WO2006025260A1 - Stacked organic-inorganic hybrid high efficiency solar cell - Google Patents

Stacked organic-inorganic hybrid high efficiency solar cell Download PDF

Info

Publication number
WO2006025260A1
WO2006025260A1 PCT/JP2005/015471 JP2005015471W WO2006025260A1 WO 2006025260 A1 WO2006025260 A1 WO 2006025260A1 JP 2005015471 W JP2005015471 W JP 2005015471W WO 2006025260 A1 WO2006025260 A1 WO 2006025260A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell according
type
semiconductor
battery layer
Prior art date
Application number
PCT/JP2005/015471
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Satoh
Shigetaka Katori
Shizuo Fujita
Kazumi Matsushige
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2006532597A priority Critical patent/JPWO2006025260A1/en
Publication of WO2006025260A1 publication Critical patent/WO2006025260A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a solar cell for converting solar energy into electric energy, and in particular
  • the present invention also relates to a high-efficiency solar cell and a Z or organic thin-film solar cell having a laminated structure of an organic battery layer made of an organic semiconductor thin film and an inorganic battery layer made of an inorganic semiconductor thin film. Furthermore, the present invention relates to a method for constructing the solar cell and a composite battery for improving characteristics by laminating a functional thin film.
  • the types of solar cells are broadly divided into those using silicon semiconductors as materials (crystalline and amorphous (non-crystalline)) and those using compound semiconductors as materials. Some are under development. Including a wider range. With regard to solar cell technology development, efforts are being made to improve conversion efficiency and reduce costs.
  • a solid solar cell using an organic semiconductor generally consists of a simple junction via a pn junction between a single layer of an organic semiconductor and a single layer made of metal or a different organic semiconductor (for example, Patent Document 1 and (See Non-Patent Documents 1 and 2).
  • Patent Documents 2 to 4 disclose solid solar cells having a laminated structure of inorganic semiconductors.
  • solid solar cells that have a simple bonding force between organic semiconductors and inorganic semiconductors for example, see Non-Patent Document 3
  • the junctions between organic semiconductors and inorganic semiconductors are compounded by co-evaporation.
  • Patent Document 5 a solid solar cell with improved conversion efficiency is known (for example, see Patent Document 5).
  • solar cells having excellent photoelectric conversion efficiency are preferred.
  • the conversion efficiency is expressed as (output electric energy Z incident solar energy) X 100 (%), and is the most important figure of merit of the solar cell. This improvement is made mainly by reducing impurities by using silicon single crystal or amorphous silicon.
  • a solar cell with excellent cost efficiency is preferable. This cost-efficiency is a comparison of the amount of power generated from solar cell devices converted into monetary amounts, as well as product manufacturing costs and running costs, compared with nuclear power generation costs and losses associated with long-distance transmission (so-called transmission losses). Have been evaluated.
  • Patent Document 1 and Non-Patent Documents 1 and 2 have a light and flexible power photoelectric conversion efficiency that is low in manufacturing cost.
  • Patent text Inorganic solar cells such as those described in Appendix 2-4 have good photoelectric conversion efficiency, but they are expensive to manufacture and inferior in mechanical properties (ie, easily damaged).
  • organic / inorganic composite thin-film solar cells such as those described in Non-Patent Document 3 and Patent Document 5 cannot easily take out electric power easily because of loss of photocurrent, and also have a yield as an industrial product. Have a problem.
  • the present invention has been made in view of the above-mentioned problems, and its object is to compensate for the disadvantages of a solar cell made of an organic semiconductor and a solar cell made of an inorganic semiconductor, and It is to provide a cost-effective and flexible solar cell.
  • the object of the present invention is to provide a solar cell with improved power generation efficiency and cost efficiency and capable of wide application based on improved mechanical properties.
  • the present inventors have found that a high output of a solar cell can be achieved by laminating an organic battery layer having a low-cost organic semiconductor power on an inorganic battery layer having an inorganic semiconductor power.
  • the present inventors have also found that photoelectric conversion efficiency is possible by taking into consideration the respective wavelengths to which power is converted by the organic battery layer and the inorganic battery layer.
  • the organic battery layer that is resistant to damage acts as a coating film
  • the present inventors have used an inorganic semiconductor thin film (for example, a Si wafer (thickness of about 10 microns)) as the organic battery layer.
  • the present inventors have found that a flexible solar cell can be produced.
  • a solar cell according to the present invention includes an organic battery layer formed by bonding a p-type organic semiconductor and an n-type organic semiconductor, and an inorganic battery formed by bonding a P-type inorganic semiconductor and an n-type inorganic semiconductor. It is characterized by having a laminated structure with a layer.
  • the solar battery according to the present invention preferably has two or more organic battery layers or inorganic battery layers.
  • the solar cell according to the present invention preferably further includes a shunt circuit.
  • the solar cell according to the present invention preferably has a window.
  • the p-type organic semiconductor and the n-type organic semiconductor have a thickness in the range of 1 nm to 1 ⁇ m.
  • the p-type inorganic semiconductor and the n-type inorganic semiconductor are 1
  • the p-type organic semiconductor is selected from the group consisting of copper phthalocyanine, pentacene, and hexathionocarbona.
  • the n-type organic semiconductor is preferably selected from the group consisting of fullerenes, aluminum quinolinol complexes, and tital phthalocyanine power.
  • the p-type inorganic semiconductor is a Group IV metal (eg, Si, Ge, etc.) or a compound semiconductor such as GaAs, GalnP, etc., is a p-type dopant (eg, boron or Preferably, the material is doped with aluminum.
  • the n-type inorganic semiconductor is a group IV metal (eg, Si, Ge, etc.) or a compound semiconductor power type dopant (eg, arsenic or phosphorus) such as GaAs, GalnP, etc. Etc.) is preferable.
  • group IV metal eg, Si, Ge, etc.
  • compound semiconductor power type dopant eg, arsenic or phosphorus
  • a thin film having photochromic material strength is further laminated on the outermost layer of the laminate.
  • the solar cell according to the present invention it is preferable to further stack a thin film made of an organic material having phosphorescent properties on the outermost layer of the stack.
  • the solar cell according to the present invention preferably uses a transparent electrode.
  • the electrode has a comb shape.
  • the electrode is Inn! It preferably has a thickness in the range of ⁇ lOOnm.
  • FIG. 1 shows an embodiment of the present invention, and shows an organic battery layer formed by joining a p-type organic semiconductor and an n-type organic semiconductor, and a p-type inorganic semiconductor and an n-type inorganic semiconductor. It is sectional drawing of the solar cell which has a laminated structure with the inorganic type battery layer formed by joining.
  • FIG. 2 is a graph showing the solar radiation power and the silicon solar cell spectrum response at each wavelength.
  • FIG. 3 is a cross-sectional view of a solar cell in which a plurality of battery layers are laminated, showing an embodiment of the present invention.
  • FIG. 4 shows an embodiment of the present invention and shows a circuit diagram of a solar cell having a shunt circuit.
  • FIG. 5 is a diagram showing an embodiment of the present invention and showing a mode for preventing scattering of an inorganic battery layer damaged by an organic battery layer.
  • FIG. 6 (A) shows an embodiment of the present invention and is a diagram showing the shape of a solar cell module composed of a plurality of solar cells.
  • FIG. 6 (B) shows an embodiment of the present invention and is a circuit diagram of a solar cell module including a plurality of solar cells.
  • FIG. 7 shows an embodiment of the present invention, and is a diagram showing a high-efficiency solar cell module including a plurality of cylindrical solar cell cells.
  • FIG. 8 is a view showing an embodiment of the present invention and showing a solar cell provided with a heat radiating window.
  • FIG. 9 is a perspective view showing a laminated solar cell in which a functional thin film is laminated on the outermost layer according to one embodiment of the present invention.
  • n-type organic semiconductor p-type inorganic semiconductor: n-type inorganic semiconductor: electrode
  • a solar cell generates electricity using two types of semiconductors, a p-type semiconductor and an n-type semiconductor.
  • a semiconductor pairs of electrons (one) and holes (+) are generated due to incident sunlight.
  • electrons are attracted to the n-type and holes are attracted to the p-type.
  • an electromotive force (voltage) is generated between the n-type semiconductor and the p-type semiconductor.
  • FIG. 1 shows an organic battery layer 100 formed by bonding a p-type organic semiconductor 1 and an n-type organic semiconductor 2, and an inorganic battery formed by bonding a p-type inorganic semiconductor 3 and an n-type inorganic semiconductor 4.
  • a cross-sectional view of a solar cell 1000 in which a battery layer 101 is stacked with an electrode 5 interposed therebetween is shown.
  • the solar cell 1000 includes electrodes 6 and 7 on both sides of the laminated structure.
  • the solar cell 1000 according to this embodiment includes an organic battery layer 100 and an inorganic battery layer 101 connected in series.
  • the term "organic semiconductor” intends a photoconductive organic semiconductor (an organic semiconductor capable of generating carriers by light irradiation).
  • Preferred p-type organic semiconductors include, but are not limited to, materials that efficiently conduct holes, such as copper phthalocyanine, pentacene, or hexachiphene.
  • Preferred n-type organic semiconductors include, but are not limited to, materials that conduct electrons efficiently, such as fullerenes, aluminum quinolinol complexes, or tital phthalocyanine.
  • the term "inorganic semiconductor” intends an inorganic material whose p-type or n-type characteristics can be controlled by impurity doping.
  • Preferred U and p type inorganic semiconductors are doped with Group IV metals such as Si and Ge, or compound semiconductor power such as GaAs and GalnP, such as boron or aluminum.
  • Preferred n-type inorganic semiconductors include materials such as Group IV metals such as Si and Ge, or compound semiconductors such as GaAs and GalnP doped with n-type dopants (eg arsenic or phosphorus). Materials.
  • the junction between the p-type organic semiconductor 1 and the n-type organic semiconductor 2 and the junction between the p-type inorganic semiconductor 3 and the n-type inorganic semiconductor 4 may be performed by any known method (for example, organic vapor phase epitaxy, vapor deposition, etc. Or spin coating method).
  • the lamination of the organic battery layer 100 and the inorganic battery layer 101 can be performed by organic vapor deposition, vapor deposition, spin coating, casting, Langmuir-projet (LB), spray, or self Although it is preferable to carry out by the film-forming method by a structure
  • the solar cell 1000 according to the present embodiment has a wide wavelength spread of sensitivity by stacking the organic battery layer 100 and the inorganic battery layer 101, and utilizing the different light wavelength characteristics of these.
  • the photoelectric conversion efficiency can be increased.
  • the solar cell 1000 according to this embodiment forms a stacked series circuit, the impedance of the battery can be increased. For this reason, the solar cell 1000 is lightweight and flexible, can realize low cost, and can achieve higher output.
  • the laminated inorganic battery layer and organic battery layer can increase the photoelectric conversion efficiency by separating different wavelengths.
  • each wavelength is improved.
  • the energy gap between the transition levels should be determined so that the inorganic semiconductor (p-type and n-type) has the desired optical spectral band by referring to the solar radiation power and the silicon solar cell spectral response (Fig. 2). That's fine.
  • the organic battery layer uses a wavelength of 580 nm or more and the inorganic battery layer uses a wavelength of 580 nm or less.
  • FIG. 3 shows an embodiment of the present invention formed by stacking a plurality of battery layers.
  • the base battery layer 110, the second battery layer 111, the third battery layer 112, and the fourth battery layer 113 are stacked and connected in series.
  • the base battery layer 110, the second battery layer 111, the third battery layer 112, and the fourth battery layer 113 at least one layer is an organic battery layer, and at least one layer is an inorganic battery layer.
  • the solar cell according to the present embodiment can further improve the photoelectric conversion efficiency by using a wider optical spectrum band by laminating a plurality of battery layers.
  • the solar cell according to the present invention preferably further includes a shunt circuit.
  • shunt circuit is intended to include a circuit that includes a resistor and a rectifying element to regulate the uneven input voltage to a constant voltage.
  • FIG. 4 shows a circuit diagram of an embodiment of the solar cell according to the present invention in which a series circuit is formed.
  • base battery layer 120 and second battery layer 121 are connected in series to output terminals 8 and 9.
  • One of the base battery layer 120 and the second battery layer 121 is an organic battery layer, and the other is an inorganic battery layer.
  • the solar cell 1002 includes the rectifier element 10 and the solar cell 1002 in order to eliminate the bottleneck caused by the base battery layer 120 and the second battery layer 121 having different voltage characteristics and current characteristics.
  • a shunt resistor 11 is provided.
  • FIG. 5 shows a solar cell 1003 that also has a laminated structural force of the organic battery layer 130 and the inorganic battery layer 131.
  • the organic semiconductor and the inorganic semiconductor constituting the solar cell according to the present invention are preferably thin films.
  • an organic semiconductor has a flexible and strong chemical bonding force based on a covalent bond, but an inorganic semiconductor is easily broken when formed into a thin film because of its crystal structure.
  • the solar cell according to the present invention can prevent the inorganic semiconductor thin film from being broken by the laminated structure of the thin films.
  • the inorganic semiconductor is scattered when the layer becomes thin and becomes flexible.
  • the inorganic semiconductor layer 131 is broken.
  • the solar battery 1003 according to the present embodiment has a structure in which the organic battery layer 130 is stacked on the inorganic battery layer 131, so that the organic battery layer 130 functions as a film, and the inorganic battery layer 131. It is possible to prevent scattering when it is damaged.
  • the term "thin film” is intended to be thick enough to contribute to power generation, and an organic film that is as thin as possible is preferred to suppress current loss and the like.
  • the preferred thin film for use in semiconductors has a thickness in the range of 1 ⁇ to 1 / ⁇ ⁇ , preferably 5 to 500 nm, more preferably 10 to 500 nm, and the preferred thin film for use in inorganic semiconductors is ⁇ ! ⁇ 500 ⁇ m, preferably 50 nm to 500 ⁇ m.
  • a thin film preferable for use in an inorganic semiconductor preferably has a film thickness in the range of 5 to 50 / ⁇ ⁇ .
  • FIG. 6 (6) is a diagram showing a solar cell module 2000 composed of a plurality of cells, in which the solar cell 1004 according to the present invention is one small region (cell).
  • FIG. 6 (B) shows a circuit diagram of the solar cell module 2000 shown in FIG. 6 (A). Multiple solar cells 1004 force As shown in FIG. 6 (B), they are connected in parallel to the output terminals 12 and 13 and function as an integrated solar cell module 2000.
  • the base battery layer 130 and the second battery layer 131 are connected in series to the output terminals 12 and 13.
  • the base battery layer 130 and the second battery layer 131 are either One is an organic battery layer, and the other is an inorganic battery layer.
  • the solar cell according to the present invention is shaped into a module shape (FIG. 6 (A)) which is a collective force of cells as shown in FIGS. 6 (A) and 6 (B).
  • FIGS. 6 (A) and 6 (B) the load balance of the cell can be obtained. Can help improve the electrical characteristics.
  • Fig. 7 is a diagram showing a solar cell module 2001 composed of a plurality of cells, in which a sheet-like solar cell 1005 according to the present invention is wound into a cylindrical shape with the photosensitive surface inside, as one cell. is there.
  • the solar cell according to the present invention preferably has a window.
  • FIG. 8 shows a solar cell 1006 in which the second battery layer 141 and the third battery layer 142 are stacked on the base battery layer 140. Of the base battery layer 140, the second battery layer 141, and the third battery layer 142, at least one layer is an organic battery layer, and at least one layer is an inorganic battery layer.
  • the solar cell 1006 is provided with a radiation window 15 that penetrates through the second battery layer 141 and the third battery layer 142. In FIG. 8, there is one radiation window 15, but a plurality of radiation windows 15 may be provided.
  • a solar cell In a solar cell, light that deviates from an eigenvalue determined by a transition level is not converted into electricity but becomes heat. In particular, due to the difference in thermal conductivity between organic and inorganic semiconductors In the solar cell, a partial heat yield occurs, causing a temperature rise. Such a temperature increase is not preferable because the generated voltage of the solar cell decreases as the temperature increases. However, since the solar cell 1006 according to the present embodiment has the radiation window 15 at the important point of the laminated structure, it is possible to improve the temperature balance of the entire solar cell while maintaining the thermal mechanical strength and electrical characteristics. I'll do it.
  • FIG. 9 shows a solar cell 1007 in which the base battery layer 150, the second battery layer 151, the third battery layer 152, and the fourth battery layer 153 are stacked and connected in series.
  • the functional thin film 16 is further laminated on the fourth battery layer 153.
  • the base battery layer 150, the second battery layer 151, the third battery layer 152, and the fourth battery layer 153 at least one layer is an organic battery layer, and at least one layer is an inorganic battery layer.
  • an electric circuit connected to a solar cell boosts a voltage using an inverter and transmits it as a commercial voltage.
  • this electric circuit has an electrical limit, it is necessary to avoid excessive light energy. is there.
  • the functional thin film 16 is a thin film having a photochromic material force, an excessive amount of solar power can protect the solar cell circuit.
  • the functional thin film 16 described above also has the power of an organic substance having phosphorescent characteristics, light source conversion is also performed in the spectral dead zone (for example, the ultraviolet region) for the organic semiconductor and inorganic semiconductor constituting the solar cell 1007. be able to.
  • photochromic material intends a material that changes color upon irradiation with light and returns to its original color in the dark.
  • Preferred photochromic materials include polydiacetylene or materials sensitized with organic dyes.
  • organic substance having phosphorescent properties means that the direction of electron spin in the excited state is the same direction (triplet excited state), and the electron can return to its original activation. A material that is long to some extent and that stays in time (on the order of a few milliseconds) is intended. Examples of such an organic substance include iridium complex (Ir (ppy) 3).
  • the population of electrons and holes may be increased by modifying the impurities doped in the body.
  • the solar cell according to the present invention in order to further improve the photoelectric conversion efficiency, it is only necessary to improve the characteristics of the sunlight receiving surface. Since it is constituted by a laminated structure, the solar cell according to the present invention has a plurality of light receiving surfaces. Therefore, sunlight can be refracted, reflected, and Z or interfered at the interface of multiple thin films with different refractive indices, potentially reducing conversion efficiency.
  • the material which comprises a battery layer, and its thickness is just to design suitably the material which comprises a battery layer, and its thickness.
  • the existing technology may be used as it is for the inorganic battery layer, but the material cost can be reduced more than before by thinning the Si wafer, and Flexibility can be imparted.
  • a flexible high-efficiency solar cell can be realized by using a thinner silicon substrate (12 m).
  • device manufacturing technology such as organic EL should be applied to the organic battery layer.
  • the solar cell according to the present invention it is preferable to use a transparent electrode so that light is sufficiently transmitted and the photoelectric conversion efficiency of the solar cell is not reduced. It is also preferable to adopt a “comb shape” shape.
  • the generation of carriers is limited only to the pn junction in the organic battery layer and the pn junction in the inorganic battery layer. It is not necessary to perform Schottky bonding at the interface between the organic battery layer and the electrode, the interface between the inorganic battery layer and the electrode, and the interface between Z or the organic battery layer and the inorganic battery layer. Also, those skilled in the art will readily understand that carriers (holes and electrons) can be generated at the interface.
  • the solar cell according to the present invention successfully utilizes the physical properties of the organic semiconductor thin film,
  • the mechanical structure of the battery can be made thin and lightweight.
  • the solar cell according to the present invention can be applied as it is with the prior art relating to the production of solar cells having inorganic semiconductor power.
  • the solar cell according to the present invention can be applied to most electrical products by providing a charging function to the secondary battery, and can be used not only outdoors but also in space. Become.
  • a high-efficiency solar cell can be easily manufactured as a flexible structure, so that it can be quickly marketed as a substitute for a conventional solar cell. it can.
  • the degree of freedom of installation of solar cells is increased and it can be applied to various consumer products.
  • electronic products for outdoor use for example, mobile phones, laptop computers, digital cameras, It can be applied to wearable clothing, medical care) and can be applied to the outer wall of various transportation means (eg trains, buses, passenger cars, airplanes, ships, etc.) to supply energy to the transportation means.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A photovoltaic power generating device (solar cell) with improved power generating efficiency and cost efficiency to be applied to wider range use. The solar cell is formed by stacking an organic cell layer provided by bonding a p-type organic semiconductor and an n-type organic semiconductor, and an inorganic cell layer provided by bonding a p-type inorganic semiconductor and an n-type inorganic semiconductor. Each of the solar cell layers is thinned to be flexible.

Description

明 細 書  Specification
積層型有機無機複合高効率太陽電池  Stacked organic / inorganic composite high-efficiency solar cells
技術分野  Technical field
[0001] 本発明は、太陽光エネルギーを電気エネルギーに変換する太陽電池に関し、特に [0001] The present invention relates to a solar cell for converting solar energy into electric energy, and in particular
、有機半導体薄膜からなる有機系電池層と無機半導体薄膜からなる無機系電池層と の積層構造を有する高効率太陽電池および Zまたは有機薄膜太陽電池に関するも のである。さらに本発明は、当該太陽電池を構成する方法、およびさらに機能性薄膜 を積層することによって特性を改善する複合電池に関するものである。 The present invention also relates to a high-efficiency solar cell and a Z or organic thin-film solar cell having a laminated structure of an organic battery layer made of an organic semiconductor thin film and an inorganic battery layer made of an inorganic semiconductor thin film. Furthermore, the present invention relates to a method for constructing the solar cell and a composite battery for improving characteristics by laminating a functional thin film.
背景技術  Background art
[0002] 近年、太陽光発電に関する技術が著しく発達し、種々の太陽電池が商品として流 通している。「太陽力もの光エネルギーを電気エネルギーに変換」する太陽光発電は 、(1)エネルギー源が膨大で枯渴しない、(2)クリーンなエネルギー源であり、発電時 には二酸ィ匕炭素を排出しない、(3)電力を自給できる、などの利点を有し、屋外での 利用だけでなく宇宙での利用も可能な技術である。  [0002] In recent years, technologies related to solar power generation have been remarkably developed, and various types of solar cells have been distributed as commercial products. Solar power generation that “converts light energy from solar power into electrical energy” is (1) a large energy source that does not wither, and (2) a clean energy source. This technology has the advantages of not discharging and (3) self-sufficiency of electricity, and it can be used not only outdoors but also in space.
[0003] 太陽電池の種類としては、シリコン半導体を材料に使用するもの(結晶系およびァ モルファス (非結晶系))と化合物半導体を材料に使用するものとに大別され、開発中 のものも含めるとさらに多岐にわたる。太陽電池の技術開発については、変換効率の 向上やコストダウンなどが図られている。  [0003] The types of solar cells are broadly divided into those using silicon semiconductors as materials (crystalline and amorphous (non-crystalline)) and those using compound semiconductors as materials. Some are under development. Including a wider range. With regard to solar cell technology development, efforts are being made to improve conversion efficiency and reduce costs.
[0004] 現在の主流である太陽電池としては、有機半導体または無機半導体を用いる固体 太陽電池が挙げられる。有機半導体を用いる固体太陽電池は、一般に、有機半導 体の単独層と、金属または異なる有機半導体カゝらなる単独層との pn接合部を介する 単純な接合からなる(例えば、特許文献 1および非特許文献 1および 2を参照のこと) 。無機半導体の積層構造を有する固体太陽電池は、例えば、特許文献 2〜4に開示 されている。また、上記以外に、有機半導体と無機半導体の単純な接合力もなる固 体太陽電池 (例えば、非特許文献 3を参照のこと)、および有機半導体と無機半導体 との接合部を共蒸着によって複合化することによって変換効率を改善した固体太陽 電池が知られている(例えば、特許文献 5を参照のこと)。 〔特許文献 1〕 [0004] Solar cells that are currently mainstream include solid solar cells that use organic or inorganic semiconductors. A solid solar cell using an organic semiconductor generally consists of a simple junction via a pn junction between a single layer of an organic semiconductor and a single layer made of metal or a different organic semiconductor (for example, Patent Document 1 and (See Non-Patent Documents 1 and 2). For example, Patent Documents 2 to 4 disclose solid solar cells having a laminated structure of inorganic semiconductors. In addition to the above, solid solar cells that have a simple bonding force between organic semiconductors and inorganic semiconductors (for example, see Non-Patent Document 3), and the junctions between organic semiconductors and inorganic semiconductors are compounded by co-evaporation. Thus, a solid solar cell with improved conversion efficiency is known (for example, see Patent Document 5). [Patent Document 1]
特開平 6— 310746号公報(平成 6年 11月 4日公開)  Japanese Laid-Open Patent Publication No. 6-310746 (published on November 4, 1994)
〔特許文献 2〕 [Patent Document 2]
特開 2003— 273373号公報(平成 15年 9月 26日公開)  JP 2003-273373 A (published September 26, 2003)
〔特許文献 3〕 [Patent Document 3]
特開平 11― 54774号公報(平成 11年 2月 26日公開)  JP 11-54774 A (published February 26, 1999)
〔特許文献 4〕 [Patent Document 4]
特開平 7— 58360号公報(平成 7年 3月 3日公開)  JP 7-58360 A (published March 3, 1995)
〔特許文献 5〕 [Patent Document 5]
特開 2002— 100793公報(平成 14年 4月 5日公開)  JP 2002-100793 Gazette (published April 5, 2002)
〔非特許文献 1〕 [Non-Patent Document 1]
D. L. Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw, C. Fishman, Applied Physics Letters, 32, 495 (1978)  D. L. Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw, C. Fishman, Applied Physics Letters, 32, 495 (1978)
〔非特許文献 2〕 [Non-Patent Document 2]
C. W. Tang, Applied Physics Letters, 48, 183 (1986)  C. W. Tang, Applied Physics Letters, 48, 183 (1986)
〔非特許文献 3〕 [Non-Patent Document 3]
A. M. Hor, R. O. Loutfy, Canadian Journal of Chemistry, 61, 901 ( 1983) )  A. M. Hor, R. O. Loutfy, Canadian Journal of Chemistry, 61, 901 (1983))
太陽光発電に関する技術分野にぉ 、て、光電変換効率が優れた太陽電池が好ま しい。変換効率は、(出力電気エネルギー Z入射する太陽光エネルギー) X 100 (% )で表され、太陽電池の最も重要な性能指数である。この改善は、主にシリコン単結 晶またはアモルファスシリコンを用いて不純物を低減することによってなされている。 また、コスト効率が優れた太陽電池が好ましい。このコスト効率は、太陽電池装置から 得られる発電量を金額に換算したもの、ならびに製品の製造コストおよびランニング コストを、原子力発電のコストおよび長距離送電に伴う損失 (いわゆる、伝送ロス)と比 較して評価されている。  In the technical field related to photovoltaic power generation, solar cells having excellent photoelectric conversion efficiency are preferred. The conversion efficiency is expressed as (output electric energy Z incident solar energy) X 100 (%), and is the most important figure of merit of the solar cell. This improvement is made mainly by reducing impurities by using silicon single crystal or amorphous silicon. Moreover, a solar cell with excellent cost efficiency is preferable. This cost-efficiency is a comparison of the amount of power generated from solar cell devices converted into monetary amounts, as well as product manufacturing costs and running costs, compared with nuclear power generation costs and losses associated with long-distance transmission (so-called transmission losses). Have been evaluated.
特許文献 1および非特許文献 1および 2に記載されて 、るような有機太陽電池は、 製造コストが安ぐ軽量かつフレキシブルである力 光電変換効率がよくない。特許文 献 2〜4に記載されているような無機太陽電池は、光電変換効率がよいが、製造コス トが力かる上に機械的特性に劣る (すなわち、破損しやすい)。また、非特許文献 3お よび特許文献 5に記載されているような有機 ·無機複合薄膜太陽電池は、光電流を 損ない易ぐ効率よく電力を取り出すことができない上に、工業製品としての歩留まり の問題を有する。 Such organic solar cells described in Patent Document 1 and Non-Patent Documents 1 and 2 have a light and flexible power photoelectric conversion efficiency that is low in manufacturing cost. Patent text Inorganic solar cells such as those described in Appendix 2-4 have good photoelectric conversion efficiency, but they are expensive to manufacture and inferior in mechanical properties (ie, easily damaged). In addition, organic / inorganic composite thin-film solar cells such as those described in Non-Patent Document 3 and Patent Document 5 cannot easily take out electric power easily because of loss of photocurrent, and also have a yield as an industrial product. Have a problem.
[0006] 太陽電池のコスト効率に関して、太陽電池システムを商用ラインに接続することによ つて、「小口の売電事業」として太陽電池システムの付帯部分を軽減しコストを削減し ている。また、国の奨励政策による補助によってコストの削減が目論まれているが、普 及には時間を要している。従って、太陽電池単体のコスト効率を更に改善することが 必要とされている。  [0006] Concerning the cost efficiency of solar cells, by connecting the solar cell system to a commercial line, the “small power selling business” reduces the incidental part of the solar cell system and reduces costs. In addition, although the government is aiming to reduce costs by subsidizing the government's incentive policy, it takes time to disseminate. Therefore, there is a need to further improve the cost efficiency of solar cells alone.
[0007] し力しながら、発電の原理は既に確立しており、既知の方法ではコスト効率は限界 に近づきつつある。従って、光電変換効率だけでなくコスト効率にも優れた太陽電池 の開発が熱望されている。  [0007] However, the principle of power generation has already been established, and the cost efficiency of the known method is approaching its limit. Therefore, the development of solar cells with excellent cost efficiency as well as photoelectric conversion efficiency is eagerly desired.
発明の開示  Disclosure of the invention
[0008] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、有機半導体か らなる太陽電池と無機半導体力 なる太陽電池の不利益を互いに補い合う、光電変 換効率およびコスト効率に優れかつフレキシブルな太陽電池を提供することである。 換言すれば、本発明の目的は、改善された発電効率およびコスト効率を有し、改善さ れた機械的特性に基づく広範な応用が可能な太陽電池を供給することである。  [0008] The present invention has been made in view of the above-mentioned problems, and its object is to compensate for the disadvantages of a solar cell made of an organic semiconductor and a solar cell made of an inorganic semiconductor, and It is to provide a cost-effective and flexible solar cell. In other words, the object of the present invention is to provide a solar cell with improved power generation efficiency and cost efficiency and capable of wide application based on improved mechanical properties.
[0009] 本発明者らは、低コストな有機半導体力 なる有機系電池層を無機半導体力 なる 無機系電池層に積層することによって太陽電池の高出力化が可能となることを見出 した。本発明者らはまた、有機系電池層および無機系電池層によって電力変換され るそれぞれの波長を考慮することによって光電変換効率が可能となることを見出した 。さらに本発明者らは、破損に強い有機系電池層が被覆膜として作用するので、無 機系電池層に無機半導体薄膜 (例えば、 Siウェハ (膜厚 10ミクロン程度))を用いるこ とによって、フレキシブルな太陽電池を作製することができることを見出した。  [0009] The present inventors have found that a high output of a solar cell can be achieved by laminating an organic battery layer having a low-cost organic semiconductor power on an inorganic battery layer having an inorganic semiconductor power. The present inventors have also found that photoelectric conversion efficiency is possible by taking into consideration the respective wavelengths to which power is converted by the organic battery layer and the inorganic battery layer. Furthermore, since the organic battery layer that is resistant to damage acts as a coating film, the present inventors have used an inorganic semiconductor thin film (for example, a Si wafer (thickness of about 10 microns)) as the organic battery layer. The present inventors have found that a flexible solar cell can be produced.
[0010] 本発明に係る太陽電池は、 p型有機半導体および n型有機半導体を接合してなる 有機系電池層と、 P型無機半導体および n型無機半導体を接合してなる無機系電池 層との積層構造を有することを特徴として 、る。 [0010] A solar cell according to the present invention includes an organic battery layer formed by bonding a p-type organic semiconductor and an n-type organic semiconductor, and an inorganic battery formed by bonding a P-type inorganic semiconductor and an n-type inorganic semiconductor. It is characterized by having a laminated structure with a layer.
[0011] 本発明に係る太陽電池は、 2層以上の上記有機系電池層または無機系電池層を 有することが好ましい。  [0011] The solar battery according to the present invention preferably has two or more organic battery layers or inorganic battery layers.
[0012] 本発明に係る太陽電池は、シャント回路をさらに有することが好ましい。 [0012] The solar cell according to the present invention preferably further includes a shunt circuit.
[0013] 本発明に係る太陽電池は、有窓であることが好ま 、。 [0013] The solar cell according to the present invention preferably has a window.
[0014] 本発明に係る太陽電池において、上記 p型有機半導体および n型有機半導体が 1 nm〜l μ mの範囲の厚さを有することが好ましい。  In the solar cell according to the present invention, it is preferable that the p-type organic semiconductor and the n-type organic semiconductor have a thickness in the range of 1 nm to 1 μm.
[0015] 本発明に係る太陽電池において、上記 p型無機半導体および n型無機半導体が 1[0015] In the solar cell according to the present invention, the p-type inorganic semiconductor and the n-type inorganic semiconductor are 1
Οηπ!〜 500 μ mの範囲の厚さを有することが好ましい。 Οηπ! It preferably has a thickness in the range of ~ 500 μm.
[0016] 本発明に係る太陽電池において、上記 p型有機半導体が、銅フタロシアニン、ペン タセン、およびへキサチオフヱンカもなる群より選択されることが好まし 、。 [0016] In the solar cell according to the present invention, it is preferable that the p-type organic semiconductor is selected from the group consisting of copper phthalocyanine, pentacene, and hexathionocarbona.
[0017] 本発明に係る太陽電池において、上記 n型有機半導体が、フラーレン、アルミ-ゥ ムキノリノール錯体、およびチタ-ルフタロシアニン力もなる群より選択されることが好 ましい。 [0017] In the solar cell according to the present invention, the n-type organic semiconductor is preferably selected from the group consisting of fullerenes, aluminum quinolinol complexes, and tital phthalocyanine power.
[0018] 本発明に係る太陽電池において、上記 p型無機半導体は、第 IV族金属 (例えば、 S i、 Geなど)または GaAs、 GalnPなどのような化合物半導体が p型ドーパント(例えば 、ボロンまたはアルミニウムなど)によってドープされた材料であることが好ましい。  [0018] In the solar cell according to the present invention, the p-type inorganic semiconductor is a Group IV metal (eg, Si, Ge, etc.) or a compound semiconductor such as GaAs, GalnP, etc., is a p-type dopant (eg, boron or Preferably, the material is doped with aluminum.
[0019] 本発明に係る太陽電池において、上記 n型無機半導体は、第 IV族金属 (例えば、 Si、 Geなど)または GaAs、 GalnPなどのような化合物半導体力 型ドーパント(例え ば、ヒ素またはリンなど)によってドープされた材料であることが好ましい。  In the solar cell according to the present invention, the n-type inorganic semiconductor is a group IV metal (eg, Si, Ge, etc.) or a compound semiconductor power type dopant (eg, arsenic or phosphorus) such as GaAs, GalnP, etc. Etc.) is preferable.
[0020] 本発明に係る太陽電池は、上記積層の最外層上にフォトクロミズム物質力 なる薄 膜をさらに積層することが好ましい。  [0020] In the solar cell according to the present invention, it is preferable that a thin film having photochromic material strength is further laminated on the outermost layer of the laminate.
[0021] 本発明に係る太陽電池は、上記積層の最外層上に燐光特性を有する有機物から なる薄膜をさらに積層することが好ましい。  [0021] In the solar cell according to the present invention, it is preferable to further stack a thin film made of an organic material having phosphorescent properties on the outermost layer of the stack.
[0022] 本発明に係る太陽電池は、透明電極を用いることが好ましい。  [0022] The solar cell according to the present invention preferably uses a transparent electrode.
[0023] 本発明に係る太陽電池において、電極がくし型形状であることが好ましい。  In the solar cell according to the present invention, it is preferable that the electrode has a comb shape.
[0024] 本発明に係る太陽電池において、電極が Inn!〜 lOOnmの範囲の厚さを有するこ とが好ましい。 [0025] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。 [0024] In the solar cell according to the present invention, the electrode is Inn! It preferably has a thickness in the range of ~ lOOnm. [0025] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]図 1は、本発明の一実施形態を示し、 p型有機半導体および n型有機半導体を 接合してなる有機系電池層と、 p型無機半導体および n型無機半導体を接合してなる 無機系電池層との積層構造を有する太陽電池の断面図である。  FIG. 1 shows an embodiment of the present invention, and shows an organic battery layer formed by joining a p-type organic semiconductor and an n-type organic semiconductor, and a p-type inorganic semiconductor and an n-type inorganic semiconductor. It is sectional drawing of the solar cell which has a laminated structure with the inorganic type battery layer formed by joining.
[図 2]図 2は、各波長における太陽光放射電力およびシリコン太陽電池スペクトル応 答を示すグラフである。  FIG. 2 is a graph showing the solar radiation power and the silicon solar cell spectrum response at each wavelength.
[図 3]図 3は、本発明の一実施形態を示し、複数の電池層が積層してなる太陽電池の 断面図である。  FIG. 3 is a cross-sectional view of a solar cell in which a plurality of battery layers are laminated, showing an embodiment of the present invention.
[図 4]図 4は、本発明の一実施形態を示し、シャント回路を有する太陽電池の回路図 を示す。  FIG. 4 shows an embodiment of the present invention and shows a circuit diagram of a solar cell having a shunt circuit.
[図 5]図 5は、本発明の一実施形態を示し、有機系電池層によって破損した無機系電 池層の飛散を防ぐ態様を示す図である。  FIG. 5 is a diagram showing an embodiment of the present invention and showing a mode for preventing scattering of an inorganic battery layer damaged by an organic battery layer.
[図 6(A)]図 6 (A)は、本発明の一実施形態を示し、複数の太陽電池セルからなる太 陽電池モジュールの形状を示す図である。  [FIG. 6 (A)] FIG. 6 (A) shows an embodiment of the present invention and is a diagram showing the shape of a solar cell module composed of a plurality of solar cells.
[図 6(B)]図 6 (B)は、本発明の一実施形態を示し、複数の太陽電池セルからなる太陽 電池モジュールの回路図である。  [FIG. 6 (B)] FIG. 6 (B) shows an embodiment of the present invention and is a circuit diagram of a solar cell module including a plurality of solar cells.
[図 7]図 7は、本発明の一実施形態を示し、複数の筒状の太陽電池セルカゝらなる高効 率の太陽電池モジュールを示す図である。  FIG. 7 shows an embodiment of the present invention, and is a diagram showing a high-efficiency solar cell module including a plurality of cylindrical solar cell cells.
[図 8]図 8は、本発明の一実施形態を示し、放熱窓を設けた太陽電池を示す図である  FIG. 8 is a view showing an embodiment of the present invention and showing a solar cell provided with a heat radiating window.
[図 9]図 9は、本発明の一実施形態を示し、最外層に機能性薄膜を積層した積層型 太陽電池を示す斜視図である。 FIG. 9 is a perspective view showing a laminated solar cell in which a functional thin film is laminated on the outermost layer according to one embodiment of the present invention.
符号の説明  Explanation of symbols
[0027] l :p型有機半導体 [0027] l: p-type organic semiconductor
2 :n型有機半導体 :p型無機半導体 :n型無機半導体:電極2: n-type organic semiconductor : p-type inorganic semiconductor: n-type inorganic semiconductor: electrode
:電極:electrode
:電極:electrode
:出力端子:出力端子:整流素子:シャント抵抗:出力端子:出力端子:抵抗: Output terminal: Output terminal: Rectifier element: Shunt resistor: Output terminal: Output terminal: Resistor
:放射窓: Radiant window
:機能性薄膜:有機系電池層:無機系電池層:基盤電池層:第 2電池層:第 3電池層:第 4電池層:基盤電池層:第 2電池層:有機系電池層:無機系電池層:基盤電池層:第 2電池層:第 3電池層:第 4電池層 150:基盤電池層 : Functional thin film: Organic battery layer: Inorganic battery layer: Base battery layer: Second battery layer: Third battery layer: Fourth battery layer: Base battery layer: Second battery layer: Organic battery layer: Inorganic Battery layer: Base battery layer: Second battery layer: Third battery layer: Fourth battery layer 150: Base battery layer
151 :第 2電池層  151: Second battery layer
152 :第 3電池層  152: Third battery layer
153 :第 4電池層  153: Fourth battery layer
1000 : :太陽電池  1000:: Solar cell
1001 : :太陽電池  1001:: Solar cell
1002 : :太陽電池  1002:: Solar cell
1003 : :太陽電池  1003:: Solar cell
1004 : :太陽電池セル  1004:: Solar cell
1005 : :太陽電池セル  1005:: Solar cell
1006 : :太陽電池  1006:: Solar cell
1007 : :太陽電池  1007:: Solar cell
2000 : :太陽電池モジュール  2000:: Solar cell module
2001 : :太陽電池モジュール  2001:: Solar cell module
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 太陽電池は、 p型半導体と n型半導体の 2種類の半導体を使用して発電する。まず 、半導体において、入射した太陽光に起因して電子(一)と正孔(+ )の対が生じる。 次いで、 p型半導体と n型半導体との接合面において、電子は n型へ、正孔は p型へ 引き寄せられる。その結果、 n型半導体と p型半導体との間に起電力(電圧)が生じる 。これらの半導体に電極を取付けて導線を接続することによって、電子は n型から p型 へ、正孔は p型力 n型へ流れ、電気(直流)が取り出せる(すなわち、発電する)。  [0028] A solar cell generates electricity using two types of semiconductors, a p-type semiconductor and an n-type semiconductor. First, in a semiconductor, pairs of electrons (one) and holes (+) are generated due to incident sunlight. Next, at the junction surface between the p-type semiconductor and the n-type semiconductor, electrons are attracted to the n-type and holes are attracted to the p-type. As a result, an electromotive force (voltage) is generated between the n-type semiconductor and the p-type semiconductor. By attaching electrodes to these semiconductors and connecting the conductors, electrons flow from n-type to p-type, holes flow from p-type force n-type, and electricity (direct current) can be extracted (ie, generate electricity).
[0029] 本発明の一実施形態につ!、て図 1に基づ!/、て説明すると以下の通りである。 [0029] One embodiment of the present invention is described below with reference to FIG.
[0030] 図 1は、 p型有機半導体 1と n型有機半導体 2とを接合してなる有機系電池層 100、 および p型無機半導体 3と n型無機半導体 4とを接合してなる無機系電池層 101が、 電極 5を挟んで積層された太陽電池 1000の断面図を示す。本実施形態において、 太陽電池 1000は、積層構造の両側に電極 6および 7を備える。本実施形態に係る 太陽電池 1000は、有機系電池層 100と無機系電池層 101とが直列に接続されて 、 る。 [0031] 本明細書中で使用される場合、用語「有機半導体」は、光電導性有機半導体 (光照 射によってキャリアを発生出来る有機半導体)が意図される。好ましい p型有機半導 体としては、銅フタロシアニン、ペンタセン、またはへキサチォフェンのような正孔を効 率的に伝導する材料が挙げられるがこれらに限定されない。好ましい n型有機半導 体としては、フラーレン、アルミニウムキノリノール錯体、またはチタ-ルフタロシアニン のような電子を効率的に伝導する材料が挙げられるがこれらに限定されない。 [0030] FIG. 1 shows an organic battery layer 100 formed by bonding a p-type organic semiconductor 1 and an n-type organic semiconductor 2, and an inorganic battery formed by bonding a p-type inorganic semiconductor 3 and an n-type inorganic semiconductor 4. A cross-sectional view of a solar cell 1000 in which a battery layer 101 is stacked with an electrode 5 interposed therebetween is shown. In the present embodiment, the solar cell 1000 includes electrodes 6 and 7 on both sides of the laminated structure. The solar cell 1000 according to this embodiment includes an organic battery layer 100 and an inorganic battery layer 101 connected in series. [0031] As used herein, the term "organic semiconductor" intends a photoconductive organic semiconductor (an organic semiconductor capable of generating carriers by light irradiation). Preferred p-type organic semiconductors include, but are not limited to, materials that efficiently conduct holes, such as copper phthalocyanine, pentacene, or hexachiphene. Preferred n-type organic semiconductors include, but are not limited to, materials that conduct electrons efficiently, such as fullerenes, aluminum quinolinol complexes, or tital phthalocyanine.
[0032] 本明細書中で使用される場合、用語「無機半導体」は、不純物ドープによって p型 特性または n型特性を制御することができる無機材料が意図される。好ま U、p型無 機半導体としては、 Si、 Geなどのような第 IV族金属または GaAs、 GalnPなどのよう な化合物半導体力 ¾型ドーパント(例えば、ボロンまたはアルミニウムなど)によってド ープされた材料が挙げられ、好ましい n型無機半導体としては、 Si、 Geなどのような 第 IV族金属または GaAs、 GalnPなどのような化合物半導体が n型ドーパント(例え ば、ヒ素またはリンなど)によってドープされた材料が挙げられる。  [0032] As used herein, the term "inorganic semiconductor" intends an inorganic material whose p-type or n-type characteristics can be controlled by impurity doping. Preferred U and p type inorganic semiconductors are doped with Group IV metals such as Si and Ge, or compound semiconductor power such as GaAs and GalnP, such as boron or aluminum. Preferred n-type inorganic semiconductors include materials such as Group IV metals such as Si and Ge, or compound semiconductors such as GaAs and GalnP doped with n-type dopants (eg arsenic or phosphorus). Materials.
[0033] p型有機半導体 1と n型有機半導体 2との接合、および p型無機半導体 3と n型無機 半導体 4との接合は、任意の公知の方法 (例えば、有機気相成長法、蒸着法、または スピンコート法)を用いて行なえばよい。また、有機系電池層 100と無機系電池層 10 1との積層は、有機気相成長法、蒸着法、スピンコート法、キャスト法、ラングミュア— プロジェット法 (LB法)、スプレー法、または自己組織ィ匕による成膜法などによって行 うことが好ましいが、これらに限定されない。  [0033] The junction between the p-type organic semiconductor 1 and the n-type organic semiconductor 2 and the junction between the p-type inorganic semiconductor 3 and the n-type inorganic semiconductor 4 may be performed by any known method (for example, organic vapor phase epitaxy, vapor deposition, etc. Or spin coating method). In addition, the lamination of the organic battery layer 100 and the inorganic battery layer 101 can be performed by organic vapor deposition, vapor deposition, spin coating, casting, Langmuir-projet (LB), spray, or self Although it is preferable to carry out by the film-forming method by a structure | tissue etc., it is not limited to these.
[0034] 本実施形態に係る太陽電池 1000は、有機系電池層 100および無機系電池層 10 1を積層することによって、これらの有する互いに異なる光波長特性を利用して感度 の波長広がり幅を広く取り光電変換効率を高めることができる。また、本実施形態に 係る太陽電池 1000は、積層直列回路を形成するので、電池のインピーダンスを高め ることができる。このため、太陽電池 1000は、軽量かつフレキシブルで、低コストを実 現し、さらなる高出力化を図ることができる。本発明に係る太陽電池は、積層した無機 系電池層および有機系電池層が、それぞれ異なる波長を分離することによって光電 変換効率を高めることができる。  [0034] The solar cell 1000 according to the present embodiment has a wide wavelength spread of sensitivity by stacking the organic battery layer 100 and the inorganic battery layer 101, and utilizing the different light wavelength characteristics of these. The photoelectric conversion efficiency can be increased. Moreover, since the solar cell 1000 according to this embodiment forms a stacked series circuit, the impedance of the battery can be increased. For this reason, the solar cell 1000 is lightweight and flexible, can realize low cost, and can achieve higher output. In the solar cell according to the present invention, the laminated inorganic battery layer and organic battery layer can increase the photoelectric conversion efficiency by separating different wavelengths.
[0035] 本発明に係る太陽電池において、光電変換効率を改善するためには、各波長にお ける太陽光放射電力およびシリコン太陽電池スペクトル応答(図 2)を参照して、無機 半導体 (p型および n型)が所望の光スペクトル帯域を有するように遷移準位間のエネ ルギーギャップを決定すればよい。本発明に係る太陽電池において、 580nm以上 の波長を有機系電池層が利用し、 580nm以下の波長を無機系電池層が利用するこ とが好ましい。 [0035] In the solar cell according to the present invention, in order to improve the photoelectric conversion efficiency, each wavelength is improved. The energy gap between the transition levels should be determined so that the inorganic semiconductor (p-type and n-type) has the desired optical spectral band by referring to the solar radiation power and the silicon solar cell spectral response (Fig. 2). That's fine. In the solar cell according to the present invention, it is preferable that the organic battery layer uses a wavelength of 580 nm or more and the inorganic battery layer uses a wavelength of 580 nm or less.
[0036] 本発明の他の実施形態について図 3に基づいて説明すると以下の通りである。  [0036] Another embodiment of the present invention is described below with reference to FIG.
[0037] 図 3は、複数の電池層を積層して形成した本発明の一実施形態を示す。図 3に示 す太陽電池 1001において、基盤電池層 110、第 2電池層 111、第 3電池層 112およ び第 4電池層 113が積層して直列に接続している。基盤電池層 110、第 2電池層 11 1、第 3電池層 112および第 4電池層 113のうち、少なくとも 1層が有機系電池層であ り、少なくとも 1層が無機系電池層である。 FIG. 3 shows an embodiment of the present invention formed by stacking a plurality of battery layers. In the solar cell 1001 shown in FIG. 3, the base battery layer 110, the second battery layer 111, the third battery layer 112, and the fourth battery layer 113 are stacked and connected in series. Of the base battery layer 110, the second battery layer 111, the third battery layer 112, and the fourth battery layer 113, at least one layer is an organic battery layer, and at least one layer is an inorganic battery layer.
[0038] 本実施形態に係る太陽電池は、図 3に示すように、複数の電池層が積層させること によって、より広い光スペクトル帯域を利用して光電変換効率をより向上させることが できる。 As shown in FIG. 3, the solar cell according to the present embodiment can further improve the photoelectric conversion efficiency by using a wider optical spectrum band by laminating a plurality of battery layers.
[0039] 本発明の別の実施形態について図 4に基づいて説明すると以下の通りである。  [0039] Another embodiment of the present invention is described below with reference to FIG.
[0040] 本発明に係る太陽電池は、シャント回路をさらに有することが好ましい。本明細書中 で使用される場合、用語「シャント回路」は、むらのある入力電圧を一定電圧に整える ための、抵抗および整流素子を含む回路が意図される。 [0040] The solar cell according to the present invention preferably further includes a shunt circuit. As used herein, the term “shunt circuit” is intended to include a circuit that includes a resistor and a rectifying element to regulate the uneven input voltage to a constant voltage.
[0041] 図 4は、直列回路を形成した本発明に係る太陽電池の一実施形態の回路図を示す 。図 4に示す本実施形態に係る太陽電池 1002の回路図において、基盤電池層 120 と第 2電池層 121は、出力端子 8および 9に直列に接続する。基盤電池層 120および 第 2電池層 121は、いずれか一方が有機系電池層であり、他方が無機系電池層であ る。 FIG. 4 shows a circuit diagram of an embodiment of the solar cell according to the present invention in which a series circuit is formed. In the circuit diagram of solar cell 1002 according to this embodiment shown in FIG. 4, base battery layer 120 and second battery layer 121 are connected in series to output terminals 8 and 9. One of the base battery layer 120 and the second battery layer 121 is an organic battery layer, and the other is an inorganic battery layer.
[0042] 本実施形態にぉ 、て、太陽電池 1002は、異なる電圧特性および電流特性を有す る基盤電池層 120および第 2電池層 121が生じるボトルネックを消滅させるために、 整流素子 10およびシャント抵抗 11を備える。  In the present embodiment, the solar cell 1002 includes the rectifier element 10 and the solar cell 1002 in order to eliminate the bottleneck caused by the base battery layer 120 and the second battery layer 121 having different voltage characteristics and current characteristics. A shunt resistor 11 is provided.
[0043] 本発明のさらに別の実施形態について図 5に基づいて説明すると以下の通りである [0044] 図 5は、有機系電池層 130と無機系電池層 131との積層構造力もなる太陽電池 10 03を示す。 [0043] Still another embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a solar cell 1003 that also has a laminated structural force of the organic battery layer 130 and the inorganic battery layer 131.
[0045] 本発明に係る太陽電池において、機械的に改善する(すなわち、フレキシブルにす る)ために、太陽電池自体を薄くすることが好ましい。そのため、本発明に係る太陽電 池を構成する有機半導体および無機半導体は、薄膜であることが好ましい。一般に、 有機半導体は共有結合に基づく柔軟かつ強固な化学結合力を有するが、無機半導 体は結晶構造のため薄膜にすると破断しやすい。しかし、本発明に係る太陽電池に ぉ 、て、薄膜の積層構造によって無機半導体薄膜の破壊を防ぐことができる。  In the solar cell according to the present invention, in order to improve mechanically (that is, to make it flexible), it is preferable to make the solar cell itself thin. For this reason, the organic semiconductor and the inorganic semiconductor constituting the solar cell according to the present invention are preferably thin films. In general, an organic semiconductor has a flexible and strong chemical bonding force based on a covalent bond, but an inorganic semiconductor is easily broken when formed into a thin film because of its crystal structure. However, the solar cell according to the present invention can prevent the inorganic semiconductor thin film from being broken by the laminated structure of the thin films.
[0046] また、無機半導体は薄層化することによってフレキシブルになる力 破損した場合 に飛散してしまう。図 5において、無機系半導体層 131は破断している。しかし、本実 施形態に係る太陽電池 1003は、無機系電池層 131の上部に有機系電池層 130を 積層する構造をとることによって、有機系電池層 130が被膜として働き、無機系電池 層 131が破損したときの飛散を防ぐことができる。  [0046] Further, the inorganic semiconductor is scattered when the layer becomes thin and becomes flexible. In FIG. 5, the inorganic semiconductor layer 131 is broken. However, the solar battery 1003 according to the present embodiment has a structure in which the organic battery layer 130 is stacked on the inorganic battery layer 131, so that the organic battery layer 130 functions as a film, and the inorganic battery layer 131. It is possible to prevent scattering when it is damaged.
[0047] 本明細書中で使用される場合、用語「薄膜」は、発電に寄与するに十分な厚さが意 図され、電流損失などを抑えるために可能な限り薄い膜が好ましぐ有機半導体に用 いるに好ましい薄膜は、 1ηπι〜1 /ζ πι、好ましくは、 5〜500nm、より好ましくは、 10 〜500nmの範囲の膜厚を有し、無機半導体に用いるに好ましい薄膜は、 ΙΟηπ!〜 5 00 μ m、好ましくは、 50nm〜500 μ mの膜厚を有する。また、フレキシブルであるた めには、無機半導体に用いるに好ましい薄膜は、 5〜50 /ζ πιの範囲の膜厚を有する ことが好ましい。  [0047] As used herein, the term "thin film" is intended to be thick enough to contribute to power generation, and an organic film that is as thin as possible is preferred to suppress current loss and the like. The preferred thin film for use in semiconductors has a thickness in the range of 1ηπι to 1 / ζ πι, preferably 5 to 500 nm, more preferably 10 to 500 nm, and the preferred thin film for use in inorganic semiconductors is πηπ! ˜500 μm, preferably 50 nm to 500 μm. In order to be flexible, a thin film preferable for use in an inorganic semiconductor preferably has a film thickness in the range of 5 to 50 / ζ πι.
[0048] 本発明のさらなる実施形態について図 6 (Α)および図 6 (Β)に基づいて説明すると 以下の通りである。  A further embodiment of the present invention will be described below with reference to FIG. 6 (Α) and FIG. 6 (Β).
[0049] 図 6 (Α)は、本発明に係る太陽電池 1004を 1つの小領域 (セル)とする、複数のセ ルからなる太陽電池モジュール 2000を示す図である。図 6 (B)は、図 6 (A)に示す太 陽電池モジュール 2000の回路図を示す。複数の太陽電池 1004力 図 6 (B)に示す ように、出力端子 12および 13に並列に接続されて一体の太陽電池モジュール 2000 として機能する。図 6 (B)において、基盤電池層 130と第 2電池層 131は、出力端子 1 2および 13に直列に接続する。基盤電池層 130および第 2電池層 131は、いずれか 一方が有機系電池層であり、他方が無機系電池層である。 FIG. 6 (6) is a diagram showing a solar cell module 2000 composed of a plurality of cells, in which the solar cell 1004 according to the present invention is one small region (cell). FIG. 6 (B) shows a circuit diagram of the solar cell module 2000 shown in FIG. 6 (A). Multiple solar cells 1004 force As shown in FIG. 6 (B), they are connected in parallel to the output terminals 12 and 13 and function as an integrated solar cell module 2000. In FIG. 6B, the base battery layer 130 and the second battery layer 131 are connected in series to the output terminals 12 and 13. The base battery layer 130 and the second battery layer 131 are either One is an organic battery layer, and the other is an inorganic battery layer.
[0050] 薄膜の太陽電池を製造する場合、その薄膜製造工程に起因して、電圧特性および 電流特性のばらつきが生じやすい。このようなばらつきを改善するために、本発明に 係る太陽電池を、図 6 (A)および図 6 (B)に示すように、セルの集合力 なるモジユー ルの形状(図 6 (A) )にして、モジュール全体を構成する回路(図 6 (B) )においてそれ ぞれのセルを構成する回路中に直列抵抗 14を挿入することによって、セルの負荷バ ランスを取ることができ、その結果、電気特性の改善をは力ることができる。  When manufacturing a thin film solar cell, variations in voltage characteristics and current characteristics are likely to occur due to the thin film manufacturing process. In order to improve such a variation, the solar cell according to the present invention is shaped into a module shape (FIG. 6 (A)) which is a collective force of cells as shown in FIGS. 6 (A) and 6 (B). Thus, by inserting the series resistor 14 in the circuit constituting each cell in the circuit constituting the entire module (Fig. 6 (B)), the load balance of the cell can be obtained. Can help improve the electrical characteristics.
[0051] また、フレキシブルな薄膜の太陽電池を用いると、光電変換効率をさらに向上させ る構造的を採ることができる。本発明のさらなる実施形態について図 7に基づいて説 明すると以下の通りである。  [0051] When a flexible thin-film solar cell is used, a structure that further improves the photoelectric conversion efficiency can be adopted. A further embodiment of the present invention will be described with reference to FIG.
[0052] 図 7は、本発明に係るシート状の太陽電池 1005を感光面を内側にして筒状に巻い たものを 1つのセルとする、複数のセルからなる太陽電池モジュール 2001を示す図 である。  [0052] Fig. 7 is a diagram showing a solar cell module 2001 composed of a plurality of cells, in which a sheet-like solar cell 1005 according to the present invention is wound into a cylindrical shape with the photosensitive surface inside, as one cell. is there.
[0053] 図 7において、太陽電池モジュール 2001に太陽光を導くと、複数の太陽電池 100 5の各々に入射し外部へ反射した太陽光は再び太陽電池 1005に入射する。従って 、一定量の太陽光が何度も太陽電池 1005へ入射を繰り返し、その結果、光電変換 効率をさらに向上させることができる。また、筒状の太陽電池 1005を多数並べること によって面積当りの光電変換効率を高めることができる。  In FIG. 7, when sunlight is guided to the solar cell module 2001, the sunlight that has entered each of the plurality of solar cells 1005 and reflected to the outside enters the solar cell 1005 again. Accordingly, a certain amount of sunlight repeatedly enters the solar cell 1005, and as a result, the photoelectric conversion efficiency can be further improved. Further, by arranging a large number of cylindrical solar cells 1005, the photoelectric conversion efficiency per area can be increased.
[0054] 本発明のなおさらなる実施形態について図 8に基づいて説明すると以下の通りであ る。  [0054] A still further embodiment of the present invention will be described below with reference to FIG.
[0055] 本発明に係る太陽電池は、有窓であることが好ましい。図 8は、基盤電池層 140上 に第 2電池層 141および第 3電池層 142が積層された太陽電池 1006を示す。基盤 電池層 140、第 2電池層 141および第 3電池層 142のうち、少なくとも 1層が有機系 電池層であり、少なくとも 1層が無機系電池層である。太陽電池 1006には、第 2電池 層 141および第 3電池層 142を貫く放射窓 15が設けられている。図 8中、放射窓 15 は 1つであるが、複数設けられてもよい。  [0055] The solar cell according to the present invention preferably has a window. FIG. 8 shows a solar cell 1006 in which the second battery layer 141 and the third battery layer 142 are stacked on the base battery layer 140. Of the base battery layer 140, the second battery layer 141, and the third battery layer 142, at least one layer is an organic battery layer, and at least one layer is an inorganic battery layer. The solar cell 1006 is provided with a radiation window 15 that penetrates through the second battery layer 141 and the third battery layer 142. In FIG. 8, there is one radiation window 15, but a plurality of radiation windows 15 may be provided.
[0056] 太陽電池において、遷移準位によって定まる固有値を外れた光は電気に変換され ずに熱となる。特に、有機半導体と無機半導体との間での熱伝導度の差異によって 、太陽電池内の部分的な熱の歩留りが起こり、温度上昇を引き起こす。太陽電池は 温度上昇によって発電電圧が下がるので、このような温度上昇は好ましくない。しか し、本実施形態に係る太陽電池 1006は、積層構造の要所に放射窓 15を有するの で、熱的機械強度と電気特性を維持して太陽電池全体の温度バランスを改善するこ とがでさる。 In a solar cell, light that deviates from an eigenvalue determined by a transition level is not converted into electricity but becomes heat. In particular, due to the difference in thermal conductivity between organic and inorganic semiconductors In the solar cell, a partial heat yield occurs, causing a temperature rise. Such a temperature increase is not preferable because the generated voltage of the solar cell decreases as the temperature increases. However, since the solar cell 1006 according to the present embodiment has the radiation window 15 at the important point of the laminated structure, it is possible to improve the temperature balance of the entire solar cell while maintaining the thermal mechanical strength and electrical characteristics. I'll do it.
[0057] 本発明のなおさらなる実施形態について図 9に基づいて説明すると以下の通りであ る。  [0057] A still further embodiment of the present invention will be described below with reference to FIG.
[0058] 本発明に係る太陽電池は、積層構造の最外層上に機能性薄膜をさらに積層するこ とが好ましい。図 9は、基盤電池層 150、第 2電池層 151、第 3電池層 152および第 4 電池層 153が積層して直列に接続する太陽電池 1007を示す。図 9に示す太陽電池 1007において、第 4電池層 153上にさらに機能性薄膜 16が積層している。基盤電 池層 150、第 2電池層 151、第 3電池層 152および第 4電池層 153のうち、少なくとも 1層が有機系電池層であり、少なくとも 1層が無機系電池層である。  In the solar cell according to the present invention, it is preferable that a functional thin film is further laminated on the outermost layer of the laminated structure. FIG. 9 shows a solar cell 1007 in which the base battery layer 150, the second battery layer 151, the third battery layer 152, and the fourth battery layer 153 are stacked and connected in series. In the solar cell 1007 shown in FIG. 9, the functional thin film 16 is further laminated on the fourth battery layer 153. Of the base battery layer 150, the second battery layer 151, the third battery layer 152, and the fourth battery layer 153, at least one layer is an organic battery layer, and at least one layer is an inorganic battery layer.
[0059] 一般に、太陽電池に接続される電気回路は、インバーターを用いて電圧を昇圧し 商用電圧として送電するが、この電気回路は電気的限界があるので、過剰な光エネ ルギーを避ける必要がある。上記の機能性薄膜 16がフォトクロミズム物質力もなる薄 膜である場合、過剰量の太陽光力も太陽電池回路を保護することができる。また、上 記の機能性薄膜 16が燐光特性を有する有機物力もなる力もなる場合、太陽電池 10 07を構成する有機半導体および無機半導体にとってのスペクトル不感帯 (例えば、 紫外線領域)においても、光源変換を行なうことができる。  [0059] In general, an electric circuit connected to a solar cell boosts a voltage using an inverter and transmits it as a commercial voltage. However, since this electric circuit has an electrical limit, it is necessary to avoid excessive light energy. is there. In the case where the functional thin film 16 is a thin film having a photochromic material force, an excessive amount of solar power can protect the solar cell circuit. In addition, when the functional thin film 16 described above also has the power of an organic substance having phosphorescent characteristics, light source conversion is also performed in the spectral dead zone (for example, the ultraviolet region) for the organic semiconductor and inorganic semiconductor constituting the solar cell 1007. be able to.
[0060] 本明細書中で使用される場合、用語「フォトクロミズム物質」は、光の照射によって 変色し、暗所において元の色に戻る物質が意図される。好ましいフォトクロミズム物質 としては、ポリジアセチレン、または有機色素によって増感された材料が挙げられる。 本明細書中で使用される場合、用語「燐光特性を有する有機物」は、励起状態にお いて電子スピンの向きが同一方向(三重項励起状態)で、電子が元の起動に戻ること ができずにある程度長 、時間 (数ミリ秒オーダー)留まる材料が意図される。このよう な有機物としては、例えば、イリジウム錯体 (Ir (ppy) 3)が挙げられる。  [0060] As used herein, the term "photochromic material" intends a material that changes color upon irradiation with light and returns to its original color in the dark. Preferred photochromic materials include polydiacetylene or materials sensitized with organic dyes. As used herein, the term “organic substance having phosphorescent properties” means that the direction of electron spin in the excited state is the same direction (triplet excited state), and the electron can return to its original activation. A material that is long to some extent and that stays in time (on the order of a few milliseconds) is intended. Examples of such an organic substance include iridium complex (Ir (ppy) 3).
[0061] 本発明に係る太陽電池において、光電変換効率をさらに改善するためには、半導 体にドープされて 、る不純物を改変して、電子と正孔とのポピュレーションを増加させ ればよい。 [0061] In the solar cell according to the present invention, in order to further improve the photoelectric conversion efficiency, The population of electrons and holes may be increased by modifying the impurities doped in the body.
[0062] 本発明に係る太陽電池において、光電変換効率をさらに改善するために、太陽光 の受光面の特性を改善すればよい。積層構造によって構成されるので、本発明に係 る太陽電池は複数の受光面を有する。そのため、屈折率の異なる複数の薄膜の界面 において、太陽光は屈折、反射、および Zまたは干渉して、変換効率を低減させる 可能性が生じる。しかし、電池層を構成する材料およびその厚さを適宜設計すれば よい。  In the solar cell according to the present invention, in order to further improve the photoelectric conversion efficiency, it is only necessary to improve the characteristics of the sunlight receiving surface. Since it is constituted by a laminated structure, the solar cell according to the present invention has a plurality of light receiving surfaces. Therefore, sunlight can be refracted, reflected, and Z or interfered at the interface of multiple thin films with different refractive indices, potentially reducing conversion efficiency. However, what is necessary is just to design suitably the material which comprises a battery layer, and its thickness.
[0063] 本発明に係る太陽電池において、無機系電池層には既存技術をそのまま利用す ればよいが、 Siウェハを薄膜ィ匕することによって従来よりも材料コストを削減すること ができ、かつフレキシビリティを付与することができる。また、本発明に係る太陽電池 において、さらに薄いシリコン基板(12 m)を利用することによってフレキシブルな 高効率太陽電池を実現することができる。また、本発明に係る太陽電池において、有 機系電池層には有機 ELなどのデバイス作製技術を応用すればょ ヽ。  [0063] In the solar cell according to the present invention, the existing technology may be used as it is for the inorganic battery layer, but the material cost can be reduced more than before by thinning the Si wafer, and Flexibility can be imparted. In the solar cell according to the present invention, a flexible high-efficiency solar cell can be realized by using a thinner silicon substrate (12 m). In addition, in the solar cell according to the present invention, device manufacturing technology such as organic EL should be applied to the organic battery layer.
[0064] 本発明に係る太陽電池にお!/ヽて、光を十分透過し太陽電池の光電変換効率を低 減させないためには、透明電極を用いることが好ましぐ薄いことがまた好ましぐそし て、「くし型」形状を採ることもまた好ましい。  [0064] In the solar cell according to the present invention, it is preferable to use a transparent electrode so that light is sufficiently transmitted and the photoelectric conversion efficiency of the solar cell is not reduced. It is also preferable to adopt a “comb shape” shape.
[0065] また、本発明に係る太陽電池において、キャリア(正孔および電子)を生成させるの は、有機系電池層内の pn接合部および無機系電池層内の pn接合部だけに限定さ れる必要はなぐ有機系電池層と電極との界面、無機系電池層と電極との界面、およ び Zまたは有機系電池層と無機系電池層との界面をショットキー接合することによつ てもまた、当該界面においてキャリア (正孔および電子)を生成させることができること を、当業者は容易に理解する。  [0065] Further, in the solar cell according to the present invention, the generation of carriers (holes and electrons) is limited only to the pn junction in the organic battery layer and the pn junction in the inorganic battery layer. It is not necessary to perform Schottky bonding at the interface between the organic battery layer and the electrode, the interface between the inorganic battery layer and the electrode, and the interface between Z or the organic battery layer and the inorganic battery layer. Also, those skilled in the art will readily understand that carriers (holes and electrons) can be generated at the interface.
[0066] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組合わせて得られる実施形態についても本発明の技術的範囲に含まれる。  The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. In other words, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
産業上の利用の可能性  Industrial applicability
[0067] 本発明に係る太陽電池は、有機半導体薄膜の物性を首尾よく利用するので、太陽 電池の機械的構造を薄型にするとともに軽量ィ匕することができる。また、本発明に係 る太陽電池は、無機半導体力 なる太陽電池製造に関する従来技術をそのまま応用 することができる。さらに、本発明に係る太陽電池は、二次電池への充電機能を付与 させることによって、ほとんどの電ィ匕製品に応用することができ、屋外での利用だけで なく宇宙での利用も可能になる。 [0067] Since the solar cell according to the present invention successfully utilizes the physical properties of the organic semiconductor thin film, The mechanical structure of the battery can be made thin and lightweight. Further, the solar cell according to the present invention can be applied as it is with the prior art relating to the production of solar cells having inorganic semiconductor power. Furthermore, the solar cell according to the present invention can be applied to most electrical products by providing a charging function to the secondary battery, and can be used not only outdoors but also in space. Become.
本発明に従えば、高効率な太陽電池をフレキシブルな構造体として容易に製品ィ匕 できるので、従来から市販されて!、る太陽電池の代替品として従来の巿場に速やか に移行することができる。また、本発明を用いれば、太陽電池の設置の自由度が高ま り、種々の民生品に応用することができ、屋外使用の電ィ匕製品 (例えば、携帯電話、 ノートパソコン、デジタルカメラ、ゥエラブル衣料、医療)へ応用することができ、そして 種々の移動手段 (例えば、電車、バス、乗用車、飛行機、船など)の外壁へ応用して 当該移動手段にエネルギーを供給することができる。  According to the present invention, a high-efficiency solar cell can be easily manufactured as a flexible structure, so that it can be quickly marketed as a substitute for a conventional solar cell. it can. In addition, if the present invention is used, the degree of freedom of installation of solar cells is increased and it can be applied to various consumer products. For example, electronic products for outdoor use (for example, mobile phones, laptop computers, digital cameras, It can be applied to wearable clothing, medical care) and can be applied to the outer wall of various transportation means (eg trains, buses, passenger cars, airplanes, ships, etc.) to supply energy to the transportation means.

Claims

請求の範囲 The scope of the claims
[I] p型有機半導体および n型有機半導体を接合してなる有機系電池層と、 p型無機半 導体および n型無機半導体を接合してなる無機系電池層との積層構造を有すること を特徴とする太陽電池。  [I] It has a laminated structure of an organic battery layer formed by bonding a p-type organic semiconductor and an n-type organic semiconductor and an inorganic battery layer formed by bonding a p-type inorganic semiconductor and an n-type inorganic semiconductor. Solar cell featuring.
[2] 2層以上の上記有機系電池層または無機系電池層を有することを特徴とする請求 項 1に記載の太陽電池。  [2] The solar cell according to [1], comprising two or more organic battery layers or inorganic battery layers.
[3] シャント回路をさらに有することを特徴とする請求項 1に記載の太陽電池。 [3] The solar cell according to claim 1, further comprising a shunt circuit.
[4] 有窓であることを特徴とする請求項 1に記載の太陽電池。 4. The solar cell according to claim 1, wherein the solar cell is a window.
[5] 上記 p型有機半導体および n型有機半導体が Inn!〜 1 μ mの範囲の厚さを有する ことを特徴とする請求項 1に記載の太陽電池。  [5] The above p-type organic semiconductor and n-type organic semiconductor are Inn! The solar cell according to claim 1, wherein the solar cell has a thickness in a range of ˜1 μm.
[6] 上記 p型無機半導体および n型無機半導体が ΙΟηπ!〜 500 μ mの範囲の厚さを有 することを特徴とする請求項 1に記載の太陽電池。 [6] The above p-type inorganic semiconductor and n-type inorganic semiconductor are ΙΟηπ! The solar cell according to claim 1, wherein the solar cell has a thickness in a range of ˜500 μm.
[7] 上記 p型有機半導体が、銅フタロシアニン、ペンタセン、およびへキサチォフェンか らなる群より選択されることを特徴とする請求項 1に記載の太陽電池。 7. The solar cell according to claim 1, wherein the p-type organic semiconductor is selected from the group consisting of copper phthalocyanine, pentacene, and hexachiphene.
[8] 上記 n型有機半導体が、フラーレン、アルミニウムキノリノール錯体、およびチタ-ル フタロシアニン力 なる群より選択されることを特徴とする請求項 1に記載の太陽電池 [8] The solar cell according to [1], wherein the n-type organic semiconductor is selected from the group consisting of fullerene, an aluminum quinolinol complex, and a titanium phthalocyanine force.
[9] 上記 p型無機半導体が、 Si、 Ge、 GaAsまたは GalnPが p型ドーパントによってドー プされた材料であることを特徴とする請求項 1に記載の太陽電池。 9. The solar cell according to claim 1, wherein the p-type inorganic semiconductor is a material in which Si, Ge, GaAs or GalnP is doped with a p-type dopant.
[10] 上記 n型無機半導体が、 Si、 Ge、 GaAsまたは GalnPが n型ドーパントによってドー プされた材料であることを特徴とする請求項 1に記載の太陽電池。  10. The solar cell according to claim 1, wherein the n-type inorganic semiconductor is a material in which Si, Ge, GaAs or GalnP is doped with an n-type dopant.
[II] 上記積層の最外層上にフォトクロミズム物質力 なる薄膜をさらに積層することを特 徴とする請求項 1に記載の太陽電池。  [II] The solar cell according to claim 1, wherein a thin film having photochromic material strength is further laminated on the outermost layer of the laminate.
[12] 上記積層の最外層上に燐光特性を有する有機物カゝらなる薄膜をさらに積層するこ とを特徴とする請求項 1に記載の太陽電池。  [12] The solar cell according to [1], wherein a thin film made of an organic compound having phosphorescent properties is further laminated on the outermost layer of the laminate.
[13] 透明電極を用いることを特徴とする請求項 1に記載の太陽電池。 13. The solar cell according to claim 1, wherein a transparent electrode is used.
[14] 電極がくし型形状であることを特徴とする請求項 1に記載の太陽電池。 14. The solar cell according to claim 1, wherein the electrode has a comb shape.
[15] 電極が Inn!〜 lOOnmの範囲の厚さを有することを特徴とする請求項 1に記載の太 陽電池。 [15] The electrode is Inn! The thickness of claim 1 having a thickness in the range of ~ lOOnm. Positive battery.
PCT/JP2005/015471 2004-08-31 2005-08-25 Stacked organic-inorganic hybrid high efficiency solar cell WO2006025260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532597A JPWO2006025260A1 (en) 2004-08-31 2005-08-25 Stacked organic-inorganic hybrid high efficiency solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-253156 2004-08-31
JP2004253156 2004-08-31

Publications (1)

Publication Number Publication Date
WO2006025260A1 true WO2006025260A1 (en) 2006-03-09

Family

ID=35999917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015471 WO2006025260A1 (en) 2004-08-31 2005-08-25 Stacked organic-inorganic hybrid high efficiency solar cell

Country Status (2)

Country Link
JP (1) JPWO2006025260A1 (en)
WO (1) WO2006025260A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177158A (en) * 2007-12-28 2009-08-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
EP2172987A1 (en) * 2008-10-02 2010-04-07 Honeywell International Inc. Solar cell having tandem organic and inorganic structures and related system and method
KR101316096B1 (en) 2012-05-31 2013-10-11 한국기계연구원 Organic-inorganic hybrid tandem multijuntion photovoltaics with an interlayer and preparing method for thereof
US8994009B2 (en) 2011-09-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP2015133517A (en) * 2006-04-11 2015-07-23 メルク パテント ゲーエムベーハー Tandem photoelectric cell
US9136490B2 (en) 2008-08-27 2015-09-15 Honeywell International Inc. Solar cell having hybrid heterojunction structure and related system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188169A (en) * 1982-04-27 1983-11-02 Matsushita Electric Ind Co Ltd Solar battery
JPS63253674A (en) * 1987-04-10 1988-10-20 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH04151879A (en) * 1990-10-15 1992-05-25 Sanyo Electric Co Ltd Photovoltaic device
JPH04192376A (en) * 1990-11-22 1992-07-10 Sekisui Chem Co Ltd Tandem organic solar battery
JPH04337673A (en) * 1991-05-14 1992-11-25 Sekisui Chem Co Ltd Tandem-type organic solar cell
JPH0693258A (en) * 1992-09-14 1994-04-05 Toshiba Corp Organic thin film element
JPH06232439A (en) * 1993-01-05 1994-08-19 Wisconsin Alumni Res Found Photoluminescent plasma polymerization film
JPH0732967U (en) * 1993-11-16 1995-06-16 シチズン時計株式会社 Electronic clock with solar cell
JPH07202243A (en) * 1993-12-28 1995-08-04 Bridgestone Corp Solar cell module
WO2003054926A2 (en) * 2001-10-24 2003-07-03 Emcore Corporation An apparatus and method for integral bypass diode in solar cells
JP2004523129A (en) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188169A (en) * 1982-04-27 1983-11-02 Matsushita Electric Ind Co Ltd Solar battery
JPS63253674A (en) * 1987-04-10 1988-10-20 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH04151879A (en) * 1990-10-15 1992-05-25 Sanyo Electric Co Ltd Photovoltaic device
JPH04192376A (en) * 1990-11-22 1992-07-10 Sekisui Chem Co Ltd Tandem organic solar battery
JPH04337673A (en) * 1991-05-14 1992-11-25 Sekisui Chem Co Ltd Tandem-type organic solar cell
JPH0693258A (en) * 1992-09-14 1994-04-05 Toshiba Corp Organic thin film element
JPH06232439A (en) * 1993-01-05 1994-08-19 Wisconsin Alumni Res Found Photoluminescent plasma polymerization film
JPH0732967U (en) * 1993-11-16 1995-06-16 シチズン時計株式会社 Electronic clock with solar cell
JPH07202243A (en) * 1993-12-28 1995-08-04 Bridgestone Corp Solar cell module
JP2004523129A (en) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic device
WO2003054926A2 (en) * 2001-10-24 2003-07-03 Emcore Corporation An apparatus and method for integral bypass diode in solar cells

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133517A (en) * 2006-04-11 2015-07-23 メルク パテント ゲーエムベーハー Tandem photoelectric cell
JP2009177158A (en) * 2007-12-28 2009-08-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
EP2075850A3 (en) * 2007-12-28 2011-08-24 Semiconductor Energy Laboratory Co, Ltd. Photoelectric conversion device and manufacturing method thereof
US9136490B2 (en) 2008-08-27 2015-09-15 Honeywell International Inc. Solar cell having hybrid heterojunction structure and related system and method
EP2172987A1 (en) * 2008-10-02 2010-04-07 Honeywell International Inc. Solar cell having tandem organic and inorganic structures and related system and method
US8994009B2 (en) 2011-09-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
KR101316096B1 (en) 2012-05-31 2013-10-11 한국기계연구원 Organic-inorganic hybrid tandem multijuntion photovoltaics with an interlayer and preparing method for thereof

Also Published As

Publication number Publication date
JPWO2006025260A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
US20220102569A1 (en) Monolithic multijunction power converter
Rühle The detailed balance limit of perovskite/silicon and perovskite/CdTe tandem solar cells
US8736108B1 (en) Photovoltaic system
US9006558B2 (en) Solar panel having monolithic multicell photovoltaic modules of different types
JP2010087504A (en) Solar energy conversion device
US20170018675A1 (en) Multi-junction photovoltaic micro-cell architectures for energy harvesting and/or laser power conversion
JP2018535554A (en) Solar cell with multiple absorbers interconnected via selective junction of charge carriers
US20140261628A1 (en) High efficiency solar receivers including stacked solar cells for concentrator photovoltaics
WO2010019685A4 (en) Photovoltaic cells with processed surfaces and related applications
CN103875081A (en) Focusing luminescent and thermal radiation concentrators
SG193600A1 (en) Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell
WO2006025260A1 (en) Stacked organic-inorganic hybrid high efficiency solar cell
JP2015536050A (en) Exciton energy transfer increases the efficiency of inorganic solar cells
JP6222667B2 (en) Storage type solar power generation device and storage type solar power generation system
WO2012166993A1 (en) Charge-coupled photovoltaic devices
US8569613B1 (en) Multi-terminal photovoltaic module including independent cells and related system
EP2375455B1 (en) Voltage matched multijunction solar cell
US8791358B1 (en) Energy scavenging devices and manufacturing thereof
US20230420582A1 (en) Conductive contacts for polycrystalline silicon features of solar cells
CN117321776A (en) Multi-junction solar cell
TW201322467A (en) Solar cell, solar battery and method for making the same
US20130206202A1 (en) Solar cell
JP5487295B2 (en) Solar cell
US20110220173A1 (en) Active solar concentrator with multi-junction devices
JP2016086117A (en) Solar cell, solar cell panel, and solar cell film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532597

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase