WO2006022333A1 - Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method - Google Patents

Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method Download PDF

Info

Publication number
WO2006022333A1
WO2006022333A1 PCT/JP2005/015442 JP2005015442W WO2006022333A1 WO 2006022333 A1 WO2006022333 A1 WO 2006022333A1 JP 2005015442 W JP2005015442 W JP 2005015442W WO 2006022333 A1 WO2006022333 A1 WO 2006022333A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
curvature
crystal lens
curvature distribution
lens
Prior art date
Application number
PCT/JP2005/015442
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Nakajima
Hiroshi Okuda
Kozo Fujiwara
Original Assignee
Tohoku University
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University, Kyoto University filed Critical Tohoku University
Priority to JP2006532583A priority Critical patent/JP4710022B2/en
Publication of WO2006022333A1 publication Critical patent/WO2006022333A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/062Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements the element being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Definitions

  • Curvature distribution crystal lens Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
  • the present invention relates to an apparatus for structural evaluation by diffraction of a material using X-rays and analytical evaluation by spectroscopy, and in particular, a curvature distribution crystal lens, an X-ray apparatus having a curvature distribution crystal lens, and a curvature distribution crystal lens.
  • the present invention relates to a manufacturing method.
  • the monochromator crystal deformed within this elastic limit is limited in curvature and processing method, it should be used for compact devices and applications such as microbeam diffraction that require both high resolution and high brightness. I can't.
  • KB mirrors used for microbeam generation in the sense of light concentrators require highly parallel and high-intensity light such as third-generation radiation for the source itself, and cannot be used in laboratory X-rays. It is.
  • parabolic mirrors (conferencing mirrors) and confocal mirrors are also manufactured for effective use of the source intensity. In addition, it is close to 10 million yen, and the capture angle does not reach 0.3 degrees. However, because there is no alternative technology, many of these mirrors are shipped domestically and overseas.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-160600 @ @
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-014895
  • the present invention solves these difficulties, and curvature distribution crystal lenses such as Johann type and Johansson type for X-rays whose crystal plane has an arbitrary two-dimensional curvature distribution, such as a condensing type monochrome. It is an object of the present invention to provide a technique capable of freely producing a meter crystal. Means for solving the problem
  • the present invention applies a load to a crystal plate having a high yield stress entirely or locally at a temperature below the melting point of the crystal, particularly at a temperature near the melting point,
  • the present invention provides a method for producing a curvature distribution crystal lens, which is molded so as to have a predetermined curvature by plastic deformation.
  • the temperature below the melting point of the crystal in the present invention is the heating temperature from the temperature at which plastic deformation of the crystal plate starts to just before the temperature at which partial melting starts at the time of pressurization !, and the temperature near the melting point of the crystal in the present invention.
  • the heating temperature from a temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced to a temperature immediately before partial melting starts at the time of pressurization.
  • the present invention also provides a high yield stress at a temperature below the melting point of the crystal, particularly at a temperature near the melting point.
  • a crystal lens molded to have a predetermined curvature is applied by applying an overall or local load to the crystal plate and plastically deforming the crystal plate, and at the same time as a predetermined curved surface distribution, secondary polishing is performed.
  • the present invention provides a method for producing a curvature distribution crystal lens, which is characterized by being molded so as to have a curved surface.
  • the present invention provides the following as a curvature distribution crystal lens manufactured by the method of manufacturing a curvature distribution crystal lens.
  • a compound semiconductor such as Si, Ge, SiGe, and GaAs, an oxide such as MgO, Al 2 O, or SiO, or a halide such as LiF or NaCl is used.
  • the crystal plate has on its surface one or two of compound semiconductors such as Si, Ge, SiGe, and GaAs, oxides such as MgO, Al 2 O, and SiO, and halides such as LiF and NaCl. Less than
  • Curvature distribution crystal lens which is a thin film crystal deposited from above.
  • the present invention provides an X-ray apparatus constituted by an optical component including an X-ray source and a curvature distribution monochromator crystal lens.
  • the X-ray apparatus is an X-ray apparatus using X-rays as described in the section of the best mode for carrying out the invention (a) to (g)! Uh.
  • a single crystal or multicrystal of a butter shape is usually cut into a plate-like wafer crystal and subjected to various processing. This is because the crystal was believed to be hard and brittle and cannot be bent, so the idea of using a wafer crystal with curvature was strong.
  • a crystal is formed using a high temperature pressurization method. Since the plate is plastic processed into a lens shape, and a crystal lens with a crystal lattice along the curved surface shape can be molded into any curvature, shape, and size, it is a compact size that requires almost no abrasive molding.
  • X-ray curvature distribution crystal lens' monochromator can be manufactured.
  • the crystal lens and the monochromator of the present invention X-ray irradiation of the same size as the light source size (several microns to several tens of microns) is lost due to slits or the like due to the effect of two-dimensional focusing.
  • the efficiency is improved by up to 2 digits compared to the conventional one.
  • FIG. 1 An example of actual measurement of crystal plane distribution of a spherical crystal monochromator.
  • FIG. 2 This is an example of application to a two-dimensional Johansson focused diffraction crystal with a symmetric (a) and asymmetric (b) arrangement.
  • FIG. 3 is a configuration example of a sample position focusing type fluorescence analyzer and a sample position focusing type diffractometer using the spherical crystal monochromator of FIG.
  • FIG. 4 is a diagram showing a high-position resolution diffractometer of a two-dimensional focusing concentration type.
  • FIG. 5 is a diagram showing a concentrating single crystal analyzer and the relationship between a sample and a detector.
  • FIG. 6 is a diagram showing a high-intensity diffuse scattering measurement apparatus.
  • FIG. 7 is a diagram showing a high intensity diffractometer using a linear beam.
  • FIG. 8 is a diagram showing a high magnification X-ray microscope apparatus having a configuration of a micro focus X-ray generator, a high-precision two-dimensional focusing monochromator, and a slit system.
  • FIG. 9 is a diagram showing a configuration example of a normal diffraction type point-focus X-ray generator, an asymmetric cut crystal, and a scattering diffraction measurement apparatus using a cylindrical Johansson.
  • FIG. 10 is a view showing upper and lower boats that process a Si (100) single crystal plate into a hemispherical shape.
  • FIG. 11 is a photograph of a hemispherical Si single crystal plate.
  • FIG. 12 is a diagram showing the result of a pressurization test in which the thickness of the crystal plate and the temperature during pressurization are shown as parameters.
  • FIG. 13 is a photograph of a Si (111) single crystal curvature distribution crystal lens.
  • FIG. 10 shows the upper and lower boats where the Si (100) single crystal, which is a high yield stress crystal, is hemispherically covered.
  • This upper and lower boat consists of two upper and lower carbon boats, a hemispherical depression (concave) is formed in the lower boat, and a hemispherical depression that fits in the upper boat just with a little margin in the lower boat.
  • a protrusion (convex) is formed.
  • a release material is applied to the lower surface of the upper boat and the upper surface of the lower boat, and annealed at a high temperature. After that, a Si single crystal plate was sandwiched between the upper and lower boats that had been treated and placed in a vertical furnace. In order to prevent contamination and heat-induced surface deterioration on the entire surface or a part of the Si single crystal plate, a surface protective film that is resistant to heat, such as a mold release agent, and has few impurities may be applied. In this vertical furnace, a metal push rod is arranged at the top of the furnace, and by controlling this push rod from the outside, compressive stress (load) is applied to the upper surface of this carbon upper boat. The necessary force can be applied to the Si single crystal plate.
  • the upper boat, the lower boat and the Si single crystal plate set in this manner are heated to an appropriate temperature close to the melting point of Si in a hydrogen atmosphere.
  • the metal rod is It was lowered in the furnace and a 200N load was applied by pushing the upper surface of the upper boat.
  • compressive force is also applied to the Si single crystal plate, and deformation between the hemispherical upper and lower boats by high-temperature pressurization results in a hemispherical Si single crystal plate. It was.
  • the time during which the compressive force (load) was applied is between 0 and 1 minute. Thereafter, the furnace was rapidly cooled to prevent the processed Si single crystal plate from being modified by heat.
  • FIG. 11 shows a photograph of the hemispherical Si single crystal plate thus obtained.
  • FIG. 12 is a graph showing a combination of an upper boat having a hemispherical convex portion and a lower boat having a hemispherical concave portion when a compressive stress of 200 N is applied to a Si (100) single crystal plate. It is a figure which shows the result of the pressurization test which used the thickness of the board and the temperature at the time of pressurization as parameters. The horizontal axis is the thickness of the Si single crystal plate, and the vertical axis is the height of the plastically deformed hemispherical protrusion. In Fig. 12, ⁇ indicates plastic deformation, ⁇ indicates partly melted, and X indicates cracks that have broken.
  • the 0.33 mm thick crystal plate can be plastically deformed at 1120 ° C or higher, and the thicker crystal plate can be plastically deformed at 1200 ° C or higher.
  • the height of the plastically deformed hemispherical convex portion increases as the temperature increases. It has been confirmed in another experiment that the numerical value of transition due to plastic deformation decreases as the temperature increases.
  • the 0.33 mm thick crystal plate is completely 40 ° C lower, 1374 ° C and 30 ° C lower than 1414 ° C, the melting point of Si, and 1384 ° C. A hemispherical convex part is obtained. Above 1394 ° C, partial melting of the Si single crystal plate begins during pressurization.
  • a curvature distribution crystal lens having a predetermined curvature is obtained by applying a load globally or locally to a high yield stress crystal plate such as Si at a temperature below the melting point of the crystal and plastically deforming the crystal plate. Can be produced. Furthermore, at a temperature near the melting point of the crystal, a complete curvature distribution with a predetermined curvature can be obtained by applying a load to the crystal plate of high yield stress such as Si entirely or locally and plastically deforming the crystal plate. Crystal lenses can be produced.
  • the temperature below the melting point of the crystal is the temperature at which plastic deformation of the crystal plate begins (in the case of Si 11).
  • the temperature near the melting point of the crystal is the heating temperature at which a complete hemispherical convex part is obtained, that is, a predetermined curvature.
  • the temperature at which this partial melting begins, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
  • a Si single crystal plate having a complete hemispherical convex portion is finished into a spherical Si crystal lens by polishing finishing, if necessary.
  • FIG. 1 is an actual measurement example of the crystal plane by X-ray of a spherical Si crystal lens (spherical crystal monochromator) having a radius of curvature of 50 mm manufactured by the manufacturing method of the present invention.
  • Figure 1 shows the peak shift with respect to the lens center position. It can be seen that the value of ⁇ that gives a diffraction peak at a fixed 20 corresponding to the Si333 reflection is systematically shifted by the tilt of the crystal plane. In other words, here, reflecting the displacement from the center position, the crystal plane is inclined along the design sphere, and the Bragg peak position by the ⁇ scan is shifted by an angle corresponding to the radius of curvature of the crystal. I am waking up.
  • the actual measurement result of the crystal plane distribution according to Fig. 1 shows that a high yield stress crystal plate is subjected to an overall or local load at a temperature below the melting point of the crystal, particularly at a temperature near the melting point, and the crystal plate is made plastic.
  • Deformation means that a complete curvature distribution crystal lens having an arbitrary curvature distribution is formed.
  • the crystal lattice is a force that is not bent along the curved surface shape of the surface. Since the Si single crystal lens constituting the hemispherical convex part is plastically deformed without distortion of the crystal lattice, a curvature distribution crystal lens having a crystal lattice along the curved surface shape of the surface can be obtained.
  • a curvature distribution crystal lens using Si (lOO) single crystal in addition to a curvature distribution crystal lens using Si (lOO) single crystal, a curvature distribution crystal lens using other surfaces such as a Si (lll) single crystal can be produced in the same manner.
  • FIG. 13 shows a photograph of the curvature distribution crystal lens.
  • the one in the figure is a crystal of Si (lll) plane Obtained.
  • a curvature distribution crystal lens having a hemispherical or other arbitrary curvature can be produced by changing the shape of the irregularities of the upper and lower boats. Furthermore, the molded crystal lens can be polished and molded to have a predetermined curved surface distribution and a secondary curved surface by polishing.
  • the material of the crystal plate can be any one of compound semiconductors such as Ge, SiGe, and GaAs, oxides such as MgO, Al 2 O, and SiO, and halides such as LiF and NaCl.
  • compound semiconductors such as Si, Ge, SiGe, GaAs, MgO, Al 2 O 3
  • oxides such as SiO, halides such as LiF, NaCl, etc.
  • the same thin film crystal can be produced using a deposited crystal plate.
  • curvature distribution crystal lens according to the present invention are widespread such as compact high-precision or high-intensity X-ray diffraction apparatus, high-intensity scanning microbeam X-ray diffraction / fluorescence microscope apparatus.
  • angle-resolved spectroscopic crystal lenses of aspherical types such as pseudo-cylindrical surfaces, ellipsoidal surfaces, and paraboloids.
  • X-rays can be analyzed by irradiating microscopic areas with strong excitation X-rays without cutting them off by pinhole slits, regardless of the solid 'liquid' environment.
  • an analytical crystal is placed after the sample, and an independent slit is inserted in the y and z directions before monochrome, so that it functions as a micro-area diffractometer with low angular resolution. It can also be used as a wavelength dispersive fluorescence analyzer by fixing the sample and scanning the 2 ⁇ arm analysis condensing crystal with a 0–20 relationship with respect to the detector.
  • the relative relationship between the X-ray light source and the sample position is set.
  • This is a configuration that combines a Guinier camera and a concentration method, and is a configuration in which resolution is prioritized over a small region of X-rays at the sample position.
  • the X-rays collected in the previous stage pass through the slit as a point light source through slit 1, and this position becomes the X-ray focal position in the concentration method, and measurement is performed using the sample that satisfies the concentration condition and the detector slit position. .
  • Figure 5 shows an outline of the configuration.
  • crystal measurement modes normal single crystal analysis, Weisenberg camera mode, etc. are possible depending on the crystal rotation and detector exposure synchronization conditions.
  • the angular resolution at the focal plane is arbitrarily changed by inserting a variable slit between the light source and the crystal or between the crystal and the sample.
  • Another feature is that by placing the detector on the focal surface, no angular error is produced on the detector in principle, no matter how large the capture angle is used.
  • a high-intensity diffractometer can be constructed by placing a cylindrical Johansson monochrome in a symmetrical or asymmetrical arrangement with respect to a linear X-ray source.
  • Fig. 7 (a) shows an example of the high-intensity diffractometer, and a configuration in which the luminance is further increased by inserting an asymmetric crystal in the z direction in the figure (Fig. 7 (b)) is also possible. It can be used as a concentrating X-ray device using a cylindrically selected crystal without polishing as a simple arrangement. This cylindrical crystal can also be used as a fluorescent X-ray spectroscopic crystal.
  • a high-magnification X-ray microscope is realized by arranging a two-dimensional condensing monochromator as shown in Fig. 8 for the micro-focus X-ray generator and placing a stop on the focal plane.
  • a point light source with a certain width is narrowed in one direction depending on the expected angle. By shining, it produces X-rays that are almost ideally bright at the focal point.
  • the small angle scattering device is installed between the focal plane and the crystal as in the case of (d).
  • the condensing efficiency is slightly worse, but it has the advantage that a high-power X-ray generator can be used and the angle resolution can be easily improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

[PROBLEMS] To provide a curvature distribution crystal lens used in a device performing a structure evaluation by diffraction of a material using X-rays and an analysis evaluation by spectrum and a curvature distribution crystal lens manufacturing method. [MEANS FOR SOLVING PROBLEMS] The curvature distribution crystal lens has a crystal plate of a high yield stress which has been plastically deformed and has a crystal lattice along the curved shape of the surface. The method for manufacturing the curvature distribution crystal lens is characterized in that a load is applied entirely or locally to the crystal plate of a high yield stress at a temperature below the melting point of the crystal so as to plastically deform the crystal plate to have a predetermined curvature.

Description

明 細 書  Specification
曲率分布結晶レンズ、曲率分布結晶レンズを有する X線装置及び曲率分 布結晶レンズの作製方法  Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
技術分野  Technical field
[0001] 本発明は、 X線を用いた材料の回折による構造評価ならびに分光による分析評価 を行う装置に係り、特に曲率分布結晶レンズ、曲率分布結晶レンズを有する X線装置 及び曲率分布結晶レンズの作製方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to an apparatus for structural evaluation by diffraction of a material using X-rays and analytical evaluation by spectroscopy, and in particular, a curvature distribution crystal lens, an X-ray apparatus having a curvature distribution crystal lens, and a curvature distribution crystal lens. The present invention relates to a manufacturing method.
背景技術  Background art
[0002] 従来の X線用モノクロメーターでは結晶を弹¾的に少し曲げ、その後研磨によって 所定の回折が均一に得られるように、研磨仕上げを行うか、あるいは逆に研磨後曲 げ変形している。弾性限界内で変形させた、 X線用のヨハン (Johann)型やヨハンソン (Johansson)型のモノクロメーター結晶は実用化されている。し力しながら、この弾性 限界内で変形させた従来の X線用のモノクロメーター結晶の作製方法では、曲率の 大きな曲げができないため、大型 X線装置にしか用いることができな力つた。また、角 度分解能と積分反射能を大幅に落とすことが許されるような場合には低降伏応力の 結晶を塑性変形して用いる場合もあった。  [0002] In a conventional X-ray monochromator, the crystal is slightly bent slightly, and then polished so that a predetermined diffraction can be obtained uniformly by polishing, or conversely, the crystal is bent and deformed after polishing. Yes. X-ray Johann and Johansson monochromator crystals deformed within the elastic limit have been put into practical use. However, the conventional method for producing a monochromator crystal for X-rays deformed within this elastic limit cannot be bent with a large curvature, and therefore can only be used in a large X-ray apparatus. In addition, when it is allowed to greatly reduce angular resolution and integrated reflectivity, crystals with low yield stress were sometimes used after plastic deformation.
[0003] この弾性限界内で変形させたモノクロメーター結晶は、曲率や加工方法に制限が あるため、コンパクト装置、高分解能と高輝度の両立が必要なマイクロビーム回折の ような用途には用いることができない。さらに、集光素子という意味でマイクロビーム生 成に使われる KBミラーは、線源そのものに第 3世代放射光のような高平行高輝度光 が必要となり、実験室 X線での使用は不可能である。小角散乱では線源強度の有効 利用のため、放物面ミラー(ゲ一べルミラー)、コンフォーカルミラーなども製作されて いるが、特殊な多層膜蒸着技術を必要とするために単体価格力 ^千万円近くする上 に取込み可能角度が 0. 3度にも達しないものである。ところが代替技術がないため にこれらのミラーが国内外で数多く出荷されて 、るのが現状である。  [0003] Since the monochromator crystal deformed within this elastic limit is limited in curvature and processing method, it should be used for compact devices and applications such as microbeam diffraction that require both high resolution and high brightness. I can't. In addition, KB mirrors used for microbeam generation in the sense of light concentrators require highly parallel and high-intensity light such as third-generation radiation for the source itself, and cannot be used in laboratory X-rays. It is. For small-angle scattering, parabolic mirrors (conferencing mirrors) and confocal mirrors are also manufactured for effective use of the source intensity. In addition, it is close to 10 million yen, and the capture angle does not reach 0.3 degrees. However, because there is no alternative technology, many of these mirrors are shipped domestically and overseas.
[0004] X線用のヨハン型やヨハンソン型のモノクロメーターは、通常切削'研磨加工の後に 適当な弾性変形を加えて固定するか、加工の容易な結晶の塑性変形を行うといった 方法で作製されている。しかし、弾性変形を利用した手法では弾性変形結晶の保持 における変形量の経年変化の問題があり、また弾性限界内の変形にとどまるため、 見込み角が極めて小さな値に制限される。また塑性変形を利用する場合には塑性変 形による結晶性劣化に伴う反値幅の著しい増力 tlと積分反射能の低下のような問題が 起こる。このため、光学性能を落とさないままで大きな見込み角、すなわち集光効率 を得られるような分光レンズ作製方法の開発が渴望されていた。 [0004] Johann type or Johansson type monochromators for X-rays are usually fixed by applying appropriate elastic deformation after cutting or polishing, or plastic deformation of crystals that are easy to process It is produced by the method. However, the method using elastic deformation has a problem of secular change in the amount of deformation in holding an elastically deformed crystal, and the deformation is within the elastic limit, so the prospective angle is limited to a very small value. In addition, when plastic deformation is used, problems such as a significant increase tl in the inverse value accompanying crystallinity deterioration due to plastic deformation and a decrease in integrated reflectivity occur. For this reason, the development of a method for producing a spectroscopic lens capable of obtaining a large prospective angle, that is, condensing efficiency without degrading the optical performance has been desired.
[0005] X線回折装置を小型化して、広く汎用的に使えるようにした装置に対する要求は根 強くある。この障害となっているのは、 X線用のヨハン型やヨハンソン型のモノクロメー ター結晶を弾性限度内でしか作製できないために、その曲率半径を小さくできない 点や研磨による精密加工を必要とする点にある。  [0005] There is a strong demand for an X-ray diffractometer that has been downsized so that it can be used widely and universally. The obstacles are that X-ray Johann and Johansson monochromator crystals can only be produced within the elastic limit, so that the radius of curvature cannot be reduced and precision machining by polishing is required. In the point.
[0006] 特許文献 1 :特開平 6— 160600号公報 @ @  [0006] Patent Document 1: Japanese Patent Laid-Open No. 6-160600 @ @
特許文献 2 :特開 2003— 014895号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-014895
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] したがって本発明は、これらの難点を解決し、結晶面が任意な 2次元曲率分布を有 する X線用のヨハン型やヨハンソン型をはじめとする曲率分布結晶レンズ'集光型モノ クロメーター結晶を自在に作製できる技術を提供することを課題とする。 課題を解決するための手段  [0007] Therefore, the present invention solves these difficulties, and curvature distribution crystal lenses such as Johann type and Johansson type for X-rays whose crystal plane has an arbitrary two-dimensional curvature distribution, such as a condensing type monochrome. It is an object of the present invention to provide a technique capable of freely producing a meter crystal. Means for solving the problem
[0008] 本発明は、上記の課題を解決するために、結晶の融点未満の温度、特に融点近傍 温度にて、高降伏応力の結晶板に全体的又は局所的に荷重を加え、当該結晶板を 塑性変形させることにより所定の曲率を有するように成型することを特徴とする曲率分 布結晶レンズの作製方法を提供するものである。 In order to solve the above-mentioned problems, the present invention applies a load to a crystal plate having a high yield stress entirely or locally at a temperature below the melting point of the crystal, particularly at a temperature near the melting point, The present invention provides a method for producing a curvature distribution crystal lens, which is molded so as to have a predetermined curvature by plastic deformation.
本発明における結晶の融点未満の温度とは、結晶板の塑性変形が始まる温度から 加圧時に一部融解が始まる温度直前までの加熱温度を! 、、また本発明における 結晶の融点近傍温度とは、所定の曲率を有する完全な曲率分布結晶レンズを作製 することができる温度から加圧時に一部融解が始まる温度直前までの加熱温度をい  The temperature below the melting point of the crystal in the present invention is the heating temperature from the temperature at which plastic deformation of the crystal plate starts to just before the temperature at which partial melting starts at the time of pressurization !, and the temperature near the melting point of the crystal in the present invention. The heating temperature from a temperature at which a complete curvature distribution crystal lens having a predetermined curvature can be produced to a temperature immediately before partial melting starts at the time of pressurization.
[0009] また本発明は、結晶の融点未満の温度、特に融点近傍温度にて、高降伏応力の 結晶板に全体的又は局所的に荷重を加え、当該結晶板を塑性変形させることにより 所定の曲率を有するように成型した結晶レンズを研磨成型し、所定曲面分布と同時 に、研磨加工による 2次曲面表面を持つよう成型することを特徴とする曲率分布結晶 レンズの作製方法を提供するものである。 [0009] The present invention also provides a high yield stress at a temperature below the melting point of the crystal, particularly at a temperature near the melting point. A crystal lens molded to have a predetermined curvature is applied by applying an overall or local load to the crystal plate and plastically deforming the crystal plate, and at the same time as a predetermined curved surface distribution, secondary polishing is performed. The present invention provides a method for producing a curvature distribution crystal lens, which is characterized by being molded so as to have a curved surface.
[0010] さらに本発明は、上記曲率分布結晶レンズの作製方法により作製された曲率分布 結晶レンズとして次のものを提供するものである。 Furthermore, the present invention provides the following as a curvature distribution crystal lens manufactured by the method of manufacturing a curvature distribution crystal lens.
(1)高降伏応力の結晶板を塑性変形させた結晶レンズであって、表面の曲面形状に 沿った結晶格子を有する曲率分布結晶レンズ。  (1) A crystal lens obtained by plastic deformation of a crystal plate having a high yield stress, and a curvature distribution crystal lens having a crystal lattice along a curved surface shape.
(2)高降伏応力の結晶板を塑性変形させた結晶レンズであって、表面の曲面形状に 沿った結晶格子を有するとともに、 2次曲面表面を有する曲率分布結晶レンズ。  (2) A crystal lens obtained by plastic deformation of a high yield stress crystal plate, having a crystal lattice along a curved surface shape and having a quadratic curved surface.
(3)上記結晶板の素材として、 Si、 Ge、 SiGe、及び GaAs等の化合物半導体、 MgO 、 Al O、 SiO等の酸化物、 LiF、 NaCl等のハロゲン化物のいずれ力 1つよりなる結 (3) As a material of the crystal plate, a compound semiconductor such as Si, Ge, SiGe, and GaAs, an oxide such as MgO, Al 2 O, or SiO, or a halide such as LiF or NaCl is used.
2 3 2 2 3 2
晶を用いる曲率分布結晶レンズ。  Curvature distribution crystal lens using crystals.
(4)上記結晶板は、その表面に、 Si、 Ge、 SiGe、 GaAs等の化合物半導体、 MgO、 Al O、 SiO等の酸化物、 LiF、 NaCl等のハロゲン化物のいずれか 1つ又は 2っ以 (4) The crystal plate has on its surface one or two of compound semiconductors such as Si, Ge, SiGe, and GaAs, oxides such as MgO, Al 2 O, and SiO, and halides such as LiF and NaCl. Less than
2 3 2 2 3 2
上よりなる薄膜結晶を堆積したものである曲率分布結晶レンズ。  Curvature distribution crystal lens, which is a thin film crystal deposited from above.
(5)上記曲率分布結晶レンズにより実現される X線装置に用いられるモノクロメーター 曲率分布結晶レンズ。  (5) Monochromator curvature distribution crystal lens used in the X-ray apparatus realized by the curvature distribution crystal lens.
[0011] さらに本発明は、 X線源ならびに曲率分布モノクロメーター結晶レンズを含む光学 部品で構成した X線装置を提供するものである。  Furthermore, the present invention provides an X-ray apparatus constituted by an optical component including an X-ray source and a curvature distribution monochromator crystal lens.
ここで 、う X線装置とは、発明を実施するための最良の形態の項で説明する (a)〜( g)のような X線を利用した X線装置を!、う。  Here, the X-ray apparatus is an X-ray apparatus using X-rays as described in the section of the best mode for carrying out the invention (a) to (g)! Uh.
発明の効果  The invention's effect
[0012] 本発明によれば次のような効果が得られる。 [0012] According to the present invention, the following effects can be obtained.
Si等の高降伏応力の結晶を使用する場合、通常は、バルタ状の単結晶又は多結 晶を板状のウェハー結晶に切り出して、種々の加工を施している。これは、結晶は硬 くかつ脆くて曲げることができないと信じられていたため、曲率を持ったウェハー結晶 を使用するという発想がな力つたためである。本発明では、高温加圧法を用いて結晶 板をレンズ状に塑性加工し、表面の曲面形状に沿った結晶格子を持った結晶レンズ を任意な曲率、形状や大きさに成型できるため、研磨成型がほとんど不要な、小型のWhen using a crystal having a high yield stress such as Si, a single crystal or multicrystal of a butter shape is usually cut into a plate-like wafer crystal and subjected to various processing. This is because the crystal was believed to be hard and brittle and cannot be bent, so the idea of using a wafer crystal with curvature was strong. In the present invention, a crystal is formed using a high temperature pressurization method. Since the plate is plastic processed into a lens shape, and a crystal lens with a crystal lattice along the curved surface shape can be molded into any curvature, shape, and size, it is a compact size that requires almost no abrasive molding.
X線用曲率分布結晶レンズ'モノクロメーターが作製できる。しかも、光学性能を落と さな 、ままで大きな見込み角、すなわち集光効率を得られるような分光レンズが得ら れる。 X-ray curvature distribution crystal lens' monochromator can be manufactured. In addition, it is possible to obtain a spectroscopic lens that can obtain a large prospective angle, that is, light collection efficiency without degrading optical performance.
これにより、小型 X線回折装置の実現が可能となり、特に結晶材料として Si、 Ge、 Si Ge、及び GaAs等の化合物半導体結晶、 MgO、 Al O、 SiO等の酸化物、 LiF、 N  This makes it possible to realize a compact X-ray diffractometer, especially as a crystal material, compound semiconductor crystals such as Si, Ge, Si Ge, and GaAs, oxides such as MgO, Al 2 O, and SiO, LiF, N
2 3 2  2 3 2
aCl等のハロゲンィ匕物よりなる結晶を用いることにより、最適な回折条件 ·結晶面及び 結晶面方位を任意に選ぶことも可能になる。またコスト面でも加工'成型が簡単なた め、従来技術よりも再現性、光学性能、分光性能に関する多品種生産性の点で格段 に有禾 ljになる。  By using a crystal made of a halide such as aCl, the optimum diffraction conditions, crystal plane and crystal plane orientation can be arbitrarily selected. In terms of cost, since processing and molding are simple, it is significantly more advantageous in terms of multi-product productivity in terms of reproducibility, optical performance, and spectral performance than conventional technologies.
[0013] さらに本発明の結晶レンズやモノクロメーターを用いることにより、 2次元集光の効 果により、光源サイズと同程度 (数ミクロン〜数 10ミクロン)の X線照射がスリットなどに よる強度ロスがなく実現可能になるため、従来のものと比べてその効率は最大 2桁改 善される。  Furthermore, by using the crystal lens and the monochromator of the present invention, X-ray irradiation of the same size as the light source size (several microns to several tens of microns) is lost due to slits or the like due to the effect of two-dimensional focusing. The efficiency is improved by up to 2 digits compared to the conventional one.
一次元集光の場合(円筒ヨハンソン、円筒ヨハン)、粉末回折など回折への応用な どにおいて、 2次元集光より効率は落ちるものの、 X線源として高出力発生装置を使 えるため、測定強度としてはより強力な実験が可能となる。この場合も通常のスリット 系と比較すると一桁程度の強度上昇が見込める。さらに、従来の湾曲多層膜ミラーに よる光学系と比較した場合、作製の容易さ、最大取込み角の大きさ (最大 10倍程度) などから、価格、性能とも圧倒的に有利な X線集光光学系を実現できる。  In the case of one-dimensional focusing (cylindrical Johansson, cylindrical Johan), and diffraction applications such as powder diffraction, the efficiency is lower than that of two-dimensional focusing. As a result, more powerful experiments are possible. In this case as well, the strength can be expected to increase by an order of magnitude compared to the normal slit system. Furthermore, when compared with conventional optical systems using curved multilayer mirrors, X-ray focusing is overwhelmingly advantageous in terms of price and performance due to ease of fabrication and maximum capture angle (up to about 10 times). An optical system can be realized.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]球面結晶モノクロメーターの結晶面分布の実測例である。 [0014] [Fig. 1] An example of actual measurement of crystal plane distribution of a spherical crystal monochromator.
[図 2]対称 (a)、非対称 (b)配置による 2次元ヨハンソン集光回折結晶への適用例で ある。  [Fig. 2] This is an example of application to a two-dimensional Johansson focused diffraction crystal with a symmetric (a) and asymmetric (b) arrangement.
[図 3]図 1の球面結晶モノクロメーターを用いた試料位置収束型蛍光分析装置ならび に試料位置収束型回折装置の構成例である。  FIG. 3 is a configuration example of a sample position focusing type fluorescence analyzer and a sample position focusing type diffractometer using the spherical crystal monochromator of FIG.
[図 4]2次元集光集中型の高位置分解能回折装置を示す図である。 [図 5]集光型の単結晶解析装置及び試料と検出器の関係を示す図である。 FIG. 4 is a diagram showing a high-position resolution diffractometer of a two-dimensional focusing concentration type. FIG. 5 is a diagram showing a concentrating single crystal analyzer and the relationship between a sample and a detector.
[図 6]高強度散漫散乱測定装置を示す図である。  FIG. 6 is a diagram showing a high-intensity diffuse scattering measurement apparatus.
[図 7]線状ビームを用いた高強度回折装置を示す図である。  FIG. 7 is a diagram showing a high intensity diffractometer using a linear beam.
[図 8]微小焦点 X線発生装置と高精度 2次元集光モノクロメーター、スリット系の構成 による高拡大率 X線顕微鏡装置を示す図である。  FIG. 8 is a diagram showing a high magnification X-ray microscope apparatus having a configuration of a micro focus X-ray generator, a high-precision two-dimensional focusing monochromator, and a slit system.
[図 9]通常焦点型点焦点 X線発生装置と非対称カット結晶、円筒ヨハンソンによる散 乱回折測定装置の構成例を示す図である。  FIG. 9 is a diagram showing a configuration example of a normal diffraction type point-focus X-ray generator, an asymmetric cut crystal, and a scattering diffraction measurement apparatus using a cylindrical Johansson.
[図 10]Si ( 100)単結晶板を半球状に加工する上下ボートを示す図である。  FIG. 10 is a view showing upper and lower boats that process a Si (100) single crystal plate into a hemispherical shape.
[図 11]半球状の Si単結晶板の写真である。  FIG. 11 is a photograph of a hemispherical Si single crystal plate.
[図 12]結晶板の厚さと加圧時の温度をパラメータとして示した加圧試験の結果を示す 図である。  FIG. 12 is a diagram showing the result of a pressurization test in which the thickness of the crystal plate and the temperature during pressurization are shown as parameters.
[図 13]Si (111)単結晶曲率分布結晶レンズの写真である。  FIG. 13 is a photograph of a Si (111) single crystal curvature distribution crystal lens.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 図 10は、高降伏応力の結晶である Si (100)単結晶を半球状にカ卩ェする上下ボー トを示す。この上下ボートは、上下 2個のカーボン製ボートからなり、下部ボートには 半球状の窪み(凹)が形成され、上部ボートには下部ボートの窪みに少し余裕をもつ てちょうど嵌り込む半球状の突起(凸)が形成されている。 [0015] FIG. 10 shows the upper and lower boats where the Si (100) single crystal, which is a high yield stress crystal, is hemispherically covered. This upper and lower boat consists of two upper and lower carbon boats, a hemispherical depression (concave) is formed in the lower boat, and a hemispherical depression that fits in the upper boat just with a little margin in the lower boat. A protrusion (convex) is formed.
[0016] 次にこれらのボートを用いた、半球形状 Si単結晶板の作製方法について説明する 上部ボートの下面と下部ボートの上面に、離型材を塗布し、高温でー且ァニールす る。その後、この処理を施した上部ボートと下部ボートの間に、 Si単結晶板を挟み、 縦型炉の中に配置した。この Si単結晶板の全面又は一部の面に、汚染防止や熱に よる表面劣化を防ぐため、離型剤等の熱に強く不純物の少ない表面保護膜を塗って もよい。この縦型炉には、金属製の押し棒が炉の上部に配置してあり、この押し棒を 外部から制御することにより、このカーボン製の上部ボートの上面に圧縮応力(荷重) をかけて、 Si単結晶板に必要な力をかけることができるようになつている。 Next, a method for producing a hemispherical Si single crystal plate using these boats will be described. A release material is applied to the lower surface of the upper boat and the upper surface of the lower boat, and annealed at a high temperature. After that, a Si single crystal plate was sandwiched between the upper and lower boats that had been treated and placed in a vertical furnace. In order to prevent contamination and heat-induced surface deterioration on the entire surface or a part of the Si single crystal plate, a surface protective film that is resistant to heat, such as a mold release agent, and has few impurities may be applied. In this vertical furnace, a metal push rod is arranged at the top of the furnace, and by controlling this push rod from the outside, compressive stress (load) is applied to the upper surface of this carbon upper boat. The necessary force can be applied to the Si single crystal plate.
[0017] このようにセットした上部ボート、下部ボートと Si単結晶板を、水素雰囲気中で Siの 融点の近くまでの適宜の温度に昇温する。この適宜の温度に到達した時、金属棒を 炉内で下げ、上部ボートの上面を押して 200Nの荷重をかけた。これにより、 Si単結 晶板にも圧縮力がかかり、半球状の形状をした上部ボートと下部ボートの間で、高温 加圧により変形し、半球状の形状をした Si単結晶板が得られた。圧縮力(荷重)をか けていた時間は 0分から 1分の間である。その後、炉を急速に冷却して、加工された S i単結晶板が熱により変性することを防いだ。 [0017] The upper boat, the lower boat and the Si single crystal plate set in this manner are heated to an appropriate temperature close to the melting point of Si in a hydrogen atmosphere. When this appropriate temperature is reached, the metal rod is It was lowered in the furnace and a 200N load was applied by pushing the upper surface of the upper boat. As a result, compressive force is also applied to the Si single crystal plate, and deformation between the hemispherical upper and lower boats by high-temperature pressurization results in a hemispherical Si single crystal plate. It was. The time during which the compressive force (load) was applied is between 0 and 1 minute. Thereafter, the furnace was rapidly cooled to prevent the processed Si single crystal plate from being modified by heat.
図 11は、このようにして得られた半球状の Si単結晶板の写真を示す。  FIG. 11 shows a photograph of the hemispherical Si single crystal plate thus obtained.
[0018] 図 12は、半球状凸部を有する上部ボートと半球状凹部を有する下部ボートとの組 み合わせにより、 Si (100)単結晶板に 200Nの圧縮応力をカ卩えた場合に、結晶板の 厚さと加圧時の温度をパラメータとした加圧試験の結果を示す図である。横軸は Si単 結晶板の厚さ、縦軸は塑性変形された半球状凸部の高さである。図 12において、〇 印は塑性変形したもの、△印は一部融解したもの、 X印はクラックが入り破壊したも のを示す。 [0018] FIG. 12 is a graph showing a combination of an upper boat having a hemispherical convex portion and a lower boat having a hemispherical concave portion when a compressive stress of 200 N is applied to a Si (100) single crystal plate. It is a figure which shows the result of the pressurization test which used the thickness of the board and the temperature at the time of pressurization as parameters. The horizontal axis is the thickness of the Si single crystal plate, and the vertical axis is the height of the plastically deformed hemispherical protrusion. In Fig. 12, ◯ indicates plastic deformation, △ indicates partly melted, and X indicates cracks that have broken.
同図より厚さ 0. 33mmの結晶板では 1120°C以上で、これ以上厚い結晶板では 12 00°C以上で塑性変形可能であることがわかる。また塑性変形された半球状凸部の高 さも高温になるほど高くなつて 、る。塑性変形に伴う転移の数値も高温になるほど減 少することが別の実験で確かめられている。  It can be seen from the figure that the 0.33 mm thick crystal plate can be plastically deformed at 1120 ° C or higher, and the thicker crystal plate can be plastically deformed at 1200 ° C or higher. In addition, the height of the plastically deformed hemispherical convex portion increases as the temperature increases. It has been confirmed in another experiment that the numerical value of transition due to plastic deformation decreases as the temperature increases.
さらに高温領域をみていくと、厚さ 0. 33mmの結晶板について、 Siの融点である 1 414°Cより 40°C低 、 1374°C及び 30°C低 、 1384°Cの温度で、完全な半球状の凸 部が得られている。なお、 1394°C以上では加圧時に Si単結晶板の一部融解が始ま る。  Looking further into the high-temperature region, the 0.33 mm thick crystal plate is completely 40 ° C lower, 1374 ° C and 30 ° C lower than 1414 ° C, the melting point of Si, and 1384 ° C. A hemispherical convex part is obtained. Above 1394 ° C, partial melting of the Si single crystal plate begins during pressurization.
[0019] 以上の実験結果より次のようなことがいえる。  From the above experimental results, the following can be said.
結晶の融点未満の温度にて、 Siのような高降伏応力の結晶板に全体的又は局所 的に荷重を加え、当該結晶板を塑性変形させることにより、所定の曲率を有する曲率 分布結晶レンズを作製することができる。さらに結晶の融点近傍温度にて、 Siのよう な高降伏応力の結晶板に全体的又は局所的に荷重を加え、当該結晶板を塑性変 形させることにより、所定の曲率を有する完全な曲率分布結晶レンズを作製すること ができる。  A curvature distribution crystal lens having a predetermined curvature is obtained by applying a load globally or locally to a high yield stress crystal plate such as Si at a temperature below the melting point of the crystal and plastically deforming the crystal plate. Can be produced. Furthermore, at a temperature near the melting point of the crystal, a complete curvature distribution with a predetermined curvature can be obtained by applying a load to the crystal plate of high yield stress such as Si entirely or locally and plastically deforming the crystal plate. Crystal lenses can be produced.
ここで結晶の融点未満の温度とは、結晶板の塑性変形が始まる温度(Siの場合 11 20°C)から加圧時に一部融解が始まる温度直前までの加熱温度を! 、、また結晶の 融点近傍温度とは、完全な半球状の凸部が得られる加熱温度、すなわち所定の曲 率を有する完全な曲率分布結晶レンズを作製することができる加熱温度をいい、 Si の場合には、当該結晶の融点以下 40°Cの温度力 加圧時に一部融解が始まる温度 直前までの加熱温度を!、う。 Here, the temperature below the melting point of the crystal is the temperature at which plastic deformation of the crystal plate begins (in the case of Si 11). The temperature near the melting point of the crystal is the heating temperature at which a complete hemispherical convex part is obtained, that is, a predetermined curvature. In the case of Si, in the case of Si, a heating temperature that is below the melting point of the crystal and a temperature force of 40 ° C or less. Wow!
なおこの一部融解が始まる温度、塑性変形が始まる温度及び結晶の融点近傍温 度は、加工する結晶材料により異なる。  The temperature at which this partial melting begins, the temperature at which plastic deformation begins, and the temperature near the melting point of the crystal differ depending on the crystal material to be processed.
[0020] 完全な半球状の凸部を有する Si単結晶板は、必要に応じ、研磨仕上げにより球面 Si結晶レンズに仕上げられる。 [0020] A Si single crystal plate having a complete hemispherical convex portion is finished into a spherical Si crystal lens by polishing finishing, if necessary.
図 1は、本発明の作製方法によって作製した曲率半径 50mmの球面 Si結晶レンズ (球面結晶モノクロメーター)の X線による結晶面の実測例である。図 1では、レンズ中 心位置に対するピークシフトを表している。 Si333反射に対応した決まった 2 0に回 折ピークを与える Θの値が結晶面の傾きによって系統的にシフトしていることがわか る。すなわちここでは、中心位置からの変位に対し、結晶面が設計球面に沿って傾 斜していることを反映し、 ωスキャンによるブラッグピーク位置は結晶の曲率半径に相 当する角度だけのシフトを起こしている。  FIG. 1 is an actual measurement example of the crystal plane by X-ray of a spherical Si crystal lens (spherical crystal monochromator) having a radius of curvature of 50 mm manufactured by the manufacturing method of the present invention. Figure 1 shows the peak shift with respect to the lens center position. It can be seen that the value of Θ that gives a diffraction peak at a fixed 20 corresponding to the Si333 reflection is systematically shifted by the tilt of the crystal plane. In other words, here, reflecting the displacement from the center position, the crystal plane is inclined along the design sphere, and the Bragg peak position by the ω scan is shifted by an angle corresponding to the radius of curvature of the crystal. I am waking up.
[0021] 図 1による結晶面分布の実測結果は、結晶の融点未満の温度、特に融点近傍温度 にて、高降伏応力の結晶板に全体的又は局所的に荷重を加え、当該結晶板を塑性 変形させることにより、任意の曲率分布を持つ完全な曲率分布結晶レンズが形成さ れて 、ることを意味して 、る。 [0021] The actual measurement result of the crystal plane distribution according to Fig. 1 shows that a high yield stress crystal plate is subjected to an overall or local load at a temperature below the melting point of the crystal, particularly at a temperature near the melting point, and the crystal plate is made plastic. Deformation means that a complete curvature distribution crystal lens having an arbitrary curvature distribution is formed.
従来方法により得られた、高降伏応力の結晶を用いた結晶レンズ、モノクロメーター では、結晶格子は、表面の曲面形状に沿って曲がっていな力つた力 この作製方法 による結晶レンズ、モノクロメーターでは、半球状の凸部を構成する Si単結晶レンズ は、結晶格子が歪むことなく塑性変形しているから、表面の曲面形状に沿った結晶 格子を有する曲率分布結晶レンズが得られて ヽる。  In a crystal lens or monochromator using a high yield stress crystal obtained by a conventional method, the crystal lattice is a force that is not bent along the curved surface shape of the surface. Since the Si single crystal lens constituting the hemispherical convex part is plastically deformed without distortion of the crystal lattice, a curvature distribution crystal lens having a crystal lattice along the curved surface shape of the surface can be obtained.
[0022] Si (lOO)単結晶による曲率分布結晶レンズ以外にも、例えば Si (l l l)単結晶等他 の面を利用した曲率分布結晶レンズも同様に作製することができる。 [0022] In addition to a curvature distribution crystal lens using Si (lOO) single crystal, a curvature distribution crystal lens using other surfaces such as a Si (lll) single crystal can be produced in the same manner.
図 13は、曲率分布結晶レンズの写真を示す。同図のものは、 Si(l l l)面の結晶か ら得られたものである。 FIG. 13 shows a photograph of the curvature distribution crystal lens. The one in the figure is a crystal of Si (lll) plane Obtained.
上下のボートの凹凸の形状を変えることにより、半球状その他任意の曲率を有する 曲率分布結晶レンズを作製することができることはいうまでもない。さらに成型した結 晶レンズを研磨成型し、所定曲面分布と同時に、研磨加工による 2次曲面表面を持 つよう成型することちできる。  It goes without saying that a curvature distribution crystal lens having a hemispherical or other arbitrary curvature can be produced by changing the shape of the irregularities of the upper and lower boats. Furthermore, the molded crystal lens can be polished and molded to have a predetermined curved surface distribution and a secondary curved surface by polishing.
[0023] また結晶板の素材として、 Si以外にも Ge、 SiGe、及び GaAs等の化合物半導体、 MgO、 Al O、 SiO等の酸化物、 LiF、 NaCl等のハロゲン化物のいずれ力 1つより In addition to Si, the material of the crystal plate can be any one of compound semiconductors such as Ge, SiGe, and GaAs, oxides such as MgO, Al 2 O, and SiO, and halides such as LiF and NaCl.
2 3 2  2 3 2
なる結晶を用いて同様に作製することができる。  It can produce similarly using the crystal | crystallization which becomes.
さらに上記結晶板表面に、 Si、 Ge、 SiGe、 GaAs等の化合物半導体、 MgO、 Al O  Furthermore, on the crystal plate surface, compound semiconductors such as Si, Ge, SiGe, GaAs, MgO, Al 2 O 3
2 2
、 SiO等の酸化物、 LiF、 NaCl等のハロゲン化物のいずれ力 1つ又は 2つ以上よりFrom one or more of oxides such as SiO, halides such as LiF, NaCl, etc.
3 2 3 2
なる薄膜結晶を、堆積させた結晶板を用いても同様に作製することができる。  The same thin film crystal can be produced using a deposited crystal plate.
[0024] 本発明による曲率分布結晶レンズの用途は、コンパクト高精度又は高強度 X線回 折装置、高輝度走査マイクロビーム X線回折/蛍光顕微鏡装置のように大きくひろが る。  [0024] Applications of the curvature distribution crystal lens according to the present invention are widespread such as compact high-precision or high-intensity X-ray diffraction apparatus, high-intensity scanning microbeam X-ray diffraction / fluorescence microscope apparatus.
また擬似円筒面、楕円面や放物面などの非球面タイプの角度分解分光結晶レンズ としても応用可能である。  It can also be applied to angle-resolved spectroscopic crystal lenses of aspherical types such as pseudo-cylindrical surfaces, ellipsoidal surfaces, and paraboloids.
[0025] 次に本発明に係る曲率分布結晶レンズの X線装置への適用例を以下に紹介する。 Next, an application example of the curvature distribution crystal lens according to the present invention to an X-ray apparatus will be introduced below.
(a) 2次元集光モノクロメーターによる試料位置収束型蛍光 Z回折分析装置 図 2に示すように光源位置 A、集光位置 Bに対して平面 ABC内ではヨハンソン型モ ノクロの形状を持ち、図 2の z方向については、半径 Hの曲率をもつ曲面結晶を作成 することにより、図 3に示すように点状発生源を持つ X線発生装置に対して特性 X線 のみを分別するモノクロメーター機能を持ち、なおかつ大立体角での取り込みと同時 に X線の発生光源サイズと同等のサイズまでの集光が行える。結晶としては Si、 Ge、 GaAsなどの半導体結晶などの (100)ある 、は (111)、 (110)面結晶及び非対称配置 に対応するこれら力 のオフ角をもつ単結晶などが利用可能である力 例えば Ge (l 11)結晶を利用すると CuK a特性 X線に対して 333回折線 2 Θが約 90度となり、調 整が容易な構成を作れる。また、より効率を優先させる場合には 111、 220反射など を利用する。この集光 X線により励起された蛍光はエネルギー分解検出器 (SSDなど )により分析される。 X線をピンホールスリットにより切り落とすことなく強い励起 X線を 固体 '液体'環境を問わず微小領域に照射し、分析することが可能である。また、図 に示すように試料の後に分析結晶を置き、モノクロの前に y及び z方向に独立なスリツ トを入れることにより、低角度分解能の微小領域回折計としても機能する。また、試料 を固定して 2 Θアームの分析用集光結晶を検出器に対して 0—2 0の関係でスキヤ ンさせることにより、波長分散蛍光分析器としても利用可能である。 (a) Sample position-focusing fluorescence Z-diffraction analyzer using a two-dimensional condensing monochromator As shown in Figure 2, it has a Johansson type monochromatic shape in plane ABC with respect to light source position A and condensing position B. For the z direction of 2, a monochromator function that separates only characteristic X-rays from an X-ray generator with a point source as shown in Fig. 3 by creating a curved crystal with a curvature of radius H In addition, it is possible to collect light up to the same size as the X-ray generation light source size at the same time as capturing at a large solid angle. There are (100), (111) and (110) plane crystals such as semiconductor crystals such as Si, Ge, and GaAs as crystals, and single crystals with off-angles of these forces corresponding to asymmetrical arrangements are available. Force For example, when Ge (l 11) crystal is used, the 333 diffraction line 2 Θ is about 90 degrees with respect to the CuKa characteristic X-ray, and a configuration that can be easily adjusted can be made. In addition, 111 and 220 reflections are used when priority is given to efficiency. The fluorescence excited by this condensed X-ray is converted into an energy-resolved detector (such as SSD). ). X-rays can be analyzed by irradiating microscopic areas with strong excitation X-rays without cutting them off by pinhole slits, regardless of the solid 'liquid' environment. In addition, as shown in the figure, an analytical crystal is placed after the sample, and an independent slit is inserted in the y and z directions before monochrome, so that it functions as a micro-area diffractometer with low angular resolution. It can also be used as a wavelength dispersive fluorescence analyzer by fixing the sample and scanning the 2 Θ arm analysis condensing crystal with a 0–20 relationship with respect to the detector.
[0026] (b) 2次元集光結晶及び分光結晶による高効率高位置分解能回折装置  [0026] (b) High-efficiency, high-position resolution diffractometer using two-dimensional focusing crystal and spectral crystal
図 4に示すように X線光源ならびに試料位置の相対関係を設定する。これはギニエ カメラと集中法を組み合わせた構成であり、試料位置での X線の微小領域ィ匕よりも分 解能を優先させる場合の構成である。前段で集光された X線はスリット 1にお ヽて点 光源としてスリットを通過し、この位置が集中法における X線焦点位置となり、集中条 件を満たす試料及び検出器スリット位置による計測を行う。  As shown in Fig. 4, the relative relationship between the X-ray light source and the sample position is set. This is a configuration that combines a Guinier camera and a concentration method, and is a configuration in which resolution is prioritized over a small region of X-rays at the sample position. The X-rays collected in the previous stage pass through the slit as a point light source through slit 1, and this position becomes the X-ray focal position in the concentration method, and measurement is performed using the sample that satisfies the concentration condition and the detector slit position. .
[0027] (c) 2次元集光結晶とエリア検出器による単結晶回折装置  [0027] (c) Single-crystal diffractometer using two-dimensional focusing crystal and area detector
点光源に対して点収束条件を満たす 2次元曲面結晶を使う点では (a)と同じである 力 結晶による焦点面を検出器位置に置き、 1次元又は 2次元検出器による同時測 定を行う。  Same as (a) in that a 2D curved crystal that satisfies the point convergence condition for a point light source is used. The focal plane of the force crystal is placed at the detector position, and simultaneous measurement is performed using a 1D or 2D detector. .
構成概要を図 5に示す。結晶の測定モードとしては、結晶回転と検出器の露出同 期条件により、通常の単結晶解析、ワイゼンベルグカメラモードなどが可能となる。光 源と結晶の間又は結晶と試料の間に可変スリットを入れることにより、焦点面での角 度分解能を任意に変化させる。また、焦点曲面上に検出器を置くことにより、どれほ ど大きな取込角を利用しても原理的に検出器上で角度誤差が出な 、ことが特徴であ る。  Figure 5 shows an outline of the configuration. As crystal measurement modes, normal single crystal analysis, Weisenberg camera mode, etc. are possible depending on the crystal rotation and detector exposure synchronization conditions. The angular resolution at the focal plane is arbitrarily changed by inserting a variable slit between the light source and the crystal or between the crystal and the sample. Another feature is that by placing the detector on the focal surface, no angular error is produced on the detector in principle, no matter how large the capture angle is used.
[0028] (d) 2次元集光結晶による任意角度分解能をもつ高強度散漫散乱測定装置  [0028] (d) High-intensity diffuse scattering measurement device with arbitrary angular resolution by a two-dimensional focusing crystal
光源に対してスリット及び分光 Z集光結晶を挿入し、焦点面を検出器面とする点は (c)と同じであるが、図 6に示すように、試料位置に対して検出器面を長距離あるいは 焦点曲面上に置くことによって、集光取込み角を大きくしたまま散乱強度測定におけ る角度分解能を劣化させずに測定を行なうことを特徴とする小角散乱及び散漫散乱 解析の高効率測定が可能になる。 [0029] (e) 1次元集光結晶による高強度回折装置 The point that the slit and the spectral Z condensing crystal are inserted into the light source and the focal plane is the detector surface is the same as (c), but the detector surface is positioned relative to the sample position as shown in Fig. 6. High-efficiency measurement for small-angle scattering and diffuse scattering analysis, characterized by long-distance or focal-surface placement, which does not degrade the angular resolution of the scattering intensity measurement while increasing the light collection angle. Is possible. [0029] (e) High-intensity diffractometer using one-dimensional focusing crystal
線状 X線源に対して円筒型ヨハンソン型モノクロを対称又は非対称配置に置くこと によって、高強度回折装置を構成することができる。図 7 (a)はその高強度回折装置 の例を示しており、図の z方向について非対称結晶を挿入することにより、さらに輝度 を上げる構成も可能である (図 7 (b) )。簡略ィ匕した配置として研磨を行わず、円筒ョハ ン結晶による集光 X線装置として用いることもできる。また、この円筒結晶は蛍光 X線 分光結晶としても使用可能である。  A high-intensity diffractometer can be constructed by placing a cylindrical Johansson monochrome in a symmetrical or asymmetrical arrangement with respect to a linear X-ray source. Fig. 7 (a) shows an example of the high-intensity diffractometer, and a configuration in which the luminance is further increased by inserting an asymmetric crystal in the z direction in the figure (Fig. 7 (b)) is also possible. It can be used as a concentrating X-ray device using a cylindrically selected crystal without polishing as a simple arrangement. This cylindrical crystal can also be used as a fluorescent X-ray spectroscopic crystal.
[0030] (f) 2次元集光モノクロメーターによる高拡大率 X線顕微鏡装置 [0030] (f) High magnification X-ray microscope apparatus using a two-dimensional focusing monochromator
微小焦点型の X線発生装置に対し、図 8のように 2次元集光モノクロメーターを配置 し、焦点面上に絞りを入れることによって高倍率 X線顕微鏡装置を実現する。  A high-magnification X-ray microscope is realized by arranging a two-dimensional condensing monochromator as shown in Fig. 8 for the micro-focus X-ray generator and placing a stop on the focal plane.
[0031] (g)有限幅点光源の高輝度化ォプテイクスによる散乱回折測定装置 [0031] (g) Scattering diffraction measurement device using high brightness optimizing of finite-width point light source
図 9のようにある程度幅を持った点光源を見込角により一方向は狭ぐもう一方向は 非対称カット平板又はチャネルカットモノクロにより幅を減らし、見込み角により狭めた 側を円筒タイプヨハンソン結晶により集光することによって、焦点位置でほぼ理想的 に高輝度化された X線を作る。  As shown in Fig. 9, a point light source with a certain width is narrowed in one direction depending on the expected angle. By shining, it produces X-rays that are almost ideally bright at the focal point.
小角散乱装置は、(d)の場合と同様に焦点面と結晶の間に設置する。 2次元集光 光学系と比べ、集光能率はやや悪いが、高出力 X線発生装置を利用でき、角度分解 能の向上が容易である利点を持つ。  The small angle scattering device is installed between the focal plane and the crystal as in the case of (d). Compared to a two-dimensional condensing optical system, the condensing efficiency is slightly worse, but it has the advantage that a high-power X-ray generator can be used and the angle resolution can be easily improved.

Claims

請求の範囲 The scope of the claims
[1] 高降伏応力の結晶板を塑性変形させた結晶レンズであって、表面の曲面形状に沿 つた結晶格子を有する曲率分布結晶レンズ。  [1] A crystal lens obtained by plastic deformation of a crystal plate having a high yield stress, which has a crystal lattice along a curved surface shape.
[2] 高降伏応力の結晶板を塑性変形させた結晶レンズであって、表面の曲面形状に沿 つた結晶格子を有するとともに、 2次曲面表面を有する曲率分布結晶レンズ。  [2] A crystal lens obtained by plastic deformation of a crystal plate having a high yield stress, having a crystal lattice along a curved surface shape and having a quadratic curved surface.
[3] 上記結晶板の素材として、 Si、 Ge、 SiGe、及び GaAs等の化合物半導体、 MgO、 Al O、 SiO等の酸化物、 LiF、 NaCl等のハロゲン化物のいずれ力 1つよりなる結晶 [3] As the material of the crystal plate, a crystal composed of any one of compound semiconductors such as Si, Ge, SiGe, and GaAs, oxides such as MgO, Al 2 O, and SiO, and halides such as LiF and NaCl.
2 3 2 2 3 2
を用いることを特徴とする請求項 1又は 2記載の曲率分布結晶レンズ。  The curvature distribution crystal lens according to claim 1, wherein:
[4] 上記結晶板は、その表面に、 Si、 Ge、 SiGe、 GaAs等の化合物半導体、 MgO、 Al [4] The above crystal plate has a compound semiconductor such as Si, Ge, SiGe, GaAs, MgO, Al on its surface.
O、 SiO等の酸化物、 LiF、 NaCl等のハロゲン化物のいずれ力 1つ又は 2つ以上 One or more of oxides of oxides such as O and SiO, and halides such as LiF and NaCl
2 3 2 2 3 2
よりなる薄膜結晶を堆積したものであることを特徴とする請求項 3記載の曲率分布結 晶レンズ。  4. The curvature distribution crystal lens according to claim 3, wherein a thin film crystal is deposited.
[5] 上記曲率分布結晶レンズは、 X線装置に用いられる曲率分布モノクロメーター結晶 レンズである請求項 1から 4のいずれ力 1項に記載の曲率分布結晶レンズ。  5. The curvature distribution crystal lens according to any one of claims 1 to 4, wherein the curvature distribution crystal lens is a curvature distribution monochromator crystal lens used in an X-ray apparatus.
[6] X線源ならびに請求項 5記載の曲率分布モノクロメーター結晶レンズを含む光学部 品で構成したことを特徴とする X線装置。 [6] An X-ray apparatus comprising an X-ray source and an optical component including the curvature distribution monochromator crystal lens according to claim 5.
[7] 結晶の融点未満の温度にて、高降伏応力の結晶板に全体的又は局所的に荷重を 加え、当該結晶板を塑性変形させることにより所定の曲率を有するように成型するこ とを特徴とする曲率分布結晶レンズの作製方法。 [7] A high yield stress crystal plate is subjected to a total or local load at a temperature below the melting point of the crystal, and the crystal plate is plastically deformed to have a predetermined curvature. A method of manufacturing a characteristic curvature crystal lens.
[8] 結晶の融点近傍温度にて、高降伏応力の結晶板に全体的又は局所的に荷重を加 え、当該結晶板を塑性変形させることにより所定の曲率を有するように成型することを 特徴とする曲率分布結晶レンズの作製方法。 [8] A characteristic is that a high yield stress crystal plate is subjected to a load globally or locally at a temperature near the melting point of the crystal, and the crystal plate is plastically deformed to have a predetermined curvature. A method of manufacturing a curvature distribution crystal lens.
[9] 結晶の融点未満の温度にて、高降伏応力の結晶板に全体的又は局所的に荷重を 加え、当該結晶板を塑性変形させることにより所定の曲率を有するように成型した結 晶レンズを研磨成型し、所定曲面分布と同時に、研磨加工による 2次曲面表面を持 つよう成型することを特徴とする曲率分布結晶レンズの作製方法。 [9] A crystal lens molded to have a predetermined curvature by applying a load to a high yield stress crystal plate entirely or locally at a temperature below the melting point of the crystal and plastically deforming the crystal plate. A method for producing a curvature distribution crystal lens, characterized in that a lens is molded so as to have a predetermined curved surface distribution and a secondary curved surface by polishing.
[10] 結晶の融点近傍温度にて、高降伏応力の結晶板に全体的又は局所的に荷重を加 え、当該結晶板を塑性変形させることにより所定の曲率を有するように成型した結晶 レンズを研磨成型し、所定曲面分布と同時に、研磨加工による 2次曲面表面を持つ よう成型することを特徴とする曲率分布結晶レンズの作製方法。 [10] A crystal formed so as to have a predetermined curvature by applying a load to a crystal plate having a high yield stress entirely or locally at a temperature near the melting point of the crystal and plastically deforming the crystal plate. A method for producing a curvature distribution crystal lens, characterized in that a lens is polished and molded so as to have a predetermined curved surface distribution and a secondary curved surface by polishing.
PCT/JP2005/015442 2004-08-27 2005-08-25 Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method WO2006022333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532583A JP4710022B2 (en) 2004-08-27 2005-08-25 Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004248341 2004-08-27
JP2004-248341 2004-08-27

Publications (1)

Publication Number Publication Date
WO2006022333A1 true WO2006022333A1 (en) 2006-03-02

Family

ID=35967540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015442 WO2006022333A1 (en) 2004-08-27 2005-08-25 Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method

Country Status (2)

Country Link
JP (1) JP4710022B2 (en)
WO (1) WO2006022333A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
JP2008180656A (en) * 2007-01-25 2008-08-07 Tohoku Univ Non-scanning wavelength-dispersive x-ray spectrometer and measuring method of using the same
WO2011002037A1 (en) * 2009-07-01 2011-01-06 株式会社リガク X-ray device, method for using same, and method for applying x-rays
JP4973960B2 (en) * 2007-08-31 2012-07-11 国立大学法人京都大学 Curvature distribution crystal lens and X-ray reflectivity measuring apparatus
JP2014532866A (en) * 2011-10-26 2014-12-08 エックス−レイ オプティカル システムズ インコーポレーテッド Highly aligned monochromatic X-ray optical element and support structure for an X-ray analysis engine and analyzer
US10175185B2 (en) 2015-03-26 2019-01-08 Rigaku Corporation Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
JP2019109220A (en) * 2017-12-15 2019-07-04 株式会社堀場製作所 X-ray detector and x-ray detection method
WO2023117921A1 (en) * 2021-12-21 2023-06-29 Universität Hamburg X-ray irradiation apparatus, including a spectrally shaping x-ray optic and a spectral filter aperture device, for x-ray imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201589A (en) * 1995-01-26 1996-08-09 Nikon Corp X-ray spectroscopic element
JPH11133190A (en) * 1997-10-27 1999-05-21 Japan Science & Technology Corp X-ray diffraction element and its manufacture
JP2003344621A (en) * 2002-03-29 2003-12-03 ▲らい▼徳科技股▲ふん▼有限公司 Manufacturing process of multilayer film reflective mirror
JP2005142370A (en) * 2003-11-06 2005-06-02 Kazuo Nakajima Method for working semiconductor crystalline, wafer crystalline for optic/electron device, and solar cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201589A (en) * 1995-01-26 1996-08-09 Nikon Corp X-ray spectroscopic element
JPH11133190A (en) * 1997-10-27 1999-05-21 Japan Science & Technology Corp X-ray diffraction element and its manufacture
JP2003344621A (en) * 2002-03-29 2003-12-03 ▲らい▼徳科技股▲ふん▼有限公司 Manufacturing process of multilayer film reflective mirror
JP2005142370A (en) * 2003-11-06 2005-06-02 Kazuo Nakajima Method for working semiconductor crystalline, wafer crystalline for optic/electron device, and solar cell system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
JP2008180656A (en) * 2007-01-25 2008-08-07 Tohoku Univ Non-scanning wavelength-dispersive x-ray spectrometer and measuring method of using the same
JP4973960B2 (en) * 2007-08-31 2012-07-11 国立大学法人京都大学 Curvature distribution crystal lens and X-ray reflectivity measuring apparatus
US8406379B2 (en) 2007-08-31 2013-03-26 Kyoto University Curvature distribution crystal lens and X-ray reflectometer
US9336917B2 (en) 2009-07-01 2016-05-10 Rigaku Corporation X-ray apparatus, method of using the same and X-ray irradiation method
WO2011002037A1 (en) * 2009-07-01 2011-01-06 株式会社リガク X-ray device, method for using same, and method for applying x-rays
CN102472714A (en) * 2009-07-01 2012-05-23 株式会社理学 X-ray apparatus, method of using the same and x-ray irradiation method
JP5525523B2 (en) * 2009-07-01 2014-06-18 株式会社リガク X-ray apparatus, method of using the same, and method of X-ray irradiation
CN102472714B (en) * 2009-07-01 2014-08-13 株式会社理学 X-ray apparatus, method of using the same and x-ray irradiation method
JP2014532866A (en) * 2011-10-26 2014-12-08 エックス−レイ オプティカル システムズ インコーポレーテッド Highly aligned monochromatic X-ray optical element and support structure for an X-ray analysis engine and analyzer
JP2017134086A (en) * 2011-10-26 2017-08-03 エックス−レイ オプティカル システムズ インコーポレーテッド Highly aligned monochromated x-ray optical element for x-ray analysis engine and analyser, and support structure
US10256002B2 (en) 2011-10-26 2019-04-09 X-Ray Optical Systems, Inc. Support structure and highly aligned monochromatic X-ray optics for X-ray analysis engines and analyzers
US10175185B2 (en) 2015-03-26 2019-01-08 Rigaku Corporation Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
JP2019109220A (en) * 2017-12-15 2019-07-04 株式会社堀場製作所 X-ray detector and x-ray detection method
JP7123741B2 (en) 2017-12-15 2022-08-23 株式会社堀場製作所 X-ray detection device and X-ray detection method
WO2023117921A1 (en) * 2021-12-21 2023-06-29 Universität Hamburg X-ray irradiation apparatus, including a spectrally shaping x-ray optic and a spectral filter aperture device, for x-ray imaging

Also Published As

Publication number Publication date
JPWO2006022333A1 (en) 2008-07-31
JP4710022B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
WO2006022333A1 (en) Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method
EP1234310B1 (en) Doubly curved optical device with graded atomic planes
Eng et al. Dynamically figured Kirkpatrick Baez x-ray microfocusing optics
US7738629B2 (en) X-ray focusing optic having multiple layers with respective crystal orientations
Liu et al. Achromatic nested Kirkpatrick–Baez mirror optics for hard X-ray nanofocusing
JP4759750B2 (en) Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method
Terentyev et al. Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources
CN1662999A (en) Optical unit for X-ray application
Ferrer et al. D2AM, a beamline with a high-intensity point-focusing fixed-exit monochromator for multiwavelength anomalous diffraction experiments
Stierle et al. Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin films
US4461018A (en) Diffraction crystal for sagittally focusing x-rays
Freund et al. X-ray diffraction properties of highly oriented pyrolytic graphite
Axe et al. Composite germanium monochromators for high resolution neutron powder diffraction applications
US8406379B2 (en) Curvature distribution crystal lens and X-ray reflectometer
Popovici et al. Multiwafer focusing neutron monochromators and applications
Alianelli et al. Characterization of germanium linear kinoform lenses at Diamond Light Source
Nisawa et al. Sagittal focusing of synchrotron radiation X-rays using a winged crystal
JPH08201589A (en) X-ray spectroscopic element
US20120256332A1 (en) System and method for implementing enhanced optics fabrication
Signorato et al. Performance of an adaptive u-focusing Kirkpatrick-Baez system for high-pressure studies at the Advanced Photon Source
JPH08271697A (en) Optical device for x-ray microscope
Okuda et al. Point-focusing monochromator crystal realized by hot plastic deformation of a Ge wafer
JP2976029B1 (en) Monochromator and manufacturing method thereof
Watanabe et al. Rotated-inclined focusing monochromator with simultaneous tuning of asymmetry factor and radius of curvature over a wide wavelength range
Burmeister et al. Diamond: a multilayer and sagittally focusing crystal as optical elements on the ID14/Quadriga-3 beamline at ESRF

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532583

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase