WO2006025114A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2006025114A1
WO2006025114A1 PCT/JP2004/013006 JP2004013006W WO2006025114A1 WO 2006025114 A1 WO2006025114 A1 WO 2006025114A1 JP 2004013006 W JP2004013006 W JP 2004013006W WO 2006025114 A1 WO2006025114 A1 WO 2006025114A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
valve
injection holes
passage
Prior art date
Application number
PCT/JP2004/013006
Other languages
French (fr)
Japanese (ja)
Inventor
Motoyuki Abe
Yoshio Okamoto
Noriyuki Maekawa
Eiji Ishii
Toru Ishikawa
Yuzo Kadomukai
Masanori Mifuji
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2006531225A priority Critical patent/JPWO2006025114A1/en
Priority to PCT/JP2004/013006 priority patent/WO2006025114A1/en
Publication of WO2006025114A1 publication Critical patent/WO2006025114A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates
    • F02M61/186Multi-layered orifice plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/103Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector having a multi-hole nozzle for generating multiple sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a fuel injection valve used in an internal combustion engine.
  • a plurality of fuel passages branched in the lateral direction (radial direction) are provided on the side and swirl chambers (swirl chamber vortex flow) at the downstream end of each fuel passage.
  • atomization energy is given as the flow velocity at the stage of splitting, so the flow velocity in the injection hole It is necessary to crawl.
  • a swirl chamber is provided downstream of the valve body and valve seat as a means to improve atomization performance. The distribution it is not enough.
  • in-cylinder direct injection type gaso-V engine (hereinafter referred to as in-cylinder injection engine) aiming at low fuel consumption and high output, it depends on the combustion method, combustion shape, size of combustion method, etc.
  • the fuel spray formed in the shape of each week is required-in the case of the in-cylinder injection engine, the time from fuel injection to ignition is short ⁇ Therefore, since the time for the fuel to evaporate is short, atomization of the fuel is required to obtain a larger surface area and promote evaporation for the same amount of fuel.
  • Spray shape and atomization of fuel affect the amount of unburned fuel component (hereinafter referred to as HC) and oxide (hereinafter referred to as NO) in the exhaust gas of the engine and fuel consumption.
  • HC unburned fuel component
  • NO oxide
  • the present invention has been made in view of the above-mentioned section.It is possible to improve the atomization performance by the fuel injection valve and to adjust the fog shape so that the engine can be adjusted.
  • the aim is to provide a fuel injection valve that achieves the desired spray.
  • the fuel injection valve of the present invention is provided with a turning force applying means for applying a turning force to the fuel in a fuel passage extending from a valve seat of the fuel injection valve to a plurality of injection holes,
  • the multiple injection holes have the injection holes, and the arrangement of the sparsely arranged parts and the densely arranged parts make it possible to adjust the spray shape.
  • one of the ⁇ i> turning force applying means ⁇ 1> provides a turning force different from other turning force applying means, and allows adjustment of the shape of the mist.
  • the sum of the portions where the cross-sectional area of the fuel passage through which the turning force applying means and the valve seat are passed is the sum of the cross-sectional areas of the injection holes.
  • the fuel injection valve having a plurality of injection holes is swung to fuel flowing out from each injection hole to promote atomization and to arrange the injection holes.
  • In-cylinder injection A fuel injection valve is provided to obtain a spray with a shape suitable for an engine.
  • a fuel injection valve that can achieve the above effect while suppressing the increase in the volume and volume that are generated when swirling is assigned to multiple injection holes.
  • FIG. 1 is a sectional view showing the construction of a first embodiment of a fuel injection valve according to the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the p-type injection hole and a cross-sectional view of the fuel passage play of the first embodiment of the fuel injection valve according to the present invention.
  • Figure 3 shows the injection formula of the fuel B injection valve in one example.
  • Fig. 4 is a schematic diagram showing an example in which the fuel injection valve of the first embodiment is mounted on an internal combustion engine.
  • -Fig. 5 shows the vicinity of the injection hole of the fuel injection valve of the first embodiment according to the present invention.
  • Fig. 2 is an enlarged cross-sectional view and a cross-sectional view of a fuel passage play.
  • Fig. 6 is a schematic diagram of spraying by the fuel spray valve of the first example.
  • FIG. 7 is a schematic diagram showing an example in which the fuel injection valve of the first embodiment is mounted on an internal combustion engine.
  • FIG. 8 is an enlarged cross-sectional view of the vicinity of the injection hole of the fuel injection valve according to the first embodiment of the present invention and a cross-sectional view of the fuel passage plate.
  • Fig. 9 is a schematic diagram showing an example of spray shape and an example in which the fuel U noble valve of the second embodiment is placed in the center of combustion.
  • FIG. 10 is an enlarged cross-sectional view of the vicinity of the injection hole of the fuel injection valve of the fourth embodiment and a cross-sectional view of the fuel passage press.
  • 11 Fig. 1 is a schematic diagram showing the shape of the spray formed by the fuel injection valve of the fourth embodiment.
  • FIG. 1 is a cross-sectional view showing a first embodiment of the fuel injection valve according to the present invention.
  • the fuel injection valve shown in FIG. 1 is a normally closed type magnetic fuel U injection valve. In the state where it is not passed through the filter 1 1 2, the valve body 1 1 0 and the valve seat 1 0 4 are in close contact with each other, and no fuel is shot. Supplyed by fuel supply P with pressure applied to fuel pump, fuel inlet 1 1
  • valve body 1 1 0 is displaced upward in FIG.
  • a number of injection holes (e.g. injection holes) downstream through a gap of 0
  • Fig. 2 is a cross-sectional view enlarging the vicinity of the injection hole 10 1 and the valve seat 10 4.
  • the A-A cross-sectional view shows the fuel passage block in which the lateral path for the injection hole is formed.
  • the fuel is a valve body 1
  • the injected fuel is split from the conical liquid film.
  • the fuel can be broken into smaller droplets compared to the case without swirling force.
  • the plurality of injection holes are arranged so that the injection holes have a densely arranged part and a sparsely arranged part in the AA cross section.
  • the number of injection holes per unit area is small, and the distance from the nearby P noble holes is long and sparse
  • the number of injection holes for the unit face mussel 7 is large, and the distance from the adjacent injection holes is short, a dense arrangement.
  • each injection hole is installed so that the angle with respect to the valve body O-axis 210 is different so as to avoid the BB disconnection in Fig. 2.
  • the injection hole 20 5 is provided with a tilt angle, whereas the injection hole 10 5 is provided substantially parallel to the valve body axis.
  • the injection hole 10 1 and the injection hole 2 0 5 flow into the injection hole 1 0 1 provided with the winding passage and the swirl chamber so that the swirl force applied to the fuel is different.
  • the offset is small relative to the center of the swirl chamber 20 8, which is small in the center of the swirl chamber 20 8.
  • the swirl chamber 2 1 2 is a swivel rod 2
  • Sparsely arranged injection holes 1 0 1 2 0 9 a 2 0 9 b is close to the central axis of the valve body, and m injection holes 20 6 are densely arranged
  • the dense arrangement of the injection holes so that it is ⁇ from the center axis of the body means that there is a flow path for forming a swirl flow upstream of the injection holes. It's not just a simple hole arrangement.
  • the swirl passage 2 1 3 connected to the injection hole 20 6 arranged at is connected to the lateral position at one position from the center of the valve body.
  • the volume of the lateral passage 20 4 can be reduced, and the volume downstream of the valve seat 10 4 can be reduced.
  • the primary injection is related to deposits adhering to the fuel injection valve, etc. Therefore, it is better to reduce the volume, and to reduce the primary injection, the volume downstream of the valve seat should be small.
  • the spray shape can be adjusted to 5 so that it matches the combustion septum and the combustion shape.
  • the fuel path plate 20 2 is punched by punching, cutting force, V shear force discharge X, discharge X at electrode,
  • Fuel port plate 20 2 is formed by a switching port In this case, if the material of the fuel passage plate is a single crystal silicon, addition X is easy.
  • the fuel passage plate 20 2 and the injection hole plate 20 3 can be easily positioned by using a pin 2 1 4 as shown in FIG. 14 is provided as a separate member, but it may be integrated with the B nose hole plate 20 3 or the fuel passage plate 20 2 or the fuel passage plate Lay-up 2 0 2 and spray hole play
  • 20 3 can be manufactured as an integral part. And the injection hole press ⁇ as a body, the positioning of the injection hole and the swirl on the fuel path plate is not necessary, and the manufacturing cost is reduced, and it is an integrated member.
  • cutting process by plastic punch, plastic process, discharge process by electrode, or V chain After the fuel passage and swirl passage are formed by the process, the injection hole is cut.
  • FIG. 3 is a view showing a spray atom injected from the example of the fuel injection valve shown in FIG. Since the injection hole 10 1 is inclined with respect to the shaft of the valve body, the fuel spray injected from the U injection hole 10 1 is inclined. Since the turning force applied to 10 1 is small, the spread of the spray 30 2 becomes small and the axial power of the injection hole does not increase with respect to the angular movement. Therefore,
  • the spray is more m.
  • the injection hole 205 is provided with no inclination, so that the spray 3 0 1 injected from the injection hole 2 0 5 force It flows out almost without inclining, and the injection hole 2
  • Cross section E-E is a cross-sectional view of the spray.
  • Spray 3 0 2 has a small spray spread, so the spatial distribution of the fog is likely to become dense. Since the spread of the mist is large, the mist distribution is sparse, so that the mist 30 4 and the mist 3 0 3 are separated from the other injection holes (for example, the U injection holes 2 0 6 and 2 0 9 a etc.) The angle of the husband's injection hole formed by the fuel injected from the fuel is adjusted and the swirl force is adjusted.
  • Fig. 4 is a cross-sectional view of an in-cylinder injection engine.
  • the engine shown in Fig. 4 is a suction engine with the fuel injection valve located near the intake port and the ignition plug located in the center of the fuel. It is a valve-type engine, and it is an engine of a combustion concept that employs a method of injecting fuel to the intake.
  • the fuel adhering to the intake valve 40 4 that impinges on the intake valve 40 4 and suppresses the adhering fuel may impair the accuracy of control of the air-fuel ratio.
  • the fuel injection valve according to the present invention as shown in FIG. 3 can be a cause of increasing the unburned fuel component in the exhaust gas.
  • the spray 30 2 shown in Fig. 3 has a narrow spray spread ⁇ and a high spatial density of fuel droplets. For this reason, it is possible to make the mixing state of the fuel and the air more uniform. As a result, it is possible to reduce the density of the mixture during combustion.
  • mist 30 1 in Fig. 3 has a large spray spread and a short distance, so the spray is pistoned by the suction flow 40 6.
  • Piston 4 expected to have an effect of suppressing adhesion to 4 7
  • the fuel adhering to the crown of 07 may be discharged as an unburned fuel component during combustion due to the quenching effect of cooling on the piston surface, as shown in Fig. 3. This problem can be avoided by using a simple fuel injection valve.
  • FIG. 5 is an example in which the injection holes are arranged in an oval shape as the first embodiment according to the present invention. In the case of the injection hole arrangement shown in FIG.
  • Fig. 6 G-G cross section of line 5 A line that gives a flat spray shape 50
  • No. 50 06 is an orthogonal line, but the number of spray holes arranged in the clockwise direction from line 50 06 to line 50 07 is the central axis of the disc
  • injection hole 50 2 The number of injection holes arranged in the counterclockwise direction from line 5 06 to line 5 0 7 by two pieces (for example, injection hole 50 2) sandwiching 50 8
  • the number should be 4 each with the valve body central axis 50 8 in between (for example, X. Injection hole 5 0 1), that is, focus on the density in the circumferential direction around the valve body axis of the fuel injection valve.
  • the vicinity of the injection hole 50 2 is a sparse arrangement
  • the vicinity of the injection hole 50 1 is a dense arrangement.
  • the spray holes are arranged in an ellipse shape.
  • the reason is that the injection holes are located farther away from the central axis of the valve body 5 8 when the injection holes are dense, and closer when the injection holes are sparse. >-As a result of the arrangement, the cross-sectional area of. Is secured at the site where the swirling passage and the transverse passage 50 4 that flow into the densely arranged injection holes are formed. Along with taking off, increase the size of the doll and box.
  • Fig. 6 shows that the fuel is injected during the compression stroke and the fuel is rich in the combustion.
  • Figure 5 and Figure 6 show the fuel injection valve 701, which is an example of a cylinder-injection gasoline engine with a stratified combustion that forms a thin part and ignites.
  • the fuel spray valve is used, the spray shape is a flat shape, the spray 70 6 is inclined with respect to the mounting angle of the fuel injector 70 1, and the ignition
  • the direction of plug 70 3 towards Layo 5 is
  • the direction in which the spray is formed can be adjusted without being restricted by the mounting angle of the fuel injection valve.
  • the spray droplets from the fuel injection valve with a plurality of injection holes, each of which has a flow path that imparts a turning force, are small and non-suspended. Decrease with gas. For this reason, when compression stroke injection as shown in Fig. 7 is used for the engine 5, the spray arrival distance is shortened, resulting in the vicinity of the ignition plug 70 3. If the fuel droplets ⁇ the mixture of the generated fuel and gas stays longer, the combustion stability is improved, and the combustion stability is improved. The degree of freedom in setting the firing rate and ring is improved, and more efficient thermal efficiency can be achieved. It is possible to fire. As a result, the thermal efficiency of the engine is improved and the fuel consumption is reduced. "Also, when these 5 engines are installed in a car, the stratification i is applied over a wide range of engine loads and speeds for high combustion stability. It is possible to reduce fuel consumption.
  • the flattened spray reduces the collision between fuel and piston 70 7 and reduces the unburned fuel component in the compression stroke.
  • FIG. 8 is a cross-sectional view showing a third embodiment according to the present invention in which injection holes having dense injection holes are arranged in the portion.
  • the injection holes 8 0 1 a to 8 0 1 are arranged uniformly in the circumferential direction of the valve body central axis, and the inclination thereof is determined so as to face the outside of the valve body central axis.
  • the angle of the injection hole is set so that the injection holes 802a, b, face the inside of the valve body.
  • the injection hole 8 0 2 a is located close to the adjacent injection hole compared to the injection hole 8 0 1 a-8 0 1 g. It is a close distribution. Positive flow for this injection hole arrangement In order to supply to the injection hole 8 0 2 a, the injection hole 8 is positioned away from the central axis of the valve body.
  • the spray shape can be adjusted.
  • the angle of inclination of the injection hole is 8 0 1 a-8 0 1 g and 8
  • Fig. 8 The fuel injection valve shown in Fig. 8 should be used for engine 0 as shown in Fig. 9.
  • Fig. 9 shows that the fuel injection valve is located in the vicinity of the center of combustion. > ⁇
  • An engine with an arrangement such as the example of an arranged gin mainly improves combustion stability and expands the range of conditions under which stratified combustion is possible, reducing fuel consumption and combustible. Nitrogen oxidation with a homogeneity level in the region of the air-fuel mixture that has an air-fuel ratio
  • the distance between the ignition plug 90 3 and the fuel injection valve 90 2 is shorter ⁇
  • the position where the ignition plug 90 3 is placed should be close to the center of combustion to shorten the flame propagation time during ignition. Is desirable. However, if the distance between the ignition plug and the fuel injection valve is too close, the fuel injected from the fuel injection valve will collide with the fire plug due to the liquid, and the ignition plug will become dirty. If fuel is injected in a direction different from the ignition plug due to a change in the fuel injection direction, etc., an air-fuel mixture is formed in the vicinity of the ignition plug. It becomes difficult, and it is difficult to secure the flame stability.
  • the fuel injection valve according to the present invention enables spraying as shown in the section JJ in FIG. S1. It is possible to form a nearly uniform mist 90 1 and a part 90 4 where almost no fuel is distributed.
  • Such a spray can be realized by the embodiment of the present invention shown in FIG. In the region 90 4 where the spray distribution is small, the direction of the injection holes 8 0 2 a b and c is directed toward the center of the valve body,
  • the injection holes 80 1 a to 8 0 1 g form only the outer edge of the spray, but the center of the fog is formed by the injection holes 8 0 2 a, b, and C.
  • the spray power 13 ⁇ 4 is ⁇
  • Ninth J-J forms a mist as shown in section J.
  • the fuel injection valve is arranged near the center of the combustion chamber according to the embodiment shown in Fig. 8. Fuel injection valve that forms an appropriate shape for the engine
  • the five fuel injection valves shown in the third embodiment are arranged in a simple manner in the form of an engine that is arranged in the center of the combustion chamber.
  • FIG. 10 is a cross-sectional view showing the arrangement of the injection holes when three injection holes are formed.
  • the fuel passage 100, the swirl passage 100, and the injection holes 1003 are respectively injection holes. In the case where the number of injection holes is reduced as shown in FIG.
  • the flow rate of the fuel sprayed from each injection hole needs to be large, so the cross-sectional area of each injection hole is sufficiently large.
  • N 0 injection holes 1 0 0 7 a and 1 0 0 7 b are separated by the angle shown in the circumferential direction 1 0 10 0 a and 1 0 10 0 b, and the injection hole 1 0 0 7 a on the side, the angle between the adjacent hole and the circumferential direction 1 0
  • circumferential angle 1 0 10 0 c is greater than 1 0 1 0 a and 1 0 1 0 b
  • injection holes are sparsely located compared to ⁇ injection holes 1 0 0 3
  • 7 a 1 0 0 7 b is provided with two swirl paths, but in either case, the swirl path may be within the range of the circumferential angle of 1 0 1 0 c.
  • a swirl passage is provided in the circumferential angle range of 10 100, so that the fuel passage 100 0 2 and the swirl passage are connected to each other.
  • the side of the fuel passage 100 0 2 that is not connected to the swirl passage can be reduced.
  • the volume of the fuel passage 1002 is small, and as a result, the de K volume can be reduced.
  • the sparse injection holes are close to the center axis of the valve body and the dense injection holes are arranged away from the central axis of the valve body.
  • the circumferential angle 1 0 1 0 c is wide ⁇ and the degree of freedom in the arrangement of the swivel path is high ⁇
  • the injection hole can be brought closer to the central axis of the valve body while maintaining a sufficient run-up distance in the swivel path.
  • the densely arranged injection holes 1003 are arranged away from the central axis of the valve body, the lengths of the swirl passages 1006, 1005 are reduced. It is possible to provide sufficient swirling force to the fuel injected into the injection hole 10 0 3 while providing a sufficient flow rate.
  • the soot mist obtained by such an arrangement of the injection holes has the five shapes shown in 11.1 o
  • Each of the injection holes has a substantially conical P mist.
  • Example 7L is an injection 1 1 0 1
  • these sprays have three circular shapes when viewed on the PP cross section.
  • the angle of the injection holes 1 0 0 7 .a and 1 0 0 7 b in Fig. 10 is set to HX so that 0 2 is generated.
  • the fuel injection valve can be applied to the engine located in the center of the combustion chamber.In other words, the presence of the sparsely sprayed part 1 1 0 2 causes the ignition plug to become wet. It makes it easier to avoid hitting.

Abstract

A fuel injection valve having excellent atomizing performance and capable of adjusting spray pattern to match various types of engine systems. The fuel injection valve comprises a valve element openable to start and stop the injection of a fuel and a valve seat brought into contact with the valve element to stop the injection of the fuel. A plurality of injection holes for injecting the fuel are formed on the downstream side of the valve element and the valve seat. A turning force adding means adding a turning force to the fuel is installed in a fuel passage starting at the valve seat to the injection holes. The plurality of injection holes are disposed so that a plane having the injection holes is formed of a coarsely disposed portion and a densely disposed portion.

Description

燃料噴射弁  Fuel injection valve
技術分野 Technical field
本発明 は内燃機関で使用 さ れる燃料噴射弁に関する  The present invention relates to a fuel injection valve used in an internal combustion engine.
背景技術 Background art
燃料噴射弁 に よ る燃料の明微粒化を促進する技術が、 特開 2 0 A technique for promoting the atomization of fuel by a fuel injection valve is disclosed in
0 2 - 9 8 0 2 8 号公報お よ び特開 2 0 0 3 - 3 3 6 5 6 1 号 公報に開示 さ れてい る。 これ ら の技術では、 弁体 と 弁座の下流 書 This is disclosed in Japanese Laid-Open Patent Publication No. 0 2-9 8 0 28 and Japanese Unexamined Patent Publication No. 2 0 3-3 3 6 5 6 1. With these technologies, the downstream of the disc and valve seat
側に横方向 (径方向) に分岐 した複数の燃料通路を設け 各燃 料通路 の 下流側端部 の それぞれ に旋回室 ( ス ワ ール室 渦流A plurality of fuel passages branched in the lateral direction (radial direction) are provided on the side and swirl chambers (swirl chamber vortex flow) at the downstream end of each fuel passage.
) と 射孔 と を設 けて ヽ る こ の燃料 路は旋回 ^に .対 して ォフ セ ッ して り 、 旋回室及ぴ噴射孔内部に旋回流が生 じ、 噴射孔か ら流出する燃料が液 を形成する ) And the injection hole, this fuel path is offset against the swirling ^, and a swirling flow is generated inside the swirling chamber and the injection hole and flows out of the injection hole. Fuel to form a liquid
発明 の 開示 Disclosure of the invention
旋回 を有する燃料噴射弁に よ る燃料 ■の微粒化 と い う 観点で は 燃料圧力 と して与え られ エネルギ  From the viewpoint of atomization of the fuel by the fuel injection valve with swirling, the energy given as the fuel pressure
た が 出来る 限 り 微粒化 に寄与で さ る よ う ϊ BX計する こ と が必要であ る 微粒化のェネ ルギ は分裂の段階 いて は流速 と して与え られる ので 噴射 孔内 での流速が髙い こ と が必要であ る。 従来技術におレヽて は、 微粒化性能を め る 手段 と して 、 弁体お よ ぴ弁座の下流に旋回 室を設 け てい る が 、 噴射孔內での流速を高 め る構成についての 配 itが十分 と は えない。  However, as much as possible, it should contribute to atomization. BX metering is necessary. The atomization energy is given as the flow velocity at the stage of splitting, so the flow velocity in the injection hole It is necessary to crawl. In the prior art, a swirl chamber is provided downstream of the valve body and valve seat as a means to improve atomization performance. The distribution it is not enough.
ま た 従来技 V いて は噙霧形状を m する 手段について 開示 さ れてい ない 。 複数の噴射孔に対 して旋回室を設け る こ と は 弁座 よ 下流に あ る燃料 路の体積 (ァ ッ ド、ボ V ゥ ム ) を 増加 さ せ 閉弁後 も 噴射が続 < 期間が増加 して しま う と い う 問 題を生 じ る こ と が あ る 従来技術では、 «霧形状を しなが ら 、 V ド、ポ y ク ム の増加 を抑え る 噴射孔や燃料通路の配置に ついて 、 開示 さ れていない Also, in the conventional technique V, there is no disclosure about a means for m mist shape. Providing a swirl chamber for multiple injection holes increases the volume of the fuel path downstream from the valve seat (added, volume), and continues injection even after closing <period The question is that will increase In the conventional technology, which may cause a problem, «The arrangement of injection holes and fuel passages that suppress the increase in V and pom while keeping the fog shape is not disclosed.
特に 、 低燃費 よ ぴ高出力 を狙 う 筒内直接嘖射式ガ ソ V ンェ ンジン (以下 、 筒内噴射ェ ンジン と 称する ) では、 燃焼方式 、 燃焼 形状 、 .燃焼 の寸 —法などに よ つ て 、 それぞれに週 した形 状に形成 さ れた燃料の噴霧'が必要 と さ れる ―方で 、 筒内噴射 ェ ン ジ ン で は 、 燃料の噴射か ら 点火ま での時間が短 < 、 従つ て 燃料が蒸発する た めの時間は短い のた め 、 同量の燃料に対 して よ り 大き い表面積を得て蒸発を促進する た め に燃料の微粒 化が必要 と さ れてい  In particular, in-cylinder direct injection type gaso-V engine (hereinafter referred to as in-cylinder injection engine) aiming at low fuel consumption and high output, it depends on the combustion method, combustion shape, size of combustion method, etc. In other words, the fuel spray formed in the shape of each week is required-in the case of the in-cylinder injection engine, the time from fuel injection to ignition is short < Therefore, since the time for the fuel to evaporate is short, atomization of the fuel is required to obtain a larger surface area and promote evaporation for the same amount of fuel. Have
噴霧形状 と 燃料の微粒化は 、 ェ ンジンの排気中 の未燃燃料成 分 (以下 H C と 称する ) 素酸化物 (以下 N 〇 と 称する ) の量 、 及ぴ燃費に影響を与え る  Spray shape and atomization of fuel affect the amount of unburned fuel component (hereinafter referred to as HC) and oxide (hereinafter referred to as NO) in the exhaust gas of the engine and fuel consumption.
例 ば 、 霧の形状や燃料液滴の粗さ に よ つ て はシ y ンダ内 壁や ピス h ン冠面に付着 し 、 付着 した燃料の う ち蒸発 しなかつ た分につ 1/、て は燃焼せずに排出 さ れて しま う た め に燃費 を亜化 さ せた り H c を增加 させた り する  For example, depending on the shape of the mist and the roughness of the fuel droplets, it adheres to the inner wall of the cylinder and the crown of the piston, and the attached fuel does not evaporate. Will be discharged without burning, substituting fuel consumption and increasing Hc
あ る いは吸気行程に噴射を行 う よ 5 な運転状態に いて は 、 開弁状態に あ る 吸 弁 と 噴霧 と の干渉が起 こ る 可能性が あ る 吸気弁 に付着 した燃料の一部は燃焼室に流入 しないた め 、 燃焼 内 に け る 空燃比の制御の正確性が損なわれる 可能性が あ る 空燃比制御が正確に行われない場合 、 排気系 に あ る 酸 *濃度セ ンサな どか ら の フ ィ 一 ド ク ク 制御に よ つ て 、 燃料嘖射弁に与 え ら れる 噴射 の指令値が大さ < な り すぎ、 結果 と して H C排 出增加の原因 と な る こ と が あ る。 ま た、 燃料噴射弁を燃焼室'の 中心に置 < レィ ァ ゥ ト の 合に は、 噴 と 点火プラ グの位置関係、 お よ ぴ燃料の微粒化が重要 と な る 点火プラ 'グに直接液体燃料や粗い燃料液滴が衝突する と 、 ^火プラ グの燻 り の原因 と な る こ と が あ 0 。 In the five operating states in which injection is performed during the intake stroke, there is a possibility of interference between the intake valve that is in the open state and the spray. One of the fuel adhering to the intake valve Since the part does not flow into the combustion chamber, the accuracy of air-fuel ratio control within the combustion may be impaired. If air-fuel ratio control is not performed accurately, the acid * concentration concentration in the exhaust system Due to the feedback control from the sensor, etc., the injection command value given to the fuel injection valve is too large, resulting in an increase in HC emissions. There are things. In addition, if the fuel injection valve is placed in the center of the combustion chamber, the positional relationship between the injection and the ignition plug, and the ignition plug where the atomization of the fuel is important are important. Direct liquid fuel or coarse fuel droplets can cause a fire plug to be struck.
こ の よ ラ に 、 筒 内噴射ェ ンジンの燃費 よ び排気性能向上の た め に は 、 微粒化特性を改善する こ と と 、 噴霧の形状を制御す る こ と が重要であ る  Therefore, in order to improve the fuel efficiency and exhaust performance of the in-cylinder injection engine, it is important to improve atomization characteristics and control the shape of the spray.
本発明 は 記の課 に みて な さ れた も のであ り 、 燃料噴射 弁に よ る微粒化性能を向上する こ と と 、 嘖霧形状の調整を可能 に して 、 ェ ン ジンに と つ て望ま しい噴霧を実現する燃料 貴射弁 を供給する こ と を 目 的 と す 。  The present invention has been made in view of the above-mentioned section.It is possible to improve the atomization performance by the fuel injection valve and to adjust the fog shape so that the engine can be adjusted. The aim is to provide a fuel injection valve that achieves the desired spray.
上記 目 的を 成する ため に、 本発明の燃料噴射弁は、 燃料 射弁の弁座か ら複数の噴射孔に至 る燃料通路に、 燃料に旋回力 を付与する 旋回力付与手段を設け、 目 u s己複数の噴射孔は噴射孔 を有す る 面内で疎に配置 さ れた部分 と 密に配置 さ れた部分 と を 有する こ と に 、 噴霧形状の調整を可能にする  In order to achieve the above object, the fuel injection valve of the present invention is provided with a turning force applying means for applying a turning force to the fuel in a fuel passage extending from a valve seat of the fuel injection valve to a plurality of injection holes, The multiple injection holes have the injection holes, and the arrangement of the sparsely arranged parts and the densely arranged parts make it possible to adjust the spray shape.
ま た 、 i 記旋回力付与手段の う ち少な < と も一つは他の旋回 力付与手段 と は異な る旋回力 を付与する 5 に け こ と で 、 噴 霧形状の調 を可能にする  In addition, one of the <i> turning force applying means <1> provides a turning force different from other turning force applying means, and allows adjustment of the shape of the mist.
、'- 微粒化に対 して はヽ 刖記旋回力付与手段 と 記弁座を 通 さ せる燃料通路の断面積が最小 と な る部分の 合計が、 前記噴射 孔の断面積の 合計 よ り 大き い こ と を特徴 と する こ と で 、 噴射 孔にお け る 流速を増大 さ せ 、 微粒化性能を向上 さ せる。  , '-For atomization, the sum of the portions where the cross-sectional area of the fuel passage through which the turning force applying means and the valve seat are passed is the sum of the cross-sectional areas of the injection holes. By being characterized by its large size, the flow velocity at the injection hole is increased and the atomization performance is improved.
本発明 に れば、 複数の噴射孔を有する燃料噴射弁に レ、て、 各噴射孔か ら流出する燃料に旋回 を与え る と で微粒化を促進 する と と あ に 、 噴射孔の配置に疎密 を設け る こ と で筒内噴射ェ ンジンに と つ て ま しい形状の噴霧を得 ら れる燃料噴射弁を供 給でさ る According to the present invention, the fuel injection valve having a plurality of injection holes is swung to fuel flowing out from each injection hole to promote atomization and to arrange the injection holes. In-cylinder injection A fuel injection valve is provided to obtain a spray with a shape suitable for an engine.
ま た 、 複数の噴射孔に対 して夫々 旋回 を配 id:する 際に生 じ る ド、ボ リ ゥ ム の増加を抑制 しなが ら 、 上記の効果を得 られ る燃料嘖射弁 を供給で る  In addition, a fuel injection valve that can achieve the above effect while suppressing the increase in the volume and volume that are generated when swirling is assigned to multiple injection holes. Supply
図面の簡単な説明 Brief Description of Drawings
第 1 図 は 、 本発明 に係 る燃料噴射弁の第一実施例の 造を示 す断面図であ る  FIG. 1 is a sectional view showing the construction of a first embodiment of a fuel injection valve according to the present invention.
第 2 図 は 、 本発明 に係 る燃料噴射弁の第一実施例の p賁射孔近 傍を拡大 した断面図及ぴ燃料通路プ レ一卜 の断面図であ る  FIG. 2 is an enlarged cross-sectional view of the vicinity of the p-type injection hole and a cross-sectional view of the fuel passage play of the first embodiment of the fuel injection valve according to the present invention.
3 図 は 一 施例の燃料 B賁射弁に よ る噴 の 式 であ Figure 3 shows the injection formula of the fuel B injection valve in one example.
、 第 実 The first fact
4 図 は 、 第一実施例の燃料噴射弁 を内燃機関に搭載 した例 を示す模式図であ る - 第 5 図 は 、 本発明 に係 る 第 ―実施例の燃料 射弁の噴射孔近 傍を拡大 した断面図及ぴ燃料通路プ レ一小 の断面図であ る Fig. 4 is a schematic diagram showing an example in which the fuel injection valve of the first embodiment is mounted on an internal combustion engine.-Fig. 5 shows the vicinity of the injection hole of the fuel injection valve of the first embodiment according to the present invention. Fig. 2 is an enlarged cross-sectional view and a cross-sectional view of a fuel passage play.
6 図 は 、 第 ― 施例の燃料嘖射弁に よ る噴霧の模式 であ 実  Fig. 6 is a schematic diagram of spraying by the fuel spray valve of the first example.
7 図 は 、 第 実施例の燃料噴射弁を 内燃機関に搭載 した例 を示す模式図であ る FIG. 7 is a schematic diagram showing an example in which the fuel injection valve of the first embodiment is mounted on an internal combustion engine.
 Two
第 8 図 は 、 本発明 に係 る 第 実施例の燃料噴射弁の噴射孔近 傍を拡大 した断面図及び燃料通路プ レ一 の断面図であ る  FIG. 8 is an enlarged cross-sectional view of the vicinity of the injection hole of the fuel injection valve according to the first embodiment of the present invention and a cross-sectional view of the fuel passage plate.
第 9 図 は 、 第二 施例の燃料 U貴射弁を燃焼 中央に配置 した 例及ぴ噴霧形状を示す模式図でめ 0  Fig. 9 is a schematic diagram showing an example of spray shape and an example in which the fuel U noble valve of the second embodiment is placed in the center of combustion.
第 1 0 図 は、 第四実施例の燃料噴射弁の 射孔近傍を拡大 し た断面図及び燃料通路プ レ の断面図であ る 1 1 図 は、 第四 施例の燃料噴射弁に よ つ て形成 さ れる 噴 霧の形状を示す模式図であ る FIG. 10 is an enlarged cross-sectional view of the vicinity of the injection hole of the fuel injection valve of the fourth embodiment and a cross-sectional view of the fuel passage press. 11 Fig. 1 is a schematic diagram showing the shape of the spray formed by the fuel injection valve of the fourth embodiment.
発明 を実施する た め の最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
【実施例 1 】  [Example 1]
第 1 図 は 、 本発明 に係る燃料噴射弁の第 ―の実施形態を示す 断面図であ る 第 1 図 に示 さ れた燃料噴射弁は 、 通常時閉型の 磁式燃料 U貪射弁であ り ィ ル 1 1 2 に通 さ れていない状 態に いて は 、 弁体 1 1 0 と 弁座 1 0 4 と が密着 してお り 、 燃 料は 射 さ れない 燃料は図示 しない燃料ポ ンプに つ て圧力 を付与'さ れた状態で燃料供給 P よ り 供給 さ れ 、 燃料流入 口 1 1 FIG. 1 is a cross-sectional view showing a first embodiment of the fuel injection valve according to the present invention. The fuel injection valve shown in FIG. 1 is a normally closed type magnetic fuel U injection valve. In the state where it is not passed through the filter 1 1 2, the valve body 1 1 0 and the valve seat 1 0 4 are in close contact with each other, and no fuel is shot. Supplyed by fuel supply P with pressure applied to fuel pump, fuel inlet 1 1
5 か ら 弁体 1 1 0 と 弁座 1 0 4 と の密着位置ま で燃料で満た さ れてい る コ ィ ル 1 1 2 に通 « さ れ 、 弁体ガィ 1 0 3 に支持 さ れた弁体 1 1 0 が第 1 図上方に変位する こ と に つ て弁体 15 through the coil 1 1 2 filled with fuel up to the contact position between the valve body 1 1 0 and the valve seat 10 4, and is supported by the valve body gear 10 3. The valve body 1 1 0 is displaced upward in FIG.
1 0 は弁座 1 0 4 か ら離れる とヽ 燃料は弁座 1 0 4 と 弁体 1 11 0 is away from valve seat 1 0 4 ヽ Fuel is valve seat 1 0 4 and disc 1 1
0 の隙間 を通つ てそ の下流に め るネ复数の噴射孔 (例 えば噴射孔A number of injection holes (e.g. injection holes) downstream through a gap of 0
1 0 1 ) か ら噴射 さ れる 1 0 1)
第 2 図 は噴射孔 1 0 1 お よ び弁座 1 0 4 の近傍を拡大 した断 面図で め る A ― A断面図は 、 噴射孔に る横方向 路が形成 さ れた燃料通路プ レ一 2 0 2 の断面図であ る 燃料は弁体 1 Fig. 2 is a cross-sectional view enlarging the vicinity of the injection hole 10 1 and the valve seat 10 4. The A-A cross-sectional view shows the fuel passage block in which the lateral path for the injection hole is formed. The fuel is a valve body 1
1 0 と 弁座 1 0 4 を通過 した後 、 横方向 路 2 0 4 に流入 し 、 複数の嘖射孔 の燃料通路であ る旋回通路を mつ て M回室に し 、 旋回 で旋回力 を付与 さ れた後に各噴射孔か ら噴射 さ れる。 例 えば噴射孔 1 0 1 に対 しては 、 旋回通路 2 0 7 か ら流入 した 燃料は 、 旋回 2 0 8 で矢印 2 1 1 の方向 に旋回力 を付与 さ れ、 噴射孔 1 0 1 か ら流出する。 旋回通路 2 0 7 はほぼ円形の旋回 室 2 0 8 の 中心に対 してォフセ ク して saけ られてい る ため 、 矢印 2 1 1 の方向 の旋回流が旋回室内 に生 じ る。 After passing through 10 and the valve seat 10 4, it flows into the lateral passage 20 4, and turns the swirl passage, which is the fuel passage of the plurality of spray holes, into the M chamber, and the swivel force by swiveling After being applied, it is injected from each injection hole. For example, for the injection hole 10 1, the fuel flowing in from the turning passage 2 07 is given a turning force in the direction of the arrow 2 1 1 by the turning 2 0 8, and the fuel is injected into the injection hole 1 0 1. Outflow. Since the swirl passage 20 07 is offset from the center of the substantially circular swirl chamber 20 8, A swirling flow in the direction of arrow 2 1 1 occurs in the swirling chamber.
こ の よ う にヽ 嘖射孔において燃料に旋回力 が生 じ る よ つ に噴 射孔上流の流れを形成 させる と 、 嘖射 さ れる燃料は円錐状の液 膜か ら分裂する た め、 旋回力 を付与 しなかつ た場合 と 比較 して 燃料を よ り 小 さ い液滴に分裂 させる こ と ができ る ο  In this way, if the swirl force is generated in the injection hole and the flow upstream of the injection hole is formed, the injected fuel is split from the conical liquid film. The fuel can be broken into smaller droplets compared to the case without swirling force.
複数設 け ら れた噴射孔は A - A断面内 で 、 噴射孔が密 に配置 さ れた部分 と 疎に配置 さ れた部分を有する よ う に配置 さ れてい る 例えば、 射孔 1 0 1 、 2 0 9 a 、 2 0 9 b 'の近傍では単 位面積あた り の噴射孔の数が少な く 、 ま た近傍の P貴射孔 と の距 離が長レ、 、 疎な配置であ る ま た、 噴射孔 2 0 5 、 2 0 6 の近 傍では単位面禾貝 め 7こ り の噴射孔の数が多 < 、 ま た近傍の噴射孔 と の距離 短い 、 密な配置であ  The plurality of injection holes are arranged so that the injection holes have a densely arranged part and a sparsely arranged part in the AA cross section. In the vicinity of 1, 2 009 a and 2 0 9 b ′, the number of injection holes per unit area is small, and the distance from the nearby P noble holes is long and sparse Also, in the vicinity of the injection holes 205 and 206, the number of injection holes for the unit face mussel 7 is large, and the distance from the adjacent injection holes is short, a dense arrangement. In
ま た 、 夫々 の噴射孔は第 2 図 の B - B 断 に不す よ う に 、 弁 体 O軸 2 1 0 に対する 角度が異な る よ う に設 け られてい る ο 第 Also, each injection hole is installed so that the angle with respect to the valve body O-axis 210 is different so as to avoid the BB disconnection in Fig. 2.
2 図 に示す例では、 嘖射孔 2 0 5 は弁体軸 と ほぼ平行に BX け ら れてい る の に対 し、 噴射孔 1 0 1 は傾斜角度を持つ て設け ら れ てい る In the example shown in Fig. 2, the injection hole 20 5 is provided with a tilt angle, whereas the injection hole 10 5 is provided substantially parallel to the valve body axis.
更に 、 噴射孔 1 0 1 と 噴射孔 2 0 5 と では、 燃料に与 られ る 旋回力 が異な る よ う に庇回通路お よ ぴ旋回室が設け られてい る 射孔 1 0 1 に流入する旋回 2 0 8 に は、 旋回室 2 0 8 の 中心に対す る ォフセ ッ ト が小 さ い旋回通路 2 0 7 が連な つ て い る 旋回室の 中心に対 してォフセ ッ 卜 を小 さ く する こ と で 、 Further, the injection hole 10 1 and the injection hole 2 0 5 flow into the injection hole 1 0 1 provided with the winding passage and the swirl chamber so that the swirl force applied to the fuel is different. For swirl 20 8, the offset is small relative to the center of the swirl chamber 20 8, which is small in the center of the swirl chamber 20 8. By doing
,旋回 2 0 8 に レ、て付与 さ れる燃料の角運動量が減少 し 、 噴 射孔 1 0 1 か ら 流出する燃料の旋回力 は小 さ く な る た 、 噴 射孔 2 0 6 に対 して設け られてい る 旋回室 2 1 2 は 、 旋回苣 2Therefore, the angular momentum of the fuel applied to swirl 20 8 decreases, and the swirl force of the fuel flowing out from the spray hole 10 1 becomes smaller. The swirl chamber 2 1 2 is a swivel rod 2
1 2 の 中心に対する オフセ ク 卜 が大き い旋回通路 2 1 3 が連な つ てい る 旋回室 2 1 2 の 中心に対する ォフセ ッ 卜 が大さ Vヽ こ と で 嘖射孔 2 0 6 か ら流出する燃料に付与 さ れる 角 動量が 増大する こ の よ う に 旋回 路の旋回 中心に対する オフセ ッ 卜 量に つ て 噴射孔にね け る旋回力 を調整する と ができ る な 旋回力 は旋回室において与 ら れた角 動量 と 、 噴 射孔か ら 流出す る 軸方向 動量 と の比に つ て決定 さ れる ので、 噴射孔の大さ さ 旋回通路の断面積、 旋回室の大さ さ に よ っ て 旋回力 を調整する こ と がでさ る 1 Rotating passage 2 1 3 connected to the center of 2 The amount of angular movement given to the fuel flowing out from the injection hole 20 6 increases when the offset to the center of the swirl chamber 2 1 2 is V, which is large. The swivel force to the injection hole cannot be adjusted according to the offset amount with respect to the swivel center.The swivel force depends on the amount of angular movement given in the swirl chamber and the axial direction flowing out of the spray hole. Because it is determined by the ratio to the amount of movement, the turning force can be adjusted according to the size of the injection hole, the cross-sectional area of the turning passage, and the size of the turning chamber.
ま た 射孔の疎密 をき  Also remove the density of the hole
け る ため に 疎に配置 さ れてい る 噴 射孔 1 0 1 2 0 9 a 2 0 9 b は弁体の 中心軸に近 < 、 密 に 配置 さ れてい る m射孔 2 0 6 は弁体の 中心軸か ら < な る よ う に けて め る 噴射孔を密に設け る こ と は 、 噴射孔の上流に旋' 回流を形成 さ せる た めの流路が存在する た め、 単純に孔の配置 を密にする だけでは成 しない  Sparsely arranged injection holes 1 0 1 2 0 9 a 2 0 9 b is close to the central axis of the valve body, and m injection holes 20 6 are densely arranged The dense arrangement of the injection holes so that it is <from the center axis of the body means that there is a flow path for forming a swirl flow upstream of the injection holes. It's not just a simple hole arrangement.
U賁射孔を密 に け る ため には 幾何子的な制約か ら弁体の 中 心軸か ら ざ けて配置する必要が あ る ま た、 噴射孔が密な部 位には燃料の流量も 大さ < な る た め、 横方向通路 2 0 4 力 ら旋 回通路に流入する 部位の断面積が小 さ < な り 過ぎない う に燃 料 路を設計する 必要が あ る 密 に配置 さ れる 射孔に流入す る旋回通路 と 横方向通路 2 0 4 と が連な る部位の断面積を確保 する た め に は、 横方向通路 2 0 4 と 旋回通路 と が連な る 部位が 弁体の 中心か ら い位置に設け られる と が必要であ る  In order to close the U injection hole, it is necessary to place it away from the center axis of the valve body due to geometrical restrictions. Since the flow rate is also large, it is necessary to design the fuel passage so that the cross-sectional area of the part flowing into the turning passage from the lateral passage 2 0 4 force is not too small <densely In order to secure the cross-sectional area of the part where the swirling passage that flows into the injection hole and the lateral passage 20 4 are connected, the part where the lateral passage 20 04 and the turning passage are connected Must be provided at a position away from the center of the disc
第 2 図 の例では に配置 さ れる噴射孔 2 0 6 に連な る旋回 通路 2 1 3 は、 弁体中心か ら い 1 置で横方向位置 と 連な る よ In the example shown in Fig. 2, the swirl passage 2 1 3 connected to the injection hole 20 6 arranged at is connected to the lateral position at one position from the center of the valve body.
5 に設け られてい る Provided in 5
逆に 疎に配置 さ れる噴射孔に流入する旋回通路 と横方向通 路 2 0 4 と が連な る部位は、 弁体に近レヽほ つ が良い 疎に配 さ れる噴射孔 1 0 1 に な る旋回通 '路 2 0 8 は弁体中心に近レ、 位置で横方向通路 2 0 4 と 連なつ てい る こ の よ ラ な構成にすOn the contrary, the swirl passage and the lateral passage flowing into the sparsely arranged injection holes The part where the road 2 0 4 is connected is closer to the valve body, and the swirl passage that becomes the sparsely arranged injection hole 1 0 1 is located closer to the center of the valve body. In this way, it is connected to the lateral passage 20 4
· - る と で 、 横方向通路 2 0 4 の体積を減少 さ せ 、 弁座 1 0 4 よ り 下流の体積を減少 さ せる こ と がでさ る 弁座下流の体積は 、 弁体が閉 じた後 に燃料通路に残留する燃料の
Figure imgf000010_0001
に関係 し 、 閉弁 後の圧力変動な ど に よ つ て - 噴射が起 る 二次噴射の量 と 関 し てい る 一次噴射は燃料 射弁に付着する堆積物の な どに関 係する た め 、 少ないほ が よ < 、 一次噴射を低減する た め には 弁座下流の体積が小 さ いほ う が良い
In this way, the volume of the lateral passage 20 4 can be reduced, and the volume downstream of the valve seat 10 4 can be reduced. Of the fuel remaining in the fuel passage after
Figure imgf000010_0001
Depending on the pressure fluctuation after closing, etc.-The amount of secondary injection that occurs The primary injection is related to deposits adhering to the fuel injection valve, etc. Therefore, it is better to reduce the volume, and to reduce the primary injection, the volume downstream of the valve seat should be small.
の 5 に して 、 噴射孔の配置に疎な部分 と 密な部分 と を設 け る こ と と 、 噴射孔の角度が異な る よ う な噴射孔の組が設け ら れ る こ と に よ り 、 噴霧形状が燃焼 ンセプ や燃焼 形状に迴 合する よ 5 に調整する こ と ができ る  Therefore, it is possible to provide a sparse part and a dense part in the arrangement of the injection holes, and to provide a set of injection holes with different angles of the injection holes. Therefore, the spray shape can be adjusted to 5 so that it matches the combustion septum and the combustion shape.
燃料通路プ レ一 卜 2 0 2 は 、 パンチ等に る 打ち抜さ 、 切削 加ェ 、 V ィ ャ力 ッ 卜 放電加 X 、 電極に る 放 加 X 、 お よぴェ  The fuel path plate 20 2 is punched by punching, cutting force, V shear force discharge X, discharge X at electrode,
>- ッ チ ン グプ セ ス に よ る加ェに よ つ て製造する と がでさ る ェ V チ ン グプ 口 セ ス に よ つ て燃料通路プ レ一 2 0 2 を形成す る場合に は 、 燃料通路プ レ一ト の材質を単結晶 シ y コ ン と する と 加 Xが容易であ る  >-Manufactured by processing with a matching process V Fuel port plate 20 2 is formed by a switching port In this case, if the material of the fuel passage plate is a single crystal silicon, addition X is easy.
ま た 、 燃料通路プ レ一卜 2 0 2 と 噴射孔プ レ一卜 2 0 3 は ピ ン 2 1 4 の な部材を使用する と 、 位置決めが容易であ る 第 2 図では 、 ピ ン 2 1 4 は別部材 と して設け られてい る が 、 B貴 射孔プ レ一 2 0 3 ま たは燃料通路プ レ― 卜 2 0 2 と一体 と し て あ 良い ま た は 、 燃料通路プ レ一卜 2 0 2 と 噴射孔プ レ一 In addition, the fuel passage plate 20 2 and the injection hole plate 20 3 can be easily positioned by using a pin 2 1 4 as shown in FIG. 14 is provided as a separate member, but it may be integrated with the B nose hole plate 20 3 or the fuel passage plate 20 2 or the fuel passage plate Lay-up 2 0 2 and spray hole play
2 0 3 を一体の部品 と して製造 して あ 良い 燃料诵路プ レ一卜 と 噴射孔プ レ 卜 を 体 と して製造する と ヽ 噴射孔 と 燃料 路 プ レ一 上の旋回 と の位置決めが不要 と な り 、 製造 コ ス を 削減で含 る の よ に一体部材 と した燃料 路プ レー ト と 噴 射孔プ レ一 卜 を製造する場合にはヽ パ ンチに よ る切削加ェ 、 塑 性加ェ 、 電極に よ る 放電加ェ 、 あ る いはェ V チ ン グプロ セス に よ つ て燃料通路 よ ぴ旋回通路を形成 した後 に 、 噴射孔を切削20 3 can be manufactured as an integral part. And the injection hole press プ as a body, the positioning of the injection hole and the swirl on the fuel path plate is not necessary, and the manufacturing cost is reduced, and it is an integrated member. When manufacturing fuel path plate and injection hole plate, cutting process by plastic punch, plastic process, discharge process by electrode, or V chain After the fuel passage and swirl passage are formed by the process, the injection hole is cut.
( K V ル ) 、 パ ンチ 放電加ェな どで穿孔する と 良い (KV), it is better to punch with a punch discharge etc.
第 3 図 は 、 第 2 図 に示 さ れた燃料 射弁の例か ら噴射 さ れる 噴霧の 子を示 した図であ る 。 噴射孔 1 0 1 は弁体の軸に対 し て傾斜 して設 け ら れている た め、 U賁射孔 1 0 1 か ら噴射 さ れる 燃料の噴霧 3 0 2 傾斜する た 、 噴射孔 1 0 1 に付与 さ れ る旋回力 は小 さ いた め 、 噴霧 3 0 2 の広が は小 さ く な り 、 ま た角 動 に対 して噴射孔の軸方向 の 動力 が大さ く な る た め、  FIG. 3 is a view showing a spray atom injected from the example of the fuel injection valve shown in FIG. Since the injection hole 10 1 is inclined with respect to the shaft of the valve body, the fuel spray injected from the U injection hole 10 1 is inclined. Since the turning force applied to 10 1 is small, the spread of the spray 30 2 becomes small and the axial power of the injection hole does not increase with respect to the angular movement. Therefore,
、土  The soil
噴霧は よ り m. < 到 する よ う にな る 一方 噴射孔 2 0 5 は 傾斜がない よ に設け られてい る た め 、 嘖射孔 2 0 5 力、 ら噴射 さ れる 噴霧 3 0 1 は殆 ど傾斜せずに流出する ま た 、 噴射孔 2The spray is more m. <On the other hand, the injection hole 205 is provided with no inclination, so that the spray 3 0 1 injected from the injection hole 2 0 5 force It flows out almost without inclining, and the injection hole 2
0 5 に付与 さ れてい る 旋回力 は大含 いため 、 噴霧 3 0 1 の拡が り は大さ < な 、 噴霧 3 0 2 と 比較 して到達距離は短 く な る Since the turning force applied to 0 5 is large, the spread of spray 3 0 1 is less than that of spray 3 0 2 and the reach is shorter
E - E 断面は、 噴霧の横 1断面図 で あ る 噴霧 3 0 2 は噴霧の 拡が り が小 さ いた め 、 嘖霧の空間的分布が密 にな り やす く 霧 3 0 1 は噴霧の拡が り が大き いた め 霧の 間的分布が疎 と な る ま た 、 霧 3 0 4 や嘖霧 3 0 3 は 、 夫々 他の噴射孔 (例 えば U賁射孔 2 0 6 や 2 0 9 a な ど ) か ら 噴射 さ れた燃料に よ て構成 さ れる 夫 の噴射孔の角度 よぴ旋回力 を調整する · と で 、 こ の Ό な噴霧を得る こ と がでさ る  Cross section E-E is a cross-sectional view of the spray. Spray 3 0 2 has a small spray spread, so the spatial distribution of the fog is likely to become dense. Since the spread of the mist is large, the mist distribution is sparse, so that the mist 30 4 and the mist 3 0 3 are separated from the other injection holes (for example, the U injection holes 2 0 6 and 2 0 9 a etc.) The angle of the husband's injection hole formed by the fuel injected from the fuel is adjusted and the swirl force is adjusted.
. 第 3 図 に示 した う な噴 は、 4 図 に示す よ 5 なェ ンジン に使用する と 良い。 4 図は筒内噴射ガ ソ リ ンェ ンジンの断面 図であ る 第 4 図 に示 したェ ンジンは 、 燃料噴射弁を吸気ポ一 卜 近傍に け 、 点火プラ グを燃料 中央に配置 した吸 2 弁式 のェ ンジンであ り 、 吸 行 : ί呈に燃料を噴射する方式を採用 した 燃焼 コ ンセプ 卜 のェ ンジンであ る The jets shown in Fig. 3 are the same as those shown in Fig. 5. It is good to use for. Fig. 4 is a cross-sectional view of an in-cylinder injection engine. The engine shown in Fig. 4 is a suction engine with the fuel injection valve located near the intake port and the ignition plug located in the center of the fuel. It is a valve-type engine, and it is an engine of a combustion concept that employs a method of injecting fuel to the intake.
吸 行程に燃料を噴射する場合 、 吸 弁 4 0 4 が開いた状態  When fuel is injected during the intake stroke, the intake valve 4 0 4 is open
· - で燃料を噴射する 。 の と き 、 吸ス、ポ一ト か ら の 気流動は、 一般に矢印 4 0 6 で示す よ Ό な ピス ン 4 0 7 に向か ラ 強い流 ·-Inject fuel with. At this time, the air flow from the suction and the point is generally strong toward the piston 4 0 7 as indicated by the arrow 4 0 6.
'れが生 じ る と が分かつ てレ、 る 'When I grow up, I'll know
吸気弁 4 0 4 が開いた状態で燃料を噴射する こ と にな る ので、 吸気ポ一 h 近傍 Ιι」 ex け られた燃料噴射弁 4 0 1 か ら の噴霧は吸 弁 4 0 4 に衝突 しやす < な る こ こ で 、 燃料 射弁 4 0 1 に、 第 3 図で示 した よ つ な噴霧を用 レ、 、 点火プラ グ 4 0 3 の方向 に 霧 3 0 2 が向 5 よ ラ に取 り 付け る と 、 第 3 図 中の燃料が希 薄 1な部分 3 0 5 の位置が丁度吸気弁 4 0 4 の位置に相 当する JSince the fuel is injected with the intake valve 40 4 open, the spray from the fuel injection valve 40 1 that has been exhausted collides with the intake valve 4 0 4. In this case, the fuel spray valve 41 is applied with the spray shown in Fig. 3, and the mist 3 0 2 is directed in the direction of the ignition plug 40 3. When installed, the position of the fuel-lean 1 part 3 0 5 in Fig. 3 exactly corresponds to the position of the intake valve 4 0 4 J
5 にな る こ の た め 吸 弁 4 0 4 に衝突 し付着する燃料を抑 制する と がで含 る 吸気弁 4 0 4 への燃料の付着は 、 空燃比. の制御の正確 さ を損なレ、排気中 の未燃燃料成分を増加 さ せる原 因 に成 得る が 、 第 3 図 に示すよ 5 な本発明 に係 る燃料噴射弁Therefore, the fuel adhering to the intake valve 40 4 that impinges on the intake valve 40 4 and suppresses the adhering fuel may impair the accuracy of control of the air-fuel ratio. However, the fuel injection valve according to the present invention as shown in FIG. 3 can be a cause of increasing the unburned fuel component in the exhaust gas.
- を用い る と で こ の問題を回避する と がで る  Use-to avoid this problem
ま た 、 第 3 図で示 さ れた噴霧 3 0 2 は噴霧の拡が り が狭 < 、 燃料液滴の空間密度が高いので 、 吸気に る流れ 4 0 6 に ίη,つ て燃焼 中央 向か う よ う にな る のため 、 燃料 と 空 と の 混合の状態を よ り 均質にする と がでさ.る。 の 果 、 燃焼時 にお け る混合 の濃淡を減 らす と がでさ 、 燃料が a い部分や Also, the spray 30 2 shown in Fig. 3 has a narrow spray spread <and a high spatial density of fuel droplets. For this reason, it is possible to make the mixing state of the fuel and the air more uniform. As a result, it is possible to reduce the density of the mixture during combustion.
- 温度が高い部分で生 じ い 酸化.物の生成を押 さ え る と 力 s でさ る -Oxidation that occurs at high temperatures. Do
更 に 、 第 3 図 に け る 霧 3 0 1 は噴霧の拡が り が大さ く 、 到 距離が短いた め 、 吸 流れ 4 0 6 に よ て噴霧が ピス ト ン In addition, the mist 30 1 in Fig. 3 has a large spray spread and a short distance, so the spray is pistoned by the suction flow 40 6.
4 0 7 へ付着する の を抑制する 効果が期待でさ る ピス ト ン 4Piston 4 expected to have an effect of suppressing adhesion to 4 7
0 7 の冠面に付着 した燃料は 、 燃焼時には ピス ト ン 面での冷 却に る 消炎効果に よ り 未燃燃料成分 と して排出 さ れる こ と が あ る が 、 第 3 図 に示す な燃料噴射弁を用い る こ と に よ つ て こ の問題を回避する こ ど がでさ る The fuel adhering to the crown of 07 may be discharged as an unburned fuel component during combustion due to the quenching effect of cooling on the piston surface, as shown in Fig. 3. This problem can be avoided by using a simple fuel injection valve.
【実施例 2 】  [Example 2]
第 5 図は 、 本発明 に係 る 第一の実施形態 と して噴射孔を楕円 状に配置 —した例で あ る 第 5 図 に示 した噴射孔配置の場合、 第 FIG. 5 is an example in which the injection holes are arranged in an oval shape as the first embodiment according to the present invention. In the case of the injection hole arrangement shown in FIG.
6 図 の G - G 断面の 'よ 5 :な扁平な噴霧形状を得 ら れる 線 5 0Fig. 6 G-G cross section of line 5: A line that gives a flat spray shape 50
7 よ ぴ 5 0 6 は直交する線であ る が、 線 5 0 6 か ら線 5 0 7 にむ けた時計回 り の範囲に配置 さ れた嘖射孔の数は弁体中心軸7 No. 50 06 is an orthogonal line, but the number of spray holes arranged in the clockwise direction from line 50 06 to line 50 07 is the central axis of the disc
5 0 8 を挟んで 2 個ずつであ る (例えば噴射孔 5 0 2 ) よ た、 線 5 0 6 か ら線 5 0 7 にむけた反時計回 り の範囲 に配置 さ れた 噴射孔の数は弁体中心軸 5 0 8 を挟んで 4 個ずつでめ る (例 X. ば 射孔 5 0 1 ) すなわち 、 燃料噴射弁の弁体軸を 中心 と し て周方向 の密度に着 目 する と 、 噴射孔 5 0 2 の近傍は噴射孔が 疎な配置であ り 、 噴射孔 5 0 1 の近傍は密な配置であ る The number of injection holes arranged in the counterclockwise direction from line 5 06 to line 5 0 7 by two pieces (for example, injection hole 50 2) sandwiching 50 8 The number should be 4 each with the valve body central axis 50 8 in between (for example, X. Injection hole 5 0 1), that is, focus on the density in the circumferential direction around the valve body axis of the fuel injection valve. Then, the vicinity of the injection hole 50 2 is a sparse arrangement, and the vicinity of the injection hole 50 1 is a dense arrangement.
Ρ賁射孔が楕円 状に配置 さ れて レ、 る の は、 噴射孔が密な部位で は弁体中心軸 5 0 8 か ら遠 < 、 噴射孔が疎な部位では近 く 配置 し ·>- た結果であ る の う な配置に よ っ て 、 密に配置 された噴 射孔に流入する旋回通路 と 横方向通路 5 0 4 と が な る部位で . の断面積を確保する と がでさ る と 共に、 丁 ッ ド、ボ V ク ム を大  The spray holes are arranged in an ellipse shape. The reason is that the injection holes are located farther away from the central axis of the valve body 5 8 when the injection holes are dense, and closer when the injection holes are sparse. >-As a result of the arrangement, the cross-sectional area of. Is secured at the site where the swirling passage and the transverse passage 50 4 that flow into the densely arranged injection holes are formed. Along with taking off, increase the size of the doll and box.
· - さ < する と な く 疎な嚕射孔の配置を混在 さ せる と ができ る。 ま た、 第 6 図 の F - F 断面 に示 さ れる よ つ に噴射孔の角 度は 夫々 異な つ て り 、 外側に配置 さ れた噴射孔 (例 え ば噴射孔 5· It is possible to mix sparse firing hole arrangements if-<is less. In addition, as shown in the FF cross section of Fig. 6, the angle of the injection holes is different, and the injection holes arranged on the outside (for example, the injection holes 5
0 1 ) ほ ど弁体中心軸の外側に向かつ て傾斜がつ け られてい.る。 こ の よ な傾斜に よ つ て 、 Ρ賁霧の断面は G 一 G断面に示す う な 平状 と な る 0 1) Inclined toward the outside of the valve body central axis. Due to this inclination, the cross section of the fog is flat as shown in the G 1 G cross section.
第 6 図 に示 した噴霧は 、 第 7 図 に示すよ 5 なェ ンジンに用 い る と 効果的であ る 第 7 図 は、 圧縮行程に燃料を噴射 し、 燃焼 内 に燃料の濃い部分 と 薄い部分 と を形成 して着火 させる成層 燃焼を行 フ ンセ プ ト の筒內噴射ガ ソ ジ ン工 ンジンの例であ る 燃料噴射弁 7 0 1 に は第 5 図 よ ぴ第 6 図 に示 した燃料噴射 弁が用 い られて り 、 噴霧形状は a平な形状 と な る ま た 、 燃 料噴射弁 7 0 1 の取 り 付け角度に対 して噴霧 7 0 6 が傾いて り 、 点火プラ グ 7 0 3 の方 へ向か ラ よ 5 にな つ てレ、 る の は 、 The spray shown in Fig. 6 is effective when used in 5 engines as shown in Fig. 7. Fig. 7 shows that the fuel is injected during the compression stroke and the fuel is rich in the combustion. Figure 5 and Figure 6 show the fuel injection valve 701, which is an example of a cylinder-injection gasoline engine with a stratified combustion that forms a thin part and ignites. The fuel spray valve is used, the spray shape is a flat shape, the spray 70 6 is inclined with respect to the mounting angle of the fuel injector 70 1, and the ignition The direction of plug 70 3 towards Layo 5 is
5 の C - C 断面 てい る た め であ 。 第 図 ίこ お い て噴射孔が傾斜 し This is because of the C-C cross section of 5. Fig. Ί
こ の よ う に、 噴射孔の傾斜を設け る こ と で 、 燃料 射弁の取 り 付け角 度 に制約 さ れ る こ と な く 噴霧の形成 さ れる 方向 を調 す る と ができ る In this way, by providing the inclination of the injection hole, the direction in which the spray is formed can be adjusted without being restricted by the mounting angle of the fuel injection valve.
第 5 図 の よ う に 、 複数の噴射孔を備え 、 夫々 に旋回力 を付与 する 流路を設 けた燃料噴射弁に よ る 噴霧液滴は非 吊 に小 さ いた め - ヽ 噴射 さ れる 雰囲気気体 と の摩 に よ つ て減 し い。 の た め 、 第 7 図 に示す よ う な圧縮行程噴射を行 5 ェ ンジン に用 い た 合に は、 噴霧の到達距離が短 ぐ な る こ の 果 、 点火プラ グ 7 0 3 の近傍に燃料液滴 も し < は 発 した燃料 と 気 と の混 合気が滞在する 時間 が長 く な り 、 燃焼安定性が 向上する 燃焼 安定性が向上する と で 、 点火タ ィ 、 ン グ よ び P 射タ ィ 、、 ン グの設定の 自 由度が向上 し、 よ り 熱効率の高い タ ィ ヽ、 ングで点 火 さ せる と が可能 と な る 。 こ の結果 と して、 ェ ンジンの熱効 率が 向上 し 、 燃費が低減 さ れる 。" ま た 、 こ の よ 5 なェ ンジン を 自 動車に搭載 した場合には 、 燃焼安定性が高いた め にェ ンジン の負荷お よ び回転数の広い範囲 にわたつ て成層 i を こ なわ せる こ と がでぎ 、 燃費 を低減する こ と ができ る As shown in Fig. 5, the spray droplets from the fuel injection valve with a plurality of injection holes, each of which has a flow path that imparts a turning force, are small and non-suspended. Decrease with gas. For this reason, when compression stroke injection as shown in Fig. 7 is used for the engine 5, the spray arrival distance is shortened, resulting in the vicinity of the ignition plug 70 3. If the fuel droplets <<the mixture of the generated fuel and gas stays longer, the combustion stability is improved, and the combustion stability is improved. The degree of freedom in setting the firing rate and ring is improved, and more efficient thermal efficiency can be achieved. It is possible to fire. As a result, the thermal efficiency of the engine is improved and the fuel consumption is reduced. "Also, when these 5 engines are installed in a car, the stratification i is applied over a wide range of engine loads and speeds for high combustion stability. It is possible to reduce fuel consumption.
―方で 、 噴霧が扁平にな つ てい る こ と に よ り ヽ 燃料 と ピス ン 7 0 7 と の衝突を軽減 し 、 未燃燃料成分の排出 を押 さ る こ と が でき る 圧縮行程で燃料噴射を行 ラ 場合には燃料噴射弁 7 -On the other hand, the flattened spray reduces the collision between fuel and piston 70 7 and reduces the unburned fuel component in the compression stroke. Fuel injection valve 7 for fuel injection
0 1 と ピ ス 卜 ン の 7 0 7 の距離が短 < 、 ま た噴射後の時間の経 過 と 共に ピス ンは近づ く ので、 ピス 卜 ン 7 0 7 方向 に向か う 燃料は少ないほ う 力 ^良い The distance between 0 1 and 70 7 of the piston is short, and the piston approaches as time passes after injection, so there is less fuel in the direction of the piston 70 7 Good power ^ good
一般的 な筒内噴射ガ ソ リ ンェ ンジンでは、 .燃焼安定性を確保 する た め に ピス ト ン に燃料を衝突 さ せて点火プラ グ 混合 を 導 < 方法が採 ら れてい る が 、 第 5 図 に示すよ う な燃料噴射弁を 用 いれば ピ ス ンへの燃料の衝突を回避 しなが ら燃焼安定性を 高 め る こ と がでさ る。  In general in-cylinder injection gasoline engines, in order to ensure combustion stability, fuel is collided with pistons to introduce ignition plug mixing. If a fuel injection valve as shown in Fig. 5 is used, combustion stability can be improved while avoiding fuel collision with the piston.
【実施例 3 ]  [Example 3]
第 8 図 は ―部分に噴射孔が密な部分を有する噴射孔を配置 し た 、 本発明 に係 る第三の実施例 を示す断面図であ る  FIG. 8 is a cross-sectional view showing a third embodiment according to the present invention in which injection holes having dense injection holes are arranged in the portion.
噴射孔 8 0 1 a 乃至 8 0 1 弁体中心軸の周方向 に均 な配 置 と な つ て り 、 そ の傾斜は弁体中心軸の外側を 向 < よ う にき; 定 さ れてい る そ の一方で 、 噴射孔 8 0 2 a 、 b 、 は弁体の 内側 を向 か う よ う に噴射孔の角度が設定 さ れてお り 、 噴射孔 8 The injection holes 8 0 1 a to 8 0 1 are arranged uniformly in the circumferential direction of the valve body central axis, and the inclination thereof is determined so as to face the outside of the valve body central axis. On the other hand, the angle of the injection hole is set so that the injection holes 802a, b, face the inside of the valve body.
0 1 a 乃 8 0 1 g と は異なっ てい る ま た 、 噴射孔 8 0 2 a は近傍の 射孔 と の距離が噴射孔 8 0 1 a 乃 8 0 1 g と 比較 して近接 して設け られてお り 、 密な配 と な つ てレ、 る こ の よ つ な噴射孔の配置に対 して 正な流
Figure imgf000016_0001
を噴射孔 8 0 2 a に供給す る た め に 弁体の 中心軸か ら離れた位置に噴射孔 8
It is different from 0 1 a-8 0 1 g, and the injection hole 8 0 2 a is located close to the adjacent injection hole compared to the injection hole 8 0 1 a-8 0 1 g. It is a close distribution. Positive flow for this injection hole arrangement
Figure imgf000016_0001
In order to supply to the injection hole 8 0 2 a, the injection hole 8 is positioned away from the central axis of the valve body.
0 2 a が け ら れてい る ま た 、 晴射孔 8 0 2 a に な る旋回 通路 8 0 6 と 横方向通路 8 0 4 が連な る位置を弁体中心軸か ら0 2 a is provided, and the position where the turning passage 8 0 6 and the lateral passage 8 0 4 that become the spray hole 80 2 a are connected from the central axis of the valve body
5 離 して設け て あ る こ と に よ 、 横方向通路 8 0 4 か ら旋回通路5 Rotating passageway from lateral passage 804 by being provided apart
8 0 6 に流入する部位での断面積を確保 し 、 適正な流 Λを 8 0Securing the cross-sectional area at the site flowing into 8 0 6, and ensuring the appropriate flow Λ 8 0
2 a κ供給でき る よ うにな つ てい る 2 a κ is ready to be supplied
一方で 、 噴射孔 8 0 1 a 乃 8 0 1 g の配置を弁体中心軸か ら 離す と な く 噴射孔を設け る と 良い の よ 5 にする こ と で On the other hand, it is better to provide 5 injection holes instead of separating the injection holes 8 0 1 a-8 0 1 g from the central axis of the valve body.
• 0 噴射孔 8 0 1 a 乃 8 0 1 g に夫々連な る旋回通路 (例 えば旋 回通路 8 0 7 ) と 横方向通路 8 0 4 と が連な る位置は 、 刖記の 嘖射孔 8 0 2 a に連な る 旋回通路 8 0 6 と 比較 して弁体中心軸 に近づ けて設け る こ と 力 Sで含 る の結果 、 横方向 路 8 0 4 の体積を増やす と な < 、 すなわち了 ッ ド、ボ リ ゥム を増やす• The position where the swirling passage (for example, swirling passage 8 0 7) and the lateral passage 8 0 4 connected to the 0 injection holes 8 0 1 a to 8 0 1 g, respectively, is When the volume of the lateral passage 8 0 4 is increased as a result of the inclusion of the force S and the proximity to the valve body central axis as compared to the turning passage 8 0 6 connected to the hole 80 2 a N <, ie end, increase volume
.5 と な < 噴霧の形状の調整が可能に なつ てレ、 る .5 and <The spray shape can be adjusted.
ま た 、 噴射孔の傾斜角度が噴射孔 8 0 1 a 乃 8 0 1 g と 8 In addition, the angle of inclination of the injection hole is 8 0 1 a-8 0 1 g and 8
0 2 a 、 b ヽ c と で異な つ てい - る と に よ り 、 噴霧形状の制御 を容易に してい る 0 2 Different between a and b ヽ c-makes spray shape control easier
第 8 図 に示 した燃料噴射弁は 、 第 9 図 に示す よ ラ なェ ンジン 0 に使用する と 良い 第 9 図 は 、 燃料 u賁射弁を燃焼 中央付近に 简 内噴射ガ ソ リ ンェ ン >·  The fuel injection valve shown in Fig. 8 should be used for engine 0 as shown in Fig. 9. Fig. 9 shows that the fuel injection valve is located in the vicinity of the center of combustion. > ·
配置 した ジンの例であ る の よ う な配 置に よ る ェ ンジンは 主に燃焼安定性を向上 して成層燃焼が可 能な 転条件の範囲を広げて燃費を低減する と 共に 、 可燃空燃 比 と な つ てい る 混合気の領域中 の均質度合レ、 を めて窒素酸化 An engine with an arrangement such as the example of an arranged gin mainly improves combustion stability and expands the range of conditions under which stratified combustion is possible, reducing fuel consumption and combustible. Nitrogen oxidation with a homogeneity level in the region of the air-fuel mixture that has an air-fuel ratio
>5 物な どの排気を低減する狙いが あ る. > 5 There is an aim to reduce exhaust such as things.
第 9 図 の よ う に燃料噴射弁を燃焼室中央に配置 した場合には 点火プラ グ 9 0 3 と 燃料噴射弁 9 0 2 の距離が短 < な る 点火 プラ グ 9 0 3 を配置する位置はヽ 点火時の火炎伝播時間 を短縮 する た め に燃焼 中央に近い こ と が望ま しい。 しか しなが ら 、 点火プラ グ と 燃料噴射弁の距離が接近 しすぎ る と 、 燃料噴射弁 ら 噴射 さ れた燃料が液体の よ 火プラ グに衝突 して しま い、 点火プラ グの汚損の原因 と な る こ と が あ る 方で 、 燃料の噴 射方向 の変更な どに よ り 点火プラ グ と 異な る方向 に燃料を噴射 する と 、 混合気が点火プラ グ近傍に形成 さ れ難 < な り 、 燃 '焼安 定性を確保する こ と 力 S困難 と な る。 When the fuel injection valve is placed in the center of the combustion chamber as shown in Fig. The distance between the ignition plug 90 3 and the fuel injection valve 90 2 is shorter <The position where the ignition plug 90 3 is placed should be close to the center of combustion to shorten the flame propagation time during ignition. Is desirable. However, if the distance between the ignition plug and the fuel injection valve is too close, the fuel injected from the fuel injection valve will collide with the fire plug due to the liquid, and the ignition plug will become dirty. If fuel is injected in a direction different from the ignition plug due to a change in the fuel injection direction, etc., an air-fuel mixture is formed in the vicinity of the ignition plug. It becomes difficult, and it is difficult to secure the flame stability.
本発明 に係 る 燃料噴射弁 に よ れ f 、 第 s 1 図 の J - J断面 に示す よ う な噴霧が可能 と な る。 ほぼ均質な 霧 9 0 1 と 、 ほ と ん ど 燃料が分布 しない部位 9 0 4 を形成する こ と が,でさ る  The fuel injection valve according to the present invention enables spraying as shown in the section JJ in FIG. S1. It is possible to form a nearly uniform mist 90 1 and a part 90 4 where almost no fuel is distributed.
こ の よ ラ に ほ と ん ど燃料が分布 しない部位が設け られる と に よ り 、 点火プラ グの汚損を防ぎなが ら 点火プラ グの近傍に 混合 を形成 さ せる こ と 力 S可能 と な り 、 燃焼安定性を高め る こ と がでさ る  As a result, there is a portion where almost no fuel is distributed in the ra, so that it is possible to form a mixture near the ignition plug while preventing the ignition plug from being contaminated. Can improve combustion stability.
こ の よ う な形状の噴霧は、 第 8 図 に示 さ れた本発明 に係 る 実 施例 に よ つ て実現でき る。 噴霧の分布が少なレ、領域 9 0 4 は 、 噴射孔 8 0 2 a b , c の噴射孔の方向が弁体中心の側を向 き 、 Such a spray can be realized by the embodiment of the present invention shown in FIG. In the region 90 4 where the spray distribution is small, the direction of the injection holes 8 0 2 a b and c is directed toward the center of the valve body,
8 0 1 a 乃至 8 0 1 g と は異な る 方向 を向いてい る と に よ つ · 8 0 1 a through 8 0 1 g
て実現 さ れる こ で、 噴射孔 8 0 1 a 乃至 8 0 1 g は噴霧の 外縁部のみを形成する よ う にな る が 、 噴射孔 8 0 2 a 、 b 、 C に よ つ て 霧中心付近に燃料を分布 させ 、 なおかつ mの分 力 S少ない領域 9 0 4 には噴霧カ 1¾ かわな < な る As a result, the injection holes 80 1 a to 8 0 1 g form only the outer edge of the spray, but the center of the fog is formed by the injection holes 8 0 2 a, b, and C. In the region 90 4 where the fuel is distributed in the vicinity and the component force S of m is small, the spray power 1¾ is <
第 9 の J ― J 断面にあ る よ う な 霧を形成する 第 8 図の よ う な実施形態 に よ り 、 燃料噴射弁を燃焼室中央付近に配 さ せ たェ ンジンに対 して も 、 適切な 形状を形成する燃料 射弁 Ninth J-J forms a mist as shown in section J. The fuel injection valve is arranged near the center of the combustion chamber according to the embodiment shown in Fig. 8. Fuel injection valve that forms an appropriate shape for the engine
- を供給する と が でき る の結果 と して 、 ェ ンジン の燃焼安 定性を高 めヽ 燃費 を低減する と 共に 、 排気の低減を実現する と ができ る  As a result of the supply of-, it is possible to increase the combustion stability of the engine, reduce fuel consumption, and reduce exhaust emissions.
【実施例 4 】  [Example 4]
第四 の実施例は 、 実施例三で示 さ れた 5 な燃料噴射弁を燃 焼室中央に配置する よ う なェ ン ジンに した噴 を 、 簡便 In the fourth embodiment, the five fuel injection valves shown in the third embodiment are arranged in a simple manner in the form of an engine that is arranged in the center of the combustion chamber.
■ に形成で含 る 噴射孔配置の例であ る ■ An example of the injection hole arrangement included in
第 1 0 図 は 、 3 つの噴射孔を けた場合の噴射孔の配 を示 す断面図 でめ る 燃料通路 1 0 0 2 、 旋回通路 1 0 0 5 、 噴射 孔 1 0 0 3 は夫々 噴射孔プ レ一 b 1 0 0 1 に設け られてレ、 る 第 1 0 図の よ う に 、 噴射孔の数を減 ら した場合 、 実施例 1 乃至 FIG. 10 is a cross-sectional view showing the arrangement of the injection holes when three injection holes are formed. The fuel passage 100, the swirl passage 100, and the injection holes 1003 are respectively injection holes. In the case where the number of injection holes is reduced as shown in FIG.
3 に示 した場合 と 比較 して夫々 の噴射孔か ら u賁射 される燃料の 流量を大さ < する 必要が あ る したがつ て 、 個々 の噴射孔の断 面積は十分に大き い。 Compared to the case shown in Fig. 3, the flow rate of the fuel sprayed from each injection hole needs to be large, so the cross-sectional area of each injection hole is sufficiently large.
ま た、 噴射孔に至 る燃料通路 よ び旋回通路の断面積 も それ ぞれ十分に大 き い こ と が要求 さ れる た め 、 第 1 0 図の 5 に ― つの噴射孔に対 して複数の旋回通路を設け る と よ レ、 例 免ば 、 第 1 0 図 では噴射孔 1 ◦ 0 3 に対 して旋回通路 1 0 0 6 と 旋回 通路 1 0 0 5 が設け られてい る の よ 5 に 、 一つの噴射孔に 対 して複数の旋回通路を設け る と で 燃料通路 1 0 0 2 を大  In addition, since the cross-sectional area of the fuel passage and the swirling passage leading to the injection hole must be sufficiently large, the figure 5 in Figure 10-for one injection hole If there are multiple swirling passages, for example, in FIG. 10, swirling passages 1 0 0 6 and 1 0 0 5 are provided for the injection holes 1 ◦ 0 3. In addition, by providing multiple swirl passages for one injection hole, the fuel passage 1 0 0 2 is enlarged.
· - さ く す る と な く 旋回通路 と 燃料通路 1 0 0 2 と が連な る位置 での断面積の ! 「を大き < と る と ができ 、 果 と して y V ド' ボ リ ウ ム の増加を抑制でさ る  ·-The cross-sectional area at the position where the swirl passage and the fuel passage 1 0 0 2 are connected to each other can be made larger. Can suppress the increase in um
こ の よ 5 な噴射孔が 3 つの場 において あ 、 噙射孔の配置に 疎密 を設け る と 良い。 第 1 0 図では 、 噴射孔 1 0 0 3 と 隣接す る n賁射孔 1 0 0 7 a 、 1 0 0 7 b と は、 周方向 の角度 1 0 1 0 a よ ぴ 1 0 1 0 b に示す角度だけ離れてい る れに対 し、 噴射孔 1 0 0 7 a に レ、て は隣接する 孔 と 周方向 の角度 1 0There are five such injection holes in three fields, and it is good to have a dense arrangement of the injection holes. In FIG. 10, it is adjacent to the injection hole 100 3. N 0 injection holes 1 0 0 7 a and 1 0 0 7 b are separated by the angle shown in the circumferential direction 1 0 10 0 a and 1 0 10 0 b, and the injection hole 1 0 0 7 a on the side, the angle between the adjacent hole and the circumferential direction 1 0
1 0 a 、 1 0 1 0 c だけ離れて り 、 周方向の角度 1 0 1 0 c は 1 0 1 0 a お よ ぴ 1 0 1 0 b り 大さ い すなわち 、 噴射孔1 0 a, 1 0 10 0 c apart, circumferential angle 1 0 10 0 c is greater than 1 0 1 0 a and 1 0 1 0 b
1 0 0 •7 a よ ぴ 1 0 0 7 b の噴射孔はヽ 噴射孔 1 0 0 3 に比 ベて 、 疎に配置 さ れてい る 1 0 0 • 7 a No 1 0 0 7 b injection holes are sparsely located compared to ヽ injection holes 1 0 0 3
こ の よ う に噴射孔の疎密 を設け る こ と で 、 射孔に通ずる旋 回通路の配置の 白 由度を高め る こ と がでさ る 第 1 0 図 におい て 、 噴射孔 1 0 0 7 a 1 0 0 7 b に は夫 2 つずつの旋回通 路が設け ら れてい る が 、 何れ も周方向の角度 1 0 1 0 c の範囲 内 に旋回通路がき ¾■け る こ と がでさ る こ の よ 5 に、 周方向 の角 度 1 0 1 0 の葷 囲内に旋回通路が設け られる こ と に り 、 燃 料通路 1 0 0 2 と 旋回通路 と が連な る部位での断面積を大き く と る こ と が でさ 、 燃料通路 1 0 0 2 の 辺部に旋回通路 と 連な つ てい ない挺ハ、、駄な部分を減 らす こ と がで る こ の結果 、 燃料 通路 1 0 0 2 の体積は小 さ < て済み、 結果 と してデ Kボ リ ウ ム低減が可能 と な る  In this way, it is possible to increase the degree of whiteness of the arrangement of the rotating passages that lead to the injection holes by providing the injection holes with the density of the injection holes. 7 a 1 0 0 7 b is provided with two swirl paths, but in either case, the swirl path may be within the range of the circumferential angle of 1 0 1 0 c. As a result, a swirl passage is provided in the circumferential angle range of 10 100, so that the fuel passage 100 0 2 and the swirl passage are connected to each other. As a result of increasing the cross-sectional area, the side of the fuel passage 100 0 2 that is not connected to the swirl passage can be reduced. The volume of the fuel passage 1002 is small, and as a result, the de K volume can be reduced.
ま た 、 噴射孔の配置に疎密 を設け る と と あ に 、 疎な噴射孔 を 弁体中 心軸 に近 < 、 密な 射孔を弁体中心軸か ら離 して配置 し  In addition, when the injection holes are sparsely arranged, the sparse injection holes are close to the center axis of the valve body and the dense injection holes are arranged away from the central axis of the valve body.
· - て あ る の よ 5 な配置に り 、 噴射孔 1 0 0 7 a 、 1 0 0 7 b は燃料通路 1 0 0 2 に近接 して設け る と でァ ッ ポ リ ウ ム の增加 を抑制 しなが ら 、 噴射孔 1 0 0 7 a 、 1 0 0 7 b に二つ ずつの旋回通路を連ねる と が可能 と なつ てい る ま た噴射孔 -With the arrangement of 5 so that the injection holes 1 0 0 7 a and 1 0 0 7 b are provided close to the fuel passage 1 0 0 2 While being suppressed, it is possible to connect two swirl passages to each of the injection holes 1007a and 1007b.
1 0 0 7 a 、 1 0 0 7 b は疎に配置 さ れてい る ため 、 周方向 の 角 1 0 1 0 c が広 < 、 旋回通路の配置に 由度が高 < な っ て お り 、 旋回通路の助走距離を十分取 り なが ら噴射孔を弁体中心 軸に近づけ る こ と ができ る Since 1 0 0 7 a and 1 0 0 7 b are sparsely arranged, the circumferential angle 1 0 1 0 c is wide <and the degree of freedom in the arrangement of the swivel path is high < Thus, the injection hole can be brought closer to the central axis of the valve body while maintaining a sufficient run-up distance in the swivel path.
一方で 、 密 に配置 さ れた噴射孔 1 0 0 3 は弁体中心軸か ら離 して配置 さ れてい る と に よ り 、 旋回通路 1 0 0 6 、 1 0 0 5 の長 さ を十分に と る こ と がで き 、 十分な流量を与 なが ら ヽ 噴 射孔 1 0 0 3 に注入する燃料に十分な旋回力 を付与する こ と が で さ る よ になつ てい る o  On the other hand, since the densely arranged injection holes 1003 are arranged away from the central axis of the valve body, the lengths of the swirl passages 1006, 1005 are reduced. It is possible to provide sufficient swirling force to the fuel injected into the injection hole 10 0 3 while providing a sufficient flow rate.
こ の う な噴射孔の配置に よ つ て得 ら れる 嘖霧は 、 第 1 1 に示す 5 な形状 と な る o 夫々 の 射孔か ら は略円錐形の P賁霧 The soot mist obtained by such an arrangement of the injection holes has the five shapes shown in 11.1 o Each of the injection holes has a substantially conical P mist.
(例 7L ば噴 1 1 0 1 ) が生 . じ、 . れ ら の噴霧は P - P断面で観 察する と 3 つの 円状 と な る o で 、 噴霧濃度の疎な部分 1 1(Example 7L is an injection 1 1 0 1), and these sprays have three circular shapes when viewed on the PP cross section.
0 2 が生 じ る よ う に第 1 0 図 中 の噴射孔 1 0 0 7 . a 、 1 0 0 7 b の角 度を HX定 して < こ と で、 第 9 図に示 した う な燃料噴 射弁 を燃焼室中央に配置 したェ ンジンへの適用 が可能 と な る o すなわ ち 、 噴霧濃度の疎な部分 1 1 0 2 が存在する と に よ つ て点火プラ グの濡れや燻 り を回避 しやす,く な る。 As shown in Fig. 9, the angle of the injection holes 1 0 0 7 .a and 1 0 0 7 b in Fig. 10 is set to HX so that 0 2 is generated. The fuel injection valve can be applied to the engine located in the center of the combustion chamber.In other words, the presence of the sparsely sprayed part 1 1 0 2 causes the ignition plug to become wet. It makes it easier to avoid hitting.
したが つ て 、 第 1 0 図 よ び第 1 1 図 に示 した よ Ό な 射孔 の数が 3 つ程度 と 少ない場合において も 、 本発明 を用い る と に よ 、 ェ ンジ ンに適 a でさ る 噴 を形成する こ と が可能 と な る 。  Therefore, even when the number of the fine holes shown in Fig. 10 and Fig. 11 is as small as three, it is suitable for the engine by using the present invention. It is possible to form a squirrel jet.

Claims

請求の範囲 The scope of the claims
1 . 燃料の噴射 と 噴射の停止 を行 た め に開 閉可能な弁体 と 、 刖記弁体 と 接触 して燃料の噴射の停止を行 う こ と が可能な弁座 1. Valve body that can be opened and closed to inject and stop fuel injection, and valve seat that can stop fuel injection by contacting the valve body
'を設け、 前記弁体 と 前記弁座の下流に燃料を噴射する 噴射孔を 複数備え る燃料嘖射弁において 、 In a fuel spray valve provided with a plurality of injection holes for injecting fuel downstream of the valve body and the valve seat,
前記弁座か ら前記噴射孔に る燃料通路に、 燃料に旋回力 を 付与する旋回力付与手段を設 け 、  A turning force applying means for applying a turning force to the fuel is provided in the fuel passage from the valve seat to the injection hole,
刖記複数の噴射孔は噴射孔を有する 面内で疎に配置 さ れた部 分 と 密 に配置 さ れた部分 と を有する こ と を特徴 と する燃料噴射 弁  The fuel injection valve is characterized in that the plurality of injection holes have a portion arranged sparsely in a plane having the injection holes and a portion arranged densely
2 . 燃料の噴射 と 噴射の停止 を行 ラ た め に開閉可能な弁体 と 、 前記弁体 と 接触 して燃料の喷射の停止を行 う こ と が可能な弁座 を設 け、 前記弁体 と 前記弁座の下流に燃料を噴射する噴射孔を 複数備え る燃料噴射弁において 、  2. A valve body that can be opened and closed for fuel injection and injection stop, and a valve seat that can contact the valve body to stop fuel spraying are provided. A fuel injection valve having a plurality of injection holes for injecting fuel downstream of the body and the valve seat;
前記弁座か ら前記噴射孔に る燃料通路に、 燃料に,旋回力 を 付与す る旋回力付与手段を設 け 、  A turning force applying means for applying a turning force to the fuel is provided in the fuel passage from the valve seat to the injection hole,
前記旋回力付与手段の う ち少な < と も 一つは他の旋回力付与 手段 と は異な る旋回力 を付与する よ う に設け られた こ と を特徴 と する燃料噴射弁。  A fuel injection valve characterized in that at least one of the turning force applying means is provided so as to apply a turning force different from the other turning force applying means.
3 . 請求項 1 に記載の燃料噴射弁において、 前記密に配置 さ れ た噴射孔は前記疎に配置 さ れた噴射孔 と 比較 して、 前記弁体の 中 、軸力、 ら の距離が遠い位置に配置 さ れた こ と を特徴 と する燃 料噴射弁。  3. The fuel injection valve according to claim 1, wherein the densely arranged injection holes are smaller in axial force and distance in the valve body than the sparsely arranged injection holes. A fuel injection valve characterized by being arranged at a distant position.
4 . 請求項 1 乃至 3 のいずれか 1 項に記載の燃料噴射弁におレ、 て 、 前記旋回力付与手段 と 前記弁座を連通 さ せる燃料通路の断 面積の最小部分の総合計が、 記噙射孔の断面積の総合計 よ り 大き い こ と を特徴 と する燃料噴射弁。 4. The fuel injection valve according to any one of claims 1 to 3, wherein the total sum of the minimum cross-sectional area of the fuel passage connecting the turning force applying means and the valve seat is: From the total cross-sectional area of the recording hole A fuel injection valve characterized by its large size.
PCT/JP2004/013006 2004-09-01 2004-09-01 Fuel injection valve WO2006025114A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006531225A JPWO2006025114A1 (en) 2004-09-01 2004-09-01 Fuel injection valve
PCT/JP2004/013006 WO2006025114A1 (en) 2004-09-01 2004-09-01 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013006 WO2006025114A1 (en) 2004-09-01 2004-09-01 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2006025114A1 true WO2006025114A1 (en) 2006-03-09

Family

ID=35999778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013006 WO2006025114A1 (en) 2004-09-01 2004-09-01 Fuel injection valve

Country Status (2)

Country Link
JP (1) JPWO2006025114A1 (en)
WO (1) WO2006025114A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444512A (en) * 2010-09-30 2012-05-09 日立汽车系统株式会社 Fuel injection valve
WO2014000947A1 (en) * 2012-06-28 2014-01-03 Robert Bosch Gmbh Valve for metering fluid
JP2014031758A (en) * 2012-08-03 2014-02-20 Hitachi Automotive Systems Ltd Fuel injection valve
EP2735724A1 (en) * 2011-07-11 2014-05-28 Bosch Corporation Fuel injection valve, internal combustion engine, and fuel injection method
WO2014183905A1 (en) * 2013-05-17 2014-11-20 Robert Bosch Gmbh Valve for metering in fluid
WO2015078941A1 (en) * 2013-11-29 2015-06-04 Handtmann Systemtechnik Gmbh & Co. Kg Device for atomizing or spraying liquid into an operating chamber
KR20180091844A (en) * 2015-12-15 2018-08-16 로베르트 보쉬 게엠베하 Orifice plates and valves

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523984B2 (en) * 2016-02-12 2019-06-05 日立オートモティブシステムズ株式会社 Fuel injection valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735001A (en) * 1993-07-19 1995-02-03 Haruji Kurogo Fuel injection nozzle of diesel engine
JP2002098028A (en) * 2000-09-06 2002-04-05 Visteon Global Technologies Inc Nozzle for fuel injector
JP2004011613A (en) * 2002-06-11 2004-01-15 Mazda Motor Corp Spark ignition type direct injection engine
JP2004028078A (en) * 2002-05-10 2004-01-29 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine, and fuel injection valve thereof
JP2004176690A (en) * 2002-11-29 2004-06-24 Denso Corp Fuel injection device
JP2004211682A (en) * 2002-12-17 2004-07-29 Denso Corp Fuel injection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049669B2 (en) * 2000-09-04 2008-02-20 株式会社日立製作所 In-cylinder injection spark ignition engine
US6513724B1 (en) * 2001-06-13 2003-02-04 Siemens Automotive Corporation Method and apparatus for defining a spray pattern from a fuel injector
JP3715253B2 (en) * 2002-05-17 2005-11-09 株式会社ケーヒン Fuel injection valve
JP3815383B2 (en) * 2002-06-11 2006-08-30 マツダ株式会社 Spark ignition direct injection engine
JP2004019569A (en) * 2002-06-18 2004-01-22 Denso Corp Fuel injection valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735001A (en) * 1993-07-19 1995-02-03 Haruji Kurogo Fuel injection nozzle of diesel engine
JP2002098028A (en) * 2000-09-06 2002-04-05 Visteon Global Technologies Inc Nozzle for fuel injector
JP2004028078A (en) * 2002-05-10 2004-01-29 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine, and fuel injection valve thereof
JP2004011613A (en) * 2002-06-11 2004-01-15 Mazda Motor Corp Spark ignition type direct injection engine
JP2004176690A (en) * 2002-11-29 2004-06-24 Denso Corp Fuel injection device
JP2004211682A (en) * 2002-12-17 2004-07-29 Denso Corp Fuel injection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444512A (en) * 2010-09-30 2012-05-09 日立汽车系统株式会社 Fuel injection valve
US9435308B2 (en) 2011-07-11 2016-09-06 Bosch Corporation Fuel injection valve, internal combustion engine and fuel injection method
EP2735724A1 (en) * 2011-07-11 2014-05-28 Bosch Corporation Fuel injection valve, internal combustion engine, and fuel injection method
EP2735724A4 (en) * 2011-07-11 2015-03-11 Bosch Corp Fuel injection valve, internal combustion engine, and fuel injection method
WO2014000947A1 (en) * 2012-06-28 2014-01-03 Robert Bosch Gmbh Valve for metering fluid
JP2014031758A (en) * 2012-08-03 2014-02-20 Hitachi Automotive Systems Ltd Fuel injection valve
WO2014183905A1 (en) * 2013-05-17 2014-11-20 Robert Bosch Gmbh Valve for metering in fluid
WO2015078941A1 (en) * 2013-11-29 2015-06-04 Handtmann Systemtechnik Gmbh & Co. Kg Device for atomizing or spraying liquid into an operating chamber
KR20180091844A (en) * 2015-12-15 2018-08-16 로베르트 보쉬 게엠베하 Orifice plates and valves
CN108431399A (en) * 2015-12-15 2018-08-21 罗伯特·博世有限公司 Spray orifice disk and valve
JP2018536112A (en) * 2015-12-15 2018-12-06 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Injection hole disk and valve
US11187199B2 (en) 2015-12-15 2021-11-30 Robert Bosch Gmbh Spray orifice disk and valve
KR102623646B1 (en) * 2015-12-15 2024-01-12 로베르트 보쉬 게엠베하 Orifice plates and valves

Also Published As

Publication number Publication date
JPWO2006025114A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
KR930004967B1 (en) Electronic fuel injector
WO2000077360A1 (en) Cylinder injection engine and fuel injection nozzle used for the engine
JP4072402B2 (en) Fuel injection valve and internal combustion engine equipped with the same
JP4306656B2 (en) Fuel injection valve
JPH07133727A (en) Air intake device of internal combustion engine
US6508236B2 (en) Fuel supply device and internal combustion engine mounting the same
JP2004225598A (en) Fuel injection valve
WO2006025114A1 (en) Fuel injection valve
JP2007138746A (en) Fuel supply device
WO2004040130A1 (en) Engine
JP2003148299A (en) Fuel injection valve and internal combustion engine loaded with the same
JP4055360B2 (en) Fuel injection valve
JP2002332935A (en) Fuel injection valve and internal combustion engine
US4733641A (en) Direct injection type diesel engine
JPH08303321A (en) Fuel injector
US20040074472A1 (en) Spray collision nozzle for direct injection engines
JP2003214296A (en) Fuel injection valve
JP3644057B2 (en) Direct injection spark ignition internal combustion engine
JP4732381B2 (en) Fuel injection apparatus and fuel injection method for internal combustion engine
JP2004324596A (en) Fuel injection valve and internal combustion engine mounted with the same
JP2003161231A (en) Fuel injection valve
JPH02125956A (en) Electromagnetic type fuel injection valve
JP3286772B2 (en) Air assist type fuel injection valve
EP1073841A1 (en) Air shroud for air assist fuel injector
JPH08200187A (en) Fuel injection valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006531225

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase