition to the shapes and arrangements described below, the shapes and arrangements of the shapes and arrangements that can solve the problems of the present invention can be solved. The configuration can be adopted.
[0034] このため、本発明は、以下に説明する実施例に限定されるものではなぐ HST装置 以外の油圧駆動装置及びその変速方法に対しても好適に適用することができる。 以下、本発明に係る油圧駆動装置及びその変速方法の実施形態について図面を 参照して説明する。 Therefore, the present invention is not limited to the embodiments described below. HST device The present invention can also be suitably applied to other hydraulic drive devices and speed change methods thereof. Embodiments of a hydraulic drive device and a speed change method thereof according to the present invention will be described below with reference to the drawings.
実施例 1  Example 1
[0035] 図 1は第 1実施形態に係わる油圧駆動装置 1の概略構成図である。図 1において、 駆動源 (例えばエンジン) 2と油圧ポンプ 4としての斜板式両傾転型の可変容量型油 圧ポンプとは、駆動軸 3によって連結されている。油圧モータ 5としての固定容量型油 圧モータは出力軸 6を備え、図示せぬ走向車両の車輪に対して油圧モータ 5の回転 を伝達することができる。  FIG. 1 is a schematic configuration diagram of a hydraulic drive device 1 according to the first embodiment. In FIG. 1, a drive source (for example, an engine) 2 and a swash plate-type double displacement type variable displacement hydraulic pump as a hydraulic pump 4 are connected by a drive shaft 3. The fixed displacement hydraulic motor as the hydraulic motor 5 includes an output shaft 6 and can transmit the rotation of the hydraulic motor 5 to the wheels of a running vehicle (not shown).
[0036] 油圧ポンプ 4と油圧モータ 5とは、油路 7、 8を介して閉回路に構成されている。油圧 ポンプ'モータ 10としての斜板式両傾転型の可変容量型油圧ポンプ'モータは、第 1 油路 11及び第 2油路 12を介して油路 7、 8間に接続している。油圧ポンプ'モータ 10 のポンプ ·モータ軸である第 1軸 10aは、第 1クラッチ 14を介して油圧ポンプ 4のポン プ軸 4aに連結している。また、油圧ポンプ'モータ 10のポンプ'モータ軸である第 2軸 10bは、第 2クラッチ 16を介して油圧モータ 5のモータ軸 5aに連結している。  The hydraulic pump 4 and the hydraulic motor 5 are configured in a closed circuit via oil passages 7 and 8. The swash plate type bi-directional variable displacement hydraulic pump “motor” as the hydraulic pump “motor 10” is connected between the oil passages 7 and 8 via the first oil passage 11 and the second oil passage 12. The first shaft 10 a which is the pump motor shaft of the hydraulic pump motor 10 is connected to the pump shaft 4 a of the hydraulic pump 4 via the first clutch 14. Further, the second shaft 10 b which is the motor shaft of the hydraulic pump “motor 10” is connected to the motor shaft 5 a of the hydraulic motor 5 via the second clutch 16.
[0037] 尚、本発明では請求の範囲の記載及び明細書の記載にぉ 、て、駆動源からの駆 動力を伝達する軸を駆動軸と呼び、油圧ポンプに接続して油圧ポンプ ·モータに回 転を伝達する軸をポンプ軸と呼んでいる。また、油圧ポンプ'モータに接続してポンプ 軸と連結可能な軸を第 1軸、油圧ポンプ ·モータに接続して油圧モータを介して、ある いは直接に出力軸に回転を伝達する軸を第 2軸と呼んでいる。更に、油圧モータに 接続して第 2軸と連結可能な軸をモータ軸あるいは出力軸と呼んでいる。更にまた、 モータ軸に接続して外部に回転を伝達する軸を出力軸と呼んでいる。  In the present invention, in the description of the claims and the description, the shaft that transmits the driving force from the driving source is referred to as a driving shaft, and is connected to the hydraulic pump to form a hydraulic pump motor. The shaft that transmits rotation is called the pump shaft. The shaft that can be connected to the pump shaft by connecting to the hydraulic pump motor is the first shaft, and the shaft that transmits rotation to the output shaft via the hydraulic motor by connecting to the hydraulic pump motor or directly. This is called the second axis. Furthermore, the shaft that can be connected to the second shaft by connecting to the hydraulic motor is called the motor shaft or output shaft. Furthermore, the shaft that is connected to the motor shaft and transmits the rotation to the outside is called the output shaft.
[0038] このため、駆動軸とポンプ軸とが同一の軸により構成されることもある。また、第 1軸 と第 2軸又はモータ軸と出力軸とが、それぞれ同一の軸により構成されることもある。 従って、モータ軸とポンプ軸とが同一の軸により構成されている構成、第 1軸と第 2軸 とが同一の軸により構成されている構成、及びモータ軸と出力軸とが同一の軸により 構成されている構成も、以下で説明する実施例 1〜実施例 4を含む本発明に包含さ れているものである。 [0039] 次に作動について説明する。図 1において、第 1クラッチ 14を開放し、第 2クラッチ 1 6を係合して、油圧ポンプ ·モータ 10をモータとして作用させる。このとき、油圧ポンプ 4の容量をゼロ容量とし、油圧ポンプ'モータ 10の容量を最大容量としておく。 [0038] For this reason, the drive shaft and the pump shaft may be configured by the same shaft. Further, the first shaft and the second shaft or the motor shaft and the output shaft may be constituted by the same shaft. Therefore, the motor shaft and the pump shaft are configured by the same shaft, the first shaft and the second shaft are configured by the same shaft, and the motor shaft and the output shaft are configured by the same shaft. The configured structure is also included in the present invention including Examples 1 to 4 described below. [0039] Next, the operation will be described. In FIG. 1, the first clutch 14 is released, the second clutch 16 is engaged, and the hydraulic pump / motor 10 is operated as a motor. At this time, the capacity of the hydraulic pump 4 is set to zero capacity, and the capacity of the hydraulic pump motor 10 is set to the maximum capacity.
[0040] 駆動軸 3を介して駆動源 2により油圧ポンプ 4を駆動する。油圧ポンプ 4から吐出し た圧油は、油路 7 (または油路 8)を通って油圧モータ 5及び油圧ポンプ'モータ 10に 流入し、油圧モータ 5及び油圧ポンプ ·モータ 10を駆動する。そして、出力軸 6に対し て動力を出力し、出力軸 6を回転させる。従って、油圧ポンプ 4の吐出量が増大する に従って、出力軸 6の回転数は増大する。油圧モータ 5及び油圧ポンプ'モータ 10か ら排出される圧油は、排出路となった油路 8 (または油路 7)を流れることになる。  The hydraulic pump 4 is driven by the drive source 2 via the drive shaft 3. The pressure oil discharged from the hydraulic pump 4 flows into the hydraulic motor 5 and the hydraulic pump 'motor 10 through the oil passage 7 (or the oil passage 8), and drives the hydraulic motor 5 and the hydraulic pump / motor 10. Then, power is output to the output shaft 6 to rotate the output shaft 6. Therefore, as the discharge amount of the hydraulic pump 4 increases, the rotation speed of the output shaft 6 increases. The pressure oil discharged from the hydraulic motor 5 and the hydraulic pump 'motor 10 flows through the oil passage 8 (or the oil passage 7) serving as a discharge passage.
[0041] 油圧ポンプ 4の容量が最大容量になった後に、今度は油圧ポンプ ·モータ 10の容 量を最大容量からゼロ容量に減少させる。これにより、油圧モータ 5に流入する圧油 の流量が増大し、油圧モータ 5及び油圧ポンプ'モータ 10の回転は更に増大するこ とになる。従って、出力軸 6の回転数は更に増大することになる。  [0041] After the capacity of the hydraulic pump 4 reaches the maximum capacity, the capacity of the hydraulic pump / motor 10 is reduced from the maximum capacity to zero capacity. As a result, the flow rate of the pressure oil flowing into the hydraulic motor 5 is increased, and the rotation of the hydraulic motor 5 and the hydraulic pump motor 10 is further increased. Therefore, the rotational speed of the output shaft 6 further increases.
[0042] 油圧ポンプ'モータ 10の容量がゼロ容量になった後、第 2クラッチ 16を開放して第 1クラッチ 14を係合させる。これにより、今度は、油圧ポンプ'モータ 10は、駆動源 2に よって駆動されるポンプとして作用させることができる。油圧ポンプ ·モータ 10をボン プとして作用させる場合には、油圧ポンプ ·モータ 10の容量をゼロ容量力も最大容量 に増大させることにより、油圧モータ 5に供給される圧油の流量を増大させることがで きる。即ち、油圧ポンプ 4の吐出量に加えて油圧ポンプ ·モータ 10からの吐出量を油 圧モータ 5に供給できる。  [0042] After the capacity of the hydraulic pump 'motor 10 reaches zero capacity, the second clutch 16 is released and the first clutch 14 is engaged. As a result, the hydraulic pump 'motor 10 can now act as a pump driven by the drive source 2. When the hydraulic pump motor 10 is operated as a pump, the flow rate of the hydraulic oil supplied to the hydraulic motor 5 can be increased by increasing the capacity of the hydraulic pump motor 10 to the maximum capacity. it can. That is, in addition to the discharge amount of the hydraulic pump 4, the discharge amount from the hydraulic pump / motor 10 can be supplied to the hydraulic motor 5.
[0043] これによつて、油圧モータ 5の回転数が更に増大し、出力軸 6の回転数を更に増大 させることができる。尚、油圧ポンプ 4における斜板の傾斜方向を上述した説明とは 逆の方向に傾転させた場合には、油圧モータ 5が上述した説明とは逆方向に回転し 車両を後進走向させることができる。  [0043] Thereby, the rotational speed of the hydraulic motor 5 can be further increased, and the rotational speed of the output shaft 6 can be further increased. If the swash plate tilt direction in the hydraulic pump 4 is tilted in the direction opposite to the above description, the hydraulic motor 5 may rotate in the direction opposite to the above description to cause the vehicle to travel backward. it can.
[0044] 次に、油圧駆動装置における変速方法および作用について図 2、図 3を参照して 説明する。図 2において、横軸は全て油圧ポンプ 4、油圧モータ 5及び油圧ポンプ'モ ータ 10の容量調整に対する指令である速度指令値である。グラフ(a)の縦軸は油圧 モータ 5の容量を示し、グラフ(b)の縦軸は油圧ポンプ 4の容量を示し、グラフ(c)の 縦軸は油圧ポンプ.モータ 10の容量を示している。 Next, the speed change method and operation in the hydraulic drive device will be described with reference to FIGS. In FIG. 2, the horizontal axes are speed command values that are commands for capacity adjustment of the hydraulic pump 4, the hydraulic motor 5, and the hydraulic pump motor 10. The vertical axis of the graph (a) indicates the capacity of the hydraulic motor 5, the vertical axis of the graph (b) indicates the capacity of the hydraulic pump 4, and the graph (c) The vertical axis shows the capacity of the hydraulic pump / motor 10.
[0045] グラフ(d)の縦軸は油圧モータ 5とモータとして作用させたときの油圧ポンプ 'モータ 10との合計容量を示している。グラフ(e)の縦軸は出力軸 6の回転数を示し、グラフ( f)の縦軸は油圧駆動装置 1における容積効率 r?を示して 、る。 [0045] The vertical axis of the graph (d) indicates the total capacity of the hydraulic motor 5 and the hydraulic pump 'motor 10 when operated as a motor. The vertical axis of the graph (e) indicates the rotational speed of the output shaft 6, and the vertical axis of the graph (f) indicates the volumetric efficiency r? In the hydraulic drive device 1.
図 3は、油圧駆動装置 1の制御フローを示している。速度指令値としては、速度調 整用の操作レバーにおける操作量、駆動源 2における回転数等を用いることができる  FIG. 3 shows a control flow of the hydraulic drive device 1. As the speed command value, the operation amount of the speed adjustment operation lever, the rotation speed of the drive source 2, etc. can be used.
[0046] 走行車両の車速がゼロの停止状態では、図 1において油圧ポンプ 4はゼロ斜板の 状態、即ち、ゼロ容量となっている。また、油圧ポンプ ·モータ 10の斜板角は最大角 の状態、即ち、最大容量状態になっている。また、油圧ポンプ'モータ 10をモータとし て作用させるため、第 1クラッチ 14は開放した状態にされ、第 2クラッチ 16は係合した 状態にされている。このとき、グラフ(e)で示すように、走向車両への出力軸 6の回転 はゼロ状態となっている。 [0046] In a stop state in which the vehicle speed of the traveling vehicle is zero, the hydraulic pump 4 in FIG. 1 is in a zero swash plate state, that is, zero capacity. Further, the swash plate angle of the hydraulic pump / motor 10 is in the maximum angle state, that is, the maximum capacity state. Further, in order to make the hydraulic pump motor 10 act as a motor, the first clutch 14 is released and the second clutch 16 is engaged. At this time, as shown in the graph (e), the rotation of the output shaft 6 to the traveling vehicle is in a zero state.
[0047] 図 3におけるステップ 1では、図 1に示す油圧ポンプ 1の斜板角度を増大させること により、油圧ポンプ 1の容量をゼロ容量力も最大容量 Vlmaxに増加させる。このとき、 油圧ポンプ 1から油路 7に圧油が吐出されているものとして、以下の説明を行う。油圧 モータ 5は一定容量であり又油圧ポンプ ·モータ 10の斜板角は最大角状態に維持さ れているので、油圧モータ 5及び油圧ポンプ ·モータ 10は、油路 7、油路 11から供給 された圧油によってそれぞれの回転が制御される。  In step 1 in FIG. 3, by increasing the swash plate angle of the hydraulic pump 1 shown in FIG. 1, the capacity of the hydraulic pump 1 is also increased to the maximum capacity Vlmax. At this time, the following description will be made on the assumption that the pressure oil is discharged from the hydraulic pump 1 to the oil passage 7. Since the hydraulic motor 5 has a constant capacity and the swash plate angle of the hydraulic pump motor 10 is maintained at the maximum angle state, the hydraulic motor 5 and the hydraulic pump motor 10 are supplied from the oil path 7 and the oil path 11. Each rotation is controlled by the pressurized oil.
[0048] 油圧モータ 5からの回転出力は、出力軸 6を回転駆動する。同時に、油圧ポンプ- モータ 10からの回転出力は、第 2軸 10b、第 2クラッチ 16を介して油圧モータ 5に連 結された出力軸 6を回転駆動する。従って、出力軸 6は、油圧モータ 5からの回転出 力と油圧ポンプ ·モータ 10からの回転出力との合力によって駆動され、走行起動時 に必要とする高トルクを出力することができる。  The rotation output from the hydraulic motor 5 drives the output shaft 6 to rotate. At the same time, the rotational output from the hydraulic pump-motor 10 rotationally drives the output shaft 6 connected to the hydraulic motor 5 via the second shaft 10b and the second clutch 16. Therefore, the output shaft 6 is driven by the resultant force of the rotational output from the hydraulic motor 5 and the rotational output from the hydraulic pump / motor 10 and can output a high torque required at the time of running start.
[0049] 即ち、車両の起動時や低速走行時には油圧モータ 5による駆動とともに、可変容量 型油圧ポンプ ·モータ 10をモータとして使用した駆動が可能になる。このため、大き なモータ容量が得られ、出力軸 6に出力する駆動力を大きくすることができるので、車 両を高トルクによって加速することができる。 [0050] この状態は、図 2における速度指令値がゼロの状態から Aの状態となる区間として 示すことができる。グラフ (b)で示すように、油圧ポンプ 4の容量は、ゼロ容量から最 大容量 Vlmaxに増加する。また、グラフ(a)、 (c)で示すように、油圧モータ 5及び油 圧ポンプ'モータ 10の容量は、それぞれ容量 V2、最大容量 V3maxとなっている。モ ータとしての合計容量は、グラフ(d)で示すように V2+V3max状態となっている。 That is, when the vehicle is started up or driven at a low speed, the hydraulic motor 5 can be used and the variable displacement hydraulic pump / motor 10 can be used as a motor. For this reason, a large motor capacity can be obtained, and the driving force output to the output shaft 6 can be increased, so that the vehicle can be accelerated with high torque. [0050] This state can be shown as a section in which the speed command value in FIG. As shown in the graph (b), the capacity of the hydraulic pump 4 increases from zero capacity to the maximum capacity Vlmax. Further, as shown in the graphs (a) and (c), the capacities of the hydraulic motor 5 and the hydraulic pump 'motor 10 are the capacity V2 and the maximum capacity V3max, respectively. The total capacity of the motor is in the V2 + V3max state as shown in graph (d).
[0051] またこの区間において、油圧モータ 5及び油圧ポンプ ·モータ 10からの回転出力に よって、出力軸 6の回転数はゼロから N1に上昇する。このときの容積効率としては、 ゼロ状態から r? 2に上昇する。  [0051] In this section, the rotational speed of the output shaft 6 increases from zero to N1 due to the rotational output from the hydraulic motor 5 and the hydraulic pump / motor 10. The volumetric efficiency at this time increases from zero to r? 2.
[0052] 図 3のステップ 2において、油圧ポンプ 4の容量が最大容量 Vlmaxになったか否か の判断を行う。油圧ポンプ 4の容量が最大容量になっていないときには、油圧ポンプ 4の容量を増大させる。油圧ポンプ 4の容量が最大容量 Vlmaxとなったときには、ス テツプ 3に移る。  In step 2 of FIG. 3, it is determined whether or not the capacity of the hydraulic pump 4 has reached the maximum capacity Vlmax. When the capacity of the hydraulic pump 4 is not the maximum capacity, the capacity of the hydraulic pump 4 is increased. When the capacity of the hydraulic pump 4 reaches the maximum capacity Vlmax, go to step 3.
[0053] 図 3のステップ 3では、油圧ポンプ.モータ 10の斜板角度を最大角力もゼロ角に制 御する。このとき、油圧ポンプ 4から油路 7に吐出している圧油の流量は一定流量とな つているが、油圧ポンプ ·モータ 10の容量を最大容量 V3maxからゼロ容量に減少制 御する。これにより、油圧モータ 5に供給される流量が増大し、油圧モータ 5の回転を 更に増速させて出力軸 6の回転を増速することができる。  In step 3 of FIG. 3, the swash plate angle of the hydraulic pump / motor 10 is controlled so that the maximum angular force is also zero. At this time, the flow rate of the pressure oil discharged from the hydraulic pump 4 to the oil passage 7 is constant, but the capacity of the hydraulic pump / motor 10 is controlled to be reduced from the maximum capacity V3max to zero capacity. As a result, the flow rate supplied to the hydraulic motor 5 increases, and the rotation of the output shaft 6 can be increased by further increasing the rotation of the hydraulic motor 5.
[0054] 従って、走行車両の車速は更に増大する。この状態を、図 2における速度指令値が Aの状態力も Bの状態となる区間として示すことができる。グラフ(c)で示すように、油 圧ポンプ'モータ 10の容量は、最大容量 V3maxからゼロ容量に減少することになる。 また、グラフ(a)、 (b)で示すように、油圧モータ 5の容量は一定容量であり、また油圧 ポンプ 4の容量は最大容量状態を維持して 、る。  Therefore, the vehicle speed of the traveling vehicle further increases. This state can be shown as a section in FIG. 2 where the speed command value of the state force A is in the state B. As shown in the graph (c), the capacity of the hydraulic pump 'motor 10 is reduced from the maximum capacity V3max to zero capacity. Further, as shown in the graphs (a) and (b), the capacity of the hydraulic motor 5 is a constant capacity, and the capacity of the hydraulic pump 4 is maintained at the maximum capacity state.
[0055] グラフ(d)で示すように、モータとしての合計容量は V2+V3maxの状態力 V2の状 態に減少する。また、グラフ(e)で示すように、出力軸 6の回転数は N2まで増大し、 走行車両の車速は更に増速することになる。また、グラフ (f)で示すように、容積効率 は、 r? 2の状態から 7? 0の状態に減少する。  [0055] As shown in the graph (d), the total capacity of the motor decreases to the state of the state force V2 of V2 + V3max. Further, as shown in the graph (e), the rotational speed of the output shaft 6 increases to N2, and the vehicle speed of the traveling vehicle further increases. Also, as shown in the graph (f), the volumetric efficiency decreases from the r? 2 state to the 7? 0 state.
[0056] 図 3のステップ 4では、油圧ポンプ.モータ 10の容量がゼロ容量になったか否かの 判断を行う。油圧ポンプ'モータ 10の容量がゼロ容量になっていないときには、油圧 ポンプ ·モータ 10の容量を減少させる。油圧ポンプ ·モータ 10の容量がゼロ容量とな つたときには、ステップ 5に移る。 In step 4 of FIG. 3, it is determined whether or not the capacity of the hydraulic pump / motor 10 has reached zero capacity. When the capacity of the hydraulic pump 'motor 10 is not zero, Reduce pump 10 motor capacity. When the capacity of the hydraulic pump motor 10 reaches zero, go to step 5.
[0057] 図 3のステップ 5では、第 2クラッチ 16を切り離して、かつ第 1クラッチ 14を接続する 。即ち、第 1クラッチ 14を介して油圧ポンプ'モータ 10の第 1軸 10aと駆動軸 3とを接 続する。このとき、油圧ポンプ ·モータ 10ではクラッチの切換えが行われる力 油圧ポ ンプ.モータ 10の容量はゼロ容量の状態となっている。このため、油圧ポンプ'モータIn Step 5 of FIG. 3, the second clutch 16 is disconnected and the first clutch 14 is connected. That is, the first shaft 10 a of the hydraulic pump motor 10 and the drive shaft 3 are connected via the first clutch 14. At this time, the capacity of the hydraulic pump / motor 10 is zero. For this reason, the hydraulic pump 'motor
10からは出力トルクが出力されず、クラッチの切換えに伴う切換えショックの発生は 起きない。 No output torque is output from 10, and no switching shock occurs due to clutch switching.
また、出力軸 6に対して油圧モータ 5は、油圧モータ 5からの回転出力を伝達してい るので、出力軸 6に対してのトルク切れを発生させることがない。  Further, since the hydraulic motor 5 transmits the rotational output from the hydraulic motor 5 to the output shaft 6, the torque is not lost to the output shaft 6.
[0058] 図 3のステップ 6では、油圧ポンプ ·モータ 10をポンプとして機能させる。油圧ポンプ •モータ 10の容量をゼロ容量力も最大容量 V3maxに増大させる。このとき、油圧ポン プ 4から油路 7に吐出している圧油の流量は一定流量となっている。しかし、油圧ボン プ ·モータ 10の斜板角度を制御してゼロ容量力 最大容量 V3maxに増大させること で、油圧モータ 5には油圧ポンプ ·モータ 10からの吐出圧油も供給することができ、 油圧モータ 5に供給する圧油の流量を増大させることができる。  In Step 6 of FIG. 3, the hydraulic pump / motor 10 is caused to function as a pump. Hydraulic pump • Increase the capacity of motor 10 to the maximum capacity V3max with zero capacity. At this time, the flow rate of the pressure oil discharged from the hydraulic pump 4 to the oil passage 7 is constant. However, by controlling the swash plate angle of the hydraulic pump and motor 10 to increase the zero capacity force to the maximum capacity V3max, the hydraulic motor 5 can also be supplied with the hydraulic oil discharged from the hydraulic pump and motor 10, The flow rate of the pressure oil supplied to the hydraulic motor 5 can be increased.
[0059] これにより、油圧ポンプ 4とともに、油圧ポンプ ·モータ 10を今度はポンプとして使用 できるので、大きなポンプ容量を得ることができる。従って、油圧モータ 5に供給する 圧油の流量を増大させることになり、油圧モータ 5を更に高速で回転させることができ る。このように、従来のようにゼロ容量となった可変容量型油圧モータを切り捨てること なぐ油圧ポンプとして再利用している。このため、車両の走向速度を更に速い速度 に上げることができる。  [0059] As a result, the hydraulic pump / motor 10 can be used as a pump together with the hydraulic pump 4, so that a large pump capacity can be obtained. Accordingly, the flow rate of the pressure oil supplied to the hydraulic motor 5 is increased, and the hydraulic motor 5 can be rotated at a higher speed. In this way, the variable displacement hydraulic motor, which has reached zero capacity as in the past, is reused as a hydraulic pump without being discarded. This makes it possible to increase the vehicle traveling speed to a higher speed.
[0060] し力も、車両の高速走行時においては、油圧ポンプ 4及び油圧ポンプ ·モータ 10は それぞれ最大容量の状態で油圧モータ 5を駆動することになるので、高い容量効率 を得ることができる。また、油圧ポンプ'モータ 10をモータとしての作用からポンプとし ての作用に切り換えるときには、油圧ポンプ ·モータ 10の容量をゼロ容量状態で行う ので、切り換えに伴う切換えショックが発生しない。  [0060] When the vehicle is traveling at a high speed, the hydraulic pump 4 and the hydraulic pump / motor 10 drive the hydraulic motor 5 in the maximum capacity state, so that high capacity efficiency can be obtained. Further, when the hydraulic pump motor 10 is switched from the motor operation to the pump operation, the displacement of the hydraulic pump / motor 10 is performed in the zero capacity state, so that the switching shock accompanying the switching does not occur.
[0061] 更に、第 1クラッチ 14、第 2クラッチ 16の切換える時にぉ 、て、油圧モータ 5からの 回転出力を出力軸 6に伝達しておくことができる。これによつて、クラッチの切換え時 において、トルク切れを発生させることがない。 [0061] Further, when the first clutch 14 and the second clutch 16 are switched, the hydraulic motor 5 The rotation output can be transmitted to the output shaft 6 in advance. As a result, torque is not cut off when the clutch is switched.
このため、坂道の登坂途中においてクラッチの切換えを行ってもトルク切れを起こ すことがない。し力も、クラッチの切換えは油圧ポンプ'モータ 10の容量がゼロ容量の ときに行うので、切換えショックが発生することがない。  For this reason, the torque does not run out even when the clutch is switched during the climbing of the slope. Also, since the clutch is switched when the capacity of the hydraulic pump motor 10 is zero, no switching shock occurs.
[0062] 図 3のステップ 6の状態は、図 2における速度指令値が Bの状態力 Cの状態となる 区間で示すことができる。この区間におけるグラフ(a)、(b)で示すように、油圧モータ 5及び油圧ポンプ 4における容量は、それぞれ容量 V2、最大容量 Vlmaxに維持され ることになる。グラフ(c)で示すように、油圧ポンプ'モータ 10の容量はゼロ容量から 最大容量 V3maxに増大する。グラフ(d)で示すように、モータとしての容量は、油圧 モータ 5だけの最大容量 V2に維持されている。  [0062] The state of step 6 in FIG. 3 can be indicated by a section in which the speed command value in FIG. As shown in graphs (a) and (b) in this section, the capacities of the hydraulic motor 5 and the hydraulic pump 4 are maintained at the capacity V2 and the maximum capacity Vlmax, respectively. As shown in the graph (c), the capacity of the hydraulic pump motor 10 increases from zero capacity to the maximum capacity V3max. As shown in the graph (d), the capacity of the motor is maintained at the maximum capacity V2 of the hydraulic motor 5 alone.
[0063] また、グラフ(e)で示すように、出力軸 6の回転数は N2から N3にまで増大し、走行 車両の車速は更に増速することになる。また、グラフ (f)で示すように、容積効率は、 η 0の状態から 7? 2の状態に復帰する。図 3のステップ 6の状態から、油圧ポンプ'モ ータ 10の容量が最大容量 V3maxに復帰しときには、制御フローを終了する。  [0063] Further, as shown in the graph (e), the rotational speed of the output shaft 6 increases from N2 to N3, and the vehicle speed of the traveling vehicle further increases. As shown in graph (f), the volumetric efficiency returns from the state of η 0 to the state of 7-2. When the capacity of the hydraulic pump motor 10 returns to the maximum capacity V3max from the state of step 6 in FIG. 3, the control flow ends.
[0064] これによつて、グラフ(d)に示すように、モータ容量としては、始動時から速度指令 値 Aまでの間では、油圧モータ 5と油圧ポンプ.モータ 10とにおけるモータ容量の合 計値である V2+V3maxとなる。速度指令値 Aから速度指令値 Bまでの間では、油圧 モータ 5のみの容量である V2になって、その後 V2の容量状態が維持される。  Accordingly, as shown in the graph (d), the motor capacity is the sum of the motor capacities in the hydraulic motor 5 and the hydraulic pump / motor 10 between the start time and the speed command value A. The value is V2 + V3max. Between the speed command value A and the speed command value B, the capacity of the hydraulic motor 5 alone is V2, and then the capacity state of V2 is maintained.
[0065] グラフ(e)に示すように、出力軸 6の回転数は、油圧ポンプ 4の容量増大により速度 指令値 Aにおいて N1にまで増速され、速度指令値 Bでは油圧ポンプ'モータ 10のモ ータ容量減少によって N2にまで増速される。更に、速度指令値 Cでは、ポンプ機能 を行わせた油圧ポンプ'モータ 10におけるポンプ容量が増大するのに伴って、 N3に まで増速することができ最高回転数に達することができる。  [0065] As shown in the graph (e), the rotational speed of the output shaft 6 is increased to N1 at the speed command value A by increasing the capacity of the hydraulic pump 4, and at the speed command value B, the speed of the hydraulic pump motor 10 is increased. Increased to N2 due to motor capacity reduction. Furthermore, with the speed command value C, the speed can be increased to N3 as the pump capacity of the hydraulic pump motor 10 that has performed the pump function increases, and the maximum rotational speed can be reached.
[0066] 始動時力 低速時にかけては、モータ容量を大きく構成しておくことができるので、 高トルクを出力軸 6に出力することができる。また、高速時には、出力軸 6の回転数を 最高回転数にまで増速させることができるので、走向車両を高速状態で走向させるこ とがでさる。 [0067] グラフ (f)で示すように、速度指令値 Aにお 、て、容積効率は油圧ポンプ 4の容量 増大に伴い、最大の容積効率状態である r? 2にすることができる。速度指令値 Bにお いては、油圧ポンプ'モータ 10におけるモータ容量の減少によって、ー且 7? 0にまで 減少する力 速度指令値 Cにおいては油圧ポンプ'モータ 10におけるポンプ容量の 増大に伴って、再び 7? 2にまで回復することができる。即ち、高速走行時においても 高 、容積効率を得ることができる。 [0066] Power at start-up Since the motor capacity can be increased at low speeds, high torque can be output to the output shaft 6. In addition, at high speeds, the speed of the output shaft 6 can be increased to the maximum speed, which makes it possible to drive the traveling vehicle at a high speed. [0067] As shown in the graph (f), in the speed command value A, the volumetric efficiency can be set to r? 2, which is the maximum volumetric efficiency state, as the capacity of the hydraulic pump 4 increases. At the speed command value B, the force decreases by a decrease in the motor capacity of the hydraulic pump 'motor 10 and decreases to 7? 0. At the speed command value C, the pump capacity of the hydraulic pump' motor 10 increases Again, it can recover to 7-2. That is, high volumetric efficiency can be obtained even during high-speed traveling.
[0068] 高速走行から減速制御を行う場合には、上述した油圧ポンプ 4における容量の制 御方法、油圧ポンプ'モータ 10における容量の制御方法、及び第 1クラッチ 14と第 2 クラッチ 16との係合、開放の方法を、それぞれ上述した加速時における方法の順序 とは反対の順序で作用させることにより行うことができる。このため、ここでは減速を行 う場合についての説明は省略する。  [0068] When deceleration control is performed from high speed running, the displacement control method in the hydraulic pump 4, the displacement control method in the hydraulic pump motor 10, and the relationship between the first clutch 14 and the second clutch 16 are described. In this case, the opening methods can be performed by operating them in the order opposite to the order of the methods at the time of acceleration described above. For this reason, the description of the case of deceleration is omitted here.
[0069] 図 1を用いて、油圧モータ 5として固定容量型のモータを用いた構成について説明 を行ったが、図 4に示すように油圧モータ 5としては、固定容量型の油圧モータの代 わりに可変容量型の油圧モータを用いた構成とすることもできる。この場合には、図 2 及び図 3で示した制御パターン及び制御フロー以降の制御を更に続けて行うことが できる。  [0069] The configuration using a fixed capacity type motor as the hydraulic motor 5 has been described with reference to FIG. 1. However, as shown in FIG. 4, the hydraulic motor 5 can be replaced with a fixed capacity type hydraulic motor. A configuration using a variable displacement hydraulic motor can also be adopted. In this case, control after the control pattern and control flow shown in FIGS. 2 and 3 can be further continued.
[0070] 即ち、図 4に示すように最大容量 V2である可変容量型の油圧モータ 5を用いた場 合には、ポンプとして作用させた油圧ポンプ ·モータ 10の容量を最大容量 V3maxに 増大させた後に、油圧モータ 5の容量を最大容量 V2状態から、例えばハーフ容量等 にまで減少させる制御を行わせることができる。これにより、走行車両の車速を更に 増大させることができる。  That is, when the variable displacement hydraulic motor 5 having the maximum capacity V2 as shown in FIG. 4 is used, the capacity of the hydraulic pump / motor 10 acting as a pump is increased to the maximum capacity V3max. Thereafter, it is possible to perform control to reduce the capacity of the hydraulic motor 5 from the maximum capacity V2 state to, for example, a half capacity. Thereby, the vehicle speed of the traveling vehicle can be further increased.
[0071] また、図 1及び図 4を用いて、出力軸が油圧モータ 5に直結した構成について説明 を行ったが、図 5に示すように出力軸 6と油圧モータ 5のモータ軸 5aとの間に変速歯 車装置 24を配設した構成とすることもできる。このとき、出力軸 6の回転方向としては 、図 1、図 4における出力軸 6の回転方向とは逆向きの回転方向となっている。  Further, the configuration in which the output shaft is directly connected to the hydraulic motor 5 has been described with reference to FIGS. 1 and 4. As shown in FIG. 5, the output shaft 6 and the motor shaft 5a of the hydraulic motor 5 are It is also possible to adopt a configuration in which a transmission gear device 24 is disposed between them. At this time, the rotation direction of the output shaft 6 is opposite to the rotation direction of the output shaft 6 in FIGS.
[0072] 図 5における出力軸 6の回転方向を、図 1、図 4における出力軸 6の回転方向と同じ 回転方向とするときには、変速歯車装置 24の構成としてモータ軸 5aに取り付けた歯 車と出力軸 6に取り付けた歯車との間に更に中間歯車を介在させた構成とすることが できる。変速歯車装置 24における変速比としては、変速比 1の状態を含む適宜の変 速比に設定することができる。 [0072] When the rotation direction of the output shaft 6 in FIG. 5 is the same rotation direction as the rotation direction of the output shaft 6 in FIGS. 1 and 4, a gear mounted on the motor shaft 5a An intermediate gear may be interposed between the gear attached to the output shaft 6 and it can. The gear ratio in the transmission gear unit 24 can be set to an appropriate gear ratio including the state of the gear ratio 1.
[0073] 変速歯車装置 24の変速比として減速比を設定した場合には、モータ軸 5aの回転 を減速回転させて出力軸 6に伝達することができ、出力軸 6に対して高トルクを伝達 することができる。即ち、車両の起動時力 低速走向時において必要とする高トルク を出力軸 6に対して十分に供給することができる。 [0073] When the reduction gear ratio is set as the transmission gear ratio of the transmission gear unit 24, the rotation of the motor shaft 5a can be decelerated and transmitted to the output shaft 6, and high torque is transmitted to the output shaft 6. can do. That is, it is possible to sufficiently supply the output shaft 6 with the high torque required when the vehicle is driven at low speed.
[0074] 変速歯車装置 24の変速比として増速比を設定した場合には、モータ軸 5aの回転 を増速回転させて出力軸 6に伝達することができ、出力軸 6の回転数を高めて車両を 高速走行させることができる。 [0074] When the speed increasing ratio is set as the speed ratio of the transmission gear unit 24, the rotation of the motor shaft 5a can be rotated at an increased speed and transmitted to the output shaft 6, and the rotational speed of the output shaft 6 can be increased. The vehicle can be driven at high speed.
[0075] 上記実施例 1の説明にお 、て、斜板式の可変容量型油圧ポンプ 4、斜板式の可変 容量型油圧ポンプ ·モータ 10を用いた例を用いて説明を行ったが、斜板式でなくて も同じような容量可変機構を備えた装置においても、本発明を適宜選択して実施す ることがでさる。 In the description of the first embodiment, the swash plate type variable displacement hydraulic pump 4 and the swash plate type variable displacement hydraulic pump motor 10 are used. The present invention can be appropriately selected and implemented even in an apparatus having a similar capacity variable mechanism.
[0076] また、駆動源 2として電動モータ等のような可変速可能なモータを用いた場合には 、あるいは図 6に示すように定回転型の駆動源 2を用いた場合にぉ 、ては駆動軸 3に クラッチ 17を配設した構成とすることによって、油圧ポンプ 4として可変容量型油圧ポ ンプを用いる代りに固定容量型油圧ポンプ 4'を用いた構成とすることができる。  [0076] Further, when a motor capable of variable speed such as an electric motor is used as the drive source 2, or when a constant rotation type drive source 2 is used as shown in FIG. By adopting a configuration in which the clutch 17 is disposed on the drive shaft 3, a configuration using a fixed displacement hydraulic pump 4 ′ instead of a variable displacement hydraulic pump as the hydraulic pump 4 can be achieved.
[0077] 即ち、駆動源 2として可変速可能なモータを用いた場合には、駆動源 2からの出力 回転数を可変に制御することによって、固定容量型油圧ポンプの回転数を連続的に 増速あるいは減速制御することができる。これにより、固定容量型油圧ポンプとした油 圧ポンプからの吐出量を連続的に増量あるいは減量させることができる。  That is, when a motor capable of variable speed is used as the drive source 2, the rotation speed of the fixed displacement hydraulic pump is continuously increased by variably controlling the output rotation speed from the drive source 2. Speed or deceleration can be controlled. This makes it possible to continuously increase or decrease the discharge amount from the hydraulic pump that is a fixed displacement hydraulic pump.
[0078] また、図 6のように駆動源 2として定回転型の駆動源 2を用いて、駆動軸 3にクラッチ 17を配設した場合には、クラッチ 17の断接を行うことにより、固定容量型油圧ポンプ 4 'の回転数を連続的に増速ある!/、は減速制御することができる。  Further, when the constant rotation type drive source 2 is used as the drive source 2 as shown in FIG. 6 and the clutch 17 is disposed on the drive shaft 3, the clutch 17 is connected and disconnected to be fixed. The speed of the capacity type hydraulic pump 4 'is continuously increased! /, Can be controlled to decelerate.
[0079] 従って、上述した場合においても、固定容量型油圧ポンプ力もの吐出量を、連続的 に増量あるいは減量させることができる。即ち、固定容量型油圧ポンプとした油圧ポ ンプから吐出する吐出容量を、ゼロの吐出状態と最大の吐出状態との間で連続的に 帘 U御することができる。 [0080] また、クラッチ 17、第 1クラッチ 14がそれぞれ係合し、第 2クラッチ 16が切断した状 態で車両が最高速度に到達した後、第 2クラッチ 16を係合させることによって、駆動 軸 3と出力軸 6とを直結することができる。これにより、駆動源 2と出力軸 6とがダイレク トに繋がることになり、更に高い動力伝達効率を得ることができる。 Therefore, even in the case described above, the discharge amount of the fixed displacement hydraulic pump force can be continuously increased or decreased. That is, the discharge capacity discharged from the hydraulic pump as the fixed displacement hydraulic pump can be continuously controlled between the zero discharge state and the maximum discharge state. [0080] Further, after the vehicle has reached the maximum speed with the clutch 17 and the first clutch 14 engaged and the second clutch 16 disengaged, the second clutch 16 is engaged so that the drive shaft 3 and the output shaft 6 can be directly connected. As a result, the drive source 2 and the output shaft 6 are connected to each other, and higher power transmission efficiency can be obtained.
尚、駆動軸 3と出力軸 6とを直結するときには、油圧ポンプ 4及び油圧ポンプ 'モー タ 10のそれぞれの斜板角を略ゼロにしてトルクが発生しない状態にするとともに、油 圧モータ 5における両ポートを連通させておくことが必要である。  When the drive shaft 3 and the output shaft 6 are directly connected, the swash plate angles of the hydraulic pump 4 and the hydraulic pump 'motor 10 are set to substantially zero so that no torque is generated, and the hydraulic motor 5 It is necessary to keep both ports in communication.
[0081] また、以下で説明する実施例 2、実施例 3のように変速歯車装置 22、 23を介在させ たときには、図 2の(d)モータ容量としては、モータの等価容量を用いて表すことがで きる。等価容量は、油圧ポンプ又は油圧ポンプ ·モータの容量にそれぞれの変速歯 車装置における変速比を掛けた値として求めることができる。  Further, when the transmission gear devices 22 and 23 are interposed as in the second and third embodiments described below, (d) the motor capacity in FIG. 2 is expressed using the equivalent capacity of the motor. be able to. The equivalent capacity can be obtained by multiplying the capacity of the hydraulic pump or hydraulic pump / motor by the gear ratio of the respective transmission gear unit.
実施例 2  Example 2
[0082] 次に、図 7を用いて本発明の第 2実施形態に係わる油圧駆動装置 lbについて説明 を行う。実施例 2における油圧駆動装置 lbとしては、油圧ポンプ 4としての可変容量 型油圧ポンプと油圧ポンプ ·モータ 20としての可変容量型油圧ポンプ ·モータとの間 に変速歯車装置 22を介在させた配置構成となっている。また、また、実施例 1の図 1 では油圧モータ 5として固定容量型油圧モータを用いた構成となっている力 実施例 2では実施例 1の図 4に示したように可変容量型油圧モータを用いた構成となって!/ヽ る。他の構成としては、第 1実施例における油圧駆動装置 1と同様の構成となってい る。  Next, a hydraulic drive device lb according to the second embodiment of the present invention will be described with reference to FIG. The hydraulic drive unit lb according to the second embodiment includes a variable displacement hydraulic pump as the hydraulic pump 4 and a variable displacement hydraulic pump as the motor 20. It has become. Further, in FIG. 1 of the first embodiment, a force that uses a fixed displacement hydraulic motor as the hydraulic motor 5 In the second embodiment, a variable displacement hydraulic motor is used as shown in FIG. 4 of the first embodiment. It becomes the configuration used! The other configuration is the same as that of the hydraulic drive device 1 in the first embodiment.
[0083] このため、実施例 1における構成と同じ構成部材については、同一の部材符号を付 してその説明は省略することにする。尚、実施例 2における油圧ポンプ ·モータ 20とし ては、実施例 1における油圧ポンプ'モータ 10と同様の構成となっている力 実施例 1と実施例 2とを区別する意味合いから、実施例 2では、油圧ポンプ'モータ 20の符 号を用いている。また、油圧ポンプ'モータ 20に連結したポンプ'モータ軸である第 1 軸及び第 2軸としては、第 1軸 20a及び第 2軸 20bの符号を用いて ヽる。  [0083] For this reason, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The hydraulic pump / motor 20 in the second embodiment has a force similar to that of the hydraulic pump / motor 10 in the first embodiment. From the meaning of distinguishing the first embodiment from the second embodiment, the second embodiment will be described. Uses the symbol of the hydraulic pump motor 20. Further, the first shaft and the second shaft, which are the pump's motor shafts connected to the hydraulic pump'motor 20, are referred to by using the symbols of the first shaft 20a and the second shaft 20b.
[0084] 以下の説明では、実施例 1における構成とは異なる部分を中心として、説明を行つ ていく。 図 7において、油圧ポンプ 4のポンプ軸 4aと油圧ポンプ ·モータ 20の第 1軸 20aとの 間には、変速歯車装置 22が配設されている。変速歯車装置 22は、ポンプ軸 4aの回 転を増速して第 1軸 20aに伝達する構成とすることも、ポンプ軸 4aの回転を減速して 第 1軸 20aに伝達する構成とすることもできる。ここでは、ポンプ軸 4aの回転を減速し て第 1軸 20aに伝達する構成を示して 、る。 [0084] In the following description, the description will be focused on parts different from the configuration in the first embodiment. In FIG. 7, a transmission gear device 22 is disposed between the pump shaft 4 a of the hydraulic pump 4 and the first shaft 20 a of the hydraulic pump / motor 20. The transmission gear unit 22 may be configured to increase the rotation of the pump shaft 4a and transmit it to the first shaft 20a, or to reduce the rotation of the pump shaft 4a and transmit it to the first shaft 20a. You can also. Here, a configuration in which the rotation of the pump shaft 4a is decelerated and transmitted to the first shaft 20a is shown.
[0085] 図 7に示す油圧駆動装置 laにおいても、実施例 1で説明した油圧駆動装置 1と同 様に作動させることができる。即ち、第 1クラッチ 14を切断し、第 2クラッチ 16を接続し た状態で、油圧ポンプ ·モータ 20及び油圧モータ 5の容量を最大容量状態にする。 この状態力 油圧ポンプ 4の容量をゼロ容量力 最大容量に増大させることで、出力 軸 6の回転を回転停止状態力 増速回転させることができる。  [0085] The hydraulic drive device la shown in FIG. 7 can be operated in the same manner as the hydraulic drive device 1 described in the first embodiment. That is, with the first clutch 14 disconnected and the second clutch 16 connected, the capacities of the hydraulic pump motor 20 and the hydraulic motor 5 are brought to the maximum capacity state. By increasing the capacity of the state force hydraulic pump 4 to the maximum capacity of zero capacity force, the rotation of the output shaft 6 can be rotated at an increased speed.
[0086] 油圧ポンプ 4の容量が最大容量になった後、第 1クラッチ 14及び第 2クラッチ 16の 断接状態を維持したまま油圧ポンプ'モータ 20の容量を最大容量力 ゼロ容量に減 少させる。油圧ポンプ'モータ 20の容量を減少させることにより、油圧モータ 5に供給 する圧油の流量を増大することができる。これにより、出力軸 6は更に増速回転するこ とになる。  [0086] After the capacity of the hydraulic pump 4 reaches the maximum capacity, the capacity of the hydraulic pump motor 20 is reduced to the maximum capacity force zero capacity while maintaining the connected state of the first clutch 14 and the second clutch 16. . By reducing the capacity of the hydraulic pump / motor 20, the flow rate of the pressure oil supplied to the hydraulic motor 5 can be increased. As a result, the output shaft 6 further rotates at a higher speed.
[0087] 油圧ポンプ ·モータ 20の容量がゼロ容量になると、第 2クラッチ 16の接続状態を切 断して、切断状態にあった第 1クラッチ 14を接続する。これにより、駆動軸 3からの回 転を、変速歯車装置 22、第 1軸 20aを介して油圧ポンプ'モータ 20に伝達することが できる。  [0087] When the capacity of the hydraulic pump / motor 20 reaches zero, the connection state of the second clutch 16 is disconnected, and the first clutch 14 in the disconnected state is connected. Thereby, the rotation from the drive shaft 3 can be transmitted to the hydraulic pump motor 20 through the transmission gear device 22 and the first shaft 20a.
[0088] 油圧ポンプ 4における定格の回転数と油圧ポンプ ·モータ 20における定格の回転 数とが異なった構成であったとしても、変速歯車装置 22の減速比を調整することによ つて定格回転数の違 、を吸収できる。  [0088] Even if the rated rotational speed of the hydraulic pump 4 and the rated rotational speed of the hydraulic pump motor 20 are different, the rated rotational speed can be adjusted by adjusting the reduction ratio of the transmission gear unit 22. The difference can be absorbed.
[0089] 変速歯車装置 22による切換えは、油圧ポンプ'モータ 20の容量がゼロ容量の状態 で行うことができる。このため、変速歯車装置 22による切換えに伴う変速ショックの発 生が防止できる。即ち、変速ショックの無い状態での切換をスムーズに行うことができ る。  Switching by the transmission gear device 22 can be performed in a state where the capacity of the hydraulic pump motor 20 is zero. For this reason, it is possible to prevent the occurrence of a shift shock associated with the switching by the transmission gear device 22. That is, the switching can be performed smoothly without a shift shock.
[0090] 駆動軸 3との接続を行った油圧ポンプ'モータ 20は、油圧ポンプとして作用すること になる。油圧ポンプ ·モータ 20の容量をゼロ容量力も最大容量に増大させることによ り、油圧ポンプ 4からの吐出量に油圧ポンプ ·モータ 20からの吐出量を加えて、油圧 モータ 5に供給される。これにより、油圧モータ 5は更に増速回転して、出力軸 6は更 に増速回転することになる。 [0090] The hydraulic pump motor 20 connected to the drive shaft 3 acts as a hydraulic pump. By increasing the capacity of the hydraulic pump motor 20 to zero capacity as well as zero capacity Thus, the discharge amount from the hydraulic pump / motor 20 is added to the discharge amount from the hydraulic pump 4 and supplied to the hydraulic motor 5. As a result, the hydraulic motor 5 further rotates at a higher speed, and the output shaft 6 further rotates at a higher speed.
[0091] 油圧ポンプ ·モータ 20の容量が最大容量になった後、油圧モータ 5の容量を例え ば最大容量状態力 ハーフ容量等まで減少させることにより、出力軸 6を更に増速回 転することができる。出力軸 6の増速回転時力 減速する場合には、上述した増速回 転時とは逆向きの順序にてそれぞれを制御することで行うことができる。  [0091] After the capacity of the hydraulic pump motor 20 reaches the maximum capacity, the output shaft 6 can be rotated at a higher speed by reducing the capacity of the hydraulic motor 5 to, for example, the maximum capacity state force, half capacity, etc. Can do. When the output shaft 6 is decelerating at the time of increased speed rotation, it can be controlled by controlling each of them in the reverse order to that at the time of increased speed rotation described above.
[0092] 図 7では、第 1クラッチ 14を接続して第 2クラッチ 16を遮断したとき、変速歯車装置 2 2を構成する 3枚の歯車を用 、てポンプ軸 4aの回転方向と油圧ポンプ 'モータ 20の 回転方向とが同じ回転方向となる構成を示している。しかし、油圧ポンプ'モータ 20 及び油圧モータ 5としてそれぞれ両傾転 ·可変容量型油圧ポンプ ·モータ及び両傾 転 ·可変容量型油圧モータを用いた場合には、同じ油圧回路であってもモータ作用 を行っている油圧ポンプ'モータ 20及び油圧モータ 5の回転方向を、斜板の角度を 振る方向を適宜選ぶことで油圧ポンプ 4の回転方向とは逆方向にすることが容易に できる。  [0092] In FIG. 7, when the first clutch 14 is connected and the second clutch 16 is disconnected, the rotational direction of the pump shaft 4a and the hydraulic pump by using the three gears constituting the transmission gear device 22 A configuration is shown in which the rotation direction of the motor 20 is the same rotation direction. However, when both the tilting / variable displacement hydraulic pump / motor and the tilting / variable displacement hydraulic motor are used as the hydraulic pump motor 20 and the hydraulic motor 5, respectively, even if the same hydraulic circuit is used The rotation direction of the hydraulic pump motor 20 and the hydraulic motor 5 performing the above can be easily reversed from the rotation direction of the hydraulic pump 4 by appropriately selecting the direction in which the angle of the swash plate is swung.
このため、変速歯車装置 22の構成としては、例えば 2枚の歯車による構成とするこ ともできる。尚、油圧モータ 5として可変容量型油圧モータを用いた例について説明 を行った。しかし、実施例 1の図 1で説明したように油圧モータ 5としては、固定容量 型油圧モータを用いた構成とすることもできる。この場合、油圧ポンプ'モータ 20の容 量を最大容量に戻した後に、油圧モータ 5の容量を減少させて出力軸 6の回転を更 に増速させることはできな 、が、油圧モータ 5としては廉価な固定容量型油圧モータ を用いることができる。  For this reason, the configuration of the transmission gear device 22 may be configured by, for example, two gears. An example in which a variable displacement hydraulic motor is used as the hydraulic motor 5 has been described. However, as described in FIG. 1 of the first embodiment, the hydraulic motor 5 may be configured to use a fixed displacement hydraulic motor. In this case, after returning the capacity of the hydraulic pump motor 20 to the maximum capacity, the capacity of the hydraulic motor 5 cannot be decreased to further increase the rotation speed of the output shaft 6, but the hydraulic motor 5 Can use inexpensive fixed displacement hydraulic motors.
実施例 3  Example 3
[0093] 次に、図 8を用いて本発明の第 3実施形態に係わる油圧駆動装置 lcについて説明 を行う。実施例 3における油圧駆動装置 lcとしては、油圧ポンプ'モータ 30としての 可変容量型油圧ポンプ'モータと油圧モータ 5としての可変容量型油圧モータとの間 に変速歯車装置 23を介在させた配置構成となっている。また、実施例 1の図 1では 油圧モータ 5として固定容量型油圧モータを用いた構成となっていた力 実施例 3で は実施例 1の図 4で示したと同様に可変容量型油圧モータを用いた構成となってい る。他の構成としては、第 1実施例における油圧駆動装置 1と同様の構成となってい る。 Next, a hydraulic drive device lc according to the third embodiment of the present invention will be described with reference to FIG. In the third embodiment, the hydraulic drive device lc has an arrangement configuration in which a transmission gear device 23 is interposed between a hydraulic pump 'variable displacement hydraulic pump as motor 30' and a variable displacement hydraulic motor as hydraulic motor 5. It has become. Further, in FIG. 1 of the first embodiment, the force is a configuration using a fixed displacement hydraulic motor as the hydraulic motor 5. In the same manner as shown in FIG. 4 of the first embodiment, a variable displacement hydraulic motor is used. The other configuration is the same as that of the hydraulic drive device 1 in the first embodiment.
[0094] このため、実施例 1における構成と同じ構成部材については、同一の部材符号を付 してその説明は省略することにする。尚、実施例 3における油圧ポンプ ·モータ 30とし ては、実施例 1における油圧ポンプ'モータ 10と同様の構成となっている力 実施例 1と実施例 3とを区別する意味合いから、実施例 3では、油圧ポンプ'モータ 30の符 号を用いている。また、油圧ポンプ'モータ 30に連結したポンプ'モータ軸である第 1 軸及び第 2軸としては、第 1軸 30a及び第 2軸 30bの符号を用いて ヽる。  [0094] For this reason, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Note that the hydraulic pump / motor 30 in the third embodiment has a force similar to that of the hydraulic pump / motor 10 in the first embodiment, so that the first embodiment and the third embodiment are distinguished from each other. In this case, the symbol “hydraulic pump motor 30” is used. Further, the first shaft and the second shaft, which are the pump's motor shafts connected to the hydraulic pump'motor 30, are referred to using the symbols of the first shaft 30a and the second shaft 30b.
[0095] 以下の説明では、実施例 1における構成とは異なる部分を中心として、説明を行つ ていく。  [0095] In the following description, the description will be focused on parts different from the configuration in the first embodiment.
図 8において、油圧ポンプ'モータ 30の第 2軸 30bと油圧モータ 5の出力軸 6との間 には、変速歯車装置 23が配設されている。変速歯車装置 23は、第 2軸 30bの回転を 増速して出力軸 6に伝達する構成とすることも、第 2軸 30bの回転を減速して出力軸 6 に伝達する構成とすることもできる。ここでは、第 2軸 30bの回転を減速して出力軸 6 に伝達する構成を示して ヽる。  In FIG. 8, a transmission gear unit 23 is disposed between the second shaft 30 b of the hydraulic pump motor 30 and the output shaft 6 of the hydraulic motor 5. The transmission gear unit 23 may be configured to increase the speed of the rotation of the second shaft 30b and transmit it to the output shaft 6, or to reduce the rotation of the second shaft 30b and transmit it to the output shaft 6. it can. Here, a configuration in which the rotation of the second shaft 30b is decelerated and transmitted to the output shaft 6 will be described.
[0096] 図 8に示す油圧駆動装置 lcにおいても、実施例 1及び実施例 2で説明した油圧駆 動装置 1、 lbと同様に作動させることができる。即ち、第 1クラッチ 14を切断し、第 2ク ラッチ 16を接続した状態で、油圧ポンプ ·モータ 30及び油圧モータ 5の容量を最大 容量状態にする。この状態から油圧ポンプ 4の容量をゼロ容量から最大容量に増大 させることで、出力軸 6の回転を回転停止状態力も増速回転させることができる。  [0096] The hydraulic drive device lc shown in FIG. 8 can also be operated in the same manner as the hydraulic drive devices 1 and lb described in the first and second embodiments. That is, with the first clutch 14 disconnected and the second clutch 16 connected, the capacities of the hydraulic pump motor 30 and the hydraulic motor 5 are set to the maximum capacity state. By increasing the capacity of the hydraulic pump 4 from the zero capacity to the maximum capacity from this state, the rotation of the output shaft 6 can be rotated at the speed of the rotation stop state force.
[0097] 尚、油圧ポンプ ·モータ 30が回転し得る最大回転数と油圧モータ 5が回転し得る最 大回転数との間に構成上相違があつたとしても、変速歯車装置 23における減速比又 は増速比を調整することで最大回転数の相違を調整することができる。また、変速歯 車装置 23を用いることによって、油圧ポンプ'モータ 30の回転と油圧モータ 5の回転 との間で回転比を適宜選択することができる。  [0097] Even if there is a structural difference between the maximum number of rotations that the hydraulic pump / motor 30 can rotate and the maximum number of rotations that the hydraulic motor 5 can rotate, the reduction ratio or By adjusting the speed increasing ratio, the difference in the maximum rotational speed can be adjusted. Further, by using the transmission gear device 23, the rotation ratio can be appropriately selected between the rotation of the hydraulic pump motor 30 and the rotation of the hydraulic motor 5.
[0098] 油圧ポンプ 4の容量が最大容量になった後、第 1クラッチ 14及び第 2クラッチ 16の 断接状態を維持したまま油圧ポンプ'モータ 30の容量を最大容量力 ゼロ容量に減 少させる。油圧ポンプ'モータ 30の容量を減少させることにより、油圧モータ 5に供給 する圧油の流量を増大することができる。これにより、出力軸 6は更に増速回転するこ とになる。 [0098] After the capacity of the hydraulic pump 4 reaches the maximum capacity, the capacity of the hydraulic pump 'motor 30 is reduced to the maximum capacity force zero capacity while maintaining the connected state of the first clutch 14 and the second clutch 16. Reduce. By reducing the capacity of the hydraulic pump / motor 30, the flow rate of the pressure oil supplied to the hydraulic motor 5 can be increased. As a result, the output shaft 6 further rotates at a higher speed.
[0099] 油圧ポンプ ·モータ 30の容量がゼロ容量になると、第 2クラッチ 16の接続状態を切 断して、切断状態にあった第 1クラッチ 14を接続する。これによつて、駆動軸 3からの 回転を、第 1軸 30aを介して油圧ポンプ'モータ 30に伝達することができる。このとき、 油圧ポンプ'モータ 30と油圧モータ 5との接続状態からの切断及び油圧ポンプ'モー タ 30と油圧ポンプ 4との接続は、油圧ポンプ'モータ 30の容量がゼロ容量の状態で 行うことができる。  [0099] When the capacity of the hydraulic pump / motor 30 reaches zero, the connection state of the second clutch 16 is disconnected, and the first clutch 14 in the disconnected state is connected. Thereby, the rotation from the drive shaft 3 can be transmitted to the hydraulic pump 'motor 30 via the first shaft 30a. At this time, disconnection from the connection state between the hydraulic pump 'motor 30 and the hydraulic motor 5 and connection between the hydraulic pump' motor 30 and the hydraulic pump 4 should be performed in a state where the displacement of the hydraulic pump 'motor 30 is zero. Can do.
[0100] このため、第 1クラッチ 14及び第 2クラッチ 16による断接切換えに伴って切換えショ ックが発生するのを防止できる。即ち、切換えショックの無い状態でのクラッチの切換 をスムーズに行うことができる。  [0100] For this reason, it is possible to prevent a switching shock from occurring when the first clutch 14 and the second clutch 16 are switched. That is, the clutch can be switched smoothly without a switching shock.
[0101] 駆動軸 3との接続を行った油圧ポンプ'モータ 30は、油圧ポンプとして作用すること になる。油圧ポンプ ·モータ 30の容量をゼロ容量力も最大容量に増大させることによ り、油圧ポンプ 4からの吐出量に油圧ポンプ ·モータ 30からの吐出量を加えて、油圧 モータ 5に供給される。これにより、油圧モータ 5は更に増速回転して、出力軸 6は更 に増速回転することになる。  [0101] The hydraulic pump 'motor 30 connected to the drive shaft 3 functions as a hydraulic pump. By increasing the capacity of the hydraulic pump / motor 30 to the maximum capacity even with zero capacity, the amount of discharge from the hydraulic pump / motor 30 is added to the amount of discharge from the hydraulic pump 4 and supplied to the hydraulic motor 5. As a result, the hydraulic motor 5 further rotates at a higher speed, and the output shaft 6 further rotates at a higher speed.
[0102] 油圧ポンプ ·モータ 30の容量が最大容量になった後、油圧モータ 5の容量を例え ば最大容量状態力 ハーフ状態等まで減少させることにより、出力軸 6を更に増速回 転することができる。出力軸 6の増速回転時力 減速する場合には、上述した増速回 転時とは逆向きの順序にてそれぞれを制御することで行うことができる。  [0102] After the capacity of the hydraulic pump motor 30 reaches the maximum capacity, the output shaft 6 can be further rotated at a reduced speed by reducing the capacity of the hydraulic motor 5 to, for example, the maximum capacity state force half state. Can do. When the output shaft 6 is decelerating at the time of increased speed rotation, it can be controlled by controlling each of them in the reverse order to that at the time of increased speed rotation described above.
[0103] 尚、油圧モータ 5として可変容量型油圧モータを用いた例について説明を行ったが 、実施例 1の図 4で説明したように油圧モータ 5として固定容量型油圧モータを用いる こともできる。この場合、油圧ポンプ ·モータ 30の容量を最大容量に戻した後に、油 圧モータ 5の容量を減少させて出力軸 6の回転を更に増速させることはできないが、 油圧モータ 5としては廉価な固定容量型油圧モータを用いることができる。  [0103] Although an example in which a variable displacement hydraulic motor is used as the hydraulic motor 5 has been described, a fixed displacement hydraulic motor can also be used as the hydraulic motor 5 as described in Fig. 4 of the first embodiment. . In this case, after returning the capacity of the hydraulic pump / motor 30 to the maximum capacity, the capacity of the hydraulic motor 5 cannot be reduced to further increase the rotation of the output shaft 6, but the hydraulic motor 5 is inexpensive. A fixed displacement hydraulic motor can be used.
[0104] 図 8では、第 1クラッチ 14を遮断して第 2クラッチ 16を接続したとき、変速歯車装置 2 3を構成する 3枚の歯車を用いて第 2軸 30bの回転方向と出力軸 6の回転方向とが同 じ回転方向となる構成を示している。しかし、油圧ポンプ'モータ 30及び油圧モータ 5 としてそれぞれ両傾転 ·可変容量型油圧ポンプ ·モータ及び両傾転 ·可変容量型油 圧モータを用いた場合には、斜板の角度を振る方向を適宜選ぶことで同じ油圧回路 であってもモータ作用を行っている油圧ポンプ ·モータ 30の回転方向と油圧モータ 5 の回転方向を互いに逆向きの回転方向とすることが容易にできる。 In FIG. 8, when the first clutch 14 is disconnected and the second clutch 16 is connected, the rotation direction of the second shaft 30b and the output shaft 6 are determined using three gears constituting the transmission gear device 23. The direction of rotation is the same The structure which becomes the same rotation direction is shown. However, in the case of using a double tilt / variable displacement hydraulic pump / motor and double tilt / variable displacement hydraulic motor as the hydraulic pump motor 30 and hydraulic motor 5, respectively, the direction in which the angle of the swash plate is swung is changed. By selecting as appropriate, the rotation direction of the hydraulic pump / motor 30 and the rotation direction of the hydraulic motor 5 performing the motor action can be easily set to the opposite rotation directions even in the same hydraulic circuit.
[0105] このため、変速歯車装置 23の歯車構成としては、例えば 2枚の歯車による構成とす ることちでさる。 [0105] For this reason, the gear configuration of the transmission gear unit 23 is, for example, a configuration using two gears.
実施例 4  Example 4
[0106] 次に、図 9を用いて本発明の第 4実施形態に係わる油圧駆動装置 Idについて説明 を行う。実施例 4における油圧駆動装置 Idとしては、油圧ポンプ'モータ 40としての 片傾転 ·可変容量型油圧ポンプ'モータを用い、第 1油路 11及び第 2油路 12に切換 弁 25を配設した構成となっている。他の構成としては、第 1実施例における油圧駆動 装置 1と同様の構成となつている。  Next, a hydraulic drive unit Id according to the fourth embodiment of the present invention will be described with reference to FIG. As the hydraulic drive device Id in the fourth embodiment, a hydraulic pump 'motor 40 as a single tilting / variable displacement hydraulic pump' motor is used, and a switching valve 25 is provided in the first oil passage 11 and the second oil passage 12. It has become the composition. The other configuration is the same as that of the hydraulic drive device 1 in the first embodiment.
[0107] 実施例 1〜実施例 3で示した油圧ポンプ'モータ 10、 20、 30として、両傾転'可変 容量型油圧ポンプ'モータを用いることにより、油圧ポンプ'モータ 10、 20、 30を油圧 モータ及び油圧ポンプとして作用させることができ、出力軸 6の回転制御を無段階で 行うことができる。  [0107] As the hydraulic pump 'motors 10, 20, and 30 shown in the first to third embodiments, by using a bi-tilting' variable displacement hydraulic pump 'motor, the hydraulic pump' motors 10, 20, and 30 are It can be operated as a hydraulic motor and a hydraulic pump, and the rotation control of the output shaft 6 can be performed steplessly.
[0108] 実施例 4では、油圧ポンプ'モータとして両傾転'可変容量型油圧ポンプ'モータを 用いる代わりに、片傾転 ·可変容量型油圧ポンプ ·モータを用いて両傾転 ·可変容量 型油圧ポンプ'モータを用いた場合と同様の作用を行わせるものである。このため、 片傾転'可変容量型油圧ポンプ'モータを用いるのに伴って、切換弁 25を第 1油路 1 1及び第 2油路 12に配設している。  [0108] In Example 4, instead of using a hydraulic pump 'motor as a double tilting' variable displacement type hydraulic pump 'motor, a single tilting · variable displacement type hydraulic pump · using a motor as both tilting · variable displacement type The same action as when using a hydraulic pump motor is performed. For this reason, the switching valve 25 is disposed in the first oil passage 11 and the second oil passage 12 in accordance with the use of the unidirectionally inclined “variable displacement hydraulic pump” motor.
[0109] また、実施例 1における構成と同じ構成部材については、同一の部材符号を付して その説明は省略している。尚、実施例 4では、油圧ポンプ'モータの符号として油圧 ポンプ'モータ 40を用いている。また、油圧ポンプ'モータ 40に連結したポンプ'モー タ軸である第 1軸及び第 2軸としては、第 1軸 40a及び第 2軸 40bの符号を用いている  [0109] Also, the same constituent members as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. In the fourth embodiment, the hydraulic pump 'motor 40 is used as the symbol for the hydraulic pump' motor. In addition, as the first axis and the second axis which are the motor shafts of the hydraulic pump 'pump connected to the motor 40', the symbols of the first shaft 40a and the second shaft 40b are used.
[0110] 以下の説明では、実施例 1における構成とは異なる部分を中心として、説明を行つ ていく。 [0110] In the following description, the description will be focused on parts different from the configuration in the first embodiment. To go.
図 9に示すように、切換弁 25は 2位置 4ポートで切換えることができる。 D位置では、 油圧ポンプ'モータ 40のポート 40cを、油路 11a及び油路 11を介して油路 7に接続 することができる。同時に、油圧ポンプ.モータ 40のポート 40dは、油路 12a及び油路 12を介して油路 8に接続することができる。  As shown in FIG. 9, the switching valve 25 can be switched at two positions and four ports. In the position D, the port 40c of the hydraulic pump motor 40 can be connected to the oil passage 7 via the oil passage 11a and the oil passage 11. At the same time, the port 40d of the hydraulic pump / motor 40 can be connected to the oil passage 8 via the oil passage 12a and the oil passage 12.
[0111] E位置では、油圧ポンプ ·モータ 40のポート 40cを、油路 11a及び油路 12を介して 油路 8に接続することができる。同時に、油圧ポンプ'モータ 40のポート 40dは、油路 12a及び油路 11を介して油路 7に接続することができる。  [0111] In the E position, the port 40c of the hydraulic pump / motor 40 can be connected to the oil passage 8 via the oil passage 11a and the oil passage 12. At the same time, the port 40d of the hydraulic pump motor 40 can be connected to the oil passage 7 via the oil passage 12a and the oil passage 11.
[0112] 以下において、切換弁 25が D位置にあって車両を前進走向させるときの圧油の流 れとして、油圧ポンプ 4からの吐出圧が油路 7を流れて油圧ポンプ ·モータ 40及び油 圧モータ 5に供給され、油圧ポンプ ·モータ 40及び油圧モータ 5からの排出圧油が油 路 8を通って油圧ポンプ 4に戻っている場合を例に挙げて説明する。  [0112] In the following, as the flow of pressure oil when the switching valve 25 is in the D position and the vehicle moves forward, the discharge pressure from the hydraulic pump 4 flows through the oil passage 7 and the hydraulic pump / motor 40 and the oil An example in which the pressure oil supplied to the pressure motor 5 and discharged from the hydraulic pump motor 40 and the hydraulic motor 5 returns to the hydraulic pump 4 through the oil passage 8 will be described as an example.
[0113] 片傾転 ·可変容量型油圧ポンプ ·モータから構成された油圧ポンプ ·モータ 40では 、油圧ポンプ ·モータ 40を油圧モータとして作用させたときは、ポート 40cから圧油が 供給され、油圧ポンプとして作用させたときは、ポート 40dから圧油を吐出することに なる。  [0113] One side tilt · Variable displacement hydraulic pump · Hydraulic pump composed of motor · Motor 40 When hydraulic pump · motor 40 is operated as a hydraulic motor, pressure oil is supplied from port 40c and hydraulic pressure When operated as a pump, pressure oil is discharged from the port 40d.
[0114] このため、切換弁 25を配設して切換弁 25の切換えを行うことが必要となる。切換弁 25を D位置に切換えて、油圧ポンプ'モータ 40をモータとして作用させたときには、 ポート 40cは圧油を導入する導入ポートとして機能させることができ、ポート 40dを油 路 8への排出ポートとして機能させることができる。  [0114] For this reason, it is necessary to dispose the switching valve 25 to switch the switching valve 25. When the directional control valve 25 is switched to the D position and the hydraulic pump motor 40 is operated as a motor, the port 40c can function as an introduction port for introducing pressure oil, and the port 40d is a discharge port to the oil passage 8. Can function as.
[0115] また、切換弁 25を E位置に切換えて、油圧ポンプ ·モータ 40をポンプとして作用さ せたときには、ポート 40cは油路 8の圧油を油圧ポンプ ·モータ 40に導入する導入ポ ートとして機能させることができる。ポート 40dは油圧ポンプ ·モータ 40からの圧油の 吐出ポートとして機能させることができ、ポート 40dから吐出した圧油を油路 7に対し て供給することができる。  [0115] When the switching valve 25 is switched to the E position and the hydraulic pump / motor 40 is operated as a pump, the port 40c is an introduction port for introducing the pressure oil in the oil passage 8 into the hydraulic pump / motor 40. Can function as The port 40d can function as a discharge port for the pressure oil from the hydraulic pump / motor 40, and the pressure oil discharged from the port 40d can be supplied to the oil passage 7.
これによつて、ポート 40cを導入ポートとしての機能を変えずに、切換弁 25を切換え ることによって、油圧ポンプ'モータ 40をモータとして作用させることもポンプとして作 用させることちでさる。 [0116] 更に、油圧モータ 5の構成としては、実施例 1における図 1で説明したように固定容 量型油圧モータを用いた構成とすることもできる。この場合には、油圧ポンプ'モータ 40の容量を最大容量に戻した後に、油圧モータ 5の容量を減少させて出力軸 6の回 転を更に増速させることはできないが、油圧モータ 5としては廉価な固定容量型油圧 モータを用いることができる。 Thus, by switching the switching valve 25 without changing the function of the port 40c as the introduction port, it is possible to cause the hydraulic pump motor 40 to act as a motor or to function as a pump. Furthermore, as the configuration of the hydraulic motor 5, as described with reference to FIG. 1 in the first embodiment, a configuration using a fixed capacity hydraulic motor may be used. In this case, after returning the capacity of the hydraulic pump motor 40 to the maximum capacity, the capacity of the hydraulic motor 5 cannot be reduced to further increase the rotation speed of the output shaft 6. An inexpensive fixed displacement hydraulic motor can be used.
[0117] 実施例 4においても、油圧ポンプ'モータ 40の容量を減少させて容量がゼロ容量に なったときに、第 2クラッチ 16を切り離して油圧ポンプ'モータ 40のポンプ'モータ軸 4 Obと油圧モータ 5のモータ軸 5aとの連結を開放することができる。そして、切り離され ていた第 1クラッチ 14を接続して、ポンプ'モータ軸 40aと駆動軸 3とを連結することが できる。  Also in the fourth embodiment, when the capacity of the hydraulic pump 'motor 40 is reduced and the capacity becomes zero capacity, the second clutch 16 is disconnected and the hydraulic pump' pump of the motor 40 'motor shaft 4 Ob The connection between the hydraulic motor 5 and the motor shaft 5a can be released. Then, the disconnected first clutch 14 can be connected to connect the pump motor shaft 40 a and the drive shaft 3.
[0118] し力もこの切換えにより、油圧ポンプ.モータ 40をモータとしての作用力もポンプとし ての作用に切り換えるとき、油圧ポンプ'モータ 40の容量がゼロ容量の状態で行うこ とができる。このため、切り換えに伴う切換えショックの発生を防止し、切換えに伴うト ルク切れの発生を防止することができる。  [0118] When the hydraulic pump / motor 40 is switched to the action of the pump as a pump by this switching, the hydraulic pump / motor 40 can be operated in a state where the capacity of the hydraulic pump / motor 40 is zero. For this reason, it is possible to prevent the occurrence of a switching shock associated with the switching, and it is possible to prevent the occurrence of a torque break due to the switching.
[0119] 実施例 1〜実施例 3において、油路 11と油路 12との間に図 9で示すような切換弁を 配設すれば、油圧ポンプ ·モータ 10、 20、 30としては片傾転 ·可変容量型油圧ボン プ.モータを用いることもできる。また、上述した実施例では、油圧モータとして固定容 量型油圧モータを用いた例と可変容量型油圧モータとを用いた例とを説明した。しか し、油圧モータとしては、固定容量型油圧モータと可変容量型油圧モータとを区別す ることなく使用することがでさる。  [0119] In Examples 1 to 3, if a switching valve as shown in Fig. 9 is arranged between the oil passage 11 and the oil passage 12, the hydraulic pump motors 10, 20, and 30 can be tilted in one direction. Rolling / variable displacement hydraulic pumps and motors can also be used. In the above-described embodiment, the example using the fixed capacity type hydraulic motor as the hydraulic motor and the example using the variable capacity type hydraulic motor have been described. However, as a hydraulic motor, a fixed displacement hydraulic motor and a variable displacement hydraulic motor can be used without being distinguished.
[0120] 更に、油圧ポンプ 4の構成としては、実施例 1において固定容量型油圧ポンプを用 V、た場合にっ 、て説明したように、可変容量型油圧ポンプの代わりに固定容量型油 圧ポンプを用いることもできる。油圧ポンプ 4として固定容量型油圧ポンプを用いるこ とは、実施例 2〜実施例 4の各構成に対して好適に適用することができる。  [0120] Further, as the configuration of the hydraulic pump 4, the fixed displacement hydraulic pump is used instead of the variable displacement hydraulic pump, as described in Example 1, when the fixed displacement hydraulic pump is used. A pump can also be used. The use of a fixed displacement hydraulic pump as the hydraulic pump 4 can be suitably applied to the configurations of the second to fourth embodiments.
[0121] また、油圧ポンプ 4、油圧ポンプ'モータ 10〜40、油圧モータ 5、第 1クラッチ 14、第 2クラッチ 16及び変速歯車装置 22、 23におけるそれぞれの配置構成は、本発明の 趣旨を逸脱しない限り、互いに組み合わせて構成することが可能である。更に、出力 軸 6を油圧モータ 5に連結した構成を用いて説明を行ったが、出力軸 6を油圧モータ 5のモータ軸に変速歯車装置等を介して接続した構成とすることもできる。 [0121] In addition, the arrangement of each of the hydraulic pump 4, the hydraulic pump motors 10 to 40, the hydraulic motor 5, the first clutch 14, the second clutch 16, and the transmission gear devices 22 and 23 departs from the spirit of the present invention. As long as they are not, they can be combined with each other. Furthermore, although the description has been made using the configuration in which the output shaft 6 is connected to the hydraulic motor 5, the output shaft 6 is connected to the hydraulic motor. A configuration in which the motor shaft is connected to the five motor shafts via a transmission gear device or the like can also be adopted.
[0122] 同様に、油圧ポンプ ·モータ 10〜40の第 2軸 10b〜40bと出力軸 6との間を、変速 歯車装置等を介して接続した構成とすることもできる。本発明においては、出力軸 6と モータ軸 5aとを変速歯車装置等を介して接続した構成、及びポンプ'モータ軸と出 力軸との間に変速歯車装置等を介して接続した構成をも包含しているものである。 産業上の利用可能性 Similarly, the second shafts 10b to 40b of the hydraulic pumps and motors 10 to 40 and the output shaft 6 may be connected via a transmission gear device or the like. The present invention has a configuration in which the output shaft 6 and the motor shaft 5a are connected via a transmission gear device or the like, and a configuration in which the pump 'motor shaft and the output shaft are connected via a transmission gear device or the like. It is included. Industrial applicability
[0123] 本発明は、無段変速可能な油圧駆動装置に対して好適に適用することができる。 [0123] The present invention can be suitably applied to a hydraulic drive device capable of continuously variable transmission.

Claims

請求の範囲 The scope of the claims
[1] 前記駆動源により駆動される油圧ポンプと、  [1] a hydraulic pump driven by the drive source;
前記油圧ポンプと閉回路を構成して接続され、出力軸に連結した油圧モータと、 前記油圧ポンプ及び前記油圧モータと並列に閉回路を構成して接続された可変容 量型油圧ポンプ'モータと、  A hydraulic motor connected in a closed circuit with the hydraulic pump and connected to an output shaft; and a variable capacity hydraulic pump motor connected in a closed circuit in parallel with the hydraulic pump and the hydraulic motor; ,
前記油圧ポンプのポンプ軸と前記可変容量型油圧ポンプ'モータのポンプ'モータ 軸とを連結遮断する第 1クラッチと、  A first clutch that connects and disconnects the pump shaft of the hydraulic pump and the motor shaft of the variable displacement hydraulic pump 'motor pump';
前記ポンプ ·モータ軸と前記油圧モータのモータ軸とを連結遮断する第 2クラッチと 、を設けたことを特徴とする油圧駆動装置。  A hydraulic drive device comprising: a second clutch that connects and disconnects the pump motor shaft and the motor shaft of the hydraulic motor.
[2] 前記駆動源により駆動される油圧ポンプと、 [2] a hydraulic pump driven by the drive source;
前記油圧ポンプと閉回路を構成して接続され、出力軸に連結した油圧モータと、 前記油圧ポンプ及び前記油圧モータと並列に閉回路を構成して接続された可変容 量型油圧ポンプ'モータと、  A hydraulic motor connected in a closed circuit with the hydraulic pump and connected to an output shaft; and a variable capacity hydraulic pump motor connected in a closed circuit in parallel with the hydraulic pump and the hydraulic motor; ,
前記油圧ポンプのポンプ軸と前記可変容量型油圧ポンプ'モータのポンプ'モータ 軸とを連結遮断する第 1クラッチと、  A first clutch that connects and disconnects the pump shaft of the hydraulic pump and the motor shaft of the variable displacement hydraulic pump 'motor pump';
前記ポンプ軸と前記ポンプ'モータ軸との連結部に配設された変速歯車装置と、 前記ポンプ ·モータ軸と前記油圧モータのモータ軸とを連結遮断する第 2クラッチと 、を設けたことを特徴とする油圧駆動装置。  A transmission gear device disposed at a connecting portion between the pump shaft and the pump motor shaft, and a second clutch for connecting and disconnecting the pump motor shaft and the motor shaft of the hydraulic motor. Hydraulic drive device characterized.
[3] 前記駆動源により駆動される油圧ポンプと、 [3] a hydraulic pump driven by the drive source;
前記油圧ポンプと閉回路を構成して接続され、出力軸に連結した油圧モータと、 前記油圧ポンプ及び前記油圧モータと並列に閉回路を構成して接続された可変容 量型油圧ポンプ'モータと、  A hydraulic motor connected in a closed circuit with the hydraulic pump and connected to an output shaft; and a variable capacity hydraulic pump motor connected in a closed circuit in parallel with the hydraulic pump and the hydraulic motor; ,
前記油圧ポンプのポンプ軸と前記可変容量型油圧ポンプ'モータのポンプ'モータ 軸とを連結遮断する第 1クラッチと、  A first clutch that connects and disconnects the pump shaft of the hydraulic pump and the motor shaft of the variable displacement hydraulic pump 'motor pump';
前記ポンプ ·モータ軸と前記油圧モータのモータ軸とを連結遮断する第 2クラッチと 前記ポンプ ·モータ軸と前記モータ軸との連結部に配設された変速歯車装置と、 を設けたことを特徴とする油圧駆動装置。 A second clutch for connecting and disconnecting the pump motor shaft and the motor shaft of the hydraulic motor; and a transmission gear device disposed at a connection portion between the pump motor shaft and the motor shaft. Hydraulic drive device.
[4] 前記駆動源により駆動される油圧ポンプと、 [4] a hydraulic pump driven by the drive source;
前記油圧ポンプと閉回路を構成して接続され、出力軸に連結した油圧モータと、 前記閉回路に接続した第 1油路及び第 2油路を介して、前記油圧ポンプ及び前記 油圧モータと並列に閉回路を構成して接続された片傾転 ·可変容量型油圧ポンプ · モータと、  The hydraulic pump is connected to the hydraulic pump in a closed circuit and connected to an output shaft, and the hydraulic pump and the hydraulic motor are connected in parallel via a first oil path and a second oil path connected to the closed circuit. Uni-tilt connected to form a closed circuit to the variable displacement hydraulic pump
前記第 1油路及び前記第 2油路における圧油の流れ方向を切換える切換弁と、 前記油圧ポンプのポンプ軸と前記片傾転 ·可変容量型油圧ポンプ ·モータのポンプ A switching valve that switches a flow direction of the pressure oil in the first oil passage and the second oil passage, a pump shaft of the hydraulic pump and the one-side tilt, a variable displacement hydraulic pump, a motor pump
•モータ軸とを連結遮断する第 1クラッチと、 A first clutch that connects and disconnects the motor shaft;
前記ポンプ ·モータ軸と前記油圧モータのモータ軸とを連結遮断する第 2クラッチと を設けたことを特徴とする油圧駆動装置。  2. A hydraulic drive device comprising: a second clutch that connects and disconnects the pump motor shaft and the motor shaft of the hydraulic motor.
[5] 前記駆動源により駆動される油圧ポンプと、 [5] a hydraulic pump driven by the drive source;
前記油圧ポンプと閉回路を構成して接続され、出力軸に連結した油圧モータと、 前記油圧ポンプ及び前記油圧モータと並列に閉回路で接続される可変容量型油 圧ポンプ'モータと、  A hydraulic motor connected in a closed circuit with the hydraulic pump and connected to an output shaft; a variable displacement hydraulic pump 'motor connected in parallel with the hydraulic pump and the hydraulic motor in a closed circuit;
前記油圧ポンプのポンプ軸と前記可変容量型油圧ポンプ'モータのポンプ'モータ 軸とを連結遮断する第 1クラッチと、  A first clutch that connects and disconnects the pump shaft of the hydraulic pump and the motor shaft of the variable displacement hydraulic pump 'motor pump';
前記ポンプ ·モータ軸と前記油圧モータのモータ軸とを連結遮断する第 2クラッチと を設けた油圧駆動装置における変速方法において、  In the speed change method in the hydraulic drive device provided with the second clutch for connecting and disconnecting the pump motor shaft and the motor shaft of the hydraulic motor,
前記可変容量型油圧ポンプ ·モータの容量がゼロ容量のとき、前記第 1クラッチを 開放し、かつ前記第 2クラッチを接続してなることを特徴とする変速方法。  The variable displacement hydraulic pump: a speed change method comprising: disengaging the first clutch and connecting the second clutch when the motor has zero capacity.
PCT/JP2005/016090 2004-09-02 2005-09-02 Hydraulic drive device and speed change method in hydraulic drive device WO2006025518A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004255252A JP2007315405A (en) 2004-09-02 2004-09-02 Hydraulic drive device and method for operating the same
JP2004-255252 2004-09-02

Publications (1)

Publication Number Publication Date
WO2006025518A1 true WO2006025518A1 (en) 2006-03-09

Family

ID=36000164

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/016091 WO2006025519A1 (en) 2004-09-02 2005-09-02 Hydraulic drive device ana speed change method in hydraulic drive device
PCT/JP2005/016090 WO2006025518A1 (en) 2004-09-02 2005-09-02 Hydraulic drive device and speed change method in hydraulic drive device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016091 WO2006025519A1 (en) 2004-09-02 2005-09-02 Hydraulic drive device ana speed change method in hydraulic drive device

Country Status (2)

Country Link
JP (1) JP2007315405A (en)
WO (2) WO2006025519A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013222984A1 (en) * 2013-11-12 2015-05-13 Zf Friedrichshafen Ag Transmission device with a pump system comprising a hydraulic system
JP6897175B2 (en) * 2017-03-10 2021-06-30 いすゞ自動車株式会社 Continuously variable transmission
JP6924159B2 (en) * 2018-02-23 2021-08-25 株式会社小松製作所 Work vehicle and control method of work vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0026115A2 (en) * 1979-09-06 1981-04-01 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Hydrostatic transmissions with a wide working range
JPS63169329U (en) * 1987-04-24 1988-11-04
JPH06265014A (en) * 1993-03-08 1994-09-20 Hitachi Constr Mach Co Ltd Hydraulic closed circuit device and speed change method of this device
JP2000257712A (en) * 1999-03-11 2000-09-19 Kayaba Ind Co Ltd Traveling driving device
JP2001200907A (en) * 2000-01-14 2001-07-27 Shin Caterpillar Mitsubishi Ltd Power transmitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0026115A2 (en) * 1979-09-06 1981-04-01 ETAT-FRANCAIS représenté par le Délégué Général pour l' Armement Hydrostatic transmissions with a wide working range
JPS63169329U (en) * 1987-04-24 1988-11-04
JPH06265014A (en) * 1993-03-08 1994-09-20 Hitachi Constr Mach Co Ltd Hydraulic closed circuit device and speed change method of this device
JP2000257712A (en) * 1999-03-11 2000-09-19 Kayaba Ind Co Ltd Traveling driving device
JP2001200907A (en) * 2000-01-14 2001-07-27 Shin Caterpillar Mitsubishi Ltd Power transmitting device

Also Published As

Publication number Publication date
WO2006025519A1 (en) 2006-03-09
JP2007315405A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2007010743A1 (en) Device and method for continuously variable transmission of traveling vehicle
JP4632951B2 (en) Transmission
JP4789507B2 (en) Transmission
US7070531B2 (en) Hydromechanical transmission
CN111350799B (en) Multi-pump driving single-motor mechanical-hydraulic compound transmission device and control method thereof
WO1989012188A1 (en) Mechanical-hydraulic transmission gear and method of controlling same
US11530741B2 (en) Power split and variable creep drive system for street sweeper or like specialty vehicle
KR101509917B1 (en) Transmission apparatus of vehicle and controlling method thereof
JPH01234654A (en) Static pressure gearing and control method thereof
WO2006025518A1 (en) Hydraulic drive device and speed change method in hydraulic drive device
JP2010535997A (en) Torque transmission device
CN101501366B (en) Power split dual input shaft transmission for vehicle
JP2006115846A (en) Combine harvester travel device
JPH11230307A (en) Driving device for plural hydraulic motor
JP3997347B2 (en) Combine traveling device
JP2000266181A (en) Hydrostatic transmission device
JP2004052861A (en) Toroidal type continuously variable transmission
KR101963837B1 (en) Hydraulic Hybrid Transmission with Hydraulic Motor and Torque Converter in Transmission
JP2001200907A (en) Power transmitting device
JP2717671B2 (en) Mechanical hydraulic transmission and control method thereof
JP5423436B2 (en) Hydraulic control device
JP3904003B2 (en) Combine
JP2004353689A (en) Hydraulic mechanical transmission
JP2017219151A (en) Transmission device of vehicle
JP2000193065A (en) Transmission for hydraulic drive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP