WO2006012226A2 - N-substituted piperidines and their use as pharmaceuticals - Google Patents
N-substituted piperidines and their use as pharmaceuticals Download PDFInfo
- Publication number
- WO2006012226A2 WO2006012226A2 PCT/US2005/022307 US2005022307W WO2006012226A2 WO 2006012226 A2 WO2006012226 A2 WO 2006012226A2 US 2005022307 W US2005022307 W US 2005022307W WO 2006012226 A2 WO2006012226 A2 WO 2006012226A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carboxamide
- cycloalkyl
- piperidine
- heterocycloalkyl
- alkyl
- Prior art date
Links
- 0 OC1CC*CC1 Chemical compound OC1CC*CC1 0.000 description 4
- DMPDKXSXPWAHIZ-SEKQSKSDSA-N C=S(c1cc(Oc2ccccc2Cl)ccc1)(N(CCC1)C[C@H]1C(N[C@H](CC1)CC[C@@H]1O)=O)=O Chemical compound C=S(c1cc(Oc2ccccc2Cl)ccc1)(N(CCC1)C[C@H]1C(N[C@H](CC1)CC[C@@H]1O)=O)=O DMPDKXSXPWAHIZ-SEKQSKSDSA-N 0.000 description 1
- NYFAVZUUMFWEID-KKXNLOMOSA-N COc1cc(-c2ccc(N(CCC3)C[C@H]3C(NC(CC3)CCC3O)=O)nc2)cnc1 Chemical compound COc1cc(-c2ccc(N(CCC3)C[C@H]3C(NC(CC3)CCC3O)=O)nc2)cnc1 NYFAVZUUMFWEID-KKXNLOMOSA-N 0.000 description 1
- MPWPWTIITXAEOH-ATNAJCNCSA-N C[C@@H](c1ccccc1)NC(C(CCC1)CN1S(c1ccccc1)(=O)=O)=O Chemical compound C[C@@H](c1ccccc1)NC(C(CCC1)CN1S(c1ccccc1)(=O)=O)=O MPWPWTIITXAEOH-ATNAJCNCSA-N 0.000 description 1
- YAMIRFYMDNGMFS-IXQXIYAPSA-N Cc(c(Cl)ccc1)c1S(N(CCC1)C[C@H]1C(NC(CC1)CCC1(c1c2cccc1)OC2=O)=O)(=O)=O Chemical compound Cc(c(Cl)ccc1)c1S(N(CCC1)C[C@H]1C(NC(CC1)CCC1(c1c2cccc1)OC2=O)=O)(=O)=O YAMIRFYMDNGMFS-IXQXIYAPSA-N 0.000 description 1
- BCQZCKHIKRWSGH-HOTGVXAUSA-N Cc(c(Cl)ccc1)c1S(N(CCC1)C[C@H]1NC([C@@H](CCC1)CN1C(OC)=O)=O)(=O)=O Chemical compound Cc(c(Cl)ccc1)c1S(N(CCC1)C[C@H]1NC([C@@H](CCC1)CN1C(OC)=O)=O)(=O)=O BCQZCKHIKRWSGH-HOTGVXAUSA-N 0.000 description 1
- CSGKAWNYJRGMFQ-LBPRGKRZSA-N Cc1cc(S(N(CCC2)C[C@H]2C(N)=O)(=O)=O)c(C)cc1 Chemical compound Cc1cc(S(N(CCC2)C[C@H]2C(N)=O)(=O)=O)c(C)cc1 CSGKAWNYJRGMFQ-LBPRGKRZSA-N 0.000 description 1
- ONFXHLZVYGMHII-FQEVSTJZSA-N Cc1ccccc1Oc1cccc(S(N(CCC2)C[C@H]2C(NC2CCCCC2)=O)(=O)=O)c1 Chemical compound Cc1ccccc1Oc1cccc(S(N(CCC2)C[C@H]2C(NC2CCCCC2)=O)(=O)=O)c1 ONFXHLZVYGMHII-FQEVSTJZSA-N 0.000 description 1
- XCBBVJOZBUVOTQ-NSHDSACASA-N Cc1ccccc1S(N(CCC1)C[C@H]1C(N)=O)(=O)=O Chemical compound Cc1ccccc1S(N(CCC1)C[C@H]1C(N)=O)(=O)=O XCBBVJOZBUVOTQ-NSHDSACASA-N 0.000 description 1
- PKIXVHHXRGHFQS-UHFFFAOYSA-N O=C(C(CCC1)CN1S(c1ccccc1)(=O)=O)NC1CCCC1 Chemical compound O=C(C(CCC1)CN1S(c1ccccc1)(=O)=O)NC1CCCC1 PKIXVHHXRGHFQS-UHFFFAOYSA-N 0.000 description 1
- GJRDQLDITKIULZ-AWEZNQCLSA-N O=C([C@@H](CCC1)CN1c1ccccc1)NC(CC1)CCC1=O Chemical compound O=C([C@@H](CCC1)CN1c1ccccc1)NC(CC1)CCC1=O GJRDQLDITKIULZ-AWEZNQCLSA-N 0.000 description 1
- BHYZCNQAYIFWFI-UHFFFAOYSA-N OC(CC1)CCC1NC(C(CCC1)CN1S(c1ccccc1)(=O)=O)=O Chemical compound OC(CC1)CCC1NC(C(CCC1)CN1S(c1ccccc1)(=O)=O)=O BHYZCNQAYIFWFI-UHFFFAOYSA-N 0.000 description 1
- OYRHWXNFDRMDQD-FHERZECASA-N OC(CC1)CCC1NC([C@@H](CCC1)CN1C(N1CCCCC1)=O)=O Chemical compound OC(CC1)CCC1NC([C@@H](CCC1)CN1C(N1CCCCC1)=O)=O OYRHWXNFDRMDQD-FHERZECASA-N 0.000 description 1
- VWGJJTQPGXBBIC-NFOMZHRRSA-N OC(CC1)CCC1NC([C@@H](CCC1)CN1c(nc1)ccc1C(O)=O)=O Chemical compound OC(CC1)CCC1NC([C@@H](CCC1)CN1c(nc1)ccc1C(O)=O)=O VWGJJTQPGXBBIC-NFOMZHRRSA-N 0.000 description 1
- IZNQZTRYVQMCMF-BPUTZDHNSA-N O[C@H](CC1)CC[C@@H]1NC([C@@H](CCC1)CN1S(c1ccc(C(F)(F)F)cc1)(=O)=O)=O Chemical compound O[C@H](CC1)CC[C@@H]1NC([C@@H](CCC1)CN1S(c1ccc(C(F)(F)F)cc1)(=O)=O)=O IZNQZTRYVQMCMF-BPUTZDHNSA-N 0.000 description 1
- OWQHSLCOSLEGGF-BZSNNMDCSA-N O[C@H](CC1)CC[C@@H]1NC([C@@H](CCC1)CN1S(c1cccc2c1NCC=C2)(=O)=O)=O Chemical compound O[C@H](CC1)CC[C@@H]1NC([C@@H](CCC1)CN1S(c1cccc2c1NCC=C2)(=O)=O)=O OWQHSLCOSLEGGF-BZSNNMDCSA-N 0.000 description 1
- FHWCSFBVLNNRFR-UFYCRDLUSA-N O[C@H](CC1)CC[C@@H]1NC([C@@H](CCC1)CN1c(c(F)c1)ccc1-c1ccncc1)=O Chemical compound O[C@H](CC1)CC[C@@H]1NC([C@@H](CCC1)CN1c(c(F)c1)ccc1-c1ccncc1)=O FHWCSFBVLNNRFR-UFYCRDLUSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/06—Antiglaucoma agents or miotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/28—Antiandrogens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/38—Drugs for disorders of the endocrine system of the suprarenal hormones
- A61P5/42—Drugs for disorders of the endocrine system of the suprarenal hormones for decreasing, blocking or antagonising the activity of mineralocorticosteroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/04—Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/60—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/92—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
- C07D211/96—Sulfur atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- the present invention relates to modulators of 11- ⁇ hydroxyl steroid dehydrogenase type 1 (l l ⁇ HSDl) and/or mineralocorticoid receptor (MR), compositions thereof and methods of using the same.
- l l ⁇ HSDl 11- ⁇ hydroxyl steroid dehydrogenase type 1
- MR mineralocorticoid receptor
- Glucocorticoids are steroid hormones that regulate fat metabolism, function and distribution. In vertebrates, glucocorticoids also have profound and diverse physiological effects on development, neurobiology, inflammation, blood pressure, metabolism and programmed cell death. In humans, the primary endogenously-produced glucocorticoid is Cortisol. Cortisol is synthesized in the zona fasciculate of the adrenal cortex under the control of a short-term neuroendocrine feedback circuit called the hypothalamic-pituitary-adrenal (HPA) axis. Adrenal production of Cortisol proceeds under the control of adrenocorticotrophic hormone (ACTH), a factor produced and secreted by the anterior pituitary.
- ACTH adrenocorticotrophic hormone
- Aldosterone is another hormone produced by the adrenal cortex; aldosterone regulates sodium and potassium homeostasis. Fifty years ago, a role for aldosterone excess in human disease was reported in a description of the syndrome of primary aldosteronism (Conn, (1955), J. Lab. Clin. Med. 45: 6-17). It is now clear that elevated levels of aldosterone are associated with deleterious effects on the heart and kidneys, and are a major contributing factor to morbidity and mortality in both heart failure and hypertension.
- glucocorticoid receptor GR
- mineralocorticoid receptor MR
- Cortisol a member of the nuclear hormone receptor superfamily
- GR glucocorticoid receptor
- MR mineralocorticoid receptor
- glucocorticoid action was attributed to three primary factors: 1) circulating levels of glucocorticoid (driven primarily by the HPA axis), 2) protein binding of glucocorticoids in circulation, and 3) intracellular receptor density inside target tissues.
- tissue-specific pre-receptor metabolism by glucocorticoid-activating and -inactivating enzymes.
- 11-beta-hydroxysteroid dehydrogenase (11- ⁇ -HSD) enzymes act as pre-receptor control enzymes that modulate activation of the GR and MR by regulation of glucocorticoid hormones.
- l l ⁇ HSDl also known as 11-beta-HSD type 1, l lbetaHSDl, HSDI lBl, HDL, and HSDI lL
- l l ⁇ HSD2 catalyze the interconversion of hormonally active Cortisol (corticosterone in rodents) and inactive cortisone (11- dehydrocorticosterone in rodents).
- l l ⁇ HSDl is widely distributed in rat and human tissues; expression of the enzyme and corresponding mRNA have been detected in lung, testis, and most abundantly in liver and adipose tissue.
- l l ⁇ HSDl catalyzes both 11-beta-dehydrogenation and the reverse 11-oxoreduction reaction, although l l ⁇ HSDl acts predominantly as a NADPH-dependent oxoreductase in intact cells and tissues, catalyzing the activation of Cortisol from inert cortisone (Low et al. (1994) J. MoI. Endocrin. 13: 167-174) and has been reported to regulate glucocorticoid access to the GR.
- ll ⁇ HSD2 expression is found mainly in mineralocorticoid target tissues such as kidney, placenta, colon and salivary gland, acts as an NAD-dependent dehydrogenase catalyzing the inactivation of Cortisol to cortisone (Albiston et al. (1994) MoI. Cell. Endocrin. 105: RIl-Rl 7), and has been found to protect the MR from glucocorticoid excess, such as high levels of receptor-active Cortisol (Blum, et al., (2003) Prog. Nucl. Acid Res. MoI. Biol. 75:173-216).
- the MR binds Cortisol and aldosterone with equal affinity.
- tissue specificity of aldosterone activity is conferred by the expression of l l ⁇ HSD2 (Funder et al. (1988), Science 242: 583-585).
- the inactivation of Cortisol to cortisone by l l ⁇ HSD2 at the site of the MR enables aldosterone to bind to this receptor in vivo.
- the binding of aldosterone to the MR results in dissociation of the ligand-activated MR from a multiprotein complex containing chaperone proteins, translocation of the MR into the nucleus, and its binding to hormone response elements in regulatory regions of target gene promoters.
- sgk-1 serum and glucocorticoid inducible kinase-1 (sgk-1) expression leads to the absorption Of Na + ions and water through the epithelial sodium channel, as well as potassium excretion with subsequent volume expansion and hypertension (Bhargava et al., (2001), Endo 142: 1587-1594).
- ACE angiotensin- converting enzyme
- AZA angiotensin type 1 receptor
- MR antagonism may be an important treatment strategy for many patients with hypertension and cardiovascular disease, particularly those hypertensive patients at risk for target-organ damage.
- l l ⁇ HSD2 is expressed in aldosterone-sensitive tissues such as the distal nephron, salivary gland, and colonic mucosa where its Cortisol dehydrogenase activity serves to protect the intrinsically non-selective MR from illicit occupation by Cortisol (Edwards et al. (1988) Lancet 2: 986-989).
- ll ⁇ HSDl a primary regulator of tissue-specific glucocorticoid bioavailability
- H6PD hexose 6-phosphate dehydrogenase
- CRD cortisone reductase deficiency
- CRD patients When challenged with oral cortisone, CRD patients exhibit abnormally low plasma Cortisol concentrations. These individuals present with ACTH-mediated androgen excess (hirsutism, menstrual irregularity, hyperandrogenism), a phenotype resembling polycystic ovary syndrome (PCOS) (Draper et al. (2003) Nat. Genet. 34: 434-439).
- PCOS polycystic ovary syndrome
- ll ⁇ HSDl is expressed in many key GR-rich tissues, including tissues of considerable metabolic importance such as liver, adipose, and skeletal muscle, and, as such, has been postulated to aid in the tissue-specific potentiation of glucocorticoid-mediated antagonism of insulin function.
- 1 l ⁇ HSDl has been shown to be upregulated in adipose tissue of obese rodents and humans (Livingstone et al. (2000) Endocrinology 131 : 560-563; Rask et al. (2001) J. Clin. Endocrinol. Metab. 86: 1418-1421; Lindsay et al. (2003) J. Clin. Endocrinol. Metab. 88: 2738-2744; Wake et al. (2003) J. Clin. Endocrinol. Metab. 88: 3983-3988).
- mice are completely devoid of 11-keto reductase activity, confirming that l l ⁇ HSDl encodes the only activity capable of generating active corticosterone from inert 11-dehydrocorticosterone.
- mice are resistant to diet- and stress-induced hyperglycemia, exhibit attenuated induction of hepatic gluconeogenic enzymes (PEPCK, G6P), show increased insulin sensitivity within adipose, and have an improved lipid profile (decreased triglycerides and increased cardio-protective HDL). Additionally, these animals show resistance to high fat diet-induced obesity.
- PEPCK hepatic gluconeogenic enzymes
- Glucocorticoids are known antagonists of insulin action, and reductions in local glucocorticoid levels by inhibition of intracellular cortisone to Cortisol conversion should increase hepatic and/or peripheral insulin sensitivity and potentially reduce visceral adiposity.
- ll ⁇ HSDl knockout mice are resistant to hyperglycemia, exhibit attenuated induction of key hepatic gluconeogenic enzymes, show markedly increased insulin sensitivity within adipose, and have an improved lipid profile. Additionally, these animals show resistance to high fat diet-induced obesity (Kotelevstev et al. (1997) Proc. Natl. Acad. Sci. 94: 14924-14929; Morton et al. (2001) J. Biol. Chem. 276: 41293- 41300; Morton et al. (2004) Diabetes 53: 931-938).
- inhibition of 1 l ⁇ HSDl is predicted to have multiple beneficial effects in the liver, adipose, and/or skeletal muscle, particularly related to alleviation of component(s) of the metabolic syndrome and/or obesity.
- Glucocorticoids are known to inhibit the glucose-stimulated secretion of insulin from pancreatic beta-cells (Billaudel and Sutter (1979) Horm. Metab. Res. 11: 555-560). In both Cushing's syndrome and diabetic Zuck ⁇ r fa/fa rats, glucose-stimulated insulin secretion is markedly reduced (Ogawa et al. (1992) J. Clin. Invest. 90: 497-504). 1 l ⁇ HSDl mRNA and activity has been reported in the pancreatic islet cells of ob/ob mice and inhibition of this activity with carbenoxolone, an 1 l ⁇ HSDl inhibitor, improves glucose-stimulated insulin release (Davani et al. (2000) J. Biol. Chem. 275: 34841-34844). Thus, inhibition of 1 l ⁇ HSDl is predicted to have beneficial effects on the pancreas, including the enhancement of glucose-stimulated insulin release.
- Mild cognitive impairment is a common feature of aging that may be ultimately related to the progression of dementia.
- inter-individual differences in general cognitive function have been linked to variability in the long-term exposure to glucocorticoids (Lupien et al. (1998) Nat. Neurosci. 1: 69-73).
- dysregulation of the HPA axis resulting in chronic exposure to glucocorticoid excess in certain brain subregions has been proposed to contribute to the decline of cognitive function (McEwen and Sapolsky (1995) Curr. Opin. Neurobiol. 5: 205- 216).
- 1 l ⁇ HSDl is abundant in the brain, and is expressed in multiple subregions including the hippocampus, frontal cortex, and cerebellum (Sandeep et al. (2004) Proc. Natl. Acad. Sci. Early Edition: 1-6).
- Treatment of primary hippocampal cells with the 1 l ⁇ HSDl inhibitor carbenoxolone protects the cells from glucocorticoid-mediated exacerbation of excitatory amino acid neurotoxicity (Rajan et al. (1996) J. Neurosci. 16: 65-70).
- l l ⁇ HSDl-def ⁇ cient mice are protected from glucocorticoid-associated hippocampal dysfunction that is associated with aging (Yau et al.
- Glucocorticoids can be used topically and systemically for a wide range of conditions in clinical ophthalmology.
- One particular complication with these treatment regimens is corticosteroid- induced glaucoma.
- This pathology is characterized by a significant increase in intra-ocular pressure (IOP).
- IOP intra-ocular pressure
- IOP intra-ocular pressure
- Aqueous humour production occurs in the non-pigmented epithelial cells (NPE) and its drainage is through the cells of the trabecular meshwork.
- NPE non-pigmented epithelial cells
- l l ⁇ HSDl has been localized to NPE cells (Stokes et al. (2000) Invest. Ophthalmol. Vis.
- Adipocyte-derived hypertensive substances such as leptin and angiotensinogen have been proposed to be involved in the pathogenesis of obesity-related hypertension (Matsuzawa et al. (1999) Ann. N.Y. Acad. Sci. 892: 146-154; Wajchenberg (2000) Endocr. Rev. 21: 697-738).
- Leptin which is secreted in excess in aP2-l l ⁇ HSDl transgenic mice (Masuzaki et al. (2003) J. Clinical Invest. 112: 83-90), can activate various sympathetic nervous system pathways, including those that regulate blood pressure (Matsuzawa et al. (1999) Ann. N.Y. Acad. Sci.
- renin- angiotensin system has been shown to be a major determinant of blood pressure (Walker et al. (1979) Hypertension 1: 287-291).
- Angiotensinogen which is produced in liver and adipose tissue, is the key substrate for renin and drives RAS activation.
- Plasma angiotensinogen levels are markedly elevated in aP2- l l ⁇ HSDl transgenic mice, as are angiotensin II and aldosterone (Masuzaki et al. (2003) J. Clinical Invest. 112: 83-90). These forces likely drive the elevated blood pressure observed in aP2-l l ⁇ HSDl transgenic mice.
- Glucocorticoids can have adverse effects on skeletal tissues. Continued exposure to even moderate glucocorticoid doses can result in osteoporosis (Cannalis (1996) J. Clin. Endocrinol. Metab. 81: 3441-3447) and increased risk for fractures. Experiments in vitro confirm the deleterious effects of glucocorticoids on both bone-resorbing cells (also known as osteoclasts) and bone forming cells (osteoblasts). ll ⁇ HSDl has been shown to be present in cultures of human primary osteoblasts as well as cells from adult bone, likely a mixture of osteoclasts and osteoblasts (Cooper et al.
- Small molecule inhibitors of ll ⁇ HSDl are currently being developed to treat or prevent l l ⁇ HSDl -related diseases such as those described above.
- certain amide-based inhibitors are reported in WO 2004/089470, WO 2004/089896, WO 2004/056745, and WO 2004/065351.
- Antagonists of 1 l ⁇ HSDl have been evaluated in human clinical trials (Kurukulasuriya , et al., (2003) Curr. Med. Chem. 10: 123-53).
- l l ⁇ HSDl glucocorticoid-related disorders, metabolic syndrome, hypertension, obesity, insulin resistance, hyperglycemia, hyperlipidemia, type 2 diabetes, androgen excess (hirsutism, menstrual irregularity, hyperandrogenism) and polycystic ovary syndrome (PCOS)
- therapeutic agents aimed at augmentation or suppression of these metabolic pathways, by modulating glucocorticoid signal transduction at the level of 11 ⁇ HSDl are desirable.
- the MR binds to aldosterone (its natural ligand) and Cortisol with equal affinities
- compounds that are designed to interact with the active site of l l ⁇ HSDl which binds to cortisone/cortisol may also interact with the MR and act as antagonists.
- MR antagonists are desirable and may also be useful in treating complex cardiovascular, renal, and inflammatory pathologies including disorders of lipid metabolism including dyslipidemia or hyperlipoproteinaemia, diabetic dyslipidemia, mixed dyslipidemia, hypercholesterolemia, hypertriglyceridemia, as well as those associated with type 1 diabetes, type 2 diabetes, obesity, metabolic syndrome, and insulin resistance, and general aldosterone-related target- organ damage.
- disorders of lipid metabolism including dyslipidemia or hyperlipoproteinaemia, diabetic dyslipidemia, mixed dyslipidemia, hypercholesterolemia, hypertriglyceridemia, as well as those associated with type 1 diabetes, type 2 diabetes, obesity, metabolic syndrome, and insulin resistance, and general aldosterone-related target- organ damage.
- the present invention provides, inter alia, compounds of Formula I:
- compositions comprising compounds of the invention and a pharmaceutically acceptable carrier.
- the present invention further provides methods of modulating 1 l ⁇ HSDl or MR by contacting said 1 l ⁇ HSDl or MR with a compound of the invention.
- the present invention further provides methods of inhibiting 1 l ⁇ HSDl or MR by contacting said 1 l ⁇ HSDl or MR with a compound of the invention.
- the present invention further provides methods of inhibiting conversion of cortisone to Cortisol in a cell.
- the present invention further provides methods of inhibiting production of Cortisol in a cell.
- the present invention further provides methods of increasing insulin sensitivity in a cell.
- the present invention further provides methods of treating diseases associated with activity or expression of 1 l ⁇ HSDl or MR.
- the present invention further provides the compounds and compositions of the invention for use in therapy.
- the present invention further provides the compounds and compositions of the invention for the preparation of a medicament for use in therapy.
- the present invention is directed to, inter alia, compounds of Formula I:
- Cy is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl, each optionally substituted with 1, 2, 3, 4 or 5 -W-X-Y-Z;
- L is absent, SO 2 , C(O), C(O)O or C(0)NR E ;
- Q is cycloalkyl or heterocycloalkyl, each optionally substituted with 1, 2, 3, 4 or 5 -W'-X'-Y'-Z'; or Q is -(CR la R lb ) m -A;
- A is aryl, heteroaryl, cycloalkyl, or heterocycloalkyl, each optionally substituted with 1, 2, 3,
- R la and R lb are each, independently, H, halo, OH, Q -4 alkyl, C L4 haloalkyl, Ci -4 hydroxylalkyl, Ci 4 alkoxy, or Ci -4 hydroxylalkoxy; m is 1, 2, 3 or 4; R N is H, Ci- 6 alkyl, aryl, heteroaryl, C 3 - 7 cycloalkyl, heterocyclylalkyl, arylalkyl, heteroarylalkyl, (C 3 - 7 cycloalkyl)alkyl, or heterocycloalkylalkyl;
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each, independently, H, OC(O)R 3' , OC(O)OR b' , C(0)0R b' , OC(O)NR° ' R d' , NR° ' R d' , NR c' C(O)R a> , NR°C(0)0R b' , S(O)R 3' , S(O)NR c> R d> , S(O) 2 R 3' , S(0) 2 NR c' R d' , OR b' , SR b' , C M0 alkyl, Ci -I0 haloalkyl, C 2- io alkenyl, C 2-I0 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroaryl
- W, W and W" are each, independently, absent, Ci -6 alkylenyl, C 2-6 alkenylenyl, C 2 . 6 alkynylenyl, O, S, NR e , CO, COO, CONR e , SO, SO 2 , S0NR e , or NR e C0NR f , wherein said Ci -6 alkylenyl, C 2 . 6 alkenylenyl, C 2 - 6 alkynylenyl are each optionally substituted by 1, 2 or 3 halo, OH, C 1 - 4 alkoxy, C 1 .. 4 haloalkoxy, amino, C 1 .
- X, X' and X" are each, independently, absent, Ci -6 alkylenyl, C 2-6 alkenylenyl, C 2-6 alkynylenyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl, wherein said Ci -6 alkylenyl, C 2-6 alkenylenyl, C 2-6 alkynylenyl, cycloalkyl, heteroaryl or heterocycloalkyl is optionally substituted by one or more halo, CN, NO 2 , OH, C 1 . 4 alkoxy, Ci -4 haloalkoxy, amino, C 1 .
- Z, Z' and Z" are each, independently, H, halo, CN, NO 2 , OH, Ci -4 alkoxy, Ci -4 haloalkoxy, amino, Q. 4 alkylamino, C 2- S dialkylamino, Q -6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl, wherein said Ci -6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl is optionally substituted by 1, 2 or 3 halo, Ci -6 alkyl, C 2-6 alkenyl, C 2 .
- R a and R a> are each, independently, H, C 1-6 alkyl, C 1-6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl, wherein said Ci -6 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl or heterocycloalkyl; heterocycloalkyl, heterocycloalkylalkyl is optionally substituted with H, OH, amino, halo, C ⁇ 6 alkyl, d. 6 haloalkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl or heterocycloalkyl;
- R b and R b are each, independently, H, Ci -6 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein said C x-6 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, cycloalkyl, heteroaryl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with H, OH, amino, halo, Ci -6 alkyl, Ci -6 haloalkyl, Ci -6 haloalkyl, aryl, arylalkyl, heteroary
- R c and R d are each, independently, H, Cj -I0 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein said Ci_io alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with H, OH, amino, halo, Ci -6 alkyl, Ci -6 haloalkyl, Ci -6 haloalkyl, aryl, arylalkyl
- R e and R f are each, independently, H, Ci -I0 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl, wherein said Ci -I0 alkyl, Ci -6 haloalkyl, C 2-6 alkenyl, C 2-6 alkynyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, arylalkyl, heteroarylalkyl, cycloalkylalkyl or heterocycloalkylalkyl is optionally substituted with H, OH, amino, halo, Ci -6 alkyl, Ci -6 haloalkyl, Ci- 6 haloalkyl, aryl, arylalkyl
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is other than H.
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 is H
- Q is other than tetrahydrothienyl, S-oxo-tetrahydrothienyl, S,S-dioxo-tetrahydrothienyl, 2,2,6,6- tetramethyl-4-piperidinyl, N-substituted pyrrolidin-3-yl, N-substituted piperidin-4-yl or 3,4,5,6-tetra- substituted tetrahydropyran-2-yl.
- Cy is aryl or heteroaryl, each optionally substituted with 1, 2, 3, 4 or 5
- Cy is aryl or heteroaryl, each optionally substituted with 1, 2, 3, 4 or 5 -W-X-Y-Z wherein W is O or absent, X is absent, and Y is absent.
- Cy is phenyl, naphthyl, pyridyl, pyrimidinyl, quinolinyl, benzoxazolyl, pyridazinyl, pyrazinyl, triazinyl, furanyl or thienyl, each optionally substituted with 1, 2, 3, 4 or 5 — W- X-Y-Z.
- each -W-X-Y-Z is, independently, halo, nitro, CN, Ci -4 alkoxy, C 1 . 4 haloalkoxy, COOH, C(O)O-Ci -4 alkyl, CONH-C 1-4 alkyl, NHC(O)C 1-4 alkyl, C 1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy, wherein said C 1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy is optionally substituted by one or more halo, nitro, CN, Q -4 alkoxy, Ci -4 haloalkoxy, C 1 ⁇ alkyl, aryl, heteroaryl, cycl
- each -W-X-Y-Z is, independently, aryl substituted by aryl, aryl substutited by heteroaryl, heteroaryl substutited by aryl, or heteroaryl substutited by heteroaryl, each optionally substituted by one or more halo, nitro, CN, Ci -4 alkoxy, C 1 . 4 haloalkoxy, Ci -4 alkyl, C] -4 haloalkyl, Ci -4 hydroxyalkyl, COOH, C(O)O-C L4 alkyl, CONH-Ci -4 alkyl or NHC(O)Ci -4 alkyl.
- Cy is phenyl, naphthyl, pyridyl, pyrimidinyl, quinolinyl, benzoxazolyl, pyridazinyl, pyrazinyl, triazinyl, furanyl or thienyl, each optionally substituted with 1, 2, or 3 halo, CN, Ci -4 alkoxy, Ci -4 haloalkoxy, Ci -6 alkyl or aryl, wherein said Ci -6 alkyl or aryl is optionally substituted by 1, 2 or 3 halo, Ci -6 alkyl, Ci -4 haloalkyl, CN, NO 2 , 0R a , or SR".
- Q is cycloalkyl or heterocycloalkyl, each substituted with 1, 2, 3, 4 or 5 -W'-X'-Y'-Z'.
- each -W'-X'-Y'-Z' is, independently, halo, nitro, CN, Q. 4 alkoxy, Ci -4 haloalkoxy, COOH, C(0)O-C M alkyl, CONH-Ci -4 alkyl, NHC(O)C 1-4 alkyl, NR 6 SO 2 (C 1-4 alkyl), Ci -6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy, wherein said Ci -6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy is optionally substituted by one or more halo, nitro, CN, Ci -4 alkoxy, Ci -4 haloalkoxy, Ci -6 alkyl
- Ci -4 alkoxy 2, 3, 4 or 5 OH, Ci -4 alkoxy, NR 6 COO(C 1-4 alkyl), NR 6 CO(Ci -4 alkyl), NR 6 SO 2 (Ci -4 alkyl), aryl, heteroaryl, -O-aryl, -O-heteroaryl, or -(Ci -4 alky I)-OH.
- Q is cycloalkyl or heterocycloalkyl, each substituted with at least two -W'-X'-Y'-Z', wherein two of said at least two -W'-X'-Y'-Z' are attached to the same atom and together with the atom to which they are attached form a 3-14 membered cycloalkyl or heterocyloalkyl group, each optionally substituted by 1, 2 or 3 -W"-X"-Y"-Z".
- Q is cycloalkyl or heterocycloalkyl, each substituted with at least two -W'-X'-Y'-Z', wherein two of said at least two -W'-X'-Y'-Z' are attached to the same atom and together with the atom to which they are attached form a 3-14 membered heterocyloalkyl group optionally substituted by 1 , 2 or 3 -W"-X' '-Y' '-Z" .
- each-W"-X"-Y"-Z is, independently, halo, nitro, CN, Ci -4 alkoxy, Ci -4 haloalkoxy, COOH, C(O)O-Ci -4 alkyl, CONH-Ci -4 alkyl, NHC(O)Ci -4 alkyl, NR 6 SO 2 (C 1-4 alkyl), C 1-6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy, wherein said Ci.
- 6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy is optionally substituted by one or more halo, nitro, CN, Q -4 alkoxy, Ci -4 haloalkoxy, Ci -6 alkyl, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, cycloalkyloxy, or heterocycloalkyloxy.
- Q is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, indanyl, or l,2,3,4-tetrahydronaphthalen-2-yl, each optionally substituted with 1, 2, 3, 4 or 5 -W'-X'- Y'-Z'.
- Q is a 3-14 membered heterocycloalkyl group comprising at least one ring-forming O atom, wherein said 3-14 membered heterocycloalkyl group is optionally substituted with 1, 2, 3, 4 or 5 -W'-X'-Y'-Z'.
- Q is cyclohexyl substituted at the 4-position with at least one -W'-X'-Y'-Z'.
- Q is cyclohexyl substituted at the 4-position with at least one OH.
- L is SO 2 . In some embodiments, L is absent.
- L is C(O), C(O)O or C(O)NBA
- L is C(O)NR g and R s is H or C 1-6 alkyl.
- L is C(O)NH.
- R N is H, C 1-6 alkyl, C 3 - 7 cycloalkyl, or (C3-7 cycloalkyl)alkyl.
- R N is H.
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each, independently, H, OC(O)R 3' , OC(O)OR b' , C(O)OR b' , OC(O)NR° ' R d' , NR° ' R d' , NR c' C(O)R a> , NR c C(O)OR b' , S(O)R 3' , S(O)NR° ' R d' , S(O) 2 R 3' , S(O) 2 NR° ' R d' , OR b> , SR b' , Ci -10 alkyl, C 1-10 haloalkyl, C 2 .
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each, independently, H, Ci -I0 alkyl or C M0 haloalkyl.
- R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 and R 11 are each H. In some embodiments, R 3 is C M0 alkyl.
- R 4 and R 5 together with the carbon atom to which they are attached form a 3-14 membered cycloalkyl or heterocyloalkyl group which is optionally substituted by R 14 ; or R 6 and R 7 together with the carbon atom to which they are attached form a 3-14 membered cycloalkyl or heterocyloalkyl group which is optionally substituted by R 14 ; or R 8 and R 9 together with the carbon atom to which they are attached form a 3-14 membered cycloalkyl or heterocyloalkyl group which is optionally substituted by R 14 ; or R 10 and R 11 together with the carbon atom to which they are attached form a 3-14 membered cycloalkyl or heterocyloalkyl group which is optionally substituted by R 14 ; or R 4 and R 6 together with the carbon atom to which they are attached form a 3-7 membered fused cycloalkyl group or 3-7 membered fused heterocycloalky
- substituents of compounds of the invention are disclosed in groups or in ranges. It is specifically intended that the invention include each and every individual subcombination of the members of such groups and ranges.
- the term "Ci -6 alkyl” is specifically intended to individually disclose methyl, ethyl, C 3 alkyl, C 4 alkyl, C 5 alkyl, and C 6 alkyl.
- n-membered where n is an integer typically describes the number of ring-forming atoms in a moiety where the number of ring-forming atoms is n.
- piperidinyl is an example of a 6-membered heterocycloalkyl ring
- 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.
- substituted or “substitution” is meant to refer to the replacing of a hydrogen atom with a substituent other than H.
- an "N-substituted piperidin-4-yl” refers to replacement of the H atom from the NH of the piperdinyl with a non-hydrogen sustituent such as, for example, alkyl.
- alkyl is meant to refer to a saturated hydrocarbon group which is straight-chained or branched.
- Example alkyl groups include methyl (Me), ethyl (Et), propyl (e.g., n- propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, t-butyl), pentyl (e.g., n-pentyl, isopentyl, neopentyl), and the like.
- An alkyl group can contain from 1 to about 20, from 2 to about 20, from 1 to about 10, from 1 to about 8, from 1 to about 6, from 1 to about 4, or from 1 to about 3 carbon atoms.
- alkylenyl or “alkylene bridge” refers to a divalent alkyl linking or bridging group.
- alkenyl refers to an alkyl group having one or more double carbon-carbon bonds.
- Example alkenyl groups include ethenyl, propenyl, and the like.
- alkenylenyl refers to a divalent linking alkenyl group.
- alkynyl refers to an alkyl group having one or more triple carbon-carbon bonds.
- Example alkynyl groups include ethynyl, propynyl, and the like.
- alkynylenyl refers to a divalent linking alkynyl group.
- haloalkyl refers to an alkyl group having one or more halogen substituents.
- Example haloalkyl groups include CF 3 , C 2 F 5 , CHF 2 , CCl 3 , CHCl 2 , C 2 Cl 5 , and the like.
- aryl refers to monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbons such as, for example, phenyl, naphthyl, anthracenyl, phenanthrenyl, indanyl, indenyl, and the like. In some embodiments, aryl groups have from 6 to about 20 carbon atoms.
- cycloalkyl refers to non-aromatic cyclic hydrocarbons including cyclized alkyl, alkenyl, and alkynyl groups.
- Cycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3 or 4 fused rings) ring systems as well as spiro ring systems. Ring-forming carbon atoms of a cycloalkyl group can be optionally substituted by oxo or sulfido.
- Example cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcarnyl, adamantyl, and the like.
- cycloalkyl moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the cycloalkyl ring, for example, benzo or thienyl derivatives of pentane, pentene, hexane, and the like.
- heteroaryl groups refer to an aromatic heterocycle having at least one heteroatom ring member such as sulfur, oxygen, or nitrogen. Heteroaryl groups include monocyclic and polycyclic (e.g., having 2, 3 or 4 fused rings) systems.
- heteroaryl groups include without limitation, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, furyl, quinolyl, isoquinolyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrryl, oxazolyl, benzofuryl, benzothienyl, benzthiazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 1,2,4-thiadiazolyl, isothiazolyl, benzothienyl, purinyl, carbazolyl, benzimidazolyl, indolinyl, and the like.
- the heteroaryl group has from 1 to about 20 carbon atoms, and in further embodiments from about 3 to about 20 carbon atoms. In some embodiments, the heteroaryl group contains 3 to about 14, 3 to about 7, or 5 to 6 ring-forming atoms. In some embodiments, the heteroaryl group has 1 to about 4, 1 to about 3, or 1 to 2 heteroatoms.
- heterocycloalkyl refers to non-aromatic heterocycles including cyclized alkyl, alkenyl, and alkynyl groups where one or more of the ring-forming carbon atoms is replaced by a heteroatom such as an O, N, or S atom.
- Heterocycloalkyl groups can be mono- or polycyclic (e.g., having 2, 3, 4 or more fused rings or having a 2-ring, 3-ring, 4-ring spiro system (e.g., having 8 to 20 ring-forming atoms)).
- Heterocycloalkyl groups include monocyclic and polycyclic groups.
- heterocycloalkyl groups include morpholino, thiomorpholino, piperazinyl, tetrahydrofuranyl, tetrahydrothienyl, 2,3-dihydrobenzofuryl, 1,3-benzodioxole, benzo- 1,4-dioxane, piperidinyl, pyrrolidinyl, isoxazolidinyl, isothiazolidinyl, pyrazolidinyl, oxazolidinyl, thiazolidinyl, imidazolidinyl, and the like.
- Ring-forming carbon atoms and heteroatoms of a heterocycloalkyl group can be optionally substituted by oxo or sulfido.
- Also included in the definition of heterocycloalkyl are moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the nonaromatic heterocyclic ring, for example phthalimidyl, naphthalimidyl, and benzo derivatives of heterocycles such as indolene and isoindolene groups.
- the heterocycloalkyl group has from 1 to about 20 carbon atoms, and in further embodiments from about 3 to about 20 carbon atoms.
- the heterocycloalkyl group contains 3 to about 14, 3 to about 7, or 5 to 6 ring-forming atoms. In some embodiments, the heterocycloalkyl group has 1 to about 4, 1 to about 3, or 1 to 2 heteroatoms. In some embodiments, the heterocycloalkyl group contains 0 to 3 double bonds. In some embodiments, the heterocycloalkyl group contains 0 to 2 triple bonds.
- halo or “halogen” includes fluoro, chloro, bromo, and iodo.
- alkoxy refers to an -O-alkyl group. Example alkoxy groups include methoxy, ethoxy, propoxy (e.g., n-propoxy and isopropoxy), t-butoxy, and the like.
- haloalkoxy refers to an -0-haloalkyl group.
- An example haloalkoxy group is OCF 3 .
- aryloxy refers to -O-aryl.
- heteroaryloxy refers to -O-heteroaryl
- cycloalkyloxy refers to -O-cycloalkyl
- heterocycloalkyloxy refers to -0-heterocycloalkyl.
- arylalkyl refers to alkyl substituted by aryl and "cycloalkylalkyl” refers to alkyl substituted by cycloalkyl.
- An example arylalkyl group is benzyl.
- amino refers to NH 2 .
- alkylamino refers to an amino group substituted by an alkyl group.
- dialkylamino refers to an amino group substituted by two alkyl groups.
- the compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated.
- An example method includes fractional recrystallizaion using a "chiral resolving acid" which is an optically active, salt-forming organic acid.
- Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as ⁇ -camphorsulfonic acid.
- resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of ⁇ - methylbenzylamine (e.g., S and R forms, or diastereomerically pure forms), 2-phenylglycinol, norephedrine, ephedrine, N-methylephedrine, cyclohexylethylamine, 1 ,2-diaminocyclohexane, and the like.
- Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine).
- an optically active resolving agent e.g., dinitrobenzoylphenylglycine
- Suitable elution solvent composition can be determined by one skilled in the art.
- Compounds of the invention also include tautomeric forms, such as keto-enol tautomers.
- Compounds of the invention can also include all isotopes of atoms occurring in the intermediates or final compounds. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include tritium and deuterium.
- phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgement, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- the present invention also includes pharmaceutically acceptable salts of the compounds described herein.
- pharmaceutically acceptable salts refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form.
- pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
- the pharmaceutically acceptable salts of the present invention include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
- the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
- such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p.
- prodrugs refer to any covalently bonded carriers which release the active parent drug when administered to a mammalian subject. Prodrugs can be prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds.
- Prodrugs include compounds wherein hydroxyl, amino, sulfhydryl, or carboxyl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, sulfhydryl, or carboxyl group respectively.
- Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of the invention. Preparation and use of prodrugs is discussed in T. Higuchi and V. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are hereby incorporated by reference in their entirety. Synthesis
- novel compounds of the present invention can be prepared in a variety of ways known to one skilled in the art of organic synthesis.
- the compounds of the present invention can be synthesized using the methods as hereinafter described below, together with synthetic methods known in the art of synthetic organic chemistry or variations thereon as appreciated by those skilled in the art.
- the compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given; other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
- spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g., 1 H or 13 C) infrared spectroscopy, spectrophotometry (e.g.,
- Preparation of compounds can involve the protection and deprotection of various chemical groups.
- the need for protection and deprotection, and the selection of appropriate protecting groups can be readily determined by one skilled in the art.
- the chemistry of protecting groups can be found, for example, in Greene, et al., Protective Groups in Organic Synthesis, 2d. Ed., Wiley & Sons, 1991, which is incorporated herein by reference in its entirety.
- the reactions of the processes described herein can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis.
- suitable solvents can be substantially nonreactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, i.e., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
- a given reaction can be carried out in one solvent or a mixture of more than one solvent.
- suitable solvents for a particular reaction step can be selected.
- the compounds of the invention can be prepared, for example, using the reaction pathways and techniques as described below.
- a series of piperidine-3-carboxamides of formula 4 are prepared by the method outlined in
- Q can be cycloalky, heterocycloalky, arylalky, heteroarylalky or the like, and R N can be a variety of substituents, such as H, (C 3-7 cycloalkyl)alkyl or the like), using coupling reagents such as
- a series of ureas of general formula 4' can be prepared by treating the piperidine derivative 3 with p- nitrophenyl chloroformate in the presence of base to form the activated carbamate species 3' that is subsequently reacted with a suitable amine R 8 NHCy.
- a series of piperidine-3-carboxamides of formula 5 are prepared by the method outlined in Scheme 2.
- Ethyl piperidine-3-carboxylate 6 is treated with (Boc) 2 O to give Boc-protected compound 7.
- Compound 7 is then treated with LiHMDS, followed by alkylation with organo halides R 3 X (X is halo, R 3 can be Ci -10 alkyl, C 2- io alkenyl, C 2 .i 0 alkynyl, cycloalkyl, heterocycloalkyl, arylalkyl or the like) to afford the coupling product 8.
- the ethyl ester of 8 is directly converted to the corresponding amides 9.
- TFA salt 10 (wherein Q can be cycloalky, heterocycloalky, arylalky, heteroarylalky or the like, and R N can be a variety of substituents, such as H, (C 3-7 cycloalkyl)alkyl or the like)
- the Boc group of compound 9 is removed by TFA to afford the TFA salt 10, which can be coupled with a variety of acyl halides CyC(O)Cl, chloroformates CyOC(O)Cl, or sulfonyl chlorides CySO 2 Cl wherein Cy is a cyclic moiety such as aryl to afford the desired coupling products 5.
- a series of ureas of general formula 5' can be prepared by treating the piperidine derivative 10 with p-nitrophenyl chloroformate in the presence of base to form the activated carbamate species 10' that is subsequently reacted with a suitable amine R 8 NHCy.
- Primary amines of formula 11 can be prepared from an appropriate cyclic ketone 12 under a variety of protocols one of which is shown in Scheme 3 (wherein R x is, e.g., H, halo, alkyl, haloalkyl, cycloalkyl, aryl, heteroaryl, etc.; X is CH 2 , O, S, SO 2 , NH, N-alkyl, N-Boc, etc.; p is 1 or 2; and n is 1 or 2).
- R x is, e.g., H, halo, alkyl, haloalkyl, cycloalkyl, aryl, heteroaryl, etc.
- X is CH 2 , O, S, SO 2 , NH, N-alkyl, N-Boc, etc.
- p is 1 or 2
- n is 1 or 2
- primary amines 11 can be prepared from the appropriate alcohols 13 via mesylation, followed by conversion of the mesylates 14 to the corresponding azides 15, which upon reduction yield the desired primary amines 11, as shown in Scheme 4 (R x , X, n and p are as defined in Scheme 3).
- Secondary amines of formula 16 can be prepared from the reaction of an appropriate cyclic amine 11 with a suitable aldehyde R 1 CHO (wherein R 1 can be H 5 Ci -I0 alkyl, C 2-I o alkenyl, aryl, heteroaryl, arylalkyl or the like) as shown in Scheme 5 (R x , X, n and p are as defined in Scheme 3).
- Carboxamides of formula 18 can be prepared as shown in Scheme 6 (X, R x , n and p are as defined in Scheme 3; and R p is H or an amino protecting group) using BOP or any other suitable coupling agent.
- Primary amines of formula 23 and secondary amines of formula 20 can be prepared according to the method outlined in Scheme 7.
- a suitable bromide such as 21 (A can be alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl or the like, R 2 can be alkyl, haloalkyl, cycloalkyl, cycloalkylalyl, etc.) can be converted to the corresponding azide 22 first and then to the desired primary amine 23 via hydrogenation.
- R 1 can be H, Ci -10 alkyl, C 2- io alkenyl, aryl, heteroaryl, arylalkyl or the like.
- Primary amines 24 and secondary amines 25 can be prepared according to the method outlined in Scheme 8 (R 111 and R 1V are, e.g., halo, alkyl, haloalkyl, OH, alkoxy, aryl, heteroaryl, etc.).
- Reaction of a substituted indole 26 with an Fmoc protected amino acid chloride 27 (wherein R v ⁇ is, e.g., H, halo, alkyl, haloalkyl, OH, alkoxy, aryl, heteroaryl, etc.) provides 28, following cleavage of the Fmoc group with piperidine in DMF.
- Reduction of the carbonyl group of 28 with NaBH 4 gives 24 which upon treatment with the appropriate aldehyde R 1 CHO (wherein R 1 can be H, C MO alkyl, C 2 . 10 alkenyl, aryl, heteroaryl, arylalkyl or the like) under reductive amination conditions provides 25.
- a series of piperidine-3-carboxamides of formula 29 are prepared by the method outlined in Scheme 9.
- a piperidine-3-carboxamide 10 is coupled to a compound having the formula of ArX (wherein X can be a leaving group such as halo, and wherein Ar can be a cyclic moiety such as aryl or heteroaryl, and Ar can be optionally substituted by one or more suitable substituents such as alkyl, alkoxy or the like), such as bromobenzene, in a solvent such as dimethyl sulfoxide in the presence of a base such as tert-butoxide to afford a compound of formula 29.
- the coupling reaction is conducted under palladium catalyzed conditions, such as Hartwig's conditions.
- Compounds of the invention can modulate activity of l l ⁇ HSDl and/or MR.
- modulate is meant to refer to an ability to increase or decrease activity of an enzyme or receptor.
- compounds of the invention can be used in methods of modulating l l ⁇ HSDl and/or MR by contacting the enzyme or receptor with any one or more of the compounds or compositions described herein.
- compounds of the present invention can act as inhibitors of l l ⁇ HSDl and/or MR.
- the compounds of the invention can be used to modulate activity of l l ⁇ HSDl and/or MR in an individual in need of modulation of the enzyme or receptor by administering a modulating amount of a compound of the invention.
- the present invention further provides methods of inhibiting the conversion of cortisone to
- Cortisol in a cell or inhibiting the production of Cortisol in a cell, where conversion to or production of Cortisol is mediated, at least in part, by ll ⁇ HSDl activity.
- the present invention further provides methods of increasing insulin sensitivity of a cell by contacting the cell with a compound of the invention. Methods of measuring insulin sensitivity are routine in the art.
- the present invention further provides methods of treating diseases associated with activity or expression, including abnormal activity and overexpression, of l l ⁇ HSDl and/or MR in an individual (e.g., patient) by administering to the individual in need of such treatment a therapeutically effective amount or dose of a compound of the present invention or a pharmaceutical composition thereof.
- Example diseases can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the enzyme or receptor.
- An l l ⁇ HSDl -associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating the enzyme activity.
- An MR-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating the receptor activity or binding to the receptor of endogenous ligands.
- l l ⁇ HSDl -associated diseases include obesity, diabetes, glucose intolerance, insulin resistance, hyperglycemia, hypertension, hyperlipidemia, cognitive impairment, dementia, depression, glaucoma, cardiovascular disorders, osteoporosis, and inflammation.
- Further examples of l l ⁇ HSDl -associated diseases include metabolic syndrome, type 2 diabetes, androgen excess (hirsutism, menstrual irregularity, hyperandrogenism) and polycystic ovary syndrome (PCOS).
- PCOS polycystic ovary syndrome
- the present invention further provides methods of modulating MR activity by contacting the MR with a compound of the invention, pharmaceutically acceptable salt, prodrug, or composition thereof.
- the modulation can be inhibition.
- methods of inhibiting aldosterone binding to the MR are provided. Methods of measuring MR activity and measuring inhibition of aldosterone binding are routine in the art.
- the present invention further provides methods of treating a disease associated with activity or expression of the MR.
- diseases associated with activity or expression of the MR include, but are not limited to hypertension, as well as cardiovascular, renal, and inflammatory pathologies such as heart failure, atherosclerosis, arteriosclerosis, coronary artery disease, thrombosis, angina, peripheral vascular disease, vascular wall damage, stroke, dyslipidemia, hyperlipoproteinaemia, diabetic dyslipidemia, mixed dyslipidemia, hypercholesterolemia, hypertriglyceridemia, and those associated with type 1 diabetes, type 2 diabetes, obesity metabolic syndrome, insulin resistance and general aldosterone-related target organ damage.
- an ex vivo cell can be part of a tissue sample excised from an organism such as a mammal.
- an in vitro cell can be a cell in a cell culture.
- an in vivo cell is a cell living in an organism such as a mammal.
- the cell is an adipocyte, a pancreatic cell, a hepatocyte, neuron, or cell comprising the eye.
- contacting refers to the bringing together of indicated moieties in an in vitro system or an in vivo system.
- "contacting" the l l ⁇ HSDl enzyme with a compound of the invention includes the administration of a compound of the present invention to an individual or patient, such as a human, having l l ⁇ HSDl, as well as, for example, introducing a compound of the invention into a sample containing a cellular or purified preparation containing the l l ⁇ HSDl enzyme.
- the term "individual” or “patient,” used interchangeably, refers to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
- terapéuticaally effective amount refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician, which includes one or more of the following:
- preventing the disease for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease (non-limiting examples are preventing metabolic syndrome, hypertension, obesity, insulin resistance, hyperglycemia, hyperlipidemia, type 2 diabetes, androgen excess (hirsutism, menstrual irregularity, hyperandrogenism) and polycystic ovary syndrome (PCOS);
- metabolic syndrome hypertension, obesity, insulin resistance, hyperglycemia, hyperlipidemia, type 2 diabetes, androgen excess (hirsutism, menstrual irregularity, hyperandrogenism) and polycystic ovary syndrome (PCOS)
- inhibiting the disease for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology) such as inhibiting the development of metabolic syndrome, hypertension, obesity, insulin resistance, hyperglycemia, hyperlipidemia, type 2 diabetes, androgen excess (hirsutism, menstrual irregularity, hyperandrogenism) or polycystic ovary syndrome (PCOS), stabilizing viral load in the case of a viral infection; and
- ameliorating the disease for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of metabolic syndrome, hypertension, obesity, insulin resistance, hyperglycemia, hyperlipidemia, type 2 diabetes, androgen excess (hirsutism, menstrual irregularity, hyperandrogenism) and polycystic ovary syndrome (PCOS), or lowering viral load in the case of a viral infection.
- ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder i.e., reversing the pathology and/or symptomatology
- reversing the pathology and/or symptomatology such as decreasing the severity of metabolic syndrome, hypertension, obesity, insulin resistance, hyperglycemia, hyperlipidemia, type 2 diabetes, androgen excess (hirsu
- the compounds of Formula I can be administered in the form of pharmaceutical compositions.
- These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), ocular, oral or parenteral.
- topical including ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery
- pulmonary e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal
- ocular oral or parenteral.
- Methods for ocular delivery can include topical administration (eye drops), subconjunctival, periocular or intravitreal injection or introduction by balloon catheter or ophthalmic inserts surgically placed in the conjunctival sac.
- Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
- Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump.
- Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
- compositions which contain, as the active ingredient, one or more of the compounds of the invention above in combination with one or more pharmaceutically acceptable carriers.
- the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, sachet, paper, or other container.
- the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
- compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10 % by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
- the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
- excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose.
- the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
- the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 100 mg, more usually about 10 to about 30 mg, of the active ingredient.
- unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
- the active compound can be effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
- the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
- This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, 0.1 to about 500 mg of the active ingredient of the present invention.
- the tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
- the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
- the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
- enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
- compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
- the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
- the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
- compositions in can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
- compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.
- compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
- the pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
- the therapeutic dosage of the compounds of the present invention can vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
- the proportion or concentration of a compound of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration.
- the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral adminstration. Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day.
- the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
- the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
- the compounds of the invention can also be formulated in combination with one or more additional active ingredients which can include any pharmaceutical agent such as anti-viral agents, antibodies, immune suppressants, anti-inflammatory agents and the like.
- additional active ingredients which can include any pharmaceutical agent such as anti-viral agents, antibodies, immune suppressants, anti-inflammatory agents and the like.
- Example agents that can be co-administered include insulin and insulin analogs; insulin secretagogues including sulphonylureas (e.g., glibenclamide or glipizide), prandial glucose regulators (e.g., repaglinide or nateglinide), glucagons-like peptide 1 agonist (GLPl agonist) (e.g., exenatide or liraglutide) and dipeptidylpeptidase IV inhibitors (DPP-IV inhibitors); insulin sensitizing agents including PPAR ⁇ agonists (e.g., pioglitazone or rosiglitazone); agents that
- Another aspect of the present invention relates to radio-labeled compounds of the invention that would be useful not only in radio-imaging but also in assays, both in vitro and in vivo, for localizing and quantitating the enzyme in tissue samples, including human, and for identifying ligands by inhibition binding of a radio-labeled compound. Accordingly, the present invention includes enzyme assays that contain such radio-labeled compounds.
- the present invention further includes isotopically-labeled compounds of the invention.
- An “isotopically” or “radio-labeled” compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring).
- Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 2 H (also written as D for deuterium), 3 H (also written as T for tritium), 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 18 F, 35 S, 36 Cl, 82 Br, 75 Br, 76 Br, 77 Br, 123 I, 124 I, 125 I and 131 I.
- the radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro receptor labeling and competition assays, compounds that incorporate 3 H, 14 C, 82 Br, 125 1 , 131 1, 35 S or will generally be most useful. For radio- imaging applications 11 C, 18 F, 125 1, 123 1, 124 1, 131 1, 75 Br, 76 Br or 77 Br will generally be most useful.
- a “radio-labeled " or “labeled compound” is a compound that has incorporated at least one radionuclide.
- the radionuclide is selected from the group consisting Of 3 H, 14 C, 125 1 , 35 S and 82 Br.
- Synthetic methods for incorporating radio-isotopes into organic compounds are applicable to compounds of the invention and are well known in the art.
- a radio-labeled compound of the invention can be used in a screening assay to identify/evaluate compounds.
- a newly synthesized or identified compound i.e., test compound
- the ability of a test compound to compete with the radio ⁇ labeled compound for binding to the enzyme directly correlates to its binding affinity.
- kits useful useful, for example, in the treatment or prevention of l l ⁇ HSDl -associated diseases or disorders, obesity, diabetes and other diseases referred to herein which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention.
- kits can further include, if desired, one or more of various conventional pharmaceutical kit components, such as, for example, containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art.
- Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
- the invention will be described in greater detail by way of specific examples.
- Step 1 To a solution of l-(tert-butoxycarbonyl)piperidine-3-carboxylic acid (69 mg, 0.3 mmol), cyclohexanamine (30 mg, 0.3) and BOP (140 mg) in 1.0 mL methylene chloride was added 68.5 ⁇ L of NN-diisopropylethylamine. The reaction mixture was stirred at room temperature for overnight and directly purified with Combi-Flash, eluted with EtOAc/Hexane to afford 70mg of the desired product.
- Step 1 At room temperature, to a solution of trans-cyclohexane-l,4-diamine (0.0261 g, 0.23 mmol) in acetonitrile (0.2 mL), was slowly added a solution of acetyl chloride (16.4 ⁇ L, 0.23 mmol) in acetonitrile (0.3 mL), followed by diisopropylethylamine. The mixture was stirred at r.t. for 30 min.
- Step 2 To the above mixture was slowly added a mixture of (3S)-l-(tert-butoxycarbonyl) piperidine-
- Step 3 The residue from Step 2 in 4 N HCl solution in dioxane (1.5 mL) was stirred at r.t. for 1 hour. After removal of solvent, the residue was used in the following step.
- Step 4 A mixture of the above residue from Step 3, K 2 CO 3 (90 mg, 0.65 mmol), and benzenesulfonyl chloride (41.7 ⁇ L, 0.33 mmol) in acetonitrile (0.3 mL) was stirred at r.t. overnight. 5.1 mg (5.7 %) of final product was obtained after purification with prep. HPLC. LCMS: m/z 408.1 (M+H)+.
- Step 1 Under nitrogen atmosphere, a solution of 1.0 M of dibutylmagnesium in heptane (2.6 mL, 2.6 mmol) was slowly added to a solution of 2-bromobenzoic acid (1.0 g, 4.97 mmol) in tetrahydrofuran (10 mL) which was cooled below -15 0 C with stirring. Then, to the mixture was added a solution of 1.60 M of n-butyllithium in hexane (3.40 mL, 5.44 mmol) below -15 0 C over 20 min under effective stirring.
- the mixture was quenched with 10% citric acid, extracted with ethyl acetate.
- the extract was washed with 10% citric acid solution, water, and brine successively; then dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated.
- Step 2 A mixture of tert-butyl [trans-4-(pyridin-4-yloxy)cyclohexyl]carbamate in a solution of methylene chloride (1 mL) and 4.0 M of hydrogen chloride in 1,4-dioxane (2 mL) was stirred at r.t for 2 hours. The mixture was concentrated to yield 45% of trans-4-(pyridin-4-yloxy)cyclohexanamine dihydrochloride (2-step).
- trans-4-(pyridin-4-yloxy)cyclohexanamine dihydrochloride 70 mg, 0.3 mmol
- trans-4-(pyridin-4-yloxy)cyclohexanamine dihydrochloride 180 mg, 45%, 0.3 mmol
- benzotriazol-1- yloxytris(dimethylamino)phosphonium hexafluorophosphate 142 mg, 0.32 mmol
- N 5 N- diisopropylethylamine 186 ⁇ L, 1.07 mmol
- methylene chloride 1.5 mL
- Step 4 A mixture of (3S)-N-[trans-4-(pyridin-4-yloxy)cyclohexyl]pi ⁇ eridine-3-carboxamide dihydrochloride (28 mg, purity: 40%, 0.03 mmol), benzenesulfonyl chloride (6.3 mg, 0.036 mmol), triethylamine (16 ⁇ L, 0.12 mmol) in acetonitrile (1 mL) was stirred at r.t. overnight, the mixture was purified with prep. HPLC. 5.9 mg (45%) of final product was obtained.
- LCMS m/z 444.1 (M+H)+; 466.1 (M+Na)+.
- Step 1 (3S)- ⁇ -Cyclohexylpiperidine-3-carboxamide trifluoroacetate This compound was prepared by using a procedure that was analogous to that used for the synthesis of example 1, steps 1-2.
- reaction mixture was extracted with EtOAc and the combined organic layers were dried over Na 2 SO 4 , filtered, and concented in-vacuo.
- residue was purified by CombiFlash (EtOAc in hexanes: 40%) to afford the desired product.
- Lithium hydroxide, monohydrate (0.013 g, 0.00030 mol) was added to ethyl (3S)-l-(2-fluoro-4- pyridin-4-ylphenyl)piperidine-3-carboxylate (0.050 g, 0.00015 mol) in methanol (0.5 mL, 0.01 mol), tetrahydrofuran (0.5 mL, 0.006 mol) and water (0.5 mL, 0.03 mol).
- the mixture was irradiated under microwave at 100 ° C for 30 min.
- the volatiles were removed in-vacuo to afford the desired product and LiCl, which was used as a mixture in the next step.
- Step 3 ⁇ SJ-l-Acetyl-N-l ⁇ SJ-l-f ⁇ -chloro ⁇ -methylphenylJsulfonylJpiperidin-S-yljpiperidine-S- carboxamide tert-Butyl (3S)-3-[((3S)-l-[(3-chloro-2-methylphenyl)sulfonyl]piperidin-3-ylamino)- carbonyl] -piperidine-1-carboxy late (10.0 mg, 200 ⁇ mol) was treated with 4.0 M of hydrogen chloride in 1,4-dioxane (0.5 mL) at rt for 1 h.
- Enzymatic assay of ll ⁇ HSDl All in vitro assays were performed with clarified lysates as the source of l l ⁇ HSDl activity.
- HEK-293 transient transfectants expressing an epitope-tagged version of full-length human ll ⁇ HSDl were harvested by centrifugation.
- Roughly 2 x 10 7 cells were resuspended in 40 niL of lysis buffer (25 mM Tris-HCl, pH 7.5, 0.1M NaCl, 1 mM MgCl 2 and 25OmM sucrose) and lysed in a microfluidizer. Lysates were clarified by centrifugation and the supernatants were aliquoted and frozen.
- SPA Scintillation Proximity Assay
- Reactions were initiated by addition of 20 ⁇ L of substrate- cofactor mix in assay buffer (25 mM Tris-HCl, pH 7.5, 0.1M NaCl, 1 mM MgCl 2 ) to final concentrations of 400 ⁇ M NADPH, 25 nM 3 H-cortisone and 0.007% Triton X-100. Plates were incubated at 37 0 C for one hour. Reactions were quenched by addition of 40 ⁇ L of anti-mouse coated SPA beads that had been pre-incubated with 10 ⁇ M carbenoxolone and a cortisol-specific monoclonal antibody.
- assay buffer 25 mM Tris-HCl, pH 7.5, 0.1M NaCl, 1 mM MgCl 2
- PBMCs Peripheral blood mononuclear cells
- Test compounds having an IC 50 value less than about 20 ⁇ M according to this assay were considered active.
- HEK293/MSR cells (Invitrogen Corp.) were co-transfected with three plasmids: 1) one designed to express a fusion protein of the GAL4 DNA binding domain and the mineralocorticoid receptor ligand binding domain, 2) one containing the GAL4 upstream activation sequence positioned upstream of a firefly luciferase reporter gene (pFR- LUC, Stratagene, Inc.), and 3) one containing the Renilla luciferase reporter gene cloned downstream of a thymidine kinase promoter (Promega).
- Transfections were performed using the FuGENE ⁇ reagent (Roche). Transfected cells were ready for use in subsequent assays 24 hours post- transfection. In order to evaluate a compound's ability to antagonize the MR, test compounds were diluted in cell culture medium (E-MEM, 10% charcoal-stripped FBS, 2 niM L-glutamine) supplemented with 1 nM aldosterone and applied to the transfected cells for 16-18 hours.
- E-MEM 10% charcoal-stripped FBS, 2 niM L-glutamine
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Cardiology (AREA)
- Obesity (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Physical Education & Sports Medicine (AREA)
- Rheumatology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Hospice & Palliative Care (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pain & Pain Management (AREA)
- Urology & Nephrology (AREA)
- Vascular Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Emergency Medicine (AREA)
- Psychiatry (AREA)
- Child & Adolescent Psychology (AREA)
- Reproductive Health (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Hydrogenated Pyridines (AREA)
- Steroid Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA200700117A EA200700117A1 (en) | 2004-06-24 | 2005-06-23 | N-SUBSTITUTED PIPERIDINES AND THEIR APPLICATION AS PHARMACEUTICAL PREPARATIONS |
JP2007518277A JP2008504275A (en) | 2004-06-24 | 2005-06-23 | N-substituted piperidines and their use as pharmaceuticals |
CA002570637A CA2570637A1 (en) | 2004-06-24 | 2005-06-23 | N-substituted piperidines and their use as pharmaceuticals |
MXPA06014574A MXPA06014574A (en) | 2004-06-24 | 2005-06-23 | N-substituted piperidines and their use as pharmaceuticals. |
EP05763380A EP1758580A4 (en) | 2004-06-24 | 2005-06-23 | N-substituted piperidines and their use as pharmaceuticals |
NZ551603A NZ551603A (en) | 2004-06-24 | 2005-06-23 | N-substituted piperidines and their use as pharmaceuticals |
BRPI0512535-9A BRPI0512535A (en) | 2004-06-24 | 2005-06-23 | unsubstituted piperidine compounds, their compositions and methods of modulation |
IL179520A IL179520A0 (en) | 2004-06-24 | 2006-11-23 | N - substituted piperidines and their use as pharmaceuticals |
NO20070371A NO20070371L (en) | 2004-06-24 | 2007-01-19 | N-substituted piperidines and their use as pharmaceutical preparations |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58255704P | 2004-06-24 | 2004-06-24 | |
US60/582,557 | 2004-06-24 | ||
US61457004P | 2004-09-30 | 2004-09-30 | |
US60/614,570 | 2004-09-30 | ||
US68684005P | 2005-06-02 | 2005-06-02 | |
US60/686,840 | 2005-06-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006012226A2 true WO2006012226A2 (en) | 2006-02-02 |
WO2006012226A3 WO2006012226A3 (en) | 2006-07-27 |
Family
ID=35786661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/022307 WO2006012226A2 (en) | 2004-06-24 | 2005-06-23 | N-substituted piperidines and their use as pharmaceuticals |
Country Status (13)
Country | Link |
---|---|
US (2) | US8071624B2 (en) |
EP (1) | EP1758580A4 (en) |
JP (1) | JP2008504275A (en) |
AU (1) | AU2005267289A1 (en) |
BR (1) | BRPI0512535A (en) |
CA (1) | CA2570637A1 (en) |
CR (1) | CR8793A (en) |
EA (1) | EA200700117A1 (en) |
EC (1) | ECSP067114A (en) |
IL (1) | IL179520A0 (en) |
MX (1) | MXPA06014574A (en) |
NZ (1) | NZ551603A (en) |
WO (1) | WO2006012226A2 (en) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006094633A1 (en) * | 2005-03-03 | 2006-09-14 | F. Hoffman-La Roche Ag | 1- sulfonyl-pi perdine- 3 -carboxyl i c acid amide derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase for the treatment of type ii diabetes mellitus |
WO2006114401A2 (en) * | 2005-04-27 | 2006-11-02 | F. Hoffmann-La Roche Ag | Novel cyclic amines |
WO2007046867A2 (en) * | 2005-05-19 | 2007-04-26 | Xenon Pharmaceuticals Inc. | Piperidine derivatives and their uses as therapeutic agents |
US7217838B2 (en) | 2005-01-05 | 2007-05-15 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
WO2007128761A2 (en) | 2006-05-04 | 2007-11-15 | Boehringer Ingelheim International Gmbh | Uses of dpp-iv inhibitors |
US7304081B2 (en) | 2004-05-07 | 2007-12-04 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
WO2007145835A2 (en) * | 2006-06-08 | 2007-12-21 | Amgen Inc. | Benzamide derivatives as modulators of 11beta-hsd1 for treating diabetes and obesity |
EP1918285A1 (en) * | 2006-11-03 | 2008-05-07 | Merck Sante | Diazepane-acetamide derivatives as selective 11beta-HSD1 inhibitors |
JP2008115149A (en) * | 2006-02-02 | 2008-05-22 | Mitsubishi Tanabe Pharma Corp | Nitrogen-containing heterobicyclic compound |
US7511175B2 (en) | 2005-01-05 | 2009-03-31 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
DE102007057718A1 (en) | 2007-11-30 | 2009-07-30 | Bayer Healthcare Ag | New heteroaryl-substituted piperidine compounds are protease-activated receptor antagonists useful for the treatment and/or prophylaxis of e.g. cardiovascular diseases, thromboembolic diseases, tumors, stroke, hypertension and asthma |
DE102008010221A1 (en) | 2008-02-20 | 2009-08-27 | Bayer Healthcare Ag | New heteroaryl-substituted piperidine compounds are protease-activated receptor antagonists useful for the treatment and/or prophylaxis of e.g. cardiovascular diseases, thromboembolic diseases, tumors, stroke, hypertension and asthma |
WO2010108608A1 (en) | 2009-03-23 | 2010-09-30 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines as par-1 antagonists |
US7838544B2 (en) | 2006-05-17 | 2010-11-23 | Incyte Corporation | Heterocyclic inhibitors of 11-β hydroxyl steroid dehydrogenase type 1 and methods of using the same |
DE102009022894A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
DE102009022896A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
WO2010136137A1 (en) * | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
DE102009022897A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
US7880001B2 (en) | 2004-04-29 | 2011-02-01 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme |
US7998959B2 (en) | 2006-01-12 | 2011-08-16 | Incyte Corporation | Modulators of 11-β hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
US8110581B2 (en) | 2004-11-10 | 2012-02-07 | Incyte Corporation | Lactam compounds and their use as pharmaceuticals |
US8119663B2 (en) | 2007-11-30 | 2012-02-21 | Bayer Pharma Aktiengesellschaft | Heteroaryl-substituted piperidines |
US8193207B2 (en) | 2005-12-05 | 2012-06-05 | Incyte Corporation | Lactam compounds and methods of using the same |
US8198331B2 (en) | 2005-01-05 | 2012-06-12 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8273900B2 (en) | 2008-08-07 | 2012-09-25 | Novartis Ag | Organic compounds |
US8278318B2 (en) | 2007-06-21 | 2012-10-02 | Incyte Corporation | Spirocycles as inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 |
US8372841B2 (en) | 2004-04-29 | 2013-02-12 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8399504B2 (en) | 2008-04-22 | 2013-03-19 | Vitae Pharmaceuticals, Inc. | Carbamate and urea inhibitors of 11Beta-hydroxysteroid dehydrogenase 1 |
US8415354B2 (en) | 2004-04-29 | 2013-04-09 | Abbott Laboratories | Methods of use of inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8445515B2 (en) | 2008-12-22 | 2013-05-21 | Chemocentryx, Inc. | C5aR antagonists |
US8524894B2 (en) | 2009-06-04 | 2013-09-03 | Laboratorios Salvat, S.A. | Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1 |
US8524751B2 (en) | 2009-03-09 | 2013-09-03 | GlaxoSmithKline Intellecutual Property Development | 4-oxadiazol-2-YL-indazoles as inhibitors of P13 kinases |
US8536169B2 (en) | 2008-06-05 | 2013-09-17 | Glaxo Group Limited | Compounds |
US8575162B2 (en) | 2009-04-30 | 2013-11-05 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US8658635B2 (en) | 2008-06-05 | 2014-02-25 | Glaxosmithkline Intellectual Property Development Limited | Benzpyrazol derivatives as inhibitors of PI3 kinases |
US8716345B2 (en) | 2005-01-05 | 2014-05-06 | Abbvie Inc. | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8765743B2 (en) | 2008-06-05 | 2014-07-01 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US8940902B2 (en) | 2006-04-07 | 2015-01-27 | Abbvie Inc. | Treatment of central nervous system disorders |
US8993576B2 (en) | 2010-10-27 | 2015-03-31 | Glaxo Group Limited | 6-(1H-indol-4-yl)-4-(5-{[4-1-methylethyl)-1-piperazinyl]methyl}-1,3-oxazol-2-yl)-1H-indazole hemi succinate salt, polymorphs and pharmaceutical compositions thereof |
US9126939B2 (en) | 2010-06-24 | 2015-09-08 | Pingchen Fan | C5AR antagonists |
US9745268B2 (en) | 2014-09-29 | 2017-08-29 | Chemocentryx, Inc. | Processes and intermediates in the preparation of C5aR antagonists |
EP3235813A1 (en) | 2016-04-19 | 2017-10-25 | Cidqo 2012, S.L. | Aza-tetra-cyclo derivatives |
US10858359B2 (en) | 2016-06-07 | 2020-12-08 | Jacobio Pharmaceuticals Co., Ltd. | Heterocyclic ring derivatives useful as SHP2 inhibitors |
US10988466B2 (en) | 2017-03-23 | 2021-04-27 | Jacobio Pharmaceuticals Co., Ltd. | Heterocyclic derivatives useful as SHP2 inhibitors |
US11285138B2 (en) | 2016-01-14 | 2022-03-29 | Chemocentryx, Inc. | Method of treating C3 glomerulopathy |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050288338A1 (en) * | 2004-06-24 | 2005-12-29 | Wenqing Yao | Amido compounds and their use as pharmaceuticals |
JP2008504279A (en) * | 2004-06-24 | 2008-02-14 | インサイト・コーポレイション | Amide compounds and their use as pharmaceuticals |
MXPA06014574A (en) | 2004-06-24 | 2007-03-12 | Incyte Corp | N-substituted piperidines and their use as pharmaceuticals. |
AU2005267331A1 (en) * | 2004-06-24 | 2006-02-02 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
EP1768954A4 (en) * | 2004-06-24 | 2008-05-28 | Incyte Corp | 2-methylpropanamides and their use as pharmaceuticals |
WO2006002349A1 (en) * | 2004-06-24 | 2006-01-05 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
EA200700251A1 (en) * | 2004-08-10 | 2007-08-31 | Инсайт Корпорейшн | AMIDOCONOMINATION AND THEIR APPLICATION AS PHARMACEUTICAL FACILITIES |
TWI400239B (en) * | 2004-11-10 | 2013-07-01 | Incyte Corp | Lactam compounds and their use as pharmaceuticals |
MX2007005820A (en) * | 2004-11-18 | 2007-07-18 | Incyte Corp | Inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 and methods of using the same. |
BRPI0606437A (en) * | 2005-01-06 | 2008-03-11 | Astrazeneca Ab | compound or a pharmaceutically acceptable salt thereof, pharmaceutical composition, use of a compound, and method of treating a platelet aggregation disorder |
EP1866298A2 (en) * | 2005-03-31 | 2007-12-19 | Takeda San Diego, Inc. | Hydroxysteroid dehydrogenase inhibitors |
EP1879881A2 (en) * | 2005-04-14 | 2008-01-23 | Bristol-Myers Squibb Company | Inhibitors of 11-beta hydroxysteroid dehydrogenase type i |
KR20080039405A (en) * | 2005-07-13 | 2008-05-07 | 아스트라제네카 아베 | New pyridine analogues |
CA2621255A1 (en) * | 2005-09-21 | 2007-04-05 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
WO2007089683A1 (en) * | 2006-01-31 | 2007-08-09 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
TW200808807A (en) * | 2006-03-02 | 2008-02-16 | Incyte Corp | Modulators of 11-β hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
US20070208001A1 (en) * | 2006-03-03 | 2007-09-06 | Jincong Zhuo | Modulators of 11- beta hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
WO2007130898A1 (en) * | 2006-05-01 | 2007-11-15 | Incyte Corporation | TETRASUBSTITUTED UREAS AS MODULATORS OF 11-β HYDROXYL STEROID DEHYDROGENASE TYPE 1 |
TW200815426A (en) * | 2006-06-28 | 2008-04-01 | Astrazeneca Ab | New pyridine analogues II 333 |
CN101506193A (en) * | 2006-07-04 | 2009-08-12 | 阿斯利康(瑞典)有限公司 | New pyridine analogues |
US20090286834A1 (en) * | 2006-07-04 | 2009-11-19 | Astrazeneca Ab | Pyridine Analogues VI |
TW200811133A (en) * | 2006-07-04 | 2008-03-01 | Astrazeneca Ab | New pyridine analogues III 334 |
EP2041115A4 (en) * | 2006-07-04 | 2010-07-07 | Astrazeneca Ab | New pyridine analogues |
CL2008000093A1 (en) * | 2007-01-12 | 2008-08-22 | Astrazeneca Ab | COMPOUNDS DERIVED FROM PIRIDINA, INHIBITORS OF P2Y12; PHARMACEUTICAL COMPOSITION THAT INCLUDES SUCH COMPOUNDS; AND ITS USE FOR THE TREATMENT OF A PLAQUETARY AGREGATION DISORDER. |
UY30867A1 (en) * | 2007-01-12 | 2008-09-02 | Astrazeneca Ab | NEW ANALOGS OF PIRIDINA VII 543 |
MX2009007429A (en) * | 2007-01-12 | 2009-07-17 | Astrazeneca Ab | Pyridine compounds and their use as p2y12 antagonists. |
JP5603770B2 (en) * | 2007-05-31 | 2014-10-08 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | CCR2 receptor antagonist and use thereof |
AR064865A1 (en) * | 2007-07-13 | 2009-04-29 | Astrazeneca Ab | P2Y12 ANTIGONIST PIRIDINE DERIVATIVES |
EP3228320B1 (en) | 2008-10-17 | 2019-12-18 | Sanofi-Aventis Deutschland GmbH | Combination of an insulin and a glp-1 agonist |
EA020548B1 (en) | 2008-12-19 | 2014-12-30 | Бёрингер Ингельхайм Интернациональ Гмбх | Cyclic pyrimidin-4-carboxamides as ccr2 receptor antagonists for treatment of inflammation, asthma and copd |
UY33025A (en) | 2009-11-13 | 2011-06-30 | Sanofi Aventis Deustschland Gmbh | PHARMACEUTICAL COMPOSITION INCLUDING A GLP-1 METIONINE AGONIST |
AR080669A1 (en) | 2009-11-13 | 2012-05-02 | Sanofi Aventis Deutschland | PHARMACEUTICAL COMPOSITION INCLUDING A GLP-1 AGONIST, AN INSULIN AND METIONIN |
MX2012006964A (en) | 2009-12-17 | 2012-07-17 | Boehringer Ingelheim Int | New ccr2 receptor antagonists and uses thereof. |
JP2013526507A (en) | 2010-05-12 | 2013-06-24 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | NOVEL CCR2 RECEPTOR ANTAGONIST, PROCESS FOR PRODUCING THE SAME AND USE THEREOF AS DRUG |
WO2011141477A1 (en) | 2010-05-12 | 2011-11-17 | Boehringer Ingelheim International Gmbh | New ccr2 receptor antagonists, method for producing the same, and use thereof as medicaments |
US8841313B2 (en) | 2010-05-17 | 2014-09-23 | Boehringer Ingelheim International Gmbh | CCR2 antagonists and uses thereof |
EP2576542B1 (en) | 2010-05-25 | 2015-04-22 | Boehringer Ingelheim International GmbH | Cyclic amide derivatives of pyridazine-3-carboxylic acids and their use in the treatment of pulmonary, pain, immune related and cardiovascular diseases |
US8962656B2 (en) | 2010-06-01 | 2015-02-24 | Boehringer Ingelheim International Gmbh | CCR2 antagonists |
MX339614B (en) | 2010-08-30 | 2016-06-02 | Sanofi - Aventis Deutschland GmbH | Use of ave0010 for the manufacture of a medicament for the treatment of diabetes mellitus type 2. |
WO2012051090A1 (en) * | 2010-10-11 | 2012-04-19 | Axikin Pharmaceuticals, Inc. | Salts of arylsulfonamide ccr3 antagonists |
US9821032B2 (en) | 2011-05-13 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Pharmaceutical combination for improving glycemic control as add-on therapy to basal insulin |
JP5786258B2 (en) | 2011-07-15 | 2015-09-30 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Novel and selective CCR2 antagonist |
RU2650616C2 (en) | 2011-08-29 | 2018-04-16 | Санофи-Авентис Дойчланд Гмбх | Pharmaceutical combination for use in glycemic control in patients with type 2 diabetes mellitus |
TWI559929B (en) | 2011-09-01 | 2016-12-01 | Sanofi Aventis Deutschland | Pharmaceutical composition for use in the treatment of a neurodegenerative disease |
CA2894157A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
US9604930B2 (en) | 2012-12-21 | 2017-03-28 | Epizyme, Inc. | Tetrahydro- and dihydro-isoquinoline PRMT5 inhibitors and uses thereof |
WO2014100716A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
US8940726B2 (en) | 2012-12-21 | 2015-01-27 | Epizyme, Inc. | PRMT5 inhibitors and uses thereof |
CA2894126A1 (en) | 2012-12-21 | 2014-06-26 | Epizyme, Inc. | Prmt5 inhibitors and uses thereof |
US9399194B2 (en) * | 2014-07-16 | 2016-07-26 | Battelle Energy Alliance, Llc | Methods for treating a liquid using draw solutions |
AU2015301196A1 (en) | 2014-08-04 | 2017-01-12 | Epizyme, Inc. | PRMT5 inhibitors and uses thereof |
CN107206058A (en) | 2014-12-12 | 2017-09-26 | 赛诺菲-安万特德国有限公司 | Insulin glargine/lixisenatide fixed ratio preparaton |
TWI748945B (en) | 2015-03-13 | 2021-12-11 | 德商賽諾菲阿凡提斯德意志有限公司 | Treatment type 2 diabetes mellitus patients |
TW201705975A (en) | 2015-03-18 | 2017-02-16 | 賽諾菲阿凡提斯德意志有限公司 | Treatment of type 2 diabetes mellitus patients |
JP6917910B2 (en) | 2015-07-02 | 2021-08-11 | セントレクシオン セラピューティクス コーポレイション | (4-((3R, 4R) -3-methoxytetrahydro-pyran-4-ylamino) piperidine-1-yl) (5-methyl-6-(((2R, 6S) -6- (P-tolyl) tetrahydro) -2H-pyran-2-yl) methylamino) pyrimidine-4yl) metanone citrate |
Family Cites Families (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL262366A (en) | 1960-03-14 | |||
US3201466A (en) | 1963-03-08 | 1965-08-17 | Gulf Oil Corp | Substituted cyclopropanecarboxanilide herbicides |
US3849403A (en) | 1968-04-29 | 1974-11-19 | American Home Prod | 2,3,4,5-tetrahydro-1,1,5,5-tetrasubstituted-1h-3-benzazepines |
FR1600908A (en) | 1968-11-14 | 1970-08-03 | Hypocholesterolaemic and anorexigenic - phenoxy alkanoylaralkylamines | |
DE2114420A1 (en) | 1971-03-25 | 1972-10-05 | Merck Patent Gmbh, 6100 Darmstadt | Substituted phenylalkanol derivatives and processes for their preparation |
US3923350A (en) | 1974-03-11 | 1975-12-02 | Commercial Metals Company | Precision bearing assembly |
ES427013A1 (en) | 1974-06-05 | 1976-07-16 | Alter Sa | A procedure for the preparation of certain amides of the acid 2- (p-chlorophenoxy) -2-methylpropionic. (Machine-translation by Google Translate, not legally binding) |
GB1460389A (en) | 1974-07-25 | 1977-01-06 | Pfizer Ltd | 4-substituted quinazoline cardiac stimulants |
US3933829A (en) | 1974-08-22 | 1976-01-20 | John Wyeth & Brother Limited | 4-Aminoquinoline derivatives |
TR18917A (en) | 1974-10-31 | 1977-12-09 | Ciba Geigy Ag | 1- (BIS-TRIFLORMETHYLPHENYL) -2-OXOPIROLIDINE-4-CARBONIC ACIDS AND THEIR TUEREVES |
US3933350A (en) * | 1974-12-09 | 1976-01-20 | Mignano Frank J | Paper insert feeder |
FR2312247A1 (en) | 1975-05-30 | 1976-12-24 | Parcor | THIENO-PYRIDINE DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR APPLICATIONS |
US4145435A (en) | 1976-11-12 | 1979-03-20 | The Upjohn Company | 2-aminocycloaliphatic amide compounds |
JPS57156450A (en) | 1981-03-24 | 1982-09-27 | Ihara Chem Ind Co Ltd | 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid derivative, its preparation, and aquatic life repellent containing said compound as active component |
US4439606A (en) | 1982-05-06 | 1984-03-27 | American Cyanamid Company | Antiatherosclerotic 1-piperazinecarbonyl compounds |
CA1325217C (en) | 1983-11-07 | 1993-12-14 | John T. Lai | 3,5-dialkyl-4-hydroxyphenyl-substituted derivatives |
JPS60149562A (en) | 1984-01-13 | 1985-08-07 | Kyorin Pharmaceut Co Ltd | Novel piperidine derivative and preparation thereof |
US4701459A (en) * | 1986-07-08 | 1987-10-20 | Bristol-Myers Company | 7-amino-1,3-dihydro-2H-imidazo[4,5-b]quinolin 2-ones and method for inhibiting phosphodiesterase and blood platelet aggregation |
FI874212A (en) * | 1986-09-29 | 1988-03-30 | Bristol Myers Co | FOERFARANDE FOER FRAMSTAELLNING AV 5-ARYLIDEN- OCH 5-ALKYLIDENSUBSTITUERADE HYDANTOINER. |
EP0273659A1 (en) | 1986-12-27 | 1988-07-06 | Takeda Chemical Industries, Ltd. | Azaspiro compounds, their production and use |
DE3911670A1 (en) | 1989-04-10 | 1990-10-11 | Schaeffler Waelzlager Kg | Radial roller bearing with concentric parts - has facing tracks between which run rollers, with radially sprung ring, counter track and rigid track |
DE3920616A1 (en) | 1989-06-23 | 1991-01-03 | Boehringer Mannheim Gmbh | MEDICINAL PRODUCTS CONTAINING DI-TERT.-BUTYLHYDROXYPHENYL DERIVATIVES AND NEW DERIVATIVES |
US5206240A (en) | 1989-12-08 | 1993-04-27 | Merck & Co., Inc. | Nitrogen-containing spirocycles |
US5852029A (en) | 1990-04-10 | 1998-12-22 | Israel Institute For Biological Research | Aza spiro compounds acting on the cholinergic system with muscarinic agonist activity |
FR2672213B1 (en) | 1991-02-05 | 1995-03-10 | Sanofi Sa | USE OF 4- (3-TRIFLUOROMETHYLPHENYL) -1,2,3,6-TETRAHYDROPYRIDINIC DERIVATIVES AS SENSORS OF FREE RADICALS. |
JPH04275271A (en) | 1991-03-04 | 1992-09-30 | Lederle Japan Ltd | Indomethacin derivative |
JPH04334357A (en) * | 1991-05-02 | 1992-11-20 | Fujirebio Inc | Acyl derivative having enzyme-inhibiting action |
FR2678272B1 (en) | 1991-06-27 | 1994-01-14 | Synthelabo | 2-AMINOPYRIMIDINE-4-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION. |
DE4234295A1 (en) * | 1992-10-12 | 1994-04-14 | Thomae Gmbh Dr K | Carboxylic acid derivatives, medicaments containing these compounds and process for their preparation |
FR2705343B1 (en) | 1993-05-17 | 1995-07-21 | Fournier Ind & Sante | Beta, beta-dimethyl-4-piperidineethanamine derivatives, process for their preparation and their use in therapy. |
DE9403308U1 (en) | 1994-02-28 | 1994-04-28 | INA Wälzlager Schaeffler KG, 91074 Herzogenaurach | Differential gear for a motor vehicle |
FR2724656B1 (en) | 1994-09-15 | 1996-12-13 | Adir | NOVEL BENZOPYRAN DERIVATIVES, THEIR PREPARATION PROCESS AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
DE69513846T2 (en) | 1994-09-27 | 2000-07-06 | Janssen Pharmaceutica N.V., Beerse | N-SUBSTITUTED PIPERIDINYL BICYCLIC BENZOATE DERIVATIVES |
FR2734265B1 (en) | 1995-05-17 | 1997-06-13 | Adir | NOVEL HETEROCYCLIC SPIRO COMPOUNDS, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
US5693567A (en) | 1995-06-07 | 1997-12-02 | Xerox Corporation | Separately etching insulating layer for contacts within array and for peripheral pads |
FR2736053B1 (en) | 1995-06-28 | 1997-09-19 | Sanofi Sa | NEWS 1-PHENYLALKYL-1,2,3,6-TETRAHYDROPYRIDINES |
GB9517622D0 (en) | 1995-08-29 | 1995-11-01 | Univ Edinburgh | Regulation of intracellular glucocorticoid concentrations |
US6291469B1 (en) | 1995-09-29 | 2001-09-18 | Eli Lilly And Company | Spiro compounds as inhibitors of fibrinogen-dependent platelet aggregation |
GB9604311D0 (en) * | 1996-02-29 | 1996-05-01 | Merck & Co Inc | Inhibitors of farnesyl-protein transferase |
GB9600235D0 (en) | 1996-01-05 | 1996-03-06 | Pfizer Ltd | Therapeutic agents |
ATE421952T1 (en) | 1996-05-01 | 2009-02-15 | Ortho Mcneil Pharm Inc | CARBOXAMIDE DERIVATIVES OF PYRROLIDINE, PIPERIDINE AND HEXAHYDROPIPERIZINE FOR TREATMENT OF THROMBOSIS |
NZ334389A (en) | 1996-08-28 | 2001-05-25 | Ube Industries | Cyclic amine derivatives |
ES2276435T3 (en) * | 1996-09-13 | 2007-06-16 | Schering Corporation | NEW TRIPYCLIC COMPOUNDS OF PIPERIDINYL USEFUL AS INHIBITORS OF FARNESIL-PROTEINA TRANSFERASA. |
ZA979781B (en) | 1996-11-14 | 1998-06-08 | Akzo Nobel Nv | Piperidine derivatives. |
GB2327609A (en) * | 1997-07-23 | 1999-02-03 | Merck & Co Inc | A method for eliciting an avß5 or dual avß3/avß5 antagonizing effect |
KR100567950B1 (en) | 1998-02-27 | 2006-04-05 | 상꾜 가부시키가이샤 | Cyclic amino compounds |
US6087368A (en) | 1998-06-08 | 2000-07-11 | Bristol-Myers Squibb Company | Quinazolinone inhibitors of cGMP phosphodiesterase |
US6562823B1 (en) | 1998-07-02 | 2003-05-13 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferase |
JP2002527477A (en) | 1998-10-16 | 2002-08-27 | サントリー株式会社 | Aminophenoxyacetic acid derivatives as neuroprotective agents |
PL350904A1 (en) | 1999-03-26 | 2003-02-10 | Astrazeneca Ab | Novel compounds |
EP1165500A1 (en) | 1999-04-02 | 2002-01-02 | Du Pont Pharmaceuticals Company | Amide derivatives as inhibitors of matrix metalloproteinases,tnf-alpha,and aggrecanase |
ES2165274B1 (en) | 1999-06-04 | 2003-04-01 | Almirall Prodesfarma Sa | NEW DERIVATIVES OF INDOLILPIPERIDINE AS ANTIHISTAMINIC AND ANTIALERGIC AGENTS. |
EP1202994B1 (en) | 1999-07-21 | 2004-04-14 | AstraZeneca AB | New compounds |
JP4275271B2 (en) | 1999-11-15 | 2009-06-10 | 寺崎電気産業株式会社 | Measurement display device |
ATE283854T1 (en) | 1999-12-03 | 2004-12-15 | Ono Pharmaceutical Co | TRIAZASPIRO(5.5)UNDECAN DERIVATIVES AND DRUGS CONTAINING THE SAME AS THE ACTIVE INGREDIENTS |
RU2265021C2 (en) | 1999-12-03 | 2005-11-27 | Оно Фармасьютикал Ко., Лтд. | Derivatives of triazaspiro[5,5]undecane (variants), pharmaceutical composition and method for control of chemokine/chemokine receptor |
AP2002002664A0 (en) | 2000-04-26 | 2002-12-31 | Warner Lambert Co | Cyclohexylamine derivative as subtype selective NMDA receptor antagonists. |
US7294637B2 (en) | 2000-09-11 | 2007-11-13 | Sepracor, Inc. | Method of treating addiction or dependence using a ligand for a monamine receptor or transporter |
AUPR079700A0 (en) * | 2000-10-17 | 2000-11-09 | Alchemia Pty Ltd | Combinatorial libraries of monosaccharides |
US7102009B2 (en) | 2001-01-12 | 2006-09-05 | Amgen Inc. | Substituted amine derivatives and methods of use |
WO2003000657A1 (en) | 2001-06-20 | 2003-01-03 | Daiichi Pharmaceutical Co., Ltd. | Diamine derivatives |
US6547958B1 (en) | 2001-07-13 | 2003-04-15 | Chevron U.S.A. Inc. | Hydrocarbon conversion using zeolite SSZ-59 |
RS44204A (en) | 2001-11-22 | 2007-06-04 | Biovitrum Ab., | Inhibitors of 11-beta-hydroxy steroid dehydrogenase type 1 |
US6818772B2 (en) * | 2002-02-22 | 2004-11-16 | Abbott Laboratories | Antagonists of melanin concentrating hormone effects on the melanin concentrating hormone receptor |
EP1478437B1 (en) * | 2002-02-27 | 2005-08-31 | Pfizer Products Inc. | Acc inhibitors |
GB0213715D0 (en) | 2002-06-14 | 2002-07-24 | Syngenta Ltd | Chemical compounds |
BR0311834A (en) | 2002-06-19 | 2005-04-12 | Lilly Co Eli | Compound, pharmaceutical composition, methods for modulating a peroxisome proliferator-activated receptor, for treating and preventing diabetes mellitus in a mammal, and for treating syndrome x in a mammal, and, using a compound or pharmaceutically acceptable salt thereof. |
SE0202133D0 (en) | 2002-07-08 | 2002-07-08 | Astrazeneca Ab | Novel compounds |
WO2004018479A1 (en) | 2002-08-21 | 2004-03-04 | Astrazeneca Ab | Thieno-pyrrole compounds as antagonists of gonadotropin releasing hormone |
WO2004022554A1 (en) | 2002-09-07 | 2004-03-18 | Celltech R & D Limited | Quinazolinone derivatives |
ATE422203T1 (en) | 2002-10-09 | 2009-02-15 | Schering Corp | THIADIAZOLE DIOXIDE AND THIADIAZOLOXIDE AS CXC AND CC CHEMOKINE RECEPTOR LIGANDS |
US20040072802A1 (en) | 2002-10-09 | 2004-04-15 | Jingwu Duan | Beta-amino acid derivatives as inhibitors of matrix metalloproteases and TNF-alpha |
US20050256159A1 (en) | 2002-10-11 | 2005-11-17 | Astrazeneca Ab | 1,4-disubstituted piperidine derivatives and their use as 11,betahsd1 inhibitors |
US20060019977A1 (en) | 2002-10-18 | 2006-01-26 | Ono Pharmaceutical Co., Ltd. | Spiroheterocyclic derivative compounds and drugs comprising the compound as the active ingredient |
AU2003299791A1 (en) | 2002-12-20 | 2004-07-22 | Bayer Pharmaceuticals Corporation | Substituted 3,5-dihydro-4h-imidazol-4-ones for the treatment of obesity |
TW200500366A (en) | 2002-12-25 | 2005-01-01 | Daiichi Seiyaku Co | Diamine derivatives |
TW200503994A (en) | 2003-01-24 | 2005-02-01 | Novartis Ag | Organic compounds |
CA2512886A1 (en) | 2003-02-28 | 2004-09-10 | Galderma Research & Development, S.N.C. | Ligands that modulate lxr-type receptors |
US7205318B2 (en) | 2003-03-18 | 2007-04-17 | Bristol-Myers Squibb Company | Lactam-containing cyclic diamines and derivatives as a factor Xa inhibitors |
US20040188324A1 (en) | 2003-03-26 | 2004-09-30 | Saleh Elomari | Hydrocarbon conversion using molecular sieve SSZ-65 |
JP4629657B2 (en) | 2003-04-11 | 2011-02-09 | ハイ・ポイント・ファーマスーティカルズ、エルエルシー | 11β-hydroxysteroid dehydrogenase type 1 active compound |
JP2006526015A (en) | 2003-05-02 | 2006-11-16 | エラン ファーマシューティカルズ,インコーポレイテッド | 4-Bromo-5- (2-chloro-benzoylamino) -1H-pyrazole-3-carboxylic acid amide derivatives and related compounds as bradykinin B1 receptor antagonists for the treatment of inflammatory diseases |
PT1638963E (en) | 2003-05-20 | 2009-11-18 | Novartis Ag | N-acyl nitrogen heterocycles as ligands of peroxisome proliferator-activated receptors |
SE0302755D0 (en) | 2003-10-17 | 2003-10-17 | Astrazeneca Ab | Novel compounds |
GB0325956D0 (en) | 2003-11-06 | 2003-12-10 | Addex Pharmaceuticals Sa | Novel compounds |
US20070275990A1 (en) | 2003-11-13 | 2007-11-29 | Ono Pharmaceutical Co., Ltd. | Heterocyclic Spiro Compound |
KR20060101772A (en) | 2003-12-19 | 2006-09-26 | 화이자 인코포레이티드 | Benzenesulfonylamino-pyridin-2-yl derivatives and related compounds as inhibitors of 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-hsd-1) for the treatment of diabetes and obesity |
JP4851943B2 (en) | 2003-12-22 | 2012-01-11 | シェーリング コーポレイション | Isothiazole dioxide as CXC-chemokine receptor ligand and CC-chemokine receptor ligand |
SE0303541D0 (en) | 2003-12-22 | 2003-12-22 | Astrazeneca Ab | New compounds |
CA2553973A1 (en) | 2004-01-21 | 2005-08-04 | Elan Pharmaceuticals, Inc. | Methods of treatment of amyloidosis using aspartyl-protease inihibitors |
BRPI0510623A (en) | 2004-05-06 | 2007-10-30 | Pfizer | compounds of proline and morpholine derivatives |
TWI350168B (en) | 2004-05-07 | 2011-10-11 | Incyte Corp | Amido compounds and their use as pharmaceuticals |
US20050288338A1 (en) | 2004-06-24 | 2005-12-29 | Wenqing Yao | Amido compounds and their use as pharmaceuticals |
AU2005267331A1 (en) | 2004-06-24 | 2006-02-02 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
WO2006002349A1 (en) | 2004-06-24 | 2006-01-05 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
MXPA06014574A (en) | 2004-06-24 | 2007-03-12 | Incyte Corp | N-substituted piperidines and their use as pharmaceuticals. |
JP2008504279A (en) | 2004-06-24 | 2008-02-14 | インサイト・コーポレイション | Amide compounds and their use as pharmaceuticals |
EP1768954A4 (en) | 2004-06-24 | 2008-05-28 | Incyte Corp | 2-methylpropanamides and their use as pharmaceuticals |
EA200700251A1 (en) | 2004-08-10 | 2007-08-31 | Инсайт Корпорейшн | AMIDOCONOMINATION AND THEIR APPLICATION AS PHARMACEUTICAL FACILITIES |
EP1811863B1 (en) | 2004-10-22 | 2012-09-12 | Cargill, Incorporated | Process for the production of maltodextrins |
TWI400239B (en) | 2004-11-10 | 2013-07-01 | Incyte Corp | Lactam compounds and their use as pharmaceuticals |
ATE538124T1 (en) | 2004-11-12 | 2012-01-15 | Bristol Myers Squibb Co | IMIDAZOCONDENSED TRICYCLIC COMPOUNDS BASED ON THIAZOLOA4,5-BUPYRIDINE AND PHARMACEUTICAL COMPOSITIONS THEREOF |
MX2007005820A (en) | 2004-11-18 | 2007-07-18 | Incyte Corp | Inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 and methods of using the same. |
EP2835367A1 (en) | 2005-01-05 | 2015-02-11 | AbbVie Inc. | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
MX2007010532A (en) | 2005-03-03 | 2007-10-12 | Hoffmann La Roche | 1- sulfonyl-pi perdine- 3 -carboxyl i c acid amide derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase for the treatment of type ii diabetes mellitus. |
CA2621255A1 (en) | 2005-09-21 | 2007-04-05 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
AU2006322060A1 (en) | 2005-12-05 | 2007-06-14 | Incyte Corporation | Lactam compounds and methods of using the same |
WO2007084314A2 (en) | 2006-01-12 | 2007-07-26 | Incyte Corporation | MODULATORS OF 11-ß HYDROXYL STEROID DEHYDROGENASE TYPE 1, PHARMACEUTICAL COMPOSITIONS THEREOF, AND METHODS OF USING THE SAME |
WO2007089683A1 (en) | 2006-01-31 | 2007-08-09 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
JP2007219880A (en) * | 2006-02-17 | 2007-08-30 | Fujitsu Ltd | Reputation information processing program, method, and apparatus |
TW200808807A (en) | 2006-03-02 | 2008-02-16 | Incyte Corp | Modulators of 11-β hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
US20070208001A1 (en) | 2006-03-03 | 2007-09-06 | Jincong Zhuo | Modulators of 11- beta hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
WO2007130898A1 (en) | 2006-05-01 | 2007-11-15 | Incyte Corporation | TETRASUBSTITUTED UREAS AS MODULATORS OF 11-β HYDROXYL STEROID DEHYDROGENASE TYPE 1 |
WO2007137066A2 (en) | 2006-05-17 | 2007-11-29 | Incyte Corporation | HETEROCYCLIC INHIBITORS OF 11-β HYDROXYL STEROID DEHYDROGENASE TYPE I AND METHODS OF USING THE SAME |
CL2008001839A1 (en) | 2007-06-21 | 2009-01-16 | Incyte Holdings Corp | Compounds derived from 2,7-diazaspirocycles, inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1; pharmaceutical composition comprising said compounds; Useful to treat obesity, diabetes, glucose intolerance, type II diabetes, among other diseases. |
-
2005
- 2005-06-23 MX MXPA06014574A patent/MXPA06014574A/en not_active Application Discontinuation
- 2005-06-23 BR BRPI0512535-9A patent/BRPI0512535A/en not_active IP Right Cessation
- 2005-06-23 CA CA002570637A patent/CA2570637A1/en not_active Abandoned
- 2005-06-23 JP JP2007518277A patent/JP2008504275A/en active Pending
- 2005-06-23 EA EA200700117A patent/EA200700117A1/en unknown
- 2005-06-23 NZ NZ551603A patent/NZ551603A/en not_active IP Right Cessation
- 2005-06-23 EP EP05763380A patent/EP1758580A4/en not_active Withdrawn
- 2005-06-23 US US11/159,448 patent/US8071624B2/en active Active
- 2005-06-23 WO PCT/US2005/022307 patent/WO2006012226A2/en active Application Filing
- 2005-06-23 AU AU2005267289A patent/AU2005267289A1/en not_active Abandoned
-
2006
- 2006-11-23 IL IL179520A patent/IL179520A0/en unknown
- 2006-12-06 CR CR8793A patent/CR8793A/en unknown
- 2006-12-26 EC EC2006007114A patent/ECSP067114A/en unknown
-
2011
- 2011-10-24 US US13/279,700 patent/US8288417B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of EP1758580A4 * |
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8415354B2 (en) | 2004-04-29 | 2013-04-09 | Abbott Laboratories | Methods of use of inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8372841B2 (en) | 2004-04-29 | 2013-02-12 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US7880001B2 (en) | 2004-04-29 | 2011-02-01 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme |
US9133145B2 (en) | 2004-04-29 | 2015-09-15 | Abbvie Inc. | Methods of use of inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US7776874B2 (en) | 2004-05-07 | 2010-08-17 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
US9126927B2 (en) | 2004-05-07 | 2015-09-08 | Incyte Holdings Corporation | Amido compounds and their use as pharmaceuticals |
US8058288B2 (en) | 2004-05-07 | 2011-11-15 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
US7304081B2 (en) | 2004-05-07 | 2007-12-04 | Incyte Corporation | Amido compounds and their use as pharmaceuticals |
US9670154B2 (en) | 2004-05-07 | 2017-06-06 | Incyte Holdings Corporation | Amido compounds and their use as pharmaceuticals |
US9957229B2 (en) | 2004-05-07 | 2018-05-01 | Incyte Holdings Corporation | Amido compounds and their use as pharmaceuticals |
US8563570B2 (en) | 2004-11-10 | 2013-10-22 | Incyte Corporation | Lactam compounds and their use as pharmaceuticals |
US8110581B2 (en) | 2004-11-10 | 2012-02-07 | Incyte Corporation | Lactam compounds and their use as pharmaceuticals |
US9290444B2 (en) | 2005-01-05 | 2016-03-22 | Abbvie Inc. | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8993632B2 (en) | 2005-01-05 | 2015-03-31 | Abbvie Inc. | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US7528282B2 (en) | 2005-01-05 | 2009-05-05 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8716345B2 (en) | 2005-01-05 | 2014-05-06 | Abbvie Inc. | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US7855308B2 (en) | 2005-01-05 | 2010-12-21 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase Type 1 enzyme |
USRE41135E1 (en) | 2005-01-05 | 2010-02-16 | Abbott Laboratories | Inhibitors of the 11-β-hydroxysteroid dehydrogenase type 1 enzyme |
US7217838B2 (en) | 2005-01-05 | 2007-05-15 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8198331B2 (en) | 2005-01-05 | 2012-06-12 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US7511175B2 (en) | 2005-01-05 | 2009-03-31 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
US8314270B2 (en) | 2005-01-05 | 2012-11-20 | Abbott Laboratories | Inhibitors of the 11-beta-hydroxysteroid dehydrogenase type 1 enzyme |
WO2006094633A1 (en) * | 2005-03-03 | 2006-09-14 | F. Hoffman-La Roche Ag | 1- sulfonyl-pi perdine- 3 -carboxyl i c acid amide derivatives as inhibitors of 11-beta-hydroxysteroid dehydrogenase for the treatment of type ii diabetes mellitus |
US7820699B2 (en) | 2005-04-27 | 2010-10-26 | Hoffmann-La Roche Inc. | Cyclic amines |
WO2006114401A3 (en) * | 2005-04-27 | 2007-04-12 | Hoffmann La Roche | Novel cyclic amines |
WO2006114401A2 (en) * | 2005-04-27 | 2006-11-02 | F. Hoffmann-La Roche Ag | Novel cyclic amines |
WO2007046867A2 (en) * | 2005-05-19 | 2007-04-26 | Xenon Pharmaceuticals Inc. | Piperidine derivatives and their uses as therapeutic agents |
WO2007046867A3 (en) * | 2005-05-19 | 2007-07-05 | Xenon Pharmaceuticals Inc | Piperidine derivatives and their uses as therapeutic agents |
US8193207B2 (en) | 2005-12-05 | 2012-06-05 | Incyte Corporation | Lactam compounds and methods of using the same |
US7998959B2 (en) | 2006-01-12 | 2011-08-16 | Incyte Corporation | Modulators of 11-β hydroxyl steroid dehydrogenase type 1, pharmaceutical compositions thereof, and methods of using the same |
JP2008115149A (en) * | 2006-02-02 | 2008-05-22 | Mitsubishi Tanabe Pharma Corp | Nitrogen-containing heterobicyclic compound |
US9464072B2 (en) | 2006-04-07 | 2016-10-11 | Abbvie Inc. | Treatment of central nervous system disorders |
US8940902B2 (en) | 2006-04-07 | 2015-01-27 | Abbvie Inc. | Treatment of central nervous system disorders |
EP2351568A2 (en) | 2006-05-04 | 2011-08-03 | Boehringer Ingelheim International GmbH | Uses of dpp-iv inhibitors |
WO2007128761A2 (en) | 2006-05-04 | 2007-11-15 | Boehringer Ingelheim International Gmbh | Uses of dpp-iv inhibitors |
US7838544B2 (en) | 2006-05-17 | 2010-11-23 | Incyte Corporation | Heterocyclic inhibitors of 11-β hydroxyl steroid dehydrogenase type 1 and methods of using the same |
WO2007145835A2 (en) * | 2006-06-08 | 2007-12-21 | Amgen Inc. | Benzamide derivatives as modulators of 11beta-hsd1 for treating diabetes and obesity |
WO2007145835A3 (en) * | 2006-06-08 | 2008-03-06 | Amgen Inc | Benzamide derivatives as modulators of 11beta-hsd1 for treating diabetes and obesity |
AU2007259144B2 (en) * | 2006-06-08 | 2012-04-19 | Amgen Inc. | Benzamide derivatives as modulators of 11beta-HSD1 for treating diabetes and obesity |
EP1918285A1 (en) * | 2006-11-03 | 2008-05-07 | Merck Sante | Diazepane-acetamide derivatives as selective 11beta-HSD1 inhibitors |
US8242107B2 (en) | 2006-11-03 | 2012-08-14 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Diazepane-acetamide derivatives as selective 11β-HSD1 inhibitors |
US8586577B2 (en) | 2006-11-03 | 2013-11-19 | Merck Patent Gmbh | Diazepane acetamide derivatives as selective 11B-HSD1 inhibitors |
JP2010508312A (en) * | 2006-11-03 | 2010-03-18 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Diazepane-acetamide derivatives as selective 11β-HSD1 inhibitors |
WO2008052638A1 (en) * | 2006-11-03 | 2008-05-08 | Merk Patent Gmbh | DIAZEPANE-ACETAMIDE DERIVATIVES AS SELECTIVE 11β-HSD1 INHIBITORS |
US9873698B2 (en) | 2007-06-21 | 2018-01-23 | Incyte Holdings Corporation | Spirocycles as inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 |
US8278318B2 (en) | 2007-06-21 | 2012-10-02 | Incyte Corporation | Spirocycles as inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 |
US9006260B2 (en) | 2007-06-21 | 2015-04-14 | Incyte Corporation | Spirocycles as inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 |
US9371323B2 (en) | 2007-06-21 | 2016-06-21 | Incyte Holdings Corporation | Spirocycles as inhibitors of 11-beta hydroxyl steroid dehydrogenase type 1 |
US8119663B2 (en) | 2007-11-30 | 2012-02-21 | Bayer Pharma Aktiengesellschaft | Heteroaryl-substituted piperidines |
DE102007057718A1 (en) | 2007-11-30 | 2009-07-30 | Bayer Healthcare Ag | New heteroaryl-substituted piperidine compounds are protease-activated receptor antagonists useful for the treatment and/or prophylaxis of e.g. cardiovascular diseases, thromboembolic diseases, tumors, stroke, hypertension and asthma |
DE102008010221A1 (en) | 2008-02-20 | 2009-08-27 | Bayer Healthcare Ag | New heteroaryl-substituted piperidine compounds are protease-activated receptor antagonists useful for the treatment and/or prophylaxis of e.g. cardiovascular diseases, thromboembolic diseases, tumors, stroke, hypertension and asthma |
US8399504B2 (en) | 2008-04-22 | 2013-03-19 | Vitae Pharmaceuticals, Inc. | Carbamate and urea inhibitors of 11Beta-hydroxysteroid dehydrogenase 1 |
US8828985B2 (en) | 2008-04-22 | 2014-09-09 | Vitae Pharmaceuticals, Inc. | Carbamate and urea inhibitors of 11-beta-hydroxysteroid dehydrogenase 1 |
US8536169B2 (en) | 2008-06-05 | 2013-09-17 | Glaxo Group Limited | Compounds |
US8765743B2 (en) | 2008-06-05 | 2014-07-01 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US8658635B2 (en) | 2008-06-05 | 2014-02-25 | Glaxosmithkline Intellectual Property Development Limited | Benzpyrazol derivatives as inhibitors of PI3 kinases |
US8614213B2 (en) | 2008-08-07 | 2013-12-24 | Novartis Ag | Cyclohexyl amide derivatives and their use as CRF-1 receptor antagonists |
US8273900B2 (en) | 2008-08-07 | 2012-09-25 | Novartis Ag | Organic compounds |
US8445515B2 (en) | 2008-12-22 | 2013-05-21 | Chemocentryx, Inc. | C5aR antagonists |
US10660897B2 (en) | 2008-12-22 | 2020-05-26 | Chemocentryx, Inc. | C5aR antagonists |
US8906938B2 (en) | 2008-12-22 | 2014-12-09 | Chemocentryx, Inc. | C5aR antagonists |
US8524751B2 (en) | 2009-03-09 | 2013-09-03 | GlaxoSmithKline Intellecutual Property Development | 4-oxadiazol-2-YL-indazoles as inhibitors of P13 kinases |
WO2010108608A1 (en) | 2009-03-23 | 2010-09-30 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines as par-1 antagonists |
DE102009014484A1 (en) | 2009-03-23 | 2010-09-30 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
US8580797B2 (en) | 2009-04-30 | 2013-11-12 | Glaxo Smith Kline Intellectual Property Development Limited | Compounds |
US10946025B2 (en) | 2009-04-30 | 2021-03-16 | Glaxo Group Limited | Compounds |
US8575162B2 (en) | 2009-04-30 | 2013-11-05 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US8586590B2 (en) | 2009-04-30 | 2013-11-19 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US8609657B2 (en) | 2009-04-30 | 2013-12-17 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US10624898B2 (en) | 2009-04-30 | 2020-04-21 | Glaxo Group Limited | Compounds |
US10383879B2 (en) | 2009-04-30 | 2019-08-20 | Glaxo Group Limited | Compounds |
US8586583B2 (en) | 2009-04-30 | 2013-11-19 | Glaxosmithkline Intellectual Property Development Limited | Compounds |
US8440657B2 (en) | 2009-05-27 | 2013-05-14 | Bayer Intellectual Property Gmbh | Substituted piperidines |
US8084469B2 (en) | 2009-05-27 | 2011-12-27 | Bayer Pharma Aktiengesellschaft | Substituted piperidines |
DE102009022895A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
WO2010136137A1 (en) * | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
DE102009022896A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
US8202862B2 (en) | 2009-05-27 | 2012-06-19 | Bayer Intellectual Property Gmbh | Substituted piperidines |
DE102009022894A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
DE102009022897A1 (en) | 2009-05-27 | 2010-12-02 | Bayer Schering Pharma Aktiengesellschaft | Substituted piperidines |
US8822452B2 (en) | 2009-06-04 | 2014-09-02 | Laboratorios Salvat, S.A. | Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1 |
US8524894B2 (en) | 2009-06-04 | 2013-09-03 | Laboratorios Salvat, S.A. | Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1 |
US9573897B2 (en) | 2010-06-24 | 2017-02-21 | Chemocentryx, Inc. | C5AR antagonists |
US9126939B2 (en) | 2010-06-24 | 2015-09-08 | Pingchen Fan | C5AR antagonists |
US10035768B2 (en) | 2010-06-24 | 2018-07-31 | Chemocentryx, Inc. | C5aR antagonists |
US8993576B2 (en) | 2010-10-27 | 2015-03-31 | Glaxo Group Limited | 6-(1H-indol-4-yl)-4-(5-{[4-1-methylethyl)-1-piperazinyl]methyl}-1,3-oxazol-2-yl)-1H-indazole hemi succinate salt, polymorphs and pharmaceutical compositions thereof |
US10266492B2 (en) | 2014-09-29 | 2019-04-23 | Chemocentryx, Inc. | Processes and intermediates in the preparation of C5aR antagonists |
US10532982B2 (en) | 2014-09-29 | 2020-01-14 | Chemocentryx, Inc. | Processes and intermediates in the preparation of C5aR antagonists |
US9745268B2 (en) | 2014-09-29 | 2017-08-29 | Chemocentryx, Inc. | Processes and intermediates in the preparation of C5aR antagonists |
US11845729B2 (en) | 2014-09-29 | 2023-12-19 | Chemocentryx, Inc. | Processes and intermediates in the preparation of C5aR antagonists |
US11285138B2 (en) | 2016-01-14 | 2022-03-29 | Chemocentryx, Inc. | Method of treating C3 glomerulopathy |
US11779576B2 (en) | 2016-01-14 | 2023-10-10 | Chemocentryx, Inc. | Method of treating C3 glomerulopathy |
EP3235813A1 (en) | 2016-04-19 | 2017-10-25 | Cidqo 2012, S.L. | Aza-tetra-cyclo derivatives |
WO2017182464A1 (en) | 2016-04-19 | 2017-10-26 | Cidqo 2012, S.L. | New aza- tetracyclo derivatives |
US10858359B2 (en) | 2016-06-07 | 2020-12-08 | Jacobio Pharmaceuticals Co., Ltd. | Heterocyclic ring derivatives useful as SHP2 inhibitors |
US10988466B2 (en) | 2017-03-23 | 2021-04-27 | Jacobio Pharmaceuticals Co., Ltd. | Heterocyclic derivatives useful as SHP2 inhibitors |
Also Published As
Publication number | Publication date |
---|---|
NZ551603A (en) | 2010-11-26 |
WO2006012226A3 (en) | 2006-07-27 |
US20120040964A1 (en) | 2012-02-16 |
US8071624B2 (en) | 2011-12-06 |
US8288417B2 (en) | 2012-10-16 |
AU2005267289A1 (en) | 2006-02-02 |
EP1758580A4 (en) | 2008-01-16 |
IL179520A0 (en) | 2007-05-15 |
JP2008504275A (en) | 2008-02-14 |
EP1758580A2 (en) | 2007-03-07 |
CR8793A (en) | 2007-08-28 |
CA2570637A1 (en) | 2006-02-02 |
EA200700117A1 (en) | 2007-06-29 |
MXPA06014574A (en) | 2007-03-12 |
US20060004049A1 (en) | 2006-01-05 |
BRPI0512535A (en) | 2008-03-25 |
ECSP067114A (en) | 2007-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8288417B2 (en) | N-substituted piperidines and their use as pharmaceuticals | |
CA2565238C (en) | Amido compounds and their use as pharmaceuticals | |
US20060122197A1 (en) | Amido compounds and their use as pharmaceuticals | |
US20050288317A1 (en) | Amido compounds and their use as pharmaceuticals | |
US20060122210A1 (en) | Inhibitors of 11-beta hydroxyl steroid dehydrogenase type I and methods of using the same | |
WO2006012227A2 (en) | Amido compounds and their use as pharmaceuticals | |
US20060009471A1 (en) | Amido compounds and their use as pharmaceuticals | |
US20070293529A1 (en) | Tetrasubstituted ureas as modulators of 11-beta hydroxyl steroid dehydrogenase type 1 | |
US20070066584A1 (en) | Amido compounds and their use as pharmaceuticals | |
EP1773773A1 (en) | Amido compounds and their use as pharmaceuticals | |
WO2007089683A1 (en) | Amido compounds and their use as pharmaceuticals | |
KR20070022792A (en) | ?-substituted piperidines and their use as pharmaceuticals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 179520 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 551603 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2570637 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005267289 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005763380 Country of ref document: EP Ref document number: 3607/KOLNP/2006 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: CR2006-008793 Country of ref document: CR |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/014574 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12006502564 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 2005267289 Country of ref document: AU Date of ref document: 20050623 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005267289 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067027149 Country of ref document: KR Ref document number: 06128791 Country of ref document: CO |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580021164.1 Country of ref document: CN Ref document number: 2007518277 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1200700135 Country of ref document: VN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9823 Country of ref document: GE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200700117 Country of ref document: EA |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067027149 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005763380 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0512535 Country of ref document: BR |