WO2006021604A1 - Separador gas-líquido con sensor de nivel capacitivo - Google Patents

Separador gas-líquido con sensor de nivel capacitivo Download PDF

Info

Publication number
WO2006021604A1
WO2006021604A1 PCT/ES2005/070081 ES2005070081W WO2006021604A1 WO 2006021604 A1 WO2006021604 A1 WO 2006021604A1 ES 2005070081 W ES2005070081 W ES 2005070081W WO 2006021604 A1 WO2006021604 A1 WO 2006021604A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
tank
level sensor
walls
sensor
Prior art date
Application number
PCT/ES2005/070081
Other languages
English (en)
French (fr)
Inventor
José PRIETO BARRANCO
Consuelo Goberna Selma
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to US11/628,340 priority Critical patent/US7895891B2/en
Priority to EP05774346.0A priority patent/EP1757911B1/en
Publication of WO2006021604A1 publication Critical patent/WO2006021604A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0042Thermo-electric condensing; using Peltier-effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes

Definitions

  • the present invention relates to a capacitive type level sensor, specially designed to apply to systems where working with reduced volumes, for example in pilot plants or at the laboratory level where, the size of the instruments and the measurement range, suppose limitations when using the meters that currently exist.
  • the object of the invention is to provide a sensor for level measurement in these microsystems, which works with virtually zero dead volumes, and that allows working at high pressures, even for systems in supercritical conditions, obtaining precise and linear responses in their measurements .
  • a reservoir where condensation of the reaction liquid products occurs at the exit of a reactor must have a continuous level measurement in order to regulate the exit of liquids from the reactor, phenomenon that happens with pressures in this high tank, of the order of 100 bar. Condensation occurs continuously and, if the intention is to avoid the accumulation of these products in order to enable the analysis of samples at certain reaction times, the situation should be as close as possible to "drop condensing, drop evacuated from the system ". For this it is essential to maintain a constant level, which also acts as a hydraulic closure of the system
  • the capacitive level sensor that the invention proposes solves in a completely satisfactory way the problem previously exposed, in the different aspects mentioned, since it is specially designed for application in systems where microvolumes are used.
  • the proposed invention for example in an application as a low-volume liquid-gas separator, will be formed by a capacitive type level sensor, incorporated into a liquid-gas separator.
  • Said separator is embodied in a metal piece, preferably solid and made of stainless steel, in which a hole has been drilled longitudinally, which constitutes a reservoir, as well as other machining corresponding to the inlet and outlet of the gas and liquid system.
  • a probe electrically isolated from the rest of the system is introduced through the upper part of this hole by means of closures preferably of an elastomeric type, chemically compatible and capable of withstanding high pressures.
  • the said solid part has a configuration preferably parallelepiped, which will enable its cooling, so it will act as a condenser, for it has the incorporation of a cooling system, for example a Peltier cell, which will keep in contact with the metal housing.
  • a cooling system for example a Peltier cell
  • the deposit of the parallelepiped piece allows liquids to condense on its walls at high pressure and at a temperature between -2 and 20 ° C, said condensed liquids being collected at its base, to which the probe is inserted, which is electrically isolated from that Deposit becomes one of the plates of an electric capacitor.
  • the constituent system of the probe is equipped with a series of pieces of insulating material, preferably Teflon, which in addition to guiding the whole, have the mission of eliminating dead volumes from the system.
  • the device has at least one inlet for gases and two outlets, one at the bottom of the tank to allow the exit of the condensed liquids and another to evacuate the gases.
  • the level sensor is capacitive, following the behavior of an electric capacitor, the operation of the system is therefore based on the following physical principle:
  • this capacitor acquires an electric charge, and the capacity of this capacitor is defined as the ratio between the load of any of its armatures and the potential difference between the two: c _ q
  • frequency signals are treated by a microprocessor, where they are received through a multiplexer, the microprocessor performs the necessary calculations, based on response coefficients, to produce an analog output signal interpretable by the control instruments, typically this is a 4/20 mA signal, proportional to the sensor response, which in turn is proportional to the height of the liquid in the tank, and which is transmitted to a controller in charge of the level control in the gas-liquid separator system.
  • the system calibration can be performed by digital communications with a computer, or by push buttons that select the frequency signals that will correspond to the maximum and minimum output signals.
  • Figure 1 Shows a schematic representation of a section of a view in elevation corresponding to the liquid-gas condenser with level sensor object of the invention.
  • Figure 2. Shows a block diagram representative of the level reading system of the capacitive sensor that the invention proposes.
  • Figure 3. Shows a graph showing the variation in the oscillation frequency of the capacitive level sensor object of the invention, when 0.5 cm 3 of ethanol is introduced four times in a row.
  • Figure 4.- Shows a graph showing the variation of the oscillation frequency with the relative dielectric constant for 2 cm 3 of liquid.
  • a capacitive level sensor that the invention proposes is formed by a solid metal part (1), made in this example in stainless steel, which has a borehole (2), which constitutes a reservoir, and through whose open top, through the hole (3), a probe (4) is introduced, electrically isolated from the rest of the system by means of elastomeric type closures, chemically compatible and capable of withstand high pressures, up to 400 bar.
  • the special parallelepiped configuration of the piece (1) allows its cooling to act as a condenser, by means of a Peltier cell, so that when applying a potential difference, a temperature difference between the plates of approximately 30 ° C is generated, so the hot plate will increase its temperature to 55 ° C. If a forced convection heat sink is used to lower the temperature of this plate to 25 ° C, then, and to maintain a temperature difference of 30 ° C, the temperature of the cold plate should drop to -5 o C, and put in contact with a metal block will get temperature in that block of the order of 0 o C.
  • the system has a series of parts referenced with (6) and (7), made of Teflon that are inside the set, and that eliminate dead volumes from the system.
  • the separator with capacitive sensor that appears in figure 1 has an inlet (8) of gases, including condensables, and two outputs, one of them referenced as (9), located in the lower area of the tank (2) for the evacuation of liquids, and another with reference (10), for the exit of gases, for example towards the pressure control of the system
  • the non-condensed gases will leave the system through the outlet (10) of the part (1).
  • the liquid contained between the metallic casing (1) and isolated probe (4) acts as a dielectric, modifying the electrical capacity of a capacitor system, so that by means of two oscillating circuits a proportional frequency signal will be emitted to the capacity of the system and therefore to the amount of liquid accumulated in the tank (2).
  • the block diagram shown in Figure 2 there are two oscillating systems, one measuring (11) and one compensation (12), identical for each of the two circuits, which are in close contact to make the compensation of oscillator circuit temperatures.
  • the frequency signals of these systems are received in a microprocessor (13) through a multiplexer (14).
  • the microprocessor (13) performs the necessary calculations to prepare an output signal (15), of type 4/20 mA, proportional to the response of the sensor, which in turn is proportional to the height of the liquid in the reservoir (2) .
  • the system calibration is carried out by digital communications (16) with a computer, or by means of buttons that select the frequency signals that correspond to the maximum and minimum output signals, 20 and 4 mA respectively.
  • liquid outlet (9) With the liquid outlet (9) closed with a cap and the gas outlet (10) open to the atmosphere for venting the system, it is introduced through the inlet of gases and condensables (8), by means of a graduated syringe whose needle is inserted to the inside of the tank (2), to avoid meniscus phenomena in the inlet, known and exact amounts of a compound.
  • quantities of 0.5 cm 3 of ethanol have been introduced on four consecutive occasions, accumulating a total of 2 cm 3 in the tank (2).
  • the signal provided by the RC oscillator circuit (before being converted into a 4/20 mA analog signal) can vary between 31,000 and 90,000 Hz for water, between 31,000 and 50,000 Hz for an alcohol and between 31,000 and 31,700 Hz for a hydrocarbon .
  • a zero error of the instrument of for example 50 Hz is negligible in the case of fluids with high dielectric constant, but decisive in the case of fluids with low dielectric constant. Therefore, it is important to fix the instrument zero with reasonable precision and for this the system must be empty but it will have been previously moistened with the product to be measured. Once the instrument zero is known, it can be verified that the output signal of the instrument is directly proportional to the liquid height in the tank (2).
  • the microprocessor (13) converts the output signal into an analog signal (15) interpretable by the control instruments. Typically this is a 4/20 mA signal. For this, it is sufficient to indicate to the instrument that 31,000 Hz corresponds to an output of 4 mA and, for example for ethanol, 50,000 Hz corresponds to an output of 20 mA. As of this moment, the instrument provides a 4/20 mA output signal proportional to the height of the liquid in the tank (2), except for geometric design issues.
  • the system described in the present invention has been used in a reactor for the study of catalytic microactivity, where when the reaction products evacuate the reactor, the liquids must be removed before circulating through the pressure control valve. These liquids cannot access the pressure control system, because if they did, the behavior of the control valve should be such that it would allow the passage of these liquids. Therefore, continuous openings or closures due to the need to quickly change the pitch coefficient, would cause a flow of pulsating piston flow along the reactor. Moreover, it is usually convenient for the good reproducibility of analytical techniques to carry out the liquid-gas separation before transporting the reaction products, for example, to a chromatograph. If the reactor works at atmospheric pressure, the removal of condensed liquids in the separator could be done manually by an operator.
  • the capacitive level sensor has also been used successfully in a plant for supercritical extraction with a counter current column. At the base of this column there is a deposit in which the exhausted liquids are collected after their circulation through the extraction column; and this tank is at a pressure of 400 bar, its volume being approximately 200 cm 3 .
  • the nature of the medium present in the system is supercritical CO 2 and the different liquids that descend to the reservoir can be of a very different nature: mineral oils, vegetable oils, tomato residues, dairy residues, etc.
  • Another application of this system is the level measurement in autoclaves, that is in high pressure agitated vessels, of small size, with a capacity between

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Separador gas-líquido con sensor de nivel capacitivo, de especial aplicación al sistemas donde se trabaja con volúmenes de fluidos reducidos y altas presiones, que comprende una pieza (1) metálica que cuenta con un taladro cerrado inferiormente, constituyendo así un depósito (2 ). Dicho depósito cuenta con al menos una entrada de gases (8), una salida de líquidos (9) y una salida de gases (10). Un sistema de refrigeración, materializado en una célula Peltier en contacto con las paredes de la pieza metálica (1) provoca la condensación del líquido, siendo éste recogido en el fondo del depósito (2) , hasta donde se introduce una sonda (4) aislada eléctricamente del sistema, que forma un condensador eléctrico con las paredes de la pieza (1). Dicho condensador variará su capacidad en función del nivel del líquido en el depósito (2), generándose por medio de un sistema oscilador una señal de frecuencia que es recibida por un microprocesador (13) que elabora una señal de salida proporcional a la respuesta del sensor y, por tanto, a la altura del líquido en el depósito (2).

Description

SEPARADOR GAS-LIQUIDO CON SENSOR DE NIVEL CAPACITIVO
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un sensor de nivel de tipo capacitivo, especialmente concebido para aplicar a sistemas donde se trabaja con volúmenes reducidos, por ejemplo en plantas piloto o a nivel de laboratorio donde, el tamaño de los instrumentos y el intervalo de medida, suponen limitaciones a la hora de utilizar los medidores que existen en la actualidad.
El objeto de la invención es proporcionar un sensor para la medida de nivel en estos microsistemas, que trabaje con volúmenes muertos prácticamente nulos, y que permita trabajar a presiones elevadas, incluso para sistemas en condiciones supercríticas, obteniendo respuestas precisas y lineales en sus de medidas.
ANTECEDENTES DE LA INVENCIÓN
Para la medida de nivel en un entorno industrial se están utilizando en la actualidad principios físicos muy diversos. Factores como la corrosividad o la inflamabilidad de las sustancias a medir, o las condiciones extremas de presión y temperatura, influirán en la selección del tipo de medidor, así como la precisión, la fiabilidad y las limitaciones físicas del sistema En dicha selección del tipo de medidor tienen preferencia los medidores estáticos frente a los conformados por partes móviles y los que no precisan contacto con el fluido o incluso son exteriores al sistema. Pero la industria ha centrado sus esfuerzos en la lectura de nivel en grandes depósitos.
Si bien existen multitud de principios operativos en los que se basan los diferentes medidores de nivel que se encuentran en el mercado (flotabilidad, ultrasonidos, conductividad, láser, presión diferencial, resistividad, capacidad, microondas, radioactividad, deformación, etc.), en el entorno de una escala micro-planta piloto o reactor de laboratorio básicamente se descarta cualquier tipo de instrumento para la medida de nivel, como consecuencia de las limitaciones de instalación derivadas del tamaño de los instrumentos en unos casos, y del intervalo de medida que se pretende realizar en otros. El único método válido para su medida en estos sistemas es la medida indirecta por medio de la presión diferencial existente entre los extremos de un depósito que resulta de la presión que sobre su base ejerce la columna hidrostática:
P= p - g - h
Centrando la situación actual de la tecnología disponible en su aplicación al tipo de sistemas que nos ocupa, podemos afirmar que no existe en el mercado ningún instrumento para la medida de nivel que pueda resolver con satisfacción esta medida dadas las especificaciones de tamaño que requiere su control en un reactor de laboratorio operando en continuo.
Así, por ejemplo, un depósito donde se produce condensación de los productos líquidos de reacción a la salida de un reactor, debe disponer de una medida en continuo de nivel con objeto de regular la salida de líquidos del reactor, fenómeno que sucede con presiones en este depósito altas, del orden de 100 bar. La condensación sucede de forma continua y, si se pretende evitar la acumulación de estos productos con el objeto de posibilitar el análisis de muestras en tiempos determinados de reacción, la situación debería ser lo más aproximada posible a "gota que condensa, gota evacuada del sistema". Para ello es imprescindible mantener un nivel constante, que además actúa como cierre hidráulico del sistema
Actualmente existen diferentes constructores de este tipo de sistemas que utilizan la medida de presión diferencial en el depósito como medida indirecta de nivel en el mismo. Se trata, a grandes rasgos, de dos ramas, una superior y una inferior, que captan la presión diferencial entre los extremos del depósito. Pero con este sistema se debe mantener la columna de fluido varios centímetros de altura por encima de la rama de lectura de presión alta, debido a la precisión de estos equipos y a su error cero, elegir una altura insuficiente podría ser crítico si el error de cero enmascara la señal del transmisor y el sistema de control recibiera una señal equivocada. Si ocurriese este fenómeno, la válvula de control que regula la altura de esa columna de líquido tendería a abrir hasta evacuar el líquido del depósito, momento en el cual se perdería el sello hidráulico y los gases del sistema saldrían al exterior, pudiendo ocasionar un accidente por su toxicidad o inflamabilidad.
Si a esto se añade la columna de líquido que debe rellenar la rama que transmite la presión al instrumento medidor y la cantidad de líquido que debe rellenar la cámara del instrumento de lectura, se tendría que realizar un diseño con un considerable volumen muerto, lo que en una situación en la que se alimenta al sistema con un caudal de líquidos pequeño, del orden de 0.01 ml/min, se necesitaría un periodo de tiempo considerable, incluso de varias horas, para obtener en la salida la primera gota de muestra de líquido.
Esto se obvia manteniendo un líquido inundando el sistema de forma permanente, lo que contamina la muestra. En cualquier caso es inevitable que la muestra en la salida sea una media de los productos recogidos en un largo periodo de tiempo. La situación no es crítica en plantas piloto de gran envergadura, donde los caudales son considerablemente superiores y estos efectos son despreciables, pero es definitivamente inaceptable en reactores que trabajan con volúmenes muy reducidos, como es el caso, por ejemplo, de los estudios de microactividad catalítica, plantas piloto en condiciones supercríticas con columna contracorriente, autoclaves agitados de volúmenes comprendidos entre 50 y 1000 mi, y otros sistemas de pequeño volumen.
DESCRIPCIÓN DE LA INVENCIÓN
El sensor de nivel capacitivo que la invención propone resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta, en los diferentes aspectos comentados, ya que está especialmente concebido para su aplicación en sistemas donde se trabaja con microvolúmenes.
Más concretamente, la invención propuesta, por ejemplo en una aplicación como separador líquido-gas de bajo volumen muerto, estará formada por un sensor de nivel de tipo capacitivo, incorporado a un separador líquido-gas. Dicho separador se materializa en una pieza metálica, preferentemente maciza y de acero inoxidable, en la que se ha perforado un taladro longitudinalmente, que constituye un depósito, así como otros mecanizados que corresponden a la entrada y salidas del sistema de gases y líquidos. Por la parte superior de este orificio se introduce una sonda aislada eléctricamente del resto del sistema mediante cierres preferentemente de tipo elastomérico, químicamente compatible y que es capaz de soportar altas presiones.
La citada pieza maciza presenta una configuración preferentemente paralelepípeda, lo que va a posibilitar su refrigeración, por lo que va actuar como condensador, para lo cuenta con la incorporación de un sistema de refrigeración, por ejemplo de una célula Peltier, que se mantendrá en contacto con la carcasa metálica.
El depósito de la pieza paralelepípeda permite que en sus paredes se condensen los líquidos a alta presión y a una temperatura de entre -2 y 20° C, recogiéndose dichos líquidos condensados en su base, hasta donde es introducida la sonda, que aislada eléctricamente de ese depósito se convierte en una de las placas de un condensador eléctrico.
Es importante destacar que el sistema constitutivo de la sonda, está dotado de una serie de piezas de material aislante, preferentemente de teflón, que además de guiar al conjunto, tienen la misión de eliminar los volúmenes muertos del sistema.
El dispositivo cuenta, por lo menos, con una entrada para gases y dos salidas, una en la parte inferior del depósito para permitir la salida de los líquidos condensados y otra para evacuación de los gases.
Como se ha apuntado anteriormente, el sensor de nivel es de tipo capacitivo, siguiendo el comportamiento de un condensador eléctrico, el íuncionamiento del sistema se basa por tanto en el siguiente principio físico:
Cuando entre las placas de dos conductores se encuentra presente un dieléctrico y se aplica una diferencia de potencial entre estas placas, este condensador adquiere una carga eléctrica, y la capacidad de este condensador se define como el cociente entre la carga de cualquiera de sus armaduras y la diferencia de potencial existente entre ambas: c_ q
C V1 - V2 Si se aplica este principio al sistema propuesto, cuando existe la presencia de líquido entre la sonda aislada y la carcasa del depósito metálico, este líquido actúa como dieléctrico, modificando la capacidad eléctrica del sistema condensador. Un circuito oscilante RC proporcionará entonces una señal de frecuencia proporcional a la capacidad del sistema, y que por tanto es proporcional a la altura del líquido en el depósito. La señal de salida de este sistema es además proporcional a la constante dieléctrica de la sustancia que actúa como dieléctrico. De este modo, cuanto más grande sea la diferencia de constante dieléctrica entre el líquido y el gas que ocupe el resto del espacio del depósito, más señal de salida generará el sistema
Estas señales de frecuencia son tratadas por un microprocesador, dondese reciben a través de un multiplexor, el microprocesador realiza los cálculos necesarios, en función de unos coeficientes de respuesta, para elaborar una señal de salida analógica interpretable por los instrumentos de control, típicamente esta es una señal 4/20 mA, proporcional a la respuesta del sensor, que a su vez es proporcional a la altura de líquido en el depósito, y que es transmitida a un controlador encargado del control de nivel en el sistema separador líquido-gas. La calibración del sistema puede realizarse mediante comunicaciones digitales con un ordenador, o mediante pulsadores que seleccionan las señales de frecuencia que corresponderán a las señales máxima y mínima de salida.
Junto con el sensor trabajan en paralelo dos circuitos electrónicos que se encuentran exactamente a la misma temperatura, con lo que, haciendo uso del microprocesador para la realización de los cálculos, el error debido a los cambios de temperatura en el circuito electrónico queda compensado, obteniendo como resultado final un sensor con una elevada precisión incluso para sistemas con constante dieléctrica muy baja.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1. - Muestra una representación esquemática de un corte de una vista en alzado correspondiente al condensador líquido-gas con sensor de nivel objeto de la invención.
La figura 2.- Muestra un diagrama de bloques representativo del sistema de lectura de nivel del sensor capacitivo que la invención propone.
La figura 3.- Muestra una gráfica donde se ha representado la variación en la frecuencia de oscilación del sensor de nivel capacitivo objeto de la invención, cuando se introduce 0.5 cm3 de etanol en cuatro ocasiones consecutivas.
La figura 4.- Muestra una gráfica donde se observa la variación de la frecuencia de oscilación con la constante dieléctrica relativa para 2 cm3 de líquido.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las figuras reseñadas, y más concretamente de la figura 1, puede observarse como sensor de nivel capacitivo que la invención propone está formado por una pieza maciza (1), metálica, realizada en este ejemplo en acero inoxidable, que cuenta con un taladro (2), que constituye un depósito, y por cuya parte superior abierta, por el orificio (3), se introduce una sonda (4), aislada eléctricamente del resto del sistema mediante cierres de tipo elastomérico, químicamente compatible y capaz de soportar presiones altas, de hasta 400 bar.
La especial configuración paralelepípeda de la pieza (1), posibilita su refrigeración para que actúe como condensador, mediante una célula Peltier, de manera que al aplicar una diferencia de potencial, se genera una diferencia de temperatura entre las placas de aproximadamente 30° C, por lo que la placa caliente incrementará su temperatura hasta 55° C. Si se utiliza un disipador de calor por convección forzada para bajar la temperatura de esta placa hasta 25° C, entonces, y para mantenerse una diferencia de temperatura de 30° C, la temperatura de la placa fría deberá bajar hasta -5o C, y puesta en contacto con un bloque metálico conseguirá temperatura en ese bloque del orden de 0o C.
En las paredes del depósito (2) condensan los líquidos a alta presión y a una temperatura de aproximadamente 2o C. En la base de dicho depósito (2) se recogen el aislador eléctrico (5) de teflón y la sonda (4), que aislada eléctricamente de ese depósito se convierte en una de las placas del condensador.
El sistema cuenta con una serie de piezas referenciadas con (6) y (7), fabricadas en teflón que están en el interior del conjunto, y que consiguen eliminar los volúmenes muertos del sistema.
El separador con sensor capacitivo que aparece en la figura 1, cuenta con una entrada (8) de gases, incluidos los condensables, y dos salidas, una de ellas referenciada como (9), situada en la zona inferior del depósito (2) para la evacuación de líquidos, y otra con referencia (10), para la salida de gases, por ejemplo hacia el control de presión del sistema
Los gases entran en el sistema separador líquido-gas con sensor capacitivo de nivel, por la entrada (8), una vez en el interior del depósito (2), como este actúa como condensador, se van a condensar los líquidos que se recogen en el fondo de dicho depósito (2), de forma que en cuanto se condensa una gota de líquido, esa variación en el nivel del depósito (2) es detectada por la sonda (4), siendo el líquido evacuado por la salida (9) mediante una válvula de control accionada por un controlador de nivel que recibe la señal del sensor. Los gases no condensados saldrán del sistema por la salida (10) de la pieza (1).
El líquido contenido entre la carcasa (1) metálica y sonda (4) aislada, como anteriormente se ha expuesto, actúa como dieléctrico, modificando la capacidad eléctrica de un sistema condensador, de manera que mediante dos circuitos oscilantes se emitirá una señal de frecuencia proporcional a la capacidad del sistema y por tanto a la cantidad de líquido acumulada en el depósito (2).
Según el diagrama de bloques representado en la figura 2, existen dos sistemas osciladores, uno de medida (11) y otro de compensación (12), idénticos para cada uno de los dos circuitos, que se encuentran en íntimo contacto para realizar así la compensación de temperaturas del circuito oscilador. Las señales de frecuencia de estos sistemas se reciben en un microprocesador (13) a través de un multiplexor (14). El microprocesador (13) realiza los cálculos necesarios para elaborar una señal de salida (15), de tipo 4/20 mA, proporcional a la respuesta del sensor, que a su vez es proporcional a la altura del líquido en el depósito (2). La calibración del sistema se realiza mediante comunicaciones digitales (16) con un ordenador, o mediante pulsadores que seleccionan las señales de frecuencia que corresponden a las señales máxima y mínima de salida, 20 y 4 mA respectivamente.
Es importante que el sistema sea calibrado correctamente para obtener unas medidas lo más fiables posible, para ello, con el circuito electrónico descrito y el dispositivo sensor, se procede de la siguiente manera:
Con la salida de líquido (9) cerrada con un tapón y la salida de gases (10) abierta a la atmósfera para venteo del sistema, se introduce por la entrada de gases y condensables (8), mediante una jeringa graduada cuya aguja se introduce hasta el interior del depósito (2), para evitar fenómenos de menisco en la boca de entrada, cantidades conocidas y exactas de un compuesto. En un ejemplo de realización preferente de la invención se han introducido cantidades de 0.5 cm3 de etanol en cuatro ocasiones consecutivas, acumulando un total de 2 cm3 en el depósito (2).
En la figura 3 se puede apreciar como cambia la respuesta en frecuencia por cada adición de 0.5 cm3 de muestra en el sistema descrito. Las frecuencias que se visualizan en la gráfica comprenden el rango que va desde 30.000 Hz hasta 51.000 Hz. La frecuencia de oscilación del sistema vacío es de 30.920 Hz y la del sistema con 2 cm3 de etanol es de 50.275 Hz, habiéndose producido un cambio en la respuesta de frecuencia del sistema de 19.355 Hz, para un compuesto con constante dieléctrica relativa de 25.3 a 25° C.
La misma experiencia se ha realizado para un determinado número de compuestos que abarcan toda la escala de constantes dieléctricas, desde 1.89 para el hexano, hasta 80.1 para el agua desionizada. Los datos para las cuatro adiciones consecutivas de 0.5 cm3, y de las constantes dieléctricas relativas se recogen en la siguiente tabla:
COMPUESTO BASE 0.5 ce Ice 1.5 ce 2 cc DIF ζ(20°) FÓRMUL
Hexano 30923 31118 31314 31516 31710 787 1,89 CgHi4
Heptano 30930 31115 31330 31540 31730 800 1,92 C7H
Hexadecano 30960 31198 31438 31679 31914 954 2,05 C6H34
Aceite hidráulico 30970 31225 31522 31815 32062 1092
Aceite mecánico 30988 31280 31595 31897 32170 1182
Carbono tetracloruro 30955 31225 31512 31790 32060 1105 2,24 Cl4 Tolueno 30935 31245 31590 31923 32244 1390 2,379 C7H8
Aceitevegetal 30985 31435 31922 32403 32808 1823
Acidoacético 30940 32005 32260 34511 35512 4572 6,17 C2H4O2
Diclorometano 30920 32503 34191 36000 37715 6795 9,08 CH2Cl2
1,2-Dicloroetano 30918 32790 34945 37128 38900 7982 10,42 C2H4Cl2
Isopropanol 30945 34645 38808 43000 46525 15580 20,18 C3H8O
Etanol 30920 35710 40800 46060 50275 19355 25,3 C2H6O
Metanol 31632 37800 45200 51452 56210 24578 30 CH4O
Glicerol 31377 40840 49470 57786 65835 34458 44.52 C3H8O3
Aguadesionizada 31000 45810 63020 78745 93420 62420 80,1 H2O
Aguapotable 31000 51015 77665 109800 145700 114700 H2O
Analizando la relación existente entre la frecuencia de oscilación del sensor de nivel y su constante dieléctrica relativa, se comprueba que dicha respuesta es extraordinariamente lineal para toda la escala de constantes dieléctricas, como se aprecia en la figura 4, lo que permite calcular la respuesta esperada para un determinado compuesto en función de la constante dieléctrica del mismo.
La señal que proporciona el circuito oscilador RC (antes de ser convertida en una señal analógica 4/20 mA) puede variar entre 31.000 y 90.000 Hz para el agua, entre 31.000 y 50.000 Hz para un alcohol y entre 31.000 y 31.700 Hz para un hidrocarburo. En una situación como esta, un error de cero del instrumento de por ejemplo 50 Hz es despreciable en el caso de fluidos con alta constante dieléctrica, pero determinante en el caso de los fluidos con constante dieléctrica baja. Por ello, es importante fijar con razonable precisión el cero del instrumento y para ello el sistema deberá encontrase vacío pero habrá sido previamente humedecido con el producto a medir. Una vez conocido el cero del instrumento puede comprobarse que la señal de salida del instrumento es directamente proporcional a la altura de líquido en el depósito (2).
A efectos de control, el microprocesador (13) convierte la señal de salida en una señal analógica (15) interpretable por los instrumentos de control. Típicamente esta es una señal 4/20 mA. Para ello basta indicarle al instrumento que 31.000 Hz corresponden a una salida de 4 mA y, por ejemplo para etanol, 50.000 Hz se corresponden con una salida de 20 mA. A partir de este momento, el instrumento proporciona una señal de salida 4/20 mA proporcional a la altura de líquido en el depósito (2), exceptuando cuestiones de diseño geométrico.
El sistema descrito en la presente invención ha sido utilizado en un reactor para estudio de microactividad catalítica, donde cuando los productos de reacción evacúan el reactor, debe procederse a separar los líquidos antes de circular a través de la válvula de control de presión. Estos líquidos no pueden acceder al sistema de control de presión, pues si lo hicieran, el comportamiento de la válvula de control debería ser tal que permitiera el paso de estos líquidos. Por ello continuas aperturas o cierres debidos a la necesidad de variar rápidamente el coeficiente de paso, provocarían una circulación de flujo de pistón pulsante a lo largo del reactor. Más aún, habitualmente es conveniente para la buena reproducibilidad de las técnicas analíticas el efectuar la separación líquido - gas antes de transportar los productos de reacción por ejemplo hasta un cromatógrafo. Si el reactor trabaja a presión atmosférica, la extracción de los líquidos condensados en el separador podría realizarse manualmente por un operador. Pero esto no es posible para un equipo que opere a presión superior a la atmosférica, ya que la pérdida del sello hidráulico de los productos líquidos en la base del separador permitiría una fuga importante de gases a la atmósfera, pudiendo ser causa de accidente. De manera que todos estos problemas se han solucionado colocando previamente a la salida de los gases a través de la válvula de control de presión, el separador líquido-gas con sensor de nivel incorporado, que condensa los compuestos de baja temperatura de ebullición, que serán evacuados del sistema en tiempo real, a medida que se van depositando en el separador. Esta evacuación debe ser continua si se pretende que el análisis de estos productos líquidos proporcione información sensible acerca de la evolución del proceso. Se ha trabajado con caudales de líquido de entrada de entre 0,05 ml/m y 5ml/m, a plena satisíácción.
El sensor de nivel capacitivo también ha sido utilizado con éxito en una planta para extracción supercrítica con columna en contracorriente. En la base de esta columna existe un depósito en el que se recogen los líquidos agotados después de su circulación por la columna de extracción; y este depósito se encuentra a una presión de 400 bar, siendo su volumen de aproximadamente 200 cm3. La naturaleza del medio presente en el sistema es CO2 supercrítico y los diferentes líquidos que descienden hasta el depósito pueden ser de naturaleza muy diferente: aceites minerales, aceites vegetales, residuos de tomate, residuos lácteos, etc. Otra aplicación de este sistema es la medida de nivel en autoclaves, es decir en recipientes agitados a alta presión, de pequeño tamaño, con una capacidad comprendida entre
50 y 1000 mi, para la regulación del nivel del líquido, cuando al sistema se le dosifica un líquido en continuo y la señal de salida del sensor gobierna una válvula para la salida de los líquidos.

Claims

REIVINDICACIONES
Ia.- Sensor de nivel capacitivo para sistemas de volumen reducido, caracterizado porque está formado por una pieza o carcasa (1) metálica, preferentemente de acero inoxidable, que cuenta con un taladro cerrado inferiormente, constituyendo un depósito (2), y con al menos una entrada (8) de gases y dos salidas (9) y (10) para líquidos y gases respectivamente, actuando dicha pieza (1) como un condensador con la colaboración de un sistema de refrigeración, materializado en una célula Peltier, que se mantiene en contacto con las paredes de la carcasa (1), permitiendo así que los líquidos condensen por las paredes del depósito (2), siendo recogidos en el fondo de dicho depósito, hasta donde es introducida una sonda (4), por el orificio (3), aislada eléctricamente del resto del sistema, y que constituye junto a la carcasa (1) metálica un condensador eléctrico, de forma que el líquido presente entre la sonda aislada (4) y la carcasa del depósito (1), actúa como dieléctrico, modificando la capacidad eléctrica del sistema condensador y emitiendo una señal de salida proporcional a dicha capacidad, y por tanto al nivel de líquido en el depósito(2).
2a.- Sensor de nivel capacitivo para sistemas de volumen reducido, según reivindicación primera, caracterizado porque los líquidos condensa en las paredes del depósito (2) a elevadas presiones y a una temperatura comprendida entre -2 y 20° C.
3a.- Sensor de nivel capacitivo para sistemas de volumen reducido, según reivindicación Ia, caracterizado porque dicha señal de salida es una señal de frecuencia emitida por un sistema oscilador (11) y (12), y recibida por un microprocesador (13) a través de un multiplexor (14), habiéndose dispuesto que el microprocesador (13) realice los cálculos necesarios elaborando una señal de salida (15) proporcional a la respuesta del sensor y al nivel del líquido en el depósito (2).
PCT/ES2005/070081 2004-06-03 2005-06-02 Separador gas-líquido con sensor de nivel capacitivo WO2006021604A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/628,340 US7895891B2 (en) 2004-06-03 2005-06-02 Gas/liquid separator comprising a capacitive level sensor
EP05774346.0A EP1757911B1 (en) 2004-06-03 2005-06-02 Gas/liquid separator comprising a capacitive level sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200401349A ES2249139B1 (es) 2004-06-03 2004-06-03 Sensor de nivel capacitivo valido para sistemas de volumen muy reducido.
ESP200401349 2004-06-03

Publications (1)

Publication Number Publication Date
WO2006021604A1 true WO2006021604A1 (es) 2006-03-02

Family

ID=35967181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070081 WO2006021604A1 (es) 2004-06-03 2005-06-02 Separador gas-líquido con sensor de nivel capacitivo

Country Status (4)

Country Link
US (1) US7895891B2 (es)
EP (1) EP1757911B1 (es)
ES (1) ES2249139B1 (es)
WO (1) WO2006021604A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2353288B1 (es) * 2009-08-17 2012-01-09 Consejos Superior De Investigaciones Cientificas Dispositivo separador capacitivo.
WO2017039789A1 (en) * 2015-08-31 2017-03-09 Exxonmobil Upstream Research Company Corp-Urc-E2. 4A.296 Smart electrochemical sensor for pipeline corrosion measurement
US11674838B2 (en) 2019-04-04 2023-06-13 Poseidon Systems Llc Capacitive fringe field oil level sensor with integrated humidity and temperature sensing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470300A (en) * 1981-04-10 1984-09-11 Nissan Motor Company, Limited Apparatus for and method of determining a capacitance
US4506510A (en) * 1982-06-10 1985-03-26 Commissariat A L'energie Atomique Apparatus for continuously metering vapors contained in the atmosphere
US6272906B1 (en) * 1998-09-01 2001-08-14 Institut Francais Du Petrole Device for separating and for measuring the volume of the various phases of a mixture of fluids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2186842A (en) * 1936-07-25 1940-01-09 Gen Electric Electric capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470300A (en) * 1981-04-10 1984-09-11 Nissan Motor Company, Limited Apparatus for and method of determining a capacitance
US4506510A (en) * 1982-06-10 1985-03-26 Commissariat A L'energie Atomique Apparatus for continuously metering vapors contained in the atmosphere
US6272906B1 (en) * 1998-09-01 2001-08-14 Institut Francais Du Petrole Device for separating and for measuring the volume of the various phases of a mixture of fluids

Also Published As

Publication number Publication date
ES2249139A1 (es) 2006-03-16
US7895891B2 (en) 2011-03-01
US20070283753A1 (en) 2007-12-13
EP1757911B1 (en) 2019-06-26
EP1757911A1 (en) 2007-02-28
ES2249139B1 (es) 2007-05-01

Similar Documents

Publication Publication Date Title
Le Neindre et al. Experimental Thermodynamics: Experimental Thermodynamics of Non-Reacting Fluids
CA2822564C (en) Microfluidic system and method for performing a flash separation of a reservoir fluid sample
WO2006021604A1 (es) Separador gas-líquido con sensor de nivel capacitivo
US2380082A (en) Apparatus for use in evaluating gas reservoirs
US4751841A (en) Liquid impoundment leak rate detector
ES2353288B1 (es) Dispositivo separador capacitivo.
Wallace Jr et al. Pressure-Density-Temperature Relations of He 3-He 4 Mixtures near the Liquid-Vapor Critical Point
CN110763371B (zh) 一种基于热管固定点的干体炉
RU2534377C1 (ru) Мерник для жидкости
CN101311720A (zh) 一种用于气体吸附/脱附动力学测定的努森池-质谱仪
Weclawski et al. A new apparatus for total-pressure measurements by the static method: Application to the vapour pressures of cyclohexane, propan-2-ol and pyridine
Hall Jr Adsorption of pure and multicomponent Gases on Wet Fruitland Coal
RU2490451C1 (ru) Способ контроля глубинной пробы
RU2776273C1 (ru) Контрольная течь со шкалой
SU1120185A1 (ru) Устройство дл градуировки термопреобразовател
Isaac et al. The Accurate Calibration of Capillary Tubes
RU2350924C1 (ru) Способ определения сжимаемости жидкости и устройство для его осуществления
RU2187795C1 (ru) Устройство для определения коэффициента газопроницаемости порошков
JP2007163352A (ja) 液面計及び液面の測定方法
SU861979A1 (ru) Устройство дл контрол стабильности температурного режима в помещении
SU259439A1 (ru) Измеритель давления агрессивных высокотемпературных жид-костей
RU2539811C1 (ru) Способ определения водонасыщенности образцов пород
SU905740A1 (ru) Устройство дл определени газосодержани разлагающихс и токсичных жидкостей
RU45028U1 (ru) Устройство для измерения объемной активности радона
SU306395A1 (ru) Прибор для определения плотности твердых тел

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005774346

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005774346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11628340

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11628340

Country of ref document: US