WO2006019010A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2006019010A1
WO2006019010A1 PCT/JP2005/014557 JP2005014557W WO2006019010A1 WO 2006019010 A1 WO2006019010 A1 WO 2006019010A1 JP 2005014557 W JP2005014557 W JP 2005014557W WO 2006019010 A1 WO2006019010 A1 WO 2006019010A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
wall
winding start
arc
involute curve
Prior art date
Application number
PCT/JP2005/014557
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Hiwata
Takashi Morimoto
Yoshiyuki Futagami
Tsutomu Tsujimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006019010A1 publication Critical patent/WO2006019010A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention provides a compression chamber formed between a fixed scroll and an orbiting scroll so that the compression chamber has a volume when the orbiting scroll is turned under the restriction of rotation by the rotation restriction mechanism.
  • the present invention relates to a scroll compressor that sucks, compresses, and discharges working fluid by moving while changing.
  • the spiral winding wrap of each scroll has a winding start portion, an outer circular arc in which the wrap tip smoothly connects with the winding start point of the outer wall involute curve, and winding of the inner wall involute curve. It consists of two arcs of the starting point and the inner arc smoothly connected, or the winding start part of each scroll's spiral wrap and the outer arc whose lap tip is smoothly connected to the winding start point of the outer wall involute curve.
  • the inner wall involute curve is composed of two arcs of a winding start point and an inner arc that is not smoothly connected (for example, see Patent Document 1).
  • the scroll compressor has two compression chambers as shown in FIGS. 4 and 5, and the first compression formed by the inner wall surface 26d of the rotating scroll wrap 26b and the outer wall surface 24c of the fixed scroll wrap 24b.
  • the gas in the compression chamber is compressed and discharged from the discharge hole 21 by performing relative motion of both scrolls so as to reduce the volume as it moves in the center direction.
  • the second compression chamber 25b Since the second compression chamber 25b reaches the design volume ratio (suction volume Z discharge volume) and then communicates with the discharge hole 21 (arrow X in FIG. 5), a sufficient discharge passage can be secured.
  • the first compression chamber 25a communicates with the discharge hole 21 through the passage between the inner wall surface 26d of the orbiting scroll wrap 26b and the outer wall surface 24c of the fixed scroll wrap 24b (arrow Y in FIG. 5). Not. However, when the compressed gas flows to the discharge chamber, it passes between the wall surfaces of the scroll wrap. iS If the distance between the laps is narrow, the resistance of the discharge gas passage (hereinafter referred to as discharge resistance) increases, which increases the compressor input and lowers the efficiency.
  • the winding start portion of the fixed scroll wrap 24b is connected to the outer arc 24e in which the wrap tip smoothly connects to the winding start point B of the outer involute curve, and the inner involute Consists of two arcs, the inner arc 2 4f, which is not smoothly connected to the winding start point A, widens the gas passage immediately after discharge, reduces the increase in compressor input due to discharge resistance, and improves compression efficiency A scroll compressor with a configuration that allows this is proposed.
  • Patent Document 1 JP 2000-120565 A
  • the present invention solves the conventional problems, and provides a scroll compressor that achieves high efficiency by preventing back flow from the discharge space while reducing discharge resistance at the end of compression. It is aimed.
  • the scroll compressor according to the first aspect of the present invention is configured such that a compression scroll is formed between both the fixed scroll and the orbiting scroll where the spiral wrap rises with the end plate force, and the orbiting scroll is rotated by a rotation restricting mechanism.
  • the outer wall of the swirl wrap of the orbiting scroll The inner wall involute curve of the swirl wrap of the fixed scroll extended to near the end of winding of the involute curve. It is characterized by the formation of an inner wall.
  • the wall surface of the third inner arc is formed as a part of the discharge port.
  • the distance between the second inner arc and the outer wall involute curve is increased with respect to the wrap thickness of the fixed scroll.
  • the refrigerant as the working fluid is carbon dioxide.
  • the scroll compressor according to the present invention achieves high efficiency by preventing back flow from the discharge space while reducing discharge resistance at the end of compression.
  • high efficiency can be achieved when a diacid carbonate refrigerant, which is a high pressure and low compression ratio refrigerant, is used.
  • FIG. 1 is a sectional view of a scroll compressor in an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view of the main part of the winding start portion of the fixed scroll wrap in the scroll compressor of this embodiment.
  • FIG. 3 is a main part plan view showing a discharge process state in the scroll compressor of the present embodiment.
  • FIG. 4 is a main part plan view showing a compression chamber in a conventional scroll compressor.
  • FIG. 6 is an enlarged plan view of the main part of the lap center in another conventional scroll compressor.
  • the scroll compressor according to the first embodiment of the present invention includes a first outer arc that smoothly connects a winding start portion of a spiral scroll of a fixed scroll to an outer wall winding start point of an outer wall involute curve, and an inner wall
  • the second inner arc is smoothly connected to the inner wall winding start point of the involute curve
  • the third inner arc is connected to the first outer arc and the second inner arc at discontinuous points.
  • the radius R3 that forms the third inner arc is made smaller than the radius R2 that forms the second inner arc.
  • the second embodiment of the present invention is the scroll compressor according to the first embodiment, wherein the inner wall involute curve of the swirl wrap of the fixed scroll extended to the vicinity of the winding end of the outer wall involute curve of the swirl scroll of the orbiting scroll.
  • the inner wall of the fixed scroll spiral wrap is formed.
  • the third embodiment of the present invention is such that the wall surface of the third inner arc is formed as a part of the discharge port in the scroll compressor according to the first embodiment.
  • the minimum distance between the outer wall of the orbiting scroll and the inner wall of the fixed scroll increases smoothly, so that the third inner arc is reached while preventing backflow from the discharge space.
  • the discharge resistance can be reduced, and a more efficient scroll compressor can be provided.
  • the fourth embodiment of the present invention is such that the distance between the second inner arc and the outer wall involute curve is increased with respect to the wrap thickness of the fixed scroll. is there.
  • the strength near the tip of the lap can be increased to suppress deformation of the end plate of the fixed scroll, and abnormal wear can be prevented.
  • the space that has reached the discharge pressure immediately after the end of compression can be reduced, the refrigerant that re-expands into the compression chamber and backflows can be reduced, thus providing a more efficient scroll compressor. can do.
  • the refrigerant as the working fluid is diacid carbon.
  • the density is about 3 to 4 times higher than that of the HFC refrigerant, so by reducing the refrigerant that re-expands into the compression chamber and flows backward, A more efficient crawl compressor can be provided.
  • FIG. 1 shows a cross-sectional view of a scroll compressor according to an embodiment of the present invention.
  • a main bearing member 11 that supports a crankshaft 4 is fixed in a sealed container 1 by welding or shrink fitting.
  • a fixed scroll 12 is bolted on the main bearing member 11.
  • the orbiting scroll 13 is held between the fixed scroll 12 and the fixed scroll 12.
  • Each of the fixed scroll 12 and the orbiting scroll 13 is configured by raising the spiral wrap with the end plate force.
  • a rotation restricting mechanism 14 such as an Oldham ring for preventing the orbiting scroll 13 from rotating and guiding it to move in a circular orbit is provided.
  • the main shaft portion 4a at the upper end of the crankshaft 4 drives the orbiting scroll 13 eccentrically.
  • the volume of the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 is reduced while moving from the outer peripheral side to the central portion.
  • Refrigerant gas sucked from the suction pipe 16 communicating with the outside of the hermetic container 1 is introduced into the compression chamber 15 from the suction port 17 in the outer peripheral portion of the fixed scroll 12 and is compressed in the compression chamber 15.
  • the refrigerant gas having a pressure equal to or higher than a predetermined pressure pushes the lead valve 19 through the discharge port 18 provided at the center of the fixed scroll 12 to be discharged into the discharge space in the sealed container 1.
  • FIG. 2 is an enlarged plan view of a main part of a winding start portion of the fixed scroll wrap in the scroll compressor of this embodiment.
  • the winding start portion of the spiral wrap of the fixed scroll 12 in this embodiment is the inner wall winding start point A force and the outer wall winding start point B.
  • the inner wall of the fixed scroll 12 has an inner wall involute curve
  • the outer wall winding start point B of the fixed scroll 12 has an inward curve. It is configured.
  • the winding start portion of the spiral wrap of the fixed scroll 12 has a first discontinuity point C formed on the inner wall winding start point A side and a second discontinuity point D formed on the outer wall winding start point B side. is doing.
  • first outer arc 121 of radius R1 And between the outer wall winding start point B and the second discontinuous point D is formed by the first outer arc 121 of radius R1, and the inner wall winding start point A force is also between the first discontinuous point C and , Formed by a second inner arc 122 of radius R2. Further, the first discontinuous point C force is formed by the third inner arc 123 having a radius R3 until the second discontinuous point D is reached.
  • the radius R 3 that forms the third inner arc 123 is smaller than the radius R 2 that forms the second inner arc 122.
  • the radius R1 that forms the first outer arc 121 is smaller than the radius R3 that forms the third inner arc 123.
  • the wavy line in the figure shows the case where the inner wall wrapping inner wall is formed by the inner wall involute curve from the inner wall winding start point A of the fixed scroll 12 to the inner periphery.
  • the inner wall involute curve indicated by the wavy line and the second inner arc 122 The area surrounded by the third inner arc 123 is a dead volume reduction area.
  • the compression chamber 15 is particularly reduced by the dead volume reduction area between the inner wall involute curve and the second inner arc 122. Sudden backflow to is suppressed.
  • the first outer arc 121 is smoothly connected to the outer wall involute curve at the outer wall winding start point B.
  • the second inner arc 122 is smoothly connected to the inner wall involute curve at the inner wall winding start point A.
  • smooth connection means that the tangent slope is continuous.
  • the third inner arc 123 is connected to the first outer arc 121 at a discontinuity point D, and is connected to the second inner arc 122 at a discontinuity point C. That is, the third inner arc 123 and the first outer arc 121 are not smoothly connected, and the third inner arc 123 and the second outer arc 122 are not smoothly connected.
  • the wall surface of the third inner arc 123 is formed as a part of the discharge port 18.
  • the wall surface of the third inner circular arc 123 is formed as a part of the discharge port 18, even if the diameter is increased in order to reduce the discharge resistance of the discharge port 18, it flows backward to the compression chamber 15. The volume can be reduced.
  • the strength near the tip of the lap can be increased during high load operation. It can be raised to suppress the deformation of the end plate of the fixed scroll 12 to prevent abnormal wear.
  • the space that has reached the discharge pressure immediately after the end of compression can be made smaller, the amount of refrigerant that re-expands into the compression chamber and backflows can be reduced, and a more efficient scroll compressor can be achieved. Can be provided.
  • FIG. 3 is a plan view of a principal part showing a state of a discharge process in the scroll compressor of the present embodiment.
  • Figure (a) is 0 ° (or 360 °)
  • Figure (b) is rotated 60 °
  • Figure (c) is rotated 120 °
  • Figure (d) is rotated 180 °
  • Figure (e) shows a state rotated by 240 °
  • Figure (f) shows a state rotated by 300 °.
  • the compression chamber 15 communicates with the discharge port 18 when the rotation angle is approximately 60 to 120 °.
  • the discharge passage near the rotation angle of 120 ° is narrowed as shown in the figure while reducing the discharge resistance.
  • the backflow from the discharge port 18 is moderately prevented.
  • the discharge passage portion is dramatically enlarged from when the orbiting scroll 13 reaches the third inner circular arc 123 (rotation angle 180 °). At this time, since the pressure in the compression chamber 15 is sufficiently high and there is no fear of backflow, the discharge resistance can be reduced.
  • the scroll of scroll 13 is formed by forming the inner wall of the spiral wrap 12 of the fixed scroll 12 by the inner wall of the scroll 12 of the fixed scroll 12 that extends to the end of the winding end of the spiral scroll 12 of the spiral wrap.
  • the refrigerant as the working fluid is a high-pressure refrigerant, for example, carbon dioxide, and in the case of carbon dioxide, the density is about 3 to 4 times higher than that of the HFC-based refrigerant.
  • the refrigerant that flows backward can be reduced. Therefore, if the configuration of this embodiment is used, a more efficient scroll compressor can be provided.
  • the scroll compressor according to the present invention achieves high efficiency by reducing the discharge resistance at the end of compression and preventing the back flow of the discharge spatial force even when the operating conditions change. It can also be applied to scroll fluid machinery applications such as air scroll compressors and scroll type expanders that limit fluid to refrigerants.

Abstract

A scroll compressor capable of reducing a re-expansion loss by reverse flow while reducing a delivery pressure loss, wherein each of winding start portions of the volute wraps of a fixed scroll (12) and a turning scroll (13) is formed of a first outer circular arc smoothly connecting the tip of the volute wrap to the winding start point (B) of an outer wall involute curve and a second inner circular arc in smooth contact with the winding start point (A) of an inner wall involute curve. In the fixed scroll (12), the first outer circular arc and the second inner circular arc are formed by connecting them to each other with a third inner circular arc not smoothly connected to these circular arcs. Thus, even if operating conditions are changed, a high efficiency can be realized by preventing the reverse flow from a delivery space despite the fact that the resistance of a delivery gas passage at the end of compression is reduced.

Description

スクロール圧縮機  Scroll compressor
技術分野  Technical field
[0001] 本発明は、固定スクロール及び旋回スクロールを嚙み合わせて双方間に圧縮室を 形成し、旋回スクロールを自転規制機構による自転の規制のもとに旋回させたときに 、圧縮室が容積を変えながら移動することで、作動流体の吸入、圧縮、吐出を行うス クロール圧縮機に関する。 背景技術  [0001] The present invention provides a compression chamber formed between a fixed scroll and an orbiting scroll so that the compression chamber has a volume when the orbiting scroll is turned under the restriction of rotation by the rotation restriction mechanism. The present invention relates to a scroll compressor that sucks, compresses, and discharges working fluid by moving while changing. Background art
[0002] 従来、この種のスクロール圧縮機としては、各スクロールの渦巻きラップの巻き始め 部分を、ラップ先端が外壁インボリユート曲線の巻き始め点と滑らかに接続する外円 弧と、内壁インボリユート曲線の巻き始め点と滑らかに接続する内円弧との 2つの円 弧で構成したものや、各スクロールの渦巻きラップの巻き始め部分を、ラップ先端が 外壁インボリユート曲線の巻き始め点と滑らかに接続する外円弧と、内壁インボリユー ト曲線の巻き始め点と滑らかに接続しない内円弧との 2つの円弧で構成したものがあ る (例えば、特許文献 1参照)。  Conventionally, in this type of scroll compressor, the spiral winding wrap of each scroll has a winding start portion, an outer circular arc in which the wrap tip smoothly connects with the winding start point of the outer wall involute curve, and winding of the inner wall involute curve. It consists of two arcs of the starting point and the inner arc smoothly connected, or the winding start part of each scroll's spiral wrap and the outer arc whose lap tip is smoothly connected to the winding start point of the outer wall involute curve In some cases, the inner wall involute curve is composed of two arcs of a winding start point and an inner arc that is not smoothly connected (for example, see Patent Document 1).
すなわち、スクロール圧縮機は図 4および図 5に示すように 2つの圧縮室があり、旋 回スクロールラップ 26bの内壁面 26dと固定スクロールラップ 24bの外壁面 24cとによ り形成される第 1圧縮室 25aと、旋回スクロールラップ 26bの外壁面 26eと固定スクロ ールラップ 24bの内壁面 24dとにより形成される第 2圧縮室 25bとの 2つの圧縮室か ら構成され、両圧縮室 25aおよび 25bがスクロールの中心方向に移動するに従って 容積を縮小するように両スクロールの相対運動を行うことにより圧縮室のガスを圧縮し 、吐出孔 21から吐出される。  That is, the scroll compressor has two compression chambers as shown in FIGS. 4 and 5, and the first compression formed by the inner wall surface 26d of the rotating scroll wrap 26b and the outer wall surface 24c of the fixed scroll wrap 24b. Chamber 25a and two compression chambers formed by outer wall surface 26e of orbiting scroll wrap 26b and inner wall surface 24d of fixed scroll wrap 24b. Both compression chambers 25a and 25b are scrolled. The gas in the compression chamber is compressed and discharged from the discharge hole 21 by performing relative motion of both scrolls so as to reduce the volume as it moves in the center direction.
第 2圧縮室 25bは設計容積比(吸込容積 Z吐出容積)に達したのち、吐出孔 21と 連通する(図 5の矢印 X)ため十分な吐出通路が確保できる。これに対して、第 1圧縮 室 25aは旋回スクロールラップ 26bの内壁面 26dと固定スクロールラップ 24bの外壁 面 24cとの間を経由(図 5の矢印 Y)して力もでないと吐出孔 21に連通されない。 ところが、圧縮終了したガスが吐出室へ流れる際、スクロールラップの壁面間を通る iS このラップ間の距離が狭いと吐出ガス通路の抵抗 (以下、吐出抵抗)が大きくなる ため、圧縮機入力が増大し、効率を低下させてしまうという問題を有していた。 Since the second compression chamber 25b reaches the design volume ratio (suction volume Z discharge volume) and then communicates with the discharge hole 21 (arrow X in FIG. 5), a sufficient discharge passage can be secured. On the other hand, the first compression chamber 25a communicates with the discharge hole 21 through the passage between the inner wall surface 26d of the orbiting scroll wrap 26b and the outer wall surface 24c of the fixed scroll wrap 24b (arrow Y in FIG. 5). Not. However, when the compressed gas flows to the discharge chamber, it passes between the wall surfaces of the scroll wrap. iS If the distance between the laps is narrow, the resistance of the discharge gas passage (hereinafter referred to as discharge resistance) increases, which increases the compressor input and lowers the efficiency.
そこで上記問題を解決するため、図 6に示すように、固定スクロールラップ 24bの卷 き始め部分を、ラップ先端が外側インボリユート曲線の巻き始め点 Bと滑らかに接続 する外円弧 24eと、内側インボリユートの巻き始め点 Aと滑らかに接続しない内円弧 2 4fとの 2つの円弧で構成することにより、吐出直後のガス通路を広げ、吐出抵抗によ る圧縮機入力が増大を低減し、圧縮効率を向上させる構成のスクロール圧縮機が提 案されている。  Therefore, in order to solve the above problem, as shown in FIG. 6, the winding start portion of the fixed scroll wrap 24b is connected to the outer arc 24e in which the wrap tip smoothly connects to the winding start point B of the outer involute curve, and the inner involute Consists of two arcs, the inner arc 2 4f, which is not smoothly connected to the winding start point A, widens the gas passage immediately after discharge, reduces the increase in compressor input due to discharge resistance, and improves compression efficiency A scroll compressor with a configuration that allows this is proposed.
特許文献 1 :特開 2000— 120565号公報  Patent Document 1: JP 2000-120565 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記従来のスクロール圧縮機では、吐出抵抗を小さくするために内 円弧の径を変化させると、圧縮終了直後から急激に通路が広がるために、運転条件 が変化して、設計容積比よりも少しでも大きな容積比となった場合には、吐出空間か らの逆流が発生して圧縮機入力が増大するといつた問題を有していた。  [0003] However, in the conventional scroll compressor, when the diameter of the inner arc is changed in order to reduce the discharge resistance, the passage condition suddenly widens immediately after the end of compression, so that the operating conditions change. When the volume ratio is a little larger than the design volume ratio, there was a problem that a back flow from the discharge space occurred and the compressor input increased.
[0004] したがって本発明は、従来の課題を解決するもので、圧縮終了時の吐出抵抗を小 さくしながらも、吐出空間からの逆流を防いで高効率を実現するスクロール圧縮機を 提供することを目的としている。  [0004] Accordingly, the present invention solves the conventional problems, and provides a scroll compressor that achieves high efficiency by preventing back flow from the discharge space while reducing discharge resistance at the end of compression. It is aimed.
課題を解決するための手段  Means for solving the problem
[0005] 第 1の本発明のスクロール圧縮機は、鏡板力も渦巻きラップが立ち上がる固定スク ロール及び旋回スクロールを嚙み合わせて双方間に圧縮室を形成し、前記旋回スク ロールを自転規制機構による自転の規制のもとに旋回させたときに、前記圧縮室が 容積を変えながら移動することで、作動流体の吸入、圧縮、吐出を行うスクロール圧 縮機において、前記固定スクロールの渦巻きラップの巻き始め部分を、外壁インボリ ユート曲線の外壁巻き始め点に滑らかに接続する第 1の外円弧と、内壁インボリユー ト曲線の内壁巻き始め点に滑らかに接続する第 2の内円弧と、前記第 1の外円弧と前 記第 2の内円弧とにそれぞれ不連続点で接続する第 3の内円弧とで構成し、前記第 3の内円弧を形成する半径 R3を前記第 2の内円弧を形成する半径 R2よりも小さくし たことを特徴とする。 [0005] The scroll compressor according to the first aspect of the present invention is configured such that a compression scroll is formed between both the fixed scroll and the orbiting scroll where the spiral wrap rises with the end plate force, and the orbiting scroll is rotated by a rotation restricting mechanism. In the scroll compressor that sucks, compresses, and discharges the working fluid by moving the compression chamber while changing the volume when swung under the regulation of A first outer arc that smoothly connects the portion to the outer wall winding start point of the outer wall involute curve, a second inner arc that smoothly connects the inner wall winding start point of the inner wall involute curve, and the first outer arc A third inner arc that is connected to the arc and the second inner arc at discontinuous points, respectively, and a radius R3 that forms the third inner arc is a radius that forms the second inner arc. R2 Also small It is characterized by that.
第 2の本発明は、第 1の発明において、前記旋回スクロールの渦巻きラップの外壁 インボリユート曲線の巻き終わり端近くまで伸びた前記固定スクロールの渦巻きラップ の内壁インボリユート曲線によって、前記固定スクロールの渦巻きラップの内壁を形 成したことを特徴とする。  According to a second aspect of the present invention, in the first aspect, the outer wall of the swirl wrap of the orbiting scroll The inner wall involute curve of the swirl wrap of the fixed scroll extended to near the end of winding of the involute curve. It is characterized by the formation of an inner wall.
第 3の本発明は、第 1の発明において、前記第 3の内円弧の壁面を吐出口の一部と して形成したことを特徴とする。  According to a third aspect of the present invention, in the first aspect, the wall surface of the third inner arc is formed as a part of the discharge port.
第 4の本発明は、第 1の発明において、前記第 2の内円弧と外壁インボリユート曲線 との距離を、前記固定スクロールのラップ厚さに対して大きくしたことを特徴とする。 第 5の本発明は、第 1の発明において、前記作動流体としての冷媒を、二酸化炭素 としたことを特徴とする。  According to a fourth aspect of the present invention, in the first aspect of the invention, the distance between the second inner arc and the outer wall involute curve is increased with respect to the wrap thickness of the fixed scroll. According to a fifth aspect of the present invention, in the first aspect, the refrigerant as the working fluid is carbon dioxide.
発明の効果  The invention's effect
[0006] 本発明のスクロール圧縮機は、圧縮終了時の吐出抵抗を小さくしながらも、吐出空 間からの逆流を防いで高効率を実現する。特に高圧'低圧縮比冷媒である二酸ィ匕炭 素冷媒を用いた場合に、高効率ィ匕を実現することができる。  [0006] The scroll compressor according to the present invention achieves high efficiency by preventing back flow from the discharge space while reducing discharge resistance at the end of compression. In particular, high efficiency can be achieved when a diacid carbonate refrigerant, which is a high pressure and low compression ratio refrigerant, is used.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]本発明の実施例におけるスクロール圧縮機の断面図 [0007] FIG. 1 is a sectional view of a scroll compressor in an embodiment of the present invention.
[図 2]本実施例のスクロール圧縮機における固定スクロールラップの巻き始め部分の 要部拡大平面図  FIG. 2 is an enlarged plan view of the main part of the winding start portion of the fixed scroll wrap in the scroll compressor of this embodiment.
[図 3]本実施例のスクロール圧縮機における吐出過程の状態を示す要部平面図 [図 4]従来のスクロール圧縮機における圧縮室を示す要部平面図  FIG. 3 is a main part plan view showing a discharge process state in the scroll compressor of the present embodiment. FIG. 4 is a main part plan view showing a compression chamber in a conventional scroll compressor.
[図 5]従来のスクロール圧縮機におけるラップ中心の要部拡大平面図  [Figure 5] Enlarged plan view of the main part of the wrap center in a conventional scroll compressor
[図 6]従来の他のスクロール圧縮機におけるラップ中心の要部拡大平面図 符号の説明  FIG. 6 is an enlarged plan view of the main part of the lap center in another conventional scroll compressor.
[0008] 4 クランク軸 [0008] 4 crankshaft
4a 主軸部  4a Main shaft
11 主軸受部材  11 Main bearing member
12 固定スクロール 13 旋回スクローノレ 12 Fixed scroll 13 Rotating scronore
14 自転規制機構  14 Rotation regulation mechanism
15 圧縮室  15 Compression chamber
121 第 1の外円弧  121 First outer arc
122 第 2の内円弧  122 Second inner arc
123 第 3の内円弧  123 3rd inner arc
A 内壁巻き始め点  A Inner wall winding start point
B 外壁巻き始め点  B Outside wall winding start point
C 第 1の不連続点  C First discontinuity
D 第 2の不連続点  D second discontinuity
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施の形態によるスクロール圧縮機は、固定スクロールの渦巻きラ ップの巻き始め部分を、外壁インボリユート曲線の外壁巻き始め点に滑らかに接続す る第 1の外円弧と、内壁インボリユート曲線の内壁巻き始め点に滑らかに接続する第 2の内円弧と、前記第 1の外円弧と前記第 2の内円弧とにそれぞれ不連続点で接続 する第 3の内円弧とで構成し、前記第 3の内円弧を形成する半径 R3を前記第 2の内 円弧を形成する半径 R2よりも小さくしたものである。本実施の形態によれば、圧縮終 了直後は、旋回スクロールの外壁と固定スクロールの内壁の最小距離は滑らかに増 大するので、吐出空間からの逆流を防ぎながら、第 3の内円弧に到達したときには、 急激に吐出通路を増大させることができるので、逆流損失も小さぐ且つ、吐出抵抗 も小さくすることができる。結果、設計容積比での運転において高効率を実現できる。 また、運転条件が変化して、設計容積比よりも少しでも大きな容積比となった場合で も、吐出通路は順次滑らかに増大するので、圧縮機入力の上昇を抑えることができる ので、全運転領域に渡って高効率なスクロール圧縮機を提供することができる。 本発明の第 2の実施の形態は、第 1の実施の形態によるスクロール圧縮機において 、旋回スクロールの渦巻きラップの外壁インボリユート曲線の巻き終わり端近くまで伸 びた固定スクロールの渦巻きラップの内壁インボリユート曲線によって、固定スクロー ルの渦巻きラップの内壁を形成したものである。本実施の形態によれば、吐出通路の 経路が長くなつて圧力損失が問題となる場合であっても、逆流損失も小さぐ且つ、 吐出抵抗も小さくすることができるので、より高効率なスクロール圧縮機を提供するこ とがでさる。 The scroll compressor according to the first embodiment of the present invention includes a first outer arc that smoothly connects a winding start portion of a spiral scroll of a fixed scroll to an outer wall winding start point of an outer wall involute curve, and an inner wall The second inner arc is smoothly connected to the inner wall winding start point of the involute curve, and the third inner arc is connected to the first outer arc and the second inner arc at discontinuous points. The radius R3 that forms the third inner arc is made smaller than the radius R2 that forms the second inner arc. According to the present embodiment, immediately after the end of compression, the minimum distance between the outer wall of the orbiting scroll and the inner wall of the fixed scroll increases smoothly, so that the third inner arc is reached while preventing backflow from the discharge space. In this case, since the discharge passage can be increased rapidly, the backflow loss can be reduced and the discharge resistance can be reduced. As a result, high efficiency can be realized in operation at the design volume ratio. Even if the operating conditions change and the volume ratio becomes a little larger than the design volume ratio, the discharge passage increases smoothly and gradually, so the increase in compressor input can be suppressed. A highly efficient scroll compressor can be provided over an area. The second embodiment of the present invention is the scroll compressor according to the first embodiment, wherein the inner wall involute curve of the swirl wrap of the fixed scroll extended to the vicinity of the winding end of the outer wall involute curve of the swirl scroll of the orbiting scroll. Thus, the inner wall of the fixed scroll spiral wrap is formed. According to this embodiment, the discharge passage Even when the path becomes long and pressure loss becomes a problem, the backflow loss is small and the discharge resistance can be reduced, so that a more efficient scroll compressor can be provided.
本発明の第 3の実施の形態は、第 1の実施の形態によるスクロール圧縮機において 、第 3の内円弧の壁面を吐出口の一部として形成したものである。本実施の形態によ れば、圧縮終了直後は、旋回スクロールの外壁と固定スクロールの内壁の最小距離 は滑らかに増大するので、吐出空間からの逆流を防ぎながら、第 3の内円弧に到達し たときには、急激に吐出通路を増大し、且つ直接吐出させることができるので、吐出 抵抗を小さくすることができ、より高効率なスクロール圧縮機を提供することができる。 本発明の第 4の実施の形態は、第 1の実施の形態によるスクロール圧縮機において 、第 2の内円弧と外壁インボリユート曲線との距離を、固定スクロールのラップ厚さに 対して大きくしたものである。本実施の形態によれば、高負荷運転時において、ラッ プ先端部付近の強度を高めて固定スクロールの鏡板の変形を抑制して、カジリゃ異 常磨耗を防ぐことができる。また、圧縮終了直後の吐出圧力に達した空間を小さくす ることができるので、圧縮室へと再膨張して逆流する冷媒を小さくすることができるの で、より高効率なスクロール圧縮機を提供することができる。  The third embodiment of the present invention is such that the wall surface of the third inner arc is formed as a part of the discharge port in the scroll compressor according to the first embodiment. According to the present embodiment, immediately after the end of compression, the minimum distance between the outer wall of the orbiting scroll and the inner wall of the fixed scroll increases smoothly, so that the third inner arc is reached while preventing backflow from the discharge space. In this case, since the discharge passage can be increased suddenly and directly discharged, the discharge resistance can be reduced, and a more efficient scroll compressor can be provided. In the scroll compressor according to the first embodiment, the fourth embodiment of the present invention is such that the distance between the second inner arc and the outer wall involute curve is increased with respect to the wrap thickness of the fixed scroll. is there. According to the present embodiment, during high load operation, the strength near the tip of the lap can be increased to suppress deformation of the end plate of the fixed scroll, and abnormal wear can be prevented. In addition, since the space that has reached the discharge pressure immediately after the end of compression can be reduced, the refrigerant that re-expands into the compression chamber and backflows can be reduced, thus providing a more efficient scroll compressor. can do.
本発明の第 5の実施の形態は、第 1の実施の形態によるスクロール圧縮機において 、作動流体としての冷媒を、二酸ィ匕炭素とするものである。本実施の形態によれば、 二酸ィ匕炭素の場合は、 HFC系冷媒と比較して 3〜4倍ほど密度が大きいので、圧縮 室への再膨張して逆流する冷媒を減らすことによって、より高効率なすクロール圧縮 機を提供することができる。  According to a fifth embodiment of the present invention, in the scroll compressor according to the first embodiment, the refrigerant as the working fluid is diacid carbon. According to the present embodiment, in the case of carbon dioxide and carbon dioxide, the density is about 3 to 4 times higher than that of the HFC refrigerant, so by reducing the refrigerant that re-expands into the compression chamber and flows backward, A more efficient crawl compressor can be provided.
実施例 Example
以下、本発明の実施例について、図面を参照しながら説明する。なお、この実施例 によって本発明が限定されるものではない。  Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.
図 1は、本発明の実施例におけるスクロール圧縮機の断面図を示している。  FIG. 1 shows a cross-sectional view of a scroll compressor according to an embodiment of the present invention.
図 1に示す本実施例のスクロール圧縮機は、クランク軸 4を支承する主軸受部材 11 を密閉容器 1内に溶接や焼き嵌めなどで固定している。この主軸受部材 11上には、 固定スクロール 12をボルト止めしている。主軸受部材 11と固定スクロール 12との間 には、固定スクロール 12と嚙み合う旋回スクロール 13を挟み込んでいる。固定スクロ ール 12及び旋回スクロール 13は、それぞれ鏡板力も渦巻きラップを立ち上げて構成 している。旋回スクロール 13と主軸受部材 11との間には、旋回スクロール 13の自転 を防止して円軌道運動するように案内するオルダムリングなどの自転規制機構 14を 設けている。そして、クランク軸 4の上端にある主軸部 4aは、旋回スクロール 13を偏 心駆動する。これにより、固定スクロール 12と旋回スクロール 13との間に形成される 圧縮室 15の容積は、外周側から中央部に移動しながら小さくなる。密閉容器 1外に 通じた吸入パイプ 16から吸入される冷媒ガスは、固定スクロール 12の外周部にある 吸入口 17から圧縮室 15に導入され、圧縮室 15にて圧縮される。そして、所定圧以 上になった冷媒ガスは、固定スクロール 12の中央部に設けている吐出口 18からリー ド弁 19を押し開いて、密閉容器 1内の吐出空間に吐出させる。 In the scroll compressor of this embodiment shown in FIG. 1, a main bearing member 11 that supports a crankshaft 4 is fixed in a sealed container 1 by welding or shrink fitting. A fixed scroll 12 is bolted on the main bearing member 11. Between main bearing member 11 and fixed scroll 12 The orbiting scroll 13 is held between the fixed scroll 12 and the fixed scroll 12. Each of the fixed scroll 12 and the orbiting scroll 13 is configured by raising the spiral wrap with the end plate force. Between the orbiting scroll 13 and the main bearing member 11, a rotation restricting mechanism 14 such as an Oldham ring for preventing the orbiting scroll 13 from rotating and guiding it to move in a circular orbit is provided. The main shaft portion 4a at the upper end of the crankshaft 4 drives the orbiting scroll 13 eccentrically. As a result, the volume of the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 is reduced while moving from the outer peripheral side to the central portion. Refrigerant gas sucked from the suction pipe 16 communicating with the outside of the hermetic container 1 is introduced into the compression chamber 15 from the suction port 17 in the outer peripheral portion of the fixed scroll 12 and is compressed in the compression chamber 15. Then, the refrigerant gas having a pressure equal to or higher than a predetermined pressure pushes the lead valve 19 through the discharge port 18 provided at the center of the fixed scroll 12 to be discharged into the discharge space in the sealed container 1.
図 2は、本実施例のスクロール圧縮機における固定スクロールラップの巻き始め部 分の要部拡大平面図である。  FIG. 2 is an enlarged plan view of a main part of a winding start portion of the fixed scroll wrap in the scroll compressor of this embodiment.
図 2に示すように、本実施例における固定スクロール 12の渦巻きラップの巻き始め 部分は、内壁巻き始め点 A力も外壁巻き始め点 Bまでである。固定スクロール 12の内 壁巻き始め点 Aから外周側に向力うラップ内壁は内壁インボリユート曲線で構成され 、固定スクロール 12の外壁巻き始め点 B力も外周側に向力 ラップ外壁は外壁インポ リュート曲線で構成されている。固定スクロール 12の渦巻きラップの巻き始め部分は 、内壁巻き始め点 A側に形成される第 1の不連続点 Cと、外壁巻き始め点 B側に形成 される第 2の不連続点 Dを有している。そして、外壁巻き始め点 Bから第 2の不連続点 Dまでの間は、半径 R1の第 1の外円弧 121で形成され、内壁巻き始め点 A力も第 1 の不連続点 Cまでの間は、半径 R2の第 2の内円弧 122で形成されている。また、第 1 の不連続点 C力も第 2の不連続点 Dまでの間は、半径 R3の第 3の内円弧 123で形成 されている。ここで、第 3の内円弧 123を形成する半径 R3は、第 2の内円弧 122を形 成する半径 R2よりも小さい。また、第 1の外円弧 121を形成する半径 R1は、第 3の内 円弧 123を形成する半径 R3よりも小さい。なお、図中の波線は、固定スクロール 12 の内壁巻き始め点 Aから内周に向力 ラップ内壁を、内壁インボリユート曲線で構成し た場合を示している。この波線で示す内壁インボリユート曲線と、第 2の内円弧 122と 、第 3の内円弧 123とで囲まれる領域が、デッドボリューム縮小領域であり、本実施例 では、特に内壁インボリユート曲線と第 2の内円弧 122との間のデッドボリューム縮小 領域によって、圧縮室 15への急激な逆流を抑えている。 As shown in FIG. 2, the winding start portion of the spiral wrap of the fixed scroll 12 in this embodiment is the inner wall winding start point A force and the outer wall winding start point B. The inner wall of the fixed scroll 12 has an inner wall involute curve, and the outer wall winding start point B of the fixed scroll 12 has an inward curve. It is configured. The winding start portion of the spiral wrap of the fixed scroll 12 has a first discontinuity point C formed on the inner wall winding start point A side and a second discontinuity point D formed on the outer wall winding start point B side. is doing. And between the outer wall winding start point B and the second discontinuous point D is formed by the first outer arc 121 of radius R1, and the inner wall winding start point A force is also between the first discontinuous point C and , Formed by a second inner arc 122 of radius R2. Further, the first discontinuous point C force is formed by the third inner arc 123 having a radius R3 until the second discontinuous point D is reached. Here, the radius R 3 that forms the third inner arc 123 is smaller than the radius R 2 that forms the second inner arc 122. The radius R1 that forms the first outer arc 121 is smaller than the radius R3 that forms the third inner arc 123. In addition, the wavy line in the figure shows the case where the inner wall wrapping inner wall is formed by the inner wall involute curve from the inner wall winding start point A of the fixed scroll 12 to the inner periphery. The inner wall involute curve indicated by the wavy line and the second inner arc 122 The area surrounded by the third inner arc 123 is a dead volume reduction area. In the present embodiment, the compression chamber 15 is particularly reduced by the dead volume reduction area between the inner wall involute curve and the second inner arc 122. Sudden backflow to is suppressed.
第 1の外円弧 121は、外壁巻き始め点 Bにおいて外壁インボリユート曲線と滑らかに 接続している。また、第 2の内円弧 122は、内壁巻き始め点 Aにおいて内壁インボリュ ート曲線と滑らかに接続している。ここで、滑らかな接続とは、接線の傾きが連続的で あることを意味している。  The first outer arc 121 is smoothly connected to the outer wall involute curve at the outer wall winding start point B. The second inner arc 122 is smoothly connected to the inner wall involute curve at the inner wall winding start point A. Here, smooth connection means that the tangent slope is continuous.
一方、第 3の内円弧 123は、第 1の外円弧 121とは不連続点 Dで接続され、第 2の 内円弧 122とは不連続点 Cで接続されている。すなわち、第 3の内円弧 123と第 1の 外円弧 121とは滑らかに接続しておらず、第 3の内円弧 123と第 2の外円弧 122とも 滑らかに接続していない。  On the other hand, the third inner arc 123 is connected to the first outer arc 121 at a discontinuity point D, and is connected to the second inner arc 122 at a discontinuity point C. That is, the third inner arc 123 and the first outer arc 121 are not smoothly connected, and the third inner arc 123 and the second outer arc 122 are not smoothly connected.
[0012] また、本実施例では、第 3の内円弧 123の壁面を吐出口 18の一部として形成して いる。第 3の内円弧 123の壁面を吐出口 18の一部として形成することで、吐出口 18 の吐出抵抗を減らすために径を大きく構成していても、圧縮室 15へと逆流してしまう デットボリュームを小さくすることができる。 In the present embodiment, the wall surface of the third inner arc 123 is formed as a part of the discharge port 18. By forming the wall surface of the third inner circular arc 123 as a part of the discharge port 18, even if the diameter is increased in order to reduce the discharge resistance of the discharge port 18, it flows backward to the compression chamber 15. The volume can be reduced.
また、第 2の内円弧 122と固定スクロール 12の外壁インボリユート曲線との距離を、 固定スクロール 12のラップ厚さ Xに対して大きくすることで、高負荷運転時において、 ラップ先端部付近の強度を高めて固定スクロール 12の鏡板の変形を抑制して、カジ リゃ異常磨耗を防ぐことができる。また、圧縮終了直後の吐出圧力に達した空間をよ り小さくすることができるので、圧縮室へと再膨張して逆流する冷媒量をより小さくする ことができ、より高効率なスクロール圧縮機を提供することができる。  Also, by increasing the distance between the second inner arc 122 and the outer wall involute curve of the fixed scroll 12 with respect to the wrap thickness X of the fixed scroll 12, the strength near the tip of the lap can be increased during high load operation. It can be raised to suppress the deformation of the end plate of the fixed scroll 12 to prevent abnormal wear. In addition, since the space that has reached the discharge pressure immediately after the end of compression can be made smaller, the amount of refrigerant that re-expands into the compression chamber and backflows can be reduced, and a more efficient scroll compressor can be achieved. Can be provided.
[0013] 図 3は、本実施例のスクロール圧縮機における吐出過程の状態を示す要部平面図 である。同図(a)を 0° (又は 360° )として、同図(b)は 60° 回転した状態、同図(c) は 120° 回転した状態、同図(d)は 180° 回転した状態、同図(e)は 240° 回転し た状態、同図 (f)は 300° 回転した状態をそれぞれ示している。 FIG. 3 is a plan view of a principal part showing a state of a discharge process in the scroll compressor of the present embodiment. Figure (a) is 0 ° (or 360 °), Figure (b) is rotated 60 °, Figure (c) is rotated 120 °, Figure (d) is rotated 180 ° Figure (e) shows a state rotated by 240 °, and Figure (f) shows a state rotated by 300 °.
図 3にお 、て、旋回スクロール 13の外壁側に形成される圧縮室 15に着目すると、 おおよそ回転角度が 60〜120° の間に圧縮室 15は吐出口 18に連通する。回転角 120° 付近での吐出通路部分は図示されているように狭ぐ吐出抵抗を減らしながら も、適度に吐出口 18からの逆流を防いでいる。また、旋回スクロール 13が第 3の内円 弧 123に到達するとき(回転角度 180° )から、吐出通路部分は劇的に拡大されてい るのが分かる。このとき、圧縮室 15の圧力は十分に高く逆流の心配は無いので、吐 出抵抗を減らすことができる。 In FIG. 3, paying attention to the compression chamber 15 formed on the outer wall side of the orbiting scroll 13, the compression chamber 15 communicates with the discharge port 18 when the rotation angle is approximately 60 to 120 °. The discharge passage near the rotation angle of 120 ° is narrowed as shown in the figure while reducing the discharge resistance. However, the backflow from the discharge port 18 is moderately prevented. Further, it can be seen that the discharge passage portion is dramatically enlarged from when the orbiting scroll 13 reaches the third inner circular arc 123 (rotation angle 180 °). At this time, since the pressure in the compression chamber 15 is sufficiently high and there is no fear of backflow, the discharge resistance can be reduced.
[0014] ところで吐出圧力損失と逆流による再膨張損失の関係については、一般的には、 圧縮終了後の吐出通路を大きくする構成では、吐出圧力損失は小さくできるが、再 膨張損失は大きい。反対に吐出通路を小さくする構成では、再膨張損失 (逆流損失) は小さくできる力 吐出圧力損失は大きい。し力しながら、本実施例の構成において は、逆流を抑えながら急激に吐出通路を拡大でき、同時に吐出口 18のデットボリュ ームを小さくしているので、逆流してくる冷媒の量も小さくすることができる。結果、吐 出圧力損失と逆流損失をそれぞれ小さくすることができる。図 3を見ても分力るように 、破線で示された従来のラップ先端形状と比較して、吐出口 18に連なる体積 (デット ボリューム)が減少していることが分かる。  [0014] By the way, regarding the relationship between the discharge pressure loss and the re-expansion loss due to the backflow, generally, in the configuration in which the discharge passage after the compression is enlarged, the discharge pressure loss can be reduced, but the re-expansion loss is large. On the contrary, in the configuration where the discharge passage is made small, the reexpansion loss (backflow loss) can be reduced. However, in the configuration of the present embodiment, the discharge passage can be expanded rapidly while suppressing the backflow, and at the same time, the dead volume of the discharge port 18 is reduced, so that the amount of refrigerant flowing back is also reduced. be able to. As a result, the discharge pressure loss and the backflow loss can be reduced. As can be seen from FIG. 3, it can be seen that the volume (dead volume) connected to the discharge port 18 is reduced as compared with the conventional wrap tip shape indicated by the broken line.
[0015] また、運転条件が変化して、設計容積比よりも少しでも大きな容積比となった場合 でも、吐出通路は順次滑らかに増大し、逆流を抑えて圧縮機入力の上昇を抑えるこ とができるので、本実施例によれば、全運転領域に渡って高効率なスクロール圧縮 機を提供することができる。  [0015] Even when the operating conditions change and the volume ratio becomes a little larger than the design volume ratio, the discharge passage increases smoothly and gradually, and backflow is suppressed to suppress an increase in compressor input. Therefore, according to this embodiment, a highly efficient scroll compressor can be provided over the entire operation range.
なお、旋回スクロール 13の渦巻きラップの外壁インボリユート曲線の巻き終わり端近 くまで伸びた固定スクロール 12の渦巻きラップの内壁インボリユート曲線によって、固 定スクロール 12の渦巻きラップの内壁を形成することにより、旋回スクロール 13の内 壁側に形成される圧縮室 15の圧縮比に対して、旋回スクロール 13の外壁側に形成 される圧縮室 15の圧縮比が大きくなる場合においても、逆流損失と吐出抵抗のバラ ンスを最良に保つことができるので、より高効率なスクロール圧縮機を提供することが できる。  In addition, the scroll of scroll 13 is formed by forming the inner wall of the spiral wrap 12 of the fixed scroll 12 by the inner wall of the scroll 12 of the fixed scroll 12 that extends to the end of the winding end of the spiral scroll 12 of the spiral wrap. Even when the compression ratio of the compression chamber 15 formed on the outer wall side of the orbiting scroll 13 is larger than the compression ratio of the compression chamber 15 formed on the inner wall side of 13, the balance between the backflow loss and the discharge resistance is increased. Therefore, it is possible to provide a more efficient scroll compressor.
なお、作動流体としての冷媒を、高圧冷媒、例えば二酸化炭素とすることにより、二 酸化炭素の場合は、 HFC系冷媒と比較して 3〜4倍ほど密度が大きいので、圧縮室 15へ再膨張して逆流する冷媒を小さくすることができる。したがって本実施例の構成 を用いれば、より高効率なスクロール圧縮機を提供することができる。 産業上の利用可能性 Note that the refrigerant as the working fluid is a high-pressure refrigerant, for example, carbon dioxide, and in the case of carbon dioxide, the density is about 3 to 4 times higher than that of the HFC-based refrigerant. Thus, the refrigerant that flows backward can be reduced. Therefore, if the configuration of this embodiment is used, a more efficient scroll compressor can be provided. Industrial applicability
以上のように、本発明に力かるスクロール圧縮機では、圧縮終了時の吐出抵抗を 小さくしながらも、運転条件が変化した場合でも吐出空間力 の逆流を防いで高効率 を実現するので、作動流体を冷媒と限ることなぐ空気スクロール圧縮機、スクロール 型膨張機等のスクロール流体機械の用途にも適用できる。  As described above, the scroll compressor according to the present invention achieves high efficiency by reducing the discharge resistance at the end of compression and preventing the back flow of the discharge spatial force even when the operating conditions change. It can also be applied to scroll fluid machinery applications such as air scroll compressors and scroll type expanders that limit fluid to refrigerants.

Claims

請求の範囲 The scope of the claims
[1] 鏡板力も渦巻きラップが立ち上がる固定スクロール及び旋回スクロールを嚙み合わ せて双方間に圧縮室を形成し、前記旋回スクロールを自転規制機構による自転の規 制のもとに旋回させたときに、前記圧縮室が容積を変えながら移動することで、作動 流体の吸入、圧縮、吐出を行うスクロール圧縮機において、前記固定スクロールの渦 巻きラップの巻き始め部分を、外壁インボリユート曲線の外壁巻き始め点に滑らかに 接続する第 1の外円弧と、内壁インボリユート曲線の内壁巻き始め点に滑らかに接続 する第 2の内円弧と、前記第 1の外円弧と前記第 2の内円弧とにそれぞれ不連続点 で接続する第 3の内円弧とで構成し、前記第 3の内円弧を形成する半径 R3を前記第 2の内円弧を形成する半径 R2よりも小さくしたことを特徴とするスクロール圧縮機。  [1] When the end plate force is squeezed between the fixed scroll and the orbiting scroll where the spiral wrap rises to form a compression chamber between them, and the orbiting scroll is rotated under the rotation restriction by the rotation restriction mechanism In the scroll compressor that sucks, compresses, and discharges the working fluid by moving the compression chamber while changing the volume, the winding start portion of the spiral scroll of the fixed scroll is set to the winding start point of the outer wall involute curve. The first outer arc connecting smoothly to the inner wall, the second inner arc connecting smoothly to the inner wall winding start point of the inner wall involute curve, and the first outer arc and the second inner arc are discontinuous. And a third inner arc connected at a point, and a radius R3 forming the third inner arc is made smaller than a radius R2 forming the second inner arc. Compressor.
[2] 前記旋回スクロールの渦巻きラップの外壁インボリユート曲線の巻き終わり端近くま で伸びた前記固定スクロールの渦巻きラップの内壁インボリユート曲線によって、前 記固定スクロールの渦巻きラップの内壁を形成したことを特徴とする請求項 1に記載 のスクロール圧縮機。 [2] The inner wall of the swirl wrap of the fixed scroll is formed by the inner wall involute curve of the swirl wrap of the fixed scroll that extends to the end of the involute curve of the outer scroll of the swirl scroll. The scroll compressor according to claim 1.
[3] 前記第 3の内円弧の壁面を吐出口の一部として形成したことを特徴とする請求項 1 に記載のスクロール圧縮機。  [3] The scroll compressor according to claim 1, wherein a wall surface of the third inner arc is formed as a part of a discharge port.
[4] 前記第 2の内円弧と外壁インボリユート曲線との距離を、前記固定スクロールのラッ プ厚さに対して大きくしたことを特徴とする請求項 1に記載のスクロール圧縮機。 4. The scroll compressor according to claim 1, wherein a distance between the second inner arc and the outer wall involute curve is increased with respect to a lap thickness of the fixed scroll.
[5] 前記作動流体としての冷媒を、二酸化炭素としたことを特徴とする請求項 1に記載 のスクロール圧縮機。 5. The scroll compressor according to claim 1, wherein the refrigerant as the working fluid is carbon dioxide.
PCT/JP2005/014557 2004-08-17 2005-08-09 Scroll compressor WO2006019010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-237142 2004-08-17
JP2004237142A JP2007315172A (en) 2004-08-17 2004-08-17 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2006019010A1 true WO2006019010A1 (en) 2006-02-23

Family

ID=35907399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014557 WO2006019010A1 (en) 2004-08-17 2005-08-09 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2007315172A (en)
WO (1) WO2006019010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628439A (en) * 2011-12-05 2012-08-08 兰州理工大学 Scroll wraps of scroll plates for scroll compressor and generation method of molded lines
EP1998047A4 (en) * 2006-03-07 2016-08-24 Daikin Ind Ltd Method of producing compressor, and compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761474A (en) * 2008-12-26 2010-06-30 上海日立电器有限公司 Electric scroll compressor for vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960093A (en) * 1982-09-30 1984-04-05 Toshiba Corp Scroll compressor
JPH02110287U (en) * 1989-02-17 1990-09-04
JPH03145586A (en) * 1989-10-30 1991-06-20 Daikin Ind Ltd Scroll type compressor
JPH05231352A (en) * 1992-02-21 1993-09-07 Toyota Autom Loom Works Ltd Refrigerant gas delivery structure in scroll type compressor
JP2000120565A (en) * 1998-10-20 2000-04-25 Fujitsu General Ltd Scroll compressor
JP2003206873A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Scroll compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960093A (en) * 1982-09-30 1984-04-05 Toshiba Corp Scroll compressor
JPH02110287U (en) * 1989-02-17 1990-09-04
JPH03145586A (en) * 1989-10-30 1991-06-20 Daikin Ind Ltd Scroll type compressor
JPH05231352A (en) * 1992-02-21 1993-09-07 Toyota Autom Loom Works Ltd Refrigerant gas delivery structure in scroll type compressor
JP2000120565A (en) * 1998-10-20 2000-04-25 Fujitsu General Ltd Scroll compressor
JP2003206873A (en) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1998047A4 (en) * 2006-03-07 2016-08-24 Daikin Ind Ltd Method of producing compressor, and compressor
CN102628439A (en) * 2011-12-05 2012-08-08 兰州理工大学 Scroll wraps of scroll plates for scroll compressor and generation method of molded lines

Also Published As

Publication number Publication date
JP2007315172A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
USRE46106E1 (en) Scroll compressor
US9157438B2 (en) Scroll compressor with bypass hole
US9109599B2 (en) Scroll compressor having oil hole
WO2007066463A1 (en) Scroll compressor
US10247189B2 (en) Scroll compressor with oldham ring having a plurality of keys coupled to an orbiting scroll and a fixed scroll
JP2007170253A (en) Scroll compressor
WO2004011808A1 (en) Compressor
JP4789623B2 (en) Scroll compressor
JP5187418B2 (en) Scroll compressor
US20130071277A1 (en) Scroll compressor
US20130078129A1 (en) Scroll compressor
WO2006019010A1 (en) Scroll compressor
WO2004111462A1 (en) Scroll compressor
JP5076732B2 (en) Scroll compressor
JP2006152930A (en) Scroll compressor
JP3882343B2 (en) Scroll compressor
US8961159B2 (en) Scroll compressor
JP4807056B2 (en) Scroll expander
US8939741B2 (en) Scroll compressor
WO2021229682A1 (en) Scroll compressor
US20130078130A1 (en) Scroll compressor
KR100305369B1 (en) Counter revolution interruption structure of a scroll compressor
JP2001173584A (en) Scroll compressor
JP2008002287A (en) Scroll compressor
JP2006046205A (en) Scroll compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP