WO2006011589A1 - Method of preparing artificial gene population and artificial protein population by random polymerization of motif sequences of multiple types - Google Patents

Method of preparing artificial gene population and artificial protein population by random polymerization of motif sequences of multiple types Download PDF

Info

Publication number
WO2006011589A1
WO2006011589A1 PCT/JP2005/013913 JP2005013913W WO2006011589A1 WO 2006011589 A1 WO2006011589 A1 WO 2006011589A1 JP 2005013913 W JP2005013913 W JP 2005013913W WO 2006011589 A1 WO2006011589 A1 WO 2006011589A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial
motif
population
sequences
sequence
Prior art date
Application number
PCT/JP2005/013913
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotaka Shiba
Hirohide Saito
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2006527869A priority Critical patent/JP4568723B2/en
Publication of WO2006011589A1 publication Critical patent/WO2006011589A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention aims to create a functional artificial gene or a functional artificial protein, an artificial gene population in which a large number of motif sequences are randomly polymerized, an artificial protein population encoded by the artificial gene population, and production thereof Regarding the law.
  • evolutionary molecular engineering in vitro molecular evolution
  • a strategy to obtain a molecule with the desired function and activity by "selection" from a random sequence group prepared in advance rather than rationally designing artificial molecules is adopted.
  • evolutionary molecular engineering consists of (1) selecting a small molecule with the desired activity from a combinatorial molecular population (DNA or protein) with various sequence diversity, and (2) selecting the gene The same reaction is repeated after amplification by gene amplification reaction (PCR), and (3) an artificial molecule having the desired reaction activity is evolved.
  • the error prone PCR method is a method of preparing a mutant population by randomly introducing base substitutions into a parent gene by performing PCR amplification in the presence of manganese ions with the parent gene as a saddle type.
  • the efficiency of introducing a base substitution mutation is increased by the error prone PCR method, there is a problem that not only amino acid substitution but also the probability that a codon encoding an amino acid is replaced with a stop codon is increased.
  • unintended deletion mutations are likely to occur under conditions that increase the mutation rate (Trends Biochem. Sci. 26: 100-106, 2001). There is a problem that the coded stop codon appears.
  • error prone PCR is usually performed under conditions that introduce a low mutagenesis rate, ie, substitution of 2 to 3 bases per gene and a mutation rate of 1 residue as an amino acid. For this reason, it is considered difficult to create artificial molecules that greatly change functions and substrate affinity.
  • DNA shuffling is a method of preparing a population of mutants by homologous recombination in vitro using a gene DNA encoding a protein and one or more similar DNAs having sequence homology. Can do.
  • the DNA shirt-fling method is based on homologous recombination, recombination between relatively similar sequences is possible. It is limited to. That is, it is difficult to shuffle between DNAs with low sequence similarity.
  • a series of complicated operations such as DNA cleavage and ligation are required.
  • a method using a gene population in which a part or all of a natural gene sequence is randomized by chemical synthesis is effective for the production of functional nucleic acids such as artificial RNA enzymes (ribozymes).
  • functional artificial proteins have not been created. The reasons for this are as follows: (1) Genes with long ORFs (Open Reading Frames) are difficult because stop codons that stop protein translation appear frequently in populations with random mutations. 2) Since the sequence space composed of 20 types of proteins is vast compared to the sequence space of nucleic acids composed of 4 types of bases, it is extremely difficult to select functional proteins from random sequence populations. It is difficult.
  • a microgene serving as a repetitive unit is a motif sequence corresponding to the intended function or structure in three reading frames using the multifunctional base sequence design method invented by the present inventor (JP 2001-352990 A). Since it is designed to code, an artificial gene population with high latent ability can be prepared.
  • Patent Document 1 Japanese Patent No. 3415995.
  • Patent Document 2 JP 2001-352990 A.
  • Non-patent literature l Science, 219, 666-671, 1983.
  • Non-Patent Document 2 Science, 67,938-947,1997.
  • Non-Patent Document 3 PCR Methods Appl, 2: 28-33, 1992.
  • Non-Patent Document 4 Nature, 370: 389-391, 1994.
  • Non-Patent Document 5 Trends Biochem. Sci. 26: 100-106, 2001.
  • Non-Patent Document 6 Proc. Natl. Acad. Sci. USA, 94: 3805-3810, 1997.
  • the subject of the present invention is a functional artificial gene or!
  • Tsuji provides an artificial gene group in which multiple motif sequences are randomly polymerized, an artificial protein group encoded by the human gene group, and a method for producing the same.
  • a single strand that encodes a motif sequence at least in part can randomly polymerize DNA that is not subject to high overall sequence similarity, and avoids the occurrence of stop codons. It is an object of the present invention to provide a method for producing a combinatorial artificial gene and an artificial protein population that enables random polymerization of DNA sequences having a long translation reading frame (ORF) by randomly polymerizing DNA.
  • ORF long translation reading frame
  • the present inventors constructed at least three kinds of single-stranded DNAs containing sequences encoding arbitrary motif sequences, and the single-stranded DNA sequences.
  • a base sequence capable of forming a complementary base pair with each other in a part of the terminal sequence of the DNA mixing the various single-stranded DNAs in an arbitrary ratio, and allowing DNA polymerase to act on them.
  • ORFs long-range translational reading frames
  • the present invention constructs at least three kinds of DNA sequences of single-stranded DNA containing a sequence encoding an arbitrary motif sequence, and a part of the terminal sequence of the single-stranded DNA sequence is
  • a DNA polymerase is allowed to act on a reaction mixture in which various single-stranded DNAs constructed by the method are mixed at an arbitrary ratio. It consists of proceeding a random polymerization reaction between DNAs encoding, and creating an artificial gene population in which multiple motif sequences are randomly polymerized.
  • the motif sequence in the present invention it is desirable to construct a single-stranded DNA in which at least 3 types, preferably 4 or more types of motif sequences exist, respectively.
  • a part of the complementary base pair of the terminal sequence of the single-stranded DNA sequence can usually be introduced at the 3 'end, and the number of the complementary base pairs is 6 bases. It is preferable that this is the case.
  • one or more bases that are not paired with the partner base are preferably present in the range of 1 to 3, so that the efficiency of the polymerization reaction by DNA polymerase can be increased.
  • single-stranded DNA containing a sequence encoding an arbitrary motif sequence is based on a functional motif sequence, a structural motif sequence, a human peptide sequence obtained by evolutionary molecular engineering, or protein engineering knowledge. It can be a microgene constructed on the basis of the designed sequence.
  • stop codons can be excluded in advance for each translation reading frame. Furthermore, in the present invention, by adding a restriction enzyme recognition sequence to a single-stranded DNA that encodes multiple types of motif sequences, the frequency of occurrence of motif sequences used in random polymerization reactions can be directly monitored by restriction enzyme reactions. As described above, an artificial gene population can be produced.
  • the artificial gene population produced by the method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized according to the present invention further translates the artificial gene population and converts it into an artificial protein.
  • an artificial protein population in which a large number of motif sequences are randomly inserted can be produced.
  • an artificial gene population is produced by randomly polymerizing single-stranded DNAs encoding multiple types of motif sequences without inserting base mutations or deletions. By translating the gene population, it is possible to produce an artificial protein population in which a large number of motif sequences are randomly inserted without depending on the frame shift.
  • a single gene DNA encoding a multiple types of motif sequences is randomly polymerized while inserting base mutations and deletions to produce a human gene population, and the artificial gene population is translated into a frame.
  • an artificial protein population can be created in which many types of motif sequences are randomly inserted.
  • prepared artificial gene populations in which a large number of the motif sequences of the present invention are randomly polymerized or artificial protein populations into which various motif sequences are randomly inserted are functional groups of these populations.
  • Functional artificial genes or functional artificial proteins can be created by screening genes or functional proteins.
  • the present invention provides [1] (1) constructing at least three or more DNA sequences of single-stranded DNA containing a sequence encoding an arbitrary motif sequence, and (2) A complementary base sequence is introduced so that part of the terminal sequence of the single-stranded DNA sequence can form a complementary base pair with each other, and (3) various single-stranded DNAs constructed by the method are arbitrarily selected.
  • a method for producing an artificial gene population in which a large number of motif sequences according to [1] or [2] are randomly polymerized, and [4] the number of complementary base pairs is 6
  • the concentration of the double-stranded DNA varies within the range of 0.2 ⁇ to 20 ⁇ .
  • the present invention also [9] mixes various constructed single-stranded DNAs into a reaction solution and acts from the 3 ′ end to the end with the complementary base sequence of the introduced single-stranded DNA as a saddle.
  • a single-strand D ⁇ containing a sequence encoding an arbitrary motif sequence is a functional motif sequence, structural motif sequence, evolution Based on artificial peptide sequences obtained from molecular engineering, or sequences designed based on protein engineering knowledge
  • a method for preparing an artificial gene population in which a large number of motif sequences are randomly polymerized according to any one of the above [1] to [8], which is a constructed microgene, and [11] a mouth-mouth gene The multi-motif sequence described in [10] above, wherein the stop codon is excluded in each translation reading frame in the single-stranded DNA sequence to be synthesized.
  • a method for creating a gene population and [12] single-strand DNA strength containing sequences encoding arbitrary motif sequences Random polymerization reaction by adding restriction enzyme recognition sequences to single-strand DNA encoding multiple motif sequences
  • the multiple motif sequences described in any one of [1] to [11] above are randomly polymerized so that the frequency of the motif sequences used in can be directly monitored by restriction enzyme reaction Method for manufacturing an artificial gene population, consisting of [13] above [1] to [12] Artificial genes Group The fabricated by work made method of any, many species motif sequence was polymerized randomly.
  • the present invention provides [14] a beta incorporating a gene produced by a method for producing an artificial gene population in which the multiple motif sequences according to any one of [1] to [12] are randomly polymerized, A method of creating artificial protein populations that randomly insert various motif sequences characterized by introduction and expression into cells, and [15] single-stranded DNA encoding multiple motif sequences
  • a beta incorporating a gene produced by a method for producing an artificial gene population in which the multiple motif sequences according to any one of [1] to [12] are randomly polymerized A method of creating artificial protein populations that randomly insert various motif sequences characterized by introduction and expression into cells, and [15] single-stranded DNA encoding multiple motif sequences
  • an artificial gene population is produced by random polymerization without insertion, and a polymorphic molecular population is obtained without depending on frameshift by translating the artificial gene population.
  • FIG. 1 is a diagram showing an outline of production of an artificial protein population using the motif sequence of the present invention.
  • FIG. 2 is a diagram showing a design of a single-stranded DNA containing a restriction enzyme recognition sequence (top) and an electrophoretogram of a random polymerization reaction in Examples of the present invention.
  • M represents a single DN A.
  • FIG. 3 is a diagram showing the results of confirming multiple types of random DNA polymerization by restriction enzyme reaction in Examples of the present invention.
  • FIG. 4 is a diagram showing the sequence of a DNA polymerization product having a restriction enzyme recognition motif in an example of the present invention.
  • FIG. 5 is a diagram showing design (A) and design (B) of single-stranded DNA having a BH1-B H4 motif present in an apoptosis-regulating protein in an example of the present invention.
  • Design A was designed to form a complementary base pair with the 3 ends of KY-1372, 3 ends of KY-1372, KY-1375, KY-1375, and KY-1377.
  • Design B was designed to form a complementary base pair with the ends of KY-1372 and KY-1379 and the ends of KY-1374 and KY-1375.
  • FIG. 6 is an electrophoretogram of a single-stranded DNA polymerization reaction containing a BH1-BH4 motif in an example of the present invention. o It was confirmed that the four types of single-stranded DNA synthesized in Design A and Design B proceeded with the polymerization reaction.
  • FIG. 7 is a diagram showing the results of confirmation of single-stranded DNA random polymerization containing a BH1-BH4 motif by restriction enzyme reaction in an example of the present invention. Electrophoresis after the restriction enzyme reaction confirmed that each motif polymerized randomly.
  • FIG. 8 a, b and c are artificial gene populations obtained by design A in the examples of the present invention. It is a figure which shows the arrangement
  • FIG. 9 is a diagram showing the results of confirming the expression of an artificial protein in mammalian cells in an example of the present invention.
  • the gene for artificial protein A6 obtained by design A was introduced into breast cancer cell line MCF-7, and its expression was confirmed by immunostaining with Alexa-His antibody. These artificial proteins were found to be localized and expressed in mitochondria.
  • FIG. 10 is a diagram showing the sequences of the artificial gene population obtained by design B and the artificial protein population that is the translation product in the example of the present invention.
  • FIG. 11 In the examples of the present invention, the results of the design of single-stranded DNA having BH1-BH4 motif (C, D) and electrophoretic diagram of single-stranded DNA polymerization reaction present in the apoptosis-control protein are shown.
  • FIG. In design (C), four types of single-stranded DNA (KY-137 2, KY-1389, KY-1391) were mixed and polymerized in equal amounts, whereas in design (D), KY-1372: KY -1389: KY- 1390: KY-1391 2: 2: 0. 4: 0. 3 Encoding ⁇ ⁇ 4 and ⁇ 3 motifs ⁇ — 1372 and ⁇ — 1389 Increase the ratio of polymerization reaction Added to the system.
  • FIG. 12 is a diagram showing the results of confirming single-stranded DNA random polymerization containing ⁇ 1- ⁇ 4 motifs by restriction enzyme reaction in Examples of the present invention. In designs C and D, partial cleavage by three restriction enzymes was confirmed.
  • FIG. 13] a and b are diagrams showing the sequences of an artificial gene population obtained by design C and an artificial protein population which is a translation product thereof, in an example of the present invention.
  • FIG. 14 is a diagram showing the sequences of an artificial gene population obtained by design D and an artificial protein population that is a translation product thereof, in Example of the present invention.
  • an artificial protein population (C) and an artificial protein population (D) are provided in an embodiment of the present invention.
  • FIG. 4 is a diagram showing the results of comparing the appearance frequencies of BH1-BH3 motifs in FIG.
  • the protein population (D) prepared by increasing the concentration of single-stranded DNA (KY-1389) encoding the BH3 motif the frequency of appearance of the BH3 motif increased.
  • FIG. 16 is a diagram showing various localization patterns of artificial proteins in human cancer cells in Examples of the present invention.
  • FIG. 17 shows a gene encoding artificial protein D29 obtained in the examples of the present invention.
  • FIG. 6 is a diagram quantifying the number of apoptotic cells induced in breast cancer cell line MCF-7 by introduction of. The effect was equivalent to the natural apoptosis-inducing protein Bax, and about 30% of the cells were apoptosis-positive cells. In cells transfected with the control artificial protein A10 gene, we found that such apoptosis-positive cells were not confirmed.
  • FIG. 18 is a graph showing that apoptosis is effectively induced in cells expressing D29 in the examples of the present invention. Double staining by confocal microscopy (green; expressed protein, red; apoptosis-positive cells) confirmed the correlation between cells expressing D29 and apoptosis-positive cells. It was found that apoptosis was not induced in cells expressing the control artificial protein A10.
  • FIG. 19 is a diagram quantifying the inhibitory activity of the growth inhibition induced by the cervical cancer cell line HeLa by introducing the gene encoding the obtained artificial protein A10 or D16 in the examples of the present invention.
  • Natural type apoptosis-inducing protein BIM, or anticancer drug etoposide (VP-16) or staurosporine (STS) reduces the number of HeLa cells (quantified by WST-1; see control pcDNA), but introduces A10 or D16 gene As a result, the proliferation activity was partially recovered.
  • This inhibitory effect on growth inhibition was also observed in cells transfected with a plasmid encoding the gene for Bel-xL, a natural apoptosis-inhibiting protein.
  • FIG. 20 is a view showing that apoptosis induced by the obtained artificial protein A10 or D16 force STS can be suppressed in Examples of the present invention.
  • the medium was replaced with a medium containing 125 nM STS, and the cells were further cultured for 23 hours.
  • apoptosis was effectively induced in the cells transfected with the control pcDNA or D29, whereas in the cells transfected with the apoptosis-inhibiting Bel—xL gene.
  • the number of TUNEL positive cells decreased.
  • Apoptosis was partially suppressed in cells transfected with A10 and D16 genes.
  • FIG. 21 is a diagram showing that cells expressing the obtained artificial protein D16 become apoptosis-negative in the examples of the present invention.
  • the artificial protein was greened with Myc-secondary antibody and FITC secondary antibody. Apoptotic cells were double-stained with TMR-red label (red). In cells expressing D16 and Bcl— x L, apoptosis was suppressed. Cells that expressed D29 were confirmed to be positive for apoptosis.
  • the present invention aims to effectively create a functional artificial gene or functional artificial protein, an artificial gene population in which a large number of motif sequences are randomly polymerized, and an artificial protein population encoded by the artificial gene population And providing a method for producing the same.
  • the method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized according to the present invention consists of (1) constructing at least three types of DNA sequences of single-stranded DNA containing sequences encoding arbitrary motif sequences. And (2) introducing a complementary base sequence so that part of the terminal sequence of the single-stranded DNA sequence can form a complementary base pair with each other, and (3) various single strands constructed by the method.
  • the method for producing an artificial gene population of the present invention will be specifically described with reference to an example.
  • multiple types (multiple types) of single-stranded DNA containing the desired motif sequence are synthesized.
  • synthesis is carried out so that a part of the three rules of a plurality of types of single-stranded DNA can form complementary base pairs.
  • the number of complementary base pairs is preferably 6 bases or more.
  • it is synthesized so that there are one or more bases (preferably 1 to 3 bases) that are not paired with the partner base at both ends of the complementary base pair. By this operation, the efficiency of the polymerization reaction can be increased.
  • the reaction when the reaction is performed using four types of single-stranded DNA, the remaining three types of single-stranded DNA 3 'sequences are complementary to the 3' sequence of one type of single-stranded DNA. It may form, or two types of single-stranded DNA with homologous ⁇ -terminal sequences, while the other two types of single-stranded DNA You can design your DNA sequences so that they are evenly complementary.
  • the concentration of single-stranded DNA added to the reaction system can vary from 0.2 / z / to 20 / ⁇ M, and the concentration of single-stranded DNA to be used for the polymerization reaction can be increased. To the reaction system.
  • the frequency of motif sequences used in random polymerization reactions can be controlled.
  • the complementary regions of these multiple types of single-stranded DNA function as a trapezoid for a PCR reaction using a thermostable polymerase.
  • a thermostable DNA polymerase containing 3, ⁇ 5 exonuclease activity
  • a double-stranded DNA polymer population in which multiple types of single-stranded DNA containing a motif sequence are randomly extended and ligated is synthesized under the conditions of PCR using DNA polymerase (eg, Vent polymerase), for example 94
  • DNA polymerase eg, Vent polymerase
  • One cycle of 10 seconds at 55 ° C and 60 seconds at 55 75 ° C is performed for 7 minutes at 69 ° C until DNA polymerization can be confirmed (30 to 65 cycles).
  • the method for producing the artificial gene population of the present invention has been specifically described above with examples. However, in the method for producing the artificial gene population of the present invention, a variety of single-stranded D as described above can be used. Control the frequency of motif sequences used in random polymerization reactions by adjusting the combination of NA's complementary base pairs and the concentration of each Z or multiple single-stranded DNA Is possible.
  • a plurality of motif sequences are arbitrarily selected and randomly polymerized to produce an artificial gene population and an artificial protein population. Is constructed based on sequences such as functional motif sequences, structural motif sequences, artificial peptide sequences obtained from evolutionary molecular engineering, or sequences designed based on protein engineering knowledge. It is possible to create an artificial gene population by predicting a certain degree of function with a reasonable rationality.
  • An artificial protein population produced by the method for producing an artificial gene population of the present invention in which various motif sequences are randomly inserted is introduced into a host cell and expressed by introducing a vector incorporating the gene into the host cell. It is possible to produce artificial protein populations in which various motif sequences are randomly inserted.
  • Vectors used for the production of the artificial protein population, host cells and their gene expression methods include vectors, host cells and gene expression methods known in the art.
  • An artificial gene population in which a large number of motif sequences produced by the method of the present invention are randomly polymerized, or an artificial protein population into which various motif sequences are randomly inserted, is used for the artificial gene population or artificial protein population. By screening functional genes or functional proteins, functional artificial genes or functional artificial proteins can be created.
  • FIG. 1 shows a strategy for producing an artificial protein population using the motif sequence of the present invention.
  • This method consists of (1) design of multiple types of single-stranded DNA encoding motif sequences, (2) random polymerization reaction between multiple types of single-stranded DNA, and (3) efficiency of random polymerization reaction by restriction enzyme cleavage reaction. Study, (4) Transformation of random polymer into E. coli and sequencing, (5) Expression of artificial protein and screening of functional artificial protein in E. coli or mammalian cells.
  • an artificial gene and an artificial protein population are generally prepared by random polymerization of four types of motif sequences.
  • the number of motifs that can be used is not limited to four, (more than that is theoretically possible). Specific experimental examples are given below.
  • the fourth to ninth sequences (underlined) of KY-1354, KY-1355, KY-1356, KY-1357 are the restriction enzyme recognition sequences GAAT TC (EcoRI), AAGCTT (HindIII), TCTAGA, respectively. (Xbal) and AGATCT (Bglll).
  • the 10th to 15th 6 bases of KY-1354 (5, -GGCGGG-3,) are the 6th base of 11th to 16th of KY-1355, KY-1356, KY-1357 (5 CCCGCC -Designed to form complementary base pairs with 3 ').
  • adenine (A) was introduced at the ⁇ terminal and 10th position of KY-1355, KY-1356, and KY-1357 so that a complementary base pair of 6 bases or more could not be formed with KY-1354. Furthermore, each of the four types of single-stranded DNA has a length (16-17 bases), Tm (: ⁇ 58 ° C), and GC content (65-69%) close to each other. Strand DNA was designed.
  • This reaction solution contains 10 X ThermoPol Reaction Buffer (NEW ENGLAND BioLabs'lx ThermoPol Reaction Buffer: 20 mM 2-amino-2-hydroxymethyl-1,3, monopropanediol hydrochloride (hereinafter tris-hydrochloric acid) pH 8.8, 10 mM Vent DNA polymerases with potassium chloride, 10 mM ammonium sulfate, 2 mM magnesium sulfate, 0.1% Triton X—100) 5; z L, 350 ⁇ (1 ', 3' ⁇ 5 'etasonuclease activity ( 2 units / ⁇ L, NEW EN GLAND BioLabs) 2.6 L and 4 types of single-stranded DNA (KY— 1354— KY— 135 7) was mixed in the following 6 ratios.
  • 10 X ThermoPol Reaction Buffer NW ENGLAND BioLabs'lx ThermoPol Reaction Buffer: 20 mM 2-amin
  • KY— 1354 20 pmol only (1 DNA
  • the DNA polymer was cleaved using an arbitrary restriction enzyme.
  • 50 ⁇ L of 5 kinds of reaction solutions containing different restriction enzymes were prepared as follows. 5 ⁇ L of the above DNA polymerization reaction solution, 10 ⁇ restriction enzyme buffer B (Hindlll, EcoRI), M (BglII), or H (Xbal) 5 ⁇ L, (Roche Diagnostics, Basel), restriction enzyme (Roche Diagnostic, Basel) has (1) no enzyme, (2) HindllKlOunits / ⁇ L) 2 ⁇ L, and (3) BglII (lOunits / ⁇ L) for each of the five reaction solutions.
  • Random polymerization reaction solution between the above DNA sequences is commercially available Zero Blunt TOPO PCR
  • Cloning and sequencing were performed using Cloning Kit (Invitrogen, CA).
  • the ligation reaction is performed on a 6 ⁇ L reaction scale, and this reaction solution contains 1 ⁇ L of DNA polymerization product, 1 L of Salt Solution, 1 L of TOPO vector, and 3 ⁇ L of ultrapure water.
  • 2 ⁇ L of the reaction solution was mixed with TopOlOcell (Invitrogen) and transformed.
  • Select 18 clones containing the insert purify the plasmid with QIAGEN mini kit (Qiagen), and sequence with the capillary sequencer CEQ2000XL DNA analyzer (Beckman) by dye termination method using DTCS cycle sequence reaction kit (Beckman) It was determined.
  • FIG. 4 shows three clones (EHBX1 to EHBX3: SEQ ID NOs: 6, 7, and 8) obtained from the polymer power obtained by mixing four kinds of single-stranded DNAs of KY-1356 and KY-1357. As shown in FIG. 4, an artificial gene population in which DNA containing 3 or 4 kinds of restriction enzyme recognition sequences was randomly polymerized at an arbitrary ratio could be obtained.
  • BcHd a member of the family, has been shown to be important in inhibiting apoptosis, and Noxa is important in promoting apoptosis.
  • the partial sequence of BH1, BH2, and BH4 motifs in human BcHd protein and the partial sequence of BH3 motif in hu man Noxa protein are used as motif sequences for artificial protein population creation. Tried. Part encoding the following peptide sequence Minutes were selected from each BH1-BH4 motif.
  • BH2 ENGG WDTF
  • BH3 LRRFGDKLN ⁇
  • BH4 RELWDFL.
  • KY-1372 (SEQ ID NO: 9), KY-1377 (SEQ ID NO: 10), KY-1375 (SEQ ID NO: 11), KY-1374 (SEQ ID NO: 12) are the restriction enzyme recognition sequences GTCGAC (Sail), It was designed to include AAGCTT (HindIII), AGATCT (BglII), and GAATTC (EcoRI) ( Figure 5, Design A, underlined).
  • KY— 1372 3 ′ end 7 bases (5,-GGCGGGG-3,), KY— 1377, KY— 1375, KY-1374 ⁇ end 7 bases (5 '-CCCCGCC-3') It was designed to form a complementary base pair.
  • adenine (A) and cytosine (C) were inserted so that no interaction of 7 base pairs or more was formed at the 9th base from the ⁇ terminal and ⁇ terminal of KY-1372.
  • the length (40-45), GC base content (55-65%), intramolecular hairpin formation ability, and Tm are close to each other. Designed as follows.
  • the composition of this reaction solution is 5 ⁇ L of 10 X ThermoPol Reaction Buffer (same as Example 1), 2.6 L of 350 ⁇ M dNTP ⁇ Vent DNA polymerases (2 units / ⁇ L, NEW ENGLAND BioLabs), and Four types of single-stranded DNA (KY-1372, KY-1377, KY-1375, KY-1374) were mixed at various ratios, and the same DNA random polymerization reaction as in Example 1 was performed.
  • a pretreatment for the polymerization reaction a reaction was carried out at 94 ° C for 10 minutes and at 69 ° C for 10 minutes.
  • the polymerization reaction temperature was set to 72 ° C.
  • the polymerization reaction cycle was performed at 94 ° C for 10 seconds and at 55 ° C for 60 seconds, and 40 cycles of the reaction proceeded. [0038] After completion of the polymerization reaction, an elongation termination reaction was carried out at 69 ° C for 7 minutes.
  • the DNA polymerization product was electrophoresed at 100 V for 15 minutes using 1.0% TAE agarose gel (Agarose ME Iwai Chemical Tokyo) and Mupid electrophoresis apparatus (Cosmo Bio, Tokyo) to confirm the polymerization reaction (Fig. 6). .
  • the DNA polymer was cleaved using an arbitrary restriction enzyme.
  • 50 ⁇ L of five reaction solutions containing different restriction enzymes were prepared as follows. 5 ⁇ L of DNA polymerization reaction solution, 10 ⁇ restriction enzyme buffer H (SalI, or EcoRI), or 5 ⁇ L of M (Hindm, or Bglll) (Roche Diagnostics, Basel), restriction enzyme (Rochedai (Agnostic, Basel) has (1) no enzyme, (2) Sail (40units / ⁇ L) ⁇ 2 ⁇ (3) HindIII (10units Z ⁇ L) in 2 ⁇ m for each of the five reaction solutions.
  • the DNA polymerization reaction product containing the BH1-BH4 motif was cloned and sequenced using a commercially available pcDNA3.1Directiona 1 TOPO Expression Kit (Invitrogen, CA).
  • an artificial gene was ligated into a mammalian expression vector (pcDNA3.1D / V5-His-TOPO, Invitrogen) for screening functional artificial proteins in mammalian cell systems.
  • the ligation reaction is performed on a 6 ⁇ L scale. Polymerization reaction product l / L, Salt Solution 1 L, TOPO vector 1 L, ultrapure water 3 L force S are included.
  • the reaction solution was reacted at room temperature for 30 minutes, the 2 / ⁇ reaction solution was mixed with Ding 0-10 ⁇ 11 (1 nvitrogen), allowed to stand on ice for 30 minutes, and transformed. From the screening PCR, 10 types of clones containing inserts were selected, and the plasmids were purified with QIAGEN mini kit (Qiagen). The sequence was determined with (Beckman) (SEQ ID NO: 13-42).
  • FIG. 8 The gene sequence and amino acid sequence of the obtained artificial protein are shown in Fig. 8 (SEQ ID NOs: 13-42).
  • Figure 8 showed that an artificial protein population in which artificial DNA encoding the BH1-BH4 motif was randomly inserted could be created.
  • the motif depends on the frame shift that occurs during the DNA polymerization reaction.
  • the gene was designed to be introduced (the reading frame would be shifted if no frame shift occurred) o Many reading frame arrangements different from the reading frame encoding the BH1-BH4 motif appeared as shown in Fig. 8. .
  • a library can be created using multiple motif sequences, but sequence diversity can be increased by using sequences in different translation reading frames.
  • a plasmid encoding the gene for MxA6 (see Fig. 8, a, b, c) was used as one of the representative human breast cancer cell lines, MCF-7
  • the gene was introduced into.
  • V pcDNA vector (Invitrogen) that does not encode an artificial protein was introduced into cells.
  • MCF-7 was fixed with methanol 24 hours after gene introduction, and the expression of histidine-tag and artificial protein was confirmed by immunostaining with Alexa-His-antibody (Qiagen) (FIG. 9). As shown in Fig.
  • the 3 'end 7 bases of KY-1372 or KY-1379 are complementary to the 7 end bases of KY-1375 and KY-137 4 (5' -CCCCGCC-3 ') It was designed to form a target base pair.
  • the 9th base from the 3 'end and the 3' end of KY-1372 and KY-1379 does not form an interaction of 7 base pairs or more, so that adenine (A) and cytosine (C) are added. Each inserted.
  • the DNA polymer was cleaved using an arbitrary restriction enzyme.
  • the reaction is the same as in the section on the production of artificial protein population (A), except that Xhol is carotenized as a restriction enzyme.
  • the cleavage reaction was allowed to proceed at 37 ° C for 90 minutes.
  • Transformation and sequencing were performed in the same manner as in the section on production of artificial protein population (A).
  • the gene sequence and amino acid sequence of human protein is shown in FIG. 10 (SEQ ID NO: 4453).
  • the BH1-BH4 motif is an artificial protein depending on the frame shift caused by random base deletion or insertion that occurs during the DNA polymerization reaction. Randomly inserted into the population. For this reason, the appearance frequency of the BH1—BH4 motif was relatively low (a lot of different translation reading frames appear).
  • the design of the single-stranded DNA was modified so that the BH1-BH4 motif was randomly polymerized without depending on the frame shift.
  • the other methods are basically the same as the production of the artificial protein population (A). More BH1—BH4 modules without relying on frameshift It is expected in Example 4 that the chief appears in the artificial protein population.
  • KY— 1372 Four types of single-stranded DNAs KY— 1372, KY— 1389 (SEQ ID NO: 54), KY— 1390 (SEQ ID NO: 55), KY — 1391 (SEQ ID NO: 56) was designed (FIG. 11, KY— 1372: BH4 motif, KY— 1389: BH3 motif, KY— 1390: BH1 motif, KY— 1391: BH2 motif).
  • KY-1389, KY-1390, and KY-1391 are sequences with CC attached to the ⁇ end of KY-1377, KY-1374, and KY-1375, respectively.
  • the randomly polymerized BH1-BH4 motif appears in the artificial protein population without depending on the frame shift.
  • KY— 1372, KY— 1389, KY— 1390, and KY— 1391 were designed to include the restriction enzyme recognition sequences GTCGAC (Sail), AAGCTT (Hindlll), GAATTC (EcoRI), and AGATCT (Bglll), respectively. C, underlined).
  • KY— 1372 3 ′ end 7 bases (5, -GG CGGGG-3,) force KY— 1389— KY— 1391 3 ′ end 7 bases (5,-CCCCGCC-3,) and complementary base pair Designed to form.
  • adenine (A) and cytosine (C) were inserted so that no interaction of 7 base pairs or more was formed at the ⁇ terminal of KY-1372 and the ninth base from the ⁇ terminal.
  • the single-stranded DNA random polymerization reaction solution 50 ⁇ L of the single-stranded DNA random polymerization reaction solution was prepared in the same manner as in the section on the production of artificial protein population ( ⁇ ).
  • the polymerization reaction was carried out at 72 ° C and 45 cycles, and the polymerization was confirmed by 1% agarose gel (Fig. 11).
  • Transformation and sequencing were performed in the same manner as in the section on production of artificial protein population (A).
  • the gene and amino acid sequence of the artificial protein obtained by Design C are shown in FIGS. 13a and b (SEQ ID NOs: 57-74).
  • FIGS. 13a and b SEQ ID NOs: 57-74.
  • Fig. 13 we succeeded in obtaining an artificial protein population in which four BH1-BH4 motif sequences appear frequently.
  • the proportions of KY-1 372 and KY-1389 encoding ⁇ ⁇ ⁇ 4 and ⁇ 3 motifs were increased and added to the polymerization reaction system. All the reaction conditions were the same as in the production of the artificial protein population (C) in Example 4.
  • FIG. 11 shows an electrophoretogram of the random polymer
  • FIGS. 14a, b and c show the gene and amino acid sequences of the human protein obtained (SEQ ID NOs: 75 to 100).
  • Fig. 14 we succeeded in creating an artificial protein population in which four motifs appeared frequently, and in particular, the BH4—BH3 motif appeared frequently. In this way, by changing the amount ratio of single-stranded DNA to be mixed during the DNA polymerization reaction, the ratio of the motif contained in the artificial protein population can be controlled.
  • Figure 15 compares the frequency of BH1-BH3 motifs in the artificial protein population (C) and the artificial protein population (D).
  • Example 6 28 clone genes whose protein expression was confirmed were introduced into human breast cancer cell line MCF-7, and the effect on the growth of MCF-7 was examined.
  • a 96-well cell culture plate was seeded with lxlO 4 MCF-7 per well and cultured at 37 degrees for 24 hours. Thereafter, plasmid 0.2 / zg encoding the gene of 28 clones was introduced into MCF-7 using Lipofectamine (20 OO lnvitrogen). 48 hours after gene introduction, the proliferation activity was quantified using tetrazorium salt WST-1 which is an indicator of mitochondrial metabolic activity (Roche). Do not code a control protein! Compared to the growth activity when an empty vector was introduced, one clone out of 28 clones has a D29 force that significantly inhibits the growth of MCF-7. (Approximately 40% growth inhibitory effect over control).
  • TUNEL staining an index for detecting apoptotic cells, was performed (Roche).
  • TUNEL staining fragmented DNA in the early stage of apoptosis can be detected with fluorescently labeled nucleotides.
  • D29 was able to induce apoptosis in MCF-7 to the same extent as the natural cell death-inducing protein Bax (Fig. 17).
  • A10 one of the clones in which cell growth inhibition was not observed by WST-1, was found to be unable to induce apoptosis in MCF-7.
  • the artificial protein population produced by random polymerization of the apoptosis-control motif sequence by this method was found to contain functional artificial proteins capable of inducing apoptosis in breast cancer cells.
  • the clone whose expression was confirmed in Example 6 contained a cell death inhibitory BH4 motif as well as a cell death promoting BH3 motif. Therefore, the possibility of obtaining a cell death-suppressing functional protein having a function opposite to that of the artificial cell death promoting protein of Example 7 from these clones was examined.
  • the genes of 28 clones whose protein expression was confirmed and the natural cell death-promoting protein BIM were introduced into the human cervical cancer cell line HeLa, and the effects of the clones on the growth inhibitory activity of BIM were examined.
  • the cell culture plates 96 Ueru were seeded with 0. 5xl0 4 of HeLa per Ueru were incubated at 37 ° for 24 hours.
  • the artificial gene population production method of the present invention has made it possible to produce an artificial gene population in which a large number of motif sequences are randomly polymerized, which was not possible with the conventional artificial gene population production method. Moreover, it has become possible to produce an artificial protein population encoded by the artificial gene population using the artificial gene population. According to the method for producing an artificial gene population of the present invention, it is possible to randomly polymerize a plurality of types of DNAs, provided that the motif sequence is encoded by at least a part of the gene group, provided that the similarity is high. In addition, by randomly polymerizing single-stranded DNA that avoids the appearance of stop codons, DNA sequences with long translation reading frames (ORF) can be randomly polymerized.
  • ORF long translation reading frames
  • an arbitrary motif sequence is changed based on a sequence such as a functional motif sequence, a structural motif sequence, an artificial peptide sequence obtained by evolutionary molecular engineering, or a sequence designed based on protein engineering knowledge.
  • a sequence such as a functional motif sequence, a structural motif sequence, an artificial peptide sequence obtained by evolutionary molecular engineering, or a sequence designed based on protein engineering knowledge.

Landscapes

  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

In order to create an artificial functional gene or an artificial functional protein, it is intended to provide an artificial gene population obtained via the random polymerization of motif sequences of multiple types, an artificial protein population encoded by the above-described artificial gene population and a method of preparing the same. An artificial gene population obtained via the random polymerization of motif sequences of multiple types is prepared by constructing at least three types of DNA sequences each having a single-stranded DNA containing a sequence encoding an arbitrary motif sequence, transferring a complementary base sequence thereinto so as to allow the formation of a complementary base pair in part of the terminal sequences of the single-stranded DNA sequences with each other, and then treating a liquid reaction mixture, which is prepared by mixing the thus constructed single-stranded DNAs of multiple types at an arbitrary ratio, with DNA polymerase so that random polymerization proceeds among the DNAs encoding the motif sequences. By translating the artificial gene population and converting the same into artificial proteins, an artificial protein population encoded by the motif sequences of multiple types can be prepared.

Description

明 細 書  Specification
多数種モチーフ配列のランダム重合による人工遺伝子及び人工タンパク 質集団の作製法  Production of artificial genes and artificial protein populations by random polymerization of multiple motif sequences
技術分野  Technical field
[0001] 本発明は、機能性人工遺伝子或いは機能性人工タンパク質の創出を目的とする、 多数種モチーフ配列がランダムに重合した人工遺伝子集団、該人工遺伝子集団が コードする人工タンパク質集団、及びその作製法に関する。  [0001] The present invention aims to create a functional artificial gene or a functional artificial protein, an artificial gene population in which a large number of motif sequences are randomly polymerized, an artificial protein population encoded by the artificial gene population, and production thereof Regarding the law.
背景技術  Background art
[0002] 近年、創薬分野等への利用を中心に、ヒトゲノム遺伝子やタンパク質の機能解明の 研究が進む中で、ポストゲノム研究として、新規遺伝子の機能の解析とタンパク質の 機能解明が大規模に進行しつつあり、その成果として多くの遺伝子やタンパク質の 機能が明らかにされつつある。この遺伝子やタンパク質の機能の解明により、その知 識が蓄積するに伴って、合理的に新しい機能を持った人工の遺伝子及びタンパク質 をデザイン '創製することへの期待と機運が高まってきた。この「合理的に新しい機能 を持った人工の遺伝子及びタンパク質をデザイン '創製する」ことへの研究は、 1980 年代に蛋白工学(プロテイン'エンジニアリング)として誕生した(Science,219,666-671 ,1983)。しかし、その後、いくつかの人工タンパク質が創製されたものの、いまだに自 由に新 、タンパク質をデザインできると!、つたレベルには達して 、な!/、。  [0002] In recent years, research on elucidating the functions of human genome genes and proteins has progressed mainly in the field of drug discovery, etc. As post-genomic research, analysis of new gene functions and elucidation of protein functions have been conducted on a large scale. As the result, the functions of many genes and proteins are being revealed. By elucidating the functions of these genes and proteins, as their knowledge has accumulated, expectations and motivation to design and create artificial genes and proteins with reasonably new functions have increased. This research into “designing” creation of artificial genes and proteins with reasonably new functions was born as protein engineering in the 1980s (Science, 219, 666-671, 1983). However, after several artificial proteins were created, it was still possible to design new proteins! But we have reached a certain level! /.
[0003] 1990年代に入り、進化分子工学 (試験管内分子進化法)が、人工分子の創製分 野で大きな流れとなった。この進化分子工学においては、合理的に人工分子を設計 するのではなぐ予め無作為に準備したランダムな配列集団の中から、「選択」により 目的とする機能 ·活性をもつ分子を得る戦略が採用されている(科学、 67,938-947,19 97)。すなわち、進化分子工学とは、(1)様々な配列多様性を持つコンビナトリアルな 分子集団 (DNAやタンパク質)から、 目的の活性を持つわずカゝな分子を選択し、 (2) その遺伝子を遺伝子増幅反応 (PCR)により増幅した後に同様の反応を繰り返し、 (3 )目的の反応活性を有する人工分子を進化させるという手法である。現在この手法で は、リボソームディスプレイや mRNAディスプレイなどの遺伝子-タンパク質融合技術 を利用して機能性人工タンパク質の創製が試みられている。し力しながら従来の技術 には以下のような問題点が存在する。(i)配列多様性を持ち、かつ目的の実験に適し た DNA集団の有効な構築手法が確立されて!、な!/、、 GOリボソーム (mRNA)ディスプ レイで選択できる人工タンパク質は、標的分子に結合する物質に限られ酵素活性や 生体内で機能する分子の選択には不適である。 [0003] In the 1990s, evolutionary molecular engineering (in vitro molecular evolution) has become a major trend in the field of artificial molecule creation. In this evolutionary molecular engineering, a strategy to obtain a molecule with the desired function and activity by "selection" from a random sequence group prepared in advance rather than rationally designing artificial molecules is adopted. (Science, 67,938-947, 1997). In other words, evolutionary molecular engineering consists of (1) selecting a small molecule with the desired activity from a combinatorial molecular population (DNA or protein) with various sequence diversity, and (2) selecting the gene The same reaction is repeated after amplification by gene amplification reaction (PCR), and (3) an artificial molecule having the desired reaction activity is evolved. Currently, this method uses gene-protein fusion technologies such as ribosome display and mRNA display. Attempts have been made to create functional artificial proteins. However, the conventional technology has the following problems. (I) An effective method for constructing a DNA population that has sequence diversity and is suitable for the experiment of interest has been established !, NA! /, GO ribosome (mRNA) displays can be selected from artificial proteins that are target molecules It is limited to substances that bind to the enzyme and is not suitable for selection of molecules that function enzymatically or function in vivo.
[0004] 天然には存在しない非凡な機能を持った人工タンパク質を進化分子工学的に創製 する場合には、スクリーニングの母集団となる人工遺伝子多様性集団(ライブラリー) を、いかに巧妙に調製するかが成功の鍵を握る。このため、機能性分子を効果的に 創出することを目的とした、人工遺伝子及び人工タンパク質集団作成法の開発が不 可欠となる。人工遺伝子集団の調製法としては、 error prone PCR法(PCR Methods Appl, 2:28-33, 1992)、 DNA シャフリング法(Nature, 370:389-391, 1994)、又は、 天然の遺伝子配列の一部若しくは全てをランダマイズィ匕したィ匕学合成法が現在汎用 されている。 [0004] When creating an artificial protein with an extraordinary function that does not exist in nature by evolutionary molecular engineering, how to skillfully prepare an artificial genetic diversity population (library) that serves as a screening population Is the key to success. For this reason, it is essential to develop artificial gene and artificial protein population creation methods for the purpose of creating functional molecules effectively. Methods for preparing artificial gene populations include error prone PCR (PCR Methods Appl, 2: 28-33, 1992), DNA shuffling (Nature, 370: 389-391, 1994), or natural gene sequences. Currently, general-purpose synthesis methods that are randomized in part or in whole are widely used.
[0005] error prone PCR法は、親遺伝子を铸型としてマンガンイオン存在下で PCR増幅を おこなうことにより、親遺伝子にランダムに塩基置換を導入して変異体集団を調製す る方法である。しかし、 error prone PCR法で塩基置換変異導入効率を上げた場合 に、アミノ酸置換のみならず、アミノ酸をコードするコドンがストップコドンに置換されて しまう確率も高くなつてしまうといった問題が存在する。また、この error prone PCR法 では、変異の割合を上昇させるような条件では意図しない欠失変異が起こりやすく( Trends Biochem. Sci. 26:100-106, 2001)、その結果、他の読み枠にコードされている ストップコドンが出現してしまう問題点を有している。そのため、 error prone PCR法は 、通常は低い変異導入率、すなわち、遺伝子あたり 2から 3塩基の置換、アミノ酸とし て 1残基の変異率が導入されるような条件で行われる。このため、機能や基質親和性 を大きく変化させる人工分子を創出することは難しいと考えられる。  [0005] The error prone PCR method is a method of preparing a mutant population by randomly introducing base substitutions into a parent gene by performing PCR amplification in the presence of manganese ions with the parent gene as a saddle type. However, when the efficiency of introducing a base substitution mutation is increased by the error prone PCR method, there is a problem that not only amino acid substitution but also the probability that a codon encoding an amino acid is replaced with a stop codon is increased. Moreover, in this error prone PCR method, unintended deletion mutations are likely to occur under conditions that increase the mutation rate (Trends Biochem. Sci. 26: 100-106, 2001). There is a problem that the coded stop codon appears. For this reason, error prone PCR is usually performed under conditions that introduce a low mutagenesis rate, ie, substitution of 2 to 3 bases per gene and a mutation rate of 1 residue as an amino acid. For this reason, it is considered difficult to create artificial molecules that greatly change functions and substrate affinity.
[0006] DNAシャッフリング法は、あるタンパク質をコードする遺伝子 DNA及び配列相同 性を持つ 1つまたは複数の類似 DNAを用いて、それらを試験管内で相同組み換え させることにより、変異体集団を調製することができる。し力しながら、 DNAシャツフリ ング法は相同組み換えを基本として 、るため、比較的類似した配列間での組み換え に限定される。即ち、配列類似性の低い DNA間でシャッフリングさせることは困難で ある。さらに、目的の変異体集団を得るためには、 DNAの切断、連結といった一連の 煩雑な操作が要求される。 [0006] DNA shuffling is a method of preparing a population of mutants by homologous recombination in vitro using a gene DNA encoding a protein and one or more similar DNAs having sequence homology. Can do. However, since the DNA shirt-fling method is based on homologous recombination, recombination between relatively similar sequences is possible. It is limited to. That is, it is difficult to shuffle between DNAs with low sequence similarity. Furthermore, in order to obtain the target mutant population, a series of complicated operations such as DNA cleavage and ligation are required.
[0007] 化学合成により天然の遺伝子配列の一部もしくは全てをランダマイズィ匕した遺伝子 集団を用いる手法は、人工 RNA酵素 (リボザィム)など機能性核酸の作成にぉ ヽて有 効な効果を示しているが、機能性人工タンパク質の創製には至っていない。その理 由としては、(1)ランダムに変異を導入した集団には、タンパク質翻訳を停止するスト ップコドンが高頻度で出現するため、長い ORF(Open Reading Frame)をもつ遺伝子 の作製は難しい、(2) 20種類のタンパク質が構成する配列空間は、 4種類の塩基か ら構成される核酸の配列空間と比較して広大なために、ランダムな配列集団から機 能性タンパク質を選択することが極めて困難である、ことなどが挙げられる。  [0007] A method using a gene population in which a part or all of a natural gene sequence is randomized by chemical synthesis is effective for the production of functional nucleic acids such as artificial RNA enzymes (ribozymes). However, functional artificial proteins have not been created. The reasons for this are as follows: (1) Genes with long ORFs (Open Reading Frames) are difficult because stop codons that stop protein translation appear frequently in populations with random mutations. 2) Since the sequence space composed of 20 types of proteins is vast compared to the sequence space of nucleic acids composed of 4 types of bases, it is extremely difficult to select functional proteins from random sequence populations. It is difficult.
[0008] 近年、核酸やタンパク質の機能や構造に重要な役割を果たす短!ヽ配列 (モチーフ 配列)の役割に注目が集まっている。モチーフ配列を利用して人工遺伝子集団を作 成する手法として、本発明者の発明した高分子マイクロ遺伝子重合体の作製手法( 特許 3415995号公報; Proc. Natl. Acad. Sci. USA, 94:3805—3810, 1997)が挙げら れる。この手法を用いることにより、全ての翻訳読み枠のストップコドンが排除された 人工遺伝子を準備することができる。この方法は、あら力じめ終止コドンが排除された 短 ヽ DNA配列(マイクロ遺伝子)をタンデムに重合し大きな翻訳読み枠を調製する 方法である。更に、繰り返しの単位となるマイクロ遺伝子を、本発明者の発明した多 機能塩基配列設計法 (特開 2001— 352990号公報)を用い、三つの読み枠に目的 の機能や構造に対応したモチーフ配列をコードするようにデザインすることから、潜 在能力の高い人工遺伝子集団を調製することができる。  In recent years, attention has been focused on the role of short sequences (motif sequences) that play an important role in the function and structure of nucleic acids and proteins. As a technique for creating an artificial gene population using a motif sequence, a technique for producing a polymer microgene polymer invented by the present inventors (Patent No. 3415995; Proc. Natl. Acad. Sci. USA, 94: 3805) —3810, 1997). By using this method, it is possible to prepare an artificial gene in which the stop codons of all translation reading frames are excluded. This method is a method of preparing a large translational reading frame by polymerizing short DNA sequences (microgenes) from which the stop codon has been eliminated in tandem. Furthermore, a microgene serving as a repetitive unit is a motif sequence corresponding to the intended function or structure in three reading frames using the multifunctional base sequence design method invented by the present inventor (JP 2001-352990 A). Since it is designed to code, an artificial gene population with high latent ability can be prepared.
[0009] し力しながら克服すべき課題として、(1)人工遺伝子集団に導入できるモチーフの 数が、読み枠の数に対応した三つに限定される、(2)配列多様性をもつ人工遺伝子 集団作成のためには、マイクロ遺伝子重合反応の際に生じるランダムなフレームシフ トに依存する、(3)目的の実験に応じてモチーフ配列の出現頻度を調節することが困 難である、ことが挙げられる。 また、上記のマイクロ遺伝子重合体の作製手法 (特許 3 415995号公報)は、マイクロ遺伝子の繰り返し重合体の作成を目的とするため、複 数種のモチーフ配列をランダムに重合した遺伝子集団を作製するには至っていない [0009] However, the challenges that must be overcome are as follows: (1) The number of motifs that can be introduced into an artificial gene population is limited to three corresponding to the number of reading frames. (2) Artificial diversity To create a gene population, it depends on random frame shifts that occur during the microgene polymerization reaction. (3) It is difficult to adjust the appearance frequency of motif sequences according to the target experiment. Is mentioned. In addition, the above-mentioned method for producing a microgene polymer (Japanese Patent No. 3415995) is intended to produce a microgene repetitive polymer. It has not yet been possible to create a gene population that randomly polymerizes several motif sequences.
[0010] 以上の背景から、天然には存在しな 、非凡な機能を持った人工タンパク質を進化 分子工学的に創製する場合の成功の鍵となる人工遺伝子多様性集団(ライブラリー) を効果的に創出するために、複数種のモチーフ配列を少なくともその一部でコードす る DNAのランダムな組み替え技術で、かつ用いる DNAの全体にわたっての配列類 似性を必要としない組み替え技術及び長い翻訳読枠 (Open Reading Frame;ORF)を 有し、 目的の実験に適応して自在にモチーフ配列の出現頻度を制御できるコンビナ トリアルな人工遺伝子集団及び人工タンパク質集団作成技術の開発が求められてい る。 [0010] From the above background, an artificial protein with an extraordinary function that does not exist in nature has evolved. Effective artificial genetic diversity population (library) is the key to success in molecular engineering. A random DNA recombination technology that encodes multiple types of motif sequences at least in part, and a recombination technology that does not require sequence similarity throughout the DNA used and a long translation reading frame. The development of combinatorial artificial gene populations and artificial protein population creation technologies that have (Open Reading Frame; ORF) and can freely control the appearance frequency of motif sequences by adapting to the target experiment is required.
[0011] 特許文献 1 :特許 3415995号公報。  Patent Document 1: Japanese Patent No. 3415995.
特許文献 2:特開 2001— 352990号公報。  Patent Document 2: JP 2001-352990 A.
非特許文献 l : Science,219,666- 671,1983。  Non-patent literature l: Science, 219, 666-671, 1983.
非特許文献 2 :科学、 67,938-947,1997。  Non-Patent Document 2: Science, 67,938-947,1997.
非特許文献 3 : PCR Methods Appl, 2:28-33, 1992。  Non-Patent Document 3: PCR Methods Appl, 2: 28-33, 1992.
非特許文献 4: Nature, 370:389-391, 1994。  Non-Patent Document 4: Nature, 370: 389-391, 1994.
非特許文献 5 : Trends Biochem. Sci. 26:100-106, 2001。  Non-Patent Document 5: Trends Biochem. Sci. 26: 100-106, 2001.
非特許文献 6 : Proc. Natl. Acad. Sci. USA, 94:3805-3810, 1997。  Non-Patent Document 6: Proc. Natl. Acad. Sci. USA, 94: 3805-3810, 1997.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明の課題は、機能性人工遺伝子或!ヽは機能性人工タンパク質の効果的な創 出を目的として、多数種モチーフ配列がランダムに重合した人工遺伝子集団、該人 ェ遺伝子集団がコードする人工タンパク質集団、及びその作製法を提供すること、更 には、少なくともその一部でモチーフ配列をコードし、全体にわたっての高い配列類 似性を条件としない DNAをランダムに重合することができ、かつ、ストップコドンの出 現を回避した一本鎖 DNAをランダムに重合することで、長 、翻訳読枠 (ORF)を有 する DNA配列のランダム重合を可能とした、コンビナトリアルな人工遺伝子及び人工 タンパク質集団の作製方法を提供することにある。 課題を解決するための手段 The subject of the present invention is a functional artificial gene or! For the purpose of effectively creating functional artificial proteins, Tsuji provides an artificial gene group in which multiple motif sequences are randomly polymerized, an artificial protein group encoded by the human gene group, and a method for producing the same. In addition, a single strand that encodes a motif sequence at least in part, can randomly polymerize DNA that is not subject to high overall sequence similarity, and avoids the occurrence of stop codons. It is an object of the present invention to provide a method for producing a combinatorial artificial gene and an artificial protein population that enables random polymerization of DNA sequences having a long translation reading frame (ORF) by randomly polymerizing DNA. Means for solving the problem
[0013] 本発明者は、上記課題を解決すべく鋭意検討の結果、任意のモチーフ配列をコー ドする配列を含む一本鎖 DNAを少なくても 3種以上構築し、その一本鎖 DNA配列 の末端配列の一部に互いに相補的塩基対を形成できるような塩基配列を導入し、該 多種の一本鎖 DNAを任意の割合で混合して、 DNAポリメラーゼを作用させることに より、相補的塩基対の組合わせと多種の一本鎖 DNAのそれぞれの濃度等による塩 基対の形成の頻度により、多数種のモチーフ配列をコードする DNA間でのランダム な重合反応を進行させることが可能であり、かつ、全体にわたっての高い配列類似性 を条件としな 、、少なくともその一部でモチーフ配列をコードする DNA間でのランダ ムな組み替え、及び長 ヽ翻訳読枠 (ORF)を有する DNA配列のランダム重合が可能 であることを見い出し、本発明を完成するに至った。  [0013] As a result of diligent studies to solve the above problems, the present inventors constructed at least three kinds of single-stranded DNAs containing sequences encoding arbitrary motif sequences, and the single-stranded DNA sequences. By introducing a base sequence capable of forming a complementary base pair with each other in a part of the terminal sequence of the DNA, mixing the various single-stranded DNAs in an arbitrary ratio, and allowing DNA polymerase to act on them. Depending on the frequency of base pair formation depending on the combination of base pairs and the concentration of each type of single-stranded DNA, it is possible to proceed with random polymerization reactions between DNAs encoding multiple types of motif sequences. Random recombination between DNA that encodes motif sequences in at least part of it, and long-range translational reading frames (ORFs), subject to high sequence similarity throughout Random polymerization is possible As a result, the present invention has been completed.
[0014] すなわち、本発明は、任意のモチーフ配列をコードする配列を含む一本鎖 DNAの 少なくても 3種以上の DNA配列を構築し、該一本鎖 DNA配列の末端配列の一部が 互いに相補的塩基対を形成できるように、相補的塩基配列を導入し、該方法により 構築した多種の一本鎖 DNAを任意の割合で混合した反応液に DNAポリメラーゼを 作用させることにより、モチーフ配列をコードする DNA間でのランダムな重合反応を 進行させ、多数種モチーフ配列がランダムに重合した人工遺伝子集団を作製するこ とからなる。本発明におけるのモチーフ配列としては、少なくても 3種以上、望ましくは 4種以上のモチーフ配列をそれぞれ存在させた一本鎖 DNAを構築することが望まし い。  That is, the present invention constructs at least three kinds of DNA sequences of single-stranded DNA containing a sequence encoding an arbitrary motif sequence, and a part of the terminal sequence of the single-stranded DNA sequence is By introducing complementary base sequences so that they can form complementary base pairs with each other, a DNA polymerase is allowed to act on a reaction mixture in which various single-stranded DNAs constructed by the method are mixed at an arbitrary ratio. It consists of proceeding a random polymerization reaction between DNAs encoding, and creating an artificial gene population in which multiple motif sequences are randomly polymerized. As the motif sequence in the present invention, it is desirable to construct a single-stranded DNA in which at least 3 types, preferably 4 or more types of motif sequences exist, respectively.
[0015] 本発明にお 、て、一本鎖 DNA配列の末端配列の一部の相補的塩基対は、通常、 3'末端に導入することができ、該相補的塩基対の数は 6塩基以上であることが好まし い。該相補的塩基対の両端には、相手の塩基と対にならない塩基を 1塩基以上、好 ましくは 1〜3の範囲で存在させ、 DNAポリメラーゼによる重合反応の効率を上げる ことができる。本発明において、任意のモチーフ配列をコードする配列を含む一本鎖 DNAは、機能モチーフ配列、構造モチーフ配列、進化分子工学的に取得された人 ェペプチド配列、又はタンパク質工学的な知識に基 、てデザインされた配列に基!ヽ て構築されたマイクロ遺伝子であることができ、該マイクロ遺伝子の構築に際しては、 合成する一本鎖 DNA配列内で、予め各翻訳読み枠で、停止コドンを排除しておくこ とができる。また、本発明においては、多数種モチーフ配列をコードする一本鎖 DN Aに制限酵素認識配列を付加することで、ランダム重合反応で利用されるモチーフ 配列の出現頻度を制限酵素反応により直接モニターできるように人工遺伝子集団の 作製を行うことができる。 [0015] In the present invention, a part of the complementary base pair of the terminal sequence of the single-stranded DNA sequence can usually be introduced at the 3 'end, and the number of the complementary base pairs is 6 bases. It is preferable that this is the case. At both ends of the complementary base pair, one or more bases that are not paired with the partner base are preferably present in the range of 1 to 3, so that the efficiency of the polymerization reaction by DNA polymerase can be increased. In the present invention, single-stranded DNA containing a sequence encoding an arbitrary motif sequence is based on a functional motif sequence, a structural motif sequence, a human peptide sequence obtained by evolutionary molecular engineering, or protein engineering knowledge. It can be a microgene constructed on the basis of the designed sequence. Within the single-stranded DNA sequence to be synthesized, stop codons can be excluded in advance for each translation reading frame. Furthermore, in the present invention, by adding a restriction enzyme recognition sequence to a single-stranded DNA that encodes multiple types of motif sequences, the frequency of occurrence of motif sequences used in random polymerization reactions can be directly monitored by restriction enzyme reactions. As described above, an artificial gene population can be produced.
[0016] 本発明の、多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法 により作製された人工遺伝子集団は、更に、この人工遺伝子集団を翻訳し、人工タン ノ ク質に変換することで、多数種モチーフ配列をランダムに挿入した人工タンパク質 集団を作製することができる。該人工タンパク質集団の作製に際して、本発明におい ては、多数種モチーフ配列をコードする一本鎖 DNAを塩基変異、欠損を挿入するこ となくランダムに重合して人工遺伝子集団を作製し、該人工遺伝子集団を翻訳する ことでフレームシフトに依存せずに、多数種モチーフ配列をランダムに挿入した人工 タンパク質集団を作製することができる。また、本発明においては、多数種モチーフ 配列をコードする一本鎖 DNAを塩基変異、欠損を挿入しつつランダムに重合して人 ェ遺伝子集団を作製し、該人工遺伝子集団を翻訳することでフレームシフトに依存し て、多数種モチーフ配列をランダムに挿入した人工タンパク質集団を作製することが できる。このようにして、調製される本発明の多数種モチーフ配列がランダムに重合し た人工遺伝子集団、或いは、多種のモチーフ配列をランダムに挿入した人工タンパ ク質集団は、それらの集団について、機能性遺伝子或いは機能性タンパク質をスクリ 一-ングすることにより機能性人工遺伝子又は機能性人工タンパク質を創出すること ができる。 [0016] The artificial gene population produced by the method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized according to the present invention further translates the artificial gene population and converts it into an artificial protein. Thus, an artificial protein population in which a large number of motif sequences are randomly inserted can be produced. In the production of the artificial protein population, in the present invention, an artificial gene population is produced by randomly polymerizing single-stranded DNAs encoding multiple types of motif sequences without inserting base mutations or deletions. By translating the gene population, it is possible to produce an artificial protein population in which a large number of motif sequences are randomly inserted without depending on the frame shift. Further, in the present invention, a single gene DNA encoding a multiple types of motif sequences is randomly polymerized while inserting base mutations and deletions to produce a human gene population, and the artificial gene population is translated into a frame. Depending on the shift, an artificial protein population can be created in which many types of motif sequences are randomly inserted. Thus prepared artificial gene populations in which a large number of the motif sequences of the present invention are randomly polymerized or artificial protein populations into which various motif sequences are randomly inserted are functional groups of these populations. Functional artificial genes or functional artificial proteins can be created by screening genes or functional proteins.
[0017] すなわち具体的には本発明は、 [1] (1)任意のモチーフ配列をコードする配列を含 む一本鎖 DNAの少なくても 3種以上の DNA配列を構築し、(2)該一本鎖 DNA配 列の末端配列の一部が互いに相補的塩基対を形成できるように、相補的塩基配列 を導入し、 (3)該方法により構築した多種の一本鎖 DNAを任意の割合で混合した反 応液に DNAポリメラーゼを作用させることにより、モチーフ配列をコードする DNA間 でのランダムな重合反応を進行させることを特徴とする多数種モチーフ配列がランダ ムに重合した人工遺伝子集団の作製方法や、 [2]任意のモチーフ配列をコードする 配列を含む一本鎖 DNAの少なくても 4種以上の DNA配列を構築し、該一本鎖 DN Aを任意の割合で混合した反応液に DNAポリメラーゼを作用させることにより、モチ ーフ配列をコードする DNA間でのランダムな重合反応を進行させることを特徴とする 前記 [1]記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製 方法や、 [3]相補的塩基配列を、 3,末端に導入したことを特徴とする前記 [1]又は [ 2]記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法、 および [4]相補的塩基対の数が、 6塩基以上であることを特徴とする前記 [1]〜[3] のいずれか記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作 製方法や、 [5]相補的塩基対の両端に、相手の塩基と対にならない塩基を 1塩基以 上存在させたことを特徴とする前記 [ 1]〜 [4]の 、ずれか記載の多数種モチーフ配 列がランダムに重合した人工遺伝子集団の作製方法や、 [6]相補的塩基対の両端 に、相手の塩基と対にならない塩基を 1〜3のいずれかの塩基数、存在させたことを 特徴とする前記 [5]記載の多数種モチーフ配列がランダムに重合した人工遺伝子集 団の作製方法、 [7]また多種の一本鎖 DNAの相補的塩基対の組合わせ及び Z又 は多種の一本鎖 DNAのそれぞれの濃度を調節して、ランダム重合反応で利用され るモチーフ配列の出現頻度をコントロールすることを特徴とする前記 [ 1 ]〜 [6]のい ずれか記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方 法や、 [8]ランダム重合反応系にカ卩えられる多種の一本鎖 DNAの濃度力 0. 2 μ Μ 〜20 μ Μの範囲で変動することを特徴とする請求項 7記載の多数種モチーフ配列 力 Sランダムに重合した人工遺伝子集団の作製方法カゝらなる。 [0017] Specifically, the present invention provides [1] (1) constructing at least three or more DNA sequences of single-stranded DNA containing a sequence encoding an arbitrary motif sequence, and (2) A complementary base sequence is introduced so that part of the terminal sequence of the single-stranded DNA sequence can form a complementary base pair with each other, and (3) various single-stranded DNAs constructed by the method are arbitrarily selected. Artificial gene population in which a large number of motif sequences are randomly polymerized by allowing a random polymerization reaction between the DNAs encoding the motif sequences by allowing DNA polymerase to act on the reaction mixture mixed at a ratio And [2] encode any motif sequence By constructing at least 4 types of DNA sequences of single-stranded DNA containing sequences and reacting DNA polymerase in the reaction mixture in which the single-stranded DNA is mixed in an arbitrary ratio, the motif sequence is converted. A method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized, and [3] a complementary base sequence, wherein random polymerization reactions between encoded DNAs proceed. 3, a method for producing an artificial gene population in which a large number of motif sequences according to [1] or [2] are randomly polymerized, and [4] the number of complementary base pairs is 6 The method for producing an artificial gene group in which a large number of motif sequences according to any one of the above [1] to [3] are randomly polymerized, characterized in that it is a base or more, and [5] The presence of one or more bases that cannot be paired with the other base [1] to [4], characterized by a method for producing an artificial gene population in which the multiple motif sequences described in any one of the above are randomly polymerized, and [6] The method for producing an artificial gene cluster in which a large number of motif sequences according to [5] are randomly polymerized, wherein non-pairing bases are present in any number of bases of 1 to 3, [7] Control the frequency of the occurrence of motif sequences used in random polymerization reactions by adjusting the combination of complementary base pairs of various single-stranded DNAs and the concentration of each Z or multiple single-stranded DNA. A method for producing an artificial gene group in which a large number of motif sequences described in any one of the above [1] to [6] are randomly polymerized, and [8] a variety of random polymerization reaction systems. The concentration of the double-stranded DNA varies within the range of 0.2 μΜ to 20 μΜ. Preparation methods mosquito ゝ Ranaru many species motif sequence force S randomly polymerized artificial gene cluster according to claim 7,.
また本発明は、 [9]構築した多種の一本鎖 DNAを反応液に混合し、該導入した一 本鎖 DNAの相補的塩基配列を铸型として、 3'末端から^末端方向に作用するェキ ソヌクレアーゼ活性を含む耐熱性 DNAポリメラーゼを作用させることにより、モチーフ 配列をコードする DNA間でのランダムな重合反応を進行させることを特徴とする前 記 [1]〜 [8]の 、ずれか記載の多数種モチーフ配列がランダムに重合した人工遺伝 子集団の作製方法や、 [10]任意のモチーフ配列をコードする配列を含む一本鎖 D ΝΑが、機能モチーフ配列、構造モチーフ配列、進化分子工学的に取得された人工 ペプチド配列、又はタンパク質工学的な知識に基 、てデザインされた配列に基 、て 構築されたマイクロ遺伝子であることを特徴とする前記 [ 1]〜 [8]の ヽずれか記載の 多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法や、 [11]マ イク口遺伝子の構築に際して、合成する一本鎖 DNA配列内で、予め各翻訳読み枠 で、停止コドンを排除しておくことを特徴とする前記 [10]記載の多数種モチーフ配列 力 Sランダムに重合した人工遺伝子集団の作製方法および [12]任意のモチーフ配列 をコードする配列を含む一本鎖 DNA力 多数種モチーフ配列をコードする一本鎖 D NAに制限酵素認識配列を付加することで、ランダム重合反応で利用されるモチーフ 配列の出現頻度を制限酵素反応により直接モニターできるように構築されていること を特徴とする前記 [1]〜 [11]の 、ずれか記載の多数種モチーフ配列がランダムに 重合した人工遺伝子集団の作製方法、 [13]前記 [1]〜[12]のいずれか記載の作 製方法により作製された、多数種モチーフ配列がランダムに重合した人工遺伝子集 団からなる。 The present invention also [9] mixes various constructed single-stranded DNAs into a reaction solution and acts from the 3 ′ end to the end with the complementary base sequence of the introduced single-stranded DNA as a saddle. The above-mentioned [1] to [8], characterized in that a random polymerization reaction proceeds between DNAs encoding motif sequences by the action of a thermostable DNA polymerase including exonuclease activity. (10) A single-strand D を containing a sequence encoding an arbitrary motif sequence is a functional motif sequence, structural motif sequence, evolution Based on artificial peptide sequences obtained from molecular engineering, or sequences designed based on protein engineering knowledge A method for preparing an artificial gene population in which a large number of motif sequences are randomly polymerized according to any one of the above [1] to [8], which is a constructed microgene, and [11] a mouth-mouth gene The multi-motif sequence described in [10] above, wherein the stop codon is excluded in each translation reading frame in the single-stranded DNA sequence to be synthesized. A method for creating a gene population and [12] single-strand DNA strength containing sequences encoding arbitrary motif sequences Random polymerization reaction by adding restriction enzyme recognition sequences to single-strand DNA encoding multiple motif sequences The multiple motif sequences described in any one of [1] to [11] above are randomly polymerized so that the frequency of the motif sequences used in can be directly monitored by restriction enzyme reaction Method for manufacturing an artificial gene population, consisting of [13] above [1] to [12] Artificial genes Group The fabricated by work made method of any, many species motif sequence was polymerized randomly.
更に本発明は、 [14]前記 [1]〜[12]のいずれか記載の多数種モチーフ配列がラ ンダムに重合した人工遺伝子集団の作製方法により作製した遺伝子を組込んだベタ ターを、宿主細胞に導入し、発現することを特徴とする多種のモチーフ配列をランダ ムに挿入した人工タンパク質集団の作製方法や、 [15]多数種モチーフ配列をコード する一本鎖 DNAを塩基変異、欠損を挿入することなくランダムに重合して人工遺伝 子集団を作製し、該人工遺伝子集団を翻訳することでフレームシフトに依存せず多 様性分子集団をえることを特徴とする前記 [14]記載の多種のモチーフ配列をランダ ムに挿入した人工タンパク質集団の作製方法や、 [16]多数種モチーフ配列をコード する一本鎖 DNAを塩基変異、欠損を挿入しつつランダムに重合して人工遺伝子集 団を作製し、該人工遺伝子集団を翻訳することでフレームシフトに依存して多様性分 子集団をえることを特徴とする前記 [14]記載の多種のモチーフ配列をランダムに挿 入した人工タンパク質集団の作製方法および [ 17]前記 [ 14]〜 [ 16]のいずれか記 載の方法により作製された、多種のモチーフ配列をランダムに挿入した人工タンパク 質集団や、 [ 18]前記 [ 13]記載の多数種モチーフ配列がランダムに重合した人工遺 伝子集団、又は前記 [17]記載の多種のモチーフ配列をランダムに挿入した人エタ ンパク質集団について、機能性遺伝子或いは機能性タンパク質をスクリーニングする ことを特徴とする機能性人工遺伝子又は機能性人工タンパク質の創出方法力もなる 図面の簡単な説明 Furthermore, the present invention provides [14] a beta incorporating a gene produced by a method for producing an artificial gene population in which the multiple motif sequences according to any one of [1] to [12] are randomly polymerized, A method of creating artificial protein populations that randomly insert various motif sequences characterized by introduction and expression into cells, and [15] single-stranded DNA encoding multiple motif sequences The above-mentioned [14], wherein an artificial gene population is produced by random polymerization without insertion, and a polymorphic molecular population is obtained without depending on frameshift by translating the artificial gene population. Artificial protein populations by randomly inserting various motif sequences, and [16] single strand DNA encoding multiple motif sequences are randomly polymerized with base mutations and deletions inserted, and artificial gene populations Make Then, the artificial gene population is produced by randomly inserting various motif sequences according to [14], wherein the diversity population is obtained by translating the artificial gene population depending on the frame shift. And [17] artificial protein populations prepared by randomly inserting various motif sequences, produced by the method described in any one of [14] to [16], and [18] a large number of [13] A functional gene or protein is screened for an artificial gene population in which species motif sequences are randomly polymerized or a human protein population into which various motif sequences described in [17] above are randomly inserted. Brief description of the drawings that can be used to create functional artificial genes or functional artificial proteins
[図 1]本発明のモチーフ配列を利用した人工タンパク質集団作製の概略を示す図で ある。 FIG. 1 is a diagram showing an outline of production of an artificial protein population using the motif sequence of the present invention.
[図 2]本発明の実施例における、制限酵素認識配列を含む一本鎖 DNAのデザイン( 上)及びランダム重合反応の電気泳動図を示す図である。 KY— 1354の ^端力 K Y— 1355— KY— 1357の^端と相補的塩基対を形成するようにデザインした。電 気泳動の結果、 KY— 1354のみでは、重合反応は進行しないが(レーン 1)、種々の 組み合わせで DNAを混合することで、重合反応が進行した (レーン 2— 6)。 Mは、マ 一力一 DN Aを表す。  FIG. 2 is a diagram showing a design of a single-stranded DNA containing a restriction enzyme recognition sequence (top) and an electrophoretogram of a random polymerization reaction in Examples of the present invention. ^ KY-1354 ^ end force KY— 1355— KY— Designed to form a complementary base pair with the ^ end of 1357. As a result of electrophoresis, the polymerization reaction did not proceed with KY-1354 alone (lane 1), but the polymerization reaction proceeded by mixing DNA in various combinations (lanes 2-6). M represents a single DN A.
[図 3]本発明の実施例において、制限酵素反応による複数種 DNAランダム重合の確 認の結果を示す図である。  FIG. 3 is a diagram showing the results of confirming multiple types of random DNA polymerization by restriction enzyme reaction in Examples of the present invention.
[図 4]本発明の実施例における、制限酵素認識モチーフをもつ DNA重合産物の配列 を示す図である。  FIG. 4 is a diagram showing the sequence of a DNA polymerization product having a restriction enzyme recognition motif in an example of the present invention.
[図 5]本発明の実施例における、アポトーシス制御型タンパク質に存在する BH1— B H4モチーフをもつ一本鎖 DNAのデザイン (A)とデザイン (B)を示す図である。デザィ ン Aでは、 KY— 1372の 3,端力 KY— 1374、 KY— 1375、 KY— 1377の 3,端と 相補的塩基対を形成するようにデザインした。デザイン Bでは、 KY— 1372及び KY — 1379の^端力 KY- 1374及び KY— 1375の^端と相補的塩基対を形成す るようにデザインした。  FIG. 5 is a diagram showing design (A) and design (B) of single-stranded DNA having a BH1-B H4 motif present in an apoptosis-regulating protein in an example of the present invention. Design A was designed to form a complementary base pair with the 3 ends of KY-1372, 3 ends of KY-1372, KY-1375, KY-1375, and KY-1377. Design B was designed to form a complementary base pair with the ends of KY-1372 and KY-1379 and the ends of KY-1374 and KY-1375.
[図 6]本発明の実施例における、 BH1— BH4モチーフを含む一本鎖 DNA重合反応 の電気泳動図を示す図である。 oデザイン A及びデザイン Bで合成された 4種一本鎖 DNAは、ともに重合反応を進行させることを確認した。  FIG. 6 is an electrophoretogram of a single-stranded DNA polymerization reaction containing a BH1-BH4 motif in an example of the present invention. o It was confirmed that the four types of single-stranded DNA synthesized in Design A and Design B proceeded with the polymerization reaction.
[図 7]本発明の実施例における、制限酵素反応による BH1— BH4モチーフを含む一 本鎖 DNAランダム重合の確認の結果を示す図である。制限酵素反応後の電気泳動 図により、それぞれのモチーフがランダムに重合することを確認した。  FIG. 7 is a diagram showing the results of confirmation of single-stranded DNA random polymerization containing a BH1-BH4 motif by restriction enzyme reaction in an example of the present invention. Electrophoresis after the restriction enzyme reaction confirmed that each motif polymerized randomly.
[図 8]a, b, cは、本発明の実施例におけるデザイン Aにより得られた人工遺伝子集団 及びその翻訳産物である人工タンパク質集団の配列を示す図である。 [FIG. 8] a, b and c are artificial gene populations obtained by design A in the examples of the present invention. It is a figure which shows the arrangement | sequence of the artificial protein population which is and its translation product.
圆 9]本発明の実施例における、人工タンパク質の哺乳類細胞での発現の確認の結 果を示す図である。デザイン Aにより得られた人工タンパク質 A6の遺伝子を乳癌細 胞株 MCF— 7に導入し、その発現を Alexa-His抗体による免疫染色で確認した。これ ら人工タンパク質は、ミトコンドリアに局在して発現することがわ力つた。 FIG. 9 is a diagram showing the results of confirming the expression of an artificial protein in mammalian cells in an example of the present invention. The gene for artificial protein A6 obtained by design A was introduced into breast cancer cell line MCF-7, and its expression was confirmed by immunostaining with Alexa-His antibody. These artificial proteins were found to be localized and expressed in mitochondria.
圆 10]本発明の実施例において、デザイン Bにより得られた人工遺伝子集団及びそ の翻訳産物である人工タンパク質集団の配列を示す図である。 FIG. 10 is a diagram showing the sequences of the artificial gene population obtained by design B and the artificial protein population that is the translation product in the example of the present invention.
[図 11]本発明の実施例において、アポトーシス制御型タンパク質に存在する BH1— BH4モチーフをもつ一本鎖 DNAのデザイン (C、 D)及び一本鎖 DNA重合反応の電 気泳動図の結果を示す図である。デザイン (C)では、 4種類一本鎖 DNA(KY— 137 2、 KY— 1389、 KY— 1391)を等量混合し、重合させたのに対し、デザイン (D)では 、 KY- 1372 :KY- 1389 :KY- 1390 :KY- 1391 = 2 : 2 : 0. 4 : 0. 3のように、 Β Η4と ΒΗ3モチーフをコードする ΚΥ— 1372と ΚΥ— 1389の割合を多くして重合反 応系に加えた。 [Fig. 11] In the examples of the present invention, the results of the design of single-stranded DNA having BH1-BH4 motif (C, D) and electrophoretic diagram of single-stranded DNA polymerization reaction present in the apoptosis-control protein are shown. FIG. In design (C), four types of single-stranded DNA (KY-137 2, KY-1389, KY-1391) were mixed and polymerized in equal amounts, whereas in design (D), KY-1372: KY -1389: KY- 1390: KY-1391 = 2: 2: 0. 4: 0. 3 Encoding 重合 Η4 and ΒΗ3 motifs 重合 — 1372 and ΚΥ— 1389 Increase the ratio of polymerization reaction Added to the system.
[図 12]本発明の実施例にお 、て、制限酵素反応による ΒΗ 1 - ΒΗ4モチーフを含む 一本鎖 DNAランダム重合の確認結果を示す図である。デザイン C及び Dにお 、て、 三つの制限酵素による部分的切断が確認された。  FIG. 12 is a diagram showing the results of confirming single-stranded DNA random polymerization containing ΒΗ1-ΒΗ4 motifs by restriction enzyme reaction in Examples of the present invention. In designs C and D, partial cleavage by three restriction enzymes was confirmed.
[図 13]a, bは、本発明の実施例においてデザイン Cにより得られた人工遺伝子集団 及びその翻訳産物である人工タンパク質集団の配列を示す図である。  [FIG. 13] a and b are diagrams showing the sequences of an artificial gene population obtained by design C and an artificial protein population which is a translation product thereof, in an example of the present invention.
[図 14]a, b, cは、本発明の実施例においてデザイン Dにより得られた人工遺伝子集 団及びその翻訳産物である人工タンパク質集団の配列を示す図である。  FIG. 14 is a diagram showing the sequences of an artificial gene population obtained by design D and an artificial protein population that is a translation product thereof, in Example of the present invention.
圆 15]本発明の実施例において、人工タンパク質集団(C)と人工タンパク質集団(D15] In an embodiment of the present invention, an artificial protein population (C) and an artificial protein population (D
)における BH1— BH3モチーフの出現頻度を比較した結果を示す図である。 BH3 モチーフをコードする一本鎖 DNA(KY— 1389)の濃度を高くして調製したタンパク 質集団(D)では、 BH3モチーフの出現頻度が上昇した。 FIG. 4 is a diagram showing the results of comparing the appearance frequencies of BH1-BH3 motifs in FIG. In the protein population (D) prepared by increasing the concentration of single-stranded DNA (KY-1389) encoding the BH3 motif, the frequency of appearance of the BH3 motif increased.
[図 16]本発明の実施例における、人工タンパク質のヒト癌細胞内部での様々な局在 パターンを示す図である。  FIG. 16 is a diagram showing various localization patterns of artificial proteins in human cancer cells in Examples of the present invention.
[図 17]本発明の実施例において、取得した人工タンパク質 D29をコードする遺伝子 の導入により、乳癌細胞株 MCF— 7に誘導されたアポトーシス細胞の数を定量した 図である。その効果は天然のアポトーシス誘導型タンパク質 Baxと同等であり、約 30 %の細胞がアポトーシス陽性細胞であった。コントロール人工タンパク質 A10の遺伝 子を導入した細胞では、そのようなアポトーシス陽性細胞は確認されな ヽことがわか つ 7こ。 FIG. 17 shows a gene encoding artificial protein D29 obtained in the examples of the present invention. FIG. 6 is a diagram quantifying the number of apoptotic cells induced in breast cancer cell line MCF-7 by introduction of. The effect was equivalent to the natural apoptosis-inducing protein Bax, and about 30% of the cells were apoptosis-positive cells. In cells transfected with the control artificial protein A10 gene, we found that such apoptosis-positive cells were not confirmed.
[図 18]本発明の実施例において、 D29を発現する細胞でアポトーシスが効果的に誘 導されていることを示す図である。共焦点顕微鏡による二重染色 (緑;発現したタンパ ク質、赤;アポトーシス陽性細胞)により、 D29を発現した細胞とアポトーシス陽性細 胞の相関が確認できた。コントロール人工タンパク質 A10を発現した細胞では、アポ トーシスは誘導されな 、ことがわ力つた。  FIG. 18 is a graph showing that apoptosis is effectively induced in cells expressing D29 in the examples of the present invention. Double staining by confocal microscopy (green; expressed protein, red; apoptosis-positive cells) confirmed the correlation between cells expressing D29 and apoptosis-positive cells. It was found that apoptosis was not induced in cells expressing the control artificial protein A10.
[図 19]本発明の実施例において、取得した人工タンパク質 A10または D16をコード する遺伝子の導入により、子宮頸癌細胞株 HeLaに誘導された増殖阻害の抑制活性 を定量した図である。天然型アポトーシス誘導タンパク質 BIM、または抗癌剤エトポ シド (VP- 16)、スタウロスポリン(STS)により HeLaの細胞数は減少するが(WST— 1 により定量、コントロール pcDNA参照)、 A10または D16遺伝子の導入により、増殖 活性は部分的に回復した。この増殖阻害抑制効果は、天然のアポトーシス抑制型タ ンパク質である Bel— xLの遺伝子をコードするプラスミドを導入した細胞でも同様に 観察できた。  FIG. 19 is a diagram quantifying the inhibitory activity of the growth inhibition induced by the cervical cancer cell line HeLa by introducing the gene encoding the obtained artificial protein A10 or D16 in the examples of the present invention. Natural type apoptosis-inducing protein BIM, or anticancer drug etoposide (VP-16) or staurosporine (STS) reduces the number of HeLa cells (quantified by WST-1; see control pcDNA), but introduces A10 or D16 gene As a result, the proliferation activity was partially recovered. This inhibitory effect on growth inhibition was also observed in cells transfected with a plasmid encoding the gene for Bel-xL, a natural apoptosis-inhibiting protein.
[図 20]本発明の実施例において、取得した人工タンパク質 A10または D16力 STS により誘導されたアポトーシスを抑制できることを示した図である。遺伝子導入後 24 時間で 125nM濃度の STSを含む培地に交換し、細胞をさらに 23時間培養した。ァ ポトーシス細胞を TUNEL法で染色した結果(赤)、コントロールの pcDNAや D29を 導入した細胞では、効果的にアポトーシスが誘導されているのに対し、アポトーシス 抑制型 Bel— xL遺伝子を導入した細胞では TUNEL陽性細胞数が減少した。 A10 や D16の遺伝子を導入した細胞では、アポトーシスが部分的に抑制された。  FIG. 20 is a view showing that apoptosis induced by the obtained artificial protein A10 or D16 force STS can be suppressed in Examples of the present invention. 24 hours after the gene transfer, the medium was replaced with a medium containing 125 nM STS, and the cells were further cultured for 23 hours. As a result of staining the apoptotic cells with the TUNEL method (red), apoptosis was effectively induced in the cells transfected with the control pcDNA or D29, whereas in the cells transfected with the apoptosis-inhibiting Bel—xL gene. The number of TUNEL positive cells decreased. Apoptosis was partially suppressed in cells transfected with A10 and D16 genes.
[図 21]本発明の実施例において、取得した人工タンパク質 D16を発現した細胞が、 アポトーシス陰性になることを示した図である。図 20と同様に STS投与後 23時間経 過した細胞を固定した後、人工タンパク質を Myc—次抗体と FITC二次抗体により緑 で染色し、アポトーシス細胞を TMR— red標識 (赤)で二重染色した。 D16や Bcl— x Lを発現した細胞では、アポトーシスが抑制されることがわ力つた。 D29を発現した細 胞では、アポトーシス陽性になることが確認できた。 FIG. 21 is a diagram showing that cells expressing the obtained artificial protein D16 become apoptosis-negative in the examples of the present invention. As in Fig. 20, after fixing cells 23 hours after STS administration, the artificial protein was greened with Myc-secondary antibody and FITC secondary antibody. Apoptotic cells were double-stained with TMR-red label (red). In cells expressing D16 and Bcl— x L, apoptosis was suppressed. Cells that expressed D29 were confirmed to be positive for apoptosis.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明は、機能性人工遺伝子或いは機能性人工タンパク質の効果的な創出を目 的として、多数種モチーフ配列がランダムに重合した人工遺伝子集団、該人工遺伝 子集団がコードする人工タンパク質集団、及びその作製法を提供することからなる。 本発明の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法は 、(1)任意のモチーフ配列をコードする配列を含む一本鎖 DNAの少なくても 3種以 上の DNA配列を構築し、 (2)該一本鎖 DNA配列の末端配列の一部が互いに相補 的塩基対を形成できるように、相補的塩基配列を導入し、(3)該方法により構築した 多種の一本鎖 DNAを任意の割合で混合した反応液に DNAポリメラーゼを作用させ ることにより、モチーフ配列をコードする DNA間でのランダムな重合反応を進行させ ることにより、多数種モチーフ配列がランダムに重合した人工遺伝子集団を作製する ことカゝらなる。 [0021] The present invention aims to effectively create a functional artificial gene or functional artificial protein, an artificial gene population in which a large number of motif sequences are randomly polymerized, and an artificial protein population encoded by the artificial gene population And providing a method for producing the same. The method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized according to the present invention consists of (1) constructing at least three types of DNA sequences of single-stranded DNA containing sequences encoding arbitrary motif sequences. And (2) introducing a complementary base sequence so that part of the terminal sequence of the single-stranded DNA sequence can form a complementary base pair with each other, and (3) various single strands constructed by the method. Artificial DNA in which a large number of motif sequences are randomly polymerized by allowing a random polymerization reaction between DNAs encoding motif sequences by allowing DNA polymerase to act on a reaction mixture in which DNA is mixed at an arbitrary ratio. Creating a gene population is the key.
[0022] 本発明の人工遺伝子集団の作製方法を、操作に沿って、例を挙げながら具体的に 説明する。図 1に示すように、まず目的のモチーフ配列を含む複数種 (多数種)の一 本鎖 DNAを合成する。本発明では、複数種の一本鎖 DNAの 3 則の配列の一部が 相補的塩基対を形成できるように合成する。相補的塩基対の数は、 6塩基以上が望 ましい。但し相補的塩基対の両端には、相手の塩基と対にならない塩基を 1塩基以 上 (好ましくは 1—3塩基)存在するように合成する。この操作により、重合反応の効率 を上昇することができる。また、加える複数種の一本鎖 DNAの種類、配列、長さ、組 み合わせに制限はなぐ任意の配列をコードする複数種の一本鎖 DNAを本反応に 禾 IJ用することができる。更に、相補的塩基対を形成する一本鎖 DNAの組み合わせに も制限はない。  [0022] The method for producing an artificial gene population of the present invention will be specifically described with reference to an example. As shown in Fig. 1, first, multiple types (multiple types) of single-stranded DNA containing the desired motif sequence are synthesized. In the present invention, synthesis is carried out so that a part of the three rules of a plurality of types of single-stranded DNA can form complementary base pairs. The number of complementary base pairs is preferably 6 bases or more. However, it is synthesized so that there are one or more bases (preferably 1 to 3 bases) that are not paired with the partner base at both ends of the complementary base pair. By this operation, the efficiency of the polymerization reaction can be increased. In addition, multiple types of single-stranded DNA that encodes any sequence that does not limit the type, sequence, length, and combination of single-stranded DNA to be added can be used in this reaction. Furthermore, there are no restrictions on the combination of single-stranded DNAs that form complementary base pairs.
[0023] 例えば、 4種類の一本鎖 DNAを用いて反応させる場合、一種類の一本鎖 DNAの 3'配列に対し、残り 3種類の一本鎖 DNAの 3'配列が相補的配列を形成してもよい し、相同な^末端配列をもつ二種類の一本鎖 DNAに対し、残りの二種類の一本鎖 DNAの^配列が均等に相補的配列を形成できるようにデザインしてもよ 、。また、 反応系に加える一本鎖 DNAの濃度は、 0. 2 /z Μ〜20 /ζ Mで変動することが可能で あり、より重合反応に利用したい一本鎖 DNAの濃度を高くして、反応系に加える。即 ち、相補的塩基対の組み合わせと一本鎖 DNA濃度を調節することで、ランダム重合 反応で利用されるモチーフ配列の出現頻度をコントロールすることができる。また、複 数種の一本鎖 DNAの設計の際、それぞれの配列の長さ及び Tmを近 、値にするこ とが望ましい。 [0023] For example, when the reaction is performed using four types of single-stranded DNA, the remaining three types of single-stranded DNA 3 'sequences are complementary to the 3' sequence of one type of single-stranded DNA. It may form, or two types of single-stranded DNA with homologous ^ -terminal sequences, while the other two types of single-stranded DNA You can design your DNA sequences so that they are evenly complementary. In addition, the concentration of single-stranded DNA added to the reaction system can vary from 0.2 / z / to 20 / ζ M, and the concentration of single-stranded DNA to be used for the polymerization reaction can be increased. To the reaction system. That is, by adjusting the combination of complementary base pairs and the concentration of single-stranded DNA, the frequency of motif sequences used in random polymerization reactions can be controlled. In designing multiple types of single-stranded DNA, it is desirable to make the length and Tm of each sequence close to each other.
[0024] これら複数種の一本鎖 DNAの相補した領域が耐熱性ポリメラーゼを利用した PCR 反応の铸型として機能する。このような複数種の一本鎖 DNA存在下で ^末端から5 '末端方向に作用する( 3,→5Ίェキソヌクレアーゼ活性を含む耐熱性 DNAポリメラ ーゼを作用させて PCR反応を行うと、モチーフ配列を含む複数種の一本鎖 DNAが ランダムに伸長、連結した二本鎖 DNA重合体集団が合成される。 PCRの条件は、 D NAポリメラーゼ(例えば、 Ventポリメラーゼ)を用いて、例えば 94°Cで 10秒、及び 55 75°Cで 60秒を 1サイクルとして、これを DNA重合が確認できるまで (30〜65サイク ル)、最後に 69°Cで 7分行う。上記反応を行う前に、更に 94°Cで 10分、及び 69°Cで 1 0分の反応を行うのが好ましい。さらに、伸長反応温度は、一本鎖 DNAの Tm— 5°C に近 、値を設定することが好まし 、。 [0024] The complementary regions of these multiple types of single-stranded DNA function as a trapezoid for a PCR reaction using a thermostable polymerase. In the presence of multiple types of single-stranded DNA, it acts in the direction from the ^ end to the 5 'end (when a PCR reaction is performed using a thermostable DNA polymerase containing 3, → 5 exonuclease activity, A double-stranded DNA polymer population in which multiple types of single-stranded DNA containing a motif sequence are randomly extended and ligated is synthesized under the conditions of PCR using DNA polymerase (eg, Vent polymerase), for example 94 One cycle of 10 seconds at 55 ° C and 60 seconds at 55 75 ° C is performed for 7 minutes at 69 ° C until DNA polymerization can be confirmed (30 to 65 cycles). Furthermore, it is preferable to carry out the reaction at 94 ° C for 10 minutes and at 69 ° C for 10 minutes, and the elongation reaction temperature is set close to Tm—5 ° C of single-stranded DNA. I prefer that.
[0025] このようにして、複数種の一本鎖 DNAの相補した領域がランダムな組み合わせで 塩基対を形成し、伸長、重合反応を繰り返す結果、モチーフ配列をコードする DNA 力 Sランダムにシャフリングされた、二本鎖人工 DNA集団が作製される。なお、本発明 の方法では、本発明者の発明した高分子マイクロ遺伝子重合体の作製手法 (特許 3 415995号公報; Proc. Natl. Acad. Sci. USA, 94:3805-3810, 1997)とは異なり、重 合反応の際 DNA鎖間で生じる塩基の置換、挿入、欠損に依存せずに配列多様性 集団を作製することができる。  [0025] In this way, complementary regions of multiple types of single-stranded DNA form base pairs in a random combination, and as a result of repeating extension and polymerization reactions, the DNA force encoding the motif sequence S is shuffled randomly. A double-stranded artificial DNA population is produced. In the method of the present invention, the preparation method of the polymer microgene polymer invented by the present inventors (Patent No. 3415995; Proc. Natl. Acad. Sci. USA, 94: 3805-3810, 1997) In contrast, a sequence diversity population can be created without depending on base substitution, insertion, or deletion that occurs between DNA strands during the polymerization reaction.
[0026] 以上に、本発明の人工遺伝子集団の作製方法について、例を挙げて具体的に説 明したが、本発明の人工遺伝子集団の作製方法では、上記のように多種の一本鎖 D NAの相補的塩基対の組合わせ及び Z又は多種の一本鎖 DNAのそれぞれの濃度 を調節して、ランダム重合反応で利用されるモチーフ配列の出現頻度をコントロール することが可能である。また、本発明の人工遺伝子集団の作製方法においては、多 数種のモチーフ配列を任意に選定し、ランダムに重合して、人工遺伝子集団、及び 、人工タンパク質集団を作製するに際し、任意のモチーフ配列を、機能モチーフ配 列、構造モチーフ配列、進化分子工学的に取得された人工ペプチド配列、又はタン ノ ク質工学的な知識に基いてデザインされた配列のような配列に基いて構築し、人 ェ遺伝子集団の作製に際して、ある程度の機能を合理性をもって予測して、人工遺 伝子集団の作製を行うことが可能となる。 [0026] The method for producing the artificial gene population of the present invention has been specifically described above with examples. However, in the method for producing the artificial gene population of the present invention, a variety of single-stranded D as described above can be used. Control the frequency of motif sequences used in random polymerization reactions by adjusting the combination of NA's complementary base pairs and the concentration of each Z or multiple single-stranded DNA Is possible. In the method for producing an artificial gene population of the present invention, a plurality of motif sequences are arbitrarily selected and randomly polymerized to produce an artificial gene population and an artificial protein population. Is constructed based on sequences such as functional motif sequences, structural motif sequences, artificial peptide sequences obtained from evolutionary molecular engineering, or sequences designed based on protein engineering knowledge. It is possible to create an artificial gene population by predicting a certain degree of function with a reasonable rationality.
[0027] 本発明の人工遺伝子集団の作製方法により作製した、多種のモチーフ配列をラン ダムに挿入した人工タンパク質集団は、該遺伝子を組込んだベクターを、宿主細胞 に導入し、発現することにより、多種のモチーフ配列をランダムに挿入した人工タンパ ク質集団を作製することができる。該人工タンパク質集団の作製に用いられるベクタ 一、宿主細胞及びその遺伝子の発現方法は、この分野で公知のベクター、宿主細胞 、及び遺伝子の発現方法が用いられる。本発明の方法により作製された多数種モチ ーフ配列がランダムに重合した人工遺伝子集団、或いは、多種のモチーフ配列をラ ンダムに挿入した人工タンパク質集団は、該人工遺伝子集団或いは人工タンパク質 集団について、機能性遺伝子或いは機能性タンパク質をスクリーニングすることによ り、機能性人工遺伝子又は機能性人工タンパク質の創出を行うことができる。  [0027] An artificial protein population produced by the method for producing an artificial gene population of the present invention in which various motif sequences are randomly inserted is introduced into a host cell and expressed by introducing a vector incorporating the gene into the host cell. It is possible to produce artificial protein populations in which various motif sequences are randomly inserted. Vectors used for the production of the artificial protein population, host cells and their gene expression methods include vectors, host cells and gene expression methods known in the art. An artificial gene population in which a large number of motif sequences produced by the method of the present invention are randomly polymerized, or an artificial protein population into which various motif sequences are randomly inserted, is used for the artificial gene population or artificial protein population. By screening functional genes or functional proteins, functional artificial genes or functional artificial proteins can be created.
[0028] 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこ れらの例示に限定されるものではない。  [0028] Hereinafter, the present invention will be described more specifically by way of examples. However, the technical scope of the present invention is not limited to these examples.
なお、実施例の記載に先立って、本発明のモチーフ配列を利用した人工タンパク質 集団作製の戦略を図 1に示す。本手法は、(1)モチーフ配列をコードする複数種 1本 鎖 DNAのデザイン、(2)複数種 1本鎖 DNA間でのランダム重合反応、(3)制限酵素 切断反応によるランダム重合反応効率の検討、(4)ランダム重合体の大腸菌への形 質転換及び配列決定、 (5)大腸菌または哺乳類細胞での人工タンパク質発現及び 機能性人工タンパク質のスクリーニング、の 5スキームより構成される。人工遺伝子集 団を得たい時 (人工タンパク質の発現を必要としない場合)は、(1)一(4)までのステツ プで反応は完了する。本実施例では、一般的に 4種類のモチーフ配列のランダム重 合による人工遺伝子及び人工タンパク質集団作製を試みているが、反応に利用でき るモチーフの数は 4種類に限定されな 、 (それ以上の数も理論上可能である)。以下 具体的実験例を挙げる。 Prior to the description of the examples, FIG. 1 shows a strategy for producing an artificial protein population using the motif sequence of the present invention. This method consists of (1) design of multiple types of single-stranded DNA encoding motif sequences, (2) random polymerization reaction between multiple types of single-stranded DNA, and (3) efficiency of random polymerization reaction by restriction enzyme cleavage reaction. Study, (4) Transformation of random polymer into E. coli and sequencing, (5) Expression of artificial protein and screening of functional artificial protein in E. coli or mammalian cells. When it is desired to obtain an artificial gene cluster (when the expression of an artificial protein is not required), the reaction is completed in steps (1) to (4). In this example, an artificial gene and an artificial protein population are generally prepared by random polymerization of four types of motif sequences. The number of motifs that can be used is not limited to four, (more than that is theoretically possible). Specific experimental examples are given below.
実施例 1  Example 1
[0029] [制限酵素認識モチーフを含む 4種 1本鎖 DNAのランダム重合による人工遺伝子集 団の作製]  [0029] [Production of artificial gene cluster by random polymerization of 4 types of single-stranded DNA containing restriction enzyme recognition motif]
淛限酵素認識配列を含む一本鎖 DNAのデザイン)  Design of single-stranded DNA containing restriction enzyme recognition sequence)
機能性配列を含む一本鎖 DNAとして、制限酵素認識配列を含む 4種類の一本鎖 D NAを以下のように合成した。 KY—1354(配列番号 1: 5, - GGGGAATTCGGC GGG A- 3,)、 ΚΥ— 1355(配列番号 2: 5 ' -GGGAAGCTTACCCGCCA-3 ' ), ΚΥ— 1356( 配列番号 3: 5,-0001£1^^^^じ0じじ -3,)、1 ^—1357(配列番号4: 5,- GG GAGAICIACCCGCCA- 3,)。ここで、 KY— 1354、 KY— 1355、 KY— 1356、 KY — 1357の第 4番目〜9番目の配列 (下線部)は、それぞれ制限酵素認識配列 GAAT TC (EcoRI)、 AAGCTT (HindIII)、 TCTAGA (Xbal)、 AGATCT (Bglll)を含むように設 計した。また、 KY— 1354の第 10番目〜15番目の 6塩基 (5,- GGCGGG- 3,)が、 KY — 1355、 KY— 1356、 KY— 1357の第 11番目〜16番目の 6塩基 (5 CCCGCC- 3 ')と相補的塩基対を形成するように設計した。また、 KY— 1355、 KY— 1356、 KY — 1357の^末端及び第 10番目には、 KY— 1354と 6塩基以上の相補的塩基対を 形成できないようにアデニン (A)を導入した。更に、これら 4種類の一本鎖 DNAの長 さ (16— 17塩基)、 Tm (:〜 58°C)、 GC含量 (65— 69%)がそれぞれ近い値をとるように 4種類の一本鎖 DNAを設計した。  Four types of single-stranded DNA containing restriction enzyme recognition sequences were synthesized as follows as single-stranded DNA containing a functional sequence. KY—1354 (SEQ ID NO: 1, 5, GGGGAATTCGGC GGG A-3,), ΚΥ— 1355 (SEQ ID NO: 5′-GGGAAGCTTACCCGCCA-3 ′), ΚΥ— 1356 (SEQ ID NO: 3, 5, -0001 £ 1 ^^^^ ji 0ji-3,), 1 ^ —1357 (SEQ ID NO: 5, -GG GAGAICIACCCGCCA-3,). Here, the fourth to ninth sequences (underlined) of KY-1354, KY-1355, KY-1356, KY-1357 are the restriction enzyme recognition sequences GAAT TC (EcoRI), AAGCTT (HindIII), TCTAGA, respectively. (Xbal) and AGATCT (Bglll). In addition, the 10th to 15th 6 bases of KY-1354 (5, -GGCGGG-3,) are the 6th base of 11th to 16th of KY-1355, KY-1356, KY-1357 (5 CCCGCC -Designed to form complementary base pairs with 3 '). In addition, adenine (A) was introduced at the ^ terminal and 10th position of KY-1355, KY-1356, and KY-1357 so that a complementary base pair of 6 bases or more could not be formed with KY-1354. Furthermore, each of the four types of single-stranded DNA has a length (16-17 bases), Tm (: ~ 58 ° C), and GC content (65-69%) close to each other. Strand DNA was designed.
[0030] (制限酵素認識配列を含む一本鎖 DNAのランダム重合反応) [0030] (Random polymerization reaction of single-stranded DNA containing restriction enzyme recognition sequence)
まず、上記一本鎖 DNAのランダム重合反応液 50 /z Lを調整した。この反応液には、 10 X ThermoPol Reaction Buffer (NEW ENGLAND BioLabs'lx ThermoPol Reaction Buffer: 20mM 2—アミノー 2—ヒドロキシメチルー 1, 3、 一プロパンジオール塩酸塩 (以下トリス塩酸) pH 8. 8、 10mM 塩化カリウム、 10mM 硫酸アンモ-ゥム、 2m M 硫酸マグネシウム、 0. 1% トライトン X— 100)を 5 ;z L、 350 Μ(1ΝΤΡ、 3'→5 'エタソヌクレアーゼ活性をもつ Vent DNA polymerases (2 units/ μ L, NEW EN GLAND BioLabs)を 2. 6 L、及び 4種類の一本鎖 DNA(KY— 1354— KY— 135 7)を以下 6種類の割合で混合した。(1)KY— 1354 : 20 pmolのみ(DNA1種)、 (2) KY— 1354 : 20 pmol+KY— 1355 : 20 pmol (DNA2種)、(3) KY— 1354 : 20 pmol+KY— 1356 : 20 pmol (DNA2種)、(4) KY— 1354 : 20 pmol+KY— 13 57 : 20 pmol (DNA2種)、(5)KY— 1354 : 20 pmol+KY— 1355 : 10 pmol + KY— 1356 : 10 pmol (DNA3種)、(6) KY— 1354 : 20 pmol+KY— 1355 : 6. 7 pmol+KY— 1356 : 6. 7 pmol+KY— 1357 : 6. 7 pmol (DNA4種)。 First, the above single-stranded DNA random polymerization reaction solution 50 / zL was prepared. This reaction solution contains 10 X ThermoPol Reaction Buffer (NEW ENGLAND BioLabs'lx ThermoPol Reaction Buffer: 20 mM 2-amino-2-hydroxymethyl-1,3, monopropanediol hydrochloride (hereinafter tris-hydrochloric acid) pH 8.8, 10 mM Vent DNA polymerases with potassium chloride, 10 mM ammonium sulfate, 2 mM magnesium sulfate, 0.1% Triton X—100) 5; z L, 350 Μ (1 ', 3' → 5 'etasonuclease activity ( 2 units / μL, NEW EN GLAND BioLabs) 2.6 L and 4 types of single-stranded DNA (KY— 1354— KY— 135 7) was mixed in the following 6 ratios. (1) KY— 1354: 20 pmol only (1 DNA), (2) KY— 1354: 20 pmol + KY— 1355: 20 pmol (2 DNA), (3) KY— 1354: 20 pmol + KY— 1356: 20 pmol (2 types of DNA), (4) KY— 1354: 20 pmol + KY— 13 57: 20 pmol (2 types of DNA), (5) KY— 1354: 20 pmol + KY— 1355: 10 pmol + KY— 1356: 10 pmol (3 types of DNA), (6) KY— 1354: 20 pmol + KY— 1355: 6.7 pmol + KY— 1356: 6.7 pmol + KY— 1357: 6.7 pmol (4 types of DNA).
[0031] これら反応液を 200 /z L thin wall PCRチューブ(東洋紡績,大阪)に入れ、サーマ ルサイクラ一 PCR— 2400(パーキンエルマ一, Norwalk)による温度サイクルで上記複 数種一本鎖 DNA間での重合反応をおこなった。重合反応の前処理として、 94°Cで 10分、 69°Cで 10分の反応を行った。重合反応温度は、 KY— 1354— 1357の Tm 値 (58°C)以下になることを考慮して、 55°Cに設定した。重合反応サイクルは、 94°Cで 10秒、 55°Cで 60秒行い、 40サイクルの反応を進行させた。重合反応終了後 69°C で 7minの伸長停止反応を行った。 DNA重合産物を 1. 0% TAE ァガロースゲル( ァガロース ME岩井化学東京),及び Mupid電気泳動装置(コスモバイオ、東京)を用 いて、 100V、 15分で泳動させ、重合反応を確認した (図 2)。本反応により、数キロ塩 基対以上にも及ぶ DNAがこの方法により重合されたことを確認した。  [0031] These reaction solutions were placed in a 200 / z L thin wall PCR tube (Toyobo, Osaka) and subjected to temperature cycling with a thermal cycler PCR-2400 (Perkin Elmer I, Norwalk) between the multiple single-stranded DNAs. The polymerization reaction was carried out. As a pretreatment for the polymerization reaction, a reaction was performed at 94 ° C for 10 minutes and at 69 ° C for 10 minutes. The polymerization reaction temperature was set to 55 ° C in consideration of the Tm value of KY-1354-1357 (58 ° C) or less. The polymerization reaction cycle was 94 ° C. for 10 seconds and 55 ° C. for 60 seconds, and 40 cycles of the reaction proceeded. After completion of the polymerization reaction, an elongation stop reaction was carried out at 69 ° C for 7 min. The DNA polymerization product was electrophoresed at 100V for 15 minutes using 1.0% TAE agarose gel (Agarose ME Iwai Chemical Tokyo) and Mupid electrophoresis apparatus (Cosmo Bio, Tokyo) to confirm the polymerization reaction (Fig. 2). . By this reaction, it was confirmed that DNA of several kilo base pairs or more was polymerized by this method.
[0032] (制限酵素反応による複数種 DNAランダム重合の確認)  [0032] (Confirmation of multiple types of random DNA polymerization by restriction enzyme reaction)
制限酵素認識配列を含む一本鎖 DNAのランダムな重合を確認するため、任意の制 限酵素を用いて DNA重合体の切断反応を行った。異なる制限酵素を含む 5種類の 反応溶液 50 μ Lを以下のように調整した。上記 DNAの重合反応液 5 μ L、 10x制限 酵素 buffer B (Hindlll, EcoRI)、又は M(BglII)、又は H(Xbal)を 5 μ L、(ロシュダイァ グノスティック社, Basel)、制限酵素 (ロシュダイァグノスティック社, Basel)は、 5類の反 応溶液に対しそれぞれ、 (1)酵素なし、 (2) HindllKlOunits/ μ L)を 2 μ L、 (3) BglII( lOunits/ μ L)を 2 μ L、(4) Xbal(40units/ μ L)を 2 μ L、 (5) EcoRI(10units/ μ L) を 2 /z L、という条件で加えた。切断反応は、 37°C、 90分で進行させた。 DNA切断 反応を確認するため、 50 Lの反応液から 5 Lを抽出し、 1. 0%TAEァガロースゲ ルによる電気泳動 (100V、 15分)を行った。(図 3)。図 3により、 1— 2における DNA重 合体は、重合反応に利用した任意の一本鎖 DNAに含まれる制限酵素配列で切断さ れること、また複数種一本鎖 DNAカゝら構成された DNA重合体は、複数種制限酵素 で切断されることを確認した。このことから、制限酵素認識モチーフを含む一本鎖 DN A間でのランダムな重合、伸長反応が生じることがわ力つた。 In order to confirm the random polymerization of single-stranded DNA containing a restriction enzyme recognition sequence, the DNA polymer was cleaved using an arbitrary restriction enzyme. 50 μL of 5 kinds of reaction solutions containing different restriction enzymes were prepared as follows. 5 μL of the above DNA polymerization reaction solution, 10 × restriction enzyme buffer B (Hindlll, EcoRI), M (BglII), or H (Xbal) 5 μL, (Roche Diagnostics, Basel), restriction enzyme (Roche Diagnostic, Basel) has (1) no enzyme, (2) HindllKlOunits / μL) 2 μL, and (3) BglII (lOunits / μL) for each of the five reaction solutions. 2 μL, (4) Xbal (40 units / μL) was added at 2 μL, and (5) EcoRI (10 units / μL) was added at 2 / z L. The cleavage reaction was allowed to proceed at 37 ° C for 90 minutes. In order to confirm the DNA cleavage reaction, 5 L was extracted from the 50 L reaction solution and subjected to electrophoresis (100 V, 15 minutes) with 1.0% TAE agarose gel. (Figure 3). According to Figure 3, the DNA polymer in 1-2 is cleaved with the restriction enzyme sequence contained in any single-stranded DNA used in the polymerization reaction. It was also confirmed that the DNA polymer composed of multiple types of single-stranded DNA chains was cleaved by multiple types of restriction enzymes. This proved that random polymerization and elongation reactions occurred between single-stranded DNAs containing restriction enzyme recognition motifs.
[0033] (大腸菌への形質転換及び DNA重合産物の配列決定) [0033] (Transformation into E. coli and sequencing of DNA polymerization product)
上記の DNA配列間でのランダムな重合反応液を市販の Zero Blunt TOPO PCR Random polymerization reaction solution between the above DNA sequences is commercially available Zero Blunt TOPO PCR
Cloning Kit (Invitrogen, CA)を利用してクローユング及び配列決定を行った。ライゲ ーシヨン反応は 6 μ Lの反応スケールで行い、この反応液には、 DNA重合産物 1 μ L 、 Salt Solution 1 L、 TOPO vector 1 L、超純水 3 μ Lが含まれる。以上反応 液を室温 30分で反応させた後、 2 μ L反応液を Top— lOcell(Invitrogen)に混合し、 形質転換した。インサートを含む 18クローンを選択し、そのプラスミドを QIAGEN mini kit (キアゲン)により精製し、 DTCS cycle sequence reaction kit (ベックマン)を用いた ダイターミネイト法によりキヤピラリーシーケンサー CEQ2000XL DNA analyzer (べッ クマン)で配列を決定した。 KY— 1354、 KY— 1355、 KY— 1357、の 3種一本鎖 D NAを混合した重合体力 得られたクローン一つ (EHB # 7:配列番号 5)と、 KY— 13 54、 KY— 1355、 KY— 1356、 KY— 1357の 4種一本鎖 DNAを混合した重合体力 ら得られたクローン三つ (EHBX1〜EHBX3 :配列番号 6、 7、 8)を図 4に示す。図 4 で示されるように、 3又は 4種類の制限酵素認識配列を含む DNAが任意の割合でラ ンダム重合した、人工遺伝子集団を得ることができた。 Cloning and sequencing were performed using Cloning Kit (Invitrogen, CA). The ligation reaction is performed on a 6 μL reaction scale, and this reaction solution contains 1 μL of DNA polymerization product, 1 L of Salt Solution, 1 L of TOPO vector, and 3 μL of ultrapure water. After the reaction solution was reacted at room temperature for 30 minutes, 2 μL of the reaction solution was mixed with TopOlOcell (Invitrogen) and transformed. Select 18 clones containing the insert, purify the plasmid with QIAGEN mini kit (Qiagen), and sequence with the capillary sequencer CEQ2000XL DNA analyzer (Beckman) by dye termination method using DTCS cycle sequence reaction kit (Beckman) It was determined. KY— 1354, KY— 1355, KY— 1357, a polymer with a mixture of three single-stranded DNAs. One clone (EHB # 7: SEQ ID NO: 5), KY— 13 54, KY— 1355 FIG. 4 shows three clones (EHBX1 to EHBX3: SEQ ID NOs: 6, 7, and 8) obtained from the polymer power obtained by mixing four kinds of single-stranded DNAs of KY-1356 and KY-1357. As shown in FIG. 4, an artificial gene population in which DNA containing 3 or 4 kinds of restriction enzyme recognition sequences was randomly polymerized at an arbitrary ratio could be obtained.
実施例 2  Example 2
[0034] [アポトーシス制御型タンパク質に存在する BH1— BH4モチーフ配列ランダム重合 による人工タンパク質集団 (A)の作製]  [0034] [Preparation of artificial protein population (A) by random polymerization of BH1-BH4 motif sequences present in apoptosis-regulated proteins]
(アポトーシス制御モチーフ BH1— BH4の選択)  (Selection of apoptosis control motif BH1- BH4)
プログラムされた自発的細胞死 (アポトーシス)を制御する天然タンパク質として、 Bcl- As a natural protein that regulates programmed spontaneous cell death (apoptosis), Bcl-
2 familyタンパク質ファミリーが知られている。そのファミリーに属する BcHdはアポトー シス抑制に、 Noxaは、アポトーシス促進に重要であることがわかっている。ここでは、 h uman BcHdタンパク質に内在する BH1、 BH2、 BH4モチーフの一部配列、及び hu man Noxaタンパク質に内在する BH3モチーフの一部配列を、人工タンパク質集団作 成のモチーフ配列として利用することを試みた。以下のペプチド配列をコードする部 分を BH1— BH4モチーフからそれぞれ選択した。 BH1 : ELFRDGVN、 BH2 : ENGG WDTF、 BH3 : LRRFGDKLNゝ BH4 : RELWDFL。 2 family protein families are known. BcHd, a member of the family, has been shown to be important in inhibiting apoptosis, and Noxa is important in promoting apoptosis. Here, the partial sequence of BH1, BH2, and BH4 motifs in human BcHd protein and the partial sequence of BH3 motif in hu man Noxa protein are used as motif sequences for artificial protein population creation. Tried. Part encoding the following peptide sequence Minutes were selected from each BH1-BH4 motif. BH1: ELFRDGVN, BH2: ENGG WDTF, BH3: LRRFGDKLN ゝ BH4: RELWDFL.
[0035] (BH1— BH4モチーフ配列をコードする一本鎖 DNAのデザイン: A)  [0035] (BH1--design of single-stranded DNA encoding BH4 motif sequence: A)
BH1— BH4モチーフから構成される人工タンパク質集団 Aを作成するために、各翻 訳読み枠の停止コドンを排除した一本鎖 DNAを芝らの発明した多機能塩基配列設 計法 (特開 2001— 352990)によりデザインした。ここでは、 BH1— BH4モチーフを コードする遺伝子の別の読み枠には、人工タンパク質の安定ィ匕を助けるために、 a 一へリックス性の高 、ペプチドがコードされるように 4種類一本鎖 DNAをデザインし た (図 5)。ここで、 KY— 1372(配列番号 9)、 KY— 1377(配列番号 10)、 KY— 1375( 配列番号 11)、 KY— 1374(配列番号 12)は、それぞれ制限酵素認識配列 GTCGAC (Sail), AAGCTT(HindIII)、 AGATCT (BglII)、 GAATTC (EcoRI)を含むように設計した (図 5、デザイン A、下線)。  In order to create an artificial protein group A composed of BH1-BH4 motifs, a multi-functional nucleotide sequence design method invented by Shiba et al. — Designed by 352990). Here, another reading frame of the gene encoding the BH1-BH4 motif includes four types of single-stranded chains that are a-helix-like and highly peptide-encoded to help stabilize the artificial protein. DNA was designed (Figure 5). Here, KY-1372 (SEQ ID NO: 9), KY-1377 (SEQ ID NO: 10), KY-1375 (SEQ ID NO: 11), KY-1374 (SEQ ID NO: 12) are the restriction enzyme recognition sequences GTCGAC (Sail), It was designed to include AAGCTT (HindIII), AGATCT (BglII), and GAATTC (EcoRI) (Figure 5, Design A, underlined).
[0036] また、 KY— 1372の 3'端 7塩基 (5,- GGCGGGG- 3,)が、 KY— 1377、 KY— 1375 、 KY- 1374の ^端 7塩基 (5 ' - CCCCGCC-3 ' )と相補的塩基対を形成するように設 計した。また、 KY— 1372の^末端及び^末端から 9番目の塩基には、 7塩基対以 上の相互作用が形成されな!、ようにアデニン (A)及びシトシン (C)をそれぞれ挿入した 。さらに、これら 4種類の一本鎖 DNA設計の際に、その長さ(40— 45)、 GC塩基の含 有度 (55— 65%)、分子内ヘアピン形成能、 Tmがそれぞれ近い値をとるように設計し た。  [0036] In addition, KY— 1372 3 ′ end 7 bases (5,-GGCGGGG-3,), KY— 1377, KY— 1375, KY-1374 ^ end 7 bases (5 '-CCCCGCC-3') It was designed to form a complementary base pair. In addition, adenine (A) and cytosine (C) were inserted so that no interaction of 7 base pairs or more was formed at the 9th base from the ^ terminal and ^ terminal of KY-1372. Furthermore, when designing these four types of single-stranded DNA, the length (40-45), GC base content (55-65%), intramolecular hairpin formation ability, and Tm are close to each other. Designed as follows.
[0037] (BH1— BH4モチーフを含む一本鎖 DNAのランダム重合反応)  [0037] (BH1-Random polymerization of single-stranded DNA containing BH4 motif)
まず、上記一本鎖 DNAのランダム重合反応液 50 Lを調整した。この反応液組成 は、 10 X ThermoPol Reaction Buffer (実施例 1と同様)を 5 μ L、 350 μ M dNTPゝ Ve nt DNA polymerases (2 units/ μ L, NEW ENGLAND BioLabs)を 2. 6 L、及び 4種 類の一本鎖 DNA(KY— 1372、 KY— 1377、 KY— 1375、 KY— 1374)を種々の 割合で混合し、実施例 1と同様の DNAランダム重合反応を行った。重合反応の前処 理として、 94°Cで 10分、 69°Cで 10分の反応を行った。重合反応温度は、 72°Cに設 定した。重合反応サイクルは、 94°Cで 10秒、 55°Cで 60秒行い、 40サイクルの反応 を進行させた。 [0038] 重合反応終了後 69°Cで 7minの伸長停止反応を行った。 DNA重合産物を 1. 0% TAEァガロースゲル (ァガロース ME 岩井化学東京)、及び Mupid 電気泳動装置( コスモバイオ、東京)を用いて、 100V、 15分で泳動させ、重合反応を確認した (図 6)。 また、 BH1— BH4モチーフをコードする一本鎖 DNAがそれぞれ類似の頻度でラン ダム重合するように、反応の最適化を行った結果、 KY- 1374 : KY- 1375 :KY- 1377 :ΚΥ— 1372 = 2 : 1: 100 : 100のように一本鎖 DNA量比を設定した。本反応 により、数キロ塩基対以上にも及ぶ DNA力この方法により重合されたことを確認した First, 50 L of the single-stranded DNA random polymerization reaction solution was prepared. The composition of this reaction solution is 5 μL of 10 X ThermoPol Reaction Buffer (same as Example 1), 2.6 L of 350 μM dNTP ゝ Vent DNA polymerases (2 units / μL, NEW ENGLAND BioLabs), and Four types of single-stranded DNA (KY-1372, KY-1377, KY-1375, KY-1374) were mixed at various ratios, and the same DNA random polymerization reaction as in Example 1 was performed. As a pretreatment for the polymerization reaction, a reaction was carried out at 94 ° C for 10 minutes and at 69 ° C for 10 minutes. The polymerization reaction temperature was set to 72 ° C. The polymerization reaction cycle was performed at 94 ° C for 10 seconds and at 55 ° C for 60 seconds, and 40 cycles of the reaction proceeded. [0038] After completion of the polymerization reaction, an elongation termination reaction was carried out at 69 ° C for 7 minutes. The DNA polymerization product was electrophoresed at 100 V for 15 minutes using 1.0% TAE agarose gel (Agarose ME Iwai Chemical Tokyo) and Mupid electrophoresis apparatus (Cosmo Bio, Tokyo) to confirm the polymerization reaction (Fig. 6). . In addition, as a result of optimizing the reaction so that single-stranded DNAs encoding the BH1-BH4 motif each randomly polymerize with a similar frequency, KY-1374: KY-1375: KY-1377: ΚΥ— 1372 The ratio of single-stranded DNA was set as follows: 2: 1: 100: 100. By this reaction, DNA force of several kilobase pairs or more was confirmed to be polymerized by this method.
[0039] (制限酵素反応による BH1— ΒΗ4モチーフを含む DNAランダム重合の確認)[0039] (Confirmation of DNA random polymerization containing BH1-ΒΗ4 motif by restriction enzyme reaction)
BH1— ΒΗ4モチーフ配列を含む一本鎖 DNAのランダムな重合を確認するため、任 意の制限酵素を用いて DNA重合体の切断反応を行った。異なる制限酵素を含む 5 種類の反応溶液 50 μ Lを以下のように調整した。 DNA重合反応液 5 μ L、 10x制限 酵素 buffer H(SalI, or EcoRI)、又は M(Hindm,or Bglll)を 5 μ L、(ロシュダイァグノス ティック社, Basel),制限酵素 (ロシュダイァグノスティック社, Basel)は、 5類の反応溶液 に対しそれぞれ、(1)酵素なし、(2) Sail (40units/ μ L)^2 μ (3) HindIII(10units Z μ L)を 2 μ L、(4) EcoRl(10units/ μ L)を 2 μ L、(5) Bglll(10units/ μ L)を 2 μ L という条件で加えた。切断反応は、 37°C、 90分で進行させた。 DNA切断反応を確 認するため、 50 Lの反応液から 5 Lを抽出し、 1. 0%TAEァガロースゲルによる 電気泳動 (100V、 15分)を行った (図 7)。図 7のように、 BH1—BH4モチーフ配列を 含む一本鎖 DNAから構成された DNA重合体が、用いた全ての制限酵素で部分的 に切断されることがわかった。このこと力ら、 4種類一本鎖 DNA間でのランダムな重 合反応が確認できた。 In order to confirm the random polymerization of single-stranded DNA containing the BH1-—4 motif sequence, the DNA polymer was cleaved using an arbitrary restriction enzyme. 50 μL of five reaction solutions containing different restriction enzymes were prepared as follows. 5 μL of DNA polymerization reaction solution, 10 × restriction enzyme buffer H (SalI, or EcoRI), or 5 μL of M (Hindm, or Bglll) (Roche Diagnostics, Basel), restriction enzyme (Rochedai (Agnostic, Basel) has (1) no enzyme, (2) Sail (40units / μL) ^ 2 μ (3) HindIII (10units Z μL) in 2 μm for each of the five reaction solutions. L, (4) EcoRl (10 units / μL) was added at 2 μL, and (5) Bglll (10 units / μL) was added at 2 μL. The cleavage reaction was allowed to proceed at 37 ° C for 90 minutes. In order to confirm the DNA cleavage reaction, 5 L was extracted from the 50 L reaction solution and subjected to electrophoresis (100 V, 15 minutes) on a 1.0% TAE agarose gel (FIG. 7). As shown in Fig. 7, it was found that a DNA polymer composed of single-stranded DNA containing the BH1-BH4 motif sequence was partially cleaved by all the restriction enzymes used. From these facts, a random polymerization reaction between four types of single-stranded DNA was confirmed.
[0040] (大腸菌への形質転換、スクリーニング、及び DNA重合産物の配列決定)  [0040] (Transformation to E. coli, screening, and sequencing of DNA polymerization product)
上記 BH1— BH4モチーフを含む DNA重合反応産物を市販の pcDNA3.1Directiona 1 TOPO Expression Kit (Invitrogen, CA)を利用してクロー-ング及び配列決定を行 つた。ここでは、哺乳類細胞系での機能性人工タンパク質スクリーニングのために、 哺乳類発現ベクター (pcDNA3.1D/V5-His-TOPO, Invitrogen)に人工遺伝子をライゲ ーシヨンした。ライゲーシヨン反応は 6 μ Lのスケールで行い、この反応液には、 DNA 重合反応産物 l / L、 Salt Solution 1 L、 TOPO vector 1 L、超純水 3 L力 S 含まれる。以上反応液を室温 30分で反応させた後、 2 /^の反応液を丁0 —10^11(1 nvitrogen)に混合し、氷上に 30min静地したのち形質転換した。スクリーニング PCR より、インサートを含むクローンから 10種を選択し、そのプラスミドを QIAGEN mini kit( キアゲン)により精製し、 DTCS cycle sequence reaction kit (ベックマン)を用いたダイタ 一ミネイト法によりキヤピラリーシーケンサー CEQ2000XL DNA analyzer (ベックマン )で配列を決定した (配列番号 13— 42)。 The DNA polymerization reaction product containing the BH1-BH4 motif was cloned and sequenced using a commercially available pcDNA3.1Directiona 1 TOPO Expression Kit (Invitrogen, CA). Here, an artificial gene was ligated into a mammalian expression vector (pcDNA3.1D / V5-His-TOPO, Invitrogen) for screening functional artificial proteins in mammalian cell systems. The ligation reaction is performed on a 6 μL scale. Polymerization reaction product l / L, Salt Solution 1 L, TOPO vector 1 L, ultrapure water 3 L force S are included. After the reaction solution was reacted at room temperature for 30 minutes, the 2 / ^ reaction solution was mixed with Ding 0-10 ^ 11 (1 nvitrogen), allowed to stand on ice for 30 minutes, and transformed. From the screening PCR, 10 types of clones containing inserts were selected, and the plasmids were purified with QIAGEN mini kit (Qiagen). The sequence was determined with (Beckman) (SEQ ID NO: 13-42).
[0041] 得られた人工タンパク質の遺伝子配列及びアミノ酸配列を図 8 (配列番号 13— 42) に示す。図 8力ら、 BH1— BH4モチーフをコードする人工 DNAがランダムに挿入し た人工タンパク質集団を作成できることがわかった。また、「BH1— BH4モチーフ配 列を含む一本鎖 DNAのデザイン A」においては、より配列多様性の高いライブラリー 作製のために、 DNA重合反応の際に生じるフレームシフトに依存してモチーフが導 入されるように遺伝子をデザインした(フレームシフトが起きなければ読み枠がずれる )o図 8に示すように、 BH1— BH4モチーフをコードする読み枠とは別の読み枠配列 が多く出現した。このように本手法では、複数種モチーフ配列を利用してライブラリー を作製できるが、別の翻訳読み枠の配列を利用することで配列多様性を増加させる ことが可能である。  [0041] The gene sequence and amino acid sequence of the obtained artificial protein are shown in Fig. 8 (SEQ ID NOs: 13-42). Figure 8 showed that an artificial protein population in which artificial DNA encoding the BH1-BH4 motif was randomly inserted could be created. In addition, in “Design of single-stranded DNA containing BH1-BH4 motif sequence A”, in order to create a library with higher sequence diversity, the motif depends on the frame shift that occurs during the DNA polymerization reaction. The gene was designed to be introduced (the reading frame would be shifted if no frame shift occurred) o Many reading frame arrangements different from the reading frame encoding the BH1-BH4 motif appeared as shown in Fig. 8. . Thus, in this method, a library can be created using multiple motif sequences, but sequence diversity can be increased by using sequences in different translation reading frames.
[0042] (人工タンパク質の哺乳類細胞での発現の確認)  [0042] (Confirmation of expression of artificial protein in mammalian cells)
上記配列決定した人工タンパク質の哺乳類細胞での発現を確認するため、 MxA6( 図 8、 a, b、 c参照)の遺伝子をコードするプラスミドを代表的ヒト乳癌細胞株の一つで ある MCF— 7に遺伝子導入した。コントロールとしては、人工タンパク質をコードしな V、pcDNAベクター (Invitrogen)を細胞に導入した。遺伝子導入 24時間後に MCF— 7をメタノール固定し、ヒスチジン-タグのつ 、た人工タンパク質の発現を Alexa-His- 抗体 (キアゲン社)による免疫染色で確認した (図 9)。図 9のように、コントロールでは発 現が認められないのに対し MxA6の遺伝子を導入した細胞では、人工タンパク質の 発現が認められ、またその局在は、ミトコンドリアに一致することがわ力つた。このよう な哺乳類細胞系または大腸菌の発現系を利用して、人工タンパク質集団の発現及 び機能性人工タンパク質のスクリーニングを行うことができる。 実施例 3 In order to confirm the expression of the above-described sequenced artificial protein in mammalian cells, a plasmid encoding the gene for MxA6 (see Fig. 8, a, b, c) was used as one of the representative human breast cancer cell lines, MCF-7 The gene was introduced into. As a control, V, pcDNA vector (Invitrogen) that does not encode an artificial protein was introduced into cells. MCF-7 was fixed with methanol 24 hours after gene introduction, and the expression of histidine-tag and artificial protein was confirmed by immunostaining with Alexa-His-antibody (Qiagen) (FIG. 9). As shown in Fig. 9, the expression was not observed in the control, whereas in the cells into which the MxA6 gene was introduced, the expression of the artificial protein was observed and the localization was consistent with the mitochondria. Using such a mammalian cell system or E. coli expression system, expression of an artificial protein population and screening of functional artificial proteins can be performed. Example 3
[0043] [アポトーシス制御型タンパク質に存在する BH1— BH4モチーフ配列ランダム重合 による人工タンパク質集団 (B)の作製]  [0043] [Preparation of artificial protein population (B) by random polymerization of BH1-BH4 motif sequence existing in apoptosis-regulated protein]
実施例 2の人工タンパク質集団 (A)の作製では、 BH4モチーフをコードする KY— 1 372力BH3、 BH2又は BH1モチーフをコードする一本鎖 DNA(KY— 1377、 KY — 1375、 KY— 1374)と相補的塩基対を形成するようにデザインした (1: 3対応)。人 ェタンパク質集団(B)の作製では、 BH3又は BH4モチーフをコードする一本鎖 DN A力 BH2又は BH1モチーフをコードする一本鎖 DNAと相補的塩基対を形成する ようにデザインする (2 : 2対応) (図 5)。このように、相補的塩基対を形成する一本鎖 D NAの比は、自在に調節することができる。他の手法は基本的に人工タンパク質集団 (A)の作製と同様である。  In the production of the artificial protein population (A) of Example 2, KY-1 372 encoding a BH4 motif single-stranded DNA encoding a BH3, BH2 or BH1 motif (KY-1377, KY-1375, KY-1374) It was designed to form a complementary base pair with (1: 3 correspondence). The human protein population (B) is designed to form a complementary base pair with the single-stranded DNA encoding the BH2 or BH1 motif (2: 2 correspondence) (Figure 5). Thus, the ratio of single-stranded DNA forming complementary base pairs can be freely adjusted. Other methods are basically the same as the production of artificial protein population (A).
[0044] (BH1— BH4モチーフ配列を含む一本鎖 DNAのデザイン: B) [0044] (BH1--design of single-stranded DNA containing BH4 motif sequence: B)
BH1— BH4モチーフから構成される人工タンパク質集団 Bを作成するために、 4種 類の一本鎖 DNAKY—1372、 KY— 1379(BH3モチーフ、配列番号 43)、 KY—1 375、 KY— 1374を芝らの発明した多機能塩基配列設計法 (特開 2001— 352990) によりデザインした。ここで、 KY— 1372、 KY— 1379、 KY— 1375、 KY— 1374は 、それぞれ制限酵素認識配列 GTCGAC (Sail), CTCGAG(XhoI), AGATCT (Bglll), GAATTC (EcoRI)を含むように設計した(図 5デザイン B、下線)。また、 KY— 1372 又は KY— 1379の 3'端 7塩基 (5,- GGCGGGG- 3,)が、 KY— 1375及び KY— 137 4の^端 7塩基 (5 ' -CCCCGCC-3 ' )と相補的塩基対を形成するように設計した。また 、 KY— 1372及び KY— 1379の 3 '末端及び 3 '末端から 9番目の塩基には、 7塩基 対以上の相互作用が形成されな!、ようにアデニン (A)及びシトシン (C)をそれぞれ 挿入した。  Four types of single-stranded DNAKY—1372, KY—1379 (BH3 motif, SEQ ID NO: 43), KY—1 375, and KY—1374 were used to create artificial protein population B composed of BH1—BH4 motifs. It was designed by the multi-functional nucleotide sequence design method (Japanese Patent Laid-Open No. 2001-352990) invented by Shiba et al. Here, KY-1372, KY-1379, KY-1375, and KY-1374 were designed to contain restriction enzyme recognition sequences GTCGAC (Sail), CTCGAG (XhoI), AGATCT (Bglll), and GAATTC (EcoRI), respectively. (Figure 5 Design B, underlined). Also, the 3 'end 7 bases of KY-1372 or KY-1379 (5,-GGCGGGG-3,) are complementary to the 7 end bases of KY-1375 and KY-137 4 (5' -CCCCGCC-3 ') It was designed to form a target base pair. In addition, the 9th base from the 3 'end and the 3' end of KY-1372 and KY-1379 does not form an interaction of 7 base pairs or more, so that adenine (A) and cytosine (C) are added. Each inserted.
[0045] (BH1— BH4モチーフを含む一本鎖 DNAのランダム重合反応)  [0045] (BH1-Random polymerization of single-stranded DNA containing BH4 motif)
まず、上記一本鎖 DNAのランダム重合反応液 50 Lを調整した。 Xholをコードする KY— 1379の重合反応検討のために Xholを利用したことを除いて、人工タンパク質 集団 (A)の作製の項と同様に調整した。重合反応は、 1%ァガロースゲルにより確認 した。 [0046] (図 6)。また、 BH1— BH4モチーフがそれぞれ類似の頻度でランダム重合するように 、反応の最適ィ匕を行った結果 KY— 1374 : KY— 1375 :KY— 1379 :KY— 1372 =4 : 1 : 10 : 1のように BH1—BH4量比を設定した。 First, 50 L of the single-stranded DNA random polymerization reaction solution was prepared. Adjustments were made in the same way as for the production of artificial protein population (A), except that Xhol was used to study the polymerization reaction of KY—1379, which encodes Xhol. The polymerization reaction was confirmed by 1% agarose gel. [0046] (Figure 6). In addition, as a result of the optimal reaction of the reaction so that the BH1-BH4 motifs randomly polymerize at similar frequencies, KY— 1374: KY— 1375: KY— 1379: KY— 1372 = 4: 1: 10: 1 The BH1-BH4 amount ratio was set as follows.
[0047] (制限酵素反応による BH1— ΒΗ4モチーフを含む DNAランダム重合の確認)  [0047] (Confirmation of DNA random polymerization containing BH1-—4 motif by restriction enzyme reaction)
BH1— ΒΗ4モチーフ配列を含む一本鎖 DNAのランダムな重合を確認するため、 任意の制限酵素を用いて DNA重合体の切断反応を行った。制限酵素に Xholをカロ えたことを除いて、反応は人工タンパク質集団 (A)の作製の項と同様である。 5類の 反応溶液に対しそれぞれ、(1)酵素なし、(2) 3&11(40 3 を2 レ (3) XhoI( lOunits/ μ L)を 2 μ L (4) EcoRI(10units/ μ L)を 2 μ L、 (5) BgllKlOunits/ μ L)を 2 /z Lという条件で加えた。切断反応は、 37°C、 90分で進行させた。 DNA切断反応 を確認するため、 50 Lの反応液から 5 Lを抽出し、 1. 0%TAEァガロースゲルに よる電気泳動 (100V、 15分)を行った。(図 7)。図 7のように、 BH1— BH4モチーフ配 列を含む一本鎖 DNAから構成された DNA重合体が、用いた全ての制限酵素で部 分的に切断されることがわ力つた。このことから、 4種一本鎖 DNAのランダムな重合 反応が確認できた。 In order to confirm the random polymerization of single-stranded DNA containing the BH1-—4 motif sequence, the DNA polymer was cleaved using an arbitrary restriction enzyme. The reaction is the same as in the section on the production of artificial protein population (A), except that Xhol is carotenized as a restriction enzyme. (1) No enzyme, (2) 3 & 11 (40 3 2) (3) XhoI (lOunits / μL) 2 μL (4) EcoRI (10 units / μL) ) Was added at 2 μL, and (5) BgllKlOunits / μL) was added at 2 / z L. The cleavage reaction was allowed to proceed at 37 ° C for 90 minutes. To confirm the DNA cleavage reaction, 5 L was extracted from the 50 L reaction solution, and subjected to electrophoresis (100 V, 15 minutes) on a 1.0% TAE agarose gel. (Figure 7). As shown in Fig. 7, it was found that a DNA polymer composed of single-stranded DNA containing the BH1-BH4 motif sequence was partially cleaved by all the restriction enzymes used. From this, a random polymerization reaction of four types of single-stranded DNA was confirmed.
[0048] (大腸菌への形質転換、スクリーニング、及び DNA重合産物の配列決定)  [0048] (Transformation to E. coli, screening, and sequencing of DNA polymerization product)
人工タンパク質集団 (A)の作製の項と同様に形質転換及び配列決定を行った。人 ェタンパク質の遺伝子配列及びアミノ酸配列を図 10(配列番号 44 53)に示す。 実施例 4  Transformation and sequencing were performed in the same manner as in the section on production of artificial protein population (A). The gene sequence and amino acid sequence of human protein is shown in FIG. 10 (SEQ ID NO: 4453). Example 4
[0049] [アポトーシス制御型タンパク質に存在する BH1— BH4モチーフ配列ランダム重合 による人工タンパク質集団 (C)の作製]  [0049] [Preparation of artificial protein population (C) by random polymerization of BH1-BH4 motif sequence existing in apoptosis-regulated protein]
実施例 2及び実施例 3における人工タンパク質集団 (A、 B)の作製では、 DNA重合 反応の際に生じるランダムな塩基欠損もしくは挿入に起因するフレームシフトに依存 して、 BH1— BH4モチーフが人工タンパク質集団にランダム挿入された。このため、 BH1— BH4モチーフの出現頻度が比較的少な力つた (違う翻訳読み枠が多く出現 する)。ここではフレームシフトに依存せずに、 BH1— BH4モチーフがランダム重合 するように一本鎖 DNAのデザインを改変した。他の手法は基本的に人工タンパク質 集団(A)の作製と同様である。フレームシフトに依存せず、より多くの BH1— BH4モ チーフが人工タンパク質集団に出現することが実施例 4では期待される。 In the production of artificial protein populations (A, B) in Example 2 and Example 3, the BH1-BH4 motif is an artificial protein depending on the frame shift caused by random base deletion or insertion that occurs during the DNA polymerization reaction. Randomly inserted into the population. For this reason, the appearance frequency of the BH1—BH4 motif was relatively low (a lot of different translation reading frames appear). Here, the design of the single-stranded DNA was modified so that the BH1-BH4 motif was randomly polymerized without depending on the frame shift. The other methods are basically the same as the production of the artificial protein population (A). More BH1—BH4 modules without relying on frameshift It is expected in Example 4 that the chief appears in the artificial protein population.
[0050] (BH1— BH4モチーフ配列を含む一本鎖 DNAのデザイン: C) [0050] (BH1--design of single-stranded DNA containing BH4 motif sequence: C)
BH1— BH4モチーフカゝら構成される人工タンパク質集団 Cを作成するために、 4種 類の一本鎖 DNA KY— 1372、 KY— 1389(配列番号 54)、 KY— 1390(配列番号 55)、 KY— 1391(配列番号 56)をデザインした (図 11、 KY— 1372 : BH4モチーフ、 KY— 1389 : BH3モチーフ、 KY— 1390 : BH1モチーフ、 KY— 1391 : BH2モチ 一フ)。 KY— 1389、 KY— 1390、 KY— 1391はそれぞれ KY— 1377、 KY— 1374 、 KY— 1375の^末端に CCを付カ卩した配列である。これにより、フレームシフトに依 存せずに、ランダム重合した BH1— BH4モチーフが人工タンパク質集団に出現する 。 KY— 1372、 KY— 1389、 KY— 1390、 KY— 1391は、それぞれ制限酵素認識 配列 GTCGAC (Sail), AAGCTT (Hindlll), GAATTC (EcoRI), AGATCT (Bglll)を含 むように設計した(図 11デザイン C、下線)。また、 KY— 1372の 3'端 7塩基 (5,-GG CGGGG-3,)力 KY— 1389— KY— 1391の 3'端 7塩基 (5, - CCCCGCC- 3,)と相 補的塩基対を形成するように設計した。また、 KY— 1372の^末端及び^末端から 9番目の塩基には、 7塩基対以上の相互作用が形成されな!、ようにアデニン (A)及 びシトシン (C)をそれぞれ挿入した。  Four types of single-stranded DNAs KY— 1372, KY— 1389 (SEQ ID NO: 54), KY— 1390 (SEQ ID NO: 55), KY — 1391 (SEQ ID NO: 56) was designed (FIG. 11, KY— 1372: BH4 motif, KY— 1389: BH3 motif, KY— 1390: BH1 motif, KY— 1391: BH2 motif). KY-1389, KY-1390, and KY-1391 are sequences with CC attached to the ^ end of KY-1377, KY-1374, and KY-1375, respectively. As a result, the randomly polymerized BH1-BH4 motif appears in the artificial protein population without depending on the frame shift. KY— 1372, KY— 1389, KY— 1390, and KY— 1391 were designed to include the restriction enzyme recognition sequences GTCGAC (Sail), AAGCTT (Hindlll), GAATTC (EcoRI), and AGATCT (Bglll), respectively. C, underlined). In addition, KY— 1372 3 ′ end 7 bases (5, -GG CGGGG-3,) force KY— 1389— KY— 1391 3 ′ end 7 bases (5,-CCCCGCC-3,) and complementary base pair Designed to form. In addition, adenine (A) and cytosine (C) were inserted so that no interaction of 7 base pairs or more was formed at the ^ terminal of KY-1372 and the ninth base from the ^ terminal.
[0051] (BH1— BH4モチーフを含む一本鎖 DNAのランダム重合反応) [0051] (BH1-Random polymerization of single-stranded DNA containing BH4 motif)
上記一本鎖 DNAのランダム重合反応液 50 μ Lを人工タンパク質集団 (Α)の作製 の項と同様に調整した。加える一本鎖 DNAは、 ΚΥ- 1372 :ΚΥ- 1389 :ΚΥ- 13 90 :ΚΥ— 1391 = 1 : 1 : 1 : 1のようにそれぞれ等量の一本鎖 DNAを重合反応系に 加えた。重合反応は、 72°C、 45サイクルで行い、 1%ァガロースゲルにより重合を確 認した (図 11)。  50 μL of the single-stranded DNA random polymerization reaction solution was prepared in the same manner as in the section on the production of artificial protein population (Α). The single-stranded DNA to be added was added to the polymerization reaction system in the same amount of single-stranded DNA as follows: 1-1372: ΚΥ-1389: ΚΥ-1390: ΚΥ-1391 = 1: 1: 1: 1: 1. The polymerization reaction was carried out at 72 ° C and 45 cycles, and the polymerization was confirmed by 1% agarose gel (Fig. 11).
[0052] (制限酵素反応による BH1— BH4モチーフを含む DNAランダム重合の確認)  [0052] (Confirmation of DNA random polymerization containing BH1-BH4 motif by restriction enzyme reaction)
BH1— BH4モチーフ配列を含む一本鎖 DNAのランダムな重合を確認するため、 任意の制限酵素を用いて DNA重合体の切断反応を行った。反応条件は人工タンパ ク質集団 (A)の作製の項と同様である。 5類の反応溶液に対しそれぞれ、(1)酵素な し、(2) HindllKlOunits/ μ L)を 2 μ L、 (3) EcoRI(10units/ μ L)を 2 μ L、(4) BglII(l OunitsZ L)を 2 L、という条件でカ卩えた。図 12のように、 BH1— BH4モチーフ配 列を含む一本鎖 DNAから構成された DNA重合体が、用いた全ての制限酵素で部 分的に切断されることがわ力つた。このことから、 4種一本鎖 DNAのランダムな重合 反応が確認できた。 In order to confirm the random polymerization of single-stranded DNA containing the BH1-BH4 motif sequence, the DNA polymer was cleaved using an arbitrary restriction enzyme. The reaction conditions are the same as in the section on production of artificial protein population (A). (5) HindllKlOunits / μL) 2 μL, (3) EcoRI (10units / μL) 2 μL, (4) BglII (l) OunitsZ L) was adjusted under the condition of 2 L. As shown in Figure 12, BH1—BH4 motif arrangement It was found that a DNA polymer composed of single-stranded DNA containing a sequence was partially cleaved by all the restriction enzymes used. From this, a random polymerization reaction of four types of single-stranded DNA was confirmed.
[0053] (大腸菌への形質転換、スクリーニング、及び DNA重合産物の配列決定)  [0053] (Transformation to E. coli, screening, and sequencing of DNA polymerization product)
人工タンパク質集団 (A)の作製の項と同様に形質転換及び配列決定を行った。デ ザイン Cにより得られた人工タンパク質の遺伝子及びアミノ酸配列を図 13a, bに示す (配列番号 57— 74)。図 13のように 4つの BH1— BH4モチーフ配列が高頻度で出 現する人工タンパク質集団をえることに成功した。  Transformation and sequencing were performed in the same manner as in the section on production of artificial protein population (A). The gene and amino acid sequence of the artificial protein obtained by Design C are shown in FIGS. 13a and b (SEQ ID NOs: 57-74). As shown in Fig. 13, we succeeded in obtaining an artificial protein population in which four BH1-BH4 motif sequences appear frequently.
実施例 5  Example 5
[0054] [アポトーシス制御型タンパク質に存在する BH1— BH4モチーフ配列ランダム重合 による人工タンパク質集団 (D)の作製]  [0054] [Preparation of artificial protein population (D) by random polymerization of BH1-BH4 motif sequence existing in apoptosis-regulated protein]
実施例 4の人工タンパク質集団 (C)の作製の結果、得られたタンパク質集団は、比 較的 BH3モチーフの出現頻度が低いという結果が得られた。よって実施例 5では、 D NA重合反応に加える一本鎖 DNAの量比は、 KY— 1372 :KY— 1389 :KY— 139 0 :KY— 1391 = 2 : 2 : 0. 4 : 0. 3のように、 ΒΗ4と ΒΗ3モチーフをコードする KY— 1 372と KY— 1389の割合を多くして重合反応系に加えた。以外全ての反応条件は、 実施例 4の人工タンパク質集団(C)の作製と同様の条件で行った。図 11にランダム 重合体の電気泳動図、図 12に制限酵素による切断、図 14a, b, cに得られた人エタ ンパク質の遺伝子及びアミノ酸配列をそれぞれ示す (配列番号 75— 100)。図 14〖こ 示すように、 4つのモチーフが高頻度で出現し、特に BH4— BH3モチーフの出現頻 度が高い人工タンパク質集団の作成に成功した。このように、 DNA重合反応の際に 混合する一本鎖 DNAの量比を変化させることで、人工タンパク質集団に含まれるモ チーフの割合を制御することができる。人工タンパク質集団(C)と人工タンパク質集 団(D)における BH1— BH3モチーフの出現頻度を比較したものを図 15に示す。 実施例 6  As a result of the production of the artificial protein population (C) of Example 4, it was found that the obtained protein population had a relatively low frequency of appearance of the BH3 motif. Therefore, in Example 5, the amount ratio of the single-stranded DNA added to the DNA polymerization reaction was KY— 1372: KY— 1389: KY— 139 0: KY— 1391 = 2: 2: 0.2.4: 0.3. Thus, the proportions of KY-1 372 and KY-1389 encoding コ ー ド 4 and ΒΗ3 motifs were increased and added to the polymerization reaction system. All the reaction conditions were the same as in the production of the artificial protein population (C) in Example 4. FIG. 11 shows an electrophoretogram of the random polymer, FIG. 12 shows the digestion with restriction enzymes, and FIGS. 14a, b and c show the gene and amino acid sequences of the human protein obtained (SEQ ID NOs: 75 to 100). As shown in Fig. 14, we succeeded in creating an artificial protein population in which four motifs appeared frequently, and in particular, the BH4—BH3 motif appeared frequently. In this way, by changing the amount ratio of single-stranded DNA to be mixed during the DNA polymerization reaction, the ratio of the motif contained in the artificial protein population can be controlled. Figure 15 compares the frequency of BH1-BH3 motifs in the artificial protein population (C) and the artificial protein population (D). Example 6
[0055] [人工タンパク質のヒト癌細胞での発現及び局在多様性]  [0055] [Expression and localization diversity of artificial proteins in human cancer cells]
実施例 2、 3、 4、及び 5で作製した人工タンパク質集団 A、 B、 C、及び Dの中から無 作為に 41クローンを選択し、その遺伝子をヒト乳癌細胞株 MCF— 7に導入した。遺 伝子導入 24時間後に MCF— 7をメタノール固定し、 Mycェピトープタグ(EQKLIS EEDL ;配列番号 101)のついた人工タンパク質の発現を Myc抗体による免疫染色 で確認した。その結果、 41クローン中 28クローン(68%)で、タンパク質の効果的発 現がヒト細胞内で観察できた。また、その細胞内局在を検討した結果、細胞質に存在 するもの(11クローン)、核に存在するもの(5クローン)、ミトコンドリアに存在するもの( 5クローン)、それ以外(7クローン)と非常に多様であることがわ力つた(図 16)。このよ うに、本手法により得られた人工タンパク質は、哺乳類細胞内で効果的に発現し、細 胞内で様々なオルガネラに局在できる能力をもつことがわ力つた。 Forty-one clones were randomly selected from the artificial protein populations A, B, C, and D prepared in Examples 2, 3, 4, and 5, and the genes were introduced into the human breast cancer cell line MCF-7. Relic MCF-7 was fixed with methanol 24 hours after introduction of the gene, and the expression of the artificial protein with Myc epitope tag (EQKLIS EEDL; SEQ ID NO: 101) was confirmed by immunostaining with Myc antibody. As a result, 28 out of 41 clones (68%), the effective expression of the protein could be observed in human cells. In addition, as a result of examining the intracellular localization, it was found that there were those that were present in the cytoplasm (11 clones), those that were present in the nucleus (5 clones), those that were present in mitochondria (5 clones), and others (7 clones). However, it was very diverse (Fig. 16). In this way, the artificial protein obtained by this method was effectively expressed in mammalian cells and was found to have the ability to localize to various organelles in cells.
実施例 7  Example 7
[0056] [癌細胞に細胞死を誘導する機能性人工タンパク質の創出]  [0056] [Creation of functional artificial protein that induces cell death in cancer cells]
実施例 6にお 、て、タンパク質発現を確認した 28クローンの遺伝子をヒト乳癌細胞 株 MCF— 7に導入し、 MCF— 7の増殖に及ぼす効果を検討した。 96ゥエルの細胞 培養プレートに、 1ゥエルあたり lxlO4の MCF— 7を播種し、 37度で 24時間培養し た。その後、 28クローンの遺伝子をコードするプラスミド 0. 2 /z gをリポフエクタミン 20 OO lnvitrogen)を用いて MCF— 7内に導入した。遺伝子導入 48時間後に、増殖活性 をミトコンドリアの代謝活性の指標であるテトラゾリゥム塩 WST— 1を用いて定量した( Roche)。コントロールであるタンパク質をコードしな!、空ベクターを導入した場合の増 殖活性と比較した結果、 28種のクローン中一つのクローン D29力 有為に MCF— 7 の増殖を阻害することがわ力つた (コントロールに対し約 40%の増殖阻害効果)。 In Example 6, 28 clone genes whose protein expression was confirmed were introduced into human breast cancer cell line MCF-7, and the effect on the growth of MCF-7 was examined. A 96-well cell culture plate was seeded with lxlO 4 MCF-7 per well and cultured at 37 degrees for 24 hours. Thereafter, plasmid 0.2 / zg encoding the gene of 28 clones was introduced into MCF-7 using Lipofectamine (20 OO lnvitrogen). 48 hours after gene introduction, the proliferation activity was quantified using tetrazorium salt WST-1 which is an indicator of mitochondrial metabolic activity (Roche). Do not code a control protein! Compared to the growth activity when an empty vector was introduced, one clone out of 28 clones has a D29 force that significantly inhibits the growth of MCF-7. (Approximately 40% growth inhibitory effect over control).
[0057] この増殖阻害活性力 プログラムされた自発的細胞死 (アポトーシス)によるものか どうかを検討するため、アポトーシス細胞を検出する指標である TUNEL染色をおこ なった(Roche)。 TUNEL染色では、アポトーシス初期での断片化された DNAを蛍 光標識したヌクレオチドにより検出することができる。この結果、 D29は天然細胞死誘 導タンパク質 Baxと同等の程度 MCF— 7にアポトーシスを誘導できることがわ力つた( 図 17)。これに対し、 WST—1により細胞増殖阻害が認められな力つたクローンの一 つ A10は、 MCF— 7にアポトーシスを誘導できないことがわ力つた。さらに共焦点顕 職をもち、ヽて人工タンパク質を発現して ヽる細胞の状態を詳しく検討した結果、 D 29を発現して 、る細胞と TUNEL陽性細胞の明確な相関が認められた(図 18)。この ように、本手法によりアポトーシス制御型モチーフ配列のランダム重合により作製した 人工タンパク質集団は、乳癌細胞にアポトーシスを誘導できる機能性人工タンパク質 を含むことがわ力 た。 [0057] In order to examine whether this proliferation inhibitory activity was due to programmed spontaneous cell death (apoptosis), TUNEL staining, an index for detecting apoptotic cells, was performed (Roche). In TUNEL staining, fragmented DNA in the early stage of apoptosis can be detected with fluorescently labeled nucleotides. As a result, D29 was able to induce apoptosis in MCF-7 to the same extent as the natural cell death-inducing protein Bax (Fig. 17). In contrast, A10, one of the clones in which cell growth inhibition was not observed by WST-1, was found to be unable to induce apoptosis in MCF-7. In addition, as a result of confocal research and detailed examination of the state of cells that crawl and express artificial proteins, there was a clear correlation between cells that express D29 and TUNEL-positive cells (Fig. 18). this Thus, the artificial protein population produced by random polymerization of the apoptosis-control motif sequence by this method was found to contain functional artificial proteins capable of inducing apoptosis in breast cancer cells.
実施例 8  Example 8
[0058] [同一タンパク質集団を利用した細胞死抑制型機能性人工タンパク質の創出]  [0058] [Creation of cell death-suppressing functional artificial protein using the same protein population]
実施例 6において発現を確認したクローンは、細胞死促進型 BH3モチーフと同様 に細胞死抑制型 BH4モチーフも含んでいる。よってこれらクローンから、実施例 7の 細胞死促進型人工タンパク質とは逆の機能をもつ、細胞死抑制型機能性タンパク質 を取得できる可能性を検討した。タンパク質発現を確認した 28クローンの遺伝子及 び天然の細胞死促進型タンパク質 BIMの遺伝子をヒト子宮頸癌細胞株 HeLaに導 入し、 BIMの増殖阻害活性に及ぼすクローンの効果を検討した。 96ゥエルの細胞培 養プレートに、 1ゥエルあたり 0. 5xl04の HeLaを播種し、 37度で 24時間培養した。 その後、 28クローンの遺伝子をコードするプラスミド 100ng、及び BIMをコードする プラスミド 50ngをリポフエクタミン 2000(Invitrogen)を用いて HeLa内に導入した。遺 伝子導入 48時間後に、増殖活性をテトラゾリゥム塩 WST— 1により定量した (Roche) 。コントロールである GFPをコードしたベクターを導入した場合の増殖活性と比較した 結果、 28種のクローン中二つのクローン A10及び D16力 有為に BIMによる増殖阻 害を抑制することがわ力つた(図 19)。このような増殖阻害抑制効果は、天然のアポト 一シス抑制型タンパク質である Bel— xLの遺伝子をコードするプラスミドを導入した 細胞でも観察できた。さら〖こ、二種類の抗癌剤、エトポサイド (VP- 16)とスタウロスポリ ン (STS)による増殖阻害力 A10及び D16を導入した HaLa細胞で部分的に抑制さ れたることもわかった(図 19)。 The clone whose expression was confirmed in Example 6 contained a cell death inhibitory BH4 motif as well as a cell death promoting BH3 motif. Therefore, the possibility of obtaining a cell death-suppressing functional protein having a function opposite to that of the artificial cell death promoting protein of Example 7 from these clones was examined. The genes of 28 clones whose protein expression was confirmed and the natural cell death-promoting protein BIM were introduced into the human cervical cancer cell line HeLa, and the effects of the clones on the growth inhibitory activity of BIM were examined. The cell culture plates 96 Ueru were seeded with 0. 5xl0 4 of HeLa per Ueru were incubated at 37 ° for 24 hours. Thereafter, 100 ng of a plasmid encoding the gene of 28 clones and 50 ng of a plasmid encoding BIM were introduced into HeLa using Lipofectamine 2000 (Invitrogen). Forty-eight hours after the introduction of the gene, the proliferation activity was quantified with tetrazolium salt WST-1 (Roche). As a result of comparison with the growth activity when a vector encoding GFP, which is a control, was introduced, two clones A10 and D16 of 28 clones were found to significantly inhibit the growth inhibition by BIM (Fig. 19). Such a growth inhibition inhibitory effect could be observed even in cells into which a plasmid encoding the gene of Bel-xL, a natural apoptosis inhibitory protein, was introduced. Furthermore, it was found that the growth was inhibited by HaLa cells into which A10 and D16 had been inhibited by two types of anticancer drugs, etoposide (VP-16) and staurosporine (STS) (Fig. 19).
[0059] この細胞死抑制活性力 アポトーシスの抑制によるものかどうかを検討するため、 T UNEL染色をおこなった (Roche)。約 lxlO5の HeLa細胞に人工タンパク質をコード するプラスミド 0. 4 /z gを遺伝子導入し、 24時間後に 125nMの STSを含む培地に交 換し、さらに 23時間インキュベートした。この結果、 A10または D16を導入した HeLa 細胞では、 STSによるアポトーシスが有為に抑制されることがわかった(図 20)。これに 対し、空ベクター pcDNAや D29をコードするプラスミドを導入したほぼ全ての細胞は、 TUNEL陽性であった。さらに共焦点顕微鏡をもちいて人工タンパク質を発現している 細胞の状態を詳しく検討した結果、 D 16を発現して 、る細胞と TUNEL陰性細胞の明 確な相関が認められた(図 21)。このアポトーシス抑制効果は、天然のアポトーシス抑 制型タンパク質である Bel— xLを発現する細胞でも同様に認められた。このように、 本手法により作製した人工タンパク質集団は、アポトーシス誘導型だけではなぐ抑 制型機能性人工タンパク質も創出できることがわ力つた。 [0059] In order to examine whether this cell death inhibitory activity was due to inhibition of apoptosis, TUNEL staining was performed (Roche). About lxlO 5 HeLa cells were transfected with an artificial protein-encoding plasmid 0.4 / zg, and after 24 hours, the medium was replaced with a medium containing 125 nM STS and further incubated for 23 hours. As a result, it was found that apoptosis induced by STS was significantly suppressed in HeLa cells into which A10 or D16 had been introduced (Fig. 20). In contrast, almost all cells introduced with the empty vector pcDNA or plasmid encoding D29 TUNEL was positive. Furthermore, as a result of detailed examination of the state of cells expressing the artificial protein using a confocal microscope, a clear correlation between D16-expressing cells and TUNEL-negative cells was observed (FIG. 21). This apoptosis-inhibiting effect was also observed in cells expressing Bel-xL, a natural apoptosis-inhibiting protein. In this way, the artificial protein population produced by this method has been shown to be able to create not only an apoptosis-inducing type but also a suppressive functional artificial protein.
産業上の利用可能性  Industrial applicability
[0060] 本発明の人工遺伝子集団の作製方法により、従来の人工遺伝子集団の作製方法 ではできなかった、多数種モチーフ配列がランダムに重合した人工遺伝子集団を作 製することが可能となった。また、該人工遺伝子集団を用いて、該人工遺伝子集団が コードする人工タンパク質集団を作製することが可能となった。本発明の人工遺伝子 集団の作製方法により、モチーフ配列を少なくともその一部でコードする全体にわた つての高 、配列類似性を条件としな 、複数種の DNAをランダムに重合することが可 能となり、かつ、ストップコドンの出現を回避した一本鎖 DNAをランダムに重合するこ とで、長い翻訳読枠 (ORF)を有する DNA配列のランダム重合が可能となった。更に 、任意のモチーフ配列を、機能モチーフ配列、構造モチーフ配列、進化分子工学的 に取得された人工ペプチド配列、又はタンパク質工学的な知識に基 、てデザインさ れた配列のような配列に基いて構築し、多数種のモチーフ配列を任意に選定し、ラン ダムに重合して、人工遺伝子集団、及び、人工タンパク質集団を作製することにより、 機能性にっ 、て合理的予測性を加味し、多数種モチーフ配列をランダムに重合した 人工遺伝子集団、及び、人工タンパク質集団の作製が可能となった。  [0060] The artificial gene population production method of the present invention has made it possible to produce an artificial gene population in which a large number of motif sequences are randomly polymerized, which was not possible with the conventional artificial gene population production method. Moreover, it has become possible to produce an artificial protein population encoded by the artificial gene population using the artificial gene population. According to the method for producing an artificial gene population of the present invention, it is possible to randomly polymerize a plurality of types of DNAs, provided that the motif sequence is encoded by at least a part of the gene group, provided that the similarity is high. In addition, by randomly polymerizing single-stranded DNA that avoids the appearance of stop codons, DNA sequences with long translation reading frames (ORF) can be randomly polymerized. Furthermore, an arbitrary motif sequence is changed based on a sequence such as a functional motif sequence, a structural motif sequence, an artificial peptide sequence obtained by evolutionary molecular engineering, or a sequence designed based on protein engineering knowledge. By constructing, arbitrarily selecting many types of motif sequences, polymerizing randomly, and creating artificial gene populations and artificial protein populations, we add rational predictability in terms of functionality, It became possible to create artificial gene populations and artificial protein populations in which multiple motif sequences were randomly polymerized.
[0061] このことから、天然には存在しない非凡な機能を持った人工タンパク質を進化分子 工学的に創製する場合の成功の鍵となる有力な人工遺伝子多様性集団(ライブラリ 一)の創出の可能性を飛躍的に増大した。更に、本発明においては、多数種モチー フ配列の機能の選定と共に、多種の一本鎖 DNAの相補的塩基対の組合わせ及び Z又は多種の一本鎖 DNAのそれぞれの濃度を調節して、ランダム重合反応で利用 されるモチーフ配列の出現頻度をコントロールすることが可能となり、人工遺伝子集 団の作製に際して、ある程度の機能を予測してランダム重合反応調節し、人工遺伝 子集団の作製を行うことが可能となった。 [0061] From this, it is possible to create a powerful artificial gene diversity population (one library) that is the key to success in the evolutionary molecular engineering of artificial proteins with unusual functions that do not exist in nature Sexually increased. Furthermore, in the present invention, by selecting the functions of multiple species of motif sequences, adjusting the combinations of complementary base pairs of various single-stranded DNAs and the respective concentrations of Z or multiple single-stranded DNAs, It is possible to control the appearance frequency of motif sequences used in random polymerization reactions, and when creating an artificial gene cluster, a certain degree of function is predicted and the random polymerization reaction is regulated, and artificial genetics are controlled. It became possible to create child populations.

Claims

請求の範囲 The scope of the claims
[1] ( 1)任意のモチーフ配列をコードする配列を含む一本鎖 DNAの少なくても 3種以 上の DNA配列を構築し、 (2)該一本鎖 DNA配列の末端配列の一部が互いに相補 的塩基対を形成できるように、相補的塩基配列を導入し、(3)該方法により構築した 多種の一本鎖 DNAを任意の割合で混合した反応液に DNAポリメラーゼを作用させ ることにより、モチーフ配列をコードする DNA間でのランダムな重合反応を進行させ ることを特徴とする多数種モチーフ配列がランダムに重合した人工遺伝子集団の作 製方法。  [1] (1) Construct at least three kinds of DNA sequences of single-stranded DNA containing a sequence encoding an arbitrary motif sequence, (2) Part of the terminal sequence of the single-stranded DNA sequence Introduce complementary base sequences so that they can form complementary base pairs with each other, and (3) allow DNA polymerase to act on a reaction mixture in which various single-stranded DNAs constructed by the method are mixed in an arbitrary ratio Thus, a method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized, wherein a random polymerization reaction is allowed to proceed between DNAs encoding the motif sequences.
[2] 任意のモチーフ配列をコードする配列を含む一本鎖 DNAの少なくても 4種以上の [2] At least 4 types of single-stranded DNA containing sequences encoding arbitrary motif sequences
DNA配列を構築し、該一本鎖 DNAを任意の割合で混合した反応液に DNAポリメ ラーゼを作用させることにより、モチーフ配列をコードする DNA間でのランダムな重 合反応を進行させることを特徴とする請求項 1記載の多数種モチーフ配列がランダム に重合した人工遺伝子集団の作製方法。 A DNA sequence is constructed, and a DNA polymerase is allowed to act on a reaction solution in which the single-stranded DNA is mixed at an arbitrary ratio, thereby causing a random polymerization reaction between DNAs encoding motif sequences. A method for producing an artificial gene population in which the multiple motif sequences according to claim 1 are randomly polymerized.
[3] 相補的塩基配列を、 3'末端に導入したことを特徴とする請求項 1又は 2記載の多数 種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法。 [3] The method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized according to claim 1 or 2, wherein a complementary base sequence is introduced at the 3 ′ end.
[4] 相補的塩基対の数力 6塩基以上であることを特徴とする請求項 1〜3のいずれか 記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法。 [4] The method for producing an artificial gene population in which multiple motif sequences are randomly polymerized according to any one of claims 1 to 3, wherein the number of complementary base pairs is 6 or more.
[5] 相補的塩基対の両端に、相手の塩基と対にならな 、塩基を 1塩基以上存在させた ことを特徴とする請求項 1〜4のいずれか記載の多数種モチーフ配列がランダムに重 合した人工遺伝子集団の作製方法。 [5] The multiple motif sequences according to any one of claims 1 to 4, wherein one or more bases are present at both ends of the complementary base pair without pairing with the partner base. A method for producing a synthetic artificial gene population.
[6] 相補的塩基対の両端に、相手の塩基と対にならない塩基を 1〜3のいずれかの塩 基数、存在させたことを特徴とする請求項 5記載の多数種モチーフ配列がランダムに 重合した人工遺伝子集団の作製方法。 [6] The multiple motif sequence according to claim 5, wherein a base that does not pair with the partner base is present at both ends of the complementary base pair in any number of 1 to 3 base groups. A method for producing a polymerized artificial gene population.
[7] 多種の一本鎖 DNAの相補的塩基対の組合わせ及び Z又は多種の一本鎖 DNA のそれぞれの濃度を調節して、ランダム重合反応で利用されるモチーフ配列の出現 頻度をコントロールすることを特徴とする請求項 1〜6のいずれか記載の多数種モチ ーフ配列がランダムに重合した人工遺伝子集団の作製方法。 [7] Control the frequency of appearance of motif sequences used in random polymerization reactions by adjusting the combination of complementary base pairs of various single-stranded DNAs and the concentration of each of Z or various single-stranded DNAs. A method for producing an artificial gene population in which the multiple motif sequences according to any one of claims 1 to 6 are randomly polymerized.
[8] ランダム重合反応系にカ卩えられる多種の一本鎖 DNAの濃度力 0. 2 μ Μ〜20 μ Mの範囲で変動することを特徴とする請求項 7記載の多数種モチーフ配列がランダ ムに重合した人工遺伝子集団の作製方法。 [8] Concentration power of various single-stranded DNA that can be used in random polymerization reaction system 0.2 μ Μ to 20 μ 8. The method for producing an artificial gene population in which the multiple motif sequences are randomly polymerized according to claim 7, wherein the artificial gene population varies in a range of M.
[9] 構築した多種の一本鎖 DNAを反応液に混合し、該導入した一本鎖 DNAの相補 的塩基配列を铸型として、 3'末端力 5'末端方向に作用するェキソヌクレアーゼ活 性を含む耐熱性 DNAポリメラーゼを作用させることにより、モチーフ配列をコードす る DNA間でのランダムな重合反応を進行させることを特徴とする請求項 1〜8のいず れか記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団の作製方法 [9] Mix the various single-stranded DNAs that have been constructed in the reaction mixture, and use the complementary base sequence of the introduced single-stranded DNA as a saddle shape to exert a 3 'end force in the 5' end direction. The multi-motif according to any one of claims 1 to 8, wherein a random polymerization reaction is caused to proceed between DNAs encoding the motif sequence by acting a thermostable DNA polymerase including Method for producing artificial gene population with randomly polymerized sequences
[10] 任意のモチーフ配列をコードする配列を含む一本鎖 DNA力 機能モチーフ配列、 構造モチーフ配列、進化分子工学的に取得された人工ペプチド配列、又はタンパク 質工学的な知識に基!ヽてデザインされた配列に基 ヽて構築されたマイクロ遺伝子で あることを特徴とする請求項 1〜8のいずれか記載の多数種モチーフ配列がランダム に重合した人工遺伝子集団の作製方法。 [10] Single-stranded DNA force containing sequences encoding arbitrary motif sequences Based on functional motif sequences, structural motif sequences, artificial peptide sequences obtained from evolutionary molecular engineering, or protein engineering knowledge! 9. The method for producing an artificial gene population in which a large number of motif sequences are randomly polymerized according to any one of claims 1 to 8, wherein the gene is a microgene constructed on the basis of the designed sequence.
[11] マイクロ遺伝子の構築に際して、合成する一本鎖 DNA配列内で、予め各翻訳読み 枠で、停止コドンを排除しておくことを特徴とする請求項 10記載の多数種モチーフ配 列がランダムに重合した人工遺伝子集団の作製方法。  [11] The multi-motif sequence according to claim 10, wherein a stop codon is excluded in advance in each translation reading frame in the single-stranded DNA sequence to be synthesized when constructing the microgene. A method for producing a population of artificial genes polymerized.
[12] 任意のモチーフ配列をコードする配列を含む一本鎖 DNA力 多数種モチーフ配 列をコードする一本鎖 DNAに制限酵素認識配列を付加することで、ランダム重合反 応で利用されるモチーフ配列の出現頻度を制限酵素反応により直接モニターできる ように構築されて 、ることを特徴とする請求項 1〜11の 、ずれか記載の多数種モチ ーフ配列がランダムに重合した人工遺伝子集団の作製方法。  [12] Single-stranded DNA strength containing sequences encoding arbitrary motif sequences Motifs used in random polymerization reactions by adding restriction enzyme recognition sequences to single-stranded DNA encoding multiple motif sequences The artificial gene population in which multiple types of motif sequences according to any one of claims 1 to 11 are randomly polymerized, wherein the frequency of appearance of the sequences is constructed so that it can be directly monitored by a restriction enzyme reaction. Manufacturing method.
[13] 請求項 1〜12のいずれか記載の作製方法により作製された、多数種モチーフ配列 力 Sランダムに重合した人工遺伝子集団。  [13] An artificial gene population produced by the production method according to any one of claims 1 to 12 and having a multi-motif sequence force S randomly polymerized.
[14] 請求項 1〜12のいずれか記載の多数種モチーフ配列がランダムに重合した人工 遺伝子集団の作製方法により作製した遺伝子を組込んだベクターを、宿主細胞に導 入し、発現することを特徴とする多種のモチーフ配列をランダムに挿入した人工タン ノ ク質集団の作製方法。  [14] A vector incorporating a gene produced by the method for producing an artificial gene population in which the multiple motif sequences according to any one of claims 1 to 12 are randomly polymerized is introduced into a host cell and expressed. A method for producing an artificial protein population in which various characteristic motif sequences are randomly inserted.
[15] 多数種モチーフ配列をコードする一本鎖 DNAを塩基変異、欠損を挿入することな くランダムに重合して人工遺伝子集団を作製し、該人工遺伝子集団を翻訳すること でフレームシフトに依存せず多様性分子集団をえることを特徴とする請求項 14記載 の多種のモチーフ配列をランダムに挿入した人工タンパク質集団の作製方法。 [15] Do not insert nucleotide mutations or deletions in single-stranded DNA encoding multiple motif sequences. 15. A variety of motif sequences according to claim 14 are obtained by randomly polymerizing to produce an artificial gene population, and translating the artificial gene population to obtain a diverse molecular population independent of frame shifts. Of artificial protein population inserted in
[16] 多数種モチーフ配列をコードする一本鎖 DNAを塩基変異、欠損を挿入しつつラン ダムに重合して人工遺伝子集団を作製し、該人工遺伝子集団を翻訳することでフレ ームシフトに依存して多様性分子集団をえることを特徴とする請求項 14記載の多種 のモチーフ配列をランダムに挿入した人工タンパク質集団の作製方法。  [16] A single-stranded DNA encoding multiple types of motif sequences is polymerized into a random sequence with base mutations and deletions inserted, and an artificial gene population is created, and the artificial gene population is translated to depend on the frame shift. 15. The method for producing an artificial protein population in which various motif sequences are randomly inserted according to claim 14, characterized in that a diverse molecule population is obtained.
[17] 請求項 14〜16のいずれか記載の方法により作製された、多種のモチーフ配列をラ ンダムに挿入した人工タンパク質集団。 [17] An artificial protein population produced by the method according to any one of claims 14 to 16 and into which various motif sequences are randomly inserted.
[18] 請求項 13記載の多数種モチーフ配列がランダムに重合した人工遺伝子集団、又 は請求項 17記載の多種のモチーフ配列をランダムに挿入した人工タンパク質集団 につ 、て、機能性遺伝子或いは機能性タンパク質をスクリーニングすることを特徴と する機能性人工遺伝子又は機能性人工タンパク質の創出方法。 [18] A functional gene or function for an artificial gene population in which the multiple motif sequences according to claim 13 are randomly polymerized, or an artificial protein population into which various motif sequences according to claim 17 are randomly inserted. A method for creating a functional artificial gene or a functional artificial protein, characterized by screening a sex protein.
1/19 1/19
WO 2006/011589 PCT/JP2005/013913  WO 2006/011589 PCT / JP2005 / 013913
面 1] Surface 1]
Motif Motif B Motif C Motif D モチーフ配列をコードする 人工遺伝子をデザィン Motif Motif B Motif C Motif D Design artificial gene encoding motif sequence
1  1
3'端配列で塩基対を形成(黒四角)。 Base pair is formed by 3 'end sequence (black square).
Figure imgf000033_0001
塩基対の両端にはミスマッチ塩基 (太文字)を導入。
Figure imgf000033_0001
Introduced mismatched bases (bold characters) at both ends of the base pair.
5'-CCGCGCTGCA-3i 5'-CCGCGCTGCA-3 i
3'-AGCGCGACGC-5'  3'-AGCGCGACGC-5 '
I ランダム重合/翻訳 複数種モチーフ配列から I Random polymerization / translation From multiple motif sequences
3' 3 '
¾¾¾¾¾¾¾ 構成されるライブラリ一 ¾¾¾¾¾¾¾ Configured library
,3' , 3 '
:異なる読み枠  : Different reading frames
園 2] Garden 2]
¾13S5 3¾ HGe 30 kG®S ¾13S5 3 ¾ HGe 30 kG®S
露, 3 G©¾¾y s¾ 纖謂  Dew, 3 G © ¾¾y s¾ So-called
' - I¾-AC≤ieC€¾T0¾¾<3M©0-53 '-I ¾ -AC≤ieC € ¾T0¾¾ <3M © 0-5 3
Figure imgf000033_0002
Figure imgf000033_0002
差替え用紙(ま¾¾26) 2/19 Replacement paper (MA¾¾26) 2/19
WO 2006/011589 PCT/JP2005/013913  WO 2006/011589 PCT / JP2005 / 013913
Picture
Figure imgf000034_0001
Figure imgf000034_0001
Picture
EcoRI認識配列: GAATTC ' EcoRI recognition sequence: GAATTC '
Hind m認識配列: AAGCTT  Hind m recognition sequence: AAGCTT
Bgl II認識配列: AGATCT  Bgl II recognition sequence: AGATCT
Xba l認識配冽: TCTAGA  Xba l recognition: TCTAGA
EHB #7 . EHBX #2 EHBX #3  EHB # 7. EHBX # 2 EHBX # 3
GGGGAATTCGGCGGGTAQAICrcCC GGGGGATTCGGCGGGTAOArCICCC GGGGAATTCGGCGGGTAQATCECCC GGGGAATTCGGCGGGTAAGCTTCCC GGGGAATTCGGCGGGTAQ ECECCC GGGGAATTCGACGGGTAAQATCICCC GGGGAATTCGGCGGGTAQATdCCC GGGGAATTCGGCGGGTAQAIETCCC GGGGAATTCGGCGGGTAAGC7 CCC -GGGAATTCGGCGGGTAAGCTTCCC GGGGAATTCGGCGGGTAAGCT CCC GGGGAATTCGGCGGGTA .GC7TCCC GGGGAATTCGGCGGGTAAGCTTCCC
Figure imgf000034_0002
GGGGAATTCGGCGGGTAQAICrcCC GGGGGATTCGGCGGGTAOArCICCC GGGGAATTCGGCGGGTAQATCECCC GGGGAATTCGGCGGGTAAGCTTCCC GGGGAATTCGGCGGGTAQ ECECCC GGGGAATTCGACGGGTAAQATCICCC GGGGAATTCGGCGGGTAQATdCCC GGGGAATTCGGCGGGTAQAIETCCC GGGGAATTCGGCGGGTAAGC7 CCC -GGGAATTCGGCGGGTAAGCTTCCC GGGGAATTCGGCGGGTAAGCT CCC GGGGAATTCGGCGGGTA .GC7TCCC GGGGAATTCGGCGGGTAAGCTTCCC
Figure imgf000034_0002
GGGGAATTCGGCGGGTAG^CICCC GGGGAATTCGGCGGGTAGAATCTCCC GGGGAATTCGGCGGGTXCmiACCC GGGGAATTCGGCGGGTAAGC7TCCC GGGGAATTCGGCGGGTIQI^GACCC GGGGAATTCGGCCSGGTy GCrrCCC GGGGAATTCGGCGGGTAQAECICCC GGGGAATTCGGCGGGTEglAOACCC GGGGAATTCGGCGGGTICIAGACCC GGGGAATTCGGCGGGTAGAG -GGGAATTCGGCCGGGTTAG^ECCC GGGGAATTCGGCGGGTTCIAGACCC  GGGGAATTCGGCGGGTAG ^ CICCC GGGGAATTCGGCGGGTAGAATCTCCC GGGGAATTCGGCGGGTXCmiACCC GGGGAATTCGGCGGGTAAGC7TCCC GGGGAATTCGGCGGGTIQI ^ GACCC GGGGAATTCGGCCSGGTy GCrrCCC GGGGAATTCGGCGGGTAQAECICCC GGGGAATTCGGCGGGTEglAOACCC GGGGAATTCGGCGGGTICIAGACCC GGGGAATTCGGCGGGTAGAG -GGGAATTCGGCCGGGTTAG ^ ECCC GGGGAATTCGGCGGGTTCIAGACCC
GGGGAATTCGGCGGGTA^ E ICCC GGGGAATTCGGCGGGTAQ^CCXCCCA GGGGAATTCGGCGGGTA ^ E ICCC GGGGAATTCGGCGGGTAQ ^ CCXCCCA
EHBX #1 GGGGCATATTCGGCGGGTI^G^CCC GGGGAATTCGGCGGGTICIAgACCCEHBX # 1 GGGGCATATTCGGCGGGTI ^ G ^ CCC GGGGAATTCGGCGGGTICIAgACCC
GGGGAATTCGGCGGGTAAGTCT- - - GGGGAAT CGGCGGGTAi rCICCCGGGGAATTCGGCGGGTAAGTCT---GGGGAAT CGGCGGGTAi rCICCC
GGGGAATTCAGGCGGGTAAGCT- - -
Figure imgf000034_0003
GGGGAATTCAGGCGGGTAAGCT---
Figure imgf000034_0003
GGGGAATTCGGCGGGT^AGCT CCC GGGGAATTCGGCGGGTAGAICrCCC GGGGAATTCGGCGGGT ^ AGCT CCC GGGGAATTCGGCGGGTAGAICrCCC
GGGGAATTCGGCGGGTAQArSCCCGGGGAATTCGGCGGGTAQArSCCC
Figure imgf000034_0004
Figure imgf000034_0004
CGGGGAATTCGGCGGG  CGGGGAATTCGGCGGG
差替え用紙(規則 26) 3/19 Replacement paper (Rule 26) 3/19
WO 2006/011589 PCT/JP2005/ 13913 WO 2006/011589 PCT / JP2005 / 13913
[図 5] [Figure 5]
デザイン A
Figure imgf000035_0001
Design A
Figure imgf000035_0001
Figure imgf000035_0002
Figure imgf000035_0002
~塩基対形成部位~ Base pairing site
Figure imgf000035_0003
Figure imgf000035_0003
圆 6]
Figure imgf000035_0004
圆 6]
Figure imgf000035_0004
· ^^^  · ^^^
1:人工遺伝子重合体 A  1: Artificial gene polymer A
2:人工遺伝子重合体 B
Figure imgf000036_0001
2: Artificial gene polymer B
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000037_0001
6/19 6/19
WO 2006/011589 PCT/JP2005/013913 WO 2006/011589 PCT / JP2005 / 013913
[08c] [08c]
A15-gene A15 A15-gene A15
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDF .RRG  CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDF .RRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC LRRFGDKLNKLP CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC LRRFGDKLNKLP
CACC^TGCGCGAGCTTGTCGTCGACTT C CCGGCGGGGC HHARACRRLSPA CACC ^ TGCGCGAGCTTGTCGTCGACTT C CCGGCGGGGC HHARACRRLSPA
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GPAEIRRQAQQA CACCAm GCGAGC G CG CGACT TCTCCGGCGGGGC SPPCASLSSTFS  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GPAEIRRQAQQA CACCAm GCGAGC G CG CGACT TCTCCGGCGGGGC SPPCASLSSTFS
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GGACGDSATSSTSF  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GGACGDSATSSTSF
A16-gene A16 A16-gene A16
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWD LRRG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGGCGGGGCTTG LRRFGDKLNKLPGGC CGCGAGCTTATCGTCGACTTTC CCGGCGGGGC ASLSSTFSGGAC  CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWD LRRG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGGCGGGGCTTG LRRFGDKLNKLPGGC CGCGAGCTTATCGTCGACTTTC CCGGCGGGGC ASLSSTFSGGAC
"-'·'■·-、 ■ ': '、 ΛΛ :〔 : (-リ: ΛΛ ( AAGCTTCCC AKPATNSSFPRA  "-'·' ■ ·-, ■ ':', ΛΛ: [: (-Re: ΛΛ (AAGCTTCCC AKPATNSSFPRA
GCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CRRLSPAGRALQ GCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CRRLSPAGRALQ
GAGCTCTTCAGGGACGGCGTCAACGAATTCCC- GRRQRIPHHARA GAGCTCTTCAGGGACGGCGTCAACGAATTCCC- GRRQRIPHHARA
CACCATGCGCGAGC TGTCGTCGACT TCTCCGGCGGGGC CRRLSPAGRERR CACCATGCGCGAGC TGTCGTCGACT TCTCCGGCGGGGC CRRLSPAGRERR
GAGAACGGCGGATGGGACACC TCAGATCTCCC MGHLQISPPCASGAGAACGGCGGATGGGACACC TCAGATCTCCC MGHLQISPPCAS
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC LSSTFSGGACGDCACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC LSSTFSGGACGD
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC SATSSTSF CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC SATSSTSF
Alフ gene A17 Alf gene A17
CACCATGCGCGAGCTT-TCGTCGACTTTCTCCGGCGGGGC MRELSSTFSGGA  CACCATGCGCGAGCTT-TCGTCGACTTTCTCCGGCGGGGC MRELSSTFSGGA
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC CGDSATSSTSFPP  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC CGDSATSSTSFPP
-ACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGAC  -ACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGAC
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GDSATSSTSFPT CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GDSATSSTSFPT
CACCA GCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MREL DFLRRGCACCA GCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MREL DFLRRG
CTGCGGAGATTCGGCGACA¾GCTCAACAAGCTTCCC LRRFGDKLNKLP CTGCGGAGATTCGGCGACA¾GCTCAACAAGCTTCCC LRRFGDKLNKLP
A18-gene A18 A18-gene A18
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MREL DFLRRG CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MREL DFLRRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC LRRFGDKLNKLPCTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC LRRFGDKLNKLP
CACCATGCGCGAGCTTGTCT^TCGACTTTCTCCGGCGGGGC HHARACRRLSPA CACCATGCGCGAGCTTGTCT ^ TCGACTTTCTCCGGCGGGGC HHARACRRLSPA
CTGCGGAGATTCGGCGACAAGCTC7VACAAGCTTCCC GPAEIRRQAQQA  CTGCGGAGATTCGGCGACAAGCTC7VACAAGCTTCCC GPAEIRRQAQQA
CACCATG GCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC SPPCASLSSTFS CACCATG GCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC SPPCASLSSTFS
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GGACGDSATSSTSF CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GGACGDSATSSTSF
A19-gene A19 A19-gene A19
CACCA GCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELVV&FLRRG  CACCA GCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELVV & FLRRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC LRRFGDKLNKLP CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC LRRFGDKLNKLP
CACCATGCGCGAGC TG CGTCGACTTTC CCGGCGGGGC HHARACRRLSPAG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC PAEIRRQAQQAS CACCATGCGCGAGC TG CGTCGACTTTC CCGGCGGGGC HHARACRRLSPAG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC PAEIRRQAQQAS
-ACCATGCGCGAGCTTGTCGTCGACTT-CTCCGGCGGGGC HHARACRRLLRR  -ACCATGCGCGAGCTTGTCGTCGACTT-CTCCGGCGGGGC HHARACRRLLRR
CTGTGGAGATTCGGCGACAGCTCTCAACAAGCTTCCC GLWRFGDSSQQAS  CTGTGGAGATTCGGCGACAGCTCTCAACAAGCTTCCC GLWRFGDSSQQAS
A20-gene A20 A20-gene A20
CACCATGCGCGAGCTTGTCGTCGACTTTC CCGGCGGGGC RELVVDFI.RRG  CACCATGCGCGAGCTTGTCGTCGACTTTC CCGGCGGGGC RELVVDFI.RRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGGCGGGGC LRRFGDKLNKLP  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGGCGGGGC LRRFGDKLNKLP
r i ^ ノ: ::;; (: AGGA '' .:AAGGTTCCCGGCGGGGC GGACA PATNSS  r i ^ ノ: :: ;; (: AGGA ''.: AAGGTTCCCGGCGGGGC GGACA PATNSS
ATGCGCGAGCTTGTCGTCGACTT CTCCGGCGGGGC FPAGHARACRRLSPA ATGCGCGAGCTTGTCGTCGACTT CTCCGGCGGGGC FPAGHARACRRLSPA
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GPAEIRRQAQQAS 7/19 CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCC GPAEIRRQAQQAS 7/19
WO 2006/011589 PCT/JP2005/013913 圆 9] WO 2006/011589 PCT / JP2005 / 013913 圆 9]
pcDNA A6  pcDNA A6
核 £卜コンドリア  Nuclear £ 卜 Chondria
Alexa-His Merge 卜Alexa-His Merge 卜
. * *
8/19 8/19
WO 2006/011589 PCT/JP2005/ 13913 WO 2006/011589 PCT / JP2005 / 13913
[図 10] [Figure 10]
B3 B3  B3 B3
CACCATGCGCGAGCTTG CGTCGACT'rTCTCCGGCGGGGC MRELVVD 'LRRG  CACCATGCGCGAGCTTG CGTCGACT'rTCTCCGGCGGGGC MRELVVD 'LRRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCC ELFRDGVNEFPH GAGCTCTTCAGGGACGGCGTCAACGAATTCCCC ELFRDGVNEFPH
CACCA GCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC HARACRRLSPAGCACCA GCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC HARACRRLSPAG
GAGCTCTTCAGGGACGGCGTC7VACGAATTCCC RALQGRRQRIPH GAGCTCTTCAGGGACGGCGTC7VACGAATTCCC RALQGRRQRIPH
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCG HARACRRLSPAL CTCGAGGTTGAGCT G CO ; -\:^:x. -': cCATGGTG EVELVAESPQHG  CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCG HARACRRLSPAL CTCGAGGTTGAGCT G CO;-\: ^: x.-': CCATGGTG EVELVAESPQHG
B6 B6 B6 B6
CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGGCGGGGC MLRRFGDKLNLERRG CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGGCGGGGC MLRRFGDKLNLERRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCC ELFRDGV EFPTGAGCTCTTCAGGGACGGCGTCAACGAATTCCC ELFRDGV EFPT
CACCATGCGCGAG TTCTCGTCGACTTTCTCCGGCGGGGC MKELVVDP'I..RRG CACCATGCGCGAG TTCTCGTCGACTTTCTCCGGCGGGGC MKELVVDP'I..RRG
GAGC CTTCAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT GAGC CTTCAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT
CACCATGCGCGAGCTTGTCG CGACTTTCTCCGGCGGGGC MRELWDFLRRGCACCATGCGCGAGCTTGTCG CGACTTTCTCCGGCGGGGC MRELWDFLRRG
GAGA.ACGGCGGATGGGACACCTTCAGATCTCCC ENGG DTFRSPH GAGA.ACGGCGGATGGGACACCTTCAGATCTCCC ENGG DTFRSPH
CACCATGCGCGAGCTTGTCG CGAC'r TCTCCGCCG HARACRRLSPPLEVE  CACCATGCGCGAGCTTGTCG CGAC'r TCTCCGCCG HARACRRLSPPLEVE
CTCGAGGTT ί Γ A CATGGTG LVAESPQHG  CTCGAGGTT ί Γ A CATGGTG LVAESPQHG
Β8 B8 Β8 B8
CACCATGCGCGAGCTTGTCGTCGACT CTCCGGCG MREL D.FLRRS  CACCATGCGCGAGCTTGTCGTCGACT CTCCGGCG MREL D.FLRRS
CTCGAGGTTGAGC;rTG :: ; .: ϊ 0' AGCATGGTG RLSLSPNLRSMV CTCGAGGTTGAGC ; rTG ::;;: ϊ 0 'AGCATGGTG RLSLSPNLRSMV
Β9 B9 Β9 B9
CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGGCGGGGC MLRRFGDKLNLERRG CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGGCGGGGC MLRRFGDKLNLERRG
GAG ^CGGCGGATGGGACACCTTCAGATCTCCC ENGGWDTFRSPHHAR GAG ^ CGGCGGATGGGACACCTTCAGATCTCCC ENGGWDTFRSPHHAR
CACCATGCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC AC RLSPAGRALQGR CACCATGCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC AC RLSPAGRALQGR
GAGC'rCTTCAGGGACGGCGTCAACGAATTCCC RQRIPHHARACRRLS GAGC'rCTTCAGGGACGGCGTCAACGAATTCCC RQRIPHHARACRRLS
CACCATGC(X GAGCT'TGTCG'T,CGACTT;i1C CCGGCGGGGC PAGRALQGRRQRIPH CACCATGC (X GAGCT'TGTCG'T , CGACTT ; i 1 C CCGGCGGGGC PAGRALQGRRQRIPH
GAGCTCTTCAGGGACGGCGTCAACGAATTCCC ARACR GAGCTCTTCAGGGACGGCGTCAACGAATTCCC ARACR
CATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC RLSPAGRALQGRRQR GAGCTCTTCAGGGACGGCGTCAACGAATT IHHARACRRLSPALE CACCA GCGCGAGCTTGTCGTCGACT CTCCGGCGC VELVAESPQHG TCGAGGTCC v ^ : V : ' : A ? : ; AGCATGGTG CATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC RLSPAGRALQGRRQR GAGCTCTTCAGGGACGGCGTCAACGAATT IHHARACRRLSPALE CACCA GCGCGAGCTTGTCGTCGACT CTCCGGCGC VELVAESPQHG TCGAGGTCC v ^: V: ': A? :; AGCATGGTG
Bl l  Bl l
Bl l MLRRFGDKLNLERH  Bl l MLRRFGDKLNLERH
CACCCGACAAGCTCAACCTCGAGCGG HAAEIRRQAQPRAA CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG PCCGDSATSSTSSGT CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG MLRRFGDKL LER CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG HHAAEIRRQAQPR CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG AAGRERRMGHLQIS CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGGCGGGGC G AG .¾ CGGCGGATGGGACACCTTCAGATCTCCC 9/19 CACCCGACAAGCTCAACCTCGAGCGG HAAEIRRQAQPRAA CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG PCCGDSATSSTSSGT CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG MLRRFGDKL LER CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG HHAAEIRRQAQPR CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGG AAGRERRMGHLQIS CACCATGCTGCGGAGATTCGGCGACAAGCTCAACCTCGAGCGGCGGGGC G AG .¾ CGGCGGATGGGACACCTTCAGATCTCCC 9/19
WO 2006/011589 PCT/JP2005/013913 園 11]  WO 2006/011589 PCT / JP2005 / 013913 Sono 11]
デザィン C及び D  Design C and D
Figure imgf000041_0001
Figure imgf000041_0001
圆 12] 圆 12]
デザィン C デザィン D  Design C Design D
Figure imgf000041_0002
Figure imgf000041_0002
Hind III + +  Hind III + +
EcoR I + +  EcoR I ++
Bgl II + + Bgl II + +
10/19 O 2006/011589 PCT/JP2005/013913 3a] 10/19 O 2006/011589 PCT / JP2005 / 013913 3a]
C2 C2 C2 C2
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELVVDFT.RRG  CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELVVDFT.RRG
G.AGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGG DTFRSPGT  G.AGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGG DTFRSPGT
CACCATGCGCGAGCTTGTCGTCGAC C CCGGCGGGGC MRBJLWDFLRRG CACCATGCGCGAGCTTGTCGTCGAC C CCGGCGGGGC MRBJLWDFLRRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG ELFRDGVNEFPGTGAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG ELFRDGVNEFPGT
CACCATGCGCGAGCT'T;G CGTCGACTTTC CTGGCGGGGC MRELVVDF'LWRG CACCATGCGCGAGCT'T ; G CGTCGACTTTC CTGGCGGGGC MRELVVDF'LWRG
GAG.^CGGCGGATGGGACACCTTCAGATCTCCCG- ENGGWDTFRSPAP  GAG. ^ CGGCGGATGGGACACCTTCAGATCTCCCG- ENGGWDTFRSPAP
CACCATGCGCGAGCTTGTCGTCGAC T CTCCGGCGGGGC CASLSSTFSGGA CACCATGCGCGAGCTTGTCGTCGAC T CTCCGGCGGGGC CASLSSTFSGGA
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG RTADGTPSDLPAPGAGAACGGCGGATGGGACACCTTCAGATCTCCCGG RTADGTPSDLPAP
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGACACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGA
GAGCTCT CAGGGACGGCGTCAACGAATTCCCCGG SSSGTASTNSPAPGAGCTCT CAGGGACGGCGTCAACGAATTCCCCGG SSSGTASTNSPAP
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGACACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGA
GAG.¾ACGGCGGATGGGACACCTTCAGATCTCCCGG RTADGTPSDLPAP GAG.¾ACGGCGGATGGGACACCTTCAGATCTCCCGG RTADGTPSDLPAP
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGA CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC CASLSSTFSGGA
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG CGDSATSSTSFP CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG CGDSATSSTSFP
C5 C5 C5 C5
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG  CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG
G-GAACGGCGGATGGGACACCT CAGATCTCCC GTADGTPSDLPT  G-GAACGGCGGATGGGACACCT CAGATCTCCC GTADGTPSDLPT
CACCATGCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC MRET^WDFI-RRG  CACCATGCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC MRET ^ WDFI-RRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG ELFRDGVNEFPGT GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG ELFRDGVNEFPGT
CACCATGCGCGAGCT GTCG CGAC TTC CCGGCGGGGC MRELWDFLRRGCACCATGCGCGAGCT GTCG CGAC TTC CCGGCGGGGC MRELWDFLRRG
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGTGAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT
CACCATGCGCGAGCTTGTCGTCGAC TCTCCGGCGGGGC MRELWDFLRRGCACCATGCGCGAGCTTGTCGTCGAC TCTCCGGCGGGGC MRELWDFLRRG
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGTGAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT
CACCATGCGCG-AC: TTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG CACCATGCGCG-AC: TTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKL KLP  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKL KLP
C6 C6 C6 C6
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGTGAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT
CACCATGC A:GAGCTTGTCGTCGACT TC;rCCGGCGGGGC MRELWDFLRRG CACCATGC A: GAGCTTGTCGTCGACT TC ; rCCGGCGGGGC MRELWDFLRRG
GAG^CGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT  GAG ^ CGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT
CACCATGCGCGAGCTTGTCGTCGAC CTCCGGCGGGGC MRELWDFLRRG CACCATGCGCGAGCTTGTCGTCGAC CTCCGGCGGGGC MRELWDFLRRG
GAGAACGGCGGA GGGACACC TCAGATCTCCCGG ENGGWD FRSP GAGAACGGCGGA GGGACACC TCAGATCTCCCGG ENGGWD FRSP
CIO CIOCIO CIO
CACCATGCGCGAGCTTG CGTCGACTT CTCCGGCGGGGC MRELWDFLRRGCACCATGCGCGAGCTTG CGTCGACTT CTCCGGCGGGGC MRELWDFLRRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG ELFRDGVNEFPGTGAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG ELFRDGVNEFPGT
CACCATGCGCGAGCTTGTCGTCGACTT'T'C CCGGCGGGGC MRELWDFLRRG CACCATGCGCGAGCTTGTCGTCGACTT'T'C CCGGCGGGGC MRELWDFLRRG
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG ENGGWDTFRSPGT
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRGCACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG
G GAACGGCGGATGGGACACC TCAGATCTCCCGG ENGGWDTFRSPGTG GAACGGCGGATGGGACACC TCAGATCTCCCGG ENGGWDTFRSPGT
CACCATGCGCGAGCTTCn'CGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG CACCATGCGCGAGCTTCn'CGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKLNKLP n//:6nosooI£/ O 68Ϊ09001AV CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKLNKLP n //: 6nosooI £ / O 68Ϊ09001AV
〔固〕¾ΐ 0νし i [Fix] ¾ΐ 0ν i
。XH vasd.LQV_
Figure imgf000043_0001
. XH vasd.LQV_
Figure imgf000043_0001
a:GVf:SD〇)lv3〕_:5」」:.;>,  a: GVf: SD〇) lv3] _: 5 "":.;>,
〔;〔  [; [
。¾H ΠΛΛΏΗΗ「  . ¾H ΠΛΛΏΗΗ
リ∞リD¾リDS¾3:Sr;Re∞ Re D¾ Re DS¾3: Sr;
:i¾;cQAu〔lGvlx,\〕),, : i¾; cQAu [lGvlx, \]),
¾¾08Οοο¾ο3:δΜ:¾δ¾。.Ι。ν。,εν- : ¾o、co¾ysしじ ¥「> ¾¾08Οοο¾ο3: δΜ: ¾δ¾. .Ι. v. , εν-: ¾o, co¾ys
DOOOひ DOOOD。 VDリ,,:voリリリ> DOOO Hi DOOOD. VD,,: vo
D0¾0¾o¾u: Y-〕  D0¾0¾o¾u: Y-]
Ds _LdHLai¾-, f〕〔o。¾v。」¾。,; 12/19 O 2006/011589 PCT/JP2005/013913 4a] Ds_LdHLai¾-, f] [o. ¾v. "¾. ,; 12/19 O 2006/011589 PCT / JP2005 / 013913 4a]
D4 D4  D4 D4
CACCATGCGCGAGC TGTCGTCGAC T CTCCGGCGGGGC HRELWDFL RG CACCATGCGCGAGC TGTCGTCGAC T CTCCGGCGGGGC HRELWDFL RG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPTGAGCTCTTCAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT
CACCATGCGCGAGCTTG CGTCGACTTTCTCCGGCGGGGC MRELVW' - LRRG CACCATGCGCGAGCTTG CGTCGACTTTCTCCGGCGGGGC MRELVW '-LRRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKLNKLP GCGCGAGCT CTCGTCGAC'IT C CCGGCGGGGC GREi—' i LRRG  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKLNKLP GCGCGAGCT CTCGTCGAC'IT C CCGGCGGGGC GREi— 'i LRRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT GAGCTCTTCAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT
CACCATGCGCGAGCTTG'rCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG CACCATGCGCGAGCTTG'rCGTCGACTTTCTCCGGCGGGGC MRELWDFLRRG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCG LRRFGDKLNKLP CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCG LRRFGDKLNKLP
CACCATGCGCGAGCTTGTCGTCGACTTTC CCGGCGGGGC APCASLSSTFSGCACCATGCGCGAGCTTGTCGTCGACTTTC CCGGCGGGGC APCASLSSTFSG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCC GASSSGTASTNS GAGCTCTTCAGGGACGGCGTCAACGAATTCCCC GASSSGTASTNS
D5 D5 D5 D5
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFI^RRG  CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC MRELWDFI ^ RRG
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGGA ELFRDGVNEFP GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGGA ELFRDGVNEFP
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC GHHARACRRLSPCACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC GHHARACRRLSP
GAGA¾CGGCGGATGGGACACCTTCAGATCTCCCGG AGRERRMGHLQ GAGA¾CGGCGGATGGGACACCTTCAGATCTCCCGG AGRERRMGHLQ
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC ISRHHARACRRL CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC ISRHHARACRRL
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG SPAGPAEIRRQCTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG SPAGPAEIRRQ
CACCATGCGCGAGC GTCGTCGACTT CTCCGGCGGGGC AQQASRHHARACCACCATGCGCGAGC GTCGTCGACTT CTCCGGCGGGGC AQQASRHHARAC
GAGC CTTCAGGGACGGCGTCAACGAATTCCC RRLSPAGRALQGAGC CTTCAGGGACGGCGTCAACGAATTCCC RRLSPAGRALQ
CACCATGC (; CGAGCTTGTCGTCGACTTTCTCCGGCGGGGC GRRQRIPHHARA CACCATGC (; CGAGCTTGTCGTCGACTTTCTCCGGCGGGGC GRRQRIPHHARA
GAGAACGGCGGATGGGACACCTTCAGATCTCC CR LSPAGRER GAGAACGGCGGATGGGACACCTTCAGATCTCC CR LSPAGRER
CACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC RMGHLQISHHARCACCATGCGCGAGCTTGTCGTCGACTTTCTCCGGCGGGGC RMGHLQISHHAR
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG ACRRLSPAGPACTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG ACRRLSPAGPA
EIRRQAQQASR EIRRQAQQASR
D6  D6
CACCATGCGCC^AGCTTGTCGTCGACTTTCTCCGGCGGGGC D6  CACCATGCGCC ^ AGCTTGTCGTCGACTTTCTCCGGCGGGGC D6
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG MRELWDFLRRG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG MRELWDFLRRG
CACCATGCGCGAGCT GTCGTCGACT TCTCCGGCGGGGC LRRFGDKLNKLPGTCACCATGCGCGAGCT GTCGTCGACT TCTCCGGCGGGGC LRRFGDKLNKLPGT
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG MRELWDFT,RRG GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG MRELWDFT, RRG
CACCATGCGCGAGCTTGTCG CGACTTTCTCCGGCGGGGC ENGGWDTFRSPGT CACCATGCGCGAGCTTGTCG CGACTTTCTCCGGCGGGGC ENGGWDTFRSPGT
GAGCTCTT-AGGGACGGCGTCAACGAATTCCCC MRELVVDFLjmG GAGCTCTT-AGGGACGGCGTCAACGAATTCCCC MRELVVDFLjmG
GGGCGCGAGCTTGTCGTCGACTTTC CCGGCGGGGC ELLGTAST SPG GGGCGCGAGCTTGTCGTCGACTTTC CCGGCGGGGC ELLGTAST SPG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG ASLSSTFSGGACCTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG ASLSSTFSGGAC
GDSATSSTSFP GDSATSSTSFP
Dl l  Dl l
CACCATGCGCGAGCTTG CGTCGACTTTC CCGGCGGGGC Dl l  CACCATGCGCGAGCTTG CGTCGACTTTC CCGGCGGGGC Dl l
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG MRELWDFLRRG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG MRELWDFLRRG
CACCATGCGCGA.GCTTG CGTCGACTTTCTCCGGCGGGGC LRRFGDKLNKLPGT CACCATGCGCGA.GCTTG CGTCGACTTTCTCCGGCGGGGC LRRFGDKLNKLPGT
GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG MRELWDFLRRG GAGCTCTTCAGGGACGGCGTCAACGAATTCCCCGG MRELWDFLRRG
CACCATGCGCG C T^X rCG C ^¾C TTCT CGGCGGGGC ELFRDGV EFPGT CACCATGCGCG C T ^ X rCG C ^ ¾C TTCT CGGCGGGGC ELFRDGV EFPGT
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG MRELVVD LRRG GCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC LRRFGDKLNKLPG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG MRELVVD LRRG GCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC LRRFGDKLNKLPG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG - ELVVDFIi¾RG CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG-ELVVDFIi¾RG
LRRFGDKLNKLP
Figure imgf000045_0001
LRRFGDKLNKLP
Figure imgf000045_0001
LWLRHG.PF LWLRHG.PF
Figure imgf000045_0002
Figure imgf000045_0002
CACCMrrcT Q8 IHRAASR Q8 PAEIHRAAS 14/19 CACCMrrcT Q8 IHRAASR Q8 PAEIHRAAS 14/19
WO 2006/011589 PCT/JP2005/013913 WO 2006/011589 PCT / JP2005 / 013913
[図 14c] [Figure 14c]
D21 D21 D21 D21
CACCA GCGCGAGCTTGTCGrrCG.ACT rC CCGGCGGGGC M ELWDFLRRG CACCA GCGCGAGCTTGTCG r rCG.ACT rC CCGGCGGGGC M ELWDFLRRG
CTGCGGAGATTCGGCGACA AACAAGCT CCCGG LRRFGDKQASR CTGCGGAGATTCGGCGACA AACAAGCT CCCGG LRRFGDKQASR
CACC^TGCGCGAGCT G CGTCGAC TTC -CCGGCGGGGC HHARACRRLSPA CACC ^ TGCGCGAGCT G CGTCGAC TTC -CCGGCGGGGC HHARACRRLSPA
GACiAACGGCGGATGGGACACCTTCAGATCTCCCGG GRERRMGHLQISR  GACiAACGGCGGATGGGACACCTTCAGATCTCCCGG GRERRMGHLQISR
CACCATGCGCGAGCTTGT'CG'rCGACTTTCTCCGGCGGGGC HHARACRRLSPA  CACCATGCGCGAGCTTGT'CG'rCGACTTTCTCCGGCGGGGC HHARACRRLSPA
CTC^GGAGA TCGGCGACAAGCTCAACAAGC TCCCGG GPAEIRRQAQQASR  CTC ^ GGAGA TCGGCGACAAGCTCAACAAGC TCCCGG GPAEIRRQAQQASR
D23 D23 D23 D23
CACCA GCGCGAGCTTGTCG CGACTTTC CCGGCGGGGC MRE WDFLRRG CACCA GCGCGAGCTTGTCG CGACTTTC CCGGCGGGGC MRE WDFLRRG
CT∞GGAGAT CGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKL KLPGT CT∞GGAGAT CGGCGACAAGCTCAACAAGCTTCCCGG LRRFGDKL KLPGT
Ci^CA GCGCGAGCT G CGTCGAC'T TCTCCGGCGGGGC MRELVV FLJ RG  Ci ^ CA GCGCGAGCT G CGTCGAC'T TCTCCGGCGGGGC MRELVV FLJ RG
GAGCTCT CAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT GAGCTCT CAGGGACGGCGTCAACGAATTCCC ELFRDGVNEFPT
CACCATGCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC ΜΗΓし WifLRRG CACCATGCGCGAGCTTGTCGTCGACT TCTCCGGCGGGGC ΜΗΓ and WifLRRG
GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG E GG FRSPGT GAGAACGGCGGATGGGACACCTTCAGATCTCCCGG E GG FRSPGT
CACCATGCGi:GAGCT'rGTCGTCGAC'X'TTCTCCGGCGGGGC MRELWOriJ^RG CACCATGCGi: GAGCT'rGTCGTCGAC'X'TTCTCCGGCGGGGC MRELWOriJ ^ RG
CTGCGGAGATTCGGCGACAAGC CAACAAGCTTCCCGG LR FGDKLNKLP  CTGCGGAGATTCGGCGACAAGC CAACAAGCTTCCCGG LR FGDKLNKLP
D26 D26 D26 D26
CACCATGCGCGAGCTTGTCG CGAC 'rTCTCCGGCGGGGC MREL DFLRRG  CACCATGCGCGAGCTTGTCG CGAC 'rTCTCCGGCGGGGC MREL DFLRRG
GAGAACGGCGGATGGGACACCT CAGATCTCCC E GGV¾) FRSPHH  GAGAACGGCGGATGGGACACCT CAGATCTCCC E GGV¾) FRSPHH
CACCATGCGCGAGC TG CGTCGACTTTCTCCGGCGGGGC ARACRRLSPAGR CACCATGCGCGAGC TG CGTCGACTTTCTCCGGCGGGGC ARACRRLSPAGR
'. :.'.:C 〕 T:;''; ;;、.; CCT.TCAGATCTCCCGG ERRMGHLQISRHH  '.:.' .: C] T :; ''; ;;,.;
CACCATGCGCGAGCTl¾ CG CGACT'rTCrCCGGCGGGGC ARACRRLSPAGR  CACCATGCGCGAGCTl¾ CG CGACT'rTCrCCGGCGGGGC ARACRRLSPAGR
GAGC /CT CAGGGACGGCGTCAACGAATTCCCCGG ALQGRRQRIPRPC  GAGC / CT CAGGGACGGCGTCAACGAATTCCCCGG ALQGRRQRIPRPC
—― CCATGCGCGAGCT G CGTCGAC TTCTCCGGCGGGGC ASLSSTFSGGAS  —— CCATGCGCGAGCT G CGTCGAC TTCTCCGGCGGGGC ASLSSTFSGGAS
GAGCTC'I:rrCAGGGACGGCGTCAACGAA CCCCGG SSGTASTNSPAPC GAGCTC'I : r rCAGGGACGGCGTCAACGAA CCCCGG SSGTASTNSPAPC
CACCATGCGCGAGCTTGTCG CGACTTTC CGGCGGGGC ASLSSTFSGGAR CACCATGCGCGAGCTTGTCG CGACTTTC CGGCGGGGC ASLSSTFSGGAR
GAGAACGGCGGA GGGACACCTTCAGATCTCC TA GTPSDLPPCAGAGAACGGCGGA GGGACACCTTCAGATCTCC TA GTPSDLPPCA
CACCATGCGCGAGCTTf^ CGTCGACTT C CCGGCGGGGC SLSSTFSGGACG CACCATGCGCGAGCTTf ^ CGTCGACTT C CCGGCGGGGC SLSSTFSGGACG
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG DSATSSTSFP  CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG DSATSSTSFP
D2 D29 D2 D29
CACCATGCGCGAGCTTG CGTCGACTL'TCL'CCGGCGGGGC MRELxA/DF Jt G  CACCATGCGCGAGCTTG CGTCGACTL'TCL'CCGGCGGGGC MRELxA / DF Jt G
C GCGGAGATTCGGCGACAAGCTCAACAAGCT CCCGG LRRFGDKLNKLPGT C GCGGAGATTCGGCGACAAGCTCAACAAGCT CCCGG LRRFGDKLNKLPGT
CACCA GCI:;CGAGCTTGTCG CGACTT;RCTCCGGCGGGGC MRE:LVVDFiJ¾RG CACCA GCI:; CGAGCTTGTCG CGACTT ; RCTCCGGCGGGGC MRE: LVVDFiJ¾RG
CTGCGGAGATTCGGCGACAAGCTCAACAAGC TCCCGG LRRFGDKLNKLPGT CTGCGGAGATTCGGCGACAAGCTCAACAAGC TCCCGG LRRFGDKLNKLPGT
CACCATGCGC:GAGCTTGTCGTCGA.CTT C::RCCGGCGGGGC M ELVV F1.JIRG CACCATGCGC: GAGCTTGTCGTCGA.CTT C:: RCCGGCGGGGC M ELVV F1.JIRG
GAGCTCT CAGGGACGGCGTCAACGAA TCCCCGG ELFRDGWEFPGT GAGCTCT CAGGGACGGCGTCAACGAA TCCCCGG ELFRDGWEFPGT
CACCATGCGCGAGCTTGTCGTCGAC TTCTCCGGCGGGGC M LVV^FLJ¾RG CACCATGCGCGAGCTTGTCGTCGAC TTCTCCGGCGGGGC M LVV ^ FLJ¾RG
GAGCTC CAGGGACGGCGTCAACGAATTCCCCGGC ELPRDGV EFPGHH GAGCTC CAGGGACGGCGTCAACGAATTCCCCGGC ELPRDGV EFPGHH
CACCATGCGCI^AGCTTGT-GTCG-"-~TC C CCGGCGGGCC ARACWSPAGPA CACCATGCGCI ^ AGCTTGT-GTCG-"-~ TC C CCGGCGGGCC ARACWSPAGPA
CTGCGGAGATTCGGCGACAAGCTCAACAAGCT CCCGGCCCC EIRRQAQC¾ASRPPP  CTGCGGAGATTCGGCGACAAGCTCAACAAGCT CCCGGCCCC EIRRQAQC¾ASRPPP
CACC^TO;GCGAGCT GTCGTCGA.C T CTCCGGCGGGGC CASLSSTFSGGA  CACC ^ TO; GCGAGCT GTCGTCGA.C T CTCCGGCGGGGC CASLSSTFSGGA
GAGAACGGCGGATGGGACACC TCAGATCTCCCGG TAIX3TPSDLPAP  GAGAACGGCGGATGGGACACC TCAGATCTCCCGG TAIX3TPSDLPAP
CACCA G :GCGAGC:R;I:GTCGTCGAC;I:TTCTCCGGCGGGGC CASLSSTFSGGA CACCA G: GCGAGC : R ; I : GTCGTCGAC ; I : TTCTCCGGCGGGGC CASLSSTFSGGA
CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG CGDSATSSTSFP 15/19 CTGCGGAGATTCGGCGACAAGCTCAACAAGCTTCCCGG CGDSATSSTSFP 15/19
核コアンミリドト
Figure imgf000047_0001
Nuclear core
Figure imgf000047_0001
16/19 16/19
WO 2006腿 589 PCT/JP2005/013913 WO 2006 Thigh 589 PCT / JP2005 / 013913
[図 17][Figure 17]
Figure imgf000048_0001
Figure imgf000048_0001
[図 18]  [Figure 18]
Myc TUNEL I Merge Myc TUNEL I Merge
17/1917/19
O 2006/011589 PCT/JP2005/013913 0 πί
Figure imgf000049_0001
O 2006/011589 PCT / JP2005 / 013913 0 πί
Figure imgf000049_0001
pcDNA Bcl-xL a10 dl6pcDNA Bcl-xL a 10 dl6
Figure imgf000049_0002
Figure imgf000049_0002
pcDNA Bcl-xL a 10 dl6 18/19 006/011589 PCT/JP2005/013913 pcDNA Bcl-xL a 10 dl6 18/19 006/011589 PCT / JP2005 / 013913
++SSTTSS {125 nM) ++ SSTTSS (125 nM)
ccoonntrひo Il pcDNA Bc し aio riifi ^ ccoonntr hi Il pcDNA Bc and aio riifi ^
19/19 O 2006/01158919/19 O 2006/011589
] ]
+ STS(l25nM)  + STS (l25nM)
pcD A pcD A
- d2B -d2B
Figure imgf000051_0001
Figure imgf000051_0001
PCT/JP2005/013913 2004-07-30 2005-07-29 Method of preparing artificial gene population and artificial protein population by random polymerization of motif sequences of multiple types WO2006011589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006527869A JP4568723B2 (en) 2004-07-30 2005-07-29 Artificial gene and artificial protein populations by random polymerization of multiple motif sequences

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-224554 2004-07-30
JP2004224554 2004-07-30

Publications (1)

Publication Number Publication Date
WO2006011589A1 true WO2006011589A1 (en) 2006-02-02

Family

ID=35786335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013913 WO2006011589A1 (en) 2004-07-30 2005-07-29 Method of preparing artificial gene population and artificial protein population by random polymerization of motif sequences of multiple types

Country Status (2)

Country Link
JP (1) JP4568723B2 (en)
WO (1) WO2006011589A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322775A (en) * 1996-06-10 1997-12-16 Kagaku Gijutsu Shinko Jigyodan Preparation of high-molecular microgene polymer
JP2001352990A (en) * 2000-06-16 2001-12-25 Japan Science & Technology Corp Multifunctional base sequence and artificial gene containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322775A (en) * 1996-06-10 1997-12-16 Kagaku Gijutsu Shinko Jigyodan Preparation of high-molecular microgene polymer
JP2001352990A (en) * 2000-06-16 2001-12-25 Japan Science & Technology Corp Multifunctional base sequence and artificial gene containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO H. ET AL: "Synthesis of Functional Proteins by Mixing Peptide Motifs.", CHEMISTRY AND BIOLOGY., vol. 11, no. 6, 2004, pages 765 - 773, XP002992959 *

Also Published As

Publication number Publication date
JP4568723B2 (en) 2010-10-27
JPWO2006011589A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
ES2316085T3 (en) PROCEDURE FOR THE CONTINUOUS DIRECTED EVOLUTION OF PROTEINS IN VITRO.
US7244609B2 (en) Synthetic genes and bacterial plasmids devoid of CpG
TWI231826B (en) Process for the production of circular DNA molecule having a conditional origin of replication
RU2678756C1 (en) Vtvaf17 gene-therapy dna vector, method for producing thereof, escherichia coli scs110-af strain, method for producing thereof, escherichia coli scs110-af/vtvaf17 strain, bearing vtvaf17 gene-therapy dna vector, method for producing thereof
EA020657B1 (en) Tailored multi-site combinatorial assembly
CN107177592B (en) Truncated proteins in diseases where suppressor tRNA reads through early stop codons
Bedhomme et al. Plasmid and clonal interference during post horizontal gene transfer evolution
KR100397275B1 (en) Novel high-throughput system for functional genomics using unidirectional antisense cDNA library
WO2001055342A2 (en) Synthetic genes for enhanced expression
CN103626852B (en) A kind of AraC mutant protein and application thereof
Faure et al. Modularity and diversity of target selectors in Tn7 transposons
CN111051509A (en) Composition for dielectric calibration containing C2CL endonuclease and method for dielectric calibration using the same
WO2006011589A1 (en) Method of preparing artificial gene population and artificial protein population by random polymerization of motif sequences of multiple types
JPWO2020085510A1 (en) Method for suppressing protein translation reaction using Simple nucleic acid
Soberón et al. In vivo fragment complementation of a (β/α) 8 barrel protein: generation of variability by recombination
US20210207139A1 (en) Programmable and portable crispr-cas transcriptional activation in bacteria
JP5688771B2 (en) A method for amplifying and highly expressing a target gene in mammalian cells, and a kit used for carrying out the method
BR112019014116A2 (en) H-ACTIVE S-CYANIDRINE LIASE AND APPLICATION OF THE SAME
CN107460177A (en) Using the RNA polymerase mutant of chemically modified nucleoside acid
JP5984084B2 (en) Escherichia coli with modified translation properties
US6366860B1 (en) Synthetic genes for enhanced expression
Cleaver et al. Transposon Tn7 gene insertion into an evolutionarily conserved human homolog of Escherichia coli attTn7
Mita et al. Direct selection of mutations in the human mitochondrial tRNAThr gene: reversion of an ‘uncloneable’phenotype
Popa Investigating the Intrinsically Disordered Regions of USF1 and Other BHLHZ Transcription Factors
Tan et al. Research Progress on the Assembly of Large DNA Fragments

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527869

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase