WO2006019937A1 - Efficient conversion of heat to useful energy - Google Patents

Efficient conversion of heat to useful energy Download PDF

Info

Publication number
WO2006019937A1
WO2006019937A1 PCT/US2005/025033 US2005025033W WO2006019937A1 WO 2006019937 A1 WO2006019937 A1 WO 2006019937A1 US 2005025033 W US2005025033 W US 2005025033W WO 2006019937 A1 WO2006019937 A1 WO 2006019937A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
heat
working
component
heat source
Prior art date
Application number
PCT/US2005/025033
Other languages
English (en)
French (fr)
Inventor
Richard I. Pelletier
Original Assignee
Recurrent Engineering Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004903961A external-priority patent/AU2004903961A0/en
Application filed by Recurrent Engineering Llc filed Critical Recurrent Engineering Llc
Priority to EP05771499A priority Critical patent/EP1769138A4/en
Priority to JP2007522576A priority patent/JP4598071B2/ja
Priority to CN200580018661.6A priority patent/CN101018930B/zh
Priority to CA2570654A priority patent/CA2570654C/en
Priority to NZ552273A priority patent/NZ552273A/en
Priority to MX2007000879A priority patent/MX2007000879A/es
Publication of WO2006019937A1 publication Critical patent/WO2006019937A1/en
Priority to IS8583A priority patent/IS8583A/is

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia

Definitions

  • the present invention relates to systems, methods and apparatus configured to implement a thermodynamic cycle via countercurrent heat exchange.
  • the present invention relates to generating electricity by heating a multi-component stream with a heat source stream at one or more points in a thermodynamic cycle.
  • a conventional heat transfer system is one which converts thermal energy from a geothermal hot water or industrial waste heat source into electricity using a counter current heat exchange technology.
  • the heat from relatively hot liquids in a geothermal vent e.g., "brine”
  • a multi-component fluid in a closed system e.g., "fluid stream”
  • the multi-component fluid is heated from a low energy and low temperature fluid state into a relatively high-pressure gas ("working stream").
  • the high-pressure gas, or working stream can then be passed through one or more turbines, causing the one or more turbines to spin and generate electricity.
  • conventional heat transfer systems operate on the general counter current heat exchange principles to heat the multi-component working fluid through a variety of temperature ranges, from relatively cold to relatively hot.
  • a conventional fluid stream for such a system comprises different fluid components that each have a different boiling point.
  • one component of the fluid stream may become a gas at one temperature point, while another fluid stream component may remain in a relatively hot liquid state at the same temperature.
  • This can be useful for separating the different components at different points in the closed system.
  • all, or nearly all, of the components of the fluid stream can be raised to a temperature such that all components of the fluid stream collectively comprise a "working stream", or high pressure gas.
  • the heat transfer system comprises apparatus configured primarily to cool the working stream to a cooler temperature, or heat the fluid stream to a hotter temperature.
  • the fluid stream passes through one or more heat exchangers that couple the fluid stream to the heat source stream as the fluid stream progresses toward a high temperature state, which is then passed through the one or more turbines.
  • the working stream that has already passed through the turbines is typically referred to as a spent stream.
  • the spent stream is cooled by transferring heat to the fluid stream in a heat exchanger, since the spent stream is relatively hotter than the fluid stream at one or more stages in the system.
  • the heat source brine is usually discarded at a temperature that is much hotter than desired.
  • the brine is cooled from an average temperature of about 600° F to a throw-away temperature of about 170-200° F. While 200° F is still a relatively hot temperature to perform meaningful heat transfers on conventional fluid streams, the conventional fluid stream is considered relatively cool, or lukewarm, at a similar temperature of about 170-200° F.
  • the coolest point of a conventional fluid stream is usually too warm to be heated in any efficient way by the low temperature portion (i.e., the "low temperature tail") of the brine.
  • conventional heat systems tend to be more efficient by discarding the brine at approximately 170-200° F.
  • One possible solution could be to cool the fluid stream to temperature that is much lower than 190-200° F, so that the fluid stream can be efficiently heated using the heat of the low temperature tail. In principle, this might involve the use of a Distillation Condensation Sub-system ("DCSS”) in conjunction with the above- described heat transfer system.
  • DCSS Distillation Condensation Sub-system
  • an advantage in the art can be realized with systems and apparatus that allow efficient use of a low temperature tail.
  • an advantage in the art can be realized with heat transfer systems that are able to efficiently use a DCSS, so that a fluid stream can still be raised to an efficient working stream temperature.
  • the present invention solves one or more of the foregoing problems in the prior art with systems and apparatus configured to efficiently use more waste heat than possible in prior heat transfer systems.
  • the present invention provides for the use of a "low temperature tail" of a brine heat source in a heat transfer system, at least in part by efficiently incorporating a DCSS along with additional heat exchange apparatus.
  • a DCSS is coupled to a counter current heat exchange system.
  • the DCSS is used at least in part to cool a spent working stream after the working stream has been passed through one or more turbines. Due to the relatively cool temperature of the fluid stream provided by the DCSS, however, one or more heat exchange apparatus are added to increase the temperature of the fluid stream to a useful temperature range. At this temperature range, the fluid stream can subsequently be coupled to a low temperature tail as low as 150-200° F via an additional heat exchanger, and still ultimately reach an appropriate working stream temperature. Accordingly, a heat transfer system in accordance with the present invention can convert a greater amount of heat from the heat source into useful energy, and can do so with significantly more energy efficiency than prior heat transfer systems.
  • FIG. 1 illustrates a heat transfer system in accordance with an embodiment of the present invention, in which two turbines are used
  • FIG. 2 illustrates a heat transfer system in accordance with another embodiment of the present invention, in which one turbine is used.
  • the present invention extends to systems and apparatus configured to efficiently use more waste heat than possible in prior heat transfer systems.
  • the present invention provides for the use of a "low temperature tail" of a brine heat source in a heat transfer system, at least in part by efficiently incorporating a DCSS along with additional heat exchange apparatus.
  • FIG. 1 illustrates one embodiment of the present invention in which a heat transfer system 100 comprises a power sub-system 101 that is coupled to a cooling system, such as Distillation Condensation Sub-system ("DCSS") 103.
  • the power sub-system 101 can be thought of generally as heating the multi-component stream to a point at which the fluid multi-component stream becomes an at least partially a vapor working stream.
  • the DCSS 103 can be thought of generally as cooling a post expansion spent stream to a cooled fluid stream, as well as. heating the fluid stream where appropriate for later use as a multi-component stream in the power sub-system 101.
  • Figure 1 also shows the direction of a multi-component stream (both for the fluid stream and for the heat source stream) throughout the heat transfer system 100, as the fluid is condensed and heated in heat exchangers in the system. Accordingly, the following description outlines the stream of a heat source stream (e.g., "brine”) as it streams through the heat transfer system 100 (and system 200), and then the flow of spent and intermediate fluid streams, which are distinct and separate from the heat source stream, through the power sub-system 101 and the DCSS 103.
  • a heat source stream e.g., "brine”
  • the heat source stream it will be understood that there can be many types of heat source streams that can be implemented with the present invention.
  • a heat source stream that is suitable for use with the present invention can comprise any suitably hot liquid or vapor, or mixture thereof, such as naturally or synthetically produced liquids, steams, oils, and so forth. Accordingly, implementations of the systems described herein can be particularly useful for converting heat from geothermal fluids, such as "brine", into electric power, as well as converting other synthetic fluid waste heat in a factory environment into electric power.
  • the heat source stream enters the heat transfer system 100 at point 50 (anywhere from 250 0 F to 800 0 F), whereupon the heat source splits into two streams 51 and 151, which are used to add heat to a working stream just before the working stream passes to a turbine or other expansion component.
  • stream 51 passes through heat exchanger 304, which transfers heat to the working stream at point 30 just before passing into a first turbine 501.
  • the splitting of streams can be carried out by any suitable means, such as a conventional splitting component that splits the multi-component stream into two separate streams.
  • a "heat exchanger” may be any conventional type of heat exchanger, such as conventional shell and tube, or plate- type heat exchangers, or variations or combinations thereof. Accordingly, the heat source stream at point 151 cools to parameters at point 150 » having transferred an amount of its heat in heat exchanger 305.
  • Streams 150 (original stream 151) and 152 (original stream 51) are then combined at point 153 prior to entering heat exchanger 303, wherein the combined stream at point 153 is an amount cooler than at point 50.
  • the mixing or combining of any working, intermediate, spent, or otherwise fluid stream may be carried out by any suitable mixing device to combine the streams to form a single stream.
  • the combined heat source stream is still at a relatively high temperature, and so still has a significant amount of heat that can be transferred to the working stream.
  • the combined stream at point 153 is passed through heat exchanger 303, thereby transferring the heat from the heat source stream to the working stream, causing the working stream to heat from points 66 to 67.
  • the heat source stream, having somewhat cooler parameters at point 53, is still at a relatively high temperature, and so is passed through heat exchanger 301. This heats the working stream from point 161 to 61, and cools the heat source stream further from point 53 to point 54.
  • these parameters of the heat source stream are associated with a temperature range of about 170-200° F, depending in part on other operating conditions of the relevant heat source and system 101. In another embodiment, the parameters of the heat source stream at point 54 are associated with a temperature ranges of about 130-250° F.
  • the heat source stream is now at parameters of the conventional "low temperature tail", and would ordinarily be discarded. As will be understood more fully from the following description, however, system 100 can efficiently use this low temperature tail, such that the heat source stream is passed from point 54 through heat exchanger 405 to point 55. Since heat exchanger 405 transfers heat from the low temperature tail, the heat exchanger 405 can be termed a "residual heat exchanger".
  • the fluid stream can comprise a water-ammonia mixture that has a boiling point of approximately 196° F, and a dew point at approximately 338° F.
  • the fluid stream is at or near its boiling point at point 60, at or near its dew point at point 30, and at or near liquid forms at points 18, and 102.
  • the heat transfer system 100 splits the working stream into two multi-component streams at points 161 and 162.
  • the working stream at point 161 is heated by the heat source stream to parameters at point 61 in heat exchanger 301, while the working stream at point 161 is heated to parameters of point 62 by the spent stream 36 at heat exchanger 302.
  • the working streams at points 61 and 62 are then combined into a working stream that has parameters at point 66. Since part of the working stream at point 60 is heated by the heat source stream, while another part of the working stream is heated by the spent stream, the power sub-system 101 can make efficient use of a number of potential heat sources.
  • the working stream at point 66 is heated by the heat source stream from point 153 to parameters at point 67 via heat exchanger 303.
  • the working stream begins to be converted toward a superheated vapor.
  • the working stream is heated by the heat source stream at point 51, such that the working stream heats from point 67 to point 30 via heat exchanger 304.
  • This optimizes the conventional working stream so that it can pass through the turbine 501 at a desired high energy state.
  • the desired high energy state is a superheated vapor.
  • the working stream becomes at least "partially spent", such that it loses an amount of energy in the form of lost pressure and temperature.
  • the partially spent stream at point 32 is heated through a heat exchanger 305 to obtain parameters of point 35.
  • system 100 may find additional incremental energy, gains by continuing to split the heat source stream at point 50 to- heat still subsequent iterations of a partially spent working stream through still further numbers of heat exchangers and turbines, and so on.
  • the use of one or two turbines of the present disclosure are merely exemplary of one suitable embodiment.
  • the now spent stream at point 36 is passed through a heat exchanger 302. This cools the spent stream to the parameters of point 38, while at the same time heating a part of the working stream from point 162 to 62.
  • the spent stream at point 36 may be at a lower pressure than the high pressure working stream at points 162 and 62, even though the spent working stream at point 36 is hotter.
  • the spent stream at point 38 would ordinarily be passed to point 60 for recuperative reheating.
  • the spent stream at point 38 is cooled further using a DCSS 103.
  • the spent stream at point 38 is passed through heat exchanger
  • a "lean stream” refers to a fluid stream having less of a lower boiling point component than a higher boiling point component (e.g. ammonia versus water), while a “rich stream” refers to a fluid stream having more of a lower boiling point component than a higher boiling point component.
  • an "intermediate lean” stream has more of a lower boiling point component (e.g., ammonia, in an ammonia / water composition) than a “lean” or “very lean” stream (i.e., least amount of ammonia, in an ammonia / water composition), but less lower boiling point component than a "rich” stream.
  • a lower boiling point component e.g., ammonia, in an ammonia / water composition
  • very lean i.e., least amount of ammonia, in an ammonia / water composition
  • the spent stream at point 17 then combines with a very lean stream that has parameters of point 12, to produce a combined fluid stream (or "intermediate lean stream") that has parameters of point 18.
  • the combined, intermediate lean stream is then cooled at heat exchanger 402, which transfers heat from the intermediate lean stream at point 18 to a cooling medium.
  • Apparatus.402 and 404 may comprise any suitable heat exchange condensers, such as water or air-cooled heat exchangers.
  • the cooling medium can be any number or combination of media sufficient to condense the intermediate lean stream from point 18 to point 1 through the heat exchanger 402.
  • Such media can include air, water, a chemical coolant, and so forth, and are simply cycled in and out of the system 100, as appropriate.
  • the cooling medium is introduced to the system 100 relatively cool, such of point 23, heated by heat exchangers 402 and 404 to points 59 and 58, and then cycled out of the system 100 relatively warm at point 24. Since the cooling medium is cycled in and out of the system, the cooling medium maintains a relatively constant, cool temperature that can absorb heat from the multi-component stream.
  • pump 504 elevates the pressure of the stream, causing the intermediate lean stream to be elevated to parameters of point 2. Thereafter, the elevated pressure intermediate lean stream is then split into two parts. One part, which will be discussed in further detail subsequently, has parameters of point 8, and is mixed with a rich stream having parameters of point 6. The other part of the medium pressure intermediate lean stream, having parameters of point 102, is heated in apparatus 401 by the spent stream of point 6, such that the intermediate lean stream gains parameters of point 5. At point 5, the intermediate lean stream is separated in apparatus 503 into primarily vapor and liquid components, such that the vapor component has parameters of point 7, and the liquid component has parameters of point 9.
  • Apparatus 503 can comprise any suitable separator or distilling device that is known in the art, such as a gravity separator (e.g., a conventional flash tank).
  • the vapor and liquid components of the streams at points 7 and 9 are separated so that they can be selectively mixed (or not mixed) to heat (or maintain) the amount of temperature provided at an intermediate heat exchanger 403.
  • a portion of the vapor at point 7 can be selectively split into one stream at point 6, and another stream at point 15. If the liquid component at point 9 is not hot enough to heat the multi-component stream from point 21 to point 29 in the heat exchanger 403, a greater portion of the hotter vapor component stream from point 15 may be added to the liquid component stream at point 9, to produce a hotter stream having parameters at point 10.
  • the liquid component at point 9 is hot enough for what is needed in heat exchanger 403, then no mixing with the vapor at point 15 will be needed. Such mixing, therefore, is optional and depends on the relevant operating conditions.
  • the stream at point 10 is generally a "very lean” stream, or a stream with a relatively low amount of low boiling point component.
  • This very lean stream at point 10 passes through the intermediate heat exchanger 403, heats the fluid stream of point 21, and cools the very lean stream from point 10 to point 1 1.
  • the fluid stream at point 11 may further be throttled to a lower pressure. Nevertheless, the fluid stream of point 11 passes to parameters of point 12, and then mixes with the spent stream at point 17 before passing through heat exchanger 402.
  • the vapor component at point 7 that is split apart from the liquid component of point 9 differs from the vapor components of points 6 and 15 primarily with respect to stream rate. In practice, however, the vapor components of points 6, 7, and 15 may also have slightly different pressures. Regardless, the vapor component (i.e., the component at point 7, or component streams 6, or 15), is a "rich" stream, having a relatively high amount of low-boiling- point component. This "rich" stream at point 6 is subsequently mixed with the portion of the intermediate lean stream at point 8, to produce the multi-component stream at point 13.
  • the intermediate stream at point 13 is approximately the same proportion of low and high boiling point components (e.g., proportion of ammonia to water) as the working stream used subsequently in the heat transfer process, such of points 60 and higher.
  • This intermediate stream at point 13 is then condensed at the heat exchanger 404 by the afore-described cooling medium and becomes a condensed stream. As such, this fluid stream at point 13 cools from parameters of point 13 to parameters of point 14.
  • the fluid stream at point 14 is then pumped through pump 505, such that the fluid stream becomes a high-pressure working stream that has parameters of point 21.
  • the working stream at point 21 is then heated to point 29 through the heat exchanger 403, causing the intermediate stream to cool from point 10 to point 11.
  • the working stream is heated by the "low temperature tail" of the heat source stream at heat exchanger 405, such that the heat source stream cools from points 54 to 55.
  • the working stream at point 29 should be at an appropriate temperature that it can make efficient use (i.e., be heated by) of the low temperature tail in heat exchanger 405. This can help ensure that the working stream at point 30 passes through the turbine 501 at the highest available energy for the system 100. Accordingly, whether the working stream at point 30 reaches its most efficient energy output can depend in part on the temperature of the intermediate stream is at point 10. For example, if the working stream at point 29 is at too high of a temperature, there is little or no efficiency added transferring heat from the low temperature tail at points 54 to 55. By contrast, if the working stream at point 29 is too cool after passing through the DCSS 103, the low temperature tail from points 54-55 will not be able to heat the working stream from point 29 all the way to the desired temperature at point 60.
  • the DCSS 103 can help ensure the appropriate temperature of the working stream at point 29 by allowing for the variable addition of heat to the intermediate stream at point 10. As previously described, this, can be accomplished by variably adding (or not adding) vapor component 15 with liquid component 9. In other words, the more of vapor 15 that is added to stream 9, the hotter the mixed fluid stream is at point 10, and the more heat that can be added to the working stream at point 21. Therefore, the provisions for separating and mixing of the fluid stream in the DCSS 103 allows the system 100 to make efficient use of the low temperature tail (i.e., points 54-55) in the working stream. Furthermore, implementations of the present invention make effective use of the low heat source stream for additional power at turbines 501 and 502, and so on.
  • FIG. 2 shows an alternative heat transfer system 200, which implements only a single turbine 502.
  • system 100 can be modified, as shown in Figure 2, so that streams 32, 150, and 151, and heat exchanger 305 are omitted. This results in only the working stream at point 30 passing through turbine 502 to produce a spent stream 36, which is then processed in heat exchanger 302, as described above.
  • the number of turbines that can be used for incremental energy gains may be varied within the context of the present invention.
  • heat exchanger 303 may be dispensed with, in lieu of heat exchanger 304.
  • heat exchanger 302 may be dispensed with in lieu of heat exchanger 301.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
PCT/US2005/025033 2004-07-19 2005-07-14 Efficient conversion of heat to useful energy WO2006019937A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP05771499A EP1769138A4 (en) 2004-07-19 2005-07-14 EFFICIENT CONVERSION OF HEAT IN USE ENERGY
JP2007522576A JP4598071B2 (ja) 2004-07-19 2005-07-14 熱から有用なエネルギーへの効率的な変換
CN200580018661.6A CN101018930B (zh) 2004-07-19 2005-07-14 热量向有用能量的有效转化
CA2570654A CA2570654C (en) 2004-07-19 2005-07-14 Efficient conversion of heat to useful energy
NZ552273A NZ552273A (en) 2004-07-19 2005-07-14 Efficient conversion of heat to useful energy residual heat exchanger connected to the first heat exchanger
MX2007000879A MX2007000879A (es) 2004-07-19 2005-07-14 Eficiente conversion de calor a energia util.
IS8583A IS8583A (is) 2005-07-13 2006-12-20 Efficent conversion of heat to useful energy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2004903961A AU2004903961A0 (en) 2004-07-19 Method for converting heat to useful energy
AU2004903961 2004-07-19
AU2005203045 2005-07-13
AU2005203045A AU2005203045A1 (en) 2004-07-19 2005-07-13 Efficient conversion of heat to useful energy

Publications (1)

Publication Number Publication Date
WO2006019937A1 true WO2006019937A1 (en) 2006-02-23

Family

ID=35907714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/025033 WO2006019937A1 (en) 2004-07-19 2005-07-14 Efficient conversion of heat to useful energy

Country Status (8)

Country Link
EP (1) EP1769138A4 (tr)
JP (1) JP4598071B2 (tr)
AU (1) AU2005203045A1 (tr)
CA (1) CA2570654C (tr)
MX (1) MX2007000879A (tr)
NZ (1) NZ552273A (tr)
TR (1) TR200700203T2 (tr)
WO (1) WO2006019937A1 (tr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10934895B2 (en) * 2013-03-04 2021-03-02 Echogen Power Systems, Llc Heat engine systems with high net power supercritical carbon dioxide circuits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132076A (en) * 1990-12-18 1992-07-21 Westinghouse Electric Corp. In-containment chemical decontamination system for nuclear rector primary systems
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
US6105369A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Hybrid dual cycle vapor generation
US6141949A (en) * 1996-12-12 2000-11-07 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Process and apparatus using solar energy in a gas and steam power station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604867A (en) * 1985-02-26 1986-08-12 Kalina Alexander Ifaevich Method and apparatus for implementing a thermodynamic cycle with intercooling
US5950433A (en) * 1996-10-09 1999-09-14 Exergy, Inc. Method and system of converting thermal energy into a useful form

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132076A (en) * 1990-12-18 1992-07-21 Westinghouse Electric Corp. In-containment chemical decontamination system for nuclear rector primary systems
US5572871A (en) * 1994-07-29 1996-11-12 Exergy, Inc. System and apparatus for conversion of thermal energy into mechanical and electrical power
US6141949A (en) * 1996-12-12 2000-11-07 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Process and apparatus using solar energy in a gas and steam power station
US6105369A (en) * 1999-01-13 2000-08-22 Abb Alstom Power Inc. Hybrid dual cycle vapor generation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1769138A4 *

Also Published As

Publication number Publication date
EP1769138A4 (en) 2012-08-15
MX2007000879A (es) 2008-10-24
AU2005203045A1 (en) 2006-02-02
CA2570654A1 (en) 2006-02-23
EP1769138A1 (en) 2007-04-04
JP2008506893A (ja) 2008-03-06
CA2570654C (en) 2010-11-09
TR200700203T2 (tr) 2007-03-21
NZ552273A (en) 2009-12-24
JP4598071B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
US7516619B2 (en) Efficient conversion of heat to useful energy
US6941757B2 (en) Power cycle and system for utilizing moderate and low temperature heat sources
JP2716606B2 (ja) 熱力学サイクルの実施方法および装置
US7021060B1 (en) Power cycle and system for utilizing moderate temperature heat sources
US6735948B1 (en) Dual pressure geothermal system
JP4495146B2 (ja) 中温および低温の熱源を利用する動力サイクルおよびシステム
US6820421B2 (en) Low temperature geothermal system
RU2123606C1 (ru) Способ и устройство для осуществления термодинамического цикла
KR940002718B1 (ko) 직접 연소식(direct fired)동력 사이클을 수행하는 장치 및 방법
US6829895B2 (en) Geothermal system
US4756162A (en) Method of utilizing thermal energy
WO2013027604A1 (ja) 蒸気動力サイクルシステム
EP0949406A2 (en) Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
US20030167769A1 (en) Mixed working fluid power system with incremental vapor generation
WO2013013231A2 (en) Process and power system utilizing potential of ocean thermal energy conversion
JP2000356431A (ja) 統合ガス化システム内において低品位熱を冷却負荷に変換する方法及び装置
US8584462B2 (en) Process and power system utilizing potential of ocean thermal energy conversion
KR101917430B1 (ko) 발전장치
CA2570654C (en) Efficient conversion of heat to useful energy
WO2011111075A1 (en) Improved thermodynamic cycle
WO2003008767A2 (en) Mixed working fluid power system with incremental vapor generation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580018661.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2570654

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 552273

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2005771499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12007500149

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2007/00203

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2007522576

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/000879

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005771499

Country of ref document: EP