WO2006023150A1 - Gradient coated stent and method of fabrication - Google Patents
Gradient coated stent and method of fabrication Download PDFInfo
- Publication number
- WO2006023150A1 WO2006023150A1 PCT/US2005/024368 US2005024368W WO2006023150A1 WO 2006023150 A1 WO2006023150 A1 WO 2006023150A1 US 2005024368 W US2005024368 W US 2005024368W WO 2006023150 A1 WO2006023150 A1 WO 2006023150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating
- coating solution
- stent
- gradient mixture
- component
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title description 15
- 238000000576 coating method Methods 0.000 claims abstract description 407
- 239000011248 coating agent Substances 0.000 claims abstract description 401
- 230000007423 decrease Effects 0.000 claims abstract description 16
- 239000003814 drug Substances 0.000 claims description 109
- 239000000203 mixture Substances 0.000 claims description 88
- 229940079593 drug Drugs 0.000 claims description 74
- 229920000642 polymer Polymers 0.000 claims description 64
- 238000002156 mixing Methods 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 40
- 229940124597 therapeutic agent Drugs 0.000 claims description 35
- 239000002904 solvent Substances 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 18
- 229920001577 copolymer Polymers 0.000 claims description 16
- 230000001028 anti-proliverative effect Effects 0.000 claims description 15
- 238000005507 spraying Methods 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 10
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 7
- 238000007641 inkjet printing Methods 0.000 claims description 4
- 238000010422 painting Methods 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 4
- 238000005096 rolling process Methods 0.000 claims description 4
- -1 polyethylene Polymers 0.000 description 24
- 238000002513 implantation Methods 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 8
- 230000007774 longterm Effects 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 6
- 239000011247 coating layer Substances 0.000 description 5
- 238000003618 dip coating Methods 0.000 description 5
- 229920001897 terpolymer Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000002399 angioplasty Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 208000037803 restenosis Diseases 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 208000007536 Thrombosis Diseases 0.000 description 3
- 229940124599 anti-inflammatory drug Drugs 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 3
- 229960002930 sirolimus Drugs 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 108010049003 Fibrinogen Proteins 0.000 description 2
- 102000008946 Fibrinogen Human genes 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 238000007887 coronary angioplasty Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000000890 drug combination Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229940012952 fibrinogen Drugs 0.000 description 2
- 239000003527 fibrinolytic agent Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 229920001600 hydrophobic polymer Polymers 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012153 long-term therapy Methods 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- WVYADZUPLLSGPU-UHFFFAOYSA-N salsalate Chemical compound OC(=O)C1=CC=CC=C1OC(=O)C1=CC=CC=C1O WVYADZUPLLSGPU-UHFFFAOYSA-N 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000000451 tissue damage Effects 0.000 description 2
- 231100000827 tissue damage Toxicity 0.000 description 2
- 230000008467 tissue growth Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- UDKCHVLMFQVBAA-UHFFFAOYSA-M Choline salicylate Chemical compound C[N+](C)(C)CCO.OC1=CC=CC=C1C([O-])=O UDKCHVLMFQVBAA-UHFFFAOYSA-M 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 108010056764 Eptifibatide Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 241001082241 Lythrum hyssopifolia Species 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical compound [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- SBDNJUWAMKYJOX-UHFFFAOYSA-N Meclofenamic Acid Chemical compound CC1=CC=C(Cl)C(NC=2C(=CC=CC=2)C(O)=O)=C1Cl SBDNJUWAMKYJOX-UHFFFAOYSA-N 0.000 description 1
- GZENKSODFLBBHQ-ILSZZQPISA-N Medrysone Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@H](C(C)=O)CC[C@H]21 GZENKSODFLBBHQ-ILSZZQPISA-N 0.000 description 1
- 102000003505 Myosin Human genes 0.000 description 1
- 108060008487 Myosin Proteins 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001273 Polyhydroxy acid Polymers 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- LRJOMUJRLNCICJ-JZYPGELDSA-N Prednisolone acetate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O LRJOMUJRLNCICJ-JZYPGELDSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229960000446 abciximab Drugs 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229960000528 amlodipine Drugs 0.000 description 1
- HTIQEAQVCYTUBX-UHFFFAOYSA-N amlodipine Chemical compound CCOC(=O)C1=C(COCCN)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1Cl HTIQEAQVCYTUBX-UHFFFAOYSA-N 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000001621 anti-mitogenic effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003472 antidiabetic agent Substances 0.000 description 1
- 229940125708 antidiabetic agent Drugs 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229940127218 antiplatelet drug Drugs 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 229960002170 azathioprine Drugs 0.000 description 1
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229920006018 co-polyamide Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- ALEXXDVDDISNDU-JZYPGELDSA-N cortisol 21-acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)C[C@@H]2O ALEXXDVDDISNDU-JZYPGELDSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- VQODGRNSFPNSQE-CXSFZGCWSA-N dexamethasone phosphate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)COP(O)(O)=O)(O)[C@@]1(C)C[C@@H]2O VQODGRNSFPNSQE-CXSFZGCWSA-N 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- 229960001389 doxazosin Drugs 0.000 description 1
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- 229960004468 eptifibatide Drugs 0.000 description 1
- GLGOPUHVAZCPRB-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CN=C2[C]1C=CC=C2 GLGOPUHVAZCPRB-LROMGURASA-N 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 229940043075 fluocinolone Drugs 0.000 description 1
- FEBLZLNTKCEFIT-VSXGLTOVSA-N fluocinolone acetonide Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]2(C)C[C@@H]1O FEBLZLNTKCEFIT-VSXGLTOVSA-N 0.000 description 1
- FAOZLTXFLGPHNG-KNAQIMQKSA-N fluorometholone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@]2(F)[C@@H](O)C[C@]2(C)[C@@](O)(C(C)=O)CC[C@H]21 FAOZLTXFLGPHNG-KNAQIMQKSA-N 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- PTCGDEVVHUXTMP-UHFFFAOYSA-N flutolanil Chemical compound CC(C)OC1=CC=CC(NC(=O)C=2C(=CC=CC=2)C(F)(F)F)=C1 PTCGDEVVHUXTMP-UHFFFAOYSA-N 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001067 hydrocortisone acetate Drugs 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000001861 immunosuppressant effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 108010021336 lanreotide Proteins 0.000 description 1
- 229960002437 lanreotide Drugs 0.000 description 1
- 229940072082 magnesium salicylate Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940013798 meclofenamate Drugs 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960001011 medrysone Drugs 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000002840 nitric oxide donor Substances 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- YHHSONZFOIEMCP-UHFFFAOYSA-O phosphocholine Chemical compound C[N+](C)(C)CCOP(O)(O)=O YHHSONZFOIEMCP-UHFFFAOYSA-O 0.000 description 1
- 229950004354 phosphorylcholine Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 229920000118 poly(D-lactic acid) Polymers 0.000 description 1
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 description 1
- 229920001279 poly(ester amides) Polymers 0.000 description 1
- 229920001982 poly(ester urethane) Polymers 0.000 description 1
- 229920006211 poly(glycolic acid-co-trimethylene carbonate) Polymers 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920001849 poly(hydroxybutyrate-co-valerate) Polymers 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001299 polypropylene fumarate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229960002800 prednisolone acetate Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229960000953 salsalate Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012154 short term therapy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000002966 stenotic effect Effects 0.000 description 1
- 239000002294 steroidal antiinflammatory agent Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 239000003803 thymidine kinase inhibitor Substances 0.000 description 1
- 229960001017 tolmetin Drugs 0.000 description 1
- UPSPUYADGBWSHF-UHFFFAOYSA-N tolmetin Chemical compound C1=CC(C)=CC=C1C(=O)C1=CC=C(CC(O)=O)N1C UPSPUYADGBWSHF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229950009819 zotarolimus Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0077—Special surfaces of prostheses, e.g. for improving ingrowth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/91533—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
- A61F2002/91541—Adjacent bands are arranged out of phase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0028—Shapes in the form of latin or greek characters
- A61F2230/0054—V-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/45—Mixtures of two or more drugs, e.g. synergistic mixtures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
Definitions
- the technical field of this disclosure is medical implant devices, particularly, a gradient coated stent and methods of making the same.
- Stents are generally cylindrical shaped devices that are radially expandable to hold open a segment of a blood vessel or other anatomical lumen after implantation into the body lumen. Stents have been developed with coatings to deliver drugs or other therapeutic agents.
- Stents are used in conjunction with balloon catheters in a variety of medical therapeutic applications including intravascular angioplasty.
- a balloon catheter device is inflated during PTCA (percutaneous transluminal coronary angioplasty) to dilate a stenotic blood vessel.
- the stenosis may be the result of a lesion such as a plaque or thrombus.
- the pressurized balloon exerts a compressive force on the lesion thereby increasing the inner diameter of the affected vessel.
- the increased interior vessel diameter facilitates improved blood flow. Soon after the procedure, however, a significant proportion of treated vessels re-narrow.
- short flexible cylinders, or stents constructed of metal or various polymers are implanted within the vessel to maintain lumen size.
- the stents acts as a scaffold to support the lumen in an open position.
- stents include a cylindrical tube defined by a mesh, interconnected stents or like segments.
- Some exemplary stents are disclosed in U.S. Patent No. 5,292,331 to Boneau, U.S. Patent No. 6,090,127 to Globerman, U.S. Patent No. 5,133,732 to Wiktor, U.S. Patent No. 4,739,762 to Palmaz and U.S. Patent No. 5,421 ,955 to Lau.
- Balloon- expandable stents are mounted on a collapsed balloon at a diameter smaller than when the stents are deployed. Stents can also be self-expanding, growing to a final diameter when deployed without mechanical assistance from a balloon or like device.
- Stents have been used with coatings to deliver drug or other therapy to the patient at the site of the stent, such as the interior wall of an artery or vessel.
- the coating forms a uniform radial layer over the stent elements with a fixed ratio of drug to polymer.
- factors such as the hydrophilicity, hydrophobilicity, and molecular size of the drug, and the hydrophilicity, hydrophobilicity, amorphous, crystallinity, morphology, glass transition temperature of the polymer matrix
- the diffusion rate is generally proportional to the difference in drug concentration across the coating ( ⁇ C). This causes problems with the dose of drug delivered with time.
- the drug concentration is high, so a large quantity of drug is released. This is called burst releasing and results in local tissue damage for certain drugs that are toxic in high doses. Later after implantation, the drug concentration is depleted and the ⁇ C become smaller and smaller, so little drug is released. This results in delivery of a less-than-effective dose.
- a uniform radial drug coating stent designer must choose between a stent which risks initial tissue damage and a stent which has a limited effective drug lifetime. A uniform drug coating may not provide the most effective therapy over time. Immediately after stent implantation, inflammation and thrombosis occur due to the tissue trauma from the angioplasty and the presence of the stent.
- the coating is typically applied to the stent by dipping or spraying the stent with a liquid containing the drug or therapeutic agent dispersed in a polymer/solvent mixture.
- the liquid coating then dries to a solid uniform coating.
- Combinations of dipping and spraying can also be used.
- Problems also arise during manufacture when the drugs, polymers, or solvents are incompatible. For example, one solvent may be suitable for a particular drug, but unsuitable for a particular polymer.
- the combination of a particular drug and a particular polymer may be incompatible and one or the other degrade when held in solution too long. Incompatibility results in ineffective drugs or defective coatings.
- Another aspect of the present invention provides a stent with a gradient coating with a high concentration of a therapeutic agent at the inner edge of the stent coating and a low concentration at the outer edge of the stent coating.
- Another aspect of the present invention provides a stent with a gradient coating having a linear drug gradient or step-gradient to generate desired elution profiles.
- Another aspect of the present invention provides a stent with a gradient coating able to deliver different drug therapies as a function of time.
- Another aspect of the present invention provides a method of manufacture for a gradient coated stent with coatings formed from generally incompatible materials.
- Another aspect of the present invention provides a method of manufacture for a gradient coated stent avoiding dissolving subsequent layers.
- Another aspect of the present invention provides a method of manufacture for a gradient coated stent reducing labor and allowing process automation.
- FIG. 1 shows a stent delivery system made in accordance with the present invention.
- FIGS. 2 & 3 show a stent and a cross section, respectively, of a coated stent made in accordance with the present invention.
- FIGS. 4A-4C show exemplary graphs of coating component concentration versus coating thickness for a coated stent made in accordance with the present invention.
- FIG. 5 shows a system for coating a stent in accordance with the present invention.
- FIGS. 6A-6C show exemplary graphs of coating component concentration in the gradient mixture versus time for the coating system of FIG. 5.
- FIG. 7 shows another system for coating a stent in accordance with the present invention.
- FIG. 8 shows exemplary graphs of coating component concentration in the gradient mixture versus time for the coating system of FIG. 7.
- FIGS. 9 & 10 show methods of manufacturing a coated stent made in accordance with the present invention.
- FIG. 1 shows a stent delivery system made in accordance with the present invention.
- the stent delivery system 100 includes a catheter 105, a balloon 110 operably attached to the catheter 105, and a stent 120 disposed on the balloon 110.
- the balloon 110 shown in a collapsed state, may be any variety of balloons capable of expanding the stent 120.
- the balloon 110 may be manufactured from a material such as polyethylene, polyethylene terephthalate (PET), nylon, Pebax® polyether-block co-polyamide polymers, or the like.
- the balloon 110 may include retention means 111, such as mechanical or adhesive structures, for retaining the stent 120 on the balloon 110 until it is deployed.
- the catheter 105 may be any variety of balloon catheters, such as a PTCA (percutaneous transluminal coronary angioplasty) balloon catheter, capable of supporting a balloon during angioplasty.
- the stent 120 may be any variety of implantable prosthetic devices known in the art and capable of carrying a coating.
- the stent 120 may have a plurality of identical cylindrical stent segments placed end to end. Four stent segments 121, 122, 123, and 124 are shown, and it will be recognized by those skilled in the art that an alternate number of stent segments may be used.
- the stent 120 includes at least one continuous coating 130.
- the continuous coating 130 is typically a polymer coating carrying one or more therapeutic agents, such as anti-inflammatory agents or anti-proliferative agents.
- the continuous coating 130 is merely exemplary: other coating configurations, such as multiple coating layers on top of the continuous coating 130, are possible.
- the continuous coating 130 are shown schematically on the outer circumference of the stent 120, the continuous coating 130 can coat the whole stent 120, both inside and outside, and around the cross section of individual stent elements.
- the continuous coating 130 can be any coating that can elute a therapeutic agent and maintain coverage of the stent elements.
- the coating components, such as the therapeutic agent or the polymer vary continuously over the thickness of the continuous coating 130.
- FIG. 2 shows a coated stent made in accordance with the present invention.
- the stent 150 comprises a number of segments 160.
- the pattern of the segments 160 can be W-shaped or can be a more complex shape with the elements of one segment continuing into the adjacent segment.
- the stent 150 can be installed in the stent delivery system of FIG. 1 for implantation in a body lumen.
- the stent 150 is conventional to stents generally and can be made of a wide variety of medical implantable materials, such as stainless steel (particularly 316-L or 316LS stainless steel), MP35 alloy, nitinol, tantalum, ceramic, nickel, titanium, aluminum, polymeric materials, tantalum, MP35N, titanium ASTM F63-83 Grade 1 , niobium, high carat gold K 19-22, and combinations thereof.
- the stent 150 can be formed through various methods as well.
- the stent 150 can be welded, laser cut, molded, or consist of filaments or fibers which are wound or braided together in order to form a continuous structure.
- the stent can be self-expanding, or be expanded by a balloon or some other device.
- the continuous coating can be disposed on the surface of the segments 160.
- FIG. 3 shows a cross section of a coated stent made in accordance with the present invention.
- a plurality of stent elements 170 are provided with a continuous coating 130.
- the stent elements form the segments which form the stent.
- the cross section of the stent elements 170 is shown as generally rectangular with rounded corners, the cross section can be any number of shapes depending on fabrication methods, materials, and desired effect.
- the cross section of the stent elements 170 can be circular, ellipsoidal, rectangular, hexagonal, square, polygonal, or of other cross- sectional shapes as desired.
- the continuous coating 130 comprises coating components, such as polymers and therapeutic agents.
- One or more polymers typically form the bulk of the continuous coating 130.
- the therapeutic agents such as anti ⁇ inflammatory or anti-proliferative agents, are dispersed in the polymer.
- the therapeutic agent can be dissolved throughout the polymer, or can be dispersed throughout the polymer in discrete units like nano-particles.
- One or more therapeutic agents can be used to accomplish the desired result.
- Nano-particles can be used when a common solvent for drug and polymer cannot be found or when further control of the therapeutic agent is needed.
- nano-particles are small particles of crystalline therapeutic agents ground to a small size, such as nanometer-sized particles.
- nano-particles increase the speed of delivery of the anti-proliferative agent because of the large surface area to volume ratio.
- the nano-particles can include a therapeutic agent as a core and a polymer as a shell. The polymer acts as barrier to further control the release profile.
- Nano-particles can be formed by many methods suitable for the particular therapeutic agent and known to those in the art, including oil in water, water in oil, oil in water in oil.
- the concentration of the therapeutic agent in the polymer varies continuously over the thickness of the continuous coating 130. Different profiles of the therapeutic agent can accomplish different therapeutic results. For example, a high concentration of therapeutic agent in the continuous coating 130 near the stent element 170 with a low concentration in the continuous coating 130 at the outer edge will suppress any burst release and provide a steady long-term dose. Additional coating layers can be applied on top of the continuous coating 130 to provide particular release effects or to act as a cap coat to establish desirable mechanical properties for the exposed surface of the stent.
- the continuous coating 130 can be made of a biodegradable or erodible material.
- Biodegradable polymer coatings release the therapeutic agent with degradation of the polymer.
- the products of degradation are weak organic acids, water, and carbon dioxide.
- Erodible materials include natural polymers, such as a carbohydrate or gelatin, or a synthetic polymer, such as polyglycolide.
- Erodible materials that can be used for the continuous coating 130 include, but are not limited to, poly(D-lactic acid), poly(L-lactic acid), poly(Dcaprolactone), and copolymers or terpolymers of any two or all three of these monomers; polyhydroxyalkanoates, such as poly(hydroxybutyrate), poly(hydroxyvalerate), or copolymers thereof (e.g.
- PEO/PLA poly(ester amides); poly(ester-urethane); polyalkylene oxalates; polyphosphazenes; copolymers, terpolymers, blends, and copolymer blends of the above; combinations of the above; and the like.
- Biomacromolecules and their variants that can be used for the continuous coating 130 include, but are not limited to, fibrin; fibrinogen; cellulose; starch; collagen and hyaluronic acid; hydrogels; polyhydroxyacids; polysaccharides; polyamines; polyaminoacids; polyamides; polycarbonates; silk; keratin; collagen; gelatin; fibrinogen; elastin; actin; myosin; cellulose; amylose; dextran; chitin; glycosaminoglycans; proteins; protein based polymers (e.g. polypeptides); copolymers, terpolymers, blends, and copolymer blends of the above; combinations of the above; and the like.
- fibrin fibrinogen
- cellulose starch
- collagen and hyaluronic acid hydrogels
- polyhydroxyacids polysaccharides
- polyamines polyaminoacids
- polyamides polycarbonates
- silk
- the continuous coating 130 can be made of a non- biodegradable material, such as phosphorylcholine polymer from
- Non-biodegradable polymers can be divided into two classes.
- the first class is hydrophobic polymers and the second class is hydrophilic polymers.
- Hydrophobic polymers that can be used for the continuous coating 130, include, but are not limited to, polyolefins; acrylate polymers; vinyl polymers; styrene polymers; polyurethanes; polyesters; epoxy; polysiloxane; natural polymers; variants, copolymers, terpolymers, blends, and copolymer blends of the above; combinations of the above; and the like.
- Hydrophilic polymers or hydrogels that can be used for the continuous coating 130 include, but are not limited to, polyacrylic acid; polyvinyl alcohol; poly(N-vinylpyrrolidone); poly(hydroxyl, alkymethacrylate); polyethylene oxide; hyaluronon; variants, copolymers, terpolymers, blends, and copolymer blends of the above; combinations of the above; and the like.
- the therapeutic agent in the continuous coating include, but are not limited to, polyacrylic acid; polyvinyl alcohol; poly(N-vinylpyrrolidone); poly(hydroxyl, alkymethacrylate); polyethylene oxide; hyaluronon; variants, copolymers, terpolymers, blends, and copolymer blends of the above; combinations of the above; and the like.
- the therapeutic agent in the continuous coating include, but are not limited to, polyacrylic acid; polyvinyl alcohol; poly(N-vinylpyrrolidone);
- Anti-inflammatory agents that can be used in the continuous coating 130, include, but are not limited to, steroidal anti-inflammatory agents, non-steroidal anti-inflammatory agents, hydrocortisone, hydrocortisone acetate, dexamethasone, dexamethasone 21 -phosphate, fluocinolone, medrysone, prednisolone acetate, fluoromethalone, betamethasone, triaminolone, ibuprofen, ketoprofen, piroxicam, naproxen, sulindac, choline subsalicylate, diflunisal, fenoprofen, indomethacin, meclofenamate, salsalate, tolmetin, magnesium salicylate, diclofenac, enoxaprin, angiopeptin, monoclonal antibodies, hirudin, acetylsalicylic acid, amlodipine, doxazo
- the therapeutic agent in the continuous coating is well known to those skilled in the art.
- the therapeutic agent in the continuous coating is well known to those skilled in the art.
- an anti-proliferative agent such as the drug 42-Epi-(tetrazolyl)- rapamycin, set forth in U.S. Patent No. 6,329,386 assigned to Abbott Laboratories, Abbott Park, Illinois.
- anti-proliferative agents that can be used in the continuous coating 130, include, but are not limited to, rapamycin and rapamycin anglogs such as ABT-578 tetrazole-containing macrocyclic immunosuppressant from Abbott Laboratories; statins; actinomycin; paclitaxel; 5-fluorouracil; cisplatin; vinblastine; vincristine; epothilones; methotrexate; azathioprine; adriamycin; mutamycin; endostatin; angiostatin; thymidine kinase inhibitors; and combinations thereof.
- rapamycin and rapamycin anglogs such as ABT-578 tetrazole-containing macrocyclic immunosuppressant from Abbott Laboratories
- statins such as ABT-578 tetrazole-containing macrocyclic immunosuppressant from Abbott Laboratories
- statins such as ABT-578 tetrazol
- Additional anti- neoplastic agents to achieve a desired result are well known to those skilled in the art.
- Therapeutic agents may limit or prevent the restenosis.
- antithrombogenic agents such as heparin or clotting cascade llb/llla inhibitors (e.g., abciximab and eptifibatide) can be included to diminish thrombus formation. Such agents may effectively limit clot formation at or near the implanted device.
- Additional therapeutic agents can be used in the continuous coating 130 include antinflammatory agents; antioxidants; immunosuppressants; antisense agents; antiangiogenesis agents; antiendothelin agents; antimitogenic factors; antiplatelet agents; antiproliferative agents; antithrombogenic agents; antibiotics; antiinfective agents; antidiabetic agents; antiarteriosclerotics; antiarythmics; calcium channel blockers; clot dissolving enzymes; growth factors; growth factor inhibitors; nitrates; nitric oxide releasing agents; vasodilators; virus-mediated gene transfer agents; agents having a desirable therapeutic application; combinations of the above; and the like.
- a variety of other drugs may also be included to modulate localized immune response, limit hyperplasia, or provide other benefits.
- FIGS. 4A-4C show exemplary graphs of coating component concentration versus coating thickness for a coated stent made in accordance with the present invention.
- the coating component can be any component for which it is desired to vary the concentration with coating thickness, including, but not limited to, drugs, therapeutic agents, and polymers.
- FIG. 4A shows a graph of coating component concentration versus coating thickness for coated stents formed by discrete steps and continuous coating.
- Profile A shows a linear gradient coating having decreasing coating component concentration with increasing thickness.
- Profile B shows coating concentration formed in a series of large steps, such as formed by dip coating a stent in a series of solutions where each solution has a smaller coating component concentration.
- Profile C shows coating concentration formed in a series of small steps, such as formed by dip coating a stent in a series of solutions where each solution has a smaller coating component concentration and a greater number of dip coating steps are performed.
- Profile C more closely approaches the linear gradient of Profile A than does Profile B. As the number of dip coating steps becomes large and the change in coating component concentration between steps becomes small, the step coating result will approach the linear gradient of Profile A.
- FIG. 4B shows a graph of coating component concentration versus coating thickness for a coated stent having decreasing coating component concentration with increasing thickness.
- the coating component concentration is a maximum at the zero coating thickness at the stent element and declines to a minimum at the coating thickness TO at the exterior of the stent.
- Profile B is has a linear gradient, while profile A is concave down and profile C is concave up. The three profiles illustrate how a continuously varying coating component can be tailored for a desired result.
- the coating component is a drug or other therapeutic agent
- these profiles avoid burst release and provide effective long-term drug dosage.
- the drug near the exterior which is delivered shortly after implantation, is limited.
- the major portion of the drug is located toward the stent element, where it can be delivered long-term as the exterior drug depletes.
- the gradients and the endpoints of the profiles can be tailored for particular drug release characteristics.
- the coating near the exterior can be designed to erode quickly and the coating toward the stent element designed to erode slowly or not at all.
- a coating including a durable polymer and an erodible polymer providing a lower concentration of the durable polymer near the exterior allows the exterior to erode rapidly.
- Providing a higher concentration of the durable polymer toward the stent element keeps the stent element covered and maintains a long-term drug reservoir.
- the gradients and the endpoints of the profiles can be tailored for particular coating behaviors.
- FIG. 4C shows a graph of coating component concentration versus coating thickness for a coated stent having at least two coating components of varying concentration.
- Profile A shows the concentration of a first coating component
- profile B shows the concentration of a second coating component.
- the first and second coating components can be any components for which it is desired to vary the concentration with coating thickness, including, but not limited to, drugs, therapeutic agents, and polymers.
- the first coating component concentration of profile A is highest at the zero coating thickness at the stent element and declines to a minimum at the coating thickness T2 within the stent coating.
- the second coating component concentration of profile B is a minimum at coating thickness T1 within the stent coating and increases to a maximum at the coating thickness TO at the exterior of the stent.
- the profiles A and B are shown as linear in this example, those skilled in the art will appreciate that the profiles can be simple or compound curves, and can include intermediate peaks or valleys above or below the concentrations illustrated at thicknesses zero, T1 , T2, and TO. Likewise, the profiles A and B can overlap as shown or can be non- overlapping.
- the coated stent of FIG. 4C can be a binary drug coated stent.
- Profile A can be for a drug providing long-term therapy, such as an anti-proliferative drug.
- Profile B can be for a drug providing short-term therapy, such as an anti-inflammatory drug.
- the coated stent delivers the anti-inflammatory drug to treat the tissue trauma from angioplasty and stent implantation.
- a desired time such as a few days to a few weeks, most of the anti-inflammatory drug will be gone and the coated stent delivers the anti-proliferative drug to prevent restenosis and tissue growth on the stent.
- the anti-proliferative drug delivery continues long term, such as a number of months or years.
- the continuously varying coating component concentration provides control over the timing and dosage of the two drugs. Multiple drug combinations, polymer combinations, and polymer/drug combinations can be used to achieve particular results.
- coating component concentration versus coating thickness for a coated stent made in accordance with the present invention can be varied in a number of ways.
- the coating component concentration can be a compound curve with positive, negative and zero gradient, rather than simply increasing or decreasing.
- the coating component concentration can make step changes from changes of coating components or coating component concentration when applying the coating solution of solvent and coating component to the stent.
- FIG. 5 shows a system for coating a stent in accordance with the present invention.
- At least two reservoirs containing coating solutions provide the coating solutions to a mixing volume, where they are mixed to form a gradient mixture.
- the gradient mixture is then provided to an applicator, which applies the gradient mixture to a stent.
- Such systems are used to provide gradient solutions to separation columns in high pressure or high performance liquid chromatography (HPLC).
- HPLC high performance liquid chromatography
- HPLC high performance liquid chromatography
- the coating system 200 includes a first reservoir 202, a second reservoir 204, a mixing volume 206, and an applicator 208.
- Tube 210 connects the first reservoir 202 to the mixing volume 206 through first flow controller 212.
- Tube 214 connects the second reservoir 204 to the mixing volume 206 through second flow controller 216.
- Master controller 218 provides a first flow control signal 220 to the first flow controller 212 and a second flow control signal 222 to the second flow controller 216.
- Tube 224 connects the mixing volume 206 to the applicator 208, which applies the gradient mixture to a stent 226.
- the stent 226 can move relative to the applicator 208 by moving the stent 226, the applicator 208, or both, as desired.
- the reservoirs 202, 204 are filled with coating solutions containing the desired concentrations of coating components.
- the master controller 218 adjusts the flow controllers 212, 216 as a function of time to regulate flow from the reservoirs 202, 204 to the mixing volume 206.
- the flow controllers 212, 216 set each flow from 0 to 100 percent, so flow from a single reservoir to the mixing volume is possible.
- the coating solutions from the reservoirs 202, 204 are mixed in the mixing volume 206 to form a gradient mixture, which is provided to the applicator 208 and applied to the stent 226.
- the first reservoir 202 and second reservoir 204 can be any reservoirs suitable for containing first and second coating solutions to be applied to a stent.
- the coating solutions comprise one or more coating components dissolved or dispersed in a solvent, or solvent alone.
- the coating components include drugs, therapeutic agents, and polymers.
- the coating solutions in the first reservoir 202 and second reservoir 204 can be selected by selecting the coating solutions in the first reservoir 202 and second reservoir 204.
- the first reservoir 202 contains a solvent/polymer/drug solution containing a first drug concentration- and the second reservoir 204 contains a solvent/polymer/drug solution containing a second drug concentration.
- the first reservoir 202 contains a solvent/polymer/drug solution containing a first drug and the second reservoir 204 contains a solvent/polymer/drug solution containing a second drug.
- the first reservoir 202 contains a solvent/polymer/drug solution containing a first polymer and the second reservoir 204 contains a solvent/polymer/drug solution containing a second polymer.
- the first reservoir 202 contains a solvent/drug solution and the second reservoir 204 contains a solvent/polymer solution, allowing a drug/polymer combination where the drug and polymer are incompatible or require incompatible solvents. Additional reservoirs can be used if more than two coating solutions are to be applied to the stent, with associated flow controllers and tubing to connect to the mixing volume.
- the first flow controller 212 and second flow controller 216 can be any means for controlling flow from the reservoirs to the mixing volume, such as pumps, valves, and combinations thereof.
- the flow controller is a metering pump.
- the flow controller is a pump with a flow control valve.
- the reservoir is pressurized and the flow controller is a flow control valve.
- the flow controller is a syringe pump, which also acts as the reservoir.
- the master controller 218 provides flow control signals 220, 222 to the flow controllers 212, 216 to control the flow of the first and second coating solutions from the reservoirs 202, 204 to the mixing volume 206.
- the master controller 218 can be a programmed general purpose computer, a microprocessor, or other control device.
- the relative flow rate of the first and second coating solutions determines the fraction of each coating solution applied to the stent.
- the master controller 218 can adjust the relative flow rate with time to provide a continuous gradient coating on the stent 226.
- the mixing volume 206 can be any means for mixing flow from the first flow controller 212 and second flow controller 216 to form a gradient mixture.
- the mixing volume 206 is a separate volume.
- the mixing volume 206 is a portion of the tubing, such as a Y junction between the flow controllers and the applicator.
- the mixing volume 206 is one of the reservoirs.
- the applicator 208 receives the gradient mixture from the mixing volume 206 and applies the gradient mixture to a stent 226.
- concentrations of the coating components in the gradient mixture vary with time, so the application rate can be adjusted to provide the desired gradient profile in the stent coating.
- the applicator 208 can apply the gradient mixture by spraying, painting, wiping, rolling, printing, ink jet printing, or combinations thereof. Spraying can be ultrasonic or pressure spraying. Drying of the gradient mixture can be enhanced by nitrogen flow in the applicator 208.
- a pump can be provided in the tube 224 after the mixing volume 206 and before the applicator 208 to provide pressure at the applicator 208.
- FIG. 6A-6C show exemplary graphs of coating component concentration in the gradient mixture versus time for the coating system of
- the coating component concentration in the gradient mixture being applied to the stent varies with time to vary the coating component concentration with coating thickness on the stent.
- FIG. 6A shows an example of coating component concentration decreasing with time.
- the coating component concentration decreases linearly, although the decrease can follow a simple or compound curve.
- the higher concentration of the coating component is applied near the stent element and the lower concentration of the coating component is applied at the outer edge of the coating.
- the coating component is a drug or other therapeutic agent, such a coating profile will suppress burst release and provide a steady long-term dose.
- the coating component concentration could increase with time.
- Two reservoirs, each containing a coating solution, but with different coating component concentrations, can produce a decreasing or increasing coating component concentration.
- Each coating solution typically contains at least a solvent with a drug and/or polymer.
- FIG. 6B shows an example of coating component concentration varying with time for a first and a second coating component.
- Profile A shows the coating component concentration for the first coating component decreasing from time 0 to time t2 and profile B shows the coating component concentration for the second coating component increasing from time t1 to time t3.
- the coating component concentrations change linearly, although the changes can follow an increasing or decreasing simple or compound curve.
- the higher concentration of the first coating component is applied near the stent element.
- the higher concentration of the second coating component is applied at the outer edge of the coating.
- the first coating component is an anti-proliferative agent to provide long-term therapy and the second coating component is an anti- inflammatory agent to provide therapy immediately after stent implantation.
- Each coating solution typically contains at least a solvent with a drug and/or polymer.
- FIG. 6C shows another example of coating component concentration varying with time for a first and a second coating component.
- Profile A shows the coating component concentration for the first coating component decreasing from time 0 to time t1 , then going to zero.
- Profile B shows the coating component concentration for the second coating component going from zero to a constant value at time t1 , then holding at the constant value from time t1 to time t2.
- the higher concentration of the first coating component is applied near the stent element.
- the concentration of the second coating component is constant throughout its thickness.
- the first coating component is a drug or other therapeutic agent and the second coating component is polymer to provide a cap coat at the outer edge of the coating.
- FIG. 7 shows another system for coating a stent in accordance with the present invention. At least two reservoirs contain coating solutions. One reservoir acts as both a reservoir and a mixing volume. The coating solution from one reservoir is transferred into the other reservoir, where they are mixed to form a gradient mixture. The gradient mixture is then provided to an applicator, which applies the gradient mixture to a stent.
- Such systems are used to provide pH and linear concentration gradients for chromatography and electrophoresis applications.
- the coating system 230 includes a first reservoir 232, a second reservoir 234, and an applicator 236.
- Tube 238 connects the first reservoir 232 to the second reservoir 234 through first flow controller 240.
- Tube 242 connects the second reservoir 234 to the applicator 236 through second flow controller 244.
- Master controller 246 provides a first flow control signal 248 to the first flow controller 240 and a second flow control signal 250 to the second flow controller 244.
- the applicator 236 applies the gradient mixture to a stent 252.
- the stent 252 can move relative to the applicator 236 by moving the stent 246, the applicator 236, or both, as desired.
- the reservoirs 232, 234 are filled with coating solutions containing the desired concentrations of coating components.
- the coating solution from the first reservoir 232 passes through the tube 238 and mixes with the coating solution in second reservoir 234 to form a gradient mixture.
- the second reservoir 234 serves as both a reservoir and a mixing volume.
- An impeller 254 or other mixing device in the second reservoir 234 can be used to provide rapid, thorough mixing.
- the gradient mixture passes through the tube 242 to the applicator 236 and is applied to the stent 226.
- the first flow controller 240 and second flow controller 244 can be any means for controlling flow from the first reservoir to the second reservoir and from the second reservoir to the applicator, such as pumps, valves, and combinations thereof.
- the first flow controller 240 is omitted with gravity providing the driving force between the first reservoir 232 and the second reservoir 234.
- the second flow controller 244 is a peristaltic pump, which provides the gradient mixture to the applicator 236.
- the applicator 236 can be an ultrasonic spray head.
- the flow controller is a metering pump.
- the flow controller is a pump with a flow control valve.
- the reservoir is pressurized and the flow controller is a flow control valve.
- the applicator 236 can apply the gradient mixture by spraying, painting, wiping, rolling, printing, ink jet printing, or combinations thereof.
- Spraying can be ultrasonic or pressure spraying. Drying of the gradient mixture can be enhanced by nitrogen flow in the applicator 236.
- the master controller 246 provides flow control signals 248, 250 to the flow controllers 240, 244 to control flow from the first reservoir 232 to the second reservoir 234 and from the second reservoir 234 to the applicator 236.
- the master controller 246 can be a programmed general purpose computer, a microprocessor, or other control device.
- the master controller 246 adjusts the flow controllers 240, 244 as a function of time to regulate flow from the first reservoir 232 to the second reservoir 234 and/or from the second reservoir 234 to the applicator 236.
- the master controller 246 is omitted and the flow controllers 240, 244 are set at a selected setting providing the desired flow rate, the same flow controller setting being used throughout the application process. FIG.
- FIG. 8 shows exemplary graphs of coating component concentration in the gradient mixture versus time for the coating system of FIG. 7.
- the example of FIG. 8 assumes an initial concentration of a coating component in the first reservoir 232 and a lower concentration of the same coating component in the second reservoir 234.
- Profile B shows the case where the flow rate from the first reservoir 232 to the second reservoir 234 equals the flow rate from the second reservoir 234 to the applicator 208.
- the coating component concentration in the gradient mixture increases linearly from the concentration of coating component in the second reservoir 234 to the concentration of coating component in the first reservoir 232.
- Profile A shows the case where the flow rate from the first reservoir 232 to the second reservoir 234 is greater than the flow rate from the second reservoir 234 to the applicator 236, so that the coating component concentration in the gradient mixture increases more quickly than the linear case of Profile B.
- Profile C shows the case where the flow rate from the first reservoir 232 to the second reservoir 234 is less than the flow rate from the second reservoir 234 to the applicator 236, so that the coating component concentration in the gradient mixture increases more slowly than the linear case of Profile B.
- the reservoirs can contain coating solutions with different coating components and/or different coating component concentrations.
- the initial concentration of a coating component in the first reservoir 232 can be higher than concentration of the coating component in the second reservoir 234, so that the component concentration decreases with time, rather than increasing.
- FIG. 9 shows a method of manufacturing a coated stent made in accordance with the present invention.
- a first coating solution is provided at 270 and a second coating solution is provided at 272.
- the first coating solution is applied to the stent through an applicator.
- the second coating solution is applied to the stent through the applicator.
- applying the first and second coating solutions to the stent through the applicator comprises mixing the first coating solution and the second coating solution to form a gradient mixture and applying the gradient mixture to the stent through the applicator.
- the first coating solution can include a first coating component and the concentration of the first coating component in the gradient mixture can be varied with time.
- the second coating solution can include a second coating component and the concentration of the second coating component in the gradient mixture can be varied with time.
- the coating components can be selected from drugs, therapeutic agents, polymers, bi-polymers, co-polymers, and combinations thereof.
- the variation of the concentration of one or both of the coating components with time can be selected as desired for a particular application.
- the concentration can vary linearly with time, increase with time, or decrease with time.
- the concentration of the first coating component can decrease with time, while the concentration of the second coating component increases with time.
- FIG. 10 shows another embodiment of a method of manufacturing a coated stent made in accordance with the present invention.
- a first coating component is mixed with a first solvent to form a first coating solution at 280 and a second coating component is mixed with a second solvent to form a second coating solution at 282.
- the first coating solution and the second coating solution are mixed to form a gradient mixture, so that the ratio of the first coating solution to the second coating solution in the gradient mixture varies with time.
- the gradient mixture is applied to the stent at 286.
- mixing the first and second coating solutions to form a gradient mixture comprises mixing the first coating solution and the second coating solution so that concentration of the first coating component in the gradient mixture varies with time.
- the coating components can be selected from drugs, therapeutic agents, polymers, bi-polymers, co-polymers, and combinations thereof.
- the mixing of the coating solutions shortly before application to the stent allows use of the method even if any pair of the first coating component, the first solvent, the second coating component, and the second solvent are incompatible with each other.
- the variation of the concentration of one or both of the coating components with time can be selected as desired for a particular application.
- the concentration can vary linearly with time, increase with time, or decrease with time.
- the concentration of the first coating component can decrease with time, while the concentration of the second coating component increases with time.
- FIGS. 1-10 illustrate specific applications and embodiments of the present invention, and is not intended to limit the scope of the present disclosure or claims to that which is presented therein.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT05770726T ATE554805T1 (en) | 2004-08-18 | 2005-07-08 | GRADIENT COATED STENT AND PRODUCTION METHOD THEREOF |
EP05770726A EP1789106B1 (en) | 2004-08-18 | 2005-07-08 | Gradient coated stent and method of fabrication |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/921,735 | 2004-08-18 | ||
US10/921,735 US8801692B2 (en) | 2003-09-24 | 2004-08-18 | Gradient coated stent and method of fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006023150A1 true WO2006023150A1 (en) | 2006-03-02 |
Family
ID=35057075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/024368 WO2006023150A1 (en) | 2004-08-18 | 2005-07-08 | Gradient coated stent and method of fabrication |
Country Status (4)
Country | Link |
---|---|
US (2) | US8801692B2 (en) |
EP (1) | EP1789106B1 (en) |
AT (1) | ATE554805T1 (en) |
WO (1) | WO2006023150A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008098418A1 (en) * | 2007-02-14 | 2008-08-21 | Shandong Intech Medical Technology Co., Ltd. | Intracoronary stent with asymmetric drug releasing controlled coating |
CN101830645A (en) * | 2010-04-06 | 2010-09-15 | 建德市沪联建筑材料有限公司 | Environment-friendly multi-stage ash-digesting apparatus system |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6433154B1 (en) * | 1997-06-12 | 2002-08-13 | Bristol-Myers Squibb Company | Functional receptor/kinase chimera in yeast cells |
US7208011B2 (en) * | 2001-08-20 | 2007-04-24 | Conor Medsystems, Inc. | Implantable medical device with drug filled holes |
US7179289B2 (en) * | 1998-03-30 | 2007-02-20 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US7208010B2 (en) | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US7807211B2 (en) | 1999-09-03 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
US20070032853A1 (en) | 2002-03-27 | 2007-02-08 | Hossainy Syed F | 40-O-(2-hydroxy)ethyl-rapamycin coated stent |
CN1830536A (en) * | 2000-05-16 | 2006-09-13 | 明尼苏达大学评议会 | High mass throughput particle generation using multiple nozzle spraying |
US6953560B1 (en) | 2000-09-28 | 2005-10-11 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
ES2243556T3 (en) * | 2000-10-16 | 2005-12-01 | Conor Medsystems, Inc. | EXPANDABLE MEDICAL DEVICE TO PROVIDE A BENEFICIAL AGENT. |
US20040073294A1 (en) | 2002-09-20 | 2004-04-15 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device |
US7247338B2 (en) * | 2001-05-16 | 2007-07-24 | Regents Of The University Of Minnesota | Coating medical devices |
US7862495B2 (en) | 2001-05-31 | 2011-01-04 | Advanced Cardiovascular Systems, Inc. | Radiation or drug delivery source with activity gradient to minimize edge effects |
AU2002345328A1 (en) | 2001-06-27 | 2003-03-03 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US6656216B1 (en) * | 2001-06-29 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Composite stent with regioselective material |
US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution |
US7056338B2 (en) * | 2003-03-28 | 2006-06-06 | Conor Medsystems, Inc. | Therapeutic agent delivery device with controlled therapeutic agent release rates |
US6865810B2 (en) * | 2002-06-27 | 2005-03-15 | Scimed Life Systems, Inc. | Methods of making medical devices |
EP1539043B1 (en) * | 2002-09-20 | 2013-12-18 | Innovational Holdings, LLC | Expandable medical device with openings for delivery of multiple beneficial agents |
US7758636B2 (en) * | 2002-09-20 | 2010-07-20 | Innovational Holdings Llc | Expandable medical device with openings for delivery of multiple beneficial agents |
WO2004043509A1 (en) * | 2002-11-08 | 2004-05-27 | Conor Medsystems, Inc. | Expandable medical device and method for treating chronic total occlusions with local delivery of an angiogenic factor |
US8435550B2 (en) | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US7758881B2 (en) | 2004-06-30 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US20060002968A1 (en) | 2004-06-30 | 2006-01-05 | Gordon Stewart | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders |
WO2004087214A1 (en) | 2003-03-28 | 2004-10-14 | Conor Medsystems, Inc. | Implantable medical device with beneficial agent concentration gradient |
US20040202692A1 (en) * | 2003-03-28 | 2004-10-14 | Conor Medsystems, Inc. | Implantable medical device and method for in situ selective modulation of agent delivery |
US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US20050100577A1 (en) * | 2003-11-10 | 2005-05-12 | Parker Theodore L. | Expandable medical device with beneficial agent matrix formed by a multi solvent system |
EP1713453B1 (en) * | 2004-02-13 | 2008-11-19 | Conor Medsystems, Inc. | Implantable drug delivery device including wire filaments |
US8709469B2 (en) | 2004-06-30 | 2014-04-29 | Abbott Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US7648727B2 (en) | 2004-08-26 | 2010-01-19 | Advanced Cardiovascular Systems, Inc. | Methods for manufacturing a coated stent-balloon assembly |
US7795467B1 (en) | 2005-04-26 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Bioabsorbable, biobeneficial polyurethanes for use in medical devices |
US8778375B2 (en) | 2005-04-29 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Amorphous poly(D,L-lactide) coating |
US8021676B2 (en) | 2005-07-08 | 2011-09-20 | Advanced Cardiovascular Systems, Inc. | Functionalized chemically inert polymers for coatings |
CN105233349B (en) | 2005-07-15 | 2019-06-18 | 胶束技术股份有限公司 | The polymer coating of drug powder comprising controlled morphology |
US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
US7785647B2 (en) | 2005-07-25 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Methods of providing antioxidants to a drug containing product |
CN1962155A (en) * | 2005-11-10 | 2007-05-16 | 鸿富锦精密工业(深圳)有限公司 | CO2 laser welding apparatus |
US7976891B1 (en) | 2005-12-16 | 2011-07-12 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method of using focused acoustic energy |
US7867547B2 (en) | 2005-12-19 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Selectively coating luminal surfaces of stents |
US20070148697A1 (en) * | 2005-12-27 | 2007-06-28 | Boston Scientific Scimed, Inc. | Methods and system for high throughput screening of polymer materials for medical devices |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US9108217B2 (en) | 2006-01-31 | 2015-08-18 | Nanocopoeia, Inc. | Nanoparticle coating of surfaces |
US9248217B2 (en) * | 2006-01-31 | 2016-02-02 | Nanocopocia, LLC | Nanoparticle coating of surfaces |
CA2637883C (en) * | 2006-01-31 | 2015-07-07 | Regents Of The University Of Minnesota | Electrospray coating of objects |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US20070196428A1 (en) | 2006-02-17 | 2007-08-23 | Thierry Glauser | Nitric oxide generating medical devices |
US7713637B2 (en) | 2006-03-03 | 2010-05-11 | Advanced Cardiovascular Systems, Inc. | Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
CA2650590C (en) | 2006-04-26 | 2018-04-03 | Micell Technologies, Inc. | Coatings containing multiple drugs |
US7985441B1 (en) | 2006-05-04 | 2011-07-26 | Yiwen Tang | Purification of polymers for coating applications |
US8003156B2 (en) | 2006-05-04 | 2011-08-23 | Advanced Cardiovascular Systems, Inc. | Rotatable support elements for stents |
US8304012B2 (en) | 2006-05-04 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Method for drying a stent |
US7775178B2 (en) | 2006-05-26 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Stent coating apparatus and method |
US9561351B2 (en) | 2006-05-31 | 2017-02-07 | Advanced Cardiovascular Systems, Inc. | Drug delivery spiral coil construct |
US8568764B2 (en) | 2006-05-31 | 2013-10-29 | Advanced Cardiovascular Systems, Inc. | Methods of forming coating layers for medical devices utilizing flash vaporization |
US8703167B2 (en) | 2006-06-05 | 2014-04-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug |
US8778376B2 (en) | 2006-06-09 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating |
US8114150B2 (en) | 2006-06-14 | 2012-02-14 | Advanced Cardiovascular Systems, Inc. | RGD peptide attached to bioabsorbable stents |
US8603530B2 (en) | 2006-06-14 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | Nanoshell therapy |
US8048448B2 (en) | 2006-06-15 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Nanoshells for drug delivery |
US8017237B2 (en) | 2006-06-23 | 2011-09-13 | Abbott Cardiovascular Systems, Inc. | Nanoshells on polymers |
US9028859B2 (en) | 2006-07-07 | 2015-05-12 | Advanced Cardiovascular Systems, Inc. | Phase-separated block copolymer coatings for implantable medical devices |
US8052743B2 (en) | 2006-08-02 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with three-dimensional disintegration control |
US8703169B1 (en) | 2006-08-15 | 2014-04-22 | Abbott Cardiovascular Systems Inc. | Implantable device having a coating comprising carrageenan and a biostable polymer |
JP2010503481A (en) * | 2006-09-15 | 2010-02-04 | ボストン サイエンティフィック リミテッド | Medical instruments |
EP2210625B8 (en) | 2006-09-15 | 2012-02-29 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis with biostable inorganic layers |
JP2010503494A (en) | 2006-09-15 | 2010-02-04 | ボストン サイエンティフィック リミテッド | Biodegradable endoprosthesis and method for producing the same |
CA2663250A1 (en) | 2006-09-15 | 2008-03-20 | Boston Scientific Limited | Bioerodible endoprostheses and methods of making the same |
US20080071353A1 (en) * | 2006-09-15 | 2008-03-20 | Boston Scientific Scimed, Inc. | Endoprosthesis containing magnetic induction particles |
EP2959925B1 (en) | 2006-09-15 | 2018-08-29 | Boston Scientific Limited | Medical devices and methods of making the same |
WO2008051342A2 (en) * | 2006-10-20 | 2008-05-02 | Boston Scientific Limited | Reduction of burst release from therapeutically treated medical devices |
CA2667228C (en) | 2006-10-23 | 2015-07-14 | Micell Technologies, Inc. | Holder for electrically charging a substrate during coating |
US9040816B2 (en) * | 2006-12-08 | 2015-05-26 | Nanocopoeia, Inc. | Methods and apparatus for forming photovoltaic cells using electrospray |
US8597673B2 (en) | 2006-12-13 | 2013-12-03 | Advanced Cardiovascular Systems, Inc. | Coating of fast absorption or dissolution |
ES2506144T3 (en) | 2006-12-28 | 2014-10-13 | Boston Scientific Limited | Bioerodible endoprosthesis and their manufacturing procedure |
US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
CN101711137B (en) | 2007-01-08 | 2014-10-22 | 米歇尔技术公司 | Stents having biodegradable layers |
US8147769B1 (en) | 2007-05-16 | 2012-04-03 | Abbott Cardiovascular Systems Inc. | Stent and delivery system with reduced chemical degradation |
JP2010527746A (en) * | 2007-05-25 | 2010-08-19 | ミセル テクノロジーズ、インコーポレイテッド | Polymer film for medical device coating |
US9056155B1 (en) | 2007-05-29 | 2015-06-16 | Abbott Cardiovascular Systems Inc. | Coatings having an elastic primer layer |
US8109904B1 (en) | 2007-06-25 | 2012-02-07 | Abbott Cardiovascular Systems Inc. | Drug delivery medical devices |
US8048441B2 (en) | 2007-06-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Nanobead releasing medical devices |
US8852620B2 (en) * | 2007-07-20 | 2014-10-07 | Medtronic Vascular, Inc. | Medical devices comprising polymeric drug delivery systems with drug solubility gradients |
US8052745B2 (en) | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US20090110713A1 (en) * | 2007-10-31 | 2009-04-30 | Florencia Lim | Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices |
CN102083397B (en) | 2008-04-17 | 2013-12-25 | 米歇尔技术公司 | Stents having bioabsorbable layers |
US8236046B2 (en) * | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
WO2010009335A1 (en) | 2008-07-17 | 2010-01-21 | Micell Technologies, Inc. | Drug delivery medical device |
US7985252B2 (en) * | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
US8267992B2 (en) | 2009-03-02 | 2012-09-18 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
WO2010111238A2 (en) * | 2009-03-23 | 2010-09-30 | Micell Technologies, Inc. | Improved biodegradable polymers |
WO2010120552A2 (en) | 2009-04-01 | 2010-10-21 | Micell Technologies, Inc. | Coated stents |
EP3366326A1 (en) | 2009-04-17 | 2018-08-29 | Micell Technologies, Inc. | Stents having controlled elution |
EP2453834A4 (en) | 2009-07-16 | 2014-04-16 | Micell Technologies Inc | Drug delivery medical device |
EP2338534A2 (en) * | 2009-12-21 | 2011-06-29 | Biotronik VI Patent AG | Medical implant, coating method and implantation method |
US20110160839A1 (en) * | 2009-12-29 | 2011-06-30 | Boston Scientific Scimed, Inc. | Endoprosthesis |
WO2011097103A1 (en) * | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US8795762B2 (en) | 2010-03-26 | 2014-08-05 | Battelle Memorial Institute | System and method for enhanced electrostatic deposition and surface coatings |
CA2797110C (en) | 2010-04-22 | 2020-07-21 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
CA2805631C (en) | 2010-07-16 | 2018-07-31 | Micell Technologies, Inc. | Drug delivery medical device |
EP2696815B1 (en) * | 2011-04-13 | 2019-03-20 | Micell Technologies, Inc. | Stents having controlled elution |
US10464100B2 (en) | 2011-05-31 | 2019-11-05 | Micell Technologies, Inc. | System and process for formation of a time-released, drug-eluting transferable coating |
US10117972B2 (en) | 2011-07-15 | 2018-11-06 | Micell Technologies, Inc. | Drug delivery medical device |
US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
EP2952160A4 (en) * | 2013-01-30 | 2016-08-17 | Terumo Corp | Organism lumen treatment system, and stent |
KR20150143476A (en) | 2013-03-12 | 2015-12-23 | 미셀 테크놀로지즈, 인코포레이티드 | Bioabsorbable biomedical implants |
WO2014186532A1 (en) | 2013-05-15 | 2014-11-20 | Micell Technologies, Inc. | Bioabsorbable biomedical implants |
CN108378964A (en) * | 2018-04-28 | 2018-08-10 | 上海脉全医疗器械有限公司 | A kind of medicinal balloon |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0623354A1 (en) * | 1993-04-26 | 1994-11-09 | Medtronic, Inc. | Intravascular stents |
US20020127327A1 (en) * | 1999-04-19 | 2002-09-12 | Schwarz Marlene C. | Mechanical and acoustical suspension coating of medical implants |
US20030003221A1 (en) * | 2001-07-02 | 2003-01-02 | Zhong Sheng-Ping (Samuel) | Coating dispensing system and method using a solenoid head for coating medical devices |
WO2004026361A1 (en) * | 2002-09-18 | 2004-04-01 | Medtronic Vascular, Inc. | Controllable drug releasing gradient coatings for medical devices |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US5133732A (en) | 1987-10-19 | 1992-07-28 | Medtronic, Inc. | Intravascular stent |
US5634946A (en) * | 1988-08-24 | 1997-06-03 | Focal, Inc. | Polymeric endoluminal paving process |
US5292331A (en) | 1989-08-24 | 1994-03-08 | Applied Vascular Engineering, Inc. | Endovascular support device |
RU2167886C2 (en) | 1991-07-05 | 2001-05-27 | Биокомпэтиблз Лимитед. | Polymer, method of preparation thereof, coated surface, and method for coating surface |
CA2380683C (en) | 1991-10-28 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
US5824048A (en) * | 1993-04-26 | 1998-10-20 | Medtronic, Inc. | Method for delivering a therapeutic substance to a body lumen |
US5837313A (en) * | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
US5609629A (en) * | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US5776161A (en) | 1995-10-16 | 1998-07-07 | Instent, Inc. | Medical stents, apparatus and method for making same |
US6015815A (en) | 1997-09-26 | 2000-01-18 | Abbott Laboratories | Tetrazole-containing rapamycin analogs with shortened half-lives |
US7208011B2 (en) * | 2001-08-20 | 2007-04-24 | Conor Medsystems, Inc. | Implantable medical device with drug filled holes |
US6607598B2 (en) * | 1999-04-19 | 2003-08-19 | Scimed Life Systems, Inc. | Device for protecting medical devices during a coating process |
US6368658B1 (en) * | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
US6673053B2 (en) * | 1999-05-07 | 2004-01-06 | Scimed Life Systems, Inc. | Hydrophilic lubricity coating for medical devices comprising an antiblock agent |
US7033603B2 (en) * | 1999-08-06 | 2006-04-25 | Board Of Regents The University Of Texas | Drug releasing biodegradable fiber for delivery of therapeutics |
US6503556B2 (en) * | 2000-12-28 | 2003-01-07 | Advanced Cardiovascular Systems, Inc. | Methods of forming a coating for a prosthesis |
US7247338B2 (en) * | 2001-05-16 | 2007-07-24 | Regents Of The University Of Minnesota | Coating medical devices |
US20030175410A1 (en) * | 2002-03-18 | 2003-09-18 | Campbell Phil G. | Method and apparatus for preparing biomimetic scaffold |
US7491233B1 (en) * | 2002-07-19 | 2009-02-17 | Advanced Cardiovascular Systems Inc. | Purified polymers for coatings of implantable medical devices |
US6638301B1 (en) * | 2002-10-02 | 2003-10-28 | Scimed Life Systems, Inc. | Medical device with radiopacity |
US7169178B1 (en) * | 2002-11-12 | 2007-01-30 | Advanced Cardiovascular Systems, Inc. | Stent with drug coating |
US7491234B2 (en) * | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents |
-
2004
- 2004-08-18 US US10/921,735 patent/US8801692B2/en active Active
-
2005
- 2005-07-08 EP EP05770726A patent/EP1789106B1/en not_active Not-in-force
- 2005-07-08 AT AT05770726T patent/ATE554805T1/en active
- 2005-07-08 WO PCT/US2005/024368 patent/WO2006023150A1/en active Application Filing
-
2014
- 2014-06-30 US US14/320,077 patent/US20140314945A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0623354A1 (en) * | 1993-04-26 | 1994-11-09 | Medtronic, Inc. | Intravascular stents |
US5776184A (en) * | 1993-04-26 | 1998-07-07 | Medtronic, Inc. | Intravasoular stent and method |
US20020127327A1 (en) * | 1999-04-19 | 2002-09-12 | Schwarz Marlene C. | Mechanical and acoustical suspension coating of medical implants |
US20030003221A1 (en) * | 2001-07-02 | 2003-01-02 | Zhong Sheng-Ping (Samuel) | Coating dispensing system and method using a solenoid head for coating medical devices |
WO2004026361A1 (en) * | 2002-09-18 | 2004-04-01 | Medtronic Vascular, Inc. | Controllable drug releasing gradient coatings for medical devices |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008098418A1 (en) * | 2007-02-14 | 2008-08-21 | Shandong Intech Medical Technology Co., Ltd. | Intracoronary stent with asymmetric drug releasing controlled coating |
CN101830645A (en) * | 2010-04-06 | 2010-09-15 | 建德市沪联建筑材料有限公司 | Environment-friendly multi-stage ash-digesting apparatus system |
Also Published As
Publication number | Publication date |
---|---|
US20140314945A1 (en) | 2014-10-23 |
US8801692B2 (en) | 2014-08-12 |
US20050075714A1 (en) | 2005-04-07 |
ATE554805T1 (en) | 2012-05-15 |
EP1789106A1 (en) | 2007-05-30 |
EP1789106B1 (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8801692B2 (en) | Gradient coated stent and method of fabrication | |
EP1569762B1 (en) | Stent with intermittent coating | |
US20050055078A1 (en) | Stent with outer slough coating | |
EP1553896B1 (en) | Stent with eccentric coating | |
EP2101839B1 (en) | Drug-delivery endovascular stent and method of use | |
US7055237B2 (en) | Method of forming a drug eluting stent | |
US7575593B2 (en) | Implantable device with reservoirs for increased drug loading | |
US7135038B1 (en) | Drug eluting stent | |
EP1329230B1 (en) | Method of coating stents | |
US8048149B2 (en) | Intraluminal stent including therapeutic agent delivery pads, and method of manufacturing the same | |
EP1468660B1 (en) | Stent delivery system, device, and method for coating | |
US20070027523A1 (en) | Method of treating vascular disease at a bifurcated vessel using coated balloon | |
US20100070013A1 (en) | Medical Device With Microsphere Drug Delivery System | |
EP1214108A1 (en) | A porous prosthesis and a method of depositing substances into the pores | |
EP2396048A1 (en) | Method of treating vascular disease at a bifurcated vessel using a coated balloon | |
US20060184236A1 (en) | Intraluminal device including an optimal drug release profile, and method of manufacturing the same | |
US20050085889A1 (en) | Stent with detachable ends | |
US8636811B2 (en) | Drug eluting rolled stent and stent delivery system | |
WO2022176792A1 (en) | Stent and method for manufacturing stent | |
EP1413261A1 (en) | Stent with detachable ends |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005770726 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005770726 Country of ref document: EP |