WO2006010780A1 - Ultraviolet-radiation-activated mechanical powder grinding - Google Patents

Ultraviolet-radiation-activated mechanical powder grinding Download PDF

Info

Publication number
WO2006010780A1
WO2006010780A1 PCT/ES2005/000343 ES2005000343W WO2006010780A1 WO 2006010780 A1 WO2006010780 A1 WO 2006010780A1 ES 2005000343 W ES2005000343 W ES 2005000343W WO 2006010780 A1 WO2006010780 A1 WO 2006010780A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
procedure
material according
carried out
obtaining powder
Prior art date
Application number
PCT/ES2005/000343
Other languages
Spanish (es)
French (fr)
Inventor
Juan Manuel Montes Martos
Jesús CINTAS FÍSICO
Francisco de Paula GÓMEZ CUEVAS
José Antonio RODRÍGUEZ ORTIZ
Enrique Juan Herrera Luque
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2006010780A1 publication Critical patent/WO2006010780A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/18Use of auxiliary physical effects, e.g. ultrasonics, irradiation, for disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy

Definitions

  • the present invention has as its object the mechanical powder grinding activated by ultraviolet radiation, which allows the improvement of the characteristics of powder materials prepared by grinding. Specifically, the realization of grinding in the presence of ultraviolet (UV) radiation makes it possible to shorten their duration, with the economic savings that this entails. In addition, if they are carried out in the presence of gases, liquids and / or other solids, it enables solid-gas, solid-liquid and / or solid-solid reactions to be carried out, difficult to produce by other methods, and even more so. temperatures close to the environment. This allows altering the structure of the material and improving its properties.
  • UV radiation ultraviolet
  • This process can be applied to all types of materials, regardless of their metallic or non-metallic nature.
  • the mechanical alloy is basically a high-energy grind that allows to obtain compound powders with a controlled and extremely fine structure. It was developed by John S. Benjamin in 1966, in order to combine the hardening by precipitation of the Y 'phase in the nickel base superalloys, and that produced by dispersion of oxides (BENJAM ⁇ N, JS "Dispersion strengthened superalloys by mechanical alloying" Met Trans. A-Phys. Met. Mater. Sc, 1 (10); 2943-2951, (1970)).
  • AM can, in principle, be applied to a wide variety of metals, or mixtures of metals, and non-metallic particles.
  • the mechanical alloy is a solid state process, which does not require the fusion of the materials, it can be used to produce alloys from immiscible components in a liquid state or with a wide difference between their melting points. .
  • the dust particles are subjected to repetitive deformation, fracture and welding processes. With the fracture of the material, fresh surfaces are created that can react with the grinding atmosphere or
  • SUBSTITUTE SHEET (RULE 26) with other materials present inside the vessel.
  • the subsequent welding of the particles through these surfaces allows changing the chemical composition of the material. For example, in the case of the grinding of aluminum-based powders, this causes the oxide (alumina) films that cover the surface of the particles to be fragmented and incorporated into each of them.
  • a lubricant also called the process controlling agent (ACP)
  • ACP process controlling agent
  • this additive is incorporated into the dust particles, which, given the generally organic character of this ACP, implies inclusion of carbon and oxygen in the material.
  • particles composed of aluminum base with submicroscopic dispersoids, aluminum oxide and aluminum carbide, homogeneously distributed in the matrix are originated.
  • the energy that can be achieved by altering the aforementioned milling variables is insufficient to produce reactions.
  • This is mainly critical in the case of grinding in the presence of gases, where it is more complicated to cause the decomposition of the gas and the subsequent incorporation of its elementary components to the powder.
  • the importance of the use of gas atmospheres during grinding is that, if the energy is sufficient, the integration of atoms of the chemical elements that make up the gas inside the crystalline structure of the powder being ground is achieved, forming solid supersaturated solutions. Subsequently, to obtain pieces with this ground powder, it is necessary to subject it to a processing that necessarily includes one or several hot stages.
  • One of the main advantages of using the mechanical alloy for the mecanosynthesis of materials is that it can cause, at temperatures close to the environment, the onset of reactions that normally require high temperatures to occur. This phenomenon seems to be promoted by the intimate contact of the reagents that occurs during grinding, the generation of chemically very active surfaces, the increase of the total contact surface as a result of the fracture of the dust particles, as well as the high Density density and structural refinement derived from the mechanical alloy process.
  • UV ultraviolet
  • SUBSTITUTE SHEET (RULE 26) suitable, can cause the dissociation of the molecules of the gases that form the grinding atmosphere.
  • gases such as, for example, nitrogen (N 2 ) or methane (CH 4 )
  • N 2 nitrogen
  • CH 4 methane
  • the acceleration of said processes in addition, can result in an attractive reduction of the grinding time and in the reduction of costs of the process that is derived from it.
  • gases such as methane (or nitrogen) are a very cheap source of carbon (nitrogen) to obtain composite materials reinforced by dispersion of carbides (or nitrides).
  • Refractory phases of these types that, thanks to the grinding process, are of a nanometric scale and are well distributed in the matrix of the material, allow to significantly improve its mechanical behavior at elevated temperatures.
  • the use of ultraviolet radiation should not be restricted to the grinding of powders in the presence of gases, but may be used in cryogenic grinding to activate substances in a liquid state, such as N 2 ( I ).
  • the ultraviolet light has been applied directly inside the grinding vessel (activation in situ), it is also possible to perform the activation of the atmosphere in a lung external to the vessel (ex situ activation ).
  • a recirculation system would drive the activated gas into the vessel, and vice versa.
  • Said lung could also be used to apply electric shocks that would collaborate in the activation of the atmosphere.
  • the present invention aims at high energy grinding using attritor type mills, with elemental aluminum powder in vacuum atmospheres,
  • SUBSTITUTE SHEET (RULE 26) confined air and methane, and with application, in situ, of ultraviolet (UV) radiation. In all cases, an improvement in the mechanical properties of the parts manufactured from the powders resulting from the grinding has been observed.
  • the aluminum powder is introduced together with 3% EBS wax.
  • This lubricant acts as the controlling agent of the grinding process.
  • the grinding vessel After extracting the air inside the mill, by means of a vacuum equipment, the grinding vessel is filled with CH 4 gas.
  • the ultraviolet generator used is connected, so that the frequency of the radiation is sufficiently energetic to cleave the CH 4 molecule.
  • the UV radiation is channeled into the grinding vessel, and after that, the grinding of the aluminum powder begins.
  • the grinding can be carried out in any type of mill, it being advisable that it be of high energy and that the walls of the vessel be reflective.
  • the operating conditions indicated in Table 1 could be used. Any change in some or some of these operating variables will affect the rest of the variables. So, for example, if the rotor is rotated at 300 rpm instead of 500 rpm, the grinding time should be longer than 5 hours.
  • the mechanical characteristics of the powder obtained can be modified by changing the percentage of EBS wax and the frequency of the UV radiation used.
  • the ground powder, a metal-ceramic aluminum base compound powder is consolidated by uniaxial cold pressing, 850 MPa, and sintering in vacuum at 650 0 C for 1 hour.
  • any other hot consolidation method such as pressing and extrusion, hot pressing, electric resistance sintering, etc. can be used.

Abstract

The invention relates to a mechanical powder-grinding process which is activated by ultraviolet radiation and which can be used to improve the characteristics of materials in powder form. When performed in the presence of ultraviolet radiation (UV), the duration of the grinding process can be reduced, thereby generating a saving in terms of cost. In addition, when performed in the presence of gases, liquids and/or other solids, it is possible to produce solid/gas, solid/liquid and/or solid/solid reactions which are difficult to obtain with other methods and, furthermore, at temperatures close to ambient temperature. In this way, the structure of the material can be altered and the properties thereof improved. The inventive process is suitable for use with any type of material, regardless of the metallic or non-metallic nature thereof.

Description

TÍTULOTITLE
Molienda mecánica de polvos activada por radiación ultravioleta.Mechanical powder grinding activated by ultraviolet radiation.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención tiene por objeto Ia molienda mecánica de polvos activada por radiación ultravioleta, Io que permite Ia mejora de las características de materiales en forma de polvo preparados por molienda. Concretamente, Ia realización de moliendas en presencia de radiación ultravioleta (UV) permite acortar Ia duración de las mismas, con el ahorro económico que esto conlleva. Además, si se realizan en presencia de gases, líquidos y/o de otros sólidos , posibilita que se lleven a cabo reacciones sólido-gas, sólido-líquido y/o sólido- sólido, difíciles de producir por otros métodos, y más aún a temperaturas cercanas a Ia ambiente. Esto permite alterar Ia estructura del material y mejorar sus propiedades.The present invention has as its object the mechanical powder grinding activated by ultraviolet radiation, which allows the improvement of the characteristics of powder materials prepared by grinding. Specifically, the realization of grinding in the presence of ultraviolet (UV) radiation makes it possible to shorten their duration, with the economic savings that this entails. In addition, if they are carried out in the presence of gases, liquids and / or other solids, it enables solid-gas, solid-liquid and / or solid-solid reactions to be carried out, difficult to produce by other methods, and even more so. temperatures close to the environment. This allows altering the structure of the material and improving its properties.
Este proceso puede aplicarse a todo tipo de materiales, independientemente de su carácter metálico o no metálico.This process can be applied to all types of materials, regardless of their metallic or non-metallic nature.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El aleado mecánico (AM) es, básicamente, una molienda de alta energía que permite obtener polvos compuestos con estructura controlada y extremadamente fina. Fue desarrollado por John S. Benjamín en 1966, con el objeto de combinar el endurecimiento por precipitación de Ia fase Y' en las superaleaciones base níquel, y el producido por dispersión de óxidos (BENJAMÍN, J. S. "Dispersión strengthened superalloys by mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 1(10); 2943-2951 , (1970)).The mechanical alloy (AM) is basically a high-energy grind that allows to obtain compound powders with a controlled and extremely fine structure. It was developed by John S. Benjamin in 1966, in order to combine the hardening by precipitation of the Y 'phase in the nickel base superalloys, and that produced by dispersion of oxides (BENJAMÍN, JS "Dispersion strengthened superalloys by mechanical alloying" Met Trans. A-Phys. Met. Mater. Sc, 1 (10); 2943-2951, (1970)).
El AM puede, en principio, ser aplicado a una gran variedad de metales, o mezclas de metales, y partículas no metálicas. A su vez, debido a que el aleado mecánico es un proceso en estado sólido, que no precisa de Ia fusión de los materiales, puede ser empleado para producir aleaciones a partir de componentes inmiscibles en estado líquido o con amplia diferencia entre sus puntos de fusión.AM can, in principle, be applied to a wide variety of metals, or mixtures of metals, and non-metallic particles. In turn, because the mechanical alloy is a solid state process, which does not require the fusion of the materials, it can be used to produce alloys from immiscible components in a liquid state or with a wide difference between their melting points. .
Durante el aleado mecánico, las partículas de polvo son sometidas a procesos repetitivos de deformación, fractura y soldadura. Con Ia fractura del material se crean superficies frescas que pueden reaccionar con Ia atmósfera de molienda oDuring mechanical alloy, the dust particles are subjected to repetitive deformation, fracture and welding processes. With the fracture of the material, fresh surfaces are created that can react with the grinding atmosphere or
HOJA DE SUSTITUCIÓN (REGLA 26) con otros materiales presentes en el interior de Ia vasija. La posterior soldadura de las partículas a través de estas superficies permite cambiar Ia composición química del material. Por ejemplo, en el caso de Ia molienda de polvos de base aluminio, esto origina que las películas de óxido (alúmina) que recubren Ia superficie de las partículas sean fragmentadas e incorporadas al interior de cada una de ellas.SUBSTITUTE SHEET (RULE 26) with other materials present inside the vessel. The subsequent welding of the particles through these surfaces allows changing the chemical composition of the material. For example, in the case of the grinding of aluminum-based powders, this causes the oxide (alumina) films that cover the surface of the particles to be fragmented and incorporated into each of them.
Para prevenir Ia excesiva soldadura de los polvos, y establecer un equilibrio dinámico entre los procesos de fractura y soldadura, se suele adicionar un lubricante, también denominado agente controlador del proceso (ACP). Siguiendo con el ejemplo de Ia molienda de polvos de base aluminio, y al igual que ocurre con Ia alúmina, este aditivo es incorporado hacia el interior de las partículas de polvo, Io que supone, dado el carácter generalmente orgánico de este ACP, Ia inclusión de carbono y oxígeno en el material. De este modo, durante el calentamiento posterior a Ia molienda, se originan partículas compuestas de base aluminio con dispersoides submicroscópicos, de óxido de aluminio y carburo de aluminio, homogéneamente distribuidos en Ia matriz.To prevent excessive welding of the powders, and establish a dynamic balance between the fracture and welding processes, a lubricant, also called the process controlling agent (ACP), is usually added. Following the example of the grinding of aluminum-based powders, and as with alumina, this additive is incorporated into the dust particles, which, given the generally organic character of this ACP, implies inclusion of carbon and oxygen in the material. In this way, during the post-milling heating, particles composed of aluminum base with submicroscopic dispersoids, aluminum oxide and aluminum carbide, homogeneously distributed in the matrix are originated.
Para que el proceso de aleación mecánica se realice de manera efectiva (se produzca Ia modificación química y microestructural del material), es necesario que haya un mínimo de energía durante Ia molienda. Son numerosos los factores que afectan al proceso, entre los que se pueden destacar el tipo de molino, atmósfera, velocidad de giro del rotor, porcentaje de agente controlador del proceso, tamaño y densidad de las bolas, relación de masas bolas/polvo y carga de alimentación. Los anteriores factores determinan el tiempo necesario para completar Ia molienda [(SCHAFFER, G. B. and McCORMICK, P.G. "Anomalous combustión effects during mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 22; 3019-3024, (1991 ); ZHANG, H. and LIU, X. "Analysis of milling energy in synthesis and formation mechanism of molybdenum disilicide by mechanical alloying" Int. J. Refract. Met. Hard Mater., 19; 203-208, (2001 )] provocar reacciones (SCHAFFER, G. B. and McCORMICK, P.G. "Anomalous combustión effects during mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 22; 3019- 3024, (1991 ) o modificar los tiempos de reacción, alterar el grado de deformación del material [(SCHAFFER, G.B. and McCORMICK, P.G. "On the kinetics of mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 23; 1285-1290, (1992); SCHAFFER, G.B. and FORRESTER, J. S. "The influence of colusión energy and strain accumulation on the kinetics of mechanical alloying" J. Mat. ScL, 32; 3157- 3162, (1997)], Ia tasa de engrosamiento de los polvos (RYU, HJ. ; HONG, S.H.In order for the mechanical alloy process to be carried out effectively (the chemical and microstructural modification of the material occurs), it is necessary that there be a minimum of energy during the grinding. There are numerous factors that affect the process, among which the type of mill, atmosphere, speed of rotation of the rotor, percentage of process controlling agent, size and density of the balls, mass ratio balls / dust and load can be highlighted of feeding. The above factors determine the time required to complete the grinding [(SCHAFFER, GB and McCORMICK, PG "Anomalous combustion effects during mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 22; 3019-3024, (1991 ); ZHANG, H. and LIU, X. "Analysis of milling energy in synthesis and formation mechanism of molybdenum disilicide by mechanical alloying" Int. J. Refract. Met. Hard Mater., 19; 203-208, (2001)] elicit reactions (SCHAFFER, GB and McCORMICK, PG "Anomalous combustion effects during mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 22; 3019-3024, (1991) or modify reaction times, alter the degree of deformation of the material [(SCHAFFER, GB and McCORMICK, PG "On the kinetics of mechanical alloying" Met. Trans. A-Phys. Met. Mater. Sc, 23; 1285-1290, (1992); SCHAFFER, GB and FORRESTER, JS "The influence of collusion energy and strain accumulation on the kinetics of mechanical alloying" J. Mat. ScL, 32; 3157-3162, (1997)] , The rate of thickening of the powders (RYU, HJ. ; HONG, S.H.
HOJA DE SUSTITUCIÓN (REGLA 26) and BAEK, W. H. "Mechanical alloying process of 93W-5.6Ni-1.4Fe tungsten heavy alloy" J. Mater. Process. Technol., 63; 292-297, (1997). y Ia amortización de intermetálicos (SAJI1 S.; NEISHI, Y.; ARAKI, H.; MINAMINO, Y. and YAMANE, T. "Amorphization promoted by mechanical alloying of aluminum-rich Al-Ti-Fe mixed powders" Met. Trans. A-Phys. Met. Mater. Sc, 26 (5); 1305-1307, (1995), entre otros efectos.SUBSTITUTE SHEET (RULE 26) and BAEK, WH "Mechanical alloying process of 93W-5.6Ni-1.4Fe tungsten heavy alloy" J. Mater. Process Technol., 63; 292-297, (1997). and the amortization of intermetallic (SAJI 1 S .; NEISHI, Y .; ARAKI, H .; MINAMINO, Y. and YAMANE, T. "Amorphization promoted by mechanical alloying of aluminum-rich Al-Ti-Fe mixed powders" Met. Trans. A-Phys. Met. Mater. Sc, 26 (5); 1305-1307, (1995), among other effects.
De entre las múltiples aplicaciones del aleado mecánico, merece destacarse su empleo para originar, mediante mecanosíntesis, Ia formación de segundas fases, o, por ejemplo, reducir óxidos, cloruros y sulfuras. El uso del aleado mecánico como herramienta para producir Ia síntesis mecanoquímica de materiales data del año 1989 [(SCHAFFER, G.B. and McCORMICK, P.G. "Combustión synthesis by mechanical alloying" Ser. Metall. Mater., 23 (6); 835-838, (1989); McCORMICK, P.G.; WHARTON, V.N. and SCHAFFER, G.B. "Phisical chemistry of powder metáis production and processing" ed. Small WM, Warrendale, TMS, (1989)]. Desde entonces, y a causa de las propiedades únicas de los materiales desarrollados, el binomio AM-mecanosíntesis está acaparando Ia atención de numerosos investigadores.Among the multiple applications of the mechanical alloy, its use deserves to be highlighted to cause, by means of mechanosynthesis, the formation of second phases, or, for example, reduce oxides, chlorides and sulphides. The use of the mechanical alloy as a tool to produce the mechanochemical synthesis of materials dates from 1989 [(SCHAFFER, GB and McCORMICK, PG "Combustion synthesis by mechanical alloying" Ser. Metall. Mater., 23 (6); 835-838, (1989); McCORMICK, PG; WHARTON, VN and SCHAFFER, GB "Phisical chemistry of powder metais production and processing" ed. Small WM, Warrendale, TMS, (1989)]. Since then, and because of the unique properties of developed materials, the AM-mechanosynthesis binomial is attracting the attention of numerous researchers.
No obstante, en multitud de ocasiones, Ia energía que se puede conseguir alterando las variables de molienda anteriormente mencionadas es insuficiente para producir reacciones. Esto es principalmente crítico en el caso de moliendas en presencia de gases, donde es más complicado ocasionar Ia descomposición del gas y Ia posterior incorporación de sus componentes elementales al polvo. La importancia del uso de atmósferas de gases durante Ia molienda radica en que, si Ia energía es suficiente, se consigue Ia integración de átomos de los elementos químicos que conforman el gas en el interior de Ia estructura cristalina del polvo que se está moliendo, formándose soluciones sólidas sobresaturadas. Posteriormente, para obtener piezas con este polvo molido, es necesario someterlo a un procesado que incluye necesariamente una o varias etapas en caliente. Durante este calentamiento, y a partir de Ia solución sólida formada, se origina Ia formación de dispersoides que endurecen considerablemente al material (HERRERA, EJ; CINTAS, J. and RODRÍGUEZ, J.A. "Nitruración de polvos por molienda reactiva en presencia de ciertos compuestos de nitrógeno" Solicitud de Patente P2003-01963, 8 Agosto 2003.However, in many cases, the energy that can be achieved by altering the aforementioned milling variables is insufficient to produce reactions. This is mainly critical in the case of grinding in the presence of gases, where it is more complicated to cause the decomposition of the gas and the subsequent incorporation of its elementary components to the powder. The importance of the use of gas atmospheres during grinding is that, if the energy is sufficient, the integration of atoms of the chemical elements that make up the gas inside the crystalline structure of the powder being ground is achieved, forming solid supersaturated solutions. Subsequently, to obtain pieces with this ground powder, it is necessary to subject it to a processing that necessarily includes one or several hot stages. During this heating, and from the solid solution formed, the formation of dispersoids that harden the material considerably (HERRERA, EJ; CINTAS, J. and RODRÍGUEZ, JA "Powder nitriding by reactive grinding in the presence of certain nitrogen compounds) "Patent Application P2003-01963, August 8, 2003.
Recientemente, para solventar el problema de Ia falta de energía durante Ia molienda, se ha propuesto activar Ia atmósfera provocando descargas eléctricasRecently, to solve the problem of lack of energy during milling, it has been proposed to activate the atmosphere causing electric shocks
HOJA DE SUSTITUCIÓN (REGLA 26) (CALKA, A and WEXLER1 D. "Mechanical milling assisted by electrical discharge"SUBSTITUTE SHEET (RULE 26) (CALKA, A and WEXLER 1 D. "Mechanical milling assisted by electrical discharge"
Nature, 419 (2002). Esto resulta en una rápida fragmentación de las partículas de polvo, que se cree asociada a Ia vaporización o fusión local del material. La cual, a su vez, está relacionada con el calentamiento del mismo por efecto Joule y con las tensiones causadas por Ia molienda y por las variaciones locales de temperatura (CALKA, A; WEXLER, D "Mechanical milling assisted by electrical discharge" Nature, 419; 147-151 , (2002).Nature, 419 (2002). This results in rapid fragmentation of the dust particles, which is believed to be associated with the vaporization or local fusion of the material. Which, in turn, is related to its heating by Joule effect and to the tensions caused by grinding and by local temperature variations (CALKA, A; WEXLER, D "Mechanical milling assisted by electrical discharge" Nature, 419; 147-151, (2002).
En Ia actualidad, el uso de radiación ultravioleta está muy extendido, y es fundamentalmente empleada para purificar agua [(ANDERSON JEFFREY, J "Water purifier using ultraviolet radiation" Patent US2004004044, (2002); ANDERSON JAMES, L "Ultraviolet water treatment apparatus" Patent US2003218136, (2002)], esterilización de instrumental [(CORN PRODUCTS "Ultra-violet sterilization apparatus" Patent GB859754, (1957); HWANG KYOOCHEON "Sterilizer using ultraviolet light" Patent WO03094691 , (2003)] y curado de polímeros [(SCHEFFER HERBERT, D "Ultraviolet curing lamp device" Patent US4563589, (1984); GILBERTI JOSEPH, J "Ultraviolet light curing apparatus" Patent US6397491 , (2000)]. También se han desarrollado nuevos usos como Ia fabricación de semiconductores (Ll YICHENG; SHAO SHOU-QUIAN "Ultraviolet ray assisted processing device for semiconductor processing" Patent EP1381078, (2002). Sin embargo, no se tiene constancia de su uso como activador de reacciones durante Ia molienda de material.At present, the use of ultraviolet radiation is widespread, and is fundamentally used to purify water [(ANDERSON JEFFREY, J "Water purifier using ultraviolet radiation" Patent US2004004044, (2002); ANDERSON JAMES, L "Ultraviolet water treatment apparatus" Patent US2003218136, (2002)], instrument sterilization [(CORN PRODUCTS "Ultra-violet sterilization apparatus" Patent GB859754, (1957); HWANG KYOOCHEON "Sterilizer using ultraviolet light" Patent WO03094691, (2003)] and polymer curing [( SCHEFFER HERBERT, D "Ultraviolet curing lamp device" Patent US4563589, (1984); GILBERTI JOSEPH, J "Ultraviolet light curing apparatus" Patent US6397491, (2000)]. New uses such as semiconductor manufacturing (Ll YICHENG; SHAO SHOU-QUIAN "Ultraviolet ray assisted processing device for semiconductor processing" Patent EP1381078, (2002). However, there is no evidence of its use as a reaction activator during the grinding of mat wasteland
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Una de las principales ventajas del empleo del aleado mecánico para Ia mecanosíntesis de materiales es que se puede provocar, a temperaturas cercanas a Ia ambiente, el inicio de reacciones que en condiciones normales requieren de altas temperaturas para producirse. Este fenómeno parece estar promovido por el contacto íntimo de los reactivos que se produce durante Ia molienda, Ia generación de superficies químicamente muy activas, el aumento de Ia superficie total de contacto como consecuencia de Ia fractura de las partículas de polvo, así como Ia alta densidad de defectos y el refinamiento estructural derivado del proceso de aleado mecánico.One of the main advantages of using the mechanical alloy for the mecanosynthesis of materials is that it can cause, at temperatures close to the environment, the onset of reactions that normally require high temperatures to occur. This phenomenon seems to be promoted by the intimate contact of the reagents that occurs during grinding, the generation of chemically very active surfaces, the increase of the total contact surface as a result of the fracture of the dust particles, as well as the high Density density and structural refinement derived from the mechanical alloy process.
En este sentido, Ia aplicación, simultánea al proceso de molienda, de luz ultravioleta (UV) en el interior de Ia vasija puede intensificar aún más Ia reactividad del polvo, al tiempo que, si se emplean Ia frecuencia y potencia lumínicasIn this sense, the application, simultaneous to the grinding process, of ultraviolet (UV) light inside the vessel can further intensify the reactivity of the powder, while, if the light frequency and power are used
HOJA DE SUSTITUCIÓN (REGLA 26) adecuadas, puede provocar Ia disociación de las moléculas de los gases que forman Ia atmósfera de molienda. La disociación de gases, como, por ejemplo, nitrógeno (N2) o metano (CH4), unida a Ia mayor reactividad de las superficies del propio polvo favorecería notablemente Ia formación de soluciones sólidas sobresaturadas y de compuestos, que en muchos casos no pueden obtenerse a temperaturas cercanas a Ia ambiente. La aceleración de dichos procesos, además, puede derivarse en una atractiva reducción del tiempo de molienda y en Ia reducción de costes del proceso que de ello se deriva. Asimismo, es interesante remarcar que gases como el metano (o el nitrógeno) son una fuente muy barata de carbono (nitrógeno) para obtener materiales compuestos reforzados por dispersión de carburos (o nitruros). Fases refractarias de estos tipos que, gracias al proceso de molienda, son de escala nanométrica y están bien distribuidas en Ia matriz del material, permiten mejorar notablemente su comportamiento mecánico a temperaturas elevadas. No debe restringirse el empleo de radiación ultravioleta a Ia molienda de polvos en presencia de gases, sino que puede utilizarse en moliendas criogénicas (cryomilling) para activar sustancias en estado líquido, como por ejemplo N2(I).SUBSTITUTE SHEET (RULE 26) suitable, can cause the dissociation of the molecules of the gases that form the grinding atmosphere. The dissociation of gases, such as, for example, nitrogen (N 2 ) or methane (CH 4 ), together with the greater reactivity of the surfaces of the powder itself would greatly favor the formation of solid supersaturated solutions and compounds, which in many cases do not They can be obtained at temperatures close to the environment. The acceleration of said processes, in addition, can result in an attractive reduction of the grinding time and in the reduction of costs of the process that is derived from it. It is also interesting to note that gases such as methane (or nitrogen) are a very cheap source of carbon (nitrogen) to obtain composite materials reinforced by dispersion of carbides (or nitrides). Refractory phases of these types that, thanks to the grinding process, are of a nanometric scale and are well distributed in the matrix of the material, allow to significantly improve its mechanical behavior at elevated temperatures. The use of ultraviolet radiation should not be restricted to the grinding of powders in the presence of gases, but may be used in cryogenic grinding to activate substances in a liquid state, such as N 2 ( I ).
Por otra parte, el empleo de radiación ultravioleta como fuente extra de energía durante Ia molienda, tiene varias ventajas frente a Ia activación por descargas eléctricas. En primer lugar, no es necesario emplear molinos con vasijas y/o bolas conductoras, que en muchas ocasiones presentan graves problemas de contaminación del polvo durante Ia molienda. Además, es un proceso limpio, que no deja ningún tipo de residuo de combustión, y del que es posible regular su potencia con gran precisión. A todo esto debe unirse que, Ia adaptación de los equipos de molienda para poder hacer uso de esta técnica no requiere, en Ia mayor parte de los casos, realizar modificación alguna en los mismos.On the other hand, the use of ultraviolet radiation as an extra source of energy during milling, has several advantages over activation by electric shocks. In the first place, it is not necessary to use mills with vessels and / or conductive balls, which in many cases present serious problems of dust contamination during milling. In addition, it is a clean process that does not leave any type of combustion residue, and from which it is possible to regulate its power with great precision. To all this must be added that, the adaptation of the grinding equipment to be able to make use of this technique does not require, in most cases, to make any modification in them.
Aunque en las experiencias realizadas en nuestro laboratorio, Ia luz ultravioleta se ha aplicado directamente en el interior de Ia vasija de molienda (activación in situ), también es posible realizar Ia activación de Ia atmósfera en un pulmón externo a Ia vasija (activación ex situ). Un sistema de recirculación conduciría el gas activado hacia el interior de Ia vasija, y viceversa. Dicho pulmón podría aprovecharse también para aplicar descargas eléctricas que colaborarían en Ia activación de Ia atmósfera. La presente invención tiene por objeto Ia molienda de alta energía usando molinos de tipo attritor, con polvo de aluminio elemental en atmósferas de vacío,Although in the experiences carried out in our laboratory, the ultraviolet light has been applied directly inside the grinding vessel (activation in situ), it is also possible to perform the activation of the atmosphere in a lung external to the vessel (ex situ activation ). A recirculation system would drive the activated gas into the vessel, and vice versa. Said lung could also be used to apply electric shocks that would collaborate in the activation of the atmosphere. The present invention aims at high energy grinding using attritor type mills, with elemental aluminum powder in vacuum atmospheres,
HOJA DE SUSTITUCIÓN (REGLA 26) aire confinado y metano, y con aplicación, in situ, de radiación ultravioleta (UV). En todos los casos se ha observado una mejora en las propiedades mecánicas de las piezas fabricadas a partir de los polvos resultantes de las moliendas. A este procedimiento de molienda de polvos, en presencia o no de gases, y con aplicación simultánea de radiación ultravioleta (dentro de Ia propia vasija o en pulmón externo con recirculación de Ia atmósfera) se Ie ha denominado fotomecanosíntesís.SUBSTITUTE SHEET (RULE 26) confined air and methane, and with application, in situ, of ultraviolet (UV) radiation. In all cases, an improvement in the mechanical properties of the parts manufactured from the powders resulting from the grinding has been observed. This powder grinding process, in the presence or absence of gases, and with simultaneous application of ultraviolet radiation (within the vessel itself or in the external lung with recirculation of the atmosphere) has been called photomechanosynthesis.
UN EJEMPLO DE REALIZACIÓN PRÁCTICAAN EXAMPLE OF PRACTICAL REALIZATION
En un molino de alta energía, se introduce el polvo de aluminio junto con un 3% de cera EBS. Este lubricante hace Ia función de agente controlador del proceso de molienda.In a high-energy mill, the aluminum powder is introduced together with 3% EBS wax. This lubricant acts as the controlling agent of the grinding process.
Tras extraer el aire del interior del molino, mediante un equipo de vacío, Ia vasija de molienda es llenada con CH4 gaseoso.After extracting the air inside the mill, by means of a vacuum equipment, the grinding vessel is filled with CH 4 gas.
Se conecta el generador de ultravioleta empleado, de modo que Ia frecuencia de Ia radiación sea suficientemente energética para escindir Ia molécula de CH4. La radiación UV es canalizada hacia el interior de Ia vasija de molienda, y tras ello, se inicia Ia molienda del polvo de aluminio. La molienda puede llevarse a cabo en cualquier tipo de molino, siendo aconsejable que sea de alta energía y que las paredes de Ia vasija sean reflectantes. En el caso de realizarla en un molino tipo attritor vertical, podrían emplearse las condiciones operativas indicadas en Ia Tabla 1. Cualquier cambio en alguna o algunas de estas variables operativas, afectará al resto de variables. De modo que, por ejemplo, si el rotor se hace girar a 300 rpm en lugar de a 500 rpm, el tiempo de molienda deberá ser superior a 5 horas. La características mecánicas del polvo obtenido pueden modificarse cambiando el porcentaje de cera EBS y Ia frecuencia de Ia radiación UV empleadas.The ultraviolet generator used is connected, so that the frequency of the radiation is sufficiently energetic to cleave the CH 4 molecule. The UV radiation is channeled into the grinding vessel, and after that, the grinding of the aluminum powder begins. The grinding can be carried out in any type of mill, it being advisable that it be of high energy and that the walls of the vessel be reflective. In the case of performing it in a vertical attritor type mill, the operating conditions indicated in Table 1 could be used. Any change in some or some of these operating variables will affect the rest of the variables. So, for example, if the rotor is rotated at 300 rpm instead of 500 rpm, the grinding time should be longer than 5 hours. The mechanical characteristics of the powder obtained can be modified by changing the percentage of EBS wax and the frequency of the UV radiation used.
El polvo molido, que es un polvo compuesto cerámico-metálico de base aluminio, se consolida mediante prensado uniaxial en frío, a 850 MPa, y sinterización, en vacío, a 650 0C durante 1 hora. No obstante, puede emplearse cualquier otro método de consolidación en caliente, tal como prensado y extrusión, prensado en caliente, sinterización por resistencia eléctrica, etc.The ground powder, a metal-ceramic aluminum base compound powder is consolidated by uniaxial cold pressing, 850 MPa, and sintering in vacuum at 650 0 C for 1 hour. However, any other hot consolidation method, such as pressing and extrusion, hot pressing, electric resistance sintering, etc. can be used.
HOJA DE SUSTITUCIÓN (REGLA 26) Tabla 1. Condiciones de molienda.SUBSTITUTE SHEET (RULE 26) Table 1. Grinding conditions.
Figure imgf000008_0001
Figure imgf000008_0001
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)

Claims

REIVINDICACIONES
1. Procedimiento de obtención de material en forma de polvo mediante molienda en un molino de alta energía, caracterizado porque Ia molienda se realiza con aplicación de radiación ultravioleta en el interior de Ia vasija de molienda.1. Procedure for obtaining powder-shaped material by grinding in a high-energy mill, characterized in that the grinding is carried out with the application of ultraviolet radiation inside the grinding vessel.
2. Procedimiento de obtención de material en forma de polvo según Ia reivindicación 1 , caracterizado porque Ia molienda se realiza en un molino de alta energía.2. Procedure for obtaining powder material according to claim 1, characterized in that the grinding is carried out in a high energy mill.
3. Procedimiento de obtención de material en forma de polvo según las reivindicaciones 1 y 2, caracterizado porque en Ia molienda se añade, además, un agente controlador del proceso, como por ejemplo Ia cera EBS (etilen-bis-estearamida).3. Procedure for obtaining powder material according to claims 1 and 2, characterized in that in addition, a process controlling agent is added, such as, for example, the EBS wax (ethylene-bis-stearamide).
4. Procedimiento de obtención de material en forma de polvo según las reivindicaciones 1-3, caracterizado porque Ia molienda se realiza en presencia de gases (atmósfera de molienda).4. Procedure for obtaining powder material according to claims 1-3, characterized in that the milling is carried out in the presence of gases (grinding atmosphere).
5. Procedimiento de obtención de material en forma de polvo según las reivindicaciones 1-4, caracterizado porque Ia activación de Ia atmósfera de molienda se realiza en un pulmón externo y no en Ia propia vasija de molienda. Un sistema de recirculación conduce Ia atmósfera activada desde el pulmón al interior de Ia vasija, y viceversa.5. Procedure for obtaining powder material according to claims 1-4, characterized in that the activation of the grinding atmosphere is carried out in an external lung and not in the grinding vessel itself. A recirculation system conducts the activated atmosphere from the lung into the vessel, and vice versa.
6. Procedimiento de obtención de material en forma de polvo según las reivindicaciones 1-5, caracterizado porque se aplican descargas eléctricas para contribuir a Ia activación de Ia atmósfera de molienda.6. Procedure for obtaining powder material according to claims 1-5, characterized in that electric discharges are applied to contribute to the activation of the grinding atmosphere.
7. Procedimiento de obtención de material en forma de polvo según las reivindicaciones 1-6, caracterizado porque Ia molienda se realiza en presencia de sustancias en estado líquido (a cualquier temperatura, incluso criogénicas).7. Procedure for obtaining powder material according to claims 1-6, characterized in that the grinding is carried out in the presence of substances in a liquid state (at any temperature, even cryogenic).
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
8. Material en forma de polvo, caracterizado porque se obtiene con el procedimiento descrito en las reivindicaciones 1-7.8. Material in powder form, characterized in that it is obtained with the procedure described in claims 1-7.
9. Piezas fabricadas a partir de los polvos obtenidos en Ia reivindicación 8, mediante procesos de conformación en caliente, tal como prensado en frío y sinterización, prensado y extrusión en caliente, prensado en caliente, sinterización por resistencia eléctrica, etc.9. Parts manufactured from the powders obtained in claim 8, by hot forming processes, such as cold pressing and sintering, hot pressing and extrusion, hot pressing, sintering by electrical resistance, etc.
HOJA DE SUSTITUCIÓN (REGLA 26) SUBSTITUTE SHEET (RULE 26)
PCT/ES2005/000343 2004-06-25 2005-06-17 Ultraviolet-radiation-activated mechanical powder grinding WO2006010780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200401579 2004-06-25
ES200401579A ES2249985B1 (en) 2004-06-25 2004-06-25 MECHANICAL DUST GRINDING ACTIVATED BY ULTRAVIOLET RADIATION.

Publications (1)

Publication Number Publication Date
WO2006010780A1 true WO2006010780A1 (en) 2006-02-02

Family

ID=35785923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000343 WO2006010780A1 (en) 2004-06-25 2005-06-17 Ultraviolet-radiation-activated mechanical powder grinding

Country Status (2)

Country Link
ES (1) ES2249985B1 (en)
WO (1) WO2006010780A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115096A1 (en) 2011-04-14 2012-10-18 Andreas Jahr Coating substrate in cathodic arc system with spatial separation and simultaneous execution of different groups of process steps, by splitting system objects during process cycle of static arrangement of elementary installation objects
WO2014087031A1 (en) * 2012-12-05 2014-06-12 Universidad De Sevilla Method for the powder-metallurgical production of magnetic cores
US9899032B2 (en) 2013-02-08 2018-02-20 Qualcomm Incorporated Systems and methods of performing gain adjustment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591362A (en) * 1968-03-01 1971-07-06 Int Nickel Co Composite metal powder
US3740210A (en) * 1971-07-06 1973-06-19 Int Nickel Co Mechanically alloyed aluminum aluminum oxide
US3816080A (en) * 1971-07-06 1974-06-11 Int Nickel Co Mechanically-alloyed aluminum-aluminum oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591362A (en) * 1968-03-01 1971-07-06 Int Nickel Co Composite metal powder
US3740210A (en) * 1971-07-06 1973-06-19 Int Nickel Co Mechanically alloyed aluminum aluminum oxide
US3816080A (en) * 1971-07-06 1974-06-11 Int Nickel Co Mechanically-alloyed aluminum-aluminum oxide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CALKA A. AND WEXLER D.: "Mechanical milling assisted by electrical discharge", NATURE, vol. 419, 12 September 2002 (2002-09-12), pages 147 - 152 *
SMITH A.P. ET AL: "On the simularity of macromolecular responses to high-energy processes:mechanical milling vs. irradiation", POLYMER DEGRATION AND STABILITY, vol. 72, June 2001 (2001-06-01), pages 519 - 524 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115096A1 (en) 2011-04-14 2012-10-18 Andreas Jahr Coating substrate in cathodic arc system with spatial separation and simultaneous execution of different groups of process steps, by splitting system objects during process cycle of static arrangement of elementary installation objects
WO2014087031A1 (en) * 2012-12-05 2014-06-12 Universidad De Sevilla Method for the powder-metallurgical production of magnetic cores
US9899032B2 (en) 2013-02-08 2018-02-20 Qualcomm Incorporated Systems and methods of performing gain adjustment

Also Published As

Publication number Publication date
ES2249985A1 (en) 2006-04-01
ES2249985B1 (en) 2007-06-16

Similar Documents

Publication Publication Date Title
El-Eskandarany Mechanical alloying: For fabrication of advanced engineering materials
ES2951821T3 (en) Aluminum-based nanogalvanic compositions useful for the generation of hydrogen gas and corresponding low-temperature processing
Sundaram et al. Metal-based nanoenergetic materials: synthesis, properties, and applications
Koch Materials synthesis by mechanical alloying
Mukasyan et al. Direct combustion synthesis of silicon carbide nanopowder from the elements
Yu et al. Advanced preparation and processing techniques for high energy fuel AlH3
Rogachev et al. Reactivity of mechanically activated powder blends: Role of micro and nano structures
Yermekova et al. Influence of precursor morphology on the microstructure of silicon carbide nanopowder produced by combustion syntheses
WO2006010780A1 (en) Ultraviolet-radiation-activated mechanical powder grinding
Mukasyan et al. Effects of gravity on combustion synthesis in heterogeneous gasless systems
CN102021473B (en) Method for preparing Fe3Al-Al2O3 composite material
Kovalev et al. Criteria of the critical state of the Ni—Al system during mechanical activation
JP6342916B2 (en) Method for producing Al / TiC nanocomposite material
Mousavian et al. Preparation of nano-structural Al2O3-TiB2 in-situ composite using mechanically activated combustion synthesis followed byintensive milling
Bondarchuk et al. Synthesis and properties of energetics metal borides for hybrid solid-propellant rocket engines
Modi Effect of Nickel Particle Sizes on Electrically Activated Reaction Syntheisis (EARS) of 3Ni-Al-CNT Composite
Quan et al. Rapid synthesis of Ti (C, N) powders by mechanical alloying and subsequent arc discharging
Epanchintsev et al. Highly-efficient shock-wave diamond synthesis from fullerenes
Astapov et al. Magnesiothermal synthesis and consolidation of the multicomponent powder ceramics in the Zr–Si–Mo–B system
Yin et al. Combustion Synthesis of Ti3SiC2/TiC Composites from Elemental Powders under High‐Gravity Conditions
Prosviryakov et al. Effect of Cu addition on microstructural evolution and hardening of mechanically alloyed Al− Ti− O in-situ composite
Stefan et al. Elaboration and Characterization of the Nanometric Titanium Diboride Powders by Mechanical Milling Method
Assovskii et al. Mechanism of Formation of the Condensed Phase in Aluminum Combustion in Carbon Dioxide.
Pogozhev et al. Synthesis of high-temperature Mo 5 SiB 2-based ceramics in the combustion mode
Lin et al. Effects of Ball-milling on the microstructure and properties of WTi alloy gasket

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase