WO2006020919A2 - Compositions and methods for self-renewal and differentiation in human embryonic stem cells - Google Patents
Compositions and methods for self-renewal and differentiation in human embryonic stem cells Download PDFInfo
- Publication number
- WO2006020919A2 WO2006020919A2 PCT/US2005/028829 US2005028829W WO2006020919A2 WO 2006020919 A2 WO2006020919 A2 WO 2006020919A2 US 2005028829 W US2005028829 W US 2005028829W WO 2006020919 A2 WO2006020919 A2 WO 2006020919A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- approximately
- composition
- cell
- inhibitor
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 90
- 230000004069 differentiation Effects 0.000 title claims description 49
- 210000001671 embryonic stem cell Anatomy 0.000 title claims description 12
- 210000004027 cell Anatomy 0.000 claims abstract description 448
- 239000003112 inhibitor Substances 0.000 claims abstract description 81
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 claims abstract description 48
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 claims abstract description 48
- 238000004113 cell culture Methods 0.000 claims abstract description 32
- 210000004962 mammalian cell Anatomy 0.000 claims abstract description 26
- 230000037361 pathway Effects 0.000 claims abstract description 26
- 230000014509 gene expression Effects 0.000 claims description 111
- CZQHHVNHHHRRDU-UHFFFAOYSA-N LY294002 Chemical group C1=CC=C2C(=O)C=C(N3CCOCC3)OC2=C1C1=CC=CC=C1 CZQHHVNHHHRRDU-UHFFFAOYSA-N 0.000 claims description 81
- 102000043168 TGF-beta family Human genes 0.000 claims description 51
- 108091085018 TGF-beta family Proteins 0.000 claims description 51
- 210000001900 endoderm Anatomy 0.000 claims description 51
- 210000004039 endoderm cell Anatomy 0.000 claims description 46
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 claims description 39
- 101710123134 Ice-binding protein Proteins 0.000 claims description 38
- 101710082837 Ice-structuring protein Proteins 0.000 claims description 38
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 claims description 38
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 claims description 38
- 229960002930 sirolimus Drugs 0.000 claims description 38
- 239000003636 conditioned culture medium Substances 0.000 claims description 37
- 229940126638 Akt inhibitor Drugs 0.000 claims description 19
- 102000004142 Trypsin Human genes 0.000 claims description 19
- 108090000631 Trypsin Proteins 0.000 claims description 19
- 238000000338 in vitro Methods 0.000 claims description 19
- 239000003197 protein kinase B inhibitor Substances 0.000 claims description 19
- 239000012588 trypsin Substances 0.000 claims description 19
- 102000001267 GSK3 Human genes 0.000 claims description 18
- 108060006662 GSK3 Proteins 0.000 claims description 18
- NFVJNJQRWPQVOA-UHFFFAOYSA-N n-[2-chloro-5-(trifluoromethyl)phenyl]-2-[3-(4-ethyl-5-ethylsulfanyl-1,2,4-triazol-3-yl)piperidin-1-yl]acetamide Chemical compound CCN1C(SCC)=NN=C1C1CN(CC(=O)NC=2C(=CC=C(C=2)C(F)(F)F)Cl)CCC1 NFVJNJQRWPQVOA-UHFFFAOYSA-N 0.000 claims description 18
- 108010023082 activin A Proteins 0.000 claims description 17
- 108700031316 Goosecoid Proteins 0.000 claims description 16
- 102000050057 Goosecoid Human genes 0.000 claims description 16
- 230000003247 decreasing effect Effects 0.000 claims description 15
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 claims description 14
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 14
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 12
- 230000019491 signal transduction Effects 0.000 claims description 11
- 101000642523 Homo sapiens Transcription factor SOX-7 Proteins 0.000 claims description 10
- 108091005804 Peptidases Proteins 0.000 claims description 10
- 239000004365 Protease Substances 0.000 claims description 10
- 102100036730 Transcription factor SOX-7 Human genes 0.000 claims description 10
- 229940116355 PI3 kinase inhibitor Drugs 0.000 claims description 8
- 102000004887 Transforming Growth Factor beta Human genes 0.000 claims description 8
- 108090001012 Transforming Growth Factor beta Proteins 0.000 claims description 8
- 239000002935 phosphatidylinositol 3 kinase inhibitor Substances 0.000 claims description 8
- 210000002950 fibroblast Anatomy 0.000 claims description 7
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 claims description 7
- 102100024506 Bone morphogenetic protein 2 Human genes 0.000 claims description 6
- 102100024505 Bone morphogenetic protein 4 Human genes 0.000 claims description 6
- 101150068639 Hnf4a gene Proteins 0.000 claims description 6
- 101000762366 Homo sapiens Bone morphogenetic protein 2 Proteins 0.000 claims description 6
- 101000762379 Homo sapiens Bone morphogenetic protein 4 Proteins 0.000 claims description 6
- 108010023079 activin B Proteins 0.000 claims description 6
- QDLHCMPXEPAAMD-QAIWCSMKSA-N wortmannin Chemical compound C1([C@]2(C)C3=C(C4=O)OC=C3C(=O)O[C@@H]2COC)=C4[C@@H]2CCC(=O)[C@@]2(C)C[C@H]1OC(C)=O QDLHCMPXEPAAMD-QAIWCSMKSA-N 0.000 claims description 6
- QDLHCMPXEPAAMD-UHFFFAOYSA-N wortmannin Natural products COCC1OC(=O)C2=COC(C3=O)=C2C1(C)C1=C3C2CCC(=O)C2(C)CC1OC(C)=O QDLHCMPXEPAAMD-UHFFFAOYSA-N 0.000 claims description 6
- 239000006143 cell culture medium Substances 0.000 claims description 5
- 210000001705 ectoderm cell Anatomy 0.000 claims description 4
- 210000004602 germ cell Anatomy 0.000 claims description 4
- 210000002336 epiblast cell Anatomy 0.000 claims description 3
- 208000001608 teratocarcinoma Diseases 0.000 claims description 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 4
- XSYODYDCSYFRRB-KTTODTSBSA-N [(2r)-2-methoxy-3-octadecoxypropyl] (2,3,4-trihydroxycyclohexyl) hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOC[C@@H](OC)COP(O)(=O)OC1CCC(O)C(O)C1O XSYODYDCSYFRRB-KTTODTSBSA-N 0.000 claims 2
- 230000024245 cell differentiation Effects 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000012258 culturing Methods 0.000 abstract description 5
- 210000000130 stem cell Anatomy 0.000 abstract description 4
- 108090000623 proteins and genes Proteins 0.000 description 39
- 102100034593 Tripartite motif-containing protein 26 Human genes 0.000 description 29
- 239000003550 marker Substances 0.000 description 27
- 230000015572 biosynthetic process Effects 0.000 description 25
- 238000003753 real-time PCR Methods 0.000 description 24
- 238000011282 treatment Methods 0.000 description 24
- 108091007960 PI3Ks Proteins 0.000 description 22
- 239000002609 medium Substances 0.000 description 22
- 101100310648 Mus musculus Sox17 gene Proteins 0.000 description 16
- 230000000694 effects Effects 0.000 description 16
- 108060005980 Collagenase Proteins 0.000 description 15
- 102000029816 Collagenase Human genes 0.000 description 15
- 229960002424 collagenase Drugs 0.000 description 15
- 210000002966 serum Anatomy 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 102100026966 Thrombomodulin Human genes 0.000 description 14
- 239000003102 growth factor Substances 0.000 description 14
- 241000283707 Capra Species 0.000 description 12
- 238000011161 development Methods 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 210000003734 kidney Anatomy 0.000 description 12
- 108091030071 RNAI Proteins 0.000 description 11
- 108010079274 Thrombomodulin Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 238000000684 flow cytometry Methods 0.000 description 11
- 230000009368 gene silencing by RNA Effects 0.000 description 11
- 238000004115 adherent culture Methods 0.000 description 10
- -1 but not limited to Proteins 0.000 description 10
- 210000002242 embryoid body Anatomy 0.000 description 10
- 210000001654 germ layer Anatomy 0.000 description 10
- 210000005260 human cell Anatomy 0.000 description 10
- 108010082117 matrigel Proteins 0.000 description 10
- 230000011664 signaling Effects 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 210000000349 chromosome Anatomy 0.000 description 9
- 238000010790 dilution Methods 0.000 description 9
- 239000012895 dilution Substances 0.000 description 9
- 208000037068 Abnormal Karyotype Diseases 0.000 description 8
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 210000003716 mesoderm Anatomy 0.000 description 8
- 230000002269 spontaneous effect Effects 0.000 description 8
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 108091008611 Protein Kinase B Proteins 0.000 description 7
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 7
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 108010059616 Activins Proteins 0.000 description 6
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 6
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 6
- 101150021185 FGF gene Proteins 0.000 description 6
- 102100026818 Inhibin beta E chain Human genes 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 239000000488 activin Substances 0.000 description 6
- 229940112869 bone morphogenetic protein Drugs 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 108020004999 messenger RNA Proteins 0.000 description 6
- 239000003068 molecular probe Substances 0.000 description 6
- 210000000496 pancreas Anatomy 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 102100037904 CD9 antigen Human genes 0.000 description 5
- 238000010240 RT-PCR analysis Methods 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 238000002659 cell therapy Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000003981 ectoderm Anatomy 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 description 5
- 230000007045 gastrulation Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 102100027211 Albumin Human genes 0.000 description 4
- 108010088751 Albumins Proteins 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 102000016970 Follistatin Human genes 0.000 description 4
- 108010014612 Follistatin Proteins 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 4
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 4
- 108010009583 Transforming Growth Factors Proteins 0.000 description 4
- 102000009618 Transforming Growth Factors Human genes 0.000 description 4
- 239000005557 antagonist Substances 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- 102000006533 chordin Human genes 0.000 description 4
- 108010008846 chordin Proteins 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 238000012744 immunostaining Methods 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 4
- 108700007229 noggin Proteins 0.000 description 4
- 102000045246 noggin Human genes 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 229940049954 penicillin Drugs 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 230000035755 proliferation Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 210000002784 stomach Anatomy 0.000 description 4
- 229960005322 streptomycin Drugs 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 210000001685 thyroid gland Anatomy 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000012103 Alexa Fluor 488 Substances 0.000 description 3
- 239000012110 Alexa Fluor 594 Substances 0.000 description 3
- 239000012583 B-27 Supplement Substances 0.000 description 3
- 102400000921 Gastrin Human genes 0.000 description 3
- 108010052343 Gastrins Proteins 0.000 description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 3
- 101000763314 Homo sapiens Thrombomodulin Proteins 0.000 description 3
- 101000819074 Homo sapiens Transcription factor GATA-4 Proteins 0.000 description 3
- 101000652324 Homo sapiens Transcription factor SOX-17 Proteins 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 102100021380 Transcription factor GATA-4 Human genes 0.000 description 3
- 102100031079 Transcription termination factor 1 Human genes 0.000 description 3
- 101710159262 Transcription termination factor 1 Proteins 0.000 description 3
- 101001062354 Xenopus tropicalis Forkhead box protein A2 Proteins 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000012742 biochemical analysis Methods 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 238000003365 immunocytochemistry Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 210000004153 islets of langerhan Anatomy 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000004660 morphological change Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 108090000195 villin Proteins 0.000 description 3
- 230000009278 visceral effect Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 2
- 108010013238 70-kDa Ribosomal Protein S6 Kinases Proteins 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102100037362 Fibronectin Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 2
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 2
- 229920002971 Heparan sulfate Polymers 0.000 description 2
- 101000942967 Homo sapiens Leukemia inhibitory factor Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 108010085895 Laminin Proteins 0.000 description 2
- 101100226589 Mus musculus Fabp1 gene Proteins 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 108010070047 Notch Receptors Proteins 0.000 description 2
- 102000005650 Notch Receptors Human genes 0.000 description 2
- 108010067035 Pancrelipase Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 102100033237 Pro-epidermal growth factor Human genes 0.000 description 2
- 108010034782 Ribosomal Protein S6 Kinases Proteins 0.000 description 2
- 102000009738 Ribosomal Protein S6 Kinases Human genes 0.000 description 2
- 102100030243 Transcription factor SOX-17 Human genes 0.000 description 2
- 208000037280 Trisomy Diseases 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000032459 dedifferentiation Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 210000003238 esophagus Anatomy 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 102000046645 human LIF Human genes 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000012120 mounting media Substances 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000000849 parathyroid Effects 0.000 description 2
- 210000002990 parathyroid gland Anatomy 0.000 description 2
- 230000001936 parietal effect Effects 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 101150101112 7 gene Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 244000105975 Antidesma platyphyllum Species 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 241000202252 Cerberus Species 0.000 description 1
- 102100025745 Cerberus Human genes 0.000 description 1
- 101710010675 Cerberus Proteins 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108091065053 DAN family Proteins 0.000 description 1
- 102000038900 DAN family Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 241000289669 Erinaceus europaeus Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 108091008794 FGF receptors Proteins 0.000 description 1
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 1
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 1
- 102000044168 Fibroblast Growth Factor Receptor Human genes 0.000 description 1
- 102100037680 Fibroblast growth factor 8 Human genes 0.000 description 1
- 102000008412 GATA5 Transcription Factor Human genes 0.000 description 1
- 108010021779 GATA5 Transcription Factor Proteins 0.000 description 1
- 102000038624 GSKs Human genes 0.000 description 1
- 108091007911 GSKs Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 102100038367 Gremlin-1 Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 101710184435 Heart- and neural crest derivatives-expressed protein 1 Proteins 0.000 description 1
- 102100023855 Heart- and neural crest derivatives-expressed protein 1 Human genes 0.000 description 1
- 101001027382 Homo sapiens Fibroblast growth factor 8 Proteins 0.000 description 1
- 101001032872 Homo sapiens Gremlin-1 Proteins 0.000 description 1
- 101000836765 Homo sapiens Protein amnionless Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 101000634900 Homo sapiens Transcriptional-regulating factor 1 Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 101150097504 LHX1 gene Proteins 0.000 description 1
- 239000012097 Lipofectamine 2000 Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 102100037369 Nidogen-1 Human genes 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 102100034850 Peptidyl-prolyl cis-trans isomerase G Human genes 0.000 description 1
- 101710111200 Peptidyl-prolyl cis-trans isomerase G Proteins 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 244000028344 Primula vulgaris Species 0.000 description 1
- 235000016311 Primula vulgaris Nutrition 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102100027097 Protein amnionless Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108091008109 Pseudogenes Proteins 0.000 description 1
- 102000057361 Pseudogenes Human genes 0.000 description 1
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 239000013614 RNA sample Substances 0.000 description 1
- 241001506137 Rapa Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100029446 Transcriptional-regulating factor 1 Human genes 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 210000001766 X chromosome Anatomy 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 210000002593 Y chromosome Anatomy 0.000 description 1
- 108010076089 accutase Proteins 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 210000004504 adult stem cell Anatomy 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- PIDGGJYETVQYET-UHFFFAOYSA-N chembl173171 Chemical compound C12=CC=C(Br)C=C2N(C)C(O)=C1C1=C(N=O)C2=CC=CC=C2N1 PIDGGJYETVQYET-UHFFFAOYSA-N 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000013211 curve analysis Methods 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 238000012137 double-staining Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000003255 drug test Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000005966 endogenous activation Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 210000000604 fetal stem cell Anatomy 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000003633 gene expression assay Methods 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 235000009424 haa Nutrition 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 102000049228 human SOX17 Human genes 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- 210000004020 intracellular membrane Anatomy 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000001704 mesoblast Anatomy 0.000 description 1
- 230000031864 metaphase Effects 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 108010008217 nidogen Proteins 0.000 description 1
- 101150050780 nodal gene Proteins 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000009038 pharmacological inhibition Effects 0.000 description 1
- 239000012660 pharmacological inhibitor Substances 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 210000001778 pluripotent stem cell Anatomy 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 108010055896 polyornithine Proteins 0.000 description 1
- 229920002714 polyornithine Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 210000001811 primitive streak Anatomy 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000003161 proteinsynthetic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000003765 sex chromosome Anatomy 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0603—Embryonic cells ; Embryoid bodies
- C12N5/0606—Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
- A61P5/16—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4 for decreasing, blocking or antagonising the activity of the thyroid hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/18—Drugs for disorders of the endocrine system of the parathyroid hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/30—Organic components
- C12N2500/34—Sugars
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/16—Activin; Inhibin; Mullerian inhibiting substance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/405—Cell cycle regulated proteins, e.g. cyclins, cyclin-dependant kinases
Definitions
- the present invention generally relates to compositions and methods for differentiating and culturing pluripotent stem cells, the cells created by these methods and their uses thereof.
- Embryonic Stem (ES) cells represent a powerful model system for the investigation of mechanisms underlying pluripotent cell biology and differentiation within the early embryo, as well as providing opportunities for genetic manipulation of mammals and resultant commercial, medical and agricultural applications. Furthermore, appropriate proliferation and differentiation of ES cells can be used to generate an unlimited source of cells suited to transplantation for treatment of diseases that result from cell damage or dysfunction.
- EPL early primitive ectoderm-like cells as described in International Patent Application WO 99/53021, in vivo or in vitro derived ICM/epiblast, in vivo or in vitro derived primitive ectoderm, primordial germ cells (EG cells), teratocarcinoma cells (EC cells), and pluripotent cells derived by dedifferentiation or by nuclear transfer will share some or all of these properties and applications.
- EPL early primitive ectoderm-like
- PI3-kinase In response to the binding of these soluble factors to specific cell surface receptors, PI3-kinase is recruited to the intracellular membrane surface where it initiates a cascade of secondary signaling events leading to the functional regulation of several downstream intracellular targets that influence diverse biological processes.
- the downstream targets of PI3- kinase is the protein kinase called 'mammalian Target Of Rapamycin' (mTOR). Stimulation of mTOR both precedes and is necessary for activation of ribosomal p70 S6 kinase, a serine/threonine kinase that is pivotal to the regulation of the protein synthetic machinery (Chung et al., (1994) Nature, 370: 71-75).
- One embodiment of the present invention relates to novel, defined processes for the production of definitive endoderm cells in culture using pluripotent cells. These processes provide the basis for efficient production of endodermal derived tissues such as pancreas, liver, lung, stomach, intestine and thyroid.
- the present invention contemplates a composition comprising a population of isolated differentiated mammalian cells, wherein the cells are differentiated from a pluripotent cell in vitro, and wherein greater than approximately 50% of the cells express SOXl 7 but do not express AFP. In one embodiment of the invention, greater than approximately 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the cells express SOXl 7 but do not express AFP.
- the invention further contemplates a composition comprising a homogenous population of isolated definitive endoderm cells, wherein the cells were differentiated in an in vitro culture, and wherein greater than approximately 50% of the population are definitive endoderm cells. In certain embodiments, greater than approximately 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the population are definitive endoderm cells. In one embodiment, the definitive endoderm cells express SOXl 7 but do not express AFP.
- the population has increased expression of HNF4alpha, GAT A4, Mixl, and Msxl, and decreased expression of AFP in comparison to a population of spontaneously differentiating pluripotent cells.
- the population has increased expression of goosecoid, Brachyury, and Cerebrus, and decreased expression of AFP in comparison to a population of spontaneously differentiating pluripotent cells. It is also contemplated that the population can have increased expression of MIXl, goosecoid, and Cerebrus, and decreased expression of AFP in comparison to a population of spontaneously differentiating pluripotent cells.
- the population does not have increased expression of SOXl in comparison to a population of spontaneously differentiating pluripotent cells. In another embodiment, the population does not have increased expression of SOX7 in comparison to a population of spontaneously differentiating pluripotent cells. In another embodiment, the cells display similarly low expression of thrombomodulin as seen in a population of pluripotent cells as determined, for example, by flow cytometry.
- the invention further encompasses a method of differentiating a pluripotent mammalian cell comprising: (a) providing the pluripotent mammalian cell, and (b) contacting the pluripotent mammalian cell with an effective amount of an inhibitor of the PI3 -kinase signaling pathway and a member of the TGF ⁇ family to at least partially differentiate the pluripotent cell to a cell of the endoderm lineage.
- the member of the TGF ⁇ family is selected from the group consisting of Nodal, Activin A, Activin B, TGF- ⁇ , BMP2, BMP4, and mixtures of the foregoing.
- the member of the TGF ⁇ family is Activin A.
- the member of the TGF ⁇ can be exogenously added to the pluripotent mammalian cell in a substantially pure form, or can be present in a conditioned medium, as a substance produced by the feeder layer.
- the differentiated cell is isolated after step (b).
- the pluripotent cells have been differentiated by contact with a PB -kinase inhibitor and a member of the TGF ⁇ family.
- the cells are dissociated to an essentially single cell culture prior to being contacted with the inhibitor and the member of the TGF ⁇ family.
- the cells can be dissociated using a protease, such as, but not limited to, trypsin.
- the cells are contacted with the PI3 -kinase inhibitor and the member of the TGF ⁇ family after being plated for between approximately 12 hours to approximately 6 days, after being plated for between approximately 12 hours to approximately 48 hours, or after being plated for approximately 24 hours.
- the pluripotent cells are plated at a concentration of less than approximately 2.5 x 10 4 cells/35 mm dish, of at least approximately 2.5 x 10 4 cells/35 mm dish, between approximately 2.5 x 10 4 to approximately 2 x 10 5 cells/35 mm dish, between approximately 5 x 10 4 to approximately 2 x 10 5 cells/35 mm dish, of less than approximately 4 x 10 5 cells/35 mm dish, or at a density of greater than 4 x 10 5 cells/35 mm dish.
- the cells are contacted with the PI3-kinase inhibitor and the member of the TGF ⁇ family for greater than approximately 24 hours, for greater than approximately 48 hours, for greater than approximately 72 hours, or for approximately 72 hours. It is preferred that a composition comprising the inhibitor of the PI3 -kinase pathway and the member of the TGF ⁇ family is effective in causing differentiation of a pluripotent mammalian cell towards an endodermal lineage after the cell has been cultured with the composition for greater than approximately 24 hours.
- compositions comprising the inhibitor of the PI3-kinase pathway and the member of the TGF ⁇ family is effective in causing differentiation of a pluripotent mammalian cell towards an endodermal lineage when the cell has been plated for greater than approximately 12 hours before it is contacted with the composition, or when the cell has been plated for approximately 24 hours before it is contacted with the composition.
- the present invention further encompasses a composition for culturing cells, comprising a cell culture medium, an inhibitor of the PI3-kinase pathway, and a member of the TGF ⁇ family.
- the inhibitor is selected from the group consisting of LY 294002, Rapamycin, wortmannin, lithium chloride, Akt inhibitor I, Akt inhibitor ⁇ , Akt inhibitor HI, NL-71-101, and mixtures of the foregoing.
- the inhibitor is Rapamycin.
- Rapamycin is initially present at a concentration of approximately 0.1 nM to approximately 500 nM, approximately 0.5 nM to approximately 250 nM, approximately 1.0 nM to approximately 150 nM, or approximately 1.5 nM to approximately 30 nM.
- the inhibitor is LY 294002.
- LY 294002 is initially present at a concentration of approximately 1 ⁇ M to approximately 500 ⁇ M, approximately 2.5 ⁇ M to approximately 400 ⁇ M, approximately 5 ⁇ M to approximately 250 ⁇ M, approximately 10 ⁇ M to approximately 200 ⁇ M or approximately 20 ⁇ M to approximately 163 ⁇ M.
- the inhibitor is Aktl-H
- Aktl-II is initially present at a concentration of approximately 0.1 ⁇ M to approximately 500 ⁇ M, approximately 1 ⁇ M to approximately 250 ⁇ M, approximately 5 ⁇ M to approximately 20 ⁇ M, approximately 10 ⁇ M to approximately 100 ⁇ M or approximately 40 ⁇ M.
- Figures IA-D are photomicrographs at 1OX magnification, showing the morphology of the human BGOl cell line.
- (A) shows untreated BGOl cells
- (B) shows BGOl cells treated with 80 ⁇ M LY 294002,
- (C) shows BGOl cells treated with 30 nM rapamycin; and
- (D) shows the spontaneous differentiation of BGOl cells.
- Figures 2A-D are photomicrographs at 20X magnification, showing the morphology of the human BGOl cell line.
- A) shows untreated BGOl cells
- (B) shows BGOl cells treated with 80 ⁇ M LY 294002
- (C) shows BGOl cells treated with 30 nM rapamycin
- (D) shows the spontaneous differentiation of BGOl cells.
- Figures 3A-E show the flow cytometry analysis of CD9 expression in human BGOl cells.
- A shows the secondary antibody alone
- B shows untreated cells
- C shows cells treated with 80 ⁇ M LY 294002
- D shows cells treated with 30 nM rapamycin
- E shows spontaneously differentiated cells.
- Figures 3F-I show flow cytometry analysis of CD9 expression during embryoid body differentiation.
- F shows the secondary antibody alone
- G shows undifferentiated BGOl cells
- H shows embryoid bodies at day 3
- (I) shows embryoid bodies at day 5.
- Figure 4A shows RT-PCR analysis of lineage markers in BGOl cells, comparing expression differences between LY 294002 (80 ⁇ M) treatment and the spontaneous differentiation of the cells.
- Figure 4B shows RT-PCR analysis of lineage markers in BGOl cells, comparing expression differences between LY294002 (80 ⁇ M) and rapamycin (30 nM) treatments.
- Figures 5A-G demonstrate that treatment of hES cell line BGOl with either LY 294002 or Rapamycin quantitatively induces the expression of genes strongly associated with mesendoderm, however, LY294002 or Rapamycin treatment do not induce expression of the pan-Neurectodermal marker SOXl, or the pan- Extraembryonic marker, SOX7.
- NT indicates untreated cells
- EOH indicates vehicle control
- Ly indicates treatment with 80 ⁇ M LY 294002
- RAPA indicates treatment with 30 nM Rapamycin
- Spon Diff indicates spontaneous differentiation of hES cells.
- the figures show the relative gene expression (Y axis) as a function of treatment and time (X axis).
- Figure 5A shows relative SOXl 7 gene expression
- Figure 5B shows relative Mixl gene expression
- Figure 5C shows relative goosecoid (GSC) gene expression
- Figure 5D shows relative GATA4 expression
- Figure 5E shows relative Cerebrus expression
- Figure 5F shows relative nodal gene expression
- Figure 5A shows relative Brachyury gene expression
- Figure 5H shows relative SOX7 gene expression
- Figure 51 shows relative SOXl gene expression.
- Figure 6 shows flow cytometry analysis of thrombomodulin expression in human BGOl cells. The gray histogram shows untreated cells, while the black histogram shows cells treated with 80 ⁇ M LY 294002.
- Figures 7A-T demonstrate that treatment of hES cell lines BG02 and Hl with LY 294002 induces the expression of genes strongly associated with mesendoderm.
- NT indicates untreated cells;
- LY indicates treatment with 80 ⁇ M LY 294002.
- Expression levels were examined by Q-PCR after approximately 72 hours in culture with LY 294002.
- Figures 7A and K show relative AFP expression
- Figures 7B and L show relative Bry expression
- Figures 7C and M show relative FoxA2 expression
- Figures 7D and N show relative GSC expression
- Figures 7E and O show relative Moxl expression
- Figures 7F and P show relative MixLl expression
- Figures 7G and Q show relative Soxl expression
- Figures 7H and R show relative Sox 17 expression
- Figures 71 and S show relative THBD expression
- Figures 7J and T show relative ZICl expression. Assays were performed in triplicate and are shown as +/- SEM.
- Figure 8A shows that MEF-CM or Activin/Nodal are necessary for LY
- FIG. 294002-dependent hESC-DE formation shows Soxl 7 mRNA levels (fold-increase over untreated) as evaluated by Q-PCR under various conditions for 4 days; LY 294002 (60 ⁇ M), Activin A (100 ng/ml), Nodal (1 ⁇ g/ml). UCM indicates unconditioned media.
- Figure 8B shows LY 294002, MEF-CM dependent Sox 17 expression is suppressed by inhibitors of Activin signaling but not suppressed by inhibitors of BMP or FGF signaling.
- Sox 17 expression was evaluated by Q-PCR under culture conditions competent to support hESC-DE formation in the presence or absence of Chordin (500 ng/ml), Follistatin (500 ng/ml), Lefty-A (500 ng/ml), Noggin (500 ng/ml), SB-43152 (10 ⁇ M), or SU-5402 (5 ⁇ M).
- Chordin 500 ng/ml
- Follistatin 500 ng/ml
- Lefty-A 500 ng/ml
- Noggin 500 ng/ml
- SB-43152 10 ⁇ M
- SU-5402 5 ⁇ M
- FIG. 10 shows that activation of GSK3 is required for LY 294002 to promote DE. Addition of the GSK3 inhibitor, BIO, but not MeBio, blocks LY 294002 induced DE formation. DE formation is indicated by Q-PCR analysis of the cells, showing Sox 17 mRNA levels as a fold-increase over untreated cells. Assays were performed in triplicate and are shown as +/- SEM. [029] Figures 1 IA and B show that knockdown of GSK3 expression with two specific RNAi molecules, but not a mutant RNAi, blocks the ability of LY 294002 to promote DE formation.
- FIG. 12A shows a control kidney that does not contain an implant (left) and a kidney that contains an implant of hESCs treated for 4 days with 60 ⁇ M LY 294002 (right).
- the implant was grown under the kidney capsule of 5-week-old male SCID-beige mice for 6 weeks.
- the LY 294002 treated HESCs formed a large mass on the kidney.
- Figures 12B-G show photomicrographs of immunostainings of LY 294002 treated aggregates after culture under a kidney capsule for approximately 6 weeks.
- the aggregates express TTF-I (B), AFP (C), villin (D), gastrin (E), HSA (F) and LFABP (G), indicating that the LY 294002 treated cells differentiate to derivatives of endoderm.
- Figures 12H and 121 demonstrate Q-PCR data showing a 1000-fold increase in FABPl mRNA and a 4500-fold increase in albumin mRNA in LY294002 treated HESCs relative to LY 294002 treated cells that were not implanted. Assays were performed in triplicate and are shown as +/- SEM.
- the present invention contemplates a composition comprising a population of isolated differentiated mammalian cells, wherein the cells are differentiated from a pluripotent cell in vitro, and wherein greater than approximately 50% of the cells express SOXl 7 but do not express AFP.
- greater than approximately 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the cells express SOXl 7 but do not express AFP.
- the invention further contemplates a composition comprising a homogenous population of isolated definitive endoderm cells, wherein the cells were differentiated in an in vitro culture, and wherein greater than approximately 50% of the population are definitive endoderm cells. In certain embodiments, greater than approximately 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the population are definitive endoderm cells. In one embodiment, the definitive endoderm cells express SOXl 7 but do not express AFP.
- the population has increased expression of HNF4alpha, GATA4, Mixl, and Msxl, and decreased expression of AFP in comparison to a population of spontaneously differentiating pluripotent cells.
- the population has increased expression of Goosecoid, Brachyury, and Cerebrus, and decreased expression of AFP in comparison to a population of spontaneously differentiating pluripotent cells. It is also contemplated that the population can have increased expression of MIXl, Goosecoid, and Cerebrus, and decreased expression of AFP in comparison to a population of spontaneously differentiating pluripotent cells.
- the population does not have increased expression of SOXl in comparison to a population of spontaneously differentiating pluripotent cells. In another embodiment, the population does not have increased expression of SOX7 in comparison to a population of spontaneously differentiating pluripotent cells. In another embodiment, the cells display similarly low expression of thrombomodulin as seen in a population of pluripotent cells as determined, for example, by flow cytometry.
- the invention further encompasses a method of differentiating a pluripotent mammalian cell comprising: (a) providing the pluripotent mammalian cell, and (b) contacting the pluripotent mammalian cell with an effective amount of an inhibitor of the PI3-kinase signaling pathway and a member of the TGF ⁇ family to at least partially differentiate the pluripotent cell to a cell of the endoderm lineage.
- the differentiated cell is isolated after step (b).
- the pluripotent cells have been differentiated by contact with a composition comprising a PI3-kinase inhibitor and a member of the TGF ⁇ family.
- the cells are dissociated to an essentially single cell culture prior to being contacted with the composition.
- the cells can be dissociated using a protease, such as, but not limited to, trypsin.
- the PI3-kinase inhibitor and the member of the TGF ⁇ family do not need to be added simultaneously to the cell or cell culture, however, it is contemplated that during a point in culture, both the PI3-kinase inhibitor and the member of the TGF ⁇ family will both be present in the composition.
- the cells are contacted with the composition after being plated for between approximately 12 hours to approximately 6 days, after being plated for between approximately 12 hours to approximately 48 hours, or after being plated for approximately 24 hours.
- the cells are contacted with the composition for greater than approximately 24 hours, for greater than approximately 48 hours, for greater than approximately 72 hours, or for approximately 72 hours. It is preferred that the composition is effective in causing differentiation of a pluripotent mammalian cell towards an endodermal lineage after the cell has been cultured with the composition for greater than approximately 24 hours. It is also contemplated that the composition is effective in causing differentiation of a pluripotent mammalian cell towards an endodermal lineage when the cell has been plated for greater than approximately 12 hours before it is contacted with the composition, or when the cell has been plated for approximately 24 hours before it is contacted with the composition.
- the pluripotent cells are plated at a concentration of less than approximately 2.5 x 10 4 cells/35 mm dish, of at least approximately 2.5 x 10 4 cells/35 mm dish, between approximately 2.5 x 10 4 to approximately 2 x 10 5 cells/35 mm dish, between approximately 5 x 10 4 to approximately 2 x 10 5 cells/35 mm dish, of less than approximately 4 x 10 5 cells/35 mm dish, or at a density of greater than 4 x 10 5 cells/35 mm dish.
- the present invention further encompasses a composition for culturing cells, comprising a cell culture medium, an inhibitor of the PI3 -kinase pathway, and a member of the TGF ⁇ family.
- the member of the TGF ⁇ can be exogenously added to the pluripotent mammalian cell in a substantially pure form, or can be present in a conditioned medium, as a substance produced by the feeder layer.
- the inhibitor is selected from the group consisting of LY 294002, Rapamycin, wortmannin, lithium chloride, Akt inhibitor I, Akt inhibitor ⁇ , Akt inhibitor HI, NL-71-101, and mixtures of the foregoing.
- the inhibitor is Rapamycin.
- Rapamycin is initially present at a concentration of approximately 0.1 nM to approximately 500 nM, approximately 0.5 nM to approximately 250 nM, approximately 1.0 nM to approximately 150 nM, or approximately 1.5 nM to approximately 30 nM.
- the inhibitor is LY 294002.
- LY 294002 is initially present at a concentration of approximately 1 ⁇ M to approximately 500 ⁇ M, approximately 2.5 ⁇ M to approximately 400 ⁇ M, approximately 5 ⁇ M to approximately 250 ⁇ M, approximately 10 ⁇ M to approximately 200 ⁇ M or approximately 20 ⁇ M to approximately 163 ⁇ M.
- the inhibitor is Aktl-H.
- Aktl-II is initially present at a concentration of approximately 0.1 ⁇ M to approximately 500 ⁇ M, approximately 1 ⁇ M to approximately 250 ⁇ M, approximately 5 ⁇ M to approximately 20 ⁇ M, approximately 10 ⁇ M to approximately 100 ⁇ M, or approximately 40 ⁇ M.
- the cell culture composition can further comprise an FGF.
- the FGF is bFGF.
- bFGF is initially present at a concentration of approximately 0.1 ng/ml to approximately 100 ng/ml, approximately 0.5 ng/ml to approximately 50 ng/ml, approximately 1 ng/ml to approximately 25 ng/ml, approximately 1 ng/ml to approximately 12 ng/ml, or is initially present at a concentration of approximately 8 ng/ml.
- the cell culture medium is a conditioned medium.
- the conditioned medium can be obtained from a feeder layer. It is contemplated that the feeder layer comprises fibroblasts, and in one embodiment, comprises embryonic fibroblasts.
- the conditioned medium comprises DMEM/F-12 (50/50), approximately 20% KSR, approximately 0.1 mM NEAA, approximately 2 mM L-Glutamine, approximately 50 U/ml penicillin, approximately 50 ⁇ g/ml streptomycin, and approximately 8 ng/ml bFGF.
- the concentration of KSR can be adjusted, or can be substituted with serum.
- KSR is present in the conditioned medium at a concentration of approximately 2%.
- the methods and compositions of the invention comprise a member of the TGF ⁇ family.
- the member of the TGF ⁇ family is selected from the group consisting of Nodal, Activin A, Activin B, TGF- ⁇ , BMP2, BMP4, and mixtures of the foregoing.
- the member of the TGF- ⁇ family is Activin A or Nodal.
- Activin A is initially present at a concentration of approximately 1 ng/ml to approximately 1 mg/ml, approximately 10 ng/ml to approximately 500 ng/ml, approximately 25 ng/ml to approximately 250 ng/ml, approximately 50 ng/ml to approximately 200 ng/ml, or approximately 100 ng/ml.
- Nodal is initially present at a concentration of approximately 10 ng/ml to approximately 250 ⁇ g/ml, approximately 50 ng/ml to approximately 125 ⁇ g/ml, approximately 100 ng/ml to approximately 50 ⁇ g/ml, approximately 500 ng/ml to approximately 25 ⁇ g/ml, approximately 0.5 ⁇ g/ml to approximately 5 ⁇ g/ml or approximately 1 ⁇ g/ml.
- contacting the pluripotent cell with the inhibitor of the PI3-kinase pathway activates GSK3.
- Human pluripotent cells offer unique opportunities for investigating early stages of human development as well as for therapeutic intervention in several disease states, such as diabetes mellitus and Parkinson's disease.
- the use of insulin-producing ⁇ -cells derived from hESCs would offer a vast improvement over current cell therapy procedures that utilize cells from donor pancreases.
- cell therapy treatments for diabetes mellitus, which utilize cells from donor pancreases are limited by the scarcity of high quality islet cells needed for transplant.
- HESCs offer a source of starting material from which to develop substantial quantities of high quality differentiated cells for human cell therapies.
- biologically active component or “bioactive component” and “bioactive factor” refer to any compound or molecule that induces a pluripotent cell to partially or terminally differentiate, wherein said differentiation is due at least in part to inhibition of signaling through the PI3 -kinase pathway. While the bioactive component may be as described below, the term is not limited thereto.
- bioactive component as used herein includes within its scope a natural or synthetic molecule or molecules which exhibit(s) similar biological activity.
- the term "inhibitor of the PI3 -kinase pathway” refers to any molecule or compound that decreases the activity of PI3 -kinase or at least one molecule downstream of PI3-kinase in a cell contacted with the inhibitor.
- the invention encompasses, e.g., PI3-kinase antagonists, antagonists of the PI3-kinase signal transduction cascade, compounds that decrease the synthesis or expression of endogenous PI3 -kinase, compounds that decrease release of endogenous PI3 -kinase, and compounds that inhibit activators of PI3 -kinase activity.
- the inhibitor is selected from the group consisting of Rapamycin, LY 294002, wortmannin, lithium chloride, Akt inhibitor I, Akt inhibitor ⁇ (SH-5), Akt inhibitor HI (SH-6), NL-71 - 101 , and mixtures of the foregoing.
- Akt inhibitor I, ⁇ , Akt HI, and NL-71-101 are commercially available from Calbiochem.
- the inhibitor is selected from the group consisting of Rapamycin and LY 294002.
- the inhibitor comprises LY 294002.
- the inhibitor comprises Aktl-II.
- the inhibitor is a molecule that inhibits an upstream component of the PI3 -kinase signaling pathway.
- the inhibitor is an inhibitor of an IGF or FGF receptor. It is understood that combinations of inhibitors may be used to elicit the desired effect.
- the pluripotent cells are contacted with an effective amount of the inhibitor of the PI3 -kinase pathway.
- the term "effective amount” refers to that concentration of inhibitor that is sufficient to decrease the activity of PI3 -kinase or at least one molecule downstream of PB -kinase in a cell contacted with the inhibitor and a member of the TGF ⁇ family to effect differentiation of a pluripotent cell towards mesendoderm, and preferably towards endoderm.
- concentration of activator that is sufficient to increase the activity of PD -kinase or at least one molecule downstream of PD -kinase in a cell contacted with the activator.
- the term “isolated” refers to being substantially separated from the natural source of the cells such that the cell, cell line, cell culture, or population of cells are capable of being cultured in vitro.
- the term “isolating” is used to refer to the physical selection of one or more cells out of a group of two or more cells, wherein the cells are selected based on cell morphology and/or the expression of various markers.
- the term "express” refers to the transcription of a polynucleotide or translation of a polypeptide in a cell, such that levels of the molecule are measurably higher in a cell that expresses the molecule than they are in a cell that does not express the molecule.
- Methods to measure the expression of a molecule are well known to those of ordinary skill in the art, and include without limitation, Northern blotting, RT-PCT, in situ hybridization, Western blotting, and immunostaining.
- the term "contacting" i.e., contacting a cell e.g. a pluripotent cell, with an compound
- contacting is intended to include incubating the compound and the cell together in vitro (e.g., adding the compound to cells in culture).
- the term "contacting” is not intended to include the in vivo exposure of cells to an inhibitor of the PD -kinase pathway and the member of the TGF ⁇ family that may occur naturally in a subject (i.e., exposure that may occur as a result of a natural physiological process).
- the step of contacting the cell with an inhibitor of the PD -kinase pathway and the member of the TGF ⁇ family can be conducted in any suitable manner.
- the cells may be treated in adherent culture, or in suspension culture. It is understood that the cells contacted with the inhibitor of the PD -kinase pathway and the member of the TGF ⁇ family may be further treated with other cell differentiation environments to stabilize the cells, or to differentiate the cells further.
- the cells comprise an isolated nucleic acid molecule whose expression modulates signaling of the PI3 -kinase pathway, hi accordance with the present invention, a nucleic acid molecule can be transformed into an embryonic cell population of the present invention to inhibit or activate particular genes or gene products, thereby modulating differentiation of the cells.
- the cell is an embryonic stem cell that comprises an isolated nucleic acid molecule encoding a dominant negative constitutively active form of a protein that is part of the PI3-kinase signaling pathway.
- compositions and methods described herein have several useful features.
- the compositions and methods described herein are useful for modeling the early stages of human development.
- the compositions and methods described herein can also serve for therapeutic intervention in disease states, such as diabetes mellitus.
- disease states such as diabetes mellitus.
- definitive endoderm serves as the source for only a limited number of tissues, it can be used in the development of pure tissue or cell types.
- gastrulation occurs 2-3 weeks after fertilization.
- Gastrulation is extremely significant because it is at this time that the three primary germ layers are first specified and organized (Lu et al., 2001 Curr Opin Genet Dev 11 :384-392; Schoenwolf & Smith, 2000 Methods MoI Biol 135:113-125).
- the ectoderm is responsible for the eventual formation of the outer coverings of the body and the entire nervous system whereas the heart, blood, bone, skeletal muscle and other connective tissues are derived from the mesoderm.
- Definitive endoderm is defined as the germ layer that is responsible for formation of the entire gut tube which includes the esophagus, stomach and small and large intestines, and the organs which derive from the gut tube such as the lungs, liver, thymus, parathyroid and thyroid glands, gall bladder and pancreas (Grapin-Botton & Melton, 2000 Trends Genet 16:124-130; Kimelman & Griffin, 2000, Curr Opin Genet Dev 10:350-356; Tremblay et al., 2000 Development 127:3079-3090; Wells & Melton, 1999 Annu Rev Cell Dev Biol 15:393-410; Wells & Melton, 2000 Development 127: 1563-1572).
- the definitive endoderm and the completely separate lineage of cells termed primitive endoderm.
- the primitive endoderm is primarily responsible for formation of extra-embryonic tissues, mainly the parietal and visceral endoderm portions of the placental yolk sac and the extracellular matrix material of Reichert's membrane.
- definitive endoderm formation begins with a cellular migration event in which mesendoderm cells (cells competent to form mesoderm or endoderm) migrate through a structure called the primitive streak.
- mesendoderm cells cells competent to form mesoderm or endoderm
- Definitive endoderm is derived from cells, which migrate through the anterior portion of the streak and through the node (a specialized structure at the anterior-most region of the streak).
- definitive endoderm populates first the most anterior gut tube and culminates with the formation of the posterior end of the gut tube.
- stem cell differentiation in vitro is rather asynchronous, likely considerably more so than in vivo.
- one group of cells may be expressing genes associated with gastrulation, while another group maybe starting final differentiation.
- manipulation of hESC monolayers or embryoid bodies (EBs) with or without exogenous factor application may result in profound differences with respect to overall gene expression pattern and state of differentiation.
- the application of exogenous factors must be timed according to gene expression patterns within a heterogeneous cell mixture in order to efficiently move the culture down a specific differentiation pathway.
- the cells treated with the inhibitor of the PI3-kinase pathway are mesendoderm cells, which can be further differentiated into mesoderm or endoderm cells.
- mesendoderm cells are defined by the expression of one or more genes such as, but not limited to, brachyury, goosecoid, twist, Lim-1, and GATA5, which are expressed by endoderm and mesoderm precursors, however the cells do not express SOX- 17.
- the cells treated with the inhibitor of the PI3 -kinase pathway are further differentiated into endoderm cells, which can be partially or terminally differentiated endoderm cells.
- the cells treated with the inhibitor of the PI3 -kinase pathway are further differentiated into cells of the definitive endoderm lineage.
- endoderm includes, but is not limited to, definitive endoderm; parietal endoderm, visceral endoderm, and mesendoderm cells.
- definitive endoderm refers to early endoderm cells that have the capacity to differentiate into any or many of the endoderm cell types that are generated from the endoderm lineages in the embryo (i.e. pancreas, liver, lung, stomach, intestine and thyroid). Definitive endoderm cells are multipotent.
- the use of the term "definitive endoderm” in the context of the present invention means that the cell is at least more differentiated towards an endoderm cell type than the pluripotent cell from which it is derived. Also, as used herein, producing an endoderm cell encompasses the production of a cell culture that is enriched for endoderm cells. [063] As used herein, “definitive endoderm” cells are characterized by the expression of specific marker transcripts such as SOXl 7, with the concomitant absence of marker transcripts for AFP and thrombomodulin. In addition, such cells can express MIXl, GATA4, HNFalpha, and HNF3b.
- LY 294002 treatment results in the loss of a subset of cell surface CD markers initially expressed by undifferentiated hES cells, including, but not limited to, CD9, 27, 30, 46, 58 and 81.
- definitive endoderm cells express the SOXl 7 marker gene at a level higher than that of SOX7, a marker gene characteristic of visceral endoderm. Additionally, in certain embodiments, expression of the SOXl 7 marker gene is higher than the expression of the OCT4 marker gene, which is characteristic of hESCs. In other embodiments of the present invention, definitive endoderm cells express the SOXl 7 marker gene at a level higher than that of the AFP, SPARC or Thrombomodulin (TM) marker genes.
- TM Thrombomodulin
- the definitive endoderm cells produced by the methods described herein do not express PDXl (PDXl -negative). In another embodiment, the cells display similarly low expression of thrombomodulin as seen in a population of pluripotent cells as determined, for example, by flow cytometry.
- the definitive endoderm cell cultures produced by the methods described herein are substantially free of cells expressing the OCT4, SOX7, AFP, SPARC, TM, ZICl or BRACH marker genes. In other embodiments, the definitive endoderm cell cultures produced by the methods described herein are substantially free of cells expressing the SOX7, AFP, SPARC, TM, ZICl or BRACH marker genes. With respect to cells in cell cultures, the term "substantially free of means that the specified cell type is present in an amount of less than about 5% of the total number of cells present in the cell culture.
- the term “differentiate” refers to the production of a cell type that is more differentiated than the cell type from which it is derived. The term therefore encompasses cell types that are partially and terminally differentiated.
- the term “enriched” refers to a cell culture that contains more than approximately 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or 95% of the desired cell lineage.
- the cell types that differentiate from embryonic stem cells after contact with inhibitors of the PI3-kinase pathway and the member of the TGF ⁇ family have several uses in various fields of research and development including but not limited to drug discovery, drug development and testing, toxicology, production of cells for therapeutic purposes as well as basic science research. These cell types express molecules that are of interest in a wide range of research fields. These include the molecules known to be required for the functioning of the various cell types as described in standard reference texts. These molecules include, but are not limited to, cytokines, growth factors, cytokine receptors, extracellular matrix, transcription factors, secreted polypeptides and other molecules, and growth factor receptors.
- the pluripotent cell is a human cell.
- pluripotent human cell encompasses pluripotent cells obtained from human embryos, fetuses or adult tissues.
- the pluripotent human cell is a human pluripotent embryonic stem cell.
- the pluripotent human cell is a human pluripotent fetal stem cell, such as a primordial germ cell.
- the pluripotent human cell is a human pluripotent adult stem cell.
- the term “pluripotent” refers to a cell capable of at least developing into one of ectodermal, endodermal and mesodermal cells.
- pluripototent refers to cells that are totipotent and multipotent.
- the term “totipotent cell” refers to a cell capable of developing into all lineages of cells.
- multipotent refers to a cell that is not terminally differentiated.
- multipotent refers to a cell that, without manipulation (i.e., nuclear transfer or dedifferentiation inducement), is incapable of forming differentiated cell types derived from all three germ layers (mesoderm, ectoderm and endoderm), or in other words, is a cell that is partially differentiated.
- the pluripotent human cell can be selected from the group consisting of a human embryonic stem (ES) cell; a human inner cell mass (ICM)/epiblast cell; a human primitive ectoderm cell, such as an early primitive ectoderm cell (EPL); a human primordial germ (EG) cell; and a human teratocarcinoma (EC) cell.
- the human pluripotent cells of the present invention can be derived using any method known to those of skill in the art.
- the human pluripotent cells can be produced using de-differentiation and nuclear transfer methods.
- the human ICM/epiblast cell or the primitive ectoderm cell used in the present invention can be derived in vivo or in vitro.
- EPL cells may be generated in adherent culture or as cell aggregates in suspension culture, as described in WO 99/53021.
- the human pluripotent cells can be passaged using any method known to those of skill in the art, including, manual passaging methods, and bulk passaging methods such as antibody selection and protease passaging.
- the embryonic stem cell of the invention has a normal karyotype, while in other embodiments, the embryonic stem cell has an abnormal karyotype. In one embodiment, a majority of the embryonic stem cells have an abnormal karyotype.
- the abnormal karyotype is evident after the cells have been cultured for greater than 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 20 passages.
- the abnormal karyotype comprises a trisomy of at least one autosomal chromosome, wherein the autosomal chromosome is selected from the group consisting of chromosomes 1, 7, 8, 12, 14, and 17.
- the abnormal karyotype comprises a trisomy of more than one autosomal chromosome, wherein at least one of the more than one autosomal chromosomes is selected from the group consisting of chromosomes 1, 7, 8, 12, 14, and 17.
- the autosomal chromosome is chromosome 12 or 17.
- the abnormal karyotype comprises an additional sex chromosome, hi one embodiment, the karyotype comprises two X chromosomes and one Y chromosome.
- the invention encompasses a method of differentiating a pluripotent mammalian cell comprising: (a) providing the pluripotent mammalian cell, and (b) contacting the pluripotent mammalian cell with an effective amount of an inhibitor of the PI3-kinase signaling pathway and the member of the TGF ⁇ family to at least partially differentiate the pluripotent cell to a cell of the endoderm lineage.
- step (b) comprises the use of a cell differentiation environment, hi another embodiment, the cells can be contacted with a cell differentiation environment after step (b).
- the term "cell differentiation environment” refers to a cell culture condition wherein the pluripotent cells are induced to differentiate, or are induced to become a human cell culture enriched in differentiated cells.
- the differentiated cell lineage induced by the growth factor will be homogeneous in nature.
- the term “homogeneous,” refers to a population that contains more than approximately 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the desired cell lineage.
- the pluripotent cells are induced to differentiate into cells of a lineage selected from the group consisting of mesendoderm, endoderm and mesoderm lineages.
- the pluripotent cells are induced to differentiate into cells of the definitive endoderm lineage.
- the pluripotent cells are induced to differentiate into a population comprising greater than approximately 50% definitive endoderm cells.
- the population comprises greater than approximately 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the definitive endoderm lineage.
- a differentiating medium or environment may be utilized to partially, terminally, or reversibly differentiate the pluripotent cells of the present invention, either prior to, during, or after contacting the pluripotent cells with an inhibitor of PD- kinase and the member of the TGF ⁇ family.
- the medium of the cell differentiation environment may contain a variety of components including, for example, KODMEM medium (Knockout Dulbecco's Modified Eagle's Medium), DMEM, Ham's F12 medium, FBS (fetal bovine serum), FGF2 (fibroblast growth factor 2), KSR, serum, or hLIF (human leukemia inhibitory factor).
- the cell differentiation environment can also contain supplements such as L-Glutamine, NEAA (non-essential amino acids), P/S (penicillin/streptomycin), N2 and ⁇ -mercaptoethanol ( ⁇ -ME). It is contemplated that additional factors may be added to the cell differentiation environment, including, but not limited to, fibronectin, laminin, heparin, heparin sulfate, retinoic acid, members of the epidermal growth factor family (EGFs), members of the fibroblast growth factor family (FGFs) including FGF2 and/or FGF8, members of the platelet derived growth factor family (PDGFs), antagonists of the transforming growth factor (TGF)/ bone morphogenetic protein (BMP)/ growth and differentiation factor (GDF) factor families including but not limited to noggin, follistatin, chordin, gremlin, cerberus/DAN family proteins, ventropin, high dose activin, and amnionless.
- supplements such as L-
- TGF/BMP/GDF antagonists could also be added in the form of TGF/BMP/GDF receptor-Fc chimeras.
- Other factors that may be added include molecules that can activate or inactivate signaling through Notch receptor family, including but not limited to proteins of the Delta-like and Jagged families as well as inhibitors of Notch processing or cleavage.
- Other growth factors may include members of the insulin like growth factor family (IGF), insulin, the wingless related (WNT) factor family, and the hedgehog factor family.
- the cell differentiation environment comprises plating the cells in an adherent culture.
- the terms "plated” and “plating” refer to any process that allows a cell to be grown in adherent culture.
- the term "adherent culture” refers to a cell culture system whereby cells are cultured on a solid surface, which may in turn be coated with a solid substrate that may in turn be coated with another surface coat of a substrate, such as those listed below, or any other chemical or biological material that allows the cells to proliferate or be stabilized in culture.
- the cells may or may not tightly adhere to the solid surface or to the substrate.
- the cells are plated on matrigel-coated plates.
- the substrate for the adherent culture may comprise any one or combination of polyornithine, laminin, poly-lysine, purified collagen, gelatin, extracellular matrix, fibronectin, tenascin, vitronectin, entactin, heparin sulfate proteoglycans, poly glycolytic acid (PGA), poly lactic acid (PLA), poly lactic-glycolic acid (PLGA) and feeder layers such as, but not limited to, primary fibroblasts or fibroblast cells lines.
- the substrate for the adherent culture may comprise the extracellular matrix laid down by a feeder layer, or laid down by the pluripotent human cell or cell culture.
- a feeder cell is a cell that is co-cultured with a target cell and stabilizes the target cell in its current state of differentiation.
- a feeder layer comprises more than one feeder cell in culture.
- conditioned medium is obtained from a feeder cell that stabilizes the target cell in its current state of differentiation. Any and all factors produced by a feeder cell that allow a target cell to be stabilized in its current state of differentiation can be isolated and characterized using methods routine to those of skill in the art. These factors may be used in lieu of a feeder layer, or may be used to supplement a feeder layer.
- the term "stabilize" refers to the differentiation state of a cell. When a cell or cell population is stabilized, it will continue to proliferate over multiple passages in culture, and preferably indefinitely in culture; additionally, each cell in the culture is preferably of the same differentiation state, and when the cells divide, typically yield cells of the same cell type or yield cells of the same differentiation state. Preferably, a stabilized cell or cell population does not further differentiate or de-differentiate if the cell culture conditions are not altered, and the cells continue to be passaged and are not overgrown. Preferably the cell that is stabilized is capable of proliferation in the stable state indefinitely, or for at least more than 2 passages.
- the cell is stable for more than 5 passages, more than 10 passages, more than 15 passages, more than 20 passages, more than 25 passages, or most preferably, it is stable for more than 30 passages.
- the cell is stable for greater than 1 year of continuous passaging.
- stem cells are maintained in culture in a pluripotent state by routine passage until it is desired that they be differentiated into definitive endoderm. It is contemplated that a member of the TGF ⁇ family is administered to the pluripotent cell in conjunction with the inhibitor of the PI3 -kinase pathway.
- the term "member of the TGF- ⁇ family” refers to growth factors that are generally characterized by one of skill in the art as belonging to the TGF- ⁇ family, either due to homology with known members of the TGF- ⁇ family, or due to similarity in function with known members of the TGF- ⁇ family.
- the member of the TGF- ⁇ family is selected from the group consisting of Nodal, Activin A, Activin B, TGF- ⁇ , BMP2, BMP4, and mixtures of the foregoing.
- the member of the TGF- ⁇ family is Activin A.
- the growth factor Wnt3a is useful for the production of definitive endoderm cells.
- combinations of any of the above-mentioned growth factors can be used. It is not necessary that these components be added to the cells simultaneously. [078] With respect to some of the embodiments of differentiation methods described herein, the above-mentioned growth factors are provided to the cells so that the growth factors are present in the cultures at concentrations sufficient to promote differentiation of at least a portion of the stem cells to definitive endoderm.
- the above-mentioned growth factors are present in the cell culture at a concentration of at least about 10 ng/ml, at least about 25 ng/ml, at least about 50 ng/ml, at least about 75 ng/ml, at least about 100 ng/ml, at least about 200 ng/ml, at least about 300 ng/ml, at least about 400 ng/ml, at least about 500 ng/ml, or at least about 1000 ng/ml.
- the above-mentioned growth factors are removed from the cell culture subsequent to their addition.
- the growth factors can be removed within about one day, about two days, about three days, about four days, about five days, about six days, about seven days, about eight days, about nine days or about ten days after their addition.
- the growth factors are removed about four days after their addition.
- Cultures of definitive endoderm cells can be grown in medium containing reduced serum or no serum. In certain embodiments of the present invention, serum concentrations can range from about 0.1% to about 20% (v/v). In some embodiments, definitive endoderm cells are grown with serum replacement. In other embodiments, definitive endoderm cells are grown in the presence of B27.
- the concentration of B27 supplement can range from about 0.2% to about 20% (v/v) or greater than about 20% (v/v).
- the concentration of the added B27 supplement can be measured in terms of multiples of the strength of a commercially available B27 stock solution.
- B27 is available from Invitrogen (Carlsbad, CA) as a 5OX stock solution. Addition of a sufficient amount of this stock solution to a sufficient volume of growth medium produces a medium supplemented with the desired amount of B27. For example, the addition of 10 ml of 50X B27 stock solution to 90 ml of growth medium would produce a growth medium supplemented with 5X B27.
- the concentration of B27 supplement in the medium can be about 0.1X, about 0.2X, about 0.3X, about 0.4X, about 0.5X, about 0.6X, about 0.7X, about 0.8X, about 0.9X, about IX, about LlX, about 1.2X, about 1.3X, about 1.4X, about 1.5X, about 1.6X, about 1.7X, about 1.8X, about 1.9X, about 2X, about 2.5X, about 3X, about 3.5X, about 4X, about 4.5X, about 5X, about 6X, about 7X, about 8X, about 9X, about 10X, about HX, about 12X, about 13X, about 14X, about 15X, about 16X, about 17X, about 18X, about 19X, about 2OX and greater than about 2OX.
- the progression of the hESC culture to definitive endoderm can be monitored by quantitating expression of marker genes characteristic of definitive endoderm as well as the lack of expression of marker genes characteristic of hESCs and other cell types.
- One method of quantitating gene expression of such marker genes is through the use of quantitative PCR (Q-PCR). Methods of performing Q-PCR are well known in the art. Other methods that are known in the art can also be used to quantitate marker gene expression. Marker gene expression can be detected by using antibodies specific for the marker gene of interest.
- compositions comprising definitive endoderm cells substantially free of other cell types can be produced. Alternatively, compositions comprising mixtures of hESCs and definitive endoderm cells can be produced.
- compositions comprising at least 5 definitive endoderm cells for every 95 hESCs can be produced. In other embodiments, compositions comprising at least 95 definitive endoderm cells for every 5 hESCs can be produced. Additionally, compositions comprising other ratios of definitive endoderm cells to hESCs are contemplated.
- definitive endoderm cells can be isolated by using an affinity tag that is specific for such cells.
- an affinity tag specific for definitive endoderm cells is an antibody that is specific to a marker polypeptide that is present on the cell surface of definitive endoderm cells but which is not substantially present on other cell types that would be found in a cell culture produced by the methods described herein.
- the pluripotent cells can be dissociated to an essentially single cell culture prior to being contacted with the inhibitor of the PI3- kinase signaling pathway.
- an "essentially single cell culture” is a cell culture wherein during passaging, the cells desired to be grown are dissociated from one another, such that the majority of the cells are single cells, or two cells that remain associated (doublets). Preferably, greater than 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or more of the cells desired to be cultured are singlets or doublets.
- the term encompasses the use of any method known now or later developed that is capable of producing an essentially single cell culture. Non-limiting examples of such methods include the use of a cell dispersal buffer, and the use of proteases such as trypsin, collagenase, dispase, tripLE, and accutase.
- proteases and combinations of certain of the proteases are commercially available.
- the invention contemplates that the cell culture can be dissociated to an essentially single cell culture at any point during passaging, and it is not necessary that the dissociation occur during the passage immediately prior to contact with the inhibitor.
- the dissociation can occur during one or more passages.
- the cells produced using the methods of the present invention have a variety of uses.
- the cells can be used as a source of nuclear material for nuclear transfer techniques and used to produce cells, tissues or components of organs for transplant.
- a definitive endoderm cell is produced, it can be used in human cell therapy or human gene therapy to treat diseases such as type 1 diabetes, liver diseases, and any other diseases that affect the esophagus, stomach, small intestines, large intestines, lungs, thymus, parathyroid and thyroid glands, gall bladder and pancreas.
- the definitive endoderm cell is used to treat diabetes.
- the human embryonic stem cell line BGOl (BresaGen, Inc., Athens,
- GA was used in this work.
- BGOl cells were grown in hES Medium, consisting of DMEM/F-12 (50/50) supplemented with 20% knockout serum replacer (KSR; Invitrogen), 0.1 mM MEM Non-essential amino acids (NEAA; Invitrogen), 2 mM L- Glutamine (Invitrogen), 50 U/ml penicillin, 50 ⁇ g/ml streptomycin (Invitrogen), 4 ng/ml bFGF (Sigma) and 0.ImM ⁇ -mercaptoethanol (Sigma).
- KSR knockout serum replacer
- NEAA Non-essential amino acids
- NEAA Non-essential amino acids
- 2 mM L- Glutamine Invitrogen
- 50 U/ml penicillin 50 ⁇ g/ml streptomycin
- 4 ng/ml bFGF Sigma
- 0.ImM ⁇ -mercaptoethanol Sigma
- Feeder cells were plated at 1.2xlO 6 cells per 35 mm dish.
- the BGOl cells were passaged using a collagenase/trypsin method. Briefly, medium was removed from the dish, 1 ml of 200 U/ml Collagenase type IV (GibcoBRL) was added, and the cells were incubated at 37 0 C for 1-2 minutes. Collagenase was removed and 1 ml of 0.05% trypsin/0.53mM EDTA (GIBCO) was applied. Cells were incubated at 37°C for 30 seconds and then washed from the feeder layer, and the trypsin was inactivated in DMEM/F-12 with 10% fetal bovine serum (FBS; Hyclone). Cells were replated on feeder layers at 100,000 - 300,000 cells per 35 mm dish and were passaged every 3 days.
- FBS fetal bovine serum
- hES medium 25mls was conditioned overnight on mitomycin treated
- MEFs plated in 75cm 2 flasks at 56,000 cells/cm 2 were used for up to 1 week with conditioned medium (CM) collection every 24 hours. CM was supplemented with an additional 8 ng/ml of hbFGF before use.
- Matrigel coated dishes were prepared by diluting Growth Factor Reduced BD matrigel matrix (BD Biosciences) to a final concentration of 1 :30 in cold DMEM/F-12. lml/35mm dish was used to coat dishes for 1-2 hours at room temperature or at least overnight at 4°C. Plates were stored up to one week at 4°C. Matrigel solution was removed immediately before use.
- the BGOl cells were disaggregated using the Collagenase/trypsin method described above. Approximately 10,000 cells were suspended in 50 ⁇ l of EB medium (DMEM (Cellgro) supplemented with 10% FBS (Atlanta Biolabs), 0.1 mM NEAA, 2 mM L-Glutamine, 50 U/ml penicillin and 50 ⁇ g/ml streptomycin), and were dropped onto a 100 mm Petri dish lid with a p200 pipette tip. Approximately 50 drops were placed per lid. The lid was placed onto the dish and 10 ml of PBS was placed in the dish.
- DMEM Cellgro
- FBS Adsorbenta Biolabs
- EBs were washed from the lid at 3 and 5 days, incubated with trypsin for 5 minutes at room temperature and disaggregated with a drawn out glass pipette. Cells were washed once in IxPBS and fixed in 2% PFA/2%sucrose for 10 minutes at room temperature. Cells were then washed twice in PBS and stored in 1%BSA/PBS ready for antibody staining.
- BGOl cells were passaged from feeders using the collagenase/trypsin method and were plated on matrigel-coated dishes at 1x10 5 cells/35 mm dish in conditioned medium (CM; MEF conditioned medium plus 8 ng/ml bFGF). After approximately 24 hours, the media was replaced with fresh CM, CM with inhibitor (resuspended in EtOH), CM with EtOH, or with Spontaneous Differentiation medium (hES medium minus bFGF).
- CM conditioned medium
- hES medium minus bFGF Spontaneous Differentiation medium
- the BGOl cells were plated at different concentrations prior to contact with CM, CM with inhibitor and CM with EtOH Cells were plated at the following concentrations: approximately 5 x 10 4 cells/35 mm dish, approximately 1 x 10 5 cells/35 mm dish, approximately 2 x 10 5 cells/35 mm dish, approximately 4 x 10 5 cells/35 mm dish and, approximately 6 x 10 5 cells/35 mm dish.
- the inhibitor LY 294002 Biomol
- Rapamycin Calbiochem
- LY 294002 inhibits the PI3-kinase pathway by binding to the ATP docking site of pi 10. Rapamycin inhibits a subset of the PD -kinase pathway by inhibiting mTOR (mammalian target of rapamycin). [093] Cells were grown in these conditions for approximately 72 hours with a medium change every 24 hours. Cells were harvested using the collagenase/trypsin method for flow cytometry and RT-PCR analysis and were scraped for biochemical analysis.
- Figures IA-D and 2A-D In undifferentiated cultures, individual cells were not easily discernable, being relatively small, irregular and without clearly apparent intercellular junctions at higher density.
- LY 294002 After treatment with LY 294002, however, the cells underwent marked spreading and adopted obvious epithelioid cuboidal morphologies. Individual cells were also more readily discernable at higher densities since discrete intercellular adhering junctions were evident between neighboring cells.
- the BGOl cells were washed with IxPBS and fixed in 2% paraformaldehyde/ 1 xPBS for 10 minutes at room temperature. The cells were then washed in IxPBS and approximately 2x10 5 cells were incubated with primary antibody diluted in l%BSA/lxPBS.
- the primary antibodies used were anti-CD9 and anti-thrombomodulin (Cymbus Biotechnology), FITC conjugated mouse monoclonal antibodies at a 1 : 10 dilution. Cells were incubated at 4°C for 30 minutes and then washed twice in IxPBS.
- RNA Isolation and RT-PCR Analysis were resuspended in a secondary antibody, anti-mouse Alexa-488 (Molecular Probes) diluted 1 : 1000 in 1%BSA/PBS, incubated at 4 0 C for 30 minutes, and then washed twice in IxPBS. Cells were resuspended in 1% BSA/ IxPBS and surface expression was analyzed using a Beckman Coulter FC500.
- PCR products were run on a 2% agarose gel containing ethidium bromide and visualized using the AlphalmagerTM 2200 Documentation and Analysis System.
- PCR primer sets used were GAT A4, Mixl, Msx 1 , AFP, HNF4alpha, eHAND, Nanog, AFP and GAPDH.
- SOXl 7 is expressed throughout the definitive endoderm as it forms during gastrulation and its expression is maintained in the gut tube (although levels of expression vary along the A-P axis) until around the onset of organogenesis. SOXl 7 is also expressed in a subset of extra-embryonic endoderm cells. No expression of this protein has been observed in mesoderm or ectoderm. As such, SOXl 7 is an appropriate marker for the definitive endoderm lineage when used in conjunction with markers to exclude extra-embryonic lineages.
- Cells to be immunostained were grown on chamber slides, and were rinsed once with IXPBS and fixed for 10 minutes in 4% PF A/4% sucrose in PBS pH 7.4 at room temperature. They were then rinsed 3X in IXPBS and blocked in 3% goat serum with 0.1% Triton-XIOO in PBS for 1 hour at room temperature. Primary antibodies were diluted in 3% goat serum in PBS and this solution was applied overnight at 4°C. The primary antibodies used were rabbit anti-human AFP (Zymed), used at a 1 :50 dilution, and rat anti- human SOX17 (obtained from Cythera, Inc.), used at 1 : 1000 dilution.
- Figures 5A-G demonstrate that treatment of hES cell line BGOl for 1-3 days with either LY 294002 or Rapamycin quantitatively induces the expression of genes strongly associated with mesendoderm (i.e., goosecoid/Brachyury/Cerebrus), the precursor to the definitive endoderm (SOXl 7/MIXl/goosecoid/Cerebrus) lineage.
- mesendoderm i.e., goosecoid/Brachyury/Cerebrus
- SOXl 7/MIXl/goosecoid/Cerebrus the pan-neurectodermal marker
- SOX7 pan-extraembryonic marker
- Figure 6 shows flow cytometry analysis of thrombomodulin expression in human BGOl cells.
- Cells treated with 80 ⁇ M of LY 294002 demonstrate decreased levels of thrombomodulin.
- BG02 cells (BresaGen, Inc.)
- Hl cells (WiCeIl) were also treated with 60 ⁇ M LY 294002 as described in Example 2.
- Expression of AFP, Bry, FoxA2, GSC, Moxl, MixLl, Soxl, Sox 17, THBD, and ZICl were examined by Q- PCR after approximately 72 hours in culture with LY 294002.
- TGF ⁇ members substitute for conditioned medium
- BGOl cells were passaged from feeders using the collagenase/trypsin method and were plated on matrigel coated dishes at IxIO 5 cells/35 mm dish in unconditioned hES medium (UCM). After approximately 24 hours, the media was replaced with fresh hES medium or MEF-CM, along with LY 294002, Activin A, or Nodal as shown in Figure 8A.
- LY 294002 was used at a concentration of approximately 60 ⁇ M; Activin A was used at a concentration of approximately 100 ng/ml; and Nodal was used at a concentration of approximately 1 ⁇ g/ml.
- Cells were treated for approximately 4 days, with a change in medium every 24 hours. Cells were harvested using the collagenase/trypsin method for Q-PCR analysis. Sox- 17 Q-PCR was performed as described in Example 3.
- Figure 8A provides Q-PCR results, showing Soxl7 levels as the fold- increase over untreated cells. Significant Sox 17 expression was observed in hES cells treated with (1) CM and LY 294001, (2) UCM, LY 294002, and Activin A, and (3) UCM, LY 294002 and Nodal, but not in the absence of CM, Activin or Nodal ( Figure 8A). The results indicate that MEF-CM or Activin/Nodal are necessary for LY 294002- dependent hESC-DE formation. Assays were performed in triplicate and are shown as +/- SEM.
- Sox 17 expression was evaluated by Q-PCR under culture conditions competent to support hESC-DE formation (MEF-CM and LY 294002) in the presence or absence of Chordin (approximately 500 ng/ml), Follistatin (approximately 500 ng/ml), Lefty-A (approximately 500 ng/ml), Noggin (approximately 500 ng/ml), SB- 43152 (approximately 10 ⁇ M), and SU-5402 (approximately 5 ⁇ M). Assays were performed in triplicate and are shown as +/- SEM.
- Figure 8B shows Soxl7 levels as the fold-increase over untreated cells in the various treatments, indicating that LY 294002, MEF-CM dependent Sox 17 expression was suppressed by inhibitors of Activin signaling (Follistatin and SB-43152) but not by inhibitors of BMP (Chordin and Noggin), Nodal (Lefty-A) or FGF (SU-5402) signaling.
- Activin signaling Follistatin and SB-43152
- BMP Chordin and Noggin
- Nodal Lefty-A
- FGF SU-5402
- BGOl cells were passaged from feeders using the collagenase/trypsin method and were plated on matrigel coated dishes at IxIO 5 cells/35 mm dish in conditioned medium (CM; MEF conditioned medium plus 8 ng/ml bFGF). After approximately 24 hours, the media was replaced with fresh CM, CM with inhibitor
- Aktl-II (Calbiochem) was dissolved in ethanol and was used at the concentration range approximately 10-40 ⁇ M. Aktl-II inhibits the PI3- kinase pathway by directly inhibiting Akt I.
- GSK3 activation is required for LY 294002 induced definitive endoderm formation [0124] Since Akt phosphorylates and inhibits GSK3 activation, and since blocking Akt promotes DE formation, we investigated whether GSK3 activation is necessary for DE formation.
- BGOl cells were passaged on matrigel using the collagenase/trypsin method as described above and were plated on matrigel-coated chamber slides in CM. After approximately 24 hours, the medium was changed, and the cells were treated with 60 ⁇ M LY 294002, BIO, meBIO, or DMSO for approximately 3-4 days.
- the inhibitor BIO (Dr. AIi Brivanlou) was diluted in DMSO and was used at a concentration of approximately 0.1-5 ⁇ M.
- MeBIO Dr. AIi Brivanlou
- Assays were performed in triplicate and are shown as +/- SEM.
- Cells were grown in these conditions for approximately 3-4 days with a medium change every 24 hours. Cells were harvested using the collagenase/trypsin method for Q-PCR as described above
- GSK3 ⁇ wild-type 1 and 2 were purchased from Invitrogen (GSK3beta Validated RNAi DuoPack; # 45-1488) as. was the control mutant RNAi (Invitrogen, #46-2001).
- LY 294002 was added to all wells. The medium was changed daily. Cells were grown in these conditions for approximately 1- 4 days, and the cells were subsequently fixed and immunostained at days 1, 2, 3, and 4 as indicated in Figures 1 IA and B. [0130] Cells to be immunostained were rinsed once with IXPBS and fixed for
- Figures HA and B show the percentage of GSK3 and Soxl7 positive cells, respectively, upon treatment with the different RNAi molecules.
- Untreated hESCs or hESCs treated for 4 days with 60 ⁇ M LY 294002 were collagenase treated to generate cell aggregates ( ⁇ 50 cells /aggregate), washed in warm media, then gently resuspended in 2 ml DMEM/F12, 10% FCS and left overnight at 37 0 C, 10% CO 2 to facilitate further aggregation.
- Approximately 2.5 x 10 6 cells were injected into the kidney capsule of 5 week old male SCID-beige mice. 6 weeks after transplantation, mice were sacrificed, and the kidneys were removed and fixed in 4% paraformaldehyde. Following fixation, kidneys were embedded in paraffin wax, sectioned and mounted onto glass slides in preparation for H&E and immunostaining.
- 294002 treated aggregates after culture under a kidney capsule for approximately 6 weeks.
- the aggregates express TTF-I (B), AFP (C), villin (D), gastrin (E), HSA (F) and LFABP (G), indicating that the LY 294002 treated cells differentiate to derivatives of endoderm.
- the expression of LFABP and albumin were largely co-localized (data not shown).
- Figures 12H and 121 show Q-PCR results, showing a 1000- fold increase in FABPl mRNA and a 4500-fold increase in albumin mRNA in LY294002 treated HESCs relative to LY 294002 treated HESCs that were not implanted. Assays were performed in triplicate and are shown as +/- SEM.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Developmental Biology & Embryology (AREA)
- Gynecology & Obstetrics (AREA)
- Reproductive Health (AREA)
- Animal Behavior & Ethology (AREA)
- Diabetes (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Endocrinology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Emergency Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2007001772A MX2007001772A (en) | 2004-08-13 | 2005-08-15 | Compositions and methods for self-renewal and differentiation in human embryonic stem cells. |
JP2007525847A JP5102030B2 (en) | 2004-08-13 | 2005-08-15 | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
CA2576872A CA2576872C (en) | 2004-08-13 | 2005-08-15 | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
AU2005272681A AU2005272681B2 (en) | 2004-08-13 | 2005-08-15 | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
US11/573,662 US8187878B2 (en) | 2004-08-13 | 2005-08-15 | Methods for increasing definitive endoderm differentiation of pluripotent human embryonic stem cells with PI-3 kinase inhibitors |
EP05790287A EP1791952A4 (en) | 2004-08-13 | 2005-08-15 | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60166404P | 2004-08-13 | 2004-08-13 | |
US60/601,664 | 2004-08-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006020919A2 true WO2006020919A2 (en) | 2006-02-23 |
WO2006020919A3 WO2006020919A3 (en) | 2007-07-05 |
Family
ID=35908203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/028829 WO2006020919A2 (en) | 2004-08-13 | 2005-08-15 | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
Country Status (8)
Country | Link |
---|---|
US (1) | US8187878B2 (en) |
EP (1) | EP1791952A4 (en) |
JP (1) | JP5102030B2 (en) |
KR (1) | KR20070083559A (en) |
AU (1) | AU2005272681B2 (en) |
CA (1) | CA2576872C (en) |
MX (1) | MX2007001772A (en) |
WO (1) | WO2006020919A2 (en) |
Cited By (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007143193A1 (en) * | 2006-06-02 | 2007-12-13 | University Of Georgia Research Foundation, Inc. | Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems |
WO2008048647A1 (en) * | 2006-10-17 | 2008-04-24 | Cythera, Inc. | Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells |
WO2009017269A1 (en) * | 2007-08-01 | 2009-02-05 | Korea Research Institute Of Bioscience And Biotechnology | A method for differentiating of human embryonic stem cells into the osteoblastic lineage |
US7510876B2 (en) | 2003-12-23 | 2009-03-31 | Cythera, Inc. | Definitive endoderm |
US7625753B2 (en) | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
WO2010011352A2 (en) | 2008-07-25 | 2010-01-28 | The University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived isl1+ multipotent cells (imps), epicardial progenitor cells (epcs) and multipotent cxcr4+cd56+ cells (c56cs) and methods of use |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
US7695963B2 (en) | 2007-09-24 | 2010-04-13 | Cythera, Inc. | Methods for increasing definitive endoderm production |
WO2010140464A1 (en) * | 2009-06-05 | 2010-12-09 | 国立大学法人 熊本大学 | Method for induction of cell differentiation |
US7892830B2 (en) | 2007-01-17 | 2011-02-22 | Wisconsin Alumni Research Foundation | Clonal culture of human pluripotent stem cells |
US7939322B2 (en) | 2008-04-24 | 2011-05-10 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US7985585B2 (en) | 2004-07-09 | 2011-07-26 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
US20120034618A1 (en) * | 2006-05-25 | 2012-02-09 | Sanford-Burnham Medical Research Institute | Methods for culture and production of single cell populations of human embryonic stem cells |
US8129182B2 (en) | 2006-03-02 | 2012-03-06 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US8187878B2 (en) | 2004-08-13 | 2012-05-29 | University Of Georgia Research Foundation, Inc. | Methods for increasing definitive endoderm differentiation of pluripotent human embryonic stem cells with PI-3 kinase inhibitors |
US8216836B2 (en) | 2003-12-23 | 2012-07-10 | Viacyte, Inc. | Methods for identifying factors for differentiating definitive endoderm |
US20120190100A1 (en) * | 2009-07-21 | 2012-07-26 | Transgene AS | Enzymatic composition for the digestion of chicken embryos |
EP2551341A1 (en) * | 2010-03-23 | 2013-01-30 | Kuraray Co., Ltd. | Culture method for causing differentiation of pluripotent mammalian cells |
EP2562248A1 (en) | 2007-07-18 | 2013-02-27 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US8415158B2 (en) | 2006-02-23 | 2013-04-09 | Viacyte, Inc. | Compositions and methods useful for culturing differentiable cells |
EP2610336A1 (en) | 2007-07-31 | 2013-07-03 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US8586357B2 (en) | 2003-12-23 | 2013-11-19 | Viacyte, Inc. | Markers of definitive endoderm |
WO2013176249A1 (en) | 2012-05-25 | 2013-11-28 | 学校法人埼玉医科大学 | Method for producing pancreatic hormone-producing cell, pancreatic hormone-producing cell, and differentiation/induction promoter |
US8623648B2 (en) | 2008-04-24 | 2014-01-07 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US8633024B2 (en) | 2004-04-27 | 2014-01-21 | Viacyte, Inc. | PDX1 expressing endoderm |
US8647873B2 (en) | 2004-04-27 | 2014-02-11 | Viacyte, Inc. | PDX1 expressing endoderm |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
US8778673B2 (en) | 2004-12-17 | 2014-07-15 | Lifescan, Inc. | Seeding cells on porous supports |
US8785184B2 (en) | 2009-07-20 | 2014-07-22 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US8785185B2 (en) | 2009-07-20 | 2014-07-22 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US8895300B2 (en) | 2008-11-04 | 2014-11-25 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof |
WO2014189127A1 (en) | 2013-05-24 | 2014-11-27 | 学校法人埼玉医科大学 | New peptide and application thereof |
US8986995B2 (en) | 2008-12-03 | 2015-03-24 | International Stem Cell Corporation | Methods of deriving differentiated cells from stem cells |
US9012218B2 (en) | 2008-10-31 | 2015-04-21 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
WO2012131733A3 (en) * | 2011-03-31 | 2015-06-18 | Godavari Biorefineries Limited | Media compositions for enriching cultures of stem cells |
US9062290B2 (en) | 2007-11-27 | 2015-06-23 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US9074189B2 (en) | 2005-06-08 | 2015-07-07 | Janssen Biotech, Inc. | Cellular therapy for ocular degeneration |
US9080145B2 (en) | 2007-07-01 | 2015-07-14 | Lifescan Corporation | Single pluripotent stem cell culture |
US9133439B2 (en) | 2009-12-23 | 2015-09-15 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9150833B2 (en) | 2009-12-23 | 2015-10-06 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9181528B2 (en) | 2010-08-31 | 2015-11-10 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9234178B2 (en) | 2008-10-31 | 2016-01-12 | Janssen Biotech, Inc. | Differentiation of human pluripotent stem cells |
US9434920B2 (en) | 2012-03-07 | 2016-09-06 | Janssen Biotech, Inc. | Defined media for expansion and maintenance of pluripotent stem cells |
US9499795B2 (en) | 2005-10-27 | 2016-11-22 | Viacyte, Inc. | PDX1-expressing dorsal and ventral foregut endoderm |
US9506036B2 (en) | 2010-08-31 | 2016-11-29 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9528090B2 (en) | 2010-08-31 | 2016-12-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9593306B2 (en) | 2008-06-30 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9732322B2 (en) | 2008-07-25 | 2017-08-15 | University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived ISL1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent C56C cells (C56Cs) and methods of producing and using same |
CN107043742A (en) * | 2017-06-20 | 2017-08-15 | 青岛金典生化器材有限公司 | A kind of serum free medium of culture hepatocyte and preparation method thereof |
US9752125B2 (en) | 2010-05-12 | 2017-09-05 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9764062B2 (en) | 2008-11-14 | 2017-09-19 | Viacyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US9969972B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Pluripotent stem cell culture on micro-carriers |
US9969973B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Methods and compositions for cell attachment and cultivation on planar substrates |
US9969981B2 (en) | 2010-03-01 | 2018-05-15 | Janssen Biotech, Inc. | Methods for purifying cells derived from pluripotent stem cells |
US10006006B2 (en) | 2014-05-16 | 2018-06-26 | Janssen Biotech, Inc. | Use of small molecules to enhance MAFA expression in pancreatic endocrine cells |
US10066203B2 (en) | 2008-02-21 | 2018-09-04 | Janssen Biotech Inc. | Methods, surface modified plates and compositions for cell attachment, cultivation and detachment |
US10066210B2 (en) | 2012-06-08 | 2018-09-04 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
US10076544B2 (en) | 2009-07-20 | 2018-09-18 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US10138465B2 (en) | 2012-12-31 | 2018-11-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators |
EP3505622A1 (en) * | 2004-07-09 | 2019-07-03 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US10344264B2 (en) | 2012-12-31 | 2019-07-09 | Janssen Biotech, Inc. | Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells |
US10358628B2 (en) | 2011-12-22 | 2019-07-23 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US10370644B2 (en) | 2012-12-31 | 2019-08-06 | Janssen Biotech, Inc. | Method for making human pluripotent suspension cultures and cells derived therefrom |
US10377989B2 (en) | 2012-12-31 | 2019-08-13 | Janssen Biotech, Inc. | Methods for suspension cultures of human pluripotent stem cells |
EP3527658A1 (en) | 2006-04-28 | 2019-08-21 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US10420803B2 (en) | 2016-04-14 | 2019-09-24 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells to intestinal midgut endoderm cells |
EP2559756B1 (en) * | 2007-07-01 | 2019-12-18 | Janssen Biotech, Inc. | Single pluripotent stem cell culture |
WO2020243668A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | Cell encapsulation devices with controlled oxygen diffusion distances |
WO2020243666A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243663A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243665A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
US11254916B2 (en) | 2006-03-02 | 2022-02-22 | Viacyte, Inc. | Methods of making and using PDX1-positive pancreatic endoderm cells |
EP4121512B1 (en) * | 2020-03-20 | 2024-08-21 | IMBA-Institut für Molekulare Biotechnologie GmbH | Heart tissue model |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008014426A2 (en) * | 2006-07-28 | 2008-01-31 | Children's Memorial Hospital | Methods of inhibiting tumor cell aggressiveness using the microenvironment of human embryonic stem cells |
US8106004B2 (en) * | 2006-07-28 | 2012-01-31 | Children's Memorial Hospital | Methods of inhibiting tumor cell aggressiveness using the microenvironment of human embryonic stem cells |
KR101679082B1 (en) | 2008-03-17 | 2016-11-23 | 더 스크립스 리서치 인스티튜트 | Combined chemical and genetic approaches for generation of induced pluripotent stem cells |
US20090298178A1 (en) * | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
JP5692689B2 (en) * | 2008-07-11 | 2015-04-01 | 日京テクノス株式会社 | Method for identifying enzymes related to localization control of biological substances in cells |
CN102317442B (en) | 2008-12-17 | 2014-08-13 | 斯克里普斯研究所 | Generation and maintenance of stem cells |
US8507274B2 (en) | 2009-02-06 | 2013-08-13 | President And Fellows Of Harvard College | Compositions and methods for promoting the generation of definitive endoderm |
WO2010141622A2 (en) * | 2009-06-02 | 2010-12-09 | Cornell University | Method to isolate, identify, and use embryonic stem cells directed to forebrain interneuron fate |
CN113621576A (en) | 2009-10-16 | 2021-11-09 | 斯克里普斯研究所 | Induction of pluripotent cells |
US20130136721A1 (en) * | 2010-02-09 | 2013-05-30 | The Johns Hopkins University | Compositions and Methods of Generating a Differentiated Mesodermal Cell |
JP5909482B2 (en) | 2010-03-31 | 2016-04-26 | ザ スクリプス リサーチ インスティテュート | Cell reprogramming |
WO2011140441A2 (en) | 2010-05-06 | 2011-11-10 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into intestinal tissues through directed differentiation |
EP4438734A2 (en) | 2010-06-14 | 2024-10-02 | The Scripps Research Institute | Reprogramming of cells to a new fate |
JP6182456B2 (en) | 2010-12-22 | 2017-08-23 | フェイト セラピューティクス,インコーポレイテッド | Enhanced cell culture platform and iPSC reprogramming for single cell sorting |
SI2844739T1 (en) | 2012-04-30 | 2019-11-29 | Univ Health Network | METHODS AND COMPOSITIONS FOR GENERATING PANCREATIC PROGENITORS AND FUNCTIONAL BETA CELLS FROM hPSCs |
MX2014013725A (en) * | 2012-05-23 | 2015-02-10 | Hoffmann La Roche | Compositions and methods of obtaining and using endoderm and hepatocyte cells. |
JP6494515B2 (en) * | 2012-10-19 | 2019-04-03 | エージェンシー フォー サイエンス, テクノロジー アンド リサーチ | Method for differentiating stem cells into one or more cell lineages |
USD933584S1 (en) | 2012-11-08 | 2021-10-19 | Sunpower Corporation | Solar panel |
USD1009775S1 (en) | 2014-10-15 | 2024-01-02 | Maxeon Solar Pte. Ltd. | Solar panel |
JPWO2014098232A1 (en) * | 2012-12-21 | 2017-01-12 | 学校法人東京理科大学 | PHARMACEUTICAL COMPOSITION CONTAINING PI3 KINASE INHIBITOR, PHARMACEUTICAL COMPOSITION CONTAINING COMPOUND HAVING VITAMIN D RECEPTOR, LYophilized Composition, Method for Producing Lyophilized Composition, and Pharmaceutical Composition for Transpulmonary Administration |
MX2015017103A (en) | 2013-06-11 | 2016-11-07 | Harvard College | Sc-î² cells and compositions and methods for generating the same. |
KR20240091064A (en) | 2014-03-04 | 2024-06-21 | 페이트 세러퓨틱스, 인코포레이티드 | Improved reprogramming methods and cell culture platforms |
WO2015155738A2 (en) | 2014-04-09 | 2015-10-15 | Christopher Rudd | Use of gsk-3 inhibitors or activators which modulate pd-1 or t-bet expression to modulate t cell immunity |
WO2015183920A2 (en) | 2014-05-28 | 2015-12-03 | Children's Hospital Medical Center | Methods and systems for converting precursor cells into gastric tissues through directed differentiation |
USD933585S1 (en) | 2014-10-15 | 2021-10-19 | Sunpower Corporation | Solar panel |
USD999723S1 (en) | 2014-10-15 | 2023-09-26 | Sunpower Corporation | Solar panel |
USD896747S1 (en) | 2014-10-15 | 2020-09-22 | Sunpower Corporation | Solar panel |
USD913210S1 (en) | 2014-10-15 | 2021-03-16 | Sunpower Corporation | Solar panel |
WO2016061464A1 (en) | 2014-10-17 | 2016-04-21 | Children's Hospital Center, D/B/A Cincinnati Children's Hospital Medical Center | In vivo model of human small intetine using pluripotent stem cells and methods of making and using same |
WO2016100898A1 (en) | 2014-12-18 | 2016-06-23 | President And Fellows Of Harvard College | Serum-free in vitro directed differentiation protocol for generating stem cell-derived b cells and uses thereof |
WO2016100930A1 (en) | 2014-12-18 | 2016-06-23 | President And Fellows Of Harvard College | Methods for generating stem cell-derived b cells and methods of use thereof |
EP3234110B1 (en) | 2014-12-18 | 2024-02-28 | President and Fellows of Harvard College | METHODS FOR GENERATING STEM CELL-DERIVED ß CELLS AND USES THEREOF |
US10167451B2 (en) | 2014-12-22 | 2019-01-01 | The Chinese University Of Hong Kong | Combinational use of mechanical manipulation and programin derivatives to increase Oct4, Sox2, or Nanog expression in fibroblasts |
JPWO2016104541A1 (en) * | 2014-12-24 | 2017-10-05 | 国立大学法人京都大学 | Endodermal cell production method, liver cell production method, pancreatic cell production method, endoderm cell induction promoter, liver cell induction promotion kit, pancreatic cell induction promotion kit, and microfluidic device |
CN117737124A (en) | 2015-10-16 | 2024-03-22 | 菲特治疗公司 | Platform for inducing and maintaining ground state pluripotency |
CN116790476A (en) | 2016-05-05 | 2023-09-22 | 儿童医院医疗中心 | Methods for in vitro manufacturing of fundus tissue and compositions related thereto |
WO2018106628A1 (en) | 2016-12-05 | 2018-06-14 | Children's Hospital Medical Center | Colonic organoids and methods of making and using same |
US10767164B2 (en) | 2017-03-30 | 2020-09-08 | The Research Foundation For The State University Of New York | Microenvironments for self-assembly of islet organoids from stem cells differentiation |
IL308120B1 (en) | 2017-06-14 | 2024-08-01 | Vertex Pharma | Devices and methods for delivering therapeutics |
US10391156B2 (en) | 2017-07-12 | 2019-08-27 | Viacyte, Inc. | University donor cells and related methods |
IL305391B2 (en) | 2017-11-15 | 2024-09-01 | Vertex Pharma | Islet cell manufacturing compositions and methods of use |
CA3101021A1 (en) | 2018-05-31 | 2019-12-05 | University Health Network | Methods and compositions comprising tankyrase inhibitors for generating insulin producing cells |
EP3833365A4 (en) | 2018-08-10 | 2022-05-11 | Vertex Pharmaceuticals Incorporated | Stem cell derived islet differentiation |
US10724052B2 (en) | 2018-09-07 | 2020-07-28 | Crispr Therapeutics Ag | Universal donor cells |
KR20220058579A (en) | 2019-09-05 | 2022-05-09 | 크리스퍼 테라퓨틱스 아게 | universal donor cells |
CA3150235A1 (en) | 2019-09-05 | 2021-03-11 | Alireza Rezania | Universal donor cells |
AU2021414617A1 (en) | 2020-12-31 | 2023-08-10 | Crispr Therapeutics Ag | Universal donor cells |
CN113930386A (en) * | 2021-10-29 | 2022-01-14 | 澳门大学 | Method for guiding pluripotent stem cells to become development-arrested cells and application |
GB202308408D0 (en) | 2023-06-06 | 2023-07-19 | Cambridge Entpr Ltd | Stem cells based three-dimensional embryo model |
Family Cites Families (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6165993A (en) | 1992-03-23 | 2000-12-26 | University Of Massachusetts Medical Center | DNA vaccines against rotavirus infections |
US5453357A (en) | 1992-10-08 | 1995-09-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US7153684B1 (en) | 1992-10-08 | 2006-12-26 | Vanderbilt University | Pluripotential embryonic stem cells and methods of making same |
US5690926A (en) | 1992-10-08 | 1997-11-25 | Vanderbilt University | Pluripotential embryonic cells and methods of making same |
US5593972A (en) | 1993-01-26 | 1997-01-14 | The Wistar Institute | Genetic immunization |
US6015671A (en) | 1995-06-07 | 2000-01-18 | Indiana University Foundation | Myocardial grafts and cellular compositions |
US5843780A (en) | 1995-01-20 | 1998-12-01 | Wisconsin Alumni Research Foundation | Primate embryonic stem cells |
JP2001517927A (en) | 1996-02-28 | 2001-10-09 | バンダービルト ユニバーシティ | Compositions and methods for producing embryonic stem cells |
ES2309999T3 (en) | 1996-10-28 | 2008-12-16 | University Of Lausanne | METHOD FOR OLIGOMERIZATION OF PEPTIDES. |
US6090622A (en) | 1997-03-31 | 2000-07-18 | The Johns Hopkins School Of Medicine | Human embryonic pluripotent germ cells |
US6331406B1 (en) | 1997-03-31 | 2001-12-18 | The John Hopkins University School Of Medicine | Human enbryonic germ cell and methods of use |
US6261281B1 (en) | 1997-04-03 | 2001-07-17 | Electrofect As | Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells |
EP1024836B1 (en) | 1997-09-15 | 2006-12-13 | Genetic Immunity, LLC | Compositions for delivering genes to antigen presenting cells of the skin |
JP3880795B2 (en) | 1997-10-23 | 2007-02-14 | ジェロン・コーポレーション | Method for growing primate-derived primordial stem cells in a culture that does not contain feeder cells |
CA2324591A1 (en) | 1998-04-09 | 1999-10-21 | Bresagen Limited | Cell differentiation/proliferation and maintenance factor and uses thereof |
US6921811B2 (en) | 1998-09-22 | 2005-07-26 | Biosurface Engineering Technologies, Inc. | Bioactive coating composition and methods |
US6667176B1 (en) | 2000-01-11 | 2003-12-23 | Geron Corporation | cDNA libraries reflecting gene expression during growth and differentiation of human pluripotent stem cells |
JP2002529070A (en) | 1998-11-09 | 2002-09-10 | モナシュ・ユニヴァーシティ | Embryonic stem cells |
DE19852800C1 (en) | 1998-11-16 | 2000-04-13 | Univ Albert Ludwigs Freiburg | Production of antibodies to a polypeptide encoded by a known DNA sequence comprises binding of antibodies produced by DNA vaccination to immobilized recombinantly expressed polypeptide |
US6872389B1 (en) | 1999-07-08 | 2005-03-29 | Rhode Island Hospital | Liver stem cell |
EP1265985A4 (en) * | 2000-02-18 | 2004-06-23 | Inst Medical W & E Hall | Pancreatic islet cell growth factors |
US7005252B1 (en) | 2000-03-09 | 2006-02-28 | Wisconsin Alumni Research Foundation | Serum free cultivation of primate embryonic stem cells |
US7256042B2 (en) | 2000-04-27 | 2007-08-14 | Geron Corporation | Process for making hepatocytes from pluripotent stem cells |
US6458589B1 (en) | 2000-04-27 | 2002-10-01 | Geron Corporation | Hepatocyte lineage cells derived from pluripotent stem cells |
US7045353B2 (en) | 2000-08-01 | 2006-05-16 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Directed differentiation of human embryonic cells |
WO2002034880A2 (en) | 2000-10-23 | 2002-05-02 | University Of Kansas | Cadherin peptides for drug delivery and inhibition of tumor metastasis/invasion |
CA2435826A1 (en) | 2001-01-24 | 2002-08-01 | The Government Of The United States Of America | Differentiation of stem cells to pancreatic endocrine cells |
EP1298201A1 (en) | 2001-09-27 | 2003-04-02 | Cardion AG | Process for the production of cells exhibiting an islet-beta-cell-like state |
WO2003050249A2 (en) * | 2001-12-07 | 2003-06-19 | Geron Corporation | Islet cells from human embryonic stem cells |
CA2684022C (en) | 2002-05-17 | 2014-09-23 | Mount Sinai School Of Medicine Of New York University | Mesoderm and definitive endoderm cell populations |
US20060003446A1 (en) | 2002-05-17 | 2006-01-05 | Gordon Keller | Mesoderm and definitive endoderm cell populations |
CA2487858A1 (en) | 2002-05-28 | 2003-12-04 | Novocell, Inc. | Methods, compositions, and growth and differentiation factors for insulin-producing cells |
BR0311360A (en) | 2002-05-28 | 2006-06-06 | Becton Dickinson Co | methods for in vitro expansion and transdifferentiation of human pancreatic acinar cells into insulin producing cells |
WO2004050827A2 (en) | 2002-12-05 | 2004-06-17 | Technion Research & Development Foundation Ltd. | Cultured human pancreatic islets, and uses thereof |
US20050031598A1 (en) * | 2002-12-10 | 2005-02-10 | Shulamit Levenberg | Engineering three-dimensional tissue structures using differentiating embryonic stem cells |
EP1594954A4 (en) | 2003-02-07 | 2010-01-27 | Wisconsin Alumni Res Found | Directed genetic modifications of human stem cells |
US20070154981A1 (en) | 2003-02-14 | 2007-07-05 | The Board Of Trustees Of The Leland Stanford Junior University | Insulin-producing cells derived from stem cells |
US20030224411A1 (en) | 2003-03-13 | 2003-12-04 | Stanton Lawrence W. | Genes that are up- or down-regulated during differentiation of human embryonic stem cells |
US20040229350A1 (en) | 2003-05-12 | 2004-11-18 | Nikolai Strelchenko | Morula derived embryonic stem cells |
CA2526397A1 (en) * | 2003-05-20 | 2004-12-02 | Riken | Preparation of endodermal stem cells |
WO2005017131A2 (en) | 2003-08-14 | 2005-02-24 | THE GOUVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY OF THE DEPARTMENT F HEALTH AND HUMAN SERVICES | Methods for the differentiation of human stem cells |
WO2005033294A2 (en) | 2003-09-30 | 2005-04-14 | Regents Of The University Of California | Methods for maintaining hepatocytes in culture and for differentiating embryonic stem cells along a hepatocyte lineage |
GB0329449D0 (en) * | 2003-12-19 | 2004-01-28 | Omnicyte Ltd | Stem cells |
CN103898045B (en) | 2003-12-23 | 2019-02-01 | 维亚希特公司 | Definitive entoderm |
US7985585B2 (en) | 2004-07-09 | 2011-07-26 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US7541185B2 (en) | 2003-12-23 | 2009-06-02 | Cythera, Inc. | Methods for identifying factors for differentiating definitive endoderm |
US7625753B2 (en) | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
WO2005097980A2 (en) | 2004-03-26 | 2005-10-20 | Geron Corporation | New protocols for making hepatocytes from embryonic stem cells |
AU2005230832B2 (en) | 2004-04-01 | 2010-11-11 | Wisconsin Alumni Research Foundation | Differentiation of stem cells to endoderm and pancreatic lineage |
DK2377922T3 (en) | 2004-04-27 | 2020-05-04 | Viacyte Inc | PDX1-expressing endoderm |
CN102925406B (en) | 2004-07-09 | 2019-11-22 | 维亚希特公司 | Method of the identification for the factor of differentiating definitive endoderm |
ES2754038T3 (en) * | 2004-07-09 | 2020-04-15 | Viacyte Inc | Mesendodermal cells and pre-primitive line cells |
WO2006020919A2 (en) | 2004-08-13 | 2006-02-23 | University Of Georgia Research Foundation, Inc. | Compositions and methods for self-renewal and differentiation in human embryonic stem cells |
JP2008514214A (en) | 2004-09-29 | 2008-05-08 | セルアーティス アーベー | Method for generating hepatocyte-like cells from human blastocyst-derived stem cells (hBS) |
JP2008528038A (en) | 2005-01-31 | 2008-07-31 | エス セル インターナショナル ピーティーイー リミテッド | Directed differentiation of embryonic stem cells and their use |
WO2007002210A2 (en) | 2005-06-20 | 2007-01-04 | Bresagen, Inc. | Embryonic stem cell culture compositions and methods of use thereof |
EP1957636B1 (en) | 2005-10-27 | 2018-07-04 | Viacyte, Inc. | Pdx1-expressing dorsal and ventral foregut endoderm |
US7688187B2 (en) * | 2005-11-07 | 2010-03-30 | Caird Andrew J | Early detection system and method for exterior vehicle cargo |
SG170021A1 (en) | 2006-02-23 | 2011-04-29 | Novocell Inc | Compositions and methods useful for culturing differentiable cells |
EP2650359B1 (en) | 2006-03-02 | 2022-05-04 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
WO2008013664A2 (en) | 2006-07-26 | 2008-01-31 | Cythera, Inc. | Methods of producing pancreatic hormones |
US7695963B2 (en) | 2007-09-24 | 2010-04-13 | Cythera, Inc. | Methods for increasing definitive endoderm production |
US8623650B2 (en) | 2007-10-19 | 2014-01-07 | Viacyte, Inc. | Methods and compositions for feeder-free pluripotent stem cell media containing human serum |
US20090298178A1 (en) | 2008-06-03 | 2009-12-03 | D Amour Kevin Allen | Growth factors for production of definitive endoderm |
-
2005
- 2005-08-15 WO PCT/US2005/028829 patent/WO2006020919A2/en active Application Filing
- 2005-08-15 EP EP05790287A patent/EP1791952A4/en not_active Withdrawn
- 2005-08-15 US US11/573,662 patent/US8187878B2/en not_active Expired - Fee Related
- 2005-08-15 MX MX2007001772A patent/MX2007001772A/en active IP Right Grant
- 2005-08-15 JP JP2007525847A patent/JP5102030B2/en not_active Expired - Fee Related
- 2005-08-15 KR KR1020077005874A patent/KR20070083559A/en not_active Application Discontinuation
- 2005-08-15 AU AU2005272681A patent/AU2005272681B2/en not_active Ceased
- 2005-08-15 CA CA2576872A patent/CA2576872C/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of EP1791952A4 * |
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8658151B2 (en) | 2003-12-23 | 2014-02-25 | Viacyte, Inc. | Expansion of definitive endoderm cells |
US10550367B2 (en) | 2003-12-23 | 2020-02-04 | Viacyte, Inc. | Methods of making human primitive ectoderm cells |
US9605243B2 (en) | 2003-12-23 | 2017-03-28 | Viacyte, Inc. | Markers of definitive endoderm |
US7510876B2 (en) | 2003-12-23 | 2009-03-31 | Cythera, Inc. | Definitive endoderm |
US7625753B2 (en) | 2003-12-23 | 2009-12-01 | Cythera, Inc. | Expansion of definitive endoderm cells |
US9732318B2 (en) | 2003-12-23 | 2017-08-15 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US8586357B2 (en) | 2003-12-23 | 2013-11-19 | Viacyte, Inc. | Markers of definitive endoderm |
US8623645B2 (en) | 2003-12-23 | 2014-01-07 | Viacyte, Inc. | Definitive endoderm |
US10179902B2 (en) | 2003-12-23 | 2019-01-15 | Viacyte, Inc. | Methods of making human primitive ectoderm cells |
US7704738B2 (en) | 2003-12-23 | 2010-04-27 | Cythera, Inc. | Definitive endoderm |
US8216836B2 (en) | 2003-12-23 | 2012-07-10 | Viacyte, Inc. | Methods for identifying factors for differentiating definitive endoderm |
US10421942B2 (en) | 2003-12-23 | 2019-09-24 | Viacyte, Inc. | Definitive endoderm |
US11667889B2 (en) | 2003-12-23 | 2023-06-06 | Viacyte, Inc. | Methods of making human primitive ectoderm cells |
US11746323B2 (en) | 2004-04-27 | 2023-09-05 | Viacyte, Inc. | PDX1 positive foregut endoderm cells and methods of production |
US9222069B2 (en) | 2004-04-27 | 2015-12-29 | Viacyte, Inc. | Methods for making anterior foregut endoderm |
US8647873B2 (en) | 2004-04-27 | 2014-02-11 | Viacyte, Inc. | PDX1 expressing endoderm |
US8633024B2 (en) | 2004-04-27 | 2014-01-21 | Viacyte, Inc. | PDX1 expressing endoderm |
US10465162B2 (en) | 2004-04-27 | 2019-11-05 | Viacyte, Inc. | Anterior endoderm cells and methods of production |
US7985585B2 (en) | 2004-07-09 | 2011-07-26 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
EP3505622A1 (en) * | 2004-07-09 | 2019-07-03 | Viacyte, Inc. | Preprimitive streak and mesendoderm cells |
US8187878B2 (en) | 2004-08-13 | 2012-05-29 | University Of Georgia Research Foundation, Inc. | Methods for increasing definitive endoderm differentiation of pluripotent human embryonic stem cells with PI-3 kinase inhibitors |
US8778673B2 (en) | 2004-12-17 | 2014-07-15 | Lifescan, Inc. | Seeding cells on porous supports |
US9074189B2 (en) | 2005-06-08 | 2015-07-07 | Janssen Biotech, Inc. | Cellular therapy for ocular degeneration |
US11427805B2 (en) | 2005-10-27 | 2022-08-30 | Viacyte, Inc. | Methods of producing human foregut endoderm cells expressing PDX1 from human definitive endoderm |
US9499795B2 (en) | 2005-10-27 | 2016-11-22 | Viacyte, Inc. | PDX1-expressing dorsal and ventral foregut endoderm |
US8658352B2 (en) | 2006-02-23 | 2014-02-25 | Viacyte, Inc. | Compositions and methods useful for culturing differentiable cells |
US8415158B2 (en) | 2006-02-23 | 2013-04-09 | Viacyte, Inc. | Compositions and methods useful for culturing differentiable cells |
US10517901B2 (en) | 2006-03-02 | 2019-12-31 | Viacyte, Inc. | Methods of lowering blood glucose levels in a mammal |
US8129182B2 (en) | 2006-03-02 | 2012-03-06 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US9980986B2 (en) | 2006-03-02 | 2018-05-29 | Viacyte, Inc. | Methods of producing pancreatic hormones |
US7695965B2 (en) | 2006-03-02 | 2010-04-13 | Cythera, Inc. | Methods of producing pancreatic hormones |
US9585917B2 (en) | 2006-03-02 | 2017-03-07 | Viacyte, Inc. | Methods of producing pancreatic hormones |
US11254916B2 (en) | 2006-03-02 | 2022-02-22 | Viacyte, Inc. | Methods of making and using PDX1-positive pancreatic endoderm cells |
US11896622B2 (en) | 2006-03-02 | 2024-02-13 | Viacyte, Inc. | Methods of producing pancreatic hormones |
US10370645B2 (en) | 2006-03-02 | 2019-08-06 | Emory University | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US8603811B2 (en) | 2006-03-02 | 2013-12-10 | Viacyte, Inc. | Endocrine precursor cells, pancreatic hormone-expressing cells and methods of production |
US7993920B2 (en) | 2006-03-02 | 2011-08-09 | Viacyte, Inc. | Methods of producing pancreatic hormones |
EP3527658A1 (en) | 2006-04-28 | 2019-08-21 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US9725699B2 (en) | 2006-04-28 | 2017-08-08 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US8741643B2 (en) | 2006-04-28 | 2014-06-03 | Lifescan, Inc. | Differentiation of pluripotent stem cells to definitive endoderm lineage |
EP4438720A2 (en) | 2006-04-28 | 2024-10-02 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9598670B2 (en) | 2006-05-25 | 2017-03-21 | Burnham Institute For Medical Research | Methods for culture and production of single cell populations of human embryonic stem cells (HESCS) |
US9157061B2 (en) * | 2006-05-25 | 2015-10-13 | Burnham Institute For Medical Research | Methods for culture and production of single cell populations of human embryonic stem cells |
US20120034618A1 (en) * | 2006-05-25 | 2012-02-09 | Sanford-Burnham Medical Research Institute | Methods for culture and production of single cell populations of human embryonic stem cells |
WO2007143193A1 (en) * | 2006-06-02 | 2007-12-13 | University Of Georgia Research Foundation, Inc. | Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems |
WO2008048647A1 (en) * | 2006-10-17 | 2008-04-24 | Cythera, Inc. | Modulation of the phosphatidylinositol-3-kinase pathway in the differentiation of human embryonic stem cells |
US7892830B2 (en) | 2007-01-17 | 2011-02-22 | Wisconsin Alumni Research Foundation | Clonal culture of human pluripotent stem cells |
GB2458863B (en) * | 2007-01-17 | 2011-10-12 | Wisconsin Alumni Res Found | Improved culture of stem cells |
US9080145B2 (en) | 2007-07-01 | 2015-07-14 | Lifescan Corporation | Single pluripotent stem cell culture |
EP2559756B1 (en) * | 2007-07-01 | 2019-12-18 | Janssen Biotech, Inc. | Single pluripotent stem cell culture |
US10316293B2 (en) | 2007-07-01 | 2019-06-11 | Janssen Biotech, Inc. | Methods for producing single pluripotent stem cells and differentiation thereof |
EP2562248A1 (en) | 2007-07-18 | 2013-02-27 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
EP3957716A1 (en) | 2007-07-18 | 2022-02-23 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
EP2610336A1 (en) | 2007-07-31 | 2013-07-03 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US9096832B2 (en) | 2007-07-31 | 2015-08-04 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US10456424B2 (en) | 2007-07-31 | 2019-10-29 | Janssen Biotech, Inc. | Pancreatic endocrine cells and methods thereof |
US9744195B2 (en) | 2007-07-31 | 2017-08-29 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US8093050B2 (en) | 2007-08-01 | 2012-01-10 | Korea Research Institute Of Bioscience And Biotechnology | mTOR inhibtors and mTOR signaling pathway inhibitors induce differentiation of human embryonic stem cells into the osteoblastic lineage |
WO2009017269A1 (en) * | 2007-08-01 | 2009-02-05 | Korea Research Institute Of Bioscience And Biotechnology | A method for differentiating of human embryonic stem cells into the osteoblastic lineage |
KR100937456B1 (en) * | 2007-08-01 | 2010-01-19 | 한국생명공학연구원 | A Method for differentiating of human embryonic stem cells into the osteoblastic lineage |
US7695963B2 (en) | 2007-09-24 | 2010-04-13 | Cythera, Inc. | Methods for increasing definitive endoderm production |
US7993916B2 (en) | 2007-09-24 | 2011-08-09 | Viacyte, Inc. | Methods for increasing definitive endoderm production |
US9062290B2 (en) | 2007-11-27 | 2015-06-23 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US9969982B2 (en) | 2007-11-27 | 2018-05-15 | Lifescan, Inc. | Differentiation of human embryonic stem cells |
US10066203B2 (en) | 2008-02-21 | 2018-09-04 | Janssen Biotech Inc. | Methods, surface modified plates and compositions for cell attachment, cultivation and detachment |
US11001802B2 (en) | 2008-02-21 | 2021-05-11 | Nunc A/S | Surface of a vessel with polystyrene, nitrogen, oxygen and a static sessile contact angle for attachment and cultivation of cells |
EP2669366A2 (en) | 2008-04-24 | 2013-12-04 | Janssen Biotech, Inc. | Pluripotent cells |
US7939322B2 (en) | 2008-04-24 | 2011-05-10 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
EP3327114A1 (en) | 2008-04-24 | 2018-05-30 | Janssen Biotech, Inc. | Pluripotent cells |
US8623648B2 (en) | 2008-04-24 | 2014-01-07 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
USRE43876E1 (en) | 2008-04-24 | 2012-12-25 | Centocor Ortho Biotech Inc. | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm |
US9845460B2 (en) | 2008-04-24 | 2017-12-19 | Janssen Biotech, Inc. | Treatment of pluripotent cells |
US10351820B2 (en) | 2008-06-30 | 2019-07-16 | Janssen Biotech, Inc. | Methods for making definitive endoderm using at least GDF-8 |
US9593305B2 (en) | 2008-06-30 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9593306B2 (en) | 2008-06-30 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US10233421B2 (en) | 2008-06-30 | 2019-03-19 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
WO2010011352A2 (en) | 2008-07-25 | 2010-01-28 | The University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived isl1+ multipotent cells (imps), epicardial progenitor cells (epcs) and multipotent cxcr4+cd56+ cells (c56cs) and methods of use |
US9732322B2 (en) | 2008-07-25 | 2017-08-15 | University Of Georgia Research Foundation, Inc. | Compositions for mesoderm derived ISL1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent C56C cells (C56Cs) and methods of producing and using same |
US9388387B2 (en) | 2008-10-31 | 2016-07-12 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9234178B2 (en) | 2008-10-31 | 2016-01-12 | Janssen Biotech, Inc. | Differentiation of human pluripotent stem cells |
US9752126B2 (en) | 2008-10-31 | 2017-09-05 | Janssen Biotech, Inc. | Differentiation of human pluripotent stem cells |
US9012218B2 (en) | 2008-10-31 | 2015-04-21 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US8445273B2 (en) | 2008-11-04 | 2013-05-21 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
US8895300B2 (en) | 2008-11-04 | 2014-11-25 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof |
US11015170B2 (en) | 2008-11-04 | 2021-05-25 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture |
US10138463B2 (en) | 2008-11-04 | 2018-11-27 | Viacyte, Inc. | Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof |
US8008075B2 (en) | 2008-11-04 | 2011-08-30 | Viacyte, Inc. | Stem cell aggregate suspension compositions and methods of differentiation thereof |
US9913930B2 (en) | 2008-11-14 | 2018-03-13 | Viacyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US9764062B2 (en) | 2008-11-14 | 2017-09-19 | Viacyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US10272179B2 (en) | 2008-11-14 | 2019-04-30 | Viacyte, Inc. | Encapsulation of pancreatic cells derived from human pluripotent stem cells |
US11660377B2 (en) | 2008-11-14 | 2023-05-30 | Viacyte, Inc. | Cryopreserved in vitro cell culture of human pancreatic progenitor cells |
US9969972B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Pluripotent stem cell culture on micro-carriers |
US9969973B2 (en) | 2008-11-20 | 2018-05-15 | Janssen Biotech, Inc. | Methods and compositions for cell attachment and cultivation on planar substrates |
US8986995B2 (en) | 2008-12-03 | 2015-03-24 | International Stem Cell Corporation | Methods of deriving differentiated cells from stem cells |
WO2010140464A1 (en) * | 2009-06-05 | 2010-12-09 | 国立大学法人 熊本大学 | Method for induction of cell differentiation |
US10471104B2 (en) | 2009-07-20 | 2019-11-12 | Janssen Biotech, Inc. | Lowering blood glucose |
US10076544B2 (en) | 2009-07-20 | 2018-09-18 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US8785184B2 (en) | 2009-07-20 | 2014-07-22 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US8785185B2 (en) | 2009-07-20 | 2014-07-22 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US20120190100A1 (en) * | 2009-07-21 | 2012-07-26 | Transgene AS | Enzymatic composition for the digestion of chicken embryos |
US9133439B2 (en) | 2009-12-23 | 2015-09-15 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9150833B2 (en) | 2009-12-23 | 2015-10-06 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US10704025B2 (en) | 2009-12-23 | 2020-07-07 | Janssen Biotech, Inc. | Use of noggin, an ALK5 inhibitor and a protein kinase c activator to produce endocrine cells |
US9593310B2 (en) | 2009-12-23 | 2017-03-14 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US10329534B2 (en) | 2010-03-01 | 2019-06-25 | Janssen Biotech, Inc. | Methods for purifying cells derived from pluripotent stem cells |
US9969981B2 (en) | 2010-03-01 | 2018-05-15 | Janssen Biotech, Inc. | Methods for purifying cells derived from pluripotent stem cells |
US10513685B2 (en) | 2010-03-23 | 2019-12-24 | Corning Incorporated | Method for differentiating pluripotent mammalian stem cells into a population of hepatic cells in a microchamber |
EP2551341A1 (en) * | 2010-03-23 | 2013-01-30 | Kuraray Co., Ltd. | Culture method for causing differentiation of pluripotent mammalian cells |
CN103038336A (en) * | 2010-03-23 | 2013-04-10 | 可乐丽股份有限公司 | Culture method for causing differentiation of pluripotent mammalian cells |
EP2551341A4 (en) * | 2010-03-23 | 2013-07-24 | Kuraray Co | Culture method for causing differentiation of pluripotent mammalian cells |
US9752125B2 (en) | 2010-05-12 | 2017-09-05 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9506036B2 (en) | 2010-08-31 | 2016-11-29 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9458430B2 (en) | 2010-08-31 | 2016-10-04 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
US9951314B2 (en) | 2010-08-31 | 2018-04-24 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9528090B2 (en) | 2010-08-31 | 2016-12-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells |
US9181528B2 (en) | 2010-08-31 | 2015-11-10 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells |
WO2012131733A3 (en) * | 2011-03-31 | 2015-06-18 | Godavari Biorefineries Limited | Media compositions for enriching cultures of stem cells |
US10358628B2 (en) | 2011-12-22 | 2019-07-23 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US11377640B2 (en) | 2011-12-22 | 2022-07-05 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into single hormonal insulin positive cells |
US9593307B2 (en) | 2012-03-07 | 2017-03-14 | Janssen Biotech, Inc. | Defined media for expansion and maintenance of pluripotent stem cells |
US9434920B2 (en) | 2012-03-07 | 2016-09-06 | Janssen Biotech, Inc. | Defined media for expansion and maintenance of pluripotent stem cells |
WO2013176249A1 (en) | 2012-05-25 | 2013-11-28 | 学校法人埼玉医科大学 | Method for producing pancreatic hormone-producing cell, pancreatic hormone-producing cell, and differentiation/induction promoter |
US10208288B2 (en) | 2012-06-08 | 2019-02-19 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
US10066210B2 (en) | 2012-06-08 | 2018-09-04 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells |
US10138465B2 (en) | 2012-12-31 | 2018-11-27 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using HB9 regulators |
US10370644B2 (en) | 2012-12-31 | 2019-08-06 | Janssen Biotech, Inc. | Method for making human pluripotent suspension cultures and cells derived therefrom |
US10947511B2 (en) | 2012-12-31 | 2021-03-16 | Janssen Biotech, Inc. | Differentiation of human embryonic stem cells into pancreatic endocrine cells using thyroid hormone and/or alk5, an inhibitor of tgf-beta type 1 receptor |
US10344264B2 (en) | 2012-12-31 | 2019-07-09 | Janssen Biotech, Inc. | Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells |
US10377989B2 (en) | 2012-12-31 | 2019-08-13 | Janssen Biotech, Inc. | Methods for suspension cultures of human pluripotent stem cells |
WO2014189127A1 (en) | 2013-05-24 | 2014-11-27 | 学校法人埼玉医科大学 | New peptide and application thereof |
US10870832B2 (en) | 2014-05-16 | 2020-12-22 | Janssen Biotech, Inc. | Use of small molecules to enhance MAFA expression in pancreatic endocrine cells |
US10006006B2 (en) | 2014-05-16 | 2018-06-26 | Janssen Biotech, Inc. | Use of small molecules to enhance MAFA expression in pancreatic endocrine cells |
US10420803B2 (en) | 2016-04-14 | 2019-09-24 | Janssen Biotech, Inc. | Differentiation of pluripotent stem cells to intestinal midgut endoderm cells |
CN107043742A (en) * | 2017-06-20 | 2017-08-15 | 青岛金典生化器材有限公司 | A kind of serum free medium of culture hepatocyte and preparation method thereof |
WO2020243665A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243663A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243666A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | A biocompatible membrane composite |
WO2020243668A1 (en) | 2019-05-31 | 2020-12-03 | W. L. Gore & Associates, Inc. | Cell encapsulation devices with controlled oxygen diffusion distances |
EP4121512B1 (en) * | 2020-03-20 | 2024-08-21 | IMBA-Institut für Molekulare Biotechnologie GmbH | Heart tissue model |
Also Published As
Publication number | Publication date |
---|---|
CA2576872A1 (en) | 2006-02-23 |
KR20070083559A (en) | 2007-08-24 |
JP5102030B2 (en) | 2012-12-19 |
AU2005272681A1 (en) | 2006-02-23 |
CA2576872C (en) | 2013-11-12 |
AU2005272681B2 (en) | 2009-11-19 |
EP1791952A4 (en) | 2008-06-11 |
MX2007001772A (en) | 2007-07-11 |
EP1791952A2 (en) | 2007-06-06 |
US8187878B2 (en) | 2012-05-29 |
WO2006020919A3 (en) | 2007-07-05 |
US20070281355A1 (en) | 2007-12-06 |
JP2008509676A (en) | 2008-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005272681B2 (en) | Compositions and methods for self-renewal and differentiation in human embryonic stem cells | |
US20090298169A1 (en) | Pancreatic and Liver Endoderm Cells and Tissue by Differentiation of Definitive Endoderm Cells Obtained from Human Embryonic Stems | |
AU2008211103B2 (en) | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells (MMC) | |
KR101592180B1 (en) | Pluripotent stem cell differentiation by using human feeder cells | |
RU2465323C2 (en) | Differentiation of human embryonic stem cells | |
US8445273B2 (en) | Stem cell aggregate suspension compositions and methods of differentiation thereof | |
DK2094833T3 (en) | DIFFERENTIZING PLURIPOTENT CELLS FOR PRIMARY CANCEL PROGENITORS | |
JP5128946B2 (en) | Feeder-independent long-term culture of embryonic stem cells | |
US20180258387A1 (en) | Methods and compositions for cell attachment and cultivation on planar substrates | |
CN101541953A (en) | Pancreatic and liver endoderm cells and tissue by differentiation of definitive endoderm cells obtained from human embryonic stems | |
WO2007002210A2 (en) | Embryonic stem cell culture compositions and methods of use thereof | |
WO2006026473A2 (en) | METHODS AND COMPOSITIONS UTILIZING MYC AND GSK3ß TO MANIPULATE THE PLURIPOTENCY OF EMBRYONIC STEM CELLS | |
WO2010108005A2 (en) | Novel neural progenitors from pluripotent stem cells, methods of producing same and use to produce neural cells | |
WO2010108008A2 (en) | Bsc cell differentiation and use in therapy | |
AU2014203737B2 (en) | Early mesoderm cells, a stable population of mesendoderm cells that has utility for generation of endoderm and mesoderm lineages and multipotent migratory cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005272681 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2576872 Country of ref document: CA Ref document number: 2007525847 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/001772 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2005272681 Country of ref document: AU Date of ref document: 20050815 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005790287 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005272681 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077005874 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005790287 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11573662 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 11573662 Country of ref document: US |