WO2006016713A1 - Microcapsule using pectin as wall material - Google Patents

Microcapsule using pectin as wall material Download PDF

Info

Publication number
WO2006016713A1
WO2006016713A1 PCT/JP2005/014975 JP2005014975W WO2006016713A1 WO 2006016713 A1 WO2006016713 A1 WO 2006016713A1 JP 2005014975 W JP2005014975 W JP 2005014975W WO 2006016713 A1 WO2006016713 A1 WO 2006016713A1
Authority
WO
WIPO (PCT)
Prior art keywords
pectin
oil
microcapsule
emulsion
capsule
Prior art date
Application number
PCT/JP2005/014975
Other languages
French (fr)
Japanese (ja)
Inventor
Yukiko Takakura
Kentarou Maruyama
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Publication of WO2006016713A1 publication Critical patent/WO2006016713A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives

Definitions

  • the present invention relates to a microcapsule using pectin as a wall material.
  • Capsules are used for document protection, stabilization, and taste / odor masking of the ingredients contained in these foods.
  • hard capsules such as tablets, soft capsules, seamless capsules, and conventional microcapsules have a particle size of 0.3 mm to 2 cm. is there. Therefore, when these capsules are added to food, the texture changes.
  • Emulsion-type foods such as mayonnaise have a particle size of 5 m or less and cannot be perceived by the tongue when eating.
  • emulsion-type foods have problems in terms of heat stability / storage stability, difficulty in masking, and cost.
  • a microcapsule having a median diameter of 3 or less without using an emulsifier is also known (see Patent Document 2).
  • the manufacturing method is complicated, such as operations such as preliminary emulsification and pressure treatment.
  • Fine particles containing a natural polysaccharide and having an average particle size of 0.1 to 50 im are known (see Patent Document 3).
  • the present invention is a method for producing a multi-core pushcell, complicated steps such as membrane emulsification with a porous glass membrane, concentration adjustment step, and insolubilization step are required. In addition, since it is a multi-core capsule, the amount of encapsulation per capsule is reduced.
  • a WZOZW composite emulsion in which a water-soluble polymer such as a water-soluble polysaccharide is blended in an outer aqueous phase is known (see Patent Document 4). .
  • the emulsions of the invention include those having a median diameter as small as 20 to 200 nm, but the invention is characterized by the composition ratio of water, an oily component, and a lipophilic emulsifier.
  • an emulsifier is not only an essential component, but also the oily components that can be used are limited.
  • the coacervate method and the seamless method are mentioned as the capsule production method of the invention
  • polymer droplets coacervate
  • the thickness of the force cell is always larger than that of a single cell drop (see: Multi-layered gel at in / acacia microcapsules by compl ex coaservat ion me thod, Journal of chemical engineering of Japan, 793-798 vol. 30 No. 5 199 7).
  • the capsule particle diameter depends on the wettability of the nozzle diameter, it is difficult for the microcapsules of the present invention to have a particle diameter of several hundreds um or less.
  • the coacervate method means that insoluble core substance particles (oil, etc.) are dispersed in a polymer solution in advance, and then the concentration of the polymer Adjust the temperature, pH, and other variables to the values in the region where coacervation occurs to generate coacervate droplets, collect them on the surface of the core material particles, and manufacture micro force cells.
  • the particle size is large.
  • Patent Document 2
  • Patent Document 5
  • the present invention has been made to solve the above-described problems.
  • An object of the present invention is to provide a microcapsule.
  • O ZW emulsion was prepared with an aqueous phase containing pectin and an oil phase, and then mixed with polyvalent cations to encapsulate an oil-soluble substance, resulting in a median diameter.
  • the inventors have found that microcapsules having a diameter of 0.01 to 100 m can be produced, and have completed the present invention. More specifically, the inclusions are oil-soluble, the capsules are non-animal vectin, the surfactant-emulsifier is not essential as the capsule material, and the preparation is simple and stable. Good and oil per capsule It has been found that microcapsules with a large amount of inclusion are preferable.
  • the present invention is particularly useful in the fields of pharmaceuticals, foods, health foods, animal feeds, cosmetics, bath / toiletries, and the like.
  • the present invention relates to a wall material obtained by mixing 1) OZW emulsion with an aqueous phase and an oil phase containing 0.01 to 10% by weight of pectin, and then mixing polyvalent cations.
  • the wall material contains pectin calcium gel obtained by mixing calcium ions, contains oil-soluble substances, and has a median diameter of 0.
  • OZW emulsion is prepared and mixed with polyvalent cations. 1) to 5) of the mic mouth capsule characterized by adding pectin methylesterase, and 7) adding polyvalent cation after adding pectin methyl esterase 6) including microcapsules.
  • the present invention it is possible to manufacture a microcapsule having a size not perceived during eating, specifically, a median diameter of 100 m or less.
  • the inclusion is oil-soluble
  • the capsule wall material is non-animal vectin
  • a surfactant / emulsifier is not essential as the capsule material
  • preparation is simple
  • stability is good
  • the microcapsule means a capsule having a median diameter of 0.0 1 to 100 ⁇ .
  • the median diameter is preferably small from the viewpoint of the stability of the capsule and the fact that it can be ingested by humans.
  • the median diameter is preferably 10 0 ⁇ ⁇ ⁇ or less, more preferably 10 xm or less.
  • the active ingredient can be introduced into the microcapsule, but the median diameter is preferably 0.1 m or more from the viewpoint of the encapsulation efficiency.
  • the manufacturing method of the force pussel in the present invention is not limited as long as it can manufacture capsules having a median diameter of 0.01 to 100 m, and examples thereof include a method using ultrasonic waves, a stirring method, and a high pressure extrusion method.
  • the Capsules with a median diameter of 0.01 to 100 m cannot be manufactured by the seamless capsule manufacturing method using multi-tube nozzles, the coacervate manufacturing method, and the capsule manufacturing method by tableting. It cannot be used in the present invention.
  • the material used as the wall of the capsule is pectin.
  • the pectin concentration is 0.11 to 10% in the aqueous solution, more preferably 0.1 to 3%, and still more preferably 1 to 3%. If the pectin concentration is too high, it is not preferable in that the capsules aggregate, and if the pectin concentration is too low, the stability of the capsule is low, and it is not preferable in that the contained oil is separated.
  • the pectin as the capsule wall material is amidated in that the gel strength is increased by hydrophobic bonding.
  • the solution to be mixed with the aqueous phase is not particularly limited as long as it is an oil-soluble substance, but handling is more preferably edible oil from the viewpoint of cost and safety.
  • Producing microcapsules containing the target substance at one time without separately manufacturing the microcapsules and their inclusions by mixing the target substances such as drugs and edible nutritional components in advance with oil-soluble substances This is preferable.
  • the oil-soluble substance may be WZO emulsion, which is preferable in that it can contain a water-soluble drug, an edible nutritional component, and the like. In the text, unless otherwise noted, the contents of the microphone mouth capsule will be explained using hydrophobic examples.
  • the polyvalent cation is preferably a calcium ion.
  • the calcium ion concentration is from 0.01 to 100 OmM, more preferably 0.01. ⁇ 10-0 mM, more preferably 1 to 1 OmM. If the polyvalent cation concentration is too high, it is not preferable in terms of agglomeration of force capsules, and if the polyvalent cation concentration is too low, it is not preferable in terms of low capsule stability and separation of the encapsulated oil.
  • microcapsules can be formed by adding an emulsifier such as sugar ester, monodaliselide, sorbitan ester, etc., but in the present invention, the reason for safety, odor, cost, etc. when ingesting as a food or medicine Therefore, it is also characterized in that microcapsules can be formed stably even if the material for the capsule film does not contain an emulsifier.
  • the structure stability and inclusion stability against the heating load of the capsule are improved by reacting with pectin methylesterase (hereinafter sometimes referred to as PME) after preparation of the capsule.
  • PME pectin methylesterase
  • a polyvalent cation preferably calcium ion
  • the PME concentration is 2-30 OmP EU / ⁇ m 1, preferably 20-300 m PE UZml. If the PME concentration is too high, it is not preferable in that the capsules aggregate, and if the PME concentration is too low, it is not preferable in that the effect of improving the stability is small.
  • PEU is an abbreviation for Pectin Esterase Unit, which is a unit that indicates the ability of PME 1 m 1 to decompose methine methyl ester and produce lm mo 1 acid per minute.
  • the concentration is 20 mM, more preferably 1 to 1 OmM. If the calcium ion concentration is too high, it is not preferable in that the capsules aggregate, and if the calcium ion concentration is too low, it is not preferable in that the effect of improving the stability is small. If calcium ions are not added, free force lupoxyl groups that are not chelated to calcium ions become excessive, and force cells are aggregated or force wall surfaces are weakened.
  • Pectin (trade name “LM-104AS”, manufactured by CPKelco JAPAN) and deionized water were mixed to prepare a 2% aqueous pectin solution.
  • 2% pectin aqueous solution add 27 ml of 2% pectin aqueous solution and 3 ml of soybean oil (Ajinomoto Oil Co., Ltd.) to a 50 ml stainless steel tube, and heat the sonicator with the ice around the stainless steel tube S on ifier 2 50 (manufactured by BRANSON) was used for 2 minutes at an output of 145 W.
  • Example 2 a microcapsule dispersion produced by the same method as in Example 1 using each wall material and each cation was prepared.
  • Oil encapsulation rate of each microcapsule (%) (Each sample was centrifuged to separate the oil not contained in the capsule, and the amount of oil contained was measured, and the ratio of the amount of oil contained in the total oil amount was obtained. The content was determined by the Soxhlet method), the median diameter (; m), and the number of capsules (X10 12 / L). The results are shown in Table 1. Table 1: Effect of wall materials on microcapsules
  • Table 1 shows that PGA, ⁇ -carrageenan, carrageenan, gelatin and arabic gum have small oil inclusion ratios of 30% or less, while pectin has an oil inclusion ratio of 9 7% and alginic acid has It was found that the encapsulation rate of oil was 94% and the encapsulation rate was large and preferable. In particular, vectin is preferable because it has a median diameter as small as 1 m, and the number of capsules is as large as 150 ⁇ 10 12 / L, which proves promising as a microcapsule material. (Example 3)
  • Pectin (trade name: LM-104AS, manufactured by CPKelco JAPAN) and deionized water were mixed to prepare a 2% aqueous pectin solution.
  • 7.3 mM calcium chloride 6 ml 1 was added for 1 minute to obtain a milky white dispersion.
  • Microcapsules were prepared in the same manner as in Example 1, except that they were changed to%, 0.2%, 2%, and 5%.
  • Table 2 shows the particle size of each microcapsule.
  • the numbers shown in the table indicate the median diameter ( ⁇ m) unless otherwise specified.
  • the gel was severely gelled and the sample became one lump, and the particle size distribution measurement impossible was indicated as “aggregation”.
  • Table 2 Capsule median diameter using pectin
  • microcapsule stability by the degree of esterification of pectin and the presence or absence of amide groups
  • pectin with varying degree of esterification (DE value) of 3 1, 3 4 and 3 6 Microcapsules were prepared in the same manner as in Example 1 using pectin whose types were changed to LMA and LMC. The prepared microcapsules were heat-treated at 120 ° C. for 30 minutes, and the stability before and after heating was evaluated.
  • Table 3 List of pectin esterification levels and types
  • LMC Low Methoxyl Conventional Pectin Table 4 shows the median diameter before and after heating and the number of capsules. All of the microcapsule dispersions after preparation were white turbid liquids without separation. After heating, LMA (amidation type) was stably dispersed, but both LCG 12 CG and 13 CG were separated. Table 4: Change in median diameter and number of capsules before and after heating
  • PME concentrations of 50 OmPEU / m 1 are all calcium chloride concentrations
  • PME concentrations of 25 OmP EU / m 1 are 15 mM or more of calcium chloride
  • other PME concentrations are 25 mM or more of chloride. It was found that the whole gelled with calcium.
  • a microcapsule dispersion prepared by the same method as in Example 1 was mixed with a PME solution having a changed concentration, and then a sample added with 7 mM calcium chloride lm 1 and an additive-free sample were prepared (all pH 4). This was heated at 120 ° C for 30 minutes, and the median g before and after heating was measured.
  • Mixed PME Product name: NOVO SHAPE, manufactured by NOPOSYM
  • Concentration is 0, 2.5, 25, 25 OmPEU / m 1 Met. The results are shown in Table 6.
  • control (Cont.) Used was a micro cab cell produced by the production method of Example 1.
  • Table 6 Median diameter before and after heating with and without calcium chloride (zm)
  • microcapsules having a size that is not perceived during eating can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nutrition Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Formation And Processing Of Food Products (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Disclosed is a microcapsule. After forming an O/W emulsion with a water phase containing pectin and an oil phase, polyvalent cations are mixed into the O/W emulsion, thereby producing a microcapsule containing an oil-soluble substance and having a median diameter of 0.01-100 μm.

Description

ぺクチンを壁材とするマイクロカプセル 技術分野  Microcapsules with pectin as a wall material
本発明は、 ぺクチンを壁材とするマイクロカプセルに関する。 背景技術 明  The present invention relates to a microcapsule using pectin as a wall material. Background art
近年、 健康志向の高まりから栄養補助食品、 機能性食品などの健康食品が注目さ れている。 これらの食品に含まれる内容成分の書保護、 安定化、 味 ·臭いのマスキン グのためにカプセルが用いられている。 カプセルにも様々な種類があるが、 錠剤な どのハードカプセル、 ソフ卜カプセル、 シームレスカプセル、 従来のマイクロカプ セルは粒径が 0 . 3 mm〜2 c mであり、 喫食時に舌で知覚できる大きさである。 その為、 食品にこれらのカプセルを配合すると食感が変化してしまう。 マヨネーズ などの乳化物タイプの食品は粒径が 5 m以下であり、 喫食時に舌で知覚できない 大きさである。 しかし、 乳化物タイプの食品は加熱安定性 ·保存安定性、 マスキン グの困難性、 コスト、 などの点で課題がある。  In recent years, health foods such as dietary supplements and functional foods have attracted attention due to the growing health consciousness. Capsules are used for document protection, stabilization, and taste / odor masking of the ingredients contained in these foods. There are various types of capsules, but hard capsules such as tablets, soft capsules, seamless capsules, and conventional microcapsules have a particle size of 0.3 mm to 2 cm. is there. Therefore, when these capsules are added to food, the texture changes. Emulsion-type foods such as mayonnaise have a particle size of 5 m or less and cannot be perceived by the tongue when eating. However, emulsion-type foods have problems in terms of heat stability / storage stability, difficulty in masking, and cost.
また、 従来のマイクロカプセルにおいてはその壁材として牛、 豚、 鳥、 魚などの 動物由来のタンパクが用いられてきたが、 非動物性の素材に対する市場の要求も高 まっている。  In addition, in conventional microcapsules, protein derived from animals such as cattle, pigs, birds and fish has been used as the wall material, but the market demand for non-animal materials is also increasing.
非動物性の素材を壁材としたマイクロ力プセルの製造法として、 多糖類と油状物 質のエマルシヨンを多価陽イオン塩水溶液に滴下し、 多糖類と多価イオンとの間に 架橋結合を形成せしめて固形化させるマイクロカプセルが知られている (特許文献 1参照) 。  As a method for producing micro-force cells using non-animal materials as a wall material, polysaccharides and oily emulsions are dropped into an aqueous polycation salt solution to form a crosslink between the polysaccharide and polyvalent ions. A microcapsule that is formed and solidified is known (see Patent Document 1).
しかしながら、 エマルシヨンを多価陽イオン塩水溶液に滴下する該滴下法では、 粒径がノズル径ゃぬれ性に依存するためミリオーダーの比較的大きなカプセルしか できない。 また、 ひとつのカプセル中に複数の油滴が存在する多芯カプセルである ため、 1カプセル当りの内包量が少ないという課題がある。 However, in the dropping method in which emulsion is dropped into a polyvalent cation salt aqueous solution, since the particle size depends on the wettability of the nozzle diameter, only a comparatively large capsule of millimeter order can be produced. In addition, it is a multi-core capsule with multiple oil droplets in one capsule Therefore, there is a problem that the amount of inclusion per capsule is small.
乳化剤を使用せずメジアン径が 3 以下のマイクロカプセルも知られている ( 特許文献 2参照) 。  A microcapsule having a median diameter of 3 or less without using an emulsifier is also known (see Patent Document 2).
しかしながら該発明は、 壁材としてタンパク質を用いることが必須である。 また 予備乳化や圧力処理等などの操作が必要であるなど製造方法が複雑である。  However, in the invention, it is essential to use protein as a wall material. In addition, the manufacturing method is complicated, such as operations such as preliminary emulsification and pressure treatment.
天然由来多糖類を含有した平均粒径が 0 . 1〜5 0 i mの微粒子が知られている (特許文献 3参照) 。  Fine particles containing a natural polysaccharide and having an average particle size of 0.1 to 50 im are known (see Patent Document 3).
しかしながら該発明は多芯力プセルの製造法であるため、 多孔質ガラス膜による 膜乳化や、 濃度調整工程、 不溶化工程など複雑な工程が多段階必要である。 また多 芯カプセルであるため 1カプセル当りの内包量も少なくなる。  However, since the present invention is a method for producing a multi-core pushcell, complicated steps such as membrane emulsification with a porous glass membrane, concentration adjustment step, and insolubilization step are required. In addition, since it is a multi-core capsule, the amount of encapsulation per capsule is reduced.
水溶性多糖類などの水溶性高分子を外水相に配合した WZOZW複合エマルショ ンが知られている (特許文献 4参照) 。 .  A WZOZW composite emulsion in which a water-soluble polymer such as a water-soluble polysaccharide is blended in an outer aqueous phase is known (see Patent Document 4). .
しかしながら該発明のエマルションにはメジアン径が 2 0〜2 0 0 0 n mと小さ いものも含まれるが、 該発明は水、 油性成分、 親油性乳化剤の組成比に特徴がある 。 その為、 乳化剤が必須の構成要件であるだけでなく、 使用できる油性成分も限定 されてしまう。  However, the emulsions of the invention include those having a median diameter as small as 20 to 200 nm, but the invention is characterized by the composition ratio of water, an oily component, and a lipophilic emulsifier. For this reason, an emulsifier is not only an essential component, but also the oily components that can be used are limited.
香料等を食用ガム質の膜により内包するマイクロカプセルが知られている (特許 文献 5参照) 。  There is known a microcapsule in which a fragrance is encapsulated by an edible gum-like film (see Patent Document 5).
該発明のカプセル製法としてコアセルペート法とシームレス法が挙げられている が、 コアセルべ一ト法の場合、 高分子の小滴 (コアセルべ一ト) を芯物質 (油) の 表面に集めて形成させるため力プセル膜厚はコアセルべ一卜滴より必ず大きくなる (参照: Mul t i- l ayered gel at in/acac i a microcapsules by compl ex coaservat ion me thod, Journal of chemical engineering of Japan, 793-798 vol. 30 No. 5 199 7) 。 また、 シームレス法の場合はカプセル粒径がノズル径ゃぬれ性に依存するた め、 該発明のマイクロカプセルは粒径が数百; u m以下にすることは困難である。 な お、 本発明においてコアセルペート法 (コアセルべーシヨン法). とは、 高分子溶液 中にあらかじめ不溶性の芯物質粒子 (油など) を分散しておき、 次いで高分子濃度 、 温度、 pHなどの変数をコアセルべーシヨンが起こる領域の値に調整しコアセル ベート滴を生成させ、 芯物質粒子の表面に集めマイクロ力プセルを製造することを レ う。 Although the coacervate method and the seamless method are mentioned as the capsule production method of the invention, in the case of the coacervate method, polymer droplets (coacervate) are collected and formed on the surface of the core material (oil). Therefore, the thickness of the force cell is always larger than that of a single cell drop (see: Multi-layered gel at in / acacia microcapsules by compl ex coaservat ion me thod, Journal of chemical engineering of Japan, 793-798 vol. 30 No. 5 199 7). In the case of the seamless method, since the capsule particle diameter depends on the wettability of the nozzle diameter, it is difficult for the microcapsules of the present invention to have a particle diameter of several hundreds um or less. In the present invention, the coacervate method (coacervation method) means that insoluble core substance particles (oil, etc.) are dispersed in a polymer solution in advance, and then the concentration of the polymer Adjust the temperature, pH, and other variables to the values in the region where coacervation occurs to generate coacervate droplets, collect them on the surface of the core material particles, and manufacture micro force cells.
天然高分子を用いたカプセルも知られている (特許文献 6参照)  Capsules using natural polymers are also known (see Patent Document 6)
しかし該発明は、 シームレスカプセルであるため粒径が大きい。  However, since the invention is a seamless capsule, the particle size is large.
特許文献 1  Patent Literature 1
特開平 7— 145045号公報  Japanese Unexamined Patent Publication No. 7-145045
特許文献 2  Patent Document 2
特開 2003— 240 17号公報  JP 2003-240 17 Gazette
特許文献 3  Patent Document 3
特開 2004— 2582号公報  Japanese Patent Laid-Open No. 2004-2582
特許文献 4  Patent Document 4
国際公開 WO 02 / 43698号公報  International Publication WO 02/43698
特許文献 5 ^  Patent Document 5 ^
特開 2000— 342186号公報  Japanese Unexamined Patent Publication No. 2000-342186
特許文献 6  Patent Document 6
特開 2001— 245660号公報 発明の開示  JP 2001-245660 A DISCLOSURE OF THE INVENTION
本発明は前記のような課題を解決するためになされたものである。 本発明の目的 はマイクロカプセルを提供することである。 . 上記課題を解決すベく検討した結果、 ぺクチンを含む水相と油相で O ZWェマル シヨンを作製した後、 多価陽イオンを混合することにより、 油溶性物質を内包し、 メジアン径が 0. 01~100 mであるマイクロカプセルが製造できることを見 出し、 本発明を完成させるに至った。 更に具体的には内包物が油溶性であり、 カブ セルの壁材が非動物性であるべクチンであり、 カプセルの材料として界面活性剤 - 乳化剤が必須でなく、 調製が簡易であり、 安定性が良く、 かつ 1カプセル当りの油 内包量の多いマイクロカプセルが好ましいことを見出した。 本発明は特に、 医薬品 、 食品、 健康食品等の分野、 動物用飼料分野、 化粧品、 バス · トイレタリーなどの 分野において有用である。 The present invention has been made to solve the above-described problems. An object of the present invention is to provide a microcapsule. As a result of studying to solve the above problems, O ZW emulsion was prepared with an aqueous phase containing pectin and an oil phase, and then mixed with polyvalent cations to encapsulate an oil-soluble substance, resulting in a median diameter. The inventors have found that microcapsules having a diameter of 0.01 to 100 m can be produced, and have completed the present invention. More specifically, the inclusions are oil-soluble, the capsules are non-animal vectin, the surfactant-emulsifier is not essential as the capsule material, and the preparation is simple and stable. Good and oil per capsule It has been found that microcapsules with a large amount of inclusion are preferable. The present invention is particularly useful in the fields of pharmaceuticals, foods, health foods, animal feeds, cosmetics, bath / toiletries, and the like.
即ち本発明は、 1) 0. 0 1 ~ 1 0重量%のぺクチンを含む水相と油相で OZW エマルシヨンを作製した後、 多価陽イオンを混合することで得られる、 壁材にぺク チン多価陽イオンゲルを含み、 油溶性物質を内包し、 メジアン径が 0. 0 1 ~ 1 0 0 mであるマイクロカプセルを含み、 また、 2) 0. 0 1〜1 0重量%のぺクチ ンを含む水相と油相で O/Wエマルションを作製した後、 カルシウムイオンを混合 することで得られる、 壁材にぺクチンカルシウムゲルを含み、 油溶性物質を内包し 、 メジアン径が 0. 0 1〜 1 0 0 mであるマイクロカプセルを含み、 また、 3) OZWエマルシヨンを作成するときに乳化剤を用いないことを特徴とする 1 ) 又は 2) のマイクロカプセルを含み、 また、 4) ぺクチンがアミド基を持つことを特徴 とする 1) ないし 3) のマイクロカプセルを含み、 また、 5) 内包する油溶性物質 が W/Oエマルシヨンであることを特徴とする 1 ) ないし 4) のマイクロカプセル を含み、 また、 6) OZWエマルシヨンを作製し、 多価陽イオンを混合した後に、 ぺクチンメチルエステラーゼを添加することを特徴とする 1 ) ないし 5) のマイク 口カプセルを含み、 また、 7) ぺクチンメチルエステラーゼを添加した後に、 多価 陽イオンを添加することを特徴とする 6) のマイクロカプセルを含む。  That is, the present invention relates to a wall material obtained by mixing 1) OZW emulsion with an aqueous phase and an oil phase containing 0.01 to 10% by weight of pectin, and then mixing polyvalent cations. A microcapsule containing a cutin polyvalent cation gel, containing an oil-soluble substance, and having a median diameter of 0.01 to 100 m, and 2) 0.01 to 10% by weight After preparing an O / W emulsion with an aqueous phase containing cutin and an oil phase, the wall material contains pectin calcium gel obtained by mixing calcium ions, contains oil-soluble substances, and has a median diameter of 0. Including microcapsules of 0 1 to 100 m, and 3) including microcapsules of 1) or 2), characterized in that no emulsifier is used when preparing OZW emulsions, and 4) The microcapsules of 1) to 3), characterized in that pectin has an amide group 5) Including the microcapsule of 1) to 4), characterized in that the oil-soluble substance contained is W / O emulsion. 6) OZW emulsion is prepared and mixed with polyvalent cations. 1) to 5) of the mic mouth capsule characterized by adding pectin methylesterase, and 7) adding polyvalent cation after adding pectin methyl esterase 6) including microcapsules.
本発明によれば、 喫食時に知覚しない大きさ、 具体的にはメジアン径が 1 0 0 m以下のマイクロカプセルを製造することができる。 また、 内包物が油溶性であり 、 カプセルの壁材が非動物性であるべクチンであり、 カプセルの材料として界面活 性剤 ·乳化剤が必須でなく、 調製が簡易であり、 安定性が良く、 かつ 1力プセル当 りの油内包量の多いマイクロカプセルを提供することができる。  According to the present invention, it is possible to manufacture a microcapsule having a size not perceived during eating, specifically, a median diameter of 100 m or less. In addition, the inclusion is oil-soluble, the capsule wall material is non-animal vectin, a surfactant / emulsifier is not essential as the capsule material, preparation is simple, and stability is good In addition, it is possible to provide a microcapsule with a large amount of oil inclusion per force pushell.
本発明においてマイクロカプセルとはメジアン径が 0. 0 1〜 1 0 0 ηιのカプ セルを意味する。 カプセルの安定性の点や人が感知せず摂取できるという点からは メジアン径が小さいことが好ましい。 人が感知せず摂取するにはメジアン径が 1 0 Ο ΠΙ以下、 より好ましくは 1 0 xm以下であることがより好ましい。 本発明にお いてはマイクロカプセルの中に有効成分を導入することもできるが、 内包効率の点 からはメジアン径は 0 . 1 m以上であることが好ましい。 また本発明における力 プセルの製造方法は、 メジアン径が 0 . 0 1〜 1 0 0 mのカプセルを製造できる ものであれば良く、 超音波を用いる方法、 撹拌法、 高圧押し出し法などがあげられ る。 複数管のノズルを用いてシームレスカプセルを製造する方法やコアセルペート 法による製造方法、 打錠によるカプセルの製造方法ではメジアン径が 0 . 0 1〜 1 0 0 mのカプセルを製造することが出来ないため本発明には用いることができな い。 In the present invention, the microcapsule means a capsule having a median diameter of 0.0 1 to 100 ηι. The median diameter is preferably small from the viewpoint of the stability of the capsule and the fact that it can be ingested by humans. For ingestion by humans, the median diameter is preferably 10 0 ΠΙ よ り or less, more preferably 10 xm or less. In the present invention In this case, the active ingredient can be introduced into the microcapsule, but the median diameter is preferably 0.1 m or more from the viewpoint of the encapsulation efficiency. In addition, the manufacturing method of the force pussel in the present invention is not limited as long as it can manufacture capsules having a median diameter of 0.01 to 100 m, and examples thereof include a method using ultrasonic waves, a stirring method, and a high pressure extrusion method. The Capsules with a median diameter of 0.01 to 100 m cannot be manufactured by the seamless capsule manufacturing method using multi-tube nozzles, the coacervate manufacturing method, and the capsule manufacturing method by tableting. It cannot be used in the present invention.
本発明においてカプセルの壁材となる材料は、 ぺクチンであることが重要である 。 ぺクチン濃度は、 水溶液中に 0 . 0 1 ~ 1 0 %、 より好ましくは 0 . 1〜 3 %、 更に好ましくは 1〜 3 %である。 ぺクチン濃度が高すぎるとカプセルが凝集する点 で好ましくなく、 ぺクチン濃度が低すぎるとカプセルの安定性が低く内包油が分離 する点で好ましくない。  In the present invention, it is important that the material used as the wall of the capsule is pectin. The pectin concentration is 0.11 to 10% in the aqueous solution, more preferably 0.1 to 3%, and still more preferably 1 to 3%. If the pectin concentration is too high, it is not preferable in that the capsules aggregate, and if the pectin concentration is too low, the stability of the capsule is low, and it is not preferable in that the contained oil is separated.
カプセルの壁材となるぺクチンはアミド化されていると疎水結合によりゲル強度 が増す点で好ましい。 ' 水相と混合される溶液は、 油溶性物質であれば特に限定はないが、 取り扱いゃコ スト、 安全性の点から食用油であるとより好ましい。 油溶性物質中に薬剤や食用の 栄養成分などの目的物質をあらかじめ混合させておくことで、 マイクロカプセルと その内包物を別々に製造することなく一度に目的物質を含有したマイクロカプセル を製造することができ好ましい。 また油溶性物質が WZOエマルシヨンであっても 良く、 その場合、 水溶性の薬剤や食用の栄養成分などを内包できる点で好ましい。 本文中では、 特に断りのない限りはマイク口カプセルの内容物が疎水性の例で説明 する。  It is preferable that the pectin as the capsule wall material is amidated in that the gel strength is increased by hydrophobic bonding. 'The solution to be mixed with the aqueous phase is not particularly limited as long as it is an oil-soluble substance, but handling is more preferably edible oil from the viewpoint of cost and safety. Producing microcapsules containing the target substance at one time without separately manufacturing the microcapsules and their inclusions by mixing the target substances such as drugs and edible nutritional components in advance with oil-soluble substances This is preferable. The oil-soluble substance may be WZO emulsion, which is preferable in that it can contain a water-soluble drug, an edible nutritional component, and the like. In the text, unless otherwise noted, the contents of the microphone mouth capsule will be explained using hydrophobic examples.
本発明においては、 ぺクチンを含む水相と油相で OZWエマルションを作製した 後に多価陽イオンと混合することが重要である。 更に安定性の点から、 多価陽ィォ ンはカルシウムイオンであることが好ましい。  In the present invention, it is important to prepare an OZW emulsion with an aqueous phase containing pectin and an oil phase, and then mix with a polyvalent cation. Further, from the viewpoint of stability, the polyvalent cation is preferably a calcium ion.
またカルシウムイオン濃度は、 0 . 0 1 ~ 1 0 0 O mM、 より好ましくは 0 . 0 1 〜10-0mM、 更に好ましくは 1〜1 OmMである。 多価陽イオン濃度が高すぎる と、 力プセルが凝集する点で好ましくなく、 多価陽ィォン濃度が低すぎるとカプセ ルの安定性が低く内包油が分離する点で好ましくない。 The calcium ion concentration is from 0.01 to 100 OmM, more preferably 0.01. ˜10-0 mM, more preferably 1 to 1 OmM. If the polyvalent cation concentration is too high, it is not preferable in terms of agglomeration of force capsules, and if the polyvalent cation concentration is too low, it is not preferable in terms of low capsule stability and separation of the encapsulated oil.
一般的にエマルシヨン、 サスペンションを作製する際に乳化剤を加えることが知 られている。 本発明においても、 例えばシュガーエステル、 モノダリセライド、 ソ ルビタンエステル等の乳化剤を加えてマイクロカプセルを形成できるが、 本発明で は食品、 医薬品として摂取する場合の安全性、 臭い、 コスト等の理由のためカプセ ル被膜の材料に乳化剤を含まなくてもマイクロカプセルを安定的に形成することが 出来ることも特徴である。  In general, it is known to add an emulsifier when producing an emulsion or suspension. Even in the present invention, microcapsules can be formed by adding an emulsifier such as sugar ester, monodaliselide, sorbitan ester, etc., but in the present invention, the reason for safety, odor, cost, etc. when ingesting as a food or medicine Therefore, it is also characterized in that microcapsules can be formed stably even if the material for the capsule film does not contain an emulsifier.
本発明において、 カプセル調製後にぺクチンメチルエステラーゼ (以下、 PME という場合有り) と反応させることでカプセルの加熱負荷に対する構造安定性、 内 包物安定性が向上する。 P MEに多価陽イオン、 好ましくはカルシウムイオン添加 を行うことによりカプセルの加熱負荷に対する構造安定性、 内包物安定性が更に向 上する。 PME濃度は 2~30 OmP EU/^m 1、 好ましくは 20 ~ 300 m P E UZmlである。 PME濃度が高すぎるとカプセルが凝集する点で好ましくなく、 PME濃度が低すぎると安定性向上効果が少ない点で好ましくない。 ここで P EU とは、 Pectin Esterase Unitの略であり、 PME 1 m 1が 1分間にべクチンのメチ ルエステルを分解して lm mo 1の酸を生産する能力を示す単位である。  In the present invention, the structure stability and inclusion stability against the heating load of the capsule are improved by reacting with pectin methylesterase (hereinafter sometimes referred to as PME) after preparation of the capsule. By adding a polyvalent cation, preferably calcium ion, to PME, the structural stability and inclusion stability of the capsule against heating load are further improved. The PME concentration is 2-30 OmP EU / ^ m 1, preferably 20-300 m PE UZml. If the PME concentration is too high, it is not preferable in that the capsules aggregate, and if the PME concentration is too low, it is not preferable in that the effect of improving the stability is small. Here, PEU is an abbreviation for Pectin Esterase Unit, which is a unit that indicates the ability of PME 1 m 1 to decompose methine methyl ester and produce lm mo 1 acid per minute.
また P M Eに対して多価陽イオン、 具体的にはカルシウムイオン等を添加するこ とは必須ではないが、 加熱負荷に対する安定性を高めるためにカルシウムイオンを 添加する場合は、 0. 0 1〜20mMの濃度、 より好ましくは 1~1 OmMの濃度 である。 カルシウムイオン濃度が高すぎるとカプセルが凝集する点で好ましくなく 、 カルシウムイオン濃度が低すぎると安定性向上効果が少ない点で好ましくない。 またカルシウムイオンを加えないとカルシウムイオンにキレートされないフリーの 力ルポキシル基が過剰となり力プセルが凝集したり力プセル壁構造が弱くなつたり する。  In addition, it is not essential to add polyvalent cations, specifically calcium ions, etc. to PME, but when adding calcium ions to increase the stability against heating load, The concentration is 20 mM, more preferably 1 to 1 OmM. If the calcium ion concentration is too high, it is not preferable in that the capsules aggregate, and if the calcium ion concentration is too low, it is not preferable in that the effect of improving the stability is small. If calcium ions are not added, free force lupoxyl groups that are not chelated to calcium ions become excessive, and force cells are aggregated or force wall surfaces are weakened.
また、 カプセル調製前に PME処理を行うとカプセル調製時に全体がゲル化し力 プセルが形成されない。 よってカプセル調製後に P M E処理や塩化カルシウム添加 を行うことにより、 カプセル壁がさらに強化される。 In addition, if PME treatment is performed before capsule preparation, the entire gelation will occur during capsule preparation. A psel is not formed. Therefore, the capsule wall is further strengthened by PME treatment and calcium chloride addition after capsule preparation.
(実施例 1 )  (Example 1)
超音波装置を用いたぺクチンカプセルの製造  Production of pectin capsules using an ultrasonic device
ぺクチン (商品名 「LM— 104AS」 、 CPKe l c o J AP AN製) と脱 イオン水を混合し、 2 %ぺクチン水溶液を調製した。 次に 50m 1ステンレスチュ ーブに 2 %ぺクチン水溶液 27m 1と大豆油 (味の素製油株式会社製) 3m lを加 え、 ステンレスチューブの周囲を氷冷した状態で超音波処理機 S on i f i e r 2 50 (B r an s on社製) により、 出力 145 Wで 2分間処理を行った。 超音波 処理開始後 30秒経過したところでマイクロシリンジポンプ I C 3100 (KD S c i e n t i f i c社製) を用いて 7. 3mM塩化カルシウム 2m 1を 127m 1 /h の速度で添加したところ、 乳白色の分散液を得た。  Pectin (trade name “LM-104AS”, manufactured by CPKelco JAPAN) and deionized water were mixed to prepare a 2% aqueous pectin solution. Next, add 27 ml of 2% pectin aqueous solution and 3 ml of soybean oil (Ajinomoto Oil Co., Ltd.) to a 50 ml stainless steel tube, and heat the sonicator with the ice around the stainless steel tube S on ifier 2 50 (manufactured by BRANSON) was used for 2 minutes at an output of 145 W. After 30 seconds from the start of ultrasonic treatment, 7.3 mM calcium chloride 2m 1 was added at a rate of 127 m 1 / h using a micro syringe pump IC 3100 (manufactured by KD Scientific), and a milky white dispersion was obtained. It was.
大豆油を N i 1 e Re d, ぺクチンを Rh o d am i n eで蛍光染色した前記 分散液を、 共焦点レーザ一スキャン顕微鏡 LSM510 (C a r l Z e i s s 社製) にて観察したところ、 大豆油を内包したマイクロカプセルの形成が確認され た。 またマイクロカプセル分散液の粒度分布をレーザー回折式粒度分布計 L A 92 0 (堀場製作所社製) にて測定したところシングルピークであり、 マイクロカプセ ルの外径のメジアン径は 1. 3 mであった。  When the dispersion liquid obtained by fluorescently staining soybean oil with Ni 1 e Red and pectin with Rhode am ine was observed with a confocal laser scanning microscope LSM510 (manufactured by Carl Zeiss), soybean oil was observed. The formation of encapsulated microcapsules was confirmed. The particle size distribution of the microcapsule dispersion was measured with a laser diffraction particle size analyzer LA 920 (manufactured by Horiba Ltd.). It was a single peak and the median diameter of the outer diameter of the microcapsule was 1.3 m. It was.
(実施例 2 )  (Example 2)
マイクロカプセルの壁材の検討  Examination of wall material of microcapsule
マイクロ力プセルの壁材と陽イオンとして以下の組み合わせを用いた。  The following combinations were used as wall materials and cations for micro-force cells.
1) ぺクチン 0. 02〜5%、 塩化カルシウム 0〜70 OmM、  1) Pectin 0.02-5%, calcium chloride 0-70 OmM,
2) アルギン酸 0. 25〜; L %、 塩化カルシウム 0〜0. 1M、  2) Alginic acid 0.25 ~; L%, calcium chloride 0 ~ 0.1M,
3) PGA1〜40%、 みょうばん 2〜200mM、  3) PGA 1 ~ 40%, Alum 2 ~ 200mM,
4) K-カラギ一ナン 0. 1~1 %、 塩化カリウム 0~0. 2M、 4) K-carrageenan 0.1 to 1%, potassium chloride 0 to 0.2M,
5) -カラギーナン 0. 1〜 1 %、 塩化カルシウム 0〜0. 2M、  5) -Carrageenan 0.1-1%, calcium chloride 0-0.2M,
6) ゼラチン—アラビアガム (1対 1混合物) 0. 01~0. 1% これらの組み合わせでそれぞれの最適条件を検討し、 6) Gelatin-gum arabic (1 to 1 mixture) 0.01-0.1% We examine each optimum condition with these combinations,
1 ) ぺクチン 2 %、 塩化カルシウム 7mM、  1) Pectin 2%, calcium chloride 7mM,
2) アルギン酸 2 5 %、 塩化カルシウム 0. 0 5M、  2) Alginic acid 25%, calcium chloride 0.05M,
3) P GA 1 %、 みょうばん 5mM、  3) PGA 1%, Alum 5mM,
4) κ-カラギ一ナン 0. 5 %、 塩化カリウム 0. 0 2Μ、  4) κ-carrageenan 0.5%, potassium chloride 0.02Μ,
5) カラギーナン 0. 5 %、 塩化カルシウム 0. 2Μ、  5) Carrageenan 0.5%, calcium chloride 0.2%,
6) ゼラチン一アラビアガム 0. 0 1 %  6) Gelatin-Gum Arabic 0. 0 1%
を選定した。 そして各壁材と各陽イオンを用い実施例 1と同様の方法により製造し たマイクロカプセル分散液を調製した。 Was selected. Then, a microcapsule dispersion produced by the same method as in Example 1 using each wall material and each cation was prepared.
各マイクロカプセルの油内包率 (%) (各サンプルを遠心しカプセルに内包され ていない油を分離することで内包油量を測定し、 全油量に対する内包油量の割合を だしたもの。 油含有量はソックスレ一法によった) 、 メジアン径 (; m) 、 カプセ ル数 (X 1 012個/ L) を測定した。 結果を表 1示す。 表 1 :壁材の違いがマイクロカプセルに与える影響 Oil encapsulation rate of each microcapsule (%) (Each sample was centrifuged to separate the oil not contained in the capsule, and the amount of oil contained was measured, and the ratio of the amount of oil contained in the total oil amount was obtained. The content was determined by the Soxhlet method), the median diameter (; m), and the number of capsules (X10 12 / L). The results are shown in Table 1. Table 1: Effect of wall materials on microcapsules
Figure imgf000009_0001
表 1から、 P GA、 κ-カラギーナン、 カラギ一ナン、 ゼラチン一アラビアゴ ムは油内包率が 3 0 %以下と小さいが、 ぺクチンは油内包率 9 7 %、 アルギン酸は 油内包率 94 %と内包率が大きく好ましいことが判明した。 特にべクチンはメジァ ン径も 1 mと小さいため好ましく、 カプセル数も 150 X 1012個/ Lと多く 好ましいことが判明し、 マイクロカプセル素材として有望であることが判明した。 (実施例 3)
Figure imgf000009_0001
Table 1 shows that PGA, κ-carrageenan, carrageenan, gelatin and arabic gum have small oil inclusion ratios of 30% or less, while pectin has an oil inclusion ratio of 9 7% and alginic acid has It was found that the encapsulation rate of oil was 94% and the encapsulation rate was large and preferable. In particular, vectin is preferable because it has a median diameter as small as 1 m, and the number of capsules is as large as 150 × 10 12 / L, which proves promising as a microcapsule material. (Example 3)
超高剪断処理機を用いたぺクチンカプセルの製造  Production of pectin capsules using an ultra-high shearing machine
ぺクチン (商品名 「: LM— 104AS」 、 CPKe l c o J AP AN製) と脱 イオン水を混合し、 2%ぺクチン水溶液を調製した。 次に超高剪断処理機 (日本精 機製作所 (株) 特注機) の攪拌容器に 2 %ぺクチン水溶液 8 lm 1と大豆油 (味の 素製油株式会社製) 9m lを加え、 容器の周囲を冷却した状態で超高剪断処理機に より、 9500 r pmで 3分間処理を行った。 攪拌開始後 1分経過したところで 7 . 3mM塩化カルシウム 6m 1を 1分間添加したところ、 乳白色の分散液を得た。 マイクロカプセル分散液の粒度分布をレーザー回折式粒度分布計 L A 920 (堀 場製作所社製) にて測定したところシングルピークであり、 マイクロカプセルの外 径のメジアン径は 4. であった。  Pectin (trade name: LM-104AS, manufactured by CPKelco JAPAN) and deionized water were mixed to prepare a 2% aqueous pectin solution. Next, add 8 ml of 2% aqueous pectin solution and 9 ml of soybean oil (manufactured by Ajinomoto Oil Co., Ltd.) to the stirring vessel of the ultra-high shearing machine (Nippon Seiki Seisakusho Co., Ltd.). In the cooled state, it was treated at 9500 rpm for 3 minutes with an ultra-high shearing machine. One minute after the start of stirring, 7.3 mM calcium chloride 6 ml 1 was added for 1 minute to obtain a milky white dispersion. When the particle size distribution of the microcapsule dispersion was measured with a laser diffraction particle size distribution analyzer L A 920 (manufactured by Horiba Ltd.), it was a single peak and the median diameter of the outer diameter of the microcapsule was 4.
(実施例 4)  (Example 4)
ぺクチン濃度、 カルシウム濃度がマイクロカプセルの粒径に与える影響 ぺクチン (LM— 104 AS CPKe l c o JAPAN) の濃度を 0. 02 Effects of Pectin Concentration and Calcium Concentration on Microcapsule Particle Size Concentration of pectin (LM—104 AS CPKelco JAPAN)
%、 0. 2%、 2%、 5%と変化させ、 実施例 1と同様の方法によりマイクロカプ セルを調製した。 Microcapsules were prepared in the same manner as in Example 1, except that they were changed to%, 0.2%, 2%, and 5%.
また、 各濃度のぺクチンについて、 塩化カルシウムを 30秒後に 2m 1添加したが 、 その塩化カルシウム濃度を 0mM、 7mM、 70mM、 700mM、 と変化させ た。 For each concentration of pectin, 2 ml of calcium chloride was added 30 seconds later, but the calcium chloride concentration was changed to 0 mM, 7 mM, 70 mM, and 700 mM.
各マイクロカプセルの粒径を表 2に示す。 なお表に示している数字は特に断りが ない限りメジアン径 (^m) を示す。 なお、 ゲル化が激しくサンプルが一つの塊と なり、 粒度分布測定不可能なものを 「凝集」 と示した。 表 2 :ぺクチンを用いたカプセルメジアン径 Table 2 shows the particle size of each microcapsule. The numbers shown in the table indicate the median diameter (^ m) unless otherwise specified. In addition, the gel was severely gelled and the sample became one lump, and the particle size distribution measurement impossible was indicated as “aggregation”. Table 2: Capsule median diameter using pectin
Figure imgf000011_0001
表 2に示すように、 ぺクチン濃度、 塩化カルシウム濃度が高くなるにつれて粒子 同士が凝集する傾向が得られた。 なお、 2 %ぺクチン、 7 mM塩化カルシウムの条 件において最も凝集が少なく、 メジァン径が小さいカプセルが得られた。
Figure imgf000011_0001
As shown in Table 2, there was a tendency for particles to aggregate as the pectin concentration and calcium chloride concentration increased. Capsules with the least aggregation and a small median diameter were obtained under the conditions of 2% pectin and 7 mM calcium chloride.
(実施例 5 )  (Example 5)
ぺクチンのエステル化度、 アミド基の有無によるマイクロカプセルの安定性評価 以下の表 3の様に、 エステル化度 (D E値) を 3 1、 3 4、 3 6と変化させたぺ クチンと、 種類を L MA、 L M Cと変化させたぺクチンを用いて実施例 1と同様の 方法によりマイクロカプセルを調製した。 調製したマイクロカプセルを 1 2 0 °Cで 3 0分加熱処理し、 加熱前後の安定性を評価した。 表 3 :ぺクチンのエステル化度と種類の一覧  Evaluation of microcapsule stability by the degree of esterification of pectin and the presence or absence of amide groups As shown in Table 3 below, pectin with varying degree of esterification (DE value) of 3 1, 3 4 and 3 6 Microcapsules were prepared in the same manner as in Example 1 using pectin whose types were changed to LMA and LMC. The prepared microcapsules were heat-treated at 120 ° C. for 30 minutes, and the stability before and after heating was evaluated. Table 3: List of pectin esterification levels and types
Figure imgf000011_0002
Figure imgf000011_0002
し MA:Low Methoxyl Amidated Pectin  MA: Low Methoxyl Amidated Pectin
LMC:Low Methoxyl Conventional Pectin 加熱前後のメジアン径、 カプセル数を表 4に示す。 調製後のマイクロカプセル分 散液は全て分離のない白濁液となっていた。 加熱後 LMA (アミド化タイプ) では 安定分散していたが、 LMCである 12 CG、 13 CGは共に分離した。 表 4 :加熱前後のメジアン径、 カプセル数の変化 LMC: Low Methoxyl Conventional Pectin Table 4 shows the median diameter before and after heating and the number of capsules. All of the microcapsule dispersions after preparation were white turbid liquids without separation. After heating, LMA (amidation type) was stably dispersed, but both LCG 12 CG and 13 CG were separated. Table 4: Change in median diameter and number of capsules before and after heating
Figure imgf000012_0001
表 4に示すように、 すべてのマイクロカプセルが加熱後、 凝集もしくは合一して メジアン径が大きくなつた。 しかし、 LMAぺクチンは、 エステル化度が高いほど メジアン怪変化は少なく D E値が 36の 101 A Sはメジアン怪変化が約 1. 5倍 と少なく粒度分布もシングルピークのままであり、 カプセルの構造安定性が最も高 かった。 LMCぺクチンは加熱することにより凝集もしくは合一が格段に進み、 メ ジァン径が大きくなるためマイクロ力プセルの調製に適していないことが分かつた
Figure imgf000012_0001
As shown in Table 4, all the microcapsules aggregated or merged after heating and the median diameter increased. However, the higher the degree of esterification, the lower the median change of LMA pectin, and the 101 AS of DE value 36 has a median change of about 1.5 times, and the particle size distribution remains a single peak. The stability was highest. It was found that LMC pectin is not suitable for the preparation of micro-force cells because the aggregation or coalescence progresses dramatically by heating and the median diameter increases.
(実施例 6 ) (Example 6)
ぺクチンメチルエステラ一ゼ、 カルシウム濃度がマイクロカプセルの安定性に与 える影響  Effects of pectin methyl esterase and calcium concentration on microcapsule stability
実施例 1と同様の方法により製造したマイクロカプセル分散液 5 m Lと濃度を変 化させた PME溶液 5mLを混合し、 pH4、 反応温度 40°C、 反応時間 4時間の 条件で振とう機で反応させ、 その後濃度を変化させた塩化カルシウム溶液を lm 1 添加した。 混合した PME (製品名: NOVO SHAPE, ノポザィム社製) 濃 度は、 0、 2. 5、 25、 250、 500 mP E UZm 1であり、 添加した塩化力 ルシゥム濃度は 7、 10、 1 5、 25、 45 OmMである。 その結果を表 5に示す Mix 5 mL of microcapsule dispersion prepared by the same method as in Example 1 and 5 mL of PME solution with varying concentration, and shake on a shaker under the conditions of pH 4, reaction temperature 40 ° C, and reaction time 4 hours. Calcium chloride solution with a different concentration after reaction Added. Mixed PME (Product name: NOVO SHAPE, manufactured by NOPOSYM) Concentration is 0, 2.5, 25, 250, 500 mP E UZm 1 and added chloride power Lucium concentration is 7, 10, 15 25, 45 OmM. The results are shown in Table 5.
表 5 :ぺクチンメチルエステラーゼ、 カルシウム濃度がマイクロカプセルの安定 性に与える影響 (溶液の状態) Table 5: Effect of pectin methylesterase and calcium concentration on microcapsule stability (solution state)
Figure imgf000013_0001
表 5から、 PME濃度 50 OmPEU/m 1では全ての塩化カルシウム濃度にお いて、 PME濃度 25 OmP EU/m 1では 15mM以上の塩化カルシウムで、 そ れ以外の P ME濃度では 25 mM以上の塩化カルシウムで全体がゲル化することが 判明した。
Figure imgf000013_0001
From Table 5, PME concentrations of 50 OmPEU / m 1 are all calcium chloride concentrations, PME concentrations of 25 OmP EU / m 1 are 15 mM or more of calcium chloride, and other PME concentrations are 25 mM or more of chloride. It was found that the whole gelled with calcium.
(実施例 7 )  (Example 7)
P ME処理後の塩化カルシウム添加の有無が加熱耐性に与える影響  Effect of the presence or absence of calcium chloride after P ME treatment on heat resistance
実施例 1と同様の方法により製造したマイクロカプセル分散液に濃度を変化させ た PME溶液を混合し、 その後 7mM塩化カルシウム lm 1を添加したサンプル、 無添加のサンプルを作製した (すべて pH4) 。 これに対し 120°C、 30分加熱 を行い、 加熱前後のメジアン gを測定した。 混合した PME (製品名: NOVO SHAPE、 ノポザィム社製) 濃度は、 0、 2. 5、 25、 25 OmPEU/m 1 であった。 その結果を表 6に示す。 A microcapsule dispersion prepared by the same method as in Example 1 was mixed with a PME solution having a changed concentration, and then a sample added with 7 mM calcium chloride lm 1 and an additive-free sample were prepared (all pH 4). This was heated at 120 ° C for 30 minutes, and the median g before and after heating was measured. Mixed PME (Product name: NOVO SHAPE, manufactured by NOPOSYM) Concentration is 0, 2.5, 25, 25 OmPEU / m 1 Met. The results are shown in Table 6.
なお、 コントロール (Con t. ) は実施例 1の製法により作製したマイクロカブ セルを用いた。 表 6 :塩化カルシウム添加の有無による加熱前後のメジアン径 ( zm) The control (Cont.) Used was a micro cab cell produced by the production method of Example 1. Table 6: Median diameter before and after heating with and without calcium chloride (zm)
Figure imgf000014_0001
表 6から、 PME処理を行った後に塩化カルシウムを添加しないものについては P ME濃度が高いほど加熱後合一もしくは凝集してメジアン径が大きくなるが、 P M E処理を行つた後に塩化力ルシゥムを添加したものは、 加熱後であつてもメジァ ン径が維持されることが判明した。 上記結果より、 PME処理を行う場合には PM E処理の後に、 塩化カルシウムを添加することによりカプセルの構造が加熱負荷に 対して耐性をもつことが判明した。 また PME濃度が 0〜25 OmPEUZm 1の 間では、 25 OmPEUZm 1の PMEに塩化カルシウムを添加したカプセルが最 も安定性が高く好ましいことが判明した。 産業上の利用可能性
Figure imgf000014_0001
From Table 6, for those that do not add calcium chloride after PME treatment, the median size increases as the PME concentration increases after heating or coalesce or agglomerate. It was found that the media diameter was maintained even after heating. From the above results, it was found that when PME treatment was performed, the capsule structure was resistant to heating load by adding calcium chloride after PME treatment. In addition, it was found that capsules obtained by adding calcium chloride to PME of 25 OmPEUZm 1 had the highest stability and a PME concentration of 0 to 25 OmPEUZm 1. Industrial applicability
本発明によれば、 喫食時に知覚しない大きさのマイクロカプセルを製造すること ができる。  According to the present invention, microcapsules having a size that is not perceived during eating can be produced.

Claims

請 求 の 範 囲 The scope of the claims
1. 0. 01〜 10重量%のべクチンを含む水相と油相で o/wエマルシヨンを 作製した後、 多価陽イオンを混合することで得られる、 壁材にぺクチン多価陽ィォ ンゲルを含み、 油溶性物質を内包し、 メジアン径が 0. 01〜100 ΠΙであるマ ィクロカプセル 1. After making o / w emulsion with water phase and oil phase containing 0.01 to 10% by weight of vectin, mixed with polyvalent cations. A microcapsule containing gel and containing an oil-soluble substance and having a median diameter of 0.01 to 100 mm
2. 0. 01〜10重量%のぺクチンを含む水相と油相で O/Wエマルシヨンを 作製した後、 カルシウムイオンを混合することで得られる、 壁材にぺクチンカルシ ゥムゲルを含み、 油溶性物質を内包し、 メジアン径が 0. 01〜100 zmである マイクロカプセル  2. O / W emulsion prepared with water phase and oil phase containing 0.01 to 10% by weight of pectin, and then mixed with calcium ions. The wall material contains pectin calcium gel and is oil-soluble. A microcapsule containing a substance and having a median diameter of 0.01 to 100 zm
3. O /Wエマルシヨンを作製するときに乳化剤を用いないことを特徴とする請 求項 1又は 2記載のマイクロ力プセル  3. The micro-force process according to claim 1 or 2, wherein an emulsifier is not used when producing the O / W emulsion.
4. ぺクチンがアミド基を持つことを特徴とする請求項 1ないし 3記載のマイク 口カプセル - 4. The microphone mouth capsule according to claim 1, wherein the pectin has an amide group-
5. 内包する油溶性物質が WZOエマルシヨンであることを特徴とする請求項 1 ないし 4記載のマイクロカプセル 5. The microcapsule according to claim 1, wherein the oil-soluble substance contained therein is WZO emulsion.
6. 〇/Wエマルシヨンを作製し、 多価陽イオンを混合した後に、 ぺクチンメチ ルエステラーゼを添加することを特徴とする請求項 1ないし 5記載のマイクロカプ セル  6. Microcapsules according to claims 1 to 5, characterized in that pectin methylesterase is added after preparing a ○ / W emulsion and mixing multivalent cations.
7. ぺクチンメチルエステラーゼを添加した後に、 多価陽イオンを添加すること を特徴とする請求項 6記載のマイクロカプセル 7. The microcapsule according to claim 6, wherein a polyvalent cation is added after the addition of pectin methylesterase.
PCT/JP2005/014975 2004-08-11 2005-08-10 Microcapsule using pectin as wall material WO2006016713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-234470 2004-08-11
JP2004234470A JP2006050946A (en) 2004-08-11 2004-08-11 Microcapsule using pectin as wall material

Publications (1)

Publication Number Publication Date
WO2006016713A1 true WO2006016713A1 (en) 2006-02-16

Family

ID=35839460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014975 WO2006016713A1 (en) 2004-08-11 2005-08-10 Microcapsule using pectin as wall material

Country Status (2)

Country Link
JP (1) JP2006050946A (en)
WO (1) WO2006016713A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188037A (en) * 2010-03-08 2011-09-21 宏芳香料(昆山)有限公司 Microcapsule granule and preparation process thereof
CN103271424A (en) * 2013-05-28 2013-09-04 上海交通大学 Preparing method of fragrant microcapsule
CN114869857A (en) * 2022-05-12 2022-08-09 郑州大学第一附属医院 Argatroban particles, preparation and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112314948A (en) * 2020-10-26 2021-02-05 北京壹诺药业有限公司 Microcapsule for embedding functional grease and preparation method thereof
JPWO2022114234A1 (en) * 2020-11-30 2022-06-02
WO2023008581A1 (en) * 2021-07-30 2023-02-02 富士フイルム株式会社 Fatty mass composition and meat alternative

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179976A (en) * 1997-07-15 1999-03-23 Takeda Chem Ind Ltd Production of sustained release preparation
JP2001238641A (en) * 1999-12-22 2001-09-04 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Encapsulated polyfunctional inttravitally active food ingredient, method for producing the same and method for using the same
WO2002082924A1 (en) * 2001-04-10 2002-10-24 Basf Health & Nutrition A/S Microcapsules
JP2003055219A (en) * 2001-08-06 2003-02-26 Lion Corp Microcapsule, tablet and compounding agent for food and medicine
JP2005279458A (en) * 2004-03-30 2005-10-13 National Food Research Institute Apparatus of producing emulsion, reaction apparatus, method of producing microcapsule by using the reaction apparatus, method of producing microtube, and microtube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179976A (en) * 1997-07-15 1999-03-23 Takeda Chem Ind Ltd Production of sustained release preparation
JP2001238641A (en) * 1999-12-22 2001-09-04 Nutrinova Nutrition Specialties & Food Ingredients Gmbh Encapsulated polyfunctional inttravitally active food ingredient, method for producing the same and method for using the same
WO2002082924A1 (en) * 2001-04-10 2002-10-24 Basf Health & Nutrition A/S Microcapsules
JP2003055219A (en) * 2001-08-06 2003-02-26 Lion Corp Microcapsule, tablet and compounding agent for food and medicine
JP2005279458A (en) * 2004-03-30 2005-10-13 National Food Research Institute Apparatus of producing emulsion, reaction apparatus, method of producing microcapsule by using the reaction apparatus, method of producing microtube, and microtube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102188037A (en) * 2010-03-08 2011-09-21 宏芳香料(昆山)有限公司 Microcapsule granule and preparation process thereof
CN103271424A (en) * 2013-05-28 2013-09-04 上海交通大学 Preparing method of fragrant microcapsule
CN114869857A (en) * 2022-05-12 2022-08-09 郑州大学第一附属医院 Argatroban particles, preparation and preparation method thereof

Also Published As

Publication number Publication date
JP2006050946A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
Weinbreck et al. Microencapsulation of oils using whey protein/gum arabic coacervates
JP4833553B2 (en) Microcapsules having a plurality of shells and methods for their preparation
McClements Emulsion design to improve the delivery of functional lipophilic components
EP2588066B1 (en) Solid core coacervated capsules
US8088403B2 (en) Method for preparing microcapsules by coacervation
JP4918859B2 (en) Manufacturing method of capsinoid-containing microcapsules
WO2006016713A1 (en) Microcapsule using pectin as wall material
AU2005238046A1 (en) Encapsulation of oils by coacervation
CN107484985B (en) Self-emulsifying fish oil microcapsule and production process thereof
KR20190082128A (en) Fabrication of Gelatin-Gum arabic Capsules Using Fluidic Device
CN105533691A (en) Novel micro-nanometer grade fish oil/algae oil microcapsule and preparation process thereof
Kuroiwa et al. Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation
US20100086651A1 (en) Large coacervated capsules
Ribeiro et al. Pickering emulsions based in inorganic solid particles: from product development to food applications
JP2009280525A (en) Method for producing vesicle, vesicle obtained by the method and w/o/w emulsion for producing vesicle
WO2006091081A1 (en) Microcapsules
KR101526689B1 (en) Composition of biopolymer microcapsule and method of preparation
JP2617107B2 (en) Method for producing heat-resistant microcapsules
KR100741531B1 (en) The preparation method of carrier comprising polymer electrolyte complex
CN106179144A (en) A kind of controlled method preparing vanillin microcapsule emulsion
KR101540853B1 (en) Composition of non-spherical biopolymer microcapsule and method of preparation
EP4054346B1 (en) Feed or feed supplement for livestock animals
JP2006174778A (en) Method for producing oil-containing capsule
Sahani et al. Micro and Nanoengineered Structures in Food Sector
Schröder Combined physical and oxidative stability of food Pickering emulsions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase