WO2006012775A1 - Procede de conversion de service sur liaison montante pour systeme amrc large bande - Google Patents

Procede de conversion de service sur liaison montante pour systeme amrc large bande Download PDF

Info

Publication number
WO2006012775A1
WO2006012775A1 PCT/CN2004/000901 CN2004000901W WO2006012775A1 WO 2006012775 A1 WO2006012775 A1 WO 2006012775A1 CN 2004000901 W CN2004000901 W CN 2004000901W WO 2006012775 A1 WO2006012775 A1 WO 2006012775A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
uplink
interference
type
total
Prior art date
Application number
PCT/CN2004/000901
Other languages
English (en)
French (fr)
Inventor
Chunmei Deng
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN2004800429365A priority Critical patent/CN1954529B/zh
Priority to PCT/CN2004/000901 priority patent/WO2006012775A1/zh
Publication of WO2006012775A1 publication Critical patent/WO2006012775A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects

Definitions

  • the present invention relates to a Wideband Code Division Multiple Access (WCDMA) system, and more particularly to a method of converting a hybrid service into a single service when carrying a hybrid service in a WCDMA system.
  • WCDMA Wideband Code Division Multiple Access
  • Code division multiple access technology such as WCDMA is the mainstream technology of the third generation mobile communication system. Due to the need of mobile Internet access and multimedia service transmission, the code division multiple access system is compared with the second generation mobile communication system that only carries voice service, such as the GSM system.
  • the type of service carried is no longer a single voice service, but a hybrid service including voice and data.
  • the service type is roughly divided into four according to the service quality QoS (Quality of Service).
  • Conversatal ional c lass real-time services such as telephony services, IP telephony services
  • s treaming classes such as quasi-real-time services such as video or audio data
  • interactive classes interactive classes
  • background level such as background distribution E- mai l, download files, receive measurement reports and other non-real-time services.
  • the session-type service has the strictest delay requirement and the highest level; the flow-type service has the second-time requirement for the delay, and the interactive-type service is again.
  • the background-type service has low requirements for the delay, which is typical.
  • Non-real-time packet data service Due to the emergence of these hybrid services with different characteristics, many traditional system analysis methods are no longer applicable, such as estimation of system capacity, evaluation of system load level and wireless network planning, etc., all need to propose new solutions.
  • the traditional network carrying a single voice service is relatively simple, and the system can
  • the number of channels provided can be characterized by its limit capacity; while the third generation mobile communication system uses code division multiple access technology, and its channels are distinguished by code sequences. Users work at the same time and in the same frequency band. All users in the system interfere with each other. Therefore, the capacity of the system is closely related to the size of the interference. The capacity is soft. The system capacity and load cannot be simply represented by the number of channels. It is related to the size of the interference caused by the user access.
  • the complexity of the capacity analysis and network planning of the third generation mobile communication system carrying the hybrid service is compared with the network carrying the single voice service. greatly increase.
  • the system analysis and control methods for the mixed service are generally complicated, especially the system's uplink admission control method.
  • the traditional admission control method needs to establish a complex mathematical model for the hybrid service, and separately solve the interference power generated by various services, thereby predicting the interference increment that the current call request service will generate, and finally decide whether to accept the current service. This method is not only complicated to implement, but also computationally intensive.
  • the interference generated by the same type of service access is different at different system load points, and the interference increment and the system load are nonlinear, which is difficult to predict.
  • the system admission control is a real-time process. The calculation of the admission control decision by the network is time-limited and must be completed within a few seconds after the user initiates the call. This determines that the algorithm cannot be too complicated. The amount of calculation cannot be too large, so that the conventional admission control method is limited.
  • the system carrying the hybrid service can be equivalent to a system carrying a single service, so that not only the system analysis method will be greatly simplified, but also the traditional analysis for a single service.
  • Some analysis methods of the network can also continue to be used. But the problems that need to be solved include: Can data services with different characteristics and voice services be equivalently converted? What about the conversion relationship?
  • the technical problem to be solved by the present invention is to propose a service conversion method for uplink of a WCDMA system, which can convert the mixed service into a single service for analysis, so that the existing method for analyzing a single service system is also applied to the WCDMA system, thereby greatly Simplify the system of the WCDMA system.
  • the core idea of the uplink service conversion method of the WCDMA system of the present invention is: When a T1 type service is accessed at a load point where the system load is LF, the total uplink receiving power of the system is ⁇ due to the power increase. If the total uplink receiving power generated by a ⁇ 2 type of service under the same system load is ⁇ ⁇ , then at the system load LF, one T1 service can be converted into ⁇ 2 services; ⁇ is an integer Or decimals.
  • the service conversion method for the uplink of the WCDMA system of the present invention includes: acquiring the current uplink receiving total interference of the system. Calculate the current total uplink received interference ⁇ ( ., converted to the number of T1 type services i n ; Calculate the current total uplink received total interference into the number of T2 type services; Calculate at the current system load level, then access
  • the invention proceeds from the essence of the power of the WCDMA system, and obtains the conversion relationship of the hybrid service to the single service according to the equivalence relation of the uplink interference caused by different service access, and the service conversion relationship and the system load when the service is accessed. Irrelevant, it is a constant, which solves the problem that the analysis method of the existing single service system cannot be applied to the WCDMA system, and expands the selection range of the method for analyzing the WCDMA system.
  • the equivalent conversion relationship of various services in the network can be calculated in advance, that is, how many T2 types of services can be equivalent to one T1 type service, and the calculation data is saved in
  • the simple single business model can be used to calculate the interference increment according to the equivalent conversion relationship, so that the model and the calculation process are greatly simplified, and the calculation speed is also greatly improved.
  • the invention can be used for capacity estimation and load estimation when mixed service access.
  • FIG. 1 is a flow chart of a business conversion method of the present invention
  • Figure 2 is a flow diagram of iteratively calculating the number of hybrid services converted into a single type of service.
  • the principle of the present invention for converting a hybrid service into a single service is based on the power ups and interferences of the uplink. Due to the incomplete orthogonality of the channel code, the WCDMA system is a self-interference system. For any user, any other user in the system can be considered as interference, when there is a new user access or a user is due to the channel. When the environment is deteriorated and the transmission power of the system is increased, the transmission power of other users in the system increases, and the total interference amount in the system increases. This is the power climbing phenomenon. As the number of users in the system increases or the channel environment deteriorates, the power climb will gradually increase, and even the avalanche power will rise, eventually causing the system to collapse.
  • the power increase of the WCDMA system is a typical nonlinear process.
  • the power increase caused by different types of service access is different, and the power increase caused by the same service access at different load points of the system. Not the same. Therefore, to study the conversion relationship between services from the perspective of interference equivalence, two factors must be considered, one is the load of the service access point, and the other is the type of service.
  • the present invention calculates the number of different services that cause the same amount of interference increase by studying different services at different load points, thereby obtaining a conversion relationship between services, and then researching various services at various load points. The conversion relationship is finally obtained.
  • the basic idea of the present invention is: after a certain load point of the system (system load is LF) is connected to a T1 type service, the total uplink power (ie, total interference) of the system is caused.
  • the ascending amount is ⁇ ⁇ ; if a ⁇ 2 type of service is connected under the same system load, the ⁇ ⁇ system uplink receiving total power is also increased, then one ⁇ business can be converted under the system load Become a class 2 business; ⁇ can be an integer or a decimal.
  • the invention can be implemented in a base station controller RNC. 1, the first base station controlled acquired uplink interference total power P (.
  • the base station (Node B) will send the measurement report in the uplink antenna interface total interference power measured periodically to the base station controller RNC, so the base station controller RNC can conveniently query the current uplink load condition of the controlled base station, that is, the uplink total interference power of the base station. Then calculate the current interference power L and convert it into the number ⁇ of the T1 type service, and ⁇ ⁇ can be a decimal The calculation is calculated by the signal-to-noise ratio required for the T1 type service, and the current total interference is equivalent to the interference generated by the ⁇ type service in which the SNR is connected in the system. The current interference power is calculated. T2 converted into the number of types of services 7. 2, T2 is calculated on the industry type of the current system load level, then an access service type T2
  • the total interference of the resulting system, P M is the total system interference generated by the +1 T2 type of service. Then the total interference P at this time.
  • the number of services converted to T1 type ⁇ ⁇ , ! ⁇ ⁇ can be a decimal; finally, under the given parameters, the conversion relationship of the ⁇ 2 type service to the T1 type service is ⁇ ., -, ie 1 ⁇ 2 type service access is equivalent to interference generated by 2 ⁇ T1 type service access, thus obtaining
  • the equivalent conversion relationship of the T1 type service to the ⁇ 2 type service can be expressed by the system load, defining the system load LF
  • Noise—rise where noise rise the rate of rise, and 0 ⁇ ZE ⁇ 1. Calculate the system negative according to formula (1)
  • 3 ⁇ 4 Acoustic LF receives the total power (total interference) from 0 to 60% of the corresponding system uplink.
  • the business conversion relationship under any system load can be calculated, and it can be found that under the given parameters, the industry The transaction relationship is independent of the system load level and is a constant.
  • the following is an example of converting the 384 kbps service equivalent to 12.2 kbps service. Specifically, when the service is separately connected to the system, the calculation formula of the uplink receiving power is
  • p t mal 101g(10 8 + « / / ⁇ 10 ⁇ ) dBm
  • i is the number of services
  • (dB) represents the signal-to-noise ratio required for various services, in CASE 3-channel environment, block error rate BLEI lO- 2 Under the condition, there is 3.6dB
  • P indicating the uplink received power value of all users in the system after the current user accesses, that is, not only the uplink receiving power of the currently accessed user is A, but also the uplink receiving of the other users in the system due to the current user access.
  • the power is also A ;
  • Rate the dimension is kbps
  • the iterative method is as follows: First, construct an iterative relationship, as shown in formula (4),
  • the iterative initial value (5) into the formula (4) is iterated until the error equations in the two left and right sides of the equation is less than 10-5, the iteration is considered to have converged.
  • the convergence is the solution to be solved.
  • the process of solving the equations iteratively is shown in Fig. 2, where W is the current total power converted into the number of 12.2 kbps services. Then the current uplink receiving total interference, and the signal-to-noise ratio required for the 384 kbps service are substituted into the formula.
  • the total interference ⁇ ⁇ generated when ( 384 + 1) 384 kbps services are separately accessed is calculated , that is, the total power of the system after adding 1 384 kbps service at the current interference level.
  • calculate the number of 12.2 kbps services that the total power 1 can be converted into ( ( ), so that the equivalent relationship of the 384 kbps service to the 12.2 kbps service N 384 _ 122 i w -i( n ), that is,
  • the power increase caused by a 384 kbps service access is equivalent to the power increment caused by the access of the audio traffic of ⁇ 84 _
  • the conversion relationship of the business is
  • the business conversion relationship is independent of the system load level of the service access point and is a constant.
  • the conversion relationship of other services such as 64 kbps 144 kbps to 12.2 kbps can be obtained by the above method.
  • the conversion relationship between the hybrid service and the single service is a constant at any load point of the system, although the power increase caused by the access at different load points is nonlinear, but Under the same channel environment parameters, the conversion relationship between services is constant.
  • the first column in the above table is the system load. Only the case of 0 60% is listed here, because in the actual system, the acceptance control threshold of the system is generally 60%; the second column is the test column, which is used to verify the invention. Correctness, using the invention to calculate o at each load point of the system
  • the 12.2 kbps service itself is folded, and the result should be 1. From the calculation results of the second column, the method of the present invention is correct; the third column is the conversion relationship of the 64 kbps service to the 12.2 kbps voice service, at each load point.
  • the 3.4284 that is, one 64 kbps service is equivalent to the interference generated by about 3.4 12.2 kbps services; the fourth and fifth columns are the conversion relationship of the 144 kbps service and the 384 kbps service to the 12.2 kbps voice service, respectively. It can be seen from these data that the business conversion relationship is independent of the load point of service access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

宽带码分多址系统上行链路的业务折算方法
技术领域
本发明涉及宽带码分多址(WCDMA )系统,具体地说, 涉及到 WCDMA系统中, 当承载混合业务时, 将其折算成单一业务的方法。
背景技术
移动通信近年来发展十分迅速, 已经成为人类生活中非常重要的一部分。 伴随着 Internet的迅猛发展, 人们对移动 Internet的渴求和新业务的不断应 用,极大地推动了能承载高速数据业务的第三代移动通信系统( I T-2000或 3G ) 的发展。 WCDMA 等码分多址技术是第三代移动通信系统的主流技术, 由于移动 上网和传输多媒体业务的需要, 码分多址系统与 GSM系统等仅承载话音业务的 第二代移动通信系统相比, 承载的业务类型就不再是单一的话音业务, 而是包 括话音和数据的混合业务一一多媒体业务, 其业务类型按业务的服务质量 QoS ( Qual i ty of Service )大体分为四个等级(类别): 会话级(conversat ional c lass , 如电话业务、 IP通话业务等实时业务)、 流级(s treaming class , 如视 频或音频数据等准实时业务)、 交互级(interact ive class , 如上网浏览、 服务 器接入、数据库访问等业务)和后台级(background class ,如后台分发 E- mai l、 下载文件、接收测量报告等非实时业务)。 从时延要求上考虑, 会话类业务的时 延要求最严格, 级别最高; 流类业务对时延的要求次之, 交互类业务再次之, 后台类业务对时延的要求不高, 属于典型的非实时分组数据业务。 由于这些具 有不同特征的混合业务的出现, 使得很多传统的系统分析方法不再适用, 如系 统容量的估计、 系统负荷程度的评估以及无线网络规划等, 都需要提出新的解 决方法。
对系统容量估计方法, 传统的承载单一话音业务的网络比较简单, 系统能 够提供的信道数就可以表征其极限容量; 而第三代移动通信系统釆用的是码分 多址技术, 其信道是用码序列来区分的。 用户在同一时间、 同一频段工作, 系 统中的所有用户彼此互为干扰, 因此系统的容量与干扰的大小密切相关, 容量 是软的, 系统容量和负荷不能简单地采用信道数来表征, 而是与用户接入后引 起的干扰大小有关。
综上所述, 由于具有不同特性的混合业务的出现, 使得与承载单一话音业 务的网络相比, 承载混合业务的第三代移动通信系统在系统的容量分析、 网络 规划等方面的复杂度都大大增加。 目前在 WCDMA系统中, 对混合业务情况下的 系统分析与控制方法一般都比较复杂, 特别表现为系统的上行接纳控制方法。 传统的接纳控制方法需要对混合业务建立复杂的数学模型, 分别求解各种业务 产生的干扰功率, 从而预测当前呼叫请求业务的接入将产生的干扰增量, 最后 决定是否接纳当前业务。 该方法不仅实现起来比较复杂, 而且计算量大, 另外 在不同的系统负荷点上, 同一类型的业务接入产生的干扰都不一样, 而且干扰 增量与系统负荷是非线性关系, 很难预测。 更重要的是, 系统接纳控制是一个 实时的过程, 网络对接纳控制判决的计算是有时间限制的, 必须在用户起呼后 的短短几秒内完成, 这就决定了算法不能过于复杂, 计算量不能过大, 从而使 传统的接纳控制方法受到限制。
针对上述问题, 如果可以将混合业务折算成单一业务, 那么承载混合业务 的系统就可以等效成一个承载单一业务的系统, 这样不仅系统分析方法将会大 大简化, 而且传统的用于分析单一业务网络的一些分析方法也可以继续沿用。 但需要解决的问题包括: 些具有不同特性的数据业务与话音业务可以等效地进 行折算吗? 折算关系又如何?
关于业务折算方法, 目前正式出版的文献中还未见相关描述。 发明内容
本发明所要解决的技术问题在于提出一种 WCDMA系统上行链路的业务折算 方法, 可将混合业务折算成单一业务进行分析, 使得现有的分析单一业务系统 的方法也沿用于 WCDMA系统, 从而大大简化 WCDMA系统的系统分折方法。
本发明所述 WCDMA系统上行链路的业务折算方法的核心思想是: 当在系统 负荷为 LF的负荷点处接入一个 T1类型的业务后, 由于功率攀升引起系统的上 行接收总功率为 Δ ρ; 如果 Ν个 Τ2类型的业务在同样的系统负荷下接入时产生 的系统上行接收总功率为 Δ ρ , 则在系统负荷 LF处, 1个 T1业务可以折算成 Ν 个 Τ2业务; Ν是整数或小数。
本发明所述 WCDMA系统上行链路的业务折算方法, 包括: 获取系统当前的 上行接收总干扰 ,。,; 计算当前的上行接收总干扰 Ρ(。,折算成 T1类型业务的数量 in ; 计算当前的上行接收总干扰 折算成 T2类型业务的数量 ; 计算在当前 的系统负荷水平上, 再接入 1个 T2类型业务后产生的系统总干扰 计算总 干扰 Pto,折算成 T1类型业务的数量 Ζ·η; 计算给定参数条件下 Τ2类型业务对 T1 类型业务的折算关系 N7.2 n = n - in,即 1个 T2类型业务接入与 Nr2— ^个 T1类型 业务接入产生的干扰等价。
在上述方法中, ίη和 可以是小数。
本发明从 WCDMA系统功率攀升的本质出发, 根据不同业务接入时引起的上 行链路干扰的等价关系, 获得混合业务对单一业务的折算关系, 且业务折算关 系与业务接入时的系统负荷无关, 是一个常数, 从而解决了现有单一业务系统 的分析方法无法应用于 WCDMA系统的问题, 扩展了对 WCDMA系统进行分析的方 法的选择范围。 采用本发明, 可事先计算出网络中各种业务的等效折算关系, 即 1个 T1类型的业务可等效多少个 T2类型的业务, 并将这些计算数据保存在 数据库中, 当业务发起呼叫请求时, 就可根据此等效折算关系, 直接采用简单 的单一业务模型来计算干扰增量, 使得模型与计算过程都大大简化, 计算速度 也随之大大提高。 本发明可用于容量折算、 混合业务接入时的负荷估计。
附图说明
图 1是本发明业务折算方法的流程图;
图 2是迭代计算混合业务折算成某类单一业务的个数的流程示意图。
具体实施方式
下面结合附图和实施例, 对本发明的技术方案做进一步的详细描述。
本发明将混合业务折算成单一业务的原理是基于上行链路的功率攀升和干 扰等价。 由于信道码的不完全正交性, 导致 WCDMA系统是一个自干扰系统, 对 某一用户来说, 系统中的其他任何用户都可认为是干扰, 当有新用户接入或者 某个用户由于信道环境变差而提升自身的发射功率时, 都会导致系统中其他用 户的发射功率增加, 从而使系统中的总干扰量增加, 这就是功率攀升现象。 随 着系统中用户数的不断增多或者信道环境的不断恶化, 功率攀升会逐渐加剧, 甚至出现雪崩式功率攀升, 最后导致系统崩溃。 由此可见, WCDMA 系统的功率 攀升是一个典型的非线性过程,不同类型的业务接入引起的功率增加量不一样, 而且在系统的不同负荷点上, 相同的业务接入引起的功率增加量也不一样。 因 此, 从干扰等价的角度研究业务之间的折算关系, 必须要考虑两个因素, 一是 业务接入点的负荷, 二是业务类型。 本发明通过研究在各负荷点上接入不同的 业务, 计算引起相同的干扰增加量的不同业务的数量, 从而得出业务之间的折 算关系,再通过研究各种业务在各个负荷点上的折算关系, 最终得出折算结果。
根据上述原理, 本发明的基本思想是: 在系统某一负荷点上(系统负荷为 LF )接入一个 T1类型的业务后, 引起的系统上行接收总功率(即总干扰)的上 升量为 Δ ρ; 如果 Ν个 Τ2类型的业务在同样的系统负荷下接入时也产生 Δ ρ的 系统上行接收总功率的上升量, 那么在该系统负荷下, 1个 Π类业务可以折算 成 Ν个 Τ2类业务; Ν可以是整数或小数。 本发明可在基站控制器 RNC中完成。 如图 1所示, 首先获取被控基站的上行总干扰功率 P(。,, 由于基站(Node B ) 会将其在天线口测量的上行总干扰功率周期性地通过测量报告发送给基站控制 器 RNC, 因此基站控制器 RNC可方便地查询被控基站的当前上行负荷情况, 即 该基站的上行总干扰功率 。 然后计算当前的干扰功率 L折算成 T1类型业务 的数量 η, ίη可为小数; 该计算是通过 T1类型的业务所需的信噪比折算的, 即 可获得当前的总干扰相当于系统中接入 个信噪比为 的 Π 类型业务产 生的干扰。 再计算当前的干扰功率 折算成 T2类型业务的数量7.2, T2类型业 计算在当前的系统负荷水平上, 再接入 1个 T2类型业务
Figure imgf000007_0001
后产生的系统的总干扰 PM,, 即 +1个 T2类型业务产生的系统总干扰。 然后将 此时的总干扰 P,。,折算成 T1 类型业务的个数 ζ·η , !·η可为小数; 最后可得到在给 定参数条件下, Τ2类型业务对 T1类型业务的折算关系为^^ ., - , 即 1 个 Τ2类型业务接入与 2^个 T1类型业务接入产生的干扰等价, 从而获得了
T1类型业务对 Τ2类型业务的干扰等效折算关系。 系统负荷点的负荷水平可用系统负荷来表示, 定义系统负荷 LF
LF _ n ise _ rise - 1 . Q )
noise— rise 其中, noise rise =上 收 率, 且 0≤ZE≤1。 根据公式( 1 )可计算出系统负
~ 背景1 ¾声 荷 LF从 0到 60%所对应的系统上行接收总功率(总干扰)。 按照图 1所示方法, 可计算出任意系统负荷下的业务折算关系, 可以发现在给定的参数条件下, 业 务折算关系与系统负荷水平无关, 是一个常数。
下面以 384kbps业务等效折算成 12.2kbps业务为例, 具体说明本发明 当某一业务单独接入系统时, 上行接收功率的计算公式为
Figure imgf000008_0001
pt mal = 101g(10 8 +« / /χ 10ϋΐΛ ) dBm 其中, i表示业务个数; α表示话音激活因子, 对话音业务, 《 = 0.67, 对数据 业务, = 1.0; y为邻区干扰比, 一般, 在全向天线且相邻小区负载比较均匀 的情况下, = 1.55; (dB)表示各种业务所需的信噪比, 在 CASE 3信道环 境、 误块率 BLEI lO-2的条件下, 有 3.6dB
Figure imgf000008_0002
p,表示当前用户接入后系统内所有用户的上行接收功率值, 即不仅当前接入的 用户的上行接收功率为 A, 而且系统中其他用户由于当前用户接入而引起功率 攀升后的上行接收功率也为 A;
6.表示处理增益, 包括扩频增益和编码增益; 且 PG =10xlg(3840 ), R表示业
R
务速率, 量纲是 kbps;
8表示背景噪声,在 3.84MHz频带内 27摄氏度的条件下,取值为 -103.157dBm; Pl olal表示系统的上行接收总功率。 公式(2)经过变形后为:
Figure imgf000008_0003
根据任意系统负荷, 按公式(1 )计算出对应的上行接收总干扰 P,。,, 再计 算当前接收总功率 ^折算成 12.2kbps 业务的数量, 即计算^相当于多少个 12.2kbps 业务单独接入时产生的干扰。 令 Pi ,οΙαΙ = Ρ , 代入公式(3), 采用迭 代法求解该非线性方程组。
迭代方法如下: 首先构造迭代关系式, 如公式(4)所示,
ζ·(*+ι)
=101
Figure imgf000009_0001
其中, k为迭代次数。 其次, 选取迭代初值为:
Figure imgf000009_0002
然后, 将迭代初值(5)代入公式(4)进行迭代计算, 直到方程组中两个 等式的左右两边误差均小于 10—5, 则认为迭代已收敛。 假设经过 n次迭代后收 敛, 那么 )、 即为所求的解, 迭代求解方程组的过程见图 2, W即为当前的 总功率折算成 12.2kbps业务的个数。 再将当前上行接收总干扰 ,和 384kbps业务所需的信噪比 代入公式
V ^07384
( 3 ), 计算出总干扰 Pto,对 384kbps 业务的折算关系, 得到 Pto,相当于 i3M个 384kbps业务单独接入时产生的总干扰。
然后根据公式(2)计算(i 384+l)个 384kbps 业务单独接入时产生的总干扰 Ρωι , 即在当前的干扰水平下, 增加 1个 384kbps业务后系统的总功率。 然后计 算该总功率 1可折算成的 12.2kbps业务的个数 '("),这样,就可以算出 384kbps 业务对 12.2kbps业务的等价关系 N384_122 =iw-i(n), 即 1个 384kbps业务接入后 引起的功率增量相当于 ^84_|22个 12.2kbps话音业务接入后引起的功率增量, 由 此得到在系统负荷为 LF的负荷点处 384kbps业务对 12.2kbps业务的折算关系。
计算其它系统负荷下的业务折算关系, 可发现业务折算关系与业务接入点 的系统负荷水平无关, 为一常数。 同理,通过上述方法可获得其它如 64kbps 144kbps业务对 12. 2kbps业务 的折算关系。
经过采用多组参数进行大量实验发现, 在系统任意负荷点处, 混合业务与 单一业务之间的折算关系为一常量, 虽然在不同负荷点上接入引起的功率增量 是非线性的,但在相同的信道环境参数条件下, 业务之间的折算关系是恒定的。
下表给出了一组业务折算的计算结果, 其信道环境参数条件为: CASE 3信 道环境, 块误码率 BLER < 1 (Γ2, γ =1. 55 , 对 12. 2kbps话音业务, 话音激活因 子 α =0. 67, 对其他数据业务, 话音激活因子 α =1. 0
LF 12. 2kbps 64kbps 144kbps 384kbps
0. 000000 1. 000000 3. 428379 6. 362200 15. 395219
0. 010000 1. 000000 3. 428386 6. 362207 15. 395227
0. 020000 1. 000004 3. 428383 6. 362204
0. 030000 1. 000002 3. 428381 6. 362202 15. 395222
0. 040000 1. 000001 3. 428389 6. 362209 15. 395231
0. 050000 1. 000004 3. 428382 6. 362203 15. 395224
0. 060000 1. 000001 3. 428391 6. 362211 15. 395235
0. 070000 1. 000005 3. 428383 6. 362204 15. 395225
0. 080000 1. 000016 3. 428390 6. 362211
0. 090000 1. 000006 3. 428383 6. 362226
0. 100000 1. 000015 3. 428389 6. 362210
0. 110000 1. 000006 3. 428403 6. 362222 15. 395258
0. 120000 1. 000014 3. 428389 6. 362210 15. 395238
0. 130000 1. 000006 3. 428400 6. 362220
0. 140000 3. 428388 6. 362209
0. 150000 1. 000026 3. 428397 6. 362218 15. 395258
0. 160000 1. 000012 3. 428415 6. 362234 15. 395242
0. 170000 1. 000023 3. 428396 6. 362217 15. 395261 /D/:/ O S6000S0¾1£ s/-/-is900iAV
Figure imgf000011_0001
0. 470000 1. 000072 3. 428433 6. 362267
0. 480000 1. 000067 3. 428432 6. 362270 15. 395137
0. 490000 1. 000065 3. 428432 6. 362275
0. 500000 1. 000063 3.428434 6. 362281
0. 510000 1. 000063 3.428436 6. 362261
Figure imgf000012_0001
0. 520000 3. 428439 6. 362269
0. 530000 1. 000065 3. 428444 6. 362280
0. 540000 1. 000068 3.428450 6. 362267 15. 395136
0. 550000 1. 000072 3.428458 6. 362280 15. 395135
0. 560000 1. 000077 3.428468 6. 362272
0. 570000 1. 000085 3.428451 6. 362288 15. 395129
0. 580000 1. 000065 3.428464 6. 362284
0. 590000 3.428453 6. 362283 15. 395125
0. 600000 1. 000085 3. 428468 6. 362285 15. 395127
上表中第一列为系统负荷, 这里只列出了 0 60%的情况, 因为在实际系统 中, 系统的接纳控制门限一般为 60%; 第二列是测试列, 用于验证本发明的正 确性, 采用本发明在系统各负荷点上对 算 o
12.2kbps业务自身进行折 , 结果应当 是 1, 从第二列的计算结果来看, 本发明方法是正确的; 第三列是 64kbps业务 对 12.2kbps话音业务的折算关系, 在各负荷点上均为 3.4284, 即 1 个 64kbps 业务与约 3.4个 12.2kbps业务产生的干扰等价;第四列和第五列分别为 144kbps 业务和 384kbps业务对 12.2kbps话音业务的折算关系。 由这些数据可见, 业务 折算关系与业务接入的负荷点无关。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通技术人员应当理 解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方 案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1 种宽带码分多址系统上行链路的业务折算方法, 其特征在于, 当在 系统负荷为 LF的负荷点处接入一个 T1类型的业务后引起的系统的上行接收总 功率为 Δ ρ; 如果 Ν个 Τ2类型的业务在同样的系统负荷下接入时产生的系统上 行接收总功率为 Δ ρ, 则在系统负荷 LF处, 1个 T1业务可以折算成 N个 1 业 务; N是整数或小数。
2、 根据权利要求 1所述的宽带码分多址系统上行链路的业务折算方法, 其特征在于, 包括: 获取系统当前的上行接收总干扰 P,。,; 计算当前的上行接收 总干扰 Pto,折算成 T1类型业务的数量 n ; 计算当前的上行接收总干扰 折算成 T2类型业务的数量 ; 计算在当前的系统负荷水平上, 再接入 1个 T2类型业 务后产生的系统总干扰 ; 计算总干扰 折算成 T1类型业务的数量^ ; 计算 给定参数条件下 T2类型业务对 T1类型业务的折算关系 NT1n = in - ir, 即 1个 T2类型业务接入与 2 个 T1类型业务接入产生的干扰等价。
3、 根据权利要求 2所述的宽带码分多址系统上行链路的业务折算方法, 其特征在于, 所述获取系统当前的上行接收总干扰 Pto,是通过基站控制器查询某 负荷点处基站的当前上行总干扰功率获得。
4、 根据权利要求 2所述的宽带码分多址系统上行链路的业务折算方法, 其特征在于, 所述获取系统当前的上行接收总干扰/^可以根据系统负荷 LF获 付 4 ,、卞界 ^公 ,、式 Jt'为 A Γ noise rise - 1
F = = ,具廿士甲, noi .se _ n .se =上亍接收 、功率 π Λ r Γ ^ ι
,且 0 < ZF < 1 noise _ rise ― 景噪尸
5、 根据权利要求 2所述的宽带码分多址系统上行链路的业务折算方法, 其特征在于, 所述上行接收总功率折算成某种业务单独接入的数量的公式为 ί = 10"° 'Λ (ΐθ0.'Α-'。'。' -1001¾ )Ιαγ
Figure imgf000014_0001
其中, i表示业务个数; α表示话音激活因子, 对话音业务, " = 0.67, 对数 据业务, α = 1.0; y为邻区干扰占本小区总干扰的比例, 一般, 在全向天线且 相邻小区负载比较均匀的情况下, = 1.55; ^ (dB)表示各种业务所需的信噪
N。
比, 在 CASE 3信道环境、 误块率 BLEI 10-2的条件下, 有
Figure imgf000014_0002
ρ,表示当前用户接入后系统内所有用户的上行接收功率值, 即不仅当前接入的 用户的上行接收功率为 , 而且系统中其他用户由于当前用户接入而弓 I起功率 攀升后的上行接收功率也为 Pl
c表示处理增益, 包括扩频增益和编码增益; JL c=10xlg(384Qfe^), R表示业
R
务速率, 量纲是 kbps;
^表示背景噪声,在 3.84MHz频带内 27摄氏度的条件下,取值为 -103.157dBm; Pi olal表示系统的上行接收总功率。
6、 根据权利要求 2所述的宽带码分多址系统上行链路的业务折算方法, 其特征在于, 采用迭代法求解上行接收总功率折算成某种业务单独接入的数量 的公式, 具体是:
首先, 构造迭代关系式为 , 其中, k为迭代次数;
Figure imgf000014_0003
其次, 选取迭代初值为:
Figure imgf000015_0001
然后, 将初值代入迭代关系式中进行迭代计算, 直到方程组中两个等式的左右 两边误差均小于指定的误差精度, 则认为迭代已收敛。
7、 根据权利要求 6所述的宽带码分多址系统上行链路的业务折算方法, 其特征在于, 所述误差精度为 1 0— 5
PCT/CN2004/000901 2004-08-05 2004-08-05 Procede de conversion de service sur liaison montante pour systeme amrc large bande WO2006012775A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2004800429365A CN1954529B (zh) 2004-08-05 2004-08-05 宽带码分多址系统上行链路的业务折算方法
PCT/CN2004/000901 WO2006012775A1 (fr) 2004-08-05 2004-08-05 Procede de conversion de service sur liaison montante pour systeme amrc large bande

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2004/000901 WO2006012775A1 (fr) 2004-08-05 2004-08-05 Procede de conversion de service sur liaison montante pour systeme amrc large bande

Publications (1)

Publication Number Publication Date
WO2006012775A1 true WO2006012775A1 (fr) 2006-02-09

Family

ID=35786862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000901 WO2006012775A1 (fr) 2004-08-05 2004-08-05 Procede de conversion de service sur liaison montante pour systeme amrc large bande

Country Status (2)

Country Link
CN (1) CN1954529B (zh)
WO (1) WO2006012775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459581C (zh) * 2006-09-21 2009-02-04 电子科技大学 一种用于实时混合业务环境的可变参数分组调度方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203716A (zh) * 1995-11-09 1998-12-30 诺基亚电信公司 通信系统中的业务量的测量
CN1285701A (zh) * 1999-08-20 2001-02-28 株式会社Ntt杜可莫 通信性能和阻塞概率的计算方法和装置以及记录介质
US20030153344A1 (en) * 2002-02-13 2003-08-14 Accton Technology Corporation Transmission power control method and system for CDMA communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1203716A (zh) * 1995-11-09 1998-12-30 诺基亚电信公司 通信系统中的业务量的测量
CN1285701A (zh) * 1999-08-20 2001-02-28 株式会社Ntt杜可莫 通信性能和阻塞概率的计算方法和装置以及记录介质
US20030153344A1 (en) * 2002-02-13 2003-08-14 Accton Technology Corporation Transmission power control method and system for CDMA communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459581C (zh) * 2006-09-21 2009-02-04 电子科技大学 一种用于实时混合业务环境的可变参数分组调度方法

Also Published As

Publication number Publication date
CN1954529A (zh) 2007-04-25
CN1954529B (zh) 2011-03-02

Similar Documents

Publication Publication Date Title
TWI234354B (en) Device for estimating transmission power level of selected user in code division multiple access communication system and method thereof
CN101213853B (zh) 无线高速数据网络规划工具
US7702351B2 (en) System and method for global power control
US8184532B2 (en) Estimation of interference variation caused by the addition or deletion of a connection
US20100087195A1 (en) Adaptive Handover Apparatus And Method In A Heterogeneous Network Environment
US7466682B1 (en) Forward and reverse link capacity determination
US9271189B2 (en) Method and apparatus for planning radio frequency spectrum in a fixed wireless network
US9380585B2 (en) Method and apparatus for planning radio frequency spectrum in a wireless network
JP2003505922A (ja) Rf受信機用試験装置
US8509763B2 (en) Methods and apparatus for evaluating base station efficiency in a network
EP1751881A1 (en) Power control method and apparatus with inter-link interference prediction for use in cdma wireless communication networks
WO2006012775A1 (fr) Procede de conversion de service sur liaison montante pour systeme amrc large bande
WO2012171358A1 (zh) Lte系统小区的用户吞吐量确定方法及装置
TW200414694A (en) Method and apparatus for network management using perceived signal to noise and interference indicator
Vikulov et al. The airtime resource model of the ofdm channel in the task of the ieee 802.11 network efficiency estimation
Kumwilaisak et al. Fading channel modeling via variable-length Markov chain technique
Almeroth et al. Analytical interference models for the downlink of a cellular mobile network
CN100411475C (zh) 移动通信系统中上行负载估计方法
CN1479464A (zh) 码分多址系统的自干扰接纳控制方法
TW200529681A (en) Initial downlink transmit power adjustment for non-real-time services using dedicated or shared channel
EP1551123B1 (en) Prediction of uplink received main power and admision control in cdma system
Sanchez-Iborra et al. On the impact of Rice and Rayleigh channel characterization on VoIP services: a QoE approach
Rohani et al. Benefits of perceptual speech quality metrics in modern cellular systems
Ruiz-Garcia et al. Forward link capacity analysis of CDMA systems
CN101150338A (zh) 一种业务容量损失的估算方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200480042936.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase