WO2006022298A1 - Cosmetic puff and process for producing the same - Google Patents

Cosmetic puff and process for producing the same Download PDF

Info

Publication number
WO2006022298A1
WO2006022298A1 PCT/JP2005/015353 JP2005015353W WO2006022298A1 WO 2006022298 A1 WO2006022298 A1 WO 2006022298A1 JP 2005015353 W JP2005015353 W JP 2005015353W WO 2006022298 A1 WO2006022298 A1 WO 2006022298A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
latex
hydrogenated
cosmetic puff
hydrogenation
Prior art date
Application number
PCT/JP2005/015353
Other languages
French (fr)
Japanese (ja)
Inventor
Takuya Okamoto
Junji Terada
Takafumi Kawanaka
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2006531948A priority Critical patent/JPWO2006022298A1/en
Publication of WO2006022298A1 publication Critical patent/WO2006022298A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D33/00Containers or accessories specially adapted for handling powdery toiletry or cosmetic substances
    • A45D33/34Powder-puffs, e.g. with installed container

Definitions

  • the present invention relates to a cosmetic puff having a moist touch and a method for producing the same.
  • a cosmetic puff As a cosmetic puff, a cosmetic puff having a high hydrophilicity and a soft texture and a smooth tactile sensation has been demanded. Such cosmetic puffs are required to have oil resistance to cosmetics and are in direct contact with the skin. In recent years, consumer demand has been diversified, and cosmetic puffs with various tactile sensations have been demanded.
  • Patent Document 1 discloses a cosmetic puff having a sponge physical strength containing a bleedable silicone oil.
  • the additive is simply added, the added additive is eluted by repeated washing. There was a problem when the tactile sensation changed with use.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-311909
  • the present invention has a moist feeling and the tactile sensation does not change even after repeated washing or the like!
  • the main object is to provide a cosmetic puff and a method for producing the same.
  • a cosmetic puff characterized by having foam rubber power mainly composed of hydrogenated rubber.
  • the cosmetic according to 1 above which is a hydride of a copolymer comprising a conjugated diene monomer unit and an ethylenically unsaturated-tolyl monomer unit. For puffs.
  • Foam rubber force The cosmetic puff according to 1 to 3, wherein the hydrogenated rubber latex is foamed and then coagulated.
  • a method for producing a cosmetic puff comprising the steps of foaming and then solidifying a hydrogenated rubber latex having a hydrogenation rate of 2 to 40%.
  • the cosmetic puff of the present invention has a unique moist feel, and is preferably used as one satisfying one aspect of the demands of various consumer cosmetic puffs in recent years. If you can, you will have the effect.
  • the cosmetic puff of the present invention is characterized in that it also has a foam rubber power mainly composed of hydrogenated rubber.
  • the foam rubber used in the present invention contains hydrogenated rubber as a main component.
  • the gen rubber hereinafter sometimes simply referred to as “gen rubber”
  • gen rubber which is a raw material for the hydrogenated gen rubber
  • natural gen rubber and synthetic gen rubber.
  • synthetic Gen rubber is preferred because various physical properties of foam rubber can be adjusted arbitrarily.
  • Synthetic gen rubbers include conjugated gen monomer units and copolymers comprising ethylenically unsaturated monomer units copolymerizable therewith.
  • the foam rubber is not particularly limited as long as it is a main component.
  • the “main component” means that the total rubber component is contained at least 70% by weight, preferably 90% by weight or more.
  • the gen-based rubber used in the present invention contains a conjugated gen monomer unit and an ethylenically unsaturated-tolyl monomer unit from the viewpoint of oil resistance and good tactile sensation of the resulting cosmetic puff. It is preferable to use a copolymer (hereinafter sometimes referred to as an NBR copolymer).
  • a foam rubber obtained by foaming and then solidifying a hydrogenated NBR copolymer is particularly preferably used.
  • the hydrogenated gen-based rubber in the present invention is not particularly limited as long as it is a hydrogenated gen-based rubber, but a preferable hydrogenation rate is 2 to 40%, particularly preferably. 5 to 35%. If the hydrogenation rate is too low, the moist feel that is the effect of the present invention may not be obtained. Conversely, if it is too high, it may be difficult to produce foam rubber.
  • the hydrogenation rate is the ratio of hydrogenated carbon-carbon double bonds to the total number of carbon-carbon double bonds present in the gen-based rubber before hydrogenation. The hydrogenation rate of the gen rubber used in
  • a hydrogenated rubber latex obtained by hydrogenating a Gen rubber rubber is preferably used because it is easy to handle.
  • the gen-based rubber latex used in the present invention is mainly composed of a copolymer obtained by polymerizing a monomer mixture comprising a conjugated gen monomer and an ethylenically unsaturated nitrile monomer.
  • Latex is preferably used.
  • Conjugation monomers include, for example, 1,3 butadiene, 2-methyl-1,3 butadiene, 2,3 dimethyl-1,3 butadiene, 2-chloro 1,3 butadiene, 1,3 Examples. Among them, 1, 3 butadiene, 2-methyl 1, 3 butadiene 1,3 Butadiene is more preferred. These can be used alone or in combination of two or more.
  • the amount of the conjugation monomer used is preferably 50 to 90% by weight, more preferably 60 to 80% by weight in the monomer mixture. If the amount used is too small, when used as a cosmetic puff, the texture becomes hard and the tactile sensation becomes poor. Conversely, if it is too much, the oil resistance becomes insufficient.
  • Examples of the ethylenically unsaturated-tolyl monomer include acrylonitrile, methacrylic-tolyl, a -chloroacrylic acid, a-cyanoethyl acrylate, etc., and particularly preferred are acrylonitrile and methacrylic. Mouth-Trill. These can be used alone or in combination of two or more.
  • the amount of the ethylenically unsaturated-tolyl monomer used is preferably 10 to 50% by weight, more preferably 20 to 40% by weight in the monomer mixture. If the amount used is too small, the oil resistance becomes insufficient. Conversely, if the amount is too large, the texture becomes hard and the texture tends to deteriorate.
  • Ethylene unsaturated monomers copolymerizable with conjugation monomers and ethylenically unsaturated nitrile monomers include, for example, (meth) acrylic acid, (anhydrous) maleic acid, fumaric acid Ethylenically unsaturated carboxylic acids such as itaconic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, lauryl (meth) ate Mono- or dialkyl esters of said ethylenically unsaturated carboxylic acids such as acrylate, mono- or dimethyl maleate, mono- or jetyl fumarate, mono- or di-n-butyl fumarate, mono- or di-n-butyl itaconate; methoxy acrylate, ethoxy acrylate Alkoxylates of the ethylenically unsaturated carboxy
  • the above-mentioned gen-based rubber latex can be produced by a usual emulsion polymerization technique.
  • the polymerization agent such as a surfactant, a polymerization initiator, a chelating agent, an oxygen scavenger, and a molecular weight adjusting agent used for emulsion polymerization
  • each conventionally known agent can be used and is not particularly limited.
  • the surfactant an ionic surfactant or an ionic surfactant and a nonionic (nonionic) surfactant are used.
  • the surfactant is usually used in the range of 0.5 to 5% by weight based on the monomer mixture.
  • anionic surfactant examples include, for example, beef tallow fatty acid potassium, partially hydrogenated beef tallow fatty acid potassium, potassium oleate, sodium oleate, and the like; potassium rosinate, sodium rosinate, and hydrogenated potassium rosinate Succinate such as sodium hydrogenated rosinate; alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate.
  • non-ionic surfactants include polyethylene glycol ester type, polyethylene glycol ester type, pull nick type surfactants such as block copolymers of ethylene oxide and propylene oxide, and the like. These surfactants may be used alone or in combination of two or more.
  • Examples of the polymerization initiator include thermal decomposition initiators such as persulfates such as potassium persulfate and ammonium persulfate; t-butyl hydride mouth peroxide, cumene hydride mouth peroxide, diisopropyl benzene hydride mouth.
  • Thermal decomposition initiators such as persulfates such as potassium persulfate and ammonium persulfate; t-butyl hydride mouth peroxide, cumene hydride mouth peroxide, diisopropyl benzene hydride mouth.
  • Organic peroxides such as peroxide, otatanyl peroxide, 3,5,5-trimethylhexanoyl peroxide; azobis compounds such as azobisisobutyl-tolyl; these and divalent iron ions
  • a redox initiator composed of a reducing agent Of these, redox initiators are preferred. The usage of these initiators is usually in
  • Emulsion polymerization can be continuous or batch! Also, the polymerization time, polymerization conversion rate, etc. are not particularly limited. A preferable polymerization conversion rate is 90% or more.
  • the polymerization temperature is preferably 40 ° C or lower, more preferably 0 to 35 ° C.
  • the method for adding the monomer is not particularly limited, and for example, a batch addition method, a division addition method, or the like can be used.
  • a preferred polymerization method for obtaining rubber latex includes, for example, a method in which all monomers are added to a reactor at once and polymerization is carried out at a polymerization temperature of 0 to 35 ° C. using a redox initiator. Further, after polymerization, the particle size can be increased by a known method.
  • a method for increasing the particle size for example, a method in which the reaction is stopped in the middle of the polymerization and a strong stirring is performed; a conjugation monomer such as butadiene and a solvent such as toluene are added and the mixture is stirred strongly after the polymerization is completed.
  • a method is mentioned.
  • the solid content of the gen rubber latex of the present invention is not particularly limited, but is usually about 30 to 70% by weight.
  • the latex particle diameter is not particularly limited. Usually, it is about 100 to 3, OOOnm, preferably about 200 to 2, OOOrnn.
  • a cosmetic puff characterized by having a foam rubber force obtained by foaming a hydrogenated rubber latex having a hydrogenation rate of 2 to 40% and then coagulating with a foam rubber force is preferable.
  • a foam rubber force obtained by foaming a hydrogenated rubber latex having a hydrogenation rate of 2 to 40% and then coagulating with a foam rubber force.
  • the method for producing the hydrogenated rubber rubber latex of the present invention is not particularly limited, but in order to further improve the feel of the final cosmetic puff, the hydrogen rubber rubber is hydrogenated.
  • a method of hydrogenating to a rate of 2 to 40% is preferably used.
  • a preferred method for producing such hydrogenated rubber latex will be described.
  • (A) A method of adjusting the hydrogenation rate of the gen rubber latex within the above range in the hydrogenation step of hydrogenating the gen rubber latex.
  • (C) a method of appropriately mixing two or more hydrogenated rubber latexes having different hydrogenation rates, and the like.
  • the hydrogenation rate can be adjusted by appropriately selecting the type and amount of the catalyst used for hydrogenation and the hydrogenation reaction conditions such as pH and temperature. it can.
  • the hydrogenation rate of the hydrogenated rubber latex having a high hydrogenation rate used by mixing with the non-hydrogenated rubber latex in the method) is 30 to 100%. More preferably, it is ⁇ 98%. If the hydrogenation rate is too low, it may not be possible to obtain a feeling of sensation peculiar to the resulting cosmetic puff when mixed with a non-hydrogenated rubber latex.
  • the mixing ratio of the non-hydrogenated rubber latex and the hydrogenated rubber latex is such that the hydrogenation rate of the hydrogenated rubber latex used for producing the foam rubber is Although it is not particularly limited as long as it is within the target value, 200 to 2,000 parts by weight of non-hydrogenated rubber latex is mixed with 100 parts by weight of hydrogenated rubber latex. It is particularly preferable to mix 600 to 1500 parts by weight.
  • the iodine value method can indirectly determine the amount of carbon-carbon double bonds in the gen-based rubber from the iodine value. Therefore, the amount of the carbon-carbon double bond is obtained before and after hydrogenation, and the ratio is determined from the ratio “after the hydrogenation relative to the total number of carbon-carbon double bonds present in the gen-based rubber before hydrogenation. The ratio of carbon-carbon double bonds remaining in the gen-based rubber is calculated and the ratio (percentage) obtained is divided from 100 to obtain the ⁇ carbon The ratio of hydrogenated carbon-carbon double bonds to the total number of heavy bonds ”can be calculated.
  • proton NMR measures the proportion of carbon-carbon single bonds that have been hydrogenated from double bonds to single bonds, among the carbon-carbon single bonds of hydrogenated rubber after hydrogenation. Can do.
  • the total amount of carbon-carbon double bonds and carbon-carbon double bonds hydrogenated to carbon-carbon single bonds in hydrogenated rubber i.e., bonds that existed as carbon-carbon double bonds before hydrogenation.
  • the ratio of the carbon-carbon double bond hydrogenated to the carbon-carbon single bond to the total amount can be determined by the quantity specific force of the hydrogen atom derived from each bond.
  • the method for producing the hydrogenated gen-based rubber latex used in the present invention is not particularly limited as long as it is a method capable of hydrogenating the carbon-carbon double bond of the gen-based rubber latex.
  • Step ( a ) A step of contacting the gen-based rubber latex with an adsorbent
  • Step (b) A step of hydrogenating carbon-carbon double bonds of the polymer by dissolving or dispersing a platinum group element-containing hydrogenation catalyst in the latex,
  • the method comprising the steps (a) and (b) is preferably used.
  • the step (a) of bringing the gen-based rubber latex into contact with the adsorbent is performed as follows.
  • the adsorbent used in the step (a) is generally used as an adsorbent.
  • adsorbents include activated carbon; kieselguhr, talc, clay, activated clay, silica-containing inorganic compounds such as silica; activated alumina; synthetic zeolite such as radiolite and celite; and ion exchange resin.
  • activated carbon and ion exchange resin which have a high effect of improving the hydrogenation catalyst activity, are preferable.
  • the specific surface area by the BET adsorption method is preferably 500-2.
  • the average particle diameter of the activated carbon is preferably 10 to 3,000 ⁇ m, more preferably 50 to L, 000 / zm.
  • an ion exchange resin having a functional group such as sulfonic acid, carboxylic acid, iminoniacetic acid, quaternary ammonium base, and the like.
  • an ion exchange resin having a structure such as a styrene / divinylbenzene copolymer structure or an acrylic acid / divinylbenzene copolymer structure.
  • Examples of the ion exchange resin include a strongly acidic cation exchange resin (Amberlyst 15DRY, manufactured by Organo Corporation) having acrylic acid functional group in a styrene'-dibulubenzene copolymer structure, acrylic acid, and the like.
  • step (a) as a method of bringing the adsorbent into contact with the Gen rubber latex, (1) a method in which the adsorbent is dispersed in the latex and brought into contact by stirring or the like,
  • the amount of adsorbent preferably with respect to diene-based rubber latex 0.01 to 10 weight 0/0, more preferably from 0.1 to 1 weight 0/0.
  • the temperature of the gen-based rubber latex brought into contact with the adsorbent is a temperature excellent in the stability of the latex, the adsorption effect of the hydrogenation reaction inhibitor, etc., that is, preferably 5 to 60 ° C. More preferably, it is 15 to 30 ° C.
  • the solid content concentration of the gen rubber latex brought into contact with the adsorbent is preferably 5 to 50% by weight, more preferably 15 to 30% by weight.
  • the adsorbent brought into contact with the latex can be removed from the latex by a known separation operation such as filtration or centrifugation.
  • the step (b) of hydrogenating the carbon-carbon double bond of the gen-based rubber by dissolving or dispersing the platinum group element-containing hydrogenation catalyst in the latex brought into contact with the adsorbent is performed. Hydrogenating carbon-carbon double bonds of the above-mentioned Gen-based rubber in Gen-based rubber latex Step (b) is performed as follows.
  • the platinum group element-containing hydrogenation catalyst used in step (b) is a water-soluble or water-dispersible compound containing a platinum group element. Specifically, ruthenium, rhodium, noradium, It is a compound of osmium, iridium and platinum. These hydrogenation catalysts are supported on the carrier or dissolved or dispersed in the latex as it is without being supported, and used for the hydrogenation reaction.
  • the hydrogenation catalyst is particularly preferably a palladium compound, preferably a palladium or rhodium compound. Two or more platinum group element compounds may be used in combination, but in this case as well, it is preferable to use a radium compound as the main catalyst component.
  • the palladium compound used in the present invention is not particularly limited as long as it has hydrogenation catalyst activity, but it is more preferably water-soluble, which is preferably water-soluble or water-dispersible. Furthermore, the palladium compound is a compound of palladium having a valence of II or IV, and the form thereof is preferably a salt complex.
  • noradium compounds include organic acid salts such as palladium acetate, palladium formate, and propionate; inorganic acid salts such as palladium nitrate and palladium sulfate; and Futzino ⁇ radium, palladium chloride, palladium bromide, palladium iodide.
  • Inorganic palladium compounds such as palladium oxide and palladium hydroxide; Organic palladium compounds such as dichloro (cyclootagen) palladium, dichloro (norbornagen) palladium, dichlorobis (triphenylphosphine) palladium; And halogenated salts such as ammonium hexapalladium ammonium; complex salts such as potassium tetracyanopalladium.
  • organic acid salts or inorganic acid salts such as palladium acetate, palladium nitrate, palladium sulfate, etc .
  • palladium chloride sodium tetrachloro palladium acid, ammonium hexachloro palladium acid ammonium Palladium acetate, palladium nitrate and palladium chloride are more preferred, such as halogenated salts;
  • rhodium compounds include halides such as rhodium chloride, rhodium bromide and rhodium iodide; inorganic acid salts such as rhodium nitrate and rhodium sulfate; rhodium acetate, rhodium formate, rhodium propionate, rhodium butyrate, Rhodium herbate, rhodium naphthenate, acetylene Organic acid salts such as rhodium cetonate; acid rhodium; rhodium trihydrate;
  • the platinum group element compound is commercially available, or can be prepared and used by a known method.
  • a method of dissolving or dispersing the platinum group compound in the latex is not particularly limited, and examples thereof include a method of directly adding the compound to the latex and a method of adding the compound in a state of being dissolved or dispersed in water.
  • inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, bromic acid, perchloric acid and phosphoric acid; sodium salts and potassium salts of these inorganic acids; organic acids such as acetic acid;
  • the solubility in water is improved, which may be preferable.
  • the activity of the hydrogenation catalyst can be improved by bringing the rubber rubber latex into contact with an adsorbent. Furthermore, the production method of the present invention is characterized in that the hydrogenation catalytic activity can be improved without particularly adjusting the pH or the like of the gen-based rubber latex subjected to the reaction. If the reaction is carried out under basic conditions, the reaction efficiency is further improved and the amount of hydrogenation catalyst used can be further reduced.
  • the ⁇ of the hydrogenation reaction solution (latex) measured with a pH meter is 7.0 or more, more preferably 8.0 to 12.
  • the basic compound for making the hydrogenation reaction liquid basic is not particularly limited.
  • alkali metal compound, alkaline earth metal compound, ammonia, ammonium salt compound, organic amine Compound etc. are mentioned.
  • Preferred are alkali metal compounds and alkaline earth metal compounds.
  • Alkali metal compounds include hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; lithium bicarbonate, sodium bicarbonate A hydrogen carbonate compound such as potassium hydrogen carbonate is preferably used, and more preferably an alkali metal hydroxide.
  • Preferred alkaline earth metal compounds are hydroxides, carbonates and bicarbonates of alkaline earth metals such as magnesium, calcium, strontium and normium. Hydroxide is more preferable.
  • Ammonium salt compounds include ammonium carbonate and hydrogen carbonate ammonia. I can get lost.
  • organic amine compound examples include triethylamine, ethanolamine, morpholine, N-methylmorpholine, pyridine, hexamethylenediamine, dodecamethylenediamine, xylylenediamine.
  • These basic compounds can be used as they are, or can be used by diluting or dissolving them with an organic solvent such as water or alcohol.
  • the basic compound may be used alone or in combination of two or more, and the amount used may be appropriately selected so that the hydrogenation reaction solution exhibits basicity.
  • the method and timing of adding the basic compound to the hydrogenation reaction liquid are not particularly limited. For example, before adding the hydrogenation catalyst to the hydrogenation reaction liquid, the basic compound is previously added to the latex. And a method in which a basic compound is added after the start of the hydrogenation reaction.
  • a catalyst stabilizer can be used for the purpose of maintaining the stability of the platinum group element compound in the latex.
  • the catalyst stabilizer include polybulurpyrrolidone, polybulol alcohol, polybulucaltal, sodium polyacrylate, sodium polyphosphate, gelatin, albumin, protalbic acid, lysalbic acid and the like. Of these, polybulurpyrrolidone, polybulal alcohol, and sodium polyacrylate are particularly preferred.
  • the temperature of the hydrogenation reaction is usually 0 ° C to 200 ° C, preferably 10 to 100 ° C. If the reaction temperature is too high, side reactions such as hydrogenation of nitrile groups may occur, which is undesirable. On the other hand, if it is too low, the reaction rate decreases, which is not practical.
  • the hydrogen pressure is preferably 0.1 MPa to 20 MPa, more preferably 0.1 MPa to 1 OMPa.
  • the reaction time is not particularly limited, but is usually 30 minutes to 50 hours.
  • the hydrogenation reaction proceeds rapidly despite the reaction in the latex state.
  • the hydrogenation rate of the obtained hydrogenated latex can be arbitrarily controlled in the range of 1 to 100% by appropriately changing the various reaction conditions described above.
  • a platinum group element used for the hydrogenation reaction is complexed with a complexing agent to form a water-insoluble complex, which is filtered and centrifuged.
  • the latex force is preferably separated by adsorption or the like.
  • it is preferable to carry out the oxidation treatment by bringing the reduced catalyst in the system after completion of the hydrogenation reaction into contact with an oxidizing agent. By performing the oxidation treatment, a complex is more easily generated.
  • the complexing agent is added to the latex after completion of the hydrogenation reaction in the form of powder or solution.
  • a complexing agent and a platinum group element In order to form a complex by bringing a complexing agent and a platinum group element into contact with each other and to precipitate this in a latex and to grow or agglomerate it to a particle size larger than the polymer particles, stirring in a heated state followed by static It is preferable to take the steps of placing and cooling.
  • the latex pH at the time of complex formation is preferably adjusted to about 8 to 10.5.
  • the complexing agent is not particularly limited as long as it forms a water-insoluble complex with the platinum group element, but a water-insoluble complex having a strong self-aggregation property is preferable.
  • Specific examples include oxime compounds, and OC and ⁇ -alkanedione dioximes such as dimethyl daroxime and cyclohexanedione dioxime, which are preferred as dioxime compounds because of their strong complexing ability, are more preferred. Of these, dimethyldarioxime is most preferable.
  • the amount of the complexing agent used is preferably 1 to 50 times mol, more preferably 2 to 30 times mol, with respect to the platinum group element of the catalyst used.
  • the filtering device and the filtering method are not limited except that a filter cloth that passes only latex is used. Both vacuum filtration and pressure filtration can be used. In order to perform filtration efficiently, it is preferable to coat the filter cloth with a filter aid such as diatomaceous earth.
  • the catalyst recovered as a precipitate in this way can be used for the hydrogenation reaction after regenerating as necessary.
  • the method for producing a cosmetic puff of the present invention is characterized in that a hydrogenated rubber latex having a hydrogenation rate of 2 to 40% is foamed and then coagulated.
  • the foam rubber production method itself is not particularly limited.
  • conventional methods such as a method of foaming a Gen rubber latex with a foaming agent or a foaming machine, etc. Any known method can be used.
  • foam rubber first add vulcanizing agent, vulcanization aid, other compounding agents, and if necessary coagulant to hydrogenated rubber latex, and mix and disperse to form rubber.
  • a hydrogenated rubber latex composition for production is prepared.
  • the vulcanizing agent and the vulcanizing aid can be used as long as they are used in the production of ordinary foam rubber using a gen-based rubber latex, and are not particularly limited.
  • the vulcanizing agent include sulfur, particularly colloidal sulfur, and examples of the vulcanizing aid include acid oxide and vulcanization accelerator.
  • vulcanization accelerators include 2-mercaptobenzozothiazole and its zinc salt, thiazole accelerators such as dibenzothiazyl disulfide, and dithiocarbamate vulcanization accelerators such as zinc jetyldithiocarbamate. Medicines.
  • the amount of these vulcanizing agents and vulcanizing auxiliaries is not particularly limited, but sulfur 0.1 to: LO parts by weight, zinc oxide 0.5 to 0.5 parts per 100 parts by weight of the solid content of the Gen rubber latex. 10 parts by weight, vulcanization accelerator 0.1 to 5 parts by weight. The amount used is determined to meet the required performance of cosmetic puffs.
  • Examples of the compounding agent used as necessary include an anti-aging agent, a coloring agent, and a foam stabilizer.
  • the dispersant for stably dispersing the various compounding agents in latex include NASF (a sodium salt of naphthalenesulfonic acid formalin condensate).
  • examples of the thickener include polyacrylic acid and its sodium salt, sodium alginate, and polyvinyl alcohol.
  • a surfactant for example, an aliphatic alkali soap such as potassium oleate or a higher alcohol sulfate such as sodium dodecyl sulfate is added to the hydrogenated rubber latex in the required amount. This comes out.
  • the foam rubber used in the present invention can be obtained by adding the above-mentioned additive to the hydrogenated rubber latex, foaming it, and then coagulating and vulcanizing it.
  • a gas for foaming the hydrogenated latex composition obtained by adding the above-mentioned various additives usually, air is used.
  • Carbonate such as ammonium carbonate and sodium bicarbonate; azodicarboxylic acid Azo compounds such as amide, azobisisobutyoritol-tolyl, etc .; from blowing agents that are gas generating substances such as benzenesulfonyl hydrazide
  • the gas generated can also be used.
  • a method of stirring the hydrogenated rubber latex composition and entraining air is used for foaming.
  • an oak foaming machine or an ultrasonic foaming machine can be used. it can.
  • the hydrogenated latex composition is foamed at a predetermined foaming ratio by the above-described method or the like, and the foamed latex is coagulated in order to fix it in the foamed state.
  • the coagulation method is not particularly limited as long as the latex can be gelled and solidified, and any conventionally known method can be used.
  • sodium hexafluorosilicate sodium coagulant as a coagulant sodium fluorosilicate, potassium
  • titanium fluoride sodium compound such as titanium fluoride
  • a coagulation method a thermal coagulation method in which a thermal coagulant such as an organopolysiloxane, polybutymethyl ether, or zinc sulfate ammonium complex is added to the foamed latex; a freeze coagulation method or the like is used.
  • the amount of the coagulant used is not particularly limited, but is usually about 0.5 to about LO parts by weight with respect to 100 parts by weight of the latex (solid content).
  • the foamed latex composition to which the coagulant is added and still having fluidity is transferred to a mold having a predetermined shape and coagulated, and then vulcanized at a temperature of about 100 to 160 ° C for about 15 to 60 minutes, for example. By doing so, foam rubber can be obtained. Mold strength Take out the foam rubber and wash it with water at about 20-70 ° C for about 5-15 minutes with stirring. After washing, drain the water and dry at a temperature of about 30-90 ° C so that the texture of the foam rubber is not impaired!
  • a cosmetic puff can be produced by molding the foam rubber obtained by the above method.
  • the obtained foam rubber is sliced to a predetermined thickness, cut into a predetermined shape, and then the side surface is polished with a rotating turret to make the cosmetic puff. Is manufactured.
  • the present invention is not limited to the above-described embodiment.
  • the above-described embodiment is merely an example, and the embodiment has substantially the same configuration as the technical idea described in the claims of the present invention. Are also included in the technical scope of the present invention.
  • Example [0052] The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise stated, “%” related to parts or formulation is based on weight.
  • a pressure-resistant reactor was charged with 140 parts of ion exchange water, 25 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan, 3 parts of potassium oleate and 0.05 part of sodium ethylenediaminetetraacetate, and the atmosphere was replaced with nitrogen. After adding 75 parts of butadiene, the temperature of the contents was set at 5 ° C. while stirring, and 0.05 part of cumene hydride peroxide and 0.001 part of ferrous sulfate were added to initiate the polymerization reaction. After 20 hours, N, N-jetylhydroxylamine was added to terminate the polymerization reaction at a conversion rate of 95% to obtain an NBR latex.
  • NBR latex (LX-1).
  • the total solid concentration of the latex was adjusted to 15%, and 1 part of an iminoacetic acid-based chelate ion-exchanged resin (trade name: Amberlite IRC748, manufactured by Organo Corporation) was added to 100 parts of the NBR latex. After stirring for 3 hours at a temperature of 25 ° C., the chelate resin was removed by filtration.
  • an iminoacetic acid-based chelate ion-exchanged resin trade name: Amberlite IRC748, manufactured by Organo Corporation
  • the pH of the hydrogenated NBR latex was adjusted to 9.5, and dimethyldarioxime corresponding to 5 times the molar amount of noradium was added as a powder.
  • dimethyldarioxime corresponding to 5 times the molar amount of noradium was added as a powder.
  • insolubles were precipitated in the latex.
  • the entire amount of the latex was suction filtered to separate the precipitate.
  • the obtained white filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a hydrogenated NBR latex (LX-2) having a solid concentration of 66%.
  • the hydrogenation rate of LX-2 was 30%.
  • a pressure-resistant reactor was charged with 180 parts of ion-exchanged water, 37 parts of acrylonitrile, 0.5 part of t-dodecyl mercaptan and 2 parts of potassium oleate and purged with nitrogen. After adding 63 parts of butadiene, the temperature of the contents was changed to 10 ° C. while stirring, and 0.01 part of tamenoid oxide and 0.01 part of ferrous sulfate were added to initiate the polymerization reaction. . After 16 hours, a 10% hydroquinone aqueous solution was added to stop the polymerization reaction at a conversion rate of 90%, and unreacted monomers were removed.
  • NBR latex (LX-3) was obtained.
  • a latex containing 65% solid content LX-1 and 40% solid content LX-3 with the formulation shown in Table 1 is mixed with 5 parts colloidal sulfur dispersion (solid content 50%), zinc white dispersion. (Solid content 50%) 3 parts and trimene base aqueous solution (solid content 50%) 1 part were added and stirred with a hand mixer and mechanically foamed. Next, 3 parts of sodium silicofluoride (solid content 20%) was added and stirred, then poured into a rectangular parallelepiped mold (200 mm X 150 mm X 10 mm) and allowed to stand for 10 minutes. After that, it was vulcanized at 110 ° C for 40 minutes. The foam rubber taken out from the mold was punched with a circular cylinder with a diameter of 38 mm. Next, it is thoroughly washed in running water and then dried to make it cosmetic. I got a puff.
  • a cosmetic puff was prepared in the same manner as in Example 1 except that 100 parts of LX-2 was used as latex.
  • a cosmetic puff was prepared in the same manner as in Example 1 except that 100 parts of LX-1 was used as latex.

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A cosmetic puff which feels moist to the touch and does not change in that feeling upon repetitions of washing, etc. The cosmetic puff is characterized by comprising a rubber foam comprising a hydrogenated diene rubber as the main component.

Description

明 細 書  Specification
化粧用パフおよびその製造方法  Cosmetic puff and method for producing the same
技術分野  Technical field
[0001] 本発明は、しっとり感のある触感を有する化粧用パフおよびその製造方法に関する ものである。  [0001] The present invention relates to a cosmetic puff having a moist touch and a method for producing the same.
背景技術  Background art
[0002] 従来よりィ匕粧用パフとしては、親水性が高ぐ風合いが柔らかく且つ滑らかな触感を 有する化粧用パフが要望されている。このような化粧用パフには、化粧料に対する耐 油性を有することが必要であると共に、直接肌に接するものであることから、触感は特 に重要な要求特性となっている。近年、特に消費者の要求は多様ィ匕し、種々の触感 を有する化粧用パフが求められるようになつてきた。  [0002] Conventionally, as a cosmetic puff, a cosmetic puff having a high hydrophilicity and a soft texture and a smooth tactile sensation has been demanded. Such cosmetic puffs are required to have oil resistance to cosmetics and are in direct contact with the skin. In recent years, consumer demand has been diversified, and cosmetic puffs with various tactile sensations have been demanded.
[0003] 化粧用パフの触感を変化させる手法として、種々の添加剤を用いる方法が挙げら れる。例えば、特許文献 1には、ブリード性のあるシリコーンオイルを含有するスポン ジ体力もなる化粧用パフが開示されている。し力しながら、化粧用パフは洗浄して用 いられるものであることから、単に添加剤を添カ卩したものでは、添カ卩した添加剤が洗 浄を繰り返すことにより溶出してしま 、、使用に伴 、触感が変化してしまうと 、つた問 題があった。  [0003] Methods for changing the tactile sensation of a cosmetic puff include methods using various additives. For example, Patent Document 1 discloses a cosmetic puff having a sponge physical strength containing a bleedable silicone oil. However, since the cosmetic puff is used after washing, if the additive is simply added, the added additive is eluted by repeated washing. There was a problem when the tactile sensation changed with use.
[0004] 特許文献 1 :特開平 6— 311909号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 6-311909
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、しっとり感のある触感を有し、洗浄等を繰り返してもその触感が変化する ことの無!ヽ化粧用パフおよびその製造方法を提供することを主目的とする。 [0005] The present invention has a moist feeling and the tactile sensation does not change even after repeated washing or the like! The main object is to provide a cosmetic puff and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、前記実情に鑑み鋭意検討した結果、水素化ジェン系ゴムを主成分 とするフォームラバーを用いることにより、本発明に特有のしっとりとした触感を有する 化粧用パフが得られることを見いだし、本発明を完成させるに至った。  [0006] As a result of intensive investigations in view of the above circumstances, the present inventors have found that a cosmetic puff having a moist feel unique to the present invention is obtained by using a foam rubber containing hydrogenated rubber as a main component. The inventors have found that the present invention can be obtained and have completed the present invention.
[0007] 力べして本発明によれば、以下の発明 1〜6が提供される。 1.水素化ジェン系ゴムを主成分とするフォームラバー力もなることを特徴とする化粧 用パフ。 [0007] Forcibly, according to the present invention, the following inventions 1 to 6 are provided. 1. A cosmetic puff characterized by having foam rubber power mainly composed of hydrogenated rubber.
2.前記水素化ジェン系ゴム力 共役ジェン単量体単位およびエチレン性不飽和-ト リル単量体単位を含んでなる共重合体の水素化物であることを特徴とする前記 1に 記載の化粧用パフ。  2. The cosmetic according to 1 above, which is a hydride of a copolymer comprising a conjugated diene monomer unit and an ethylenically unsaturated-tolyl monomer unit. For puffs.
3.前記水素化ジェン系ゴムの水素化率が 2〜40%である前記 1または 2に記載の化 粧用パフ。  3. The cosmetic puff according to 1 or 2 above, wherein the hydrogenation rate of the hydrogenated rubber is 2 to 40%.
4.前記フォームラバー力 水素化ジェン系ゴムラテックスを発泡させ、次いで凝固さ せてなるものであることを特徴とする前記 1〜3に記載の化粧用パフ。  4. Foam rubber force The cosmetic puff according to 1 to 3, wherein the hydrogenated rubber latex is foamed and then coagulated.
5.水素化率が 2〜40%である水素化ジェン系ゴムラテックスを発泡させ、次いで凝 固させる工程を含んでなることを特徴とする化粧用パフの製造方法。  5. A method for producing a cosmetic puff comprising the steps of foaming and then solidifying a hydrogenated rubber latex having a hydrogenation rate of 2 to 40%.
6.前記水素化ジェン系ゴム力 共役ジェン単量体およびエチレン性不飽和-トリル 単量体を含んでなる単量体混合物を重合して得られる共重合体の水素化物であるこ とを特徴とする前記 5に記載の化粧用パフの製造方法。  6. A hydrogenation product of a copolymer obtained by polymerizing a monomer mixture comprising the conjugated hydrogen monomer and the ethylenically unsaturated-tolyl monomer. 6. The method for producing a cosmetic puff according to 5 above.
発明の効果  The invention's effect
[0008] 本発明の化粧用パフは、特有のしっとりとした触感を有するものであり、近年の多様 ィ匕された消費者の化粧用パフに対する要求の一態様を満たすものとして、好適に用 V、ることができると 、つた効果を奏するものである。  [0008] The cosmetic puff of the present invention has a unique moist feel, and is preferably used as one satisfying one aspect of the demands of various consumer cosmetic puffs in recent years. If you can, you will have the effect.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の化粧用パフは、水素化ジェン系ゴムを主成分とするフォームラバー力もな ることを特徴とするものである。以下、本発明の化粧用パフについて詳細に説明する 本発明に用いるフォームラバーは、水素化ジェン系ゴムを主成分とするものである 。水素化ジェン系ゴムの原料であるジェン系ゴム(以降、単に「ジェン系ゴム」と略記 する場合がある)としては、天然ジェン系ゴムおよび合成ジェン系ゴムがあげられる。 中でも、フォームラバーの諸物性を任意に調整できる点から、合成ジェン系ゴムが好 ましい。合成ジェン系ゴムとしては、共役ジェン単量体単位およびこれらと共重合可 能なエチレン性不飽和単量体単位を含んでなる共重合体が挙げられ、例えば、ブタ ジェンゴム、クロロプレンゴム、スチレン ブタジエンゴムおよびアクリロニトリルーブタ ジェンゴムを挙げることができ、これらを主成分とするフォームラバーであれば特に限 定されるものではない。なお、本発明において「主成分とする」とは、全ゴム成分中、 少なくとも 70重量%以上、好ましくは 90重量%以上含まれていることを示すものであ る。 [0009] The cosmetic puff of the present invention is characterized in that it also has a foam rubber power mainly composed of hydrogenated rubber. Hereinafter, the cosmetic puff of the present invention will be described in detail. The foam rubber used in the present invention contains hydrogenated rubber as a main component. Examples of the gen rubber (hereinafter sometimes simply referred to as “gen rubber”), which is a raw material for the hydrogenated gen rubber, include natural gen rubber and synthetic gen rubber. Of these, synthetic Gen rubber is preferred because various physical properties of foam rubber can be adjusted arbitrarily. Synthetic gen rubbers include conjugated gen monomer units and copolymers comprising ethylenically unsaturated monomer units copolymerizable therewith. Gen rubber, chloroprene rubber, styrene butadiene rubber, and acrylonitrile-butadiene rubber may be mentioned, and the foam rubber is not particularly limited as long as it is a main component. In the present invention, the “main component” means that the total rubber component is contained at least 70% by weight, preferably 90% by weight or more.
[0010] 本発明に用いるジェン系ゴムには、得られる化粧用パフの耐油性、触感の良好性 の観点から、共役ジェン単量体単位およびエチレン性不飽和-トリル単量体単位を 含んでなる共重合体 (以下、 NBR系共重合体とする場合がある。)を用いることが好 ましい。本発明においては、特に水素化 NBR系共重合体を発泡させ、次いで凝固さ せてなるフォームラバーが好適に用いられる。  [0010] The gen-based rubber used in the present invention contains a conjugated gen monomer unit and an ethylenically unsaturated-tolyl monomer unit from the viewpoint of oil resistance and good tactile sensation of the resulting cosmetic puff. It is preferable to use a copolymer (hereinafter sometimes referred to as an NBR copolymer). In the present invention, a foam rubber obtained by foaming and then solidifying a hydrogenated NBR copolymer is particularly preferably used.
[0011] 本発明における水素化ジェン系ゴムは、前記ジェン系ゴムを水素化したものであれ ば特に限定されるものではないが、好ましい水素化率としては 2〜40%、特に好まし くは 5〜35%である。水素化率が低すぎると本発明の効果であるしっとりとした触感を 得ることができない可能性があり、逆に高すぎると、フォームラバーの製造が困難とな る場合ある。ここで、水素化率とは、水素化前のジェン系ゴム中に存在した炭素—炭 素二重結合の総計に対する、水素化された炭素 炭素二重結合の割合であり、フォ 一ムラバーの製造に用いるジェン系ゴムの水素化率のことを 、う。  [0011] The hydrogenated gen-based rubber in the present invention is not particularly limited as long as it is a hydrogenated gen-based rubber, but a preferable hydrogenation rate is 2 to 40%, particularly preferably. 5 to 35%. If the hydrogenation rate is too low, the moist feel that is the effect of the present invention may not be obtained. Conversely, if it is too high, it may be difficult to produce foam rubber. Here, the hydrogenation rate is the ratio of hydrogenated carbon-carbon double bonds to the total number of carbon-carbon double bonds present in the gen-based rubber before hydrogenation. The hydrogenation rate of the gen rubber used in
[0012] 本発明に用いる水素化ジェン系ゴムとしては、取扱いが容易である点で、ジェン系 ゴムラテックスを水素化して得られる水素化ジェン系ゴムラテックスが好適に使用され る。  [0012] As the hydrogenated rubber used in the present invention, a hydrogenated rubber latex obtained by hydrogenating a Gen rubber rubber is preferably used because it is easy to handle.
本発明に用いるジェン系ゴムラテックスとしては、共役ジェン単量体およびエチレン 性不飽和二トリル単量体を含んでなる単量体混合物を重合して得られる共重合体を 主成分とするものであり、共役ジェン単量体、エチレン性不飽和-トリル単量体およ びこれらと共重合可能なエチレン性不飽和単量体からなる単量体混合物を乳化重 合して得られる共重合体ラテックスが好ましく使用される。  The gen-based rubber latex used in the present invention is mainly composed of a copolymer obtained by polymerizing a monomer mixture comprising a conjugated gen monomer and an ethylenically unsaturated nitrile monomer. A copolymer obtained by emulsion polymerization of a monomer mixture comprising a conjugation monomer, an ethylenically unsaturated-tolyl monomer, and an ethylenically unsaturated monomer copolymerizable therewith. Latex is preferably used.
[0013] 共役ジェン単量体としては、例えば、 1, 3 ブタジエン、 2—メチルー 1, 3 ブタジ ェン、 2, 3 ジメチルー 1, 3 ブタジエン、 2 クロ口一 1, 3 ブタジエン、 1, 3 ぺ ンタジェンなどが挙げられる。中でも 1, 3 ブタジエン、 2—メチル 1, 3 ブタジェ ンが好ましぐ 1, 3 ブタジエンがより好ましい。これらは 1種でまたは 2種以上を組み 合わせて使用することができる。 [0013] Conjugation monomers include, for example, 1,3 butadiene, 2-methyl-1,3 butadiene, 2,3 dimethyl-1,3 butadiene, 2-chloro 1,3 butadiene, 1,3 Examples. Among them, 1, 3 butadiene, 2-methyl 1, 3 butadiene 1,3 Butadiene is more preferred. These can be used alone or in combination of two or more.
共役ジェン単量体の使用量は、単量体混合物中、好ましくは 50〜90重量%、より 好ましくは 60〜80重量%である。使用量が少なすぎると化粧用パフとして用いた場 合、風合が硬くなり、触感が悪くなる。逆に、多すぎると耐油性が不十分となる。  The amount of the conjugation monomer used is preferably 50 to 90% by weight, more preferably 60 to 80% by weight in the monomer mixture. If the amount used is too small, when used as a cosmetic puff, the texture becomes hard and the tactile sensation becomes poor. Conversely, if it is too much, the oil resistance becomes insufficient.
[0014] エチレン性不飽和-トリル単量体としては、例えば、アクリロニトリル、メタタリ口-トリ ル、 a クロ口アクリロニトリル、 aーシァノエチルアタリレート等を挙げられ、特に好ま しいものはアクリロニトリル、メタタリ口-トリルである。これらは 1種でまたは 2種以上を 組み合わせて使用することができる。 [0014] Examples of the ethylenically unsaturated-tolyl monomer include acrylonitrile, methacrylic-tolyl, a -chloroacrylic acid, a-cyanoethyl acrylate, etc., and particularly preferred are acrylonitrile and methacrylic. Mouth-Trill. These can be used alone or in combination of two or more.
エチレン性不飽和-トリル単量体の使用量は、単量体混合物中、好ましくは 10〜5 0重量%、より好ましくは 20〜40重量%である。この使用量が少なすぎると耐油性が 不十分となり、逆に、多すぎると風合が硬くなり、肌ざわりが悪くなる傾向がある。  The amount of the ethylenically unsaturated-tolyl monomer used is preferably 10 to 50% by weight, more preferably 20 to 40% by weight in the monomer mixture. If the amount used is too small, the oil resistance becomes insufficient. Conversely, if the amount is too large, the texture becomes hard and the texture tends to deteriorate.
[0015] 共役ジェン単量体およびエチレン性不飽和二トリル単量体と共重合可能なェチレ ン性不飽和単量体としては、例えば、(メタ)アクリル酸、(無水)マレイン酸、フマル酸 、ィタコン酸等のエチレン性不飽和カルボン酸;メチル (メタ)アタリレート、ェチル (メタ )アタリレート、ブチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、ラウリ ル (メタ)アタリレート、マレイン酸モノまたはジメチル、フマル酸モノまたはジェチル、 フマル酸モノまたはジ n ブチル、イタコン酸モノまたはジ n ブチル等の前記 エチレン性不飽和カルボン酸のモノまたはジアルキルエステル;メトキシアタリレート、 エトキシアタリレート、メトキシェトキシェチルアタリレート等の前記エチレン性不飽和 カルボン酸のアルコキシアルキルエステル; 2—ヒドロキシェチル(メタ)アタリレート、ヒ アルキル基を有する(メタ)アタリレート;グリシジル (メタ)アタリレート;(メタ)アクリルァ ミド、 N—メチロール (メタ)アクリルアミド、 N—ブトキシメチル (メタ)アクリルアミド等の( メタ)アクリル酸アミド及びその誘導体;ジメチルァミノメチルアタリレート、ジェチルアミ ノメチルアタリレート等のアミノ基を有するアタリレート;スチレン、 aーメチルスチレン、 ビュルトルエン、クロロスチレン等の芳香族ビュル単量体;エチレン、プロピレン等の aーォレフイン;ジシクロペンタジェン、ビュルノルボルネン等の非共役ジェン単量体 等が挙げられる。これらを必要に応じて用いる場合には、本発明のしっとりとした触感 が損なわれない範囲で、単量体混合物中、好ましくは 30重量%以下の範囲で使用 することができる。 [0015] Ethylene unsaturated monomers copolymerizable with conjugation monomers and ethylenically unsaturated nitrile monomers include, for example, (meth) acrylic acid, (anhydrous) maleic acid, fumaric acid Ethylenically unsaturated carboxylic acids such as itaconic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, lauryl (meth) ate Mono- or dialkyl esters of said ethylenically unsaturated carboxylic acids such as acrylate, mono- or dimethyl maleate, mono- or jetyl fumarate, mono- or di-n-butyl fumarate, mono- or di-n-butyl itaconate; methoxy acrylate, ethoxy acrylate Alkoxylates of the ethylenically unsaturated carboxylic acids such as 2-hydroxyethyl (meth) acrylate, (meth) acrylate having an alkyl group; glycidyl (meth) acrylate; (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl ( (Meth) acrylic amides such as meth) acrylamides and derivatives thereof; acrylates having amino groups such as dimethylaminomethyl acrylate and jetylaminomethyl acrylate; aromatics such as styrene, a-methylstyrene, butyltoluene and chlorostyrene Bull monomer; a-olefin such as ethylene and propylene; non-conjugated monomer such as dicyclopentagen and burnorbornene Etc. When these are used as required, they can be used in the monomer mixture, preferably in the range of 30% by weight or less, within the range where the moist feel of the present invention is not impaired.
[0016] 前記のジェン系ゴムラテックスは、通常の乳化重合の手法によって製造することが できる。乳化重合に使用する界面活性剤、重合開始剤、キレート剤、酸素捕捉剤、分 子量調整剤等の重合薬剤は、従来公知のそれぞれの薬剤が使用でき、特に限定さ れない。例えば、界面活性剤としては、ァ-オン系またはァ-オン系とノ-オン (非ィ オン)系の界面活性剤が使用される。界面活性剤は、通常、単量体混合物に対して 0 . 5〜5重量%の範囲で使用される。  [0016] The above-mentioned gen-based rubber latex can be produced by a usual emulsion polymerization technique. As the polymerization agent such as a surfactant, a polymerization initiator, a chelating agent, an oxygen scavenger, and a molecular weight adjusting agent used for emulsion polymerization, each conventionally known agent can be used and is not particularly limited. For example, as the surfactant, an ionic surfactant or an ionic surfactant and a nonionic (nonionic) surfactant are used. The surfactant is usually used in the range of 0.5 to 5% by weight based on the monomer mixture.
[0017] ァニオン系界面活性剤としては、例えば、牛脂脂肪酸カリウム、部分水添牛脂脂肪 酸カリウム、ォレイン酸カリウム、ォレイン酸ナトリウム等の脂肪酸塩;ロジン酸カリウム 、ロジン酸ナトリウム、水添ロジン酸カリウム、水添ロジン酸ナトリウム等の榭脂酸塩;ド デシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩等が挙げら れる。ノ-オン系界面活性剤としては、例えば、ポリエチレングリコールエステル型、 ポリエチレングリコールエステル型、エチレンオキサイドとプロピレンオキサイドのブロ ック共重合体等のプル口ニック型等の界面活性剤が挙げられる。これらの界面活性 剤は、それぞれ単独で使用しても 2種以上を併用してもよ ヽ。  Examples of the anionic surfactant include, for example, beef tallow fatty acid potassium, partially hydrogenated beef tallow fatty acid potassium, potassium oleate, sodium oleate, and the like; potassium rosinate, sodium rosinate, and hydrogenated potassium rosinate Succinate such as sodium hydrogenated rosinate; alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate. Examples of non-ionic surfactants include polyethylene glycol ester type, polyethylene glycol ester type, pull nick type surfactants such as block copolymers of ethylene oxide and propylene oxide, and the like. These surfactants may be used alone or in combination of two or more.
[0018] 重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモ-ゥム等の過硫酸塩 等の熱分解型開始剤; t—ブチルハイド口パーオキサイド、クメンハイド口パーォキサ イド、ジイソプロピルベンゼンハイド口パーオキサイド、オタタノィルパーオキサイド、 3 , 5, 5—トリメチルへキサノィルパーオキサイド等の有機過酸ィ匕物;ァゾビスイソプチ 口-トリル等のァゾィ匕合物;これらと二価の鉄イオン等の還元剤とからなるレドックス系 開始剤等が挙げられる。中でもレドックス系開始剤が好ましい。これらの開始剤の使 用量は、通常、単量体混合物に対して 0. 01〜10重量%の範囲である。  [0018] Examples of the polymerization initiator include thermal decomposition initiators such as persulfates such as potassium persulfate and ammonium persulfate; t-butyl hydride mouth peroxide, cumene hydride mouth peroxide, diisopropyl benzene hydride mouth. Organic peroxides such as peroxide, otatanyl peroxide, 3,5,5-trimethylhexanoyl peroxide; azobis compounds such as azobisisobutyl-tolyl; these and divalent iron ions And a redox initiator composed of a reducing agent. Of these, redox initiators are preferred. The usage of these initiators is usually in the range of 0.01 to 10% by weight with respect to the monomer mixture.
[0019] 乳化重合は、連続式、回分式の!/ヽずれでもよ!/、。また、重合時間、重合転化率等も 特に限定されない。好ましい重合転ィ匕率は 90%以上である。重合温度は好ましくは 40°C以下、より好ましくは 0〜35°Cである。また、単量体の添加の方法も特に制限さ れず、例えば、一括添加法、分割添加法等を用いることができる。本発明のジェン系 ゴムラテックスを得る好ましい重合方法は、例えば、反応器に全単量体を一括添加し てレドックス系開始剤を用いて重合温度 0〜35°Cの範囲で重合する方法が挙げられ る。又、重合後、公知の方法で粒径を大きくすることもできる。 [0019] Emulsion polymerization can be continuous or batch! Also, the polymerization time, polymerization conversion rate, etc. are not particularly limited. A preferable polymerization conversion rate is 90% or more. The polymerization temperature is preferably 40 ° C or lower, more preferably 0 to 35 ° C. Further, the method for adding the monomer is not particularly limited, and for example, a batch addition method, a division addition method, or the like can be used. Gen system of the present invention A preferred polymerization method for obtaining rubber latex includes, for example, a method in which all monomers are added to a reactor at once and polymerization is carried out at a polymerization temperature of 0 to 35 ° C. using a redox initiator. Further, after polymerization, the particle size can be increased by a known method.
[0020] 粒径を大きくする方法としては、例えば、重合途中で反応を停止させ、強攪拌する 方法;重合終了後ブタジエン等の共役ジェン単量体やトルエン等の溶剤を添加して 強攪拌する方法が挙げられる。本発明のジェン系ゴムラテックスの固形分は特に限 定されないが、通常、 30〜70重量%程度である。また、ラテックス粒子径も特に限定 されな ヽ力 通常、 100〜3, OOOnm,好ましく ίま 200〜2, OOOrnn程度である。  [0020] As a method for increasing the particle size, for example, a method in which the reaction is stopped in the middle of the polymerization and a strong stirring is performed; a conjugation monomer such as butadiene and a solvent such as toluene are added and the mixture is stirred strongly after the polymerization is completed. A method is mentioned. The solid content of the gen rubber latex of the present invention is not particularly limited, but is usually about 30 to 70% by weight. Further, the latex particle diameter is not particularly limited. Usually, it is about 100 to 3, OOOnm, preferably about 200 to 2, OOOrnn.
[0021] 本発明によれば、水素化率が 2〜40%である水素化ジェン系ゴムラテックスを発泡 させ、次 、で凝固させてなるフォームラバー力 なることを特徴とする化粧用パフが好 適に用いられる。  [0021] According to the present invention, a cosmetic puff characterized by having a foam rubber force obtained by foaming a hydrogenated rubber latex having a hydrogenation rate of 2 to 40% and then coagulating with a foam rubber force is preferable. Appropriately used.
本発明の水素化ジェン系ゴムラテックスの製造方法は、特に限定されるものではな いが、最終的に得られる化粧用パフの触感をさらに良好とするため、前記ジェン系ゴ ムラテックスを水素化率 2〜40%になるように水素化する方法が好適に用いられる。 以下、このような水素化ジェン系ゴムラテックスの好適な製造方法にっ 、て説明する  The method for producing the hydrogenated rubber rubber latex of the present invention is not particularly limited, but in order to further improve the feel of the final cosmetic puff, the hydrogen rubber rubber is hydrogenated. A method of hydrogenating to a rate of 2 to 40% is preferably used. Hereinafter, a preferred method for producing such hydrogenated rubber latex will be described.
[0022] 本発明において水素化率が前記範囲内にある水素化ジェン系ゴムラテックスを得 る方法としては、例えば、 [0022] In the present invention, as a method for obtaining a hydrogenated rubber latex having a hydrogenation rate within the above range, for example,
(A)ジェン系ゴムラテックスを水素化する水素化工程にぉ 、て、ジェン系ゴムラテック スの水素化率を前記範囲内に調整する方法、  (A) A method of adjusting the hydrogenation rate of the gen rubber latex within the above range in the hydrogenation step of hydrogenating the gen rubber latex.
(B)水素化されて!/ヽな ヽジェン系ゴムラテックス(以下、非水素化ジェン系ゴムラテツ タスと略記する場合がある。)と、 目的とする水素化ジェン系ゴムラテックスよりも水素 化率の高い水素化ジェン系ゴムラテックスとを混合する方法、  (B) Hydrogenated! / Unusual hydrogenated rubber latex (hereinafter sometimes abbreviated as non-hydrogenated rubber rubber latex) and the hydrogenation rate than the desired hydrogenated rubber rubber latex. A method of mixing with a high hydrogenation rubber rubber latex,
(C)水素化率の異なる水素化ジェン系ゴムラテックスを 2種以上適宜混合する方法、 等が挙げられる。  (C) a method of appropriately mixing two or more hydrogenated rubber latexes having different hydrogenation rates, and the like.
なかでも、混合する操作が容易であることから、方法 (A)および (B)が好ましく用い られる。方法 (A)では、水素化に使用する触媒の種類および量、水素化反応条件、 例えば pHおよび温度などを適宜選択することによって、水素化率を調節することが できる。また、方法 )において、非水素化ジェン系ゴムラテックスと混合して用いら れる水素化率の高い水素化ジェン系ゴムラテックスの水素化率は、 30〜100%であ ることが好ましぐ 60〜98%であることがより好ましい。この水素化率が低すぎると、非 水素化ジェン系ゴムラテックスと混合した場合に、得られる化粧用パフに特有のしつ とり感を得ることができな 、場合がある。 Of these, methods (A) and (B) are preferably used because the mixing operation is easy. In method (A), the hydrogenation rate can be adjusted by appropriately selecting the type and amount of the catalyst used for hydrogenation and the hydrogenation reaction conditions such as pH and temperature. it can. In addition, it is preferable that the hydrogenation rate of the hydrogenated rubber latex having a high hydrogenation rate used by mixing with the non-hydrogenated rubber latex in the method) is 30 to 100%. More preferably, it is ˜98%. If the hydrogenation rate is too low, it may not be possible to obtain a feeling of sensation peculiar to the resulting cosmetic puff when mixed with a non-hydrogenated rubber latex.
[0023] 方法 (B)にお 、て、非水素化ジェン系ゴムラテックスと水素化ジェン系ゴムラテック スとの混合比率は、フォームラバーの製造に用いる水素化ジェン系ゴムラテックスの 水素化率が、 目的とする値になる範囲であれば特に限定されるものでないが、水素 化ジェン系ゴムラテックス 100重量部に対して、非水素化ジェン系ゴムラテックスを 2 00-2, 000重量部混合することが好ましぐ 600〜 1500重量部混合することが特 に好ましい。 [0023] In the method (B), the mixing ratio of the non-hydrogenated rubber latex and the hydrogenated rubber latex is such that the hydrogenation rate of the hydrogenated rubber latex used for producing the foam rubber is Although it is not particularly limited as long as it is within the target value, 200 to 2,000 parts by weight of non-hydrogenated rubber latex is mixed with 100 parts by weight of hydrogenated rubber latex. It is particularly preferable to mix 600 to 1500 parts by weight.
[0024] 前記各水素化ジェン系ゴムラテックスにおける水素化率の測定方法としては、プロ トン NMR法、およびヨウ素価法 (JIS K 6235)のいずれかを挙げることができる。 これらの中で、ヨウ素価法は、ジェン系ゴム中の炭素 炭素二重結合の量を、ヨウ 素価から間接的に求めることができる。よって、前記炭素 炭素二重結合の量を、水 素化前後につ 、てそれぞれ求め、その比率から「水素化前のジェン系ゴム中に存在 した炭素 炭素二重結合の総計に対する、水素化後のジェン系ゴム中に残存する 炭素-炭素二重結合の割合」を求め、得られた割合 (百分率)を 100から除すことに より「水素化前のジェン系ゴム中に存在した炭素 炭素二重結合の総計に対する、 水素化された炭素 炭素二重結合の割合」を求めることができる。  As a method for measuring the hydrogenation rate in each hydrogenated rubber latex, either a proton NMR method or an iodine value method (JIS K 6235) can be mentioned. Among these, the iodine value method can indirectly determine the amount of carbon-carbon double bonds in the gen-based rubber from the iodine value. Therefore, the amount of the carbon-carbon double bond is obtained before and after hydrogenation, and the ratio is determined from the ratio “after the hydrogenation relative to the total number of carbon-carbon double bonds present in the gen-based rubber before hydrogenation. The ratio of carbon-carbon double bonds remaining in the gen-based rubber is calculated and the ratio (percentage) obtained is divided from 100 to obtain the `` carbon The ratio of hydrogenated carbon-carbon double bonds to the total number of heavy bonds ”can be calculated.
これに対して、プロトン NMR法は、水素化後の水素化ジェン系ゴムの炭素 炭素 単結合の中で、二重結合から単結合に水素化された炭素 炭素単結合の割合を測 定することができる。よって、水素化ジェン系ゴム中の、炭素 炭素二重結合および 炭素 炭素単結合に水素化された炭素 炭素二重結合の総量 (すなわち水素化前 に炭素 炭素二重結合として存在していた結合の総量)に対する、炭素 炭素単結 合に水素化された炭素 炭素二重結合の割合を、それぞれの結合に由来する水素 原子の量比力 求めることができる。  In contrast, proton NMR measures the proportion of carbon-carbon single bonds that have been hydrogenated from double bonds to single bonds, among the carbon-carbon single bonds of hydrogenated rubber after hydrogenation. Can do. Thus, the total amount of carbon-carbon double bonds and carbon-carbon double bonds hydrogenated to carbon-carbon single bonds in hydrogenated rubber (i.e., bonds that existed as carbon-carbon double bonds before hydrogenation). The ratio of the carbon-carbon double bond hydrogenated to the carbon-carbon single bond to the total amount) can be determined by the quantity specific force of the hydrogen atom derived from each bond.
したがって、水素化後のジェン系ゴムのみ力も水素化率を求めることができる。 [0025] 本発明に用いる水素化ジェン系ゴムラテックスを製造する方法は、ジェン系ゴムラ テックスの炭素 炭素二重結合を水素化することができる方法であれば特に限定さ れるものではないが、 Therefore, the hydrogenation rate can be obtained by using only the strength of the hydrogenated gen rubber. [0025] The method for producing the hydrogenated gen-based rubber latex used in the present invention is not particularly limited as long as it is a method capable of hydrogenating the carbon-carbon double bond of the gen-based rubber latex.
工程 (a)ジェン系ゴムラテックスを吸着剤と接触させる工程、 Step ( a ) A step of contacting the gen-based rubber latex with an adsorbent,
工程 (b)前記ラテックス中に白金族元素含有水素化触媒を溶解又は分散させて該 重合体の炭素 炭素二重結合を水素化する工程、  Step (b) A step of hydrogenating carbon-carbon double bonds of the polymer by dissolving or dispersing a platinum group element-containing hydrogenation catalyst in the latex,
の前記工程 (a)および (b)を含んで製造する方法が好適に用いられる。  The method comprising the steps (a) and (b) is preferably used.
前記ジェン系ゴムラテックスを吸着剤と接触させる工程 (a)は以下のように行われる 工程 (a)で用いられる吸着剤は、吸着剤として一般的に用いられて ヽるものであり、 前記ジェン系ゴムラテックスと接触させた場合に、該ジェン系ゴムの炭素 炭素二重 結合の水素化反応の水素化触媒活性を向上させ得るものであれば特に限定はない 。吸着剤の種類としては、活性炭;ケイソゥ土、タルク、クレー、活性白土、シリカなど のケィ素含有無機化合物;活性アルミナ;ラジオライト、セライトなどの合成ゼォライト; イオン交換榭脂などが挙げられるが、これらの中でも、水素化触媒活性の向上効果 が高い、活性炭及びイオン交換樹脂が好ましい。  The step (a) of bringing the gen-based rubber latex into contact with the adsorbent is performed as follows. The adsorbent used in the step (a) is generally used as an adsorbent. There is no particular limitation as long as it can improve the hydrogenation catalytic activity of the carbon-carbon double bond hydrogenation reaction of the gene rubber when brought into contact with the rubber rubber latex. Examples of adsorbents include activated carbon; kieselguhr, talc, clay, activated clay, silica-containing inorganic compounds such as silica; activated alumina; synthetic zeolite such as radiolite and celite; and ion exchange resin. Among these, activated carbon and ion exchange resin, which have a high effect of improving the hydrogenation catalyst activity, are preferable.
[0026] 活性炭を用いる場合には、その BET吸着法による比表面積が好ましくは 500〜2, [0026] When activated carbon is used, the specific surface area by the BET adsorption method is preferably 500-2.
500m2Zg、より好ましくは 1, 000-1, 500m2Zgである。活性炭の比表面積が前 記範囲にあると、水素化触媒の活性がより向上する。さらに活性炭の平均粒径は、好 ましくは 10〜3, 000 μ m,より好ましくは 50〜: L, 000 /z mである。 500 m 2 Zg, more preferably 1,000-1,500 m 2 Zg. When the specific surface area of the activated carbon is within the above range, the activity of the hydrogenation catalyst is further improved. Furthermore, the average particle diameter of the activated carbon is preferably 10 to 3,000 μm, more preferably 50 to L, 000 / zm.
イオン交換榭脂を用いる場合には、スルホン酸、カルボン酸、イミノニ酢酸、第 4ァ ンモ -ゥム塩基などの官能基を有するイオン交換榭脂を用いることが好まし 、。また、 イオン交換樹脂の樹脂骨格構造としては、スチレン'ジビニルベンゼン共重合体構造 、アクリル酸 ·ジビニルベンゼン共重合体構造などの構造を有するイオン交換榭脂を 用いることが好ましい。  In the case of using an ion exchange resin, it is preferable to use an ion exchange resin having a functional group such as sulfonic acid, carboxylic acid, iminoniacetic acid, quaternary ammonium base, and the like. Further, as the resin skeleton structure of the ion exchange resin, it is preferable to use an ion exchange resin having a structure such as a styrene / divinylbenzene copolymer structure or an acrylic acid / divinylbenzene copolymer structure.
[0027] 前記イオン交換榭脂としては、例えば、スチレン'ジビュルベンゼン共重合体構造 にスルホン酸を官能基として有する強酸性陽イオン交換榭脂(アンバーリスト 15DRY 、オルガノ株式会社製)、アクリル酸 'ジビュルベンゼン共重合体構造にカルボン酸を 官能基として有する弱酸性陽イオン交換榭脂 (アンバーライト IRC76、オルガノ株式 会社製)、スチレン'ジビュルベンゼン共重合体構造にィミノ-酢酸を官能基として有 するキレートイオン交換榭脂(アンバーライト IRC748、オルガノ株式会社製)、スチレ ン ·ジビュルベンゼン共重合体構造に第 4級アンモ-ゥム塩基を官能基として有する 最強塩基性陰イオン交換榭脂 (アンバーライト IRA900J CL、オルガノ株式会社製) などが挙げられ、中でも、強酸性陽イオン交換榭脂、キレートイオン交換樹脂が特に 好ましぐキレートイオン交換樹脂が、キレート結合による強力な吸着能を有するため に最も好ましい。 [0027] Examples of the ion exchange resin include a strongly acidic cation exchange resin (Amberlyst 15DRY, manufactured by Organo Corporation) having acrylic acid functional group in a styrene'-dibulubenzene copolymer structure, acrylic acid, and the like. 'Dicarboxylic benzene copolymer structure with carboxylic acid Weakly acidic cation exchange resin having functional groups (Amberlite IRC76, manufactured by Organo Co., Ltd.), Chelate ion exchange resin having imino-acetic acid as a functional group in a styrene dibulebenzene copolymer structure (Amberlite IRC748 , Organo Co., Ltd.), the strongest basic anion exchange resin having a quaternary ammonium base as a functional group in a styrene-dibulene benzene copolymer structure (Amberlite IRA900J CL, Organo Co., Ltd.) Among them, a strong acid cation exchange resin and a chelate ion exchange resin are particularly preferred, and a chelate ion exchange resin is most preferred because it has a strong adsorption ability by a chelate bond.
[0028] 工程 (a)にお 、て、前記の吸着剤とジェン系ゴムラテックスとを接触させる方法とし ては、(1)前記吸着剤を該ラテックスに分散させて撹拌等により接触させる方法、 [0028] In the step (a), as a method of bringing the adsorbent into contact with the Gen rubber latex, (1) a method in which the adsorbent is dispersed in the latex and brought into contact by stirring or the like,
(2)吸着剤を反応器内に固定床として設置し、ラテックスを撹拌等して前記固定床に 接触させる方法、 (2) A method in which an adsorbent is installed in the reactor as a fixed bed, and the latex is stirred and brought into contact with the fixed bed,
(3)吸着剤を充填させたカラムにラテックスを通過させる方法、  (3) A method of passing latex through a column packed with an adsorbent,
などが挙げられるが、重合反応および水素化反応に必要な装置以外の装置を必要 とせず、操作も簡便であるという観点力もは前記(1)の方法が、また、連続操作が可 能であると 、う観点からは前記(3)の方法が好ま 、。  However, it is possible to use the method of (1) above in view of the fact that no apparatus other than the apparatus necessary for the polymerization reaction and hydrogenation reaction is required, and the operation is simple, and the continuous operation is possible. From the viewpoint, the method (3) is preferred.
前記方法において、吸着剤の使用量は、ジェン系ゴムラテックスに対して好ましくは 0. 01〜10重量0 /0、より好ましくは 0. 1〜1重量0 /0である。 In the above method, the amount of adsorbent, preferably with respect to diene-based rubber latex 0.01 to 10 weight 0/0, more preferably from 0.1 to 1 weight 0/0.
[0029] 本発明にお 、て、吸着剤と接触させるジェン系ゴムラテックスの温度は、ラテックス の安定性、水素化反応阻害物質の吸着効果などに優れる温度、即ち、好ましくは 5 〜60°C、より好ましくは 15〜30°Cである。 [0029] In the present invention, the temperature of the gen-based rubber latex brought into contact with the adsorbent is a temperature excellent in the stability of the latex, the adsorption effect of the hydrogenation reaction inhibitor, etc., that is, preferably 5 to 60 ° C. More preferably, it is 15 to 30 ° C.
さらに、吸着剤と接触させるジェン系ゴムラテックスの固形分濃度は好ましくは 5〜5 0重量%、より好ましくは 15〜30重量%である。  Further, the solid content concentration of the gen rubber latex brought into contact with the adsorbent is preferably 5 to 50% by weight, more preferably 15 to 30% by weight.
なお、ラテックスと接触させた吸着剤は、ろ過、遠心分離など公知の分離操作により 、ラテックスから除去することができる。  The adsorbent brought into contact with the latex can be removed from the latex by a known separation operation such as filtration or centrifugation.
[0030] 吸着剤と接触させた前記ラテックス中に白金族元素含有水素化触媒を溶解又は分 散させて前記ジェン系ゴムの炭素 炭素二重結合を水素化する工程 (b)が行われる 。ジェン系ゴムのラテックス中で前記ジェン系ゴムの炭素 炭素二重結合を水素化 する工程 (b)は以下のように行われる。 [0030] The step (b) of hydrogenating the carbon-carbon double bond of the gen-based rubber by dissolving or dispersing the platinum group element-containing hydrogenation catalyst in the latex brought into contact with the adsorbent is performed. Hydrogenating carbon-carbon double bonds of the above-mentioned Gen-based rubber in Gen-based rubber latex Step (b) is performed as follows.
[0031] 工程 (b)で使用される、白金族元素含有水素化触媒は、白金族元素を含有する水 溶性又は水分散性の化合物であり、具体的には、ルテニウム、ロジウム、ノ ラジウム、 オスミウム、イリジウム及び白金の化合物である。これらの水素化触媒を担体に担持さ せるか又は担持することなくそのままの状態で、前記のラテックス中に溶解又は分散 させて水素化反応に供する。水素化触媒としては、パラジウムまたはロジウム化合物 が好ましぐパラジウム化合物が特に好ましい。また、 2種以上の白金族元素化合物 を併用してもよいが、その場合もノ ラジウム化合物を主たる触媒成分とすることが好ま しい。  [0031] The platinum group element-containing hydrogenation catalyst used in step (b) is a water-soluble or water-dispersible compound containing a platinum group element. Specifically, ruthenium, rhodium, noradium, It is a compound of osmium, iridium and platinum. These hydrogenation catalysts are supported on the carrier or dissolved or dispersed in the latex as it is without being supported, and used for the hydrogenation reaction. The hydrogenation catalyst is particularly preferably a palladium compound, preferably a palladium or rhodium compound. Two or more platinum group element compounds may be used in combination, but in this case as well, it is preferable to use a radium compound as the main catalyst component.
[0032] 本発明で用いるパラジウム化合物は水素化触媒活性を有するものであれば特に限 定されないが、水溶性又は水分散性であることが好ましぐ水溶性であることがより好 ましい。さらに、パラジウム化合物は II価または IV価であるパラジウムの化合物であり 、その形態は塩ゃ錯塩であることが好ましい。  [0032] The palladium compound used in the present invention is not particularly limited as long as it has hydrogenation catalyst activity, but it is more preferably water-soluble, which is preferably water-soluble or water-dispersible. Furthermore, the palladium compound is a compound of palladium having a valence of II or IV, and the form thereof is preferably a salt complex.
ノラジウム化合物としては、例えば、酢酸パラジウム、蟻酸パラジウム、プロピオン酸 ノ ラジウムなどの有機酸塩;硝酸パラジウム、硫酸パラジウムなどの無機酸塩;フツイ匕 ノ《ラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウムなどのハロゲン化物; 酸化パラジウム、水酸化パラジウムなどの無機パラジウム化合物;ジクロロ(シクロオタ タジェン)パラジウム、ジクロロ(ノルボルナジェン)パラジウム、ジクロロビス(トリフエ- ルホスフィン)パラジウムなどの有機パラジウム化合物;テトラクロ口パラジウム酸ナトリ ゥム、へキサクロ口パラジウム酸アンモ-ゥムなどのハロゲン化塩;テトラシァノパラジ ゥム酸カリウムなどの錯塩;などが挙げられる。  Examples of noradium compounds include organic acid salts such as palladium acetate, palladium formate, and propionate; inorganic acid salts such as palladium nitrate and palladium sulfate; and Futzino << radium, palladium chloride, palladium bromide, palladium iodide. Inorganic palladium compounds such as palladium oxide and palladium hydroxide; Organic palladium compounds such as dichloro (cyclootagen) palladium, dichloro (norbornagen) palladium, dichlorobis (triphenylphosphine) palladium; And halogenated salts such as ammonium hexapalladium ammonium; complex salts such as potassium tetracyanopalladium.
[0033] これらのパラジウム化合物の中でも、酢酸パラジウム、硝酸パラジウム、硫酸パラジ ゥムなどの有機酸塩または無機酸塩;塩化パラジウム;テトラクロ口パラジウム酸ナトリ ゥム、へキサクロ口パラジウム酸アンモ-ゥムなどのハロゲン化塩;が好ましぐ酢酸パ ラジウム、硝酸パラジウムおよび塩化パラジウムがより好まし 、。  [0033] Among these palladium compounds, organic acid salts or inorganic acid salts such as palladium acetate, palladium nitrate, palladium sulfate, etc .; palladium chloride; sodium tetrachloro palladium acid, ammonium hexachloro palladium acid ammonium Palladium acetate, palladium nitrate and palladium chloride are more preferred, such as halogenated salts;
[0034] ロジウム化合物としては、塩化ロジウム、臭化ロジウム、ヨウ化ロジウムなどのハロゲ ン化物;硝酸ロジウム、硫酸ロジウムなどの無機酸塩;酢酸ロジウム、蟻酸ロジウム、プ ロピオン酸ロジウム、酪酸ロジウム、吉草酸ロジウム、ナフテン酸ロジウム、ァセチルァ セトン酸ロジウムなどの有機酸塩;酸ィ匕ロジウム;三水酸ィ匕ロジウム;などが挙げられる [0034] Examples of rhodium compounds include halides such as rhodium chloride, rhodium bromide and rhodium iodide; inorganic acid salts such as rhodium nitrate and rhodium sulfate; rhodium acetate, rhodium formate, rhodium propionate, rhodium butyrate, Rhodium herbate, rhodium naphthenate, acetylene Organic acid salts such as rhodium cetonate; acid rhodium; rhodium trihydrate;
[0035] 前記白金族元素の化合物は市販のものを入手し、または公知の方法で調製して使 用することができる。また、白金族元素の化合物をラテックスに溶解又は分散させる 方法も特に限定されず、該化合物を直接ラテックスに添加する方法、該化合物を水 に溶解または分散させた状態で加える方法などが挙げられる。後者の方法では、例 えば、硝酸、硫酸、塩酸、臭素酸、過塩素酸、燐酸などの無機酸;それら無機酸のナ トリウム塩、カリウム塩;酢酸などの有機酸;などを共存させると、水への溶解度が向上 し、好ましい場合がある。 [0035] The platinum group element compound is commercially available, or can be prepared and used by a known method. In addition, a method of dissolving or dispersing the platinum group compound in the latex is not particularly limited, and examples thereof include a method of directly adding the compound to the latex and a method of adding the compound in a state of being dissolved or dispersed in water. In the latter method, for example, when inorganic acids such as nitric acid, sulfuric acid, hydrochloric acid, bromic acid, perchloric acid and phosphoric acid; sodium salts and potassium salts of these inorganic acids; organic acids such as acetic acid; The solubility in water is improved, which may be preferable.
[0036] 前記水素化ジェン系ゴムラテックスの製造方法によれば、ジェン系ゴムラテックスを 吸着剤と接触させることにより水素化触媒の活性を向上させることができる。さらに本 発明の製造方法によれば、反応に供するジェン系ゴムラテックスの pH等を特に調製 することなく水素化触媒活性を向上させることができるという点に特徴を有するもので あるが、水素化反応を塩基性条件下で行うと反応効率がより向上し、水素化触媒使 用量をさらに低減できる。カゝかる塩基性条件としては、 pH測定器で測定される水素 化反応液 (ラテックス)の ρΗが 7. 0以上、より好ましくは 8. 0〜12の範囲である。  [0036] According to the method for producing hydrogenated hydrogen rubber latex, the activity of the hydrogenation catalyst can be improved by bringing the rubber rubber latex into contact with an adsorbent. Furthermore, the production method of the present invention is characterized in that the hydrogenation catalytic activity can be improved without particularly adjusting the pH or the like of the gen-based rubber latex subjected to the reaction. If the reaction is carried out under basic conditions, the reaction efficiency is further improved and the amount of hydrogenation catalyst used can be further reduced. As basic conditions, the ρΗ of the hydrogenation reaction solution (latex) measured with a pH meter is 7.0 or more, more preferably 8.0 to 12.
[0037] 水素化反応液を塩基性にするための塩基性化合物は特に限定されず、例えば、ァ ルカリ金属化合物、アルカリ土類金属化合物、アンモニア、アンモ-ゥム塩ィ匕合物、 有機アミン化合物などが挙げられる。好ましくは、アルカリ金属化合物、アルカリ土類 金属化合物である。  [0037] The basic compound for making the hydrogenation reaction liquid basic is not particularly limited. For example, alkali metal compound, alkaline earth metal compound, ammonia, ammonium salt compound, organic amine Compound etc. are mentioned. Preferred are alkali metal compounds and alkaline earth metal compounds.
アルカリ金属化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムな どの水酸ィ匕物;炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどの炭酸塩ィ匕合物;炭 酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどの炭酸水素塩ィ匕合物が 好ましく用いられ、より好ましくはアルカリ金属の水酸ィ匕物である。  Alkali metal compounds include hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; lithium bicarbonate, sodium bicarbonate A hydrogen carbonate compound such as potassium hydrogen carbonate is preferably used, and more preferably an alkali metal hydroxide.
[0038] アルカリ土類金属化合物としては、マグネシウム、カルシウム、ストロンチウム、ノ リウ ムなどのアルカリ土類金属の水酸ィ匕物、炭酸塩ィ匕合物及び炭酸水素塩ィ匕合物が好 ましく用いられ、より好ましくは水酸ィ匕物である。 [0038] Preferred alkaline earth metal compounds are hydroxides, carbonates and bicarbonates of alkaline earth metals such as magnesium, calcium, strontium and normium. Hydroxide is more preferable.
アンモ-ゥム塩化合物としては、炭酸アンモ-ゥム、炭酸水素アンモ-ゥムなどが挙 げられる。 Ammonium salt compounds include ammonium carbonate and hydrogen carbonate ammonia. I can get lost.
有機アミン化合物としては、トリエチルァミン、エタノールァミン、モルホリン、 N—メ チルモルホリン、ピリジン、へキサメチレンジァミン、ドデカメチレンジァミン、キシリレン ジァミンなどが挙げられる。  Examples of the organic amine compound include triethylamine, ethanolamine, morpholine, N-methylmorpholine, pyridine, hexamethylenediamine, dodecamethylenediamine, xylylenediamine.
[0039] これらの塩基性ィ匕合物はそのまま用いても、水またはアルコールなどの有機溶媒で 希釈したり、溶解したりして使用することもできる。塩基性化合物は、単独で使用して も 2種以上を併用してもよぐその使用量は水素化反応液が塩基性を呈するように適 宜選択すればよい。また、塩基性化合物を水素化反応液に添加する方法や時期も 特に制限されず、例えば、水素化触媒を水素化反応液へ加える前に、予めラテック ス中に塩基性化合物を添加しておく方法、水素化反応開始後に塩基性化合物を添 加する方法などが挙げられる。 [0039] These basic compounds can be used as they are, or can be used by diluting or dissolving them with an organic solvent such as water or alcohol. The basic compound may be used alone or in combination of two or more, and the amount used may be appropriately selected so that the hydrogenation reaction solution exhibits basicity. Further, the method and timing of adding the basic compound to the hydrogenation reaction liquid are not particularly limited. For example, before adding the hydrogenation catalyst to the hydrogenation reaction liquid, the basic compound is previously added to the latex. And a method in which a basic compound is added after the start of the hydrogenation reaction.
さらに、ラテックス中での白金族元素化合物の安定性を維持する目的で、触媒安定 剤を使用することも可能である。触媒安定剤の具体例としては、ポリビュルピロリドン、 ポリビュルアルコール、ポリビュルァセタール、ポリアクリル酸ナトリウム、ポリリン酸ナト リウム、ゼラチン、アルブミン、プロタルビン酸、リサルビン酸などが挙げられる。これら の中でもポリビュルピロリドン、ポリビュルアルコール、ポリアクリル酸ナトリウムが特に 好ましい。  Furthermore, a catalyst stabilizer can be used for the purpose of maintaining the stability of the platinum group element compound in the latex. Specific examples of the catalyst stabilizer include polybulurpyrrolidone, polybulol alcohol, polybulucaltal, sodium polyacrylate, sodium polyphosphate, gelatin, albumin, protalbic acid, lysalbic acid and the like. Of these, polybulurpyrrolidone, polybulal alcohol, and sodium polyacrylate are particularly preferred.
[0040] 水素化反応の温度は、通常 0°C〜200°C、好ましくは 10〜100°Cである。反応温 度が高すぎると、二トリル基の水素化のような副反応が起こる場合があるので望ましく ない。逆に、低すぎると、反応速度が低下して実用的ではない。  [0040] The temperature of the hydrogenation reaction is usually 0 ° C to 200 ° C, preferably 10 to 100 ° C. If the reaction temperature is too high, side reactions such as hydrogenation of nitrile groups may occur, which is undesirable. On the other hand, if it is too low, the reaction rate decreases, which is not practical.
水素の圧力は、好ましくは 0. lMPa〜20MPaであり、より好ましくは 0. lMPa〜l OMPaである。反応時間は特に限定されないが、通常 30分〜 50時間である。  The hydrogen pressure is preferably 0.1 MPa to 20 MPa, more preferably 0.1 MPa to 1 OMPa. The reaction time is not particularly limited, but is usually 30 minutes to 50 hours.
[0041] 前記水素化ジェン系ゴムラテックスの製造方法、とくに塩基性条件下の水素化反応 によれば、ラテックス状態での反応にもかかわらず、水素化反応が速やかに進行する 。得られる水素化ジェン系ラテックスの水素化率は、前記した各種の反応条件を適宜 変更することにより、 1〜100%の範囲で任意に制御することができる。  [0041] According to the method for producing the hydrogenated rubber latex, particularly the hydrogenation reaction under basic conditions, the hydrogenation reaction proceeds rapidly despite the reaction in the latex state. The hydrogenation rate of the obtained hydrogenated latex can be arbitrarily controlled in the range of 1 to 100% by appropriately changing the various reaction conditions described above.
このような水素化ジェン系ゴムラテックスの製造方法においては、水素化反応に用 いた白金族元素を錯化剤により錯化して水不溶性錯体を形成させ、ろ過、遠心分離 、吸着等によりラテックス力 分離することが好ましい。その場合には、水素化反応終 了後の系内にある還元状態の触媒を酸化剤と接触させることにより酸化処理すること が好ましい。酸化処理を行うことにより、錯体がより生成しやすくなる。 In such a method for producing hydrogenated rubber latex, a platinum group element used for the hydrogenation reaction is complexed with a complexing agent to form a water-insoluble complex, which is filtered and centrifuged. The latex force is preferably separated by adsorption or the like. In that case, it is preferable to carry out the oxidation treatment by bringing the reduced catalyst in the system after completion of the hydrogenation reaction into contact with an oxidizing agent. By performing the oxidation treatment, a complex is more easily generated.
[0042] 錯化剤は、粉体もしくは溶液の状態で、水素化反応終了後のラテックスに添加する 。錯化剤と白金族元素を接触させて錯体をつくり、これをラテックス中に析出させ、重 合体粒子よりも大きな粒子径まで成長させるもしくは凝集させるには、加温状態での 攪拌とそれに続く静置、そして冷却というステップを踏むことが好ましい。また、錯体 形成時のラテックス pHは、 8〜10. 5程度に調整することが好ましい。  [0042] The complexing agent is added to the latex after completion of the hydrogenation reaction in the form of powder or solution. In order to form a complex by bringing a complexing agent and a platinum group element into contact with each other and to precipitate this in a latex and to grow or agglomerate it to a particle size larger than the polymer particles, stirring in a heated state followed by static It is preferable to take the steps of placing and cooling. The latex pH at the time of complex formation is preferably adjusted to about 8 to 10.5.
[0043] 錯化剤は、白金族元素と水不溶性の錯体を形成するものであれば、とくに制限され ないが、水不溶性錯体の物性が自己凝集性の強いものが好ましい。具体的には、た とえばォキシム化合物が挙げられ、錯体形成力の強さからジォキシム化合物が好ま しぐジメチルダリオキシム、シクロへキサンジオンジォキシムなどの OC , β アルカン ジオンジォキシムがより好ましい。なかでも、ジメチルダリオキシムが最も好ましい。錯 ィ匕剤の使用量は、使用した触媒の白金族元素に対し、好ましくは通常 1倍〜 50倍モ ル、より好ましくは 2〜30倍モルである。  [0043] The complexing agent is not particularly limited as long as it forms a water-insoluble complex with the platinum group element, but a water-insoluble complex having a strong self-aggregation property is preferable. Specific examples include oxime compounds, and OC and β-alkanedione dioximes such as dimethyl daroxime and cyclohexanedione dioxime, which are preferred as dioxime compounds because of their strong complexing ability, are more preferred. Of these, dimethyldarioxime is most preferable. The amount of the complexing agent used is preferably 1 to 50 times mol, more preferably 2 to 30 times mol, with respect to the platinum group element of the catalyst used.
[0044] 錯化剤を添加することにより、ラテックス中に析出し、重合体粒子よりも大きな粒子 径となった析出物は、ろ過や遠心分離など公知の簡単な分離操作によりラテックスか ら除去され、回収される。たとえば析出物をろ過する場合、ラテックスのみ通過するろ 布を用いる点以外は、ろ過装置、ろ過方法は限定されない。減圧ろ過も加圧ろ過も 採用できる。ろ過を効率よく行うためには、ろ布を珪藻土等のろ過助剤でコートしてお くことが好ましい。このようにして析出物として回収した触媒は、必要に応じて再生処 理を施したのち、水素化反応に使用することもできる。  [0044] By adding a complexing agent, precipitates precipitated in the latex and having a particle size larger than the polymer particles are removed from the latex by a known simple separation operation such as filtration or centrifugation. To be recovered. For example, when the precipitate is filtered, the filtering device and the filtering method are not limited except that a filter cloth that passes only latex is used. Both vacuum filtration and pressure filtration can be used. In order to perform filtration efficiently, it is preferable to coat the filter cloth with a filter aid such as diatomaceous earth. The catalyst recovered as a precipitate in this way can be used for the hydrogenation reaction after regenerating as necessary.
[0045] 本発明の化粧用パフの製造方法は、水素化率が 2〜40%である水素化ジェン系 ゴムラテックスを発泡させ、次 、で凝固させてなることを特徴とするものである。  The method for producing a cosmetic puff of the present invention is characterized in that a hydrogenated rubber latex having a hydrogenation rate of 2 to 40% is foamed and then coagulated.
前記の水素化率を有するジェン系ゴムラテックスから、フォームラバーを製造する方 法について説明する。  A method for producing foam rubber from the above-described gen-based rubber latex having a hydrogenation rate will be described.
本発明においては、フォームラバーの製造方法自体は特に限定されず、例えば、 ジェン系ゴムラテックスを発泡剤または発泡機などにより発泡させる方法など、従来 公知のいずれの方法も用いることができる。フォームラバーを製造する場合には、先 ず、水素化ジェン系ゴムラテックスに、加硫剤および加硫助剤、その他の配合剤、必 要により凝固剤を添加し、混合、分散させてフォームラバー製造用の水素化ジェン系 ゴムラテックス力もなる組成物を調製する。 In the present invention, the foam rubber production method itself is not particularly limited. For example, conventional methods such as a method of foaming a Gen rubber latex with a foaming agent or a foaming machine, etc. Any known method can be used. When producing foam rubber, first add vulcanizing agent, vulcanization aid, other compounding agents, and if necessary coagulant to hydrogenated rubber latex, and mix and disperse to form rubber. A hydrogenated rubber latex composition for production is prepared.
[0046] 前記加硫剤および加硫助剤は、ジェン系ゴムラテックスを用いた通常のフォームラ バーの製造に使用されるものであればはいずれも使用することができ、特に限定され ない。加硫剤としては、例えば、硫黄、特にコロイド硫黄、加硫助剤としては、酸ィ匕亜 鉛、加硫促進剤等が挙げられる。加硫促進剤としては、例えば、 2—メルカプトべンゾ チアゾールおよびその亜鉛塩、ジベンゾチアジルジスルフイド等のチアゾール系促進 剤、ジェチルジチォカルバミン酸亜鉛等のジチォ力ルバメート系加硫促進剤等が挙 げられる。これらの加硫剤や加硫助剤の使用量は特に限定されないが、ジェン系ゴ ムラテックスの固形分 100重量部に対して、硫黄 0. 1〜: LO重量部、酸化亜鉛 0. 5〜 10重量部、加硫促進剤 0. 1〜5重量部である。これらの使用量は化粧用パフの要求 性能を満たすように決定される。  [0046] The vulcanizing agent and the vulcanizing aid can be used as long as they are used in the production of ordinary foam rubber using a gen-based rubber latex, and are not particularly limited. Examples of the vulcanizing agent include sulfur, particularly colloidal sulfur, and examples of the vulcanizing aid include acid oxide and vulcanization accelerator. Examples of vulcanization accelerators include 2-mercaptobenzozothiazole and its zinc salt, thiazole accelerators such as dibenzothiazyl disulfide, and dithiocarbamate vulcanization accelerators such as zinc jetyldithiocarbamate. Medicines. The amount of these vulcanizing agents and vulcanizing auxiliaries is not particularly limited, but sulfur 0.1 to: LO parts by weight, zinc oxide 0.5 to 0.5 parts per 100 parts by weight of the solid content of the Gen rubber latex. 10 parts by weight, vulcanization accelerator 0.1 to 5 parts by weight. The amount used is determined to meet the required performance of cosmetic puffs.
[0047] 必要により使用される配合剤としては、例えば、老化防止剤、着色剤、泡安定剤が 挙げられる。前記の各種配合剤をラテックスに安定して分散させるための分散剤とし ては、例えば、 NASF (ナフタリンスルホン酸ホルマリン縮合物のナトリウム塩)が挙げ られる。増粘剤としては、例えば、ポリアクリル酸およびそのナトリウム塩、アルギン酸 ソーダ、ポリビニルアルコールが挙げられる。泡安定剤としては界面活性剤、例えば、 ォレイン酸カリウム等の脂肪族アルカリ石けん、ドデシル硫酸ナトリウム等の高級アル コールの硫酸塩等を必要量、該水素化ジェン系ゴムラテックスに添加して使用するこ とがでさる。  [0047] Examples of the compounding agent used as necessary include an anti-aging agent, a coloring agent, and a foam stabilizer. Examples of the dispersant for stably dispersing the various compounding agents in latex include NASF (a sodium salt of naphthalenesulfonic acid formalin condensate). Examples of the thickener include polyacrylic acid and its sodium salt, sodium alginate, and polyvinyl alcohol. As the foam stabilizer, a surfactant, for example, an aliphatic alkali soap such as potassium oleate or a higher alcohol sulfate such as sodium dodecyl sulfate is added to the hydrogenated rubber latex in the required amount. This comes out.
[0048] 本発明に用いられるフォームラバーは、前記の添加剤を前記水素化ジェン系ゴム ラテックスに添加して調製し、これを発泡させ、次いで凝固、加硫することによって得 ることができる。前記の各種添加剤を添加して得られた水素化ジェン系ラテックス組 成物を発泡させるための気体としては、通常、空気が用いられる力 炭酸アンモ-ゥ ム、重炭酸ソーダ等の炭酸塩;ァゾジカルボン酸アミド、ァゾビスイソブチ口-トリル等 のァゾィ匕合物;ベンゼンスルフォニルヒドラジド等の気体発生物質である発泡剤から 発生する気体を使用することもできる。空気を使用する場合には、水素化ジェン系ゴ ムラテックス組成物を攪拌して空気を巻き込んで泡立てる方法が用いられ、泡立てに は、例えば、オークス発泡機、超音波発泡機を使用することができる。 [0048] The foam rubber used in the present invention can be obtained by adding the above-mentioned additive to the hydrogenated rubber latex, foaming it, and then coagulating and vulcanizing it. As a gas for foaming the hydrogenated latex composition obtained by adding the above-mentioned various additives, usually, air is used. Carbonate such as ammonium carbonate and sodium bicarbonate; azodicarboxylic acid Azo compounds such as amide, azobisisobutyoritol-tolyl, etc .; from blowing agents that are gas generating substances such as benzenesulfonyl hydrazide The gas generated can also be used. In the case of using air, a method of stirring the hydrogenated rubber latex composition and entraining air is used for foaming. For example, an oak foaming machine or an ultrasonic foaming machine can be used. it can.
[0049] 水素化ジェン系ラテックス組成物を前記方法等により所定の発泡倍率に発泡させ、 その発泡状態のまま固定ィ匕するために、発泡該ラテックスを凝固させる。凝固方法は 、ラテックスをゲルイ匕し、固化させることができる方法であれば特に制限されず、従来 公知の方法がいずれも使用できる。例えば、凝固剤としてへキサフルォロ珪酸ナトリ ゥムゃ同カリウム (珪フッ化ソーダ、同カリ)、チタン珪フッ化ソーダ等のフッ化珪素化 合物を起泡した該ラテックスに添加するダンロップ法(常温凝固法);起泡した該ラテ ッタスにオルガノポリシロキサン、ポリビュルメチルエーテル、硫酸亜鉛アンモ-ゥム 錯塩等の感熱凝固剤を添加する感熱凝固法;冷凍凝固法等が使用される。凝固剤 の使用量は、特に限定されないが、該ラテックス(固形分) 100重量部に対し、通常、 0. 5〜: LO重量部程度である。  [0049] The hydrogenated latex composition is foamed at a predetermined foaming ratio by the above-described method or the like, and the foamed latex is coagulated in order to fix it in the foamed state. The coagulation method is not particularly limited as long as the latex can be gelled and solidified, and any conventionally known method can be used. For example, sodium hexafluorosilicate sodium coagulant as a coagulant (sodium fluorosilicate, potassium), titanium fluoride sodium compound such as titanium fluoride is added to the foamed latex (normal temperature) A coagulation method); a thermal coagulation method in which a thermal coagulant such as an organopolysiloxane, polybutymethyl ether, or zinc sulfate ammonium complex is added to the foamed latex; a freeze coagulation method or the like is used. The amount of the coagulant used is not particularly limited, but is usually about 0.5 to about LO parts by weight with respect to 100 parts by weight of the latex (solid content).
[0050] 凝固剤が添加された、未だ流動性を有する発泡該ラテックス組成物を所定形状の 型に移し、凝固した後、例えば、 100〜160°C程度の温度で 15〜60分程度加硫さ せることによりフォームラバーが得られる。型力 フォームラバーを取り出し、例えば、 洗濯機等を用い、 20〜70°C程度の水で 5〜15分程度攪拌下に洗浄する。洗浄後、 水切りをし、フォームラバーの風合 、を損なわな!/、ように 30〜90°C程度の温度で乾 燥する。 [0050] The foamed latex composition to which the coagulant is added and still having fluidity is transferred to a mold having a predetermined shape and coagulated, and then vulcanized at a temperature of about 100 to 160 ° C for about 15 to 60 minutes, for example. By doing so, foam rubber can be obtained. Mold strength Take out the foam rubber and wash it with water at about 20-70 ° C for about 5-15 minutes with stirring. After washing, drain the water and dry at a temperature of about 30-90 ° C so that the texture of the foam rubber is not impaired!
前記方法により得られたフォームラバーを成形することにより化粧用パフを製造する ことができる。このような化粧用パフの製造においては、通常は、得られたフォームラ バーを所定の厚さにスライスし、所定形状に切断した後、側面を回転砲石で研磨す ることによって化粧用パフが製造される。  A cosmetic puff can be produced by molding the foam rubber obtained by the above method. In the production of such a cosmetic puff, usually, the obtained foam rubber is sliced to a predetermined thickness, cut into a predetermined shape, and then the side surface is polished with a rotating turret to make the cosmetic puff. Is manufactured.
[0051] なお、本発明は、前記実施形態に限定されるものではない。前記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 範囲に包含される。 [0051] The present invention is not limited to the above-described embodiment. The above-described embodiment is merely an example, and the embodiment has substantially the same configuration as the technical idea described in the claims of the present invention. Are also included in the technical scope of the present invention.
実施例 [0052] 以下に実施例および比較例を挙げて本発明を具体的に説明する。なお、部または 配合に関わる%は、特に記載しない限り、重量基準である。 Example [0052] The present invention will be specifically described below with reference to Examples and Comparative Examples. Unless otherwise stated, “%” related to parts or formulation is based on weight.
[0053] NMR測定用サンプルの調整  [0053] Preparation of NMR measurement sample
水素化ジェン系ゴムラテックスをアセトンに溶解した後、メタノールで再沈殿させて 精製した試料 40mgを重クロ口ホルム lmlに溶解する。前記試料が完全に溶解した 後、試料溶液を直径 5mmの NMR試料管に移し、 NMR測定用サンプルを調整した  Dissolve hydrogenated rubber latex in acetone, then re-precipitate with methanol and dissolve 40 mg of purified sample in 1 ml of heavy chloroform. After the sample was completely dissolved, the sample solution was transferred to an NMR sample tube with a diameter of 5 mm to prepare an NMR measurement sample.
[0054] (2) NBRラテックスの調製 [0054] (2) Preparation of NBR latex
(製造例 1)  (Production Example 1)
耐圧反応器にイオン交換水 140部、アクリロニトリル 25部、 t—ドデシルメルカプタン 0. 3部、ォレイン酸カリウム 3部およびソジゥムエチレンジアミンテトラアセテート 0. 05 部を仕込み、窒素置換した。ブタジエン 75部を添加後、攪拌しながら内容物の温度 を 5°Cとしてクメンハイド口パーオキサイド 0. 05部および硫酸第一鉄 0. 001部を添加 して、重合反応を開始させた。 20時間後に N, N—ジェチルヒドロキシルアミンを添 加して転化率 95%で重合反応を停止させ、 NBRラテックスを得た。  A pressure-resistant reactor was charged with 140 parts of ion exchange water, 25 parts of acrylonitrile, 0.3 part of t-dodecyl mercaptan, 3 parts of potassium oleate and 0.05 part of sodium ethylenediaminetetraacetate, and the atmosphere was replaced with nitrogen. After adding 75 parts of butadiene, the temperature of the contents was set at 5 ° C. while stirring, and 0.05 part of cumene hydride peroxide and 0.001 part of ferrous sulfate were added to initiate the polymerization reaction. After 20 hours, N, N-jetylhydroxylamine was added to terminate the polymerization reaction at a conversion rate of 95% to obtain an NBR latex.
前記 NBRラテックスに NBRラテックスの固形分重量と同量のブタジエンを添カロし、 温度を 15°Cとしてカゝらパドル型攪拌翼で 1, OOOrpmの回転数で 5時間攪拌し、粒径 を肥大化させて、 NBRラテックス (LX— 1)を得た。  Add the same amount of butadiene to the NBR latex as the solid weight of the NBR latex, stir at a temperature of 15 ° C with a paddle type stirring blade at a rotation speed of 1, OOOrpm for 5 hours, and enlarge the particle size To obtain NBR latex (LX-1).
[0055] (製造例 2) [0055] (Production Example 2)
前記ラテックスの全固形分濃度を 15%に調整し、該 NBRラテックス 100部に対し、 イミノニ酢酸系キレートイオン交換榭脂(商品名:アンバーライト IRC748、オルガノ株 式会社製) 1部を添加し、温度 25°Cにて 3時間撹拌した後、該キレート榭脂をろ過に より除去した。  The total solid concentration of the latex was adjusted to 15%, and 1 part of an iminoacetic acid-based chelate ion-exchanged resin (trade name: Amberlite IRC748, manufactured by Organo Corporation) was added to 100 parts of the NBR latex. After stirring for 3 hours at a temperature of 25 ° C., the chelate resin was removed by filtration.
[0056] 塩化パラジウム(その使用量は、 Pd金属 Z前記 NBRの比で 250ppm)にパラジゥ ムの 5倍モル当量の硝酸を添加して得られたパラジウム触媒酸性水溶液 300mLに、 重量平均分子量 5, 000のポリビュルピロリドンをパラジウムに対して 5倍量添カ卩した。 さらに水酸ィ匕カリウム水溶液を添加して pH6. 5の触媒水溶液を調製した。  [0056] To 300 mL of palladium catalyst acidic aqueous solution obtained by adding nitric acid of 5 times molar equivalent of palladium to palladium chloride (the amount used is Pd metal Z and the ratio of NBR is 250 ppm), the weight average molecular weight is 5, 000 polyburrpyrrolidone was added in an amount 5 times that of palladium. Further, an aqueous solution of potassium hydroxide and potassium was added to prepare an aqueous catalyst solution having a pH of 6.5.
[0057] 前記でキレートイオン交換樹脂と接触させた NBRラテックス 100部及び、前記触媒 水溶液 37. 5部を攪拌機付オートクレープに投入し、窒素ガスを 10分間流してラテツ タス中の溶存酸素を除去した。系内を 2回水素ガスで置換後、水素で加圧して系内 を 5MPaとした。内容物を 55°Cに加温して 4時間反応させ、水素化させた NBRラテツ タスを得た。 [0057] 100 parts of NBR latex contacted with a chelate ion exchange resin as described above, and the catalyst 37.5 parts of the aqueous solution was put into an autoclave equipped with a stirrer, and nitrogen gas was allowed to flow for 10 minutes to remove dissolved oxygen in the rattus. The inside of the system was replaced twice with hydrogen gas and then pressurized with hydrogen to bring the inside of the system to 5 MPa. The contents were heated to 55 ° C and reacted for 4 hours to obtain hydrogenated NBR latus status.
次に、前記水素化された NBRラテックスの pHを 9. 5に調整し、ノラジウムの 5倍モ ル量に相当するジメチルダリオキシムを粉末のまま添加した。そして 80°Cに加温し 5 時間攪拌したところ、ラテックス中に不溶物が析出した。そのラテックス全量を吸引ろ 過して析出物を分離した。得られた白色ろ液をロータリーエバポレーターで減圧濃縮 して固形分濃度 66%の水素化 NBRラテックス (LX- 2)を得た。得られた LX— 2の プロトン NMR測定を実施した結果、 LX— 2の水素化率は 30%であった。  Next, the pH of the hydrogenated NBR latex was adjusted to 9.5, and dimethyldarioxime corresponding to 5 times the molar amount of noradium was added as a powder. When heated to 80 ° C and stirred for 5 hours, insolubles were precipitated in the latex. The entire amount of the latex was suction filtered to separate the precipitate. The obtained white filtrate was concentrated under reduced pressure using a rotary evaporator to obtain a hydrogenated NBR latex (LX-2) having a solid concentration of 66%. As a result of conducting proton NMR measurement of the obtained LX-2, the hydrogenation rate of LX-2 was 30%.
[0058] (製造例 3) [0058] (Production Example 3)
耐圧反応器にイオン交換水 180部、アクリロニトリル 37部、 t—ドデシルメルカプタン 0. 5部およびォレイン酸カリウム 2部を仕込み、窒素置換した。ブタジエン 63部を添 加後、攪拌しながら内容物の温度を 10°Cとしてタメンノヽイド口パーオキサイド 0. 01部 および硫酸第一鉄 0. 01部を添加して、重合反応を開始させた。 16時間後に 10% のハイドロキノン水溶液を添加して転化率 90%で重合反応を停止させ、未反応単量 体を除去した。ここで得られた NBRラテックスを、触媒である塩化パラジウムの使用量 を、 Pd金属 ZNBRの比で 700ppmに代えた以外は、製造例 2と同様に水素化して、 水素化率 90%の水素化 NBRラテックス (LX- 3)を得た。  A pressure-resistant reactor was charged with 180 parts of ion-exchanged water, 37 parts of acrylonitrile, 0.5 part of t-dodecyl mercaptan and 2 parts of potassium oleate and purged with nitrogen. After adding 63 parts of butadiene, the temperature of the contents was changed to 10 ° C. while stirring, and 0.01 part of tamenoid oxide and 0.01 part of ferrous sulfate were added to initiate the polymerization reaction. . After 16 hours, a 10% hydroquinone aqueous solution was added to stop the polymerization reaction at a conversion rate of 90%, and unreacted monomers were removed. The NBR latex obtained here was hydrogenated in the same manner as in Production Example 2 except that the amount of palladium chloride used as the catalyst was changed to 700 ppm in terms of the ratio of Pd metal ZNBR, and the hydrogenation rate was 90%. NBR latex (LX-3) was obtained.
[0059] (3)化粧用パフの製造方法 [0059] (3) Method for producing cosmetic puff
(実施例 1〜3)  (Examples 1 to 3)
固形分濃度 65%の LX— 1と固形分濃度 40%の LX— 3を表 1に記載の処方で混 合したラテックスに、コロイド硫黄分散液(固形分 50%) 5部、亜鉛華分散液(固形分 50%) 3部およびトリメンベース水溶液(固形分 50%) 1部を添加し、ハンドミキサーで 攪拌して機械発泡した。次に、珪フッ化ソーダ(固形分 20%) 3部を添加し攪拌した 後、直方体の型(200mm X 150mm X 10mm)に流し入れ、 10分間静置した。その 後、 110°Cで 40分加硫させた。型から取り出したフォームラバーを直径 38mmの円 柱型で打ち抜いた。次いで、これを流水中で十分に洗浄した後、乾燥させて化粧用 パフを得た。 A latex containing 65% solid content LX-1 and 40% solid content LX-3 with the formulation shown in Table 1 is mixed with 5 parts colloidal sulfur dispersion (solid content 50%), zinc white dispersion. (Solid content 50%) 3 parts and trimene base aqueous solution (solid content 50%) 1 part were added and stirred with a hand mixer and mechanically foamed. Next, 3 parts of sodium silicofluoride (solid content 20%) was added and stirred, then poured into a rectangular parallelepiped mold (200 mm X 150 mm X 10 mm) and allowed to stand for 10 minutes. After that, it was vulcanized at 110 ° C for 40 minutes. The foam rubber taken out from the mold was punched with a circular cylinder with a diameter of 38 mm. Next, it is thoroughly washed in running water and then dried to make it cosmetic. I got a puff.
[0060] (実施例 4)  [Example 4]
ラテックスとして LX— 2を 100部使用した以外は、実施例 1と同様に化粧用パフを 作成した。  A cosmetic puff was prepared in the same manner as in Example 1 except that 100 parts of LX-2 was used as latex.
(比較例 1)  (Comparative Example 1)
ラテックスとして LX— 1を 100部使用した以外は、実施例 1と同様に化粧用パフを 作成した。  A cosmetic puff was prepared in the same manner as in Example 1 except that 100 parts of LX-1 was used as latex.
[0061] これらの化粧用パフのしっとり感について、官能試験を行った。  [0061] A sensory test was conducted on the moist feeling of these cosmetic puffs.
実施例 1〜4、比較例 1の化粧用パフについて、女性パネラー 8名により下記の評 価基準に従い評価を行い、評価者の最も多いものを評価結果とした。結果を表 1に 示す。  The cosmetic puffs of Examples 1 to 4 and Comparative Example 1 were evaluated according to the following evaluation criteria by 8 female panelists, and the evaluation results having the largest number of evaluators were used. The results are shown in Table 1.
[0062] ◎:しっとり感が非常に良好である  [0062] A: Moist feeling is very good
〇:しっとり感が良好である  ○: Moist feeling is good
X:しっとり感が良くない  X: Moist feeling is not good
[0063] [表 1] [0063] [Table 1]
Figure imgf000019_0001
Figure imgf000019_0001
表 1から明らかなように、本発明の範囲にある実施例の化粧用パフは、比較例と比 較して特有のしっとり感を有するものであった。  As is apparent from Table 1, the cosmetic puffs of the examples within the scope of the present invention had a specific moist feeling as compared with the comparative examples.

Claims

請求の範囲 The scope of the claims
[1] 水素化ジェン系ゴムを主成分とするフォームラバー力 なることを特徴とする化粧用 パフ。  [1] A cosmetic puff characterized by having a foam rubber power mainly composed of hydrogenated rubber.
[2] 前記水素化ジェン系ゴム力 共役ジェン単量体単位およびエチレン性不飽和-トリ ル単量体単位を含んでなる共重合体の水素化物であることを特徴とする請求の範囲 第 1項に記載の化粧用パフ。  [2] The hydrogenated rubber-based rubber force is a hydride of a copolymer comprising a conjugated diene monomer unit and an ethylenically unsaturated-tolyl monomer unit. The cosmetic puff according to Item.
[3] 前記水素化ジェン系ゴムの水素化率が 2〜40%である請求の範囲第 1項または第 2 項に記載の化粧用パフ。 [3] The cosmetic puff according to claim 1 or 2, wherein the hydrogenation rate of the hydrogenated rubber is 2 to 40%.
[4] 前記フォームラバー力 水素化ジェン系ゴムラテックスを発泡させ、次いで凝固させ てなるものであることを特徴とする請求の範囲第 1項〜第 3項に記載の化粧用パフ。 [4] The cosmetic puff according to any one of claims 1 to 3, wherein the foam rubber force is obtained by foaming and then coagulating the hydrogenated rubber latex.
[5] 水素化率が 2〜40%である水素化ジェン系ゴムラテックスを発泡させ、次いで凝固さ せる工程を含んでなることを特徴とする化粧用パフの製造方法。 [5] A method for producing a cosmetic puff comprising the steps of foaming and then coagulating a hydrogenated rubber latex having a hydrogenation rate of 2 to 40%.
[6] 前記水素化ジェン系ゴム力 共役ジェン単量体およびエチレン性不飽和-トリル単 量体を含んでなる単量体混合物を重合して得られる共重合体の水素化物であること を特徴とする請求の範囲第 5項に記載の化粧用パフの製造方法。 [6] A hydrogenated product of a copolymer obtained by polymerizing a monomer mixture comprising a conjugated diene monomer and an ethylenically unsaturated-tolyl monomer. The method for producing a cosmetic puff according to claim 5.
PCT/JP2005/015353 2004-08-24 2005-08-24 Cosmetic puff and process for producing the same WO2006022298A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531948A JPWO2006022298A1 (en) 2004-08-24 2005-08-24 Cosmetic puff and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-243326 2004-08-24
JP2004243326 2004-08-24

Publications (1)

Publication Number Publication Date
WO2006022298A1 true WO2006022298A1 (en) 2006-03-02

Family

ID=35967507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015353 WO2006022298A1 (en) 2004-08-24 2005-08-24 Cosmetic puff and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2006022298A1 (en)
WO (1) WO2006022298A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056722A1 (en) * 2014-10-06 2016-04-14 ㈜한국피앤피 Method for manufacturing non-absorbable puff for cream type cosmetics using nitrile rubber
KR101838058B1 (en) * 2017-11-13 2018-04-27 김찬회 Manufacturing method for cosmetic puff and cosmetic puff manufactured by the same
WO2019151020A1 (en) * 2018-01-31 2019-08-08 日本ゼオン株式会社 Foam rubber latex

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263846A (en) * 1998-03-18 1999-09-28 Nippon Zeon Co Ltd Copolymer rubber latex for foam rubber and foam rubber
JP2002065352A (en) * 2000-08-28 2002-03-05 Haba Laboratories Inc Sponge puff and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263846A (en) * 1998-03-18 1999-09-28 Nippon Zeon Co Ltd Copolymer rubber latex for foam rubber and foam rubber
JP2002065352A (en) * 2000-08-28 2002-03-05 Haba Laboratories Inc Sponge puff and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056722A1 (en) * 2014-10-06 2016-04-14 ㈜한국피앤피 Method for manufacturing non-absorbable puff for cream type cosmetics using nitrile rubber
KR101838058B1 (en) * 2017-11-13 2018-04-27 김찬회 Manufacturing method for cosmetic puff and cosmetic puff manufactured by the same
WO2019151020A1 (en) * 2018-01-31 2019-08-08 日本ゼオン株式会社 Foam rubber latex

Also Published As

Publication number Publication date
JPWO2006022298A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
EP2470576B1 (en) Nano-sized hydrogenated diene-based latex particles
WO2006022298A1 (en) Cosmetic puff and process for producing the same
JP5875932B2 (en) Purification method of polymer solution
JP3757605B2 (en) Copolymer rubber latex for foam rubber and foam rubber
JP5186992B2 (en) Copolymer latex for foam rubber, copolymer latex composition for foam rubber, and farm rubber
TWI297695B (en) Process for hydrogenating unsaturated polymers containing double bonds
CN104245752A (en) Method for producing polymer
JPH0971603A (en) Coagulation enlargement of diene-based polymer rubber latex, graft copolymer and thermoplastic resin composition
CN101993504B (en) Nano-sized hydrogenated diene-based latex particles
CN1297570C (en) Method for hydrogenation of polymers in dispersed medium
JP4175082B2 (en) Method for recovering hydrogenation catalyst and method for producing conjugated diene polymer hydride
JP3706474B2 (en) Method for agglomeration and enlargement of rubber latex particles
JP2016159037A (en) Aqueous composition for foam rubber and foam rubber
JPH04258618A (en) Production of thermoplastic resin powder
JP4110267B2 (en) Catalyst recovery method
JPH08269126A (en) Removal of metallic contaminant
JP7428097B2 (en) Method for producing latex for foam rubber and method for producing foam rubber
JP3457891B2 (en) Preparation of hydrogenated polymers with improved color.
JP4123852B2 (en) Hydrogenation catalyst stabilizer, hydrogenation catalyst solution and preparation method thereof, hydrogenation reaction method
JP2022153145A (en) Latex composition, foam rubber, and puff
JP2004292681A (en) Manufacturing process of latex of hydrogenated conjugated diene polymer
JP2002356510A (en) Method for producing polymer
JP2003231705A (en) Coagulable rubber latex
JP2022072840A (en) Latex composition, foam and puff
JPH11263847A (en) Copolymer rubber latex for foam rubber and foam rubber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006531948

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase