WO2006009191A1 - Light path switchover device - Google Patents

Light path switchover device Download PDF

Info

Publication number
WO2006009191A1
WO2006009191A1 PCT/JP2005/013354 JP2005013354W WO2006009191A1 WO 2006009191 A1 WO2006009191 A1 WO 2006009191A1 JP 2005013354 W JP2005013354 W JP 2005013354W WO 2006009191 A1 WO2006009191 A1 WO 2006009191A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical path
light beam
switching device
light
Prior art date
Application number
PCT/JP2005/013354
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Togawa
Morio Kobayashi
Original Assignee
Nabtesco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corporation filed Critical Nabtesco Corporation
Publication of WO2006009191A1 publication Critical patent/WO2006009191A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3514Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • G02B6/3551x2 switch, i.e. one input and a selectable single output of two possible outputs

Definitions

  • the present invention relates to an optical path switching device that is used in the optical communication field such as an optical information network and an optical LAN and switches an optical path.
  • an optical path switching device that switches an optical path
  • an apparatus that displaces an optical path of a light beam using a parallelogram prism is known (for example, see Patent Document 1).
  • the non-reflective film is coated on the incident surface and the exit surface that transmit the light beam among the four surfaces of the parallelogram prism, and the two reflective surfaces that reflect the light beam are coated. Each reflective film is coated.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-21756 (Page 4, Figure 3)
  • Patent Document 2 discloses a technique for switching the optical path by a pair of facing mirrors instead of the parallelogram prism.
  • Each mirror has a reflective surface formed by a reflective coating on the surface of a substrate such as a plate glass.
  • This optical path switching device using a pair of mirrors does not require the light beam to pass through an anti-reflection film or the inside of the prism as in the case of using a prism, so that it is possible to prevent unnecessary reduction in transmittance, and polarization dependent loss.
  • the It is also suitable for suppressing.
  • this conventional apparatus switches the optical path by inserting and removing only one of the pair of mirrors on the optical path, the mirrors can be moved with high accuracy so that the relative positions of the mirrors are not shifted. It is necessary to move on the optical path.
  • the relative displacement of each mirror occurs, the reflection characteristics of the mirror change, and the connection state of the input / output when the optical path is switched deteriorates, resulting in an increase in light loss.
  • Patent Document 2 JP-A-5-110180 (Page 2 and Figure 4)
  • the present invention has been made to solve the conventional problems, and by using the reflection of a mirror to switch the optical path (as compared to the case of using a prism), the transmittance is unnecessarily reduced and the light is reduced.
  • An object of the present invention is to provide an optical path switching device which can eliminate the need for highly accurate movement of the mirror while effectively preventing loss.
  • the optical path switching device of the present invention comprises an input means for inputting a light beam from the outside, an output means for outputting the light beam to the outside, and a reflecting surface for displacing the light path of the light beam by reflecting the light beam.
  • a first mirror having a second mirror having a reflecting surface that displaces the optical path of the light beam by further reflecting the light beam reflected by the first mirror, and from the input unit to the output unit
  • Moving means for moving the first mirror and the second mirror on the optical path of the light beam until the first mirror and the second mirror have reflecting surfaces parallel to each other. In this state, it is fixed to the mirror fixing member.
  • the optical path switching device of the present invention switches the optical path by reflection of the first mirror and the second mirror, thereby comparing the light path switching device with the conventional device using a parallelogram prism.
  • the optical path can be switched by moving the pair of mirrors onto the optical path while holding the reflecting surfaces of the first mirror and the second mirror in parallel by the mirror fixing member.
  • the angle deviation of the optical axis to the light output means Is allowed up to ⁇ 1.0 degree.
  • setting the angle deviation of the optical axis within this allowable range can be achieved relatively easily without the mirror moving by the moving means with high accuracy. Since it is not necessary to move the mirror with high accuracy, the apparatus cost can be reduced and the assembly process can be simplified.
  • the mirror moving means in the present invention may be any means that moves the mirror fixing member that fixes each mirror. That is, each mirror moves via the mirror fixing member.
  • these mirrors can be moved on the optical path in a stable state in which the relative positions of the first and second mirrors do not change.
  • the mirror fixing member has a first surface portion and a second surface portion parallel to each other, fixes the first mirror along the first surface portion, and fixes the second mirror to the first surface portion. It can be configured to be fixed along the two face portions.
  • the first surface portion and the second surface portion of the mirror fixing member can be processed in parallel relatively easily by an existing machining facility or the like. If the first and second mirrors are fixed along these surface portions, the reflecting surfaces of the mirrors can be arranged in parallel relatively easily and with high accuracy.
  • the mirror fixing member may be formed of a material force, such as ceramics, glass, silicon, or metal, which is relatively easy to machine and easily confirms the parallelism of the first and second surface portions.
  • the reflection surface of the first mirror is aligned with the first surface portion of the mirror fixing member, and the reflection surface of the second mirror is fixed to the mirror fixing member. It is preferable to match with the second surface portion of the member.
  • the reflecting surfaces of the mirrors are aligned with the first and second surface portions of the mirror fixing member processed and processed in parallel, so that the reflecting surfaces of the mirrors can be more easily and in parallel. It can be obtained with high accuracy.
  • first mirror and the second mirror are fixed to the mirror fixing member with their respective reflecting surfaces facing each other.
  • the incident light ray directly hits the reflection surface and is reflected (for example, it is not necessary to transmit through a material such as a plate glass that supports the mirror reflection film). Reduction can be achieved, and the compatibility with a large amount of light can also be improved.
  • the first mirror and the second mirror are opposed to the first surface portion and the second surface portion of the mirror fixing member.
  • a fusion welding method fusion or welding
  • a brazing method can be employed.
  • the reflection surface of the first mirror has a lower reflectance for light rays having a wavelength within the predetermined range than that for light rays having wavelengths outside the predetermined range. It can be set.
  • the reflecting surface of the first mirror transmits a light beam having a wavelength within a predetermined range.
  • the optical path switching device of the present invention can switch the optical path by taking out only a light beam having an arbitrary wavelength.
  • the first mirror can set the thickness in the light transmission direction (thickness of the substrate such as plate glass and the reflection film) to be thinner than that of the prism, so that the polarization dependent loss due to the transmission of the light can be kept extremely small. .
  • the optical path switching device of the present invention by using the reflection of the mirror for switching the optical path (as compared with the case of using a prism), it is possible to effectively prevent unnecessary reduction in transmittance and light loss.
  • the mirror can be moved with high accuracy.
  • an optical path switching apparatus 10 includes a fiber collimator 20 as input means for receiving a light beam 11, and a fiber collimator support plate 30 that supports the fiber collimator 20. , Fiber collimators 40 and 50 as output means for outputting the light beam 11, a fiber collimator support plate 60 that supports the fiber collimators 40 and 50, and a first mirror that displaces the optical path of the light beam 11 by reflecting the light beam 11.
  • Collime 1-input, 2-output IX 2 equipped with a drive actuator 76 such as a solenoid actuator as a moving means for moving the mirrors 71 and 72 on the optical path of the light beam 11 from the data 20 to the fiber collimator 50 It is an optical path switching device.
  • a drive actuator 76 such as a solenoid actuator as a moving means for moving the mirrors 71 and 72 on the optical path of the light beam 11 from the data 20 to the fiber collimator 50 It is an optical path switching device.
  • These mirrors 71 and 72 are fixed to a mirror fixing member (not appearing in FIGS. 1 and 2) with their reflecting surfaces 71r and 72r being parallel to each other.
  • the drive actuator 76 is connected to the mirror support plate 75.
  • the pair of mirrors 71 and 72 are moved on the optical path by the drive actuator 76 with their reflecting surfaces held in parallel by the mirror fixing member, so that high accuracy is required for the movement. And not.
  • the movement can be performed in a stable state in which the relative positions of the mirrors 71 and 72 do not change.
  • the fiber collimator 20 includes an optical fiber 21 and a lens 22.
  • the optical fiber 21 is formed with an input port 21a for inputting the light beam 11 as an external force.
  • the light beam 11 output from the lens 22 of the fiber collimator 20 is a parallel beam.
  • the fiber collimator 40 includes an optical fiber 41 and a lens 42.
  • the optical fiber 41 is formed with an output port 41a for outputting the light beam 11 to the outside.
  • the fiber collimator 50 includes an optical fiber 51 and a lens 52.
  • the optical fiber 51 is formed with an output port 51a for outputting the light beam 11 to the outside.
  • the mirrors 71 and 72 are arranged in parallel to each other at an angle at which the light beam 11 is incident at about 45 °.
  • a substrate 71b or 72b made of a sheet glass cover is coated with a reflective film for forming the reflecting surfaces 71r and 72r.
  • plastic, ceramics, metal, or the like can be used in addition to the force using glass here.
  • the optical path switching device 10 switches the optical path of the light beam 11 by inserting and removing the mirrors 71 and 72 with respect to the optical path of the light beam 11.
  • the displacement of the optical path of the light beam 11 uses reflection on the reflection surface 71r of the mirror 71 and reflection on the reflection surface 72r of the mirror 72. Therefore, in principle, the width 70a of the mirrors 71 and 72 (the width of the fiber collimator 20 in the light emitting direction) may be slightly longer than the beam diameter of the light beam 11. Considering the ease of assembly and handling of the optical path switching device 10, the width 70a is, for example, 3 mm. Further, the width 70b of the mirrors 71 and 72 (the width in the direction perpendicular to the light emitting direction of the fiber collimator 20) is determined by the required displacement 11a (see FIG. 1) of the optical path of the light beam 11, and is, for example, 5 mm.
  • the pair of mirrors 71 and 72 are installed in a state where the reflecting surfaces 71r and 72r face each other.
  • the light beam 11 is reflected by directly hitting the reflecting surfaces 71r and 72r that do not pass through the substrates 71b and 72b. Therefore, it is possible to effectively prevent unnecessary reduction in transmittance and light loss compared to the conventional case where light passes through the antireflection film or the inside of the prism.
  • the optical path switching device 10 allows the light beam 11 to pass through the air instead of transmitting the inside of the prism formed of glass or the like to the light beam 11 as in the prior art.
  • the insertion loss can be reduced as compared with the conventional case.
  • the optical path switching device 10 does not need to be provided with a small and highly accurate parallelogram prism as in the prior art, the manufacturing cost can be reduced as compared with the prior art.
  • the configuration of the optical path switching device includes a mirror fixing member 80 having a surface portion 81 as a first surface portion and a surface portion 82 as a second surface portion.
  • the configuration is the same as that of the optical path switching device 10.
  • the surface portions 81 and 82 of the mirror fixing member 80 are formed in parallel to each other by cutting using an existing machining facility. By fixing the mirrors 71 and 72 along the surface portions 81 and 82, the reflecting surfaces 71r and 72r of the mirrors 71 and 72 can be installed in parallel.
  • the surface portions 81 and 82 of the mirror fixing member 80 face outward, and are configured to face the surfaces of the mirrors 71 and 72 (incident surface of the light beam 11).
  • the reflecting surfaces 71r and 72r are installed in parallel with respect to the surfaces of the mirrors 71 and 72, respectively.
  • each of the surface portions 81 and 82 may be formed inward (for example, on the inner surface having a concave cross section) so as to face the back surface of each of the mirrors 71 and 72.
  • the reflecting surfaces 71r and 72r are installed in parallel with the back surfaces of the mirrors 71 and 72 as a reference.
  • the mirrors 71 and 72 have their respective surfaces as reflecting surfaces 7 lr and 72 r, and the reflecting surfaces 71 r and 72 r are aligned with the surface portions 81 and 82 of the mirror fixing member 80 (that is, each other).
  • each mirror 71 and 72 It is fixed so that the faces face each other.
  • the reflective surfaces 71r and 72r as a reference, the parallelism between the front and back surfaces of each mirror 71 and 72 is considered.
  • the reflecting surfaces 71r and 72r of the mirrors 71 and 72 can be installed in parallel with higher accuracy in accordance with the parallel of the surface portions 81 and 82 to be engaged.
  • the mirrors 71 and 72 have their respective reflecting surfaces 71r and 72r in direct contact with the surface portions 81 and 82 of the mirror fixing member 80 (with a foreign substance such as an adhesive in between). It is fixed without any intervention. According to this, the reflecting surfaces 71r and 72r of the mirrors 71 and 72 can be arranged in parallel with higher accuracy in accordance with the surface portions 81 and 82 of the mirror fixing member 80 formed in parallel. If the mirror fixing member 80 is made of glass, the mirrors 71 and 72 having the same glass material capacity can be relatively easily fixed by welding.
  • the mirror support plate 75 supports the mirrors 71 and 72 via the mirror fixing member 80.
  • the moving means 76 moves the pair of mirrors 71 and 72 via the mirror support plate 75 and the mirror fixing member 80.
  • the pair of mirrors 71 and 72 can be moved on the optical path in a stable state where the relative positions of the mirrors 71 and 72 do not change.
  • the mirrors 71 and 72 are fixed to the mutually parallel surface portions 81 and 82 of the mirror fixing member 80, respectively.
  • the work of making the reflecting surfaces 71r and 72r parallel to each other can be facilitated.
  • the configuration of the optical path switching device 310 according to the third embodiment will be described.
  • FIG. 4 shows the overall configuration of the optical path switching device 310.
  • the first mirror 371 is basically different from the first embodiment.
  • the mirror 371 in the present embodiment is set to have a low reflectance relative to a light beam having a wavelength within a predetermined range compared to a reflectivity for a light beam having a wavelength outside that range. That is, the reflecting surface 371r of the mirror 371 has a filter function, and is basically set to transmit only light having a wavelength within a predetermined range.
  • the other mirror 72 is a total reflection mirror as in the first embodiment.
  • FIG. 6 shows the relationship between the reflectance and wavelength of the first mirror 371 in the present embodiment.
  • the first mirror 371 has a reflectance of 80% or more of light with a high wavelength ⁇ 1 within a specific range, and a reflectance of light with a low wavelength ⁇ 2 within another specific range of 30% or less.
  • the input means fiber collimator 20
  • the output means fiber collimator 40
  • the light with the wavelength ⁇ 2 is always output from the output port 41a regardless of the movement of the mirrors 71 and 72, and the light with the wavelength ⁇ 1 is moved by the mirrors 71 and 72. Depending on the output, it is output from either output port 41a or 51a.
  • an optical switch for an optical communication system (OADM system) that allocates an optical signal for each wavelength can be realized.
  • the switching means including a mirror having a filter function as shown in the third embodiment can be used by incorporating a plurality of switching means in one optical path switching device.
  • the switching means here includes a pair of mirrors, a mirror fixing member for fixing these mirrors, a mirror support plate for moving the mirrors, and a drive actuator, and is responsible for switching the optical path in the optical path switching device. It is a partial element.
  • FIG. 7 is a view of the optical path switching device 410 according to the fourth embodiment as well.
  • symbol is attached
  • the optical path switching device 410 is also a 1 ⁇ 2 optical path switching device with 1 input and 2 outputs, as in the other embodiments.
  • One input means (fiber collimator 20) is provided with a pair of mirrors (first mirror 711 and second mirror 721) as the first switching means 491, and the other output means (fiber collimators 40, 50).
  • Side as second switching means 492 A pair of mirrors (first mirror 712 and second mirror 722) are arranged.
  • Each pair of mirrors 711, 721 and 712, 722 is fixed to a mirror fixing member (not shown), and can be moved by a drive actuator via a mirror support plate.
  • FIG. 8 is a characteristic diagram showing the relationship between the reflectance and wavelength of each of the first mirrors 711 and 712.
  • the first mirror 711 in the first switching means 491 has a reflectance of light having a high wavelength ⁇ 1 within a specific range of 80% or more, and an intermediate wavelength ⁇ 2 and a low wavelength ⁇ 3 within another specific range.
  • the reflectance of light is 30% or less.
  • the first mirror 712 in the second switching means 492 has a reflectance of 80% or more for the light of the intermediate wavelength 2 and a reflectance of 30% for the light of the other high wavelength ⁇ 1 and low wavelength ⁇ 3. It is as follows.
  • Each of the second mirrors 721 and 722 is a total reflection mirror.
  • Table 1 shows the wavelength of light emitted from the output port 41a
  • Table 2 shows the wavelength of light emitted from the output port 51a. Each is shown.
  • a fiber collimator 20 as an input means emits a light beam 11 including each wavelength 1, ⁇ 2 and 3.
  • the state where each mirror has moved onto the light beam is indicated as “ ⁇ ”
  • the state where each mirror is retracted from the light beam is indicated as “OFF”.
  • the optical path switching device 410 shown in the present embodiment it becomes possible to divide light according to the three types of wavelengths ⁇ 1 to 3.
  • two switching means are provided in series.
  • the present invention is not limited to this, and a plurality of (two or more) switching means are provided in series or in parallel. It can also be provided. Even when a plurality of switching means are provided, the mirrors need not be moved with high accuracy because the reflecting surfaces of the pair of mirrors in each switching means are kept parallel. In addition, since it is not necessary to match the positions of the switching means with high accuracy, the assembly process of the apparatus can be simplified and the manufacturing cost can be reduced.
  • the optical path switching device uses the reflection of the mirror for switching the optical path, thereby reducing unnecessary transmission loss and light transmission (as compared to the case of using a prism).
  • an optical path switching device used in the optical communication field such as optical information network and optical LAN (Local Area Network)
  • it has the effect of eliminating the need for high-precision movement of this mirror while effectively preventing loss. Useful.
  • FIG. 1 (a) is a perspective view of an optical path switching device 10 according to the first embodiment of the present invention
  • FIG. 1 (b) is a perspective view showing a state in which the optical path is switched in (a).
  • FIG. 2 is a top view of the vicinity of a mirror of the optical path switching device 10 shown in FIG. 1 (b).
  • FIG. 3 (a) is a perspective view of the vicinity of a mirror of an optical path switching device according to a second embodiment of the present invention, and (b) is a top view of (a).
  • FIG. 4 (a) is a perspective view of an optical path switching device 310 according to a third embodiment of the present invention, and (b) is this view.
  • FIG. 6 (a) is a perspective view showing a state where the optical path is switched.
  • FIG. 5 is a top view of the vicinity of a mirror of the optical path switching device 310 shown in FIG. 4 (b).
  • FIG. 6 is a characteristic diagram of the first mirror 371 shown in FIG.
  • FIG. 7 is a top view of an optical path switching device 410 according to a fourth embodiment of the present invention.
  • FIG. 8 is a characteristic diagram of first mirrors 711 and 712 shown in FIG.

Abstract

[PROBLEMS] A light path switchover device where unwanted reduction in a light transmission factor and loss in light can be more effectively prevented than a case in which a prism is used to switch over between light paths. [MEANS FOR SOLVING PROBLEMS] A light path switching device (10) uses light reflection at a pair of mirrors (71, 72) to switch a light path for a light beam (11). The mirrors (71, 72) are moved on to the light path by a drive actuator (76) with their reflection surfaces (71r, 72r) held parallel to each other by a mirror fixation member, so that high accuracy is not required for the movement.

Description

明 細 書  Specification
光路切換装置  Optical path switching device
技術分野  Technical field
[0001] 本発明は、光情報ネットワークや光 LANなどの光通信分野において使用され、光 路を切り換える光路切換装置に関するものである。  The present invention relates to an optical path switching device that is used in the optical communication field such as an optical information network and an optical LAN and switches an optical path.
背景技術  Background art
[0002] 従来、光路を切り換える光路切換装置として、平行四辺形プリズムによって光線の 光路を変位するものが知られている(例えば特許文献 1参照。;)。  Conventionally, as an optical path switching device that switches an optical path, an apparatus that displaces an optical path of a light beam using a parallelogram prism is known (for example, see Patent Document 1).
[0003] 従来の光路切換装置においては、平行四辺形プリズムの四面のうち光線を透過さ せる入射面および出射面上に無反射膜がコーティングされており、光線を反射する 二つの反射面上に反射膜がそれぞれコーティングされている。  [0003] In the conventional optical path switching device, the non-reflective film is coated on the incident surface and the exit surface that transmit the light beam among the four surfaces of the parallelogram prism, and the two reflective surfaces that reflect the light beam are coated. Each reflective film is coated.
特許文献 1 :特開 2003— 21756号公報 (第 4頁、第 3図)  Patent Document 1: Japanese Unexamined Patent Publication No. 2003-21756 (Page 4, Figure 3)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の光路切換装置においては、平行四辺形プリズムの四面に無反射膜または 反射膜コーティングを施す必要があり、製造コストアップになっていた。また、無反射 膜といえども 0. 1%程度の極わず力な反射率を有するので、この無反射膜は光の透 過率を下げる(つまり、光の損失を招く)要因の一つとなっていた。さらに、偏波によつ て透過率が異なる性質である偏波依存性をプリズムの材質 (例えばガラスなど)が有 しているので、光通信で要求される偏波依存損失(Polarization Dependent Los s)を満たすために脈理などがない品質を厳選した材料を用いる事が必要であると!/、 う問題があった。 [0004] In the conventional optical path switching device, it is necessary to apply a non-reflective film or a reflective film coating to the four surfaces of the parallelogram prism, which increases the manufacturing cost. In addition, even an anti-reflective film has an extremely strong reflectivity of about 0.1%, so this non-reflective film is one of the factors that lower the light transmittance (that is, cause a loss of light). It was. Furthermore, since the material of the prism (for example, glass) has polarization dependency, which is a property that the transmittance varies depending on the polarization, the polarization dependent loss (Polarization Dependent Loss) required for optical communication. ) There is a problem that it is necessary to use materials with carefully selected quality without striae to satisfy!
[0005] そこで、この平行四辺形プリズムに代えて、対面させた一対のミラーによって光路を 切り換える技術が、例えば特許文献 2に示されている。各ミラーは板ガラス等の基板 の表面に反射膜コーティングによる反射面を形成している。この一対のミラーによる 光路切換装置は、プリズムを用いた場合のように光線が無反射膜やプリズム内部を 透過する必要がないので、透過率の無用な低下を防ぐことができ、偏波依存損失を 抑える上でも好適である。しかし、この従来装置は、一対のミラーのうち一枚のみを光 路上に挿し抜きして光路を切り換えるものであるため、各ミラーの相対的な位置がず れないように、ミラーを高い精度で光路上に移動させる必要がある。各ミラーの相対 的な位置ずれが生じると、ミラーの反射特性が変化し、光路を切り換えたときの入出 力の接続状態が悪化して光の損失の増大を招く。 [0005] Thus, for example, Patent Document 2 discloses a technique for switching the optical path by a pair of facing mirrors instead of the parallelogram prism. Each mirror has a reflective surface formed by a reflective coating on the surface of a substrate such as a plate glass. This optical path switching device using a pair of mirrors does not require the light beam to pass through an anti-reflection film or the inside of the prism as in the case of using a prism, so that it is possible to prevent unnecessary reduction in transmittance, and polarization dependent loss. The It is also suitable for suppressing. However, since this conventional apparatus switches the optical path by inserting and removing only one of the pair of mirrors on the optical path, the mirrors can be moved with high accuracy so that the relative positions of the mirrors are not shifted. It is necessary to move on the optical path. When the relative displacement of each mirror occurs, the reflection characteristics of the mirror change, and the connection state of the input / output when the optical path is switched deteriorates, resulting in an increase in light loss.
特許文献 2:特開平 5— 110180号公報 (第 2頁および第 4図)  Patent Document 2: JP-A-5-110180 (Page 2 and Figure 4)
[0006] 本発明は、従来の問題を解決するためになされたもので、光路の切り換えにミラー の反射を用いることで (プリズムを用いた場合に比べて)透過率の無用な低下および 光の損失を有効に防ぎながら、このミラーの高精度な移動を不要にできる光路切換 装置を提供することを目的とする。 [0006] The present invention has been made to solve the conventional problems, and by using the reflection of a mirror to switch the optical path (as compared to the case of using a prism), the transmittance is unnecessarily reduced and the light is reduced. An object of the present invention is to provide an optical path switching device which can eliminate the need for highly accurate movement of the mirror while effectively preventing loss.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の光路切換装置は、外部から光線を入力する入力手段と、前記光線を外部 へ出力する出力手段と、前記光線を反射することによって前記光線の光路を変位す る反射面を有する第 1のミラーと、前記第 1のミラーによって反射された前記光線をさ らに反射することによって前記光線の光路を変位する反射面を有する第 2のミラーと 、前記入力手段から前記出力手段までの前記光線の光路上に前記第 1のミラー及び 前記第 2のミラーを移動させる移動手段とを備え、前記第 1のミラー及び前記第 2のミ ラーは、それぞれの反射面が互いに平行な状態でミラー固定部材に固定された構成 を有している。 [0007] The optical path switching device of the present invention comprises an input means for inputting a light beam from the outside, an output means for outputting the light beam to the outside, and a reflecting surface for displacing the light path of the light beam by reflecting the light beam. A first mirror having a second mirror having a reflecting surface that displaces the optical path of the light beam by further reflecting the light beam reflected by the first mirror, and from the input unit to the output unit Moving means for moving the first mirror and the second mirror on the optical path of the light beam until the first mirror and the second mirror have reflecting surfaces parallel to each other. In this state, it is fixed to the mirror fixing member.
[0008] この構成により、本発明の光路切換装置は、第 1のミラー及び第 2のミラーの反射に より光路を切り換えることによって、従来の平行四辺形プリズムを用いた装置と比較し て、光線が無反射膜やプリズム内部を透過する必要がないので、透過率の無用な低 下および光の損失を有効に防ぐことができる。また、ミラー固定部材により第 1のミラ 一及び第 2のミラーの各反射面を平行に保持した状態でこれら一対のミラーを光路 上に移動し、光路を切り換えることができる。これによつて、移動手段により一対のミラ 一を移動 (光路を切り換え)したとき、光線に対するミラーの位置が若干変化しても、 光線の反射特性が劣化しない。例えば、光線の直径が 0. 5mmで、光路を切り換え たときの光の許容損失が 0. 2dBである場合、光線の出力手段への光軸の角度ずれ は実測で ± 1. 0度まで許容される。本発明によれば、光軸の角度ずれをこの許容範 囲内にすることは、移動手段によるミラーの移動を高い精度で行わなくても比較的容 易に達成できる。ミラーの移動を高い精度で行う必要がないので、装置コストの低減 や組み立て工程の簡素化を図ることができる。 [0008] With this configuration, the optical path switching device of the present invention switches the optical path by reflection of the first mirror and the second mirror, thereby comparing the light path switching device with the conventional device using a parallelogram prism. However, since it is not necessary to transmit through the antireflective film or the prism, it is possible to effectively prevent an unnecessary decrease in transmittance and loss of light. Also, the optical path can be switched by moving the pair of mirrors onto the optical path while holding the reflecting surfaces of the first mirror and the second mirror in parallel by the mirror fixing member. As a result, when the pair of mirrors is moved (switching the optical path) by the moving means, even if the position of the mirror with respect to the light beam changes slightly, the light reflection characteristics do not deteriorate. For example, if the diameter of the light beam is 0.5 mm and the allowable loss of light when switching the optical path is 0.2 dB, the angle deviation of the optical axis to the light output means Is allowed up to ± 1.0 degree. According to the present invention, setting the angle deviation of the optical axis within this allowable range can be achieved relatively easily without the mirror moving by the moving means with high accuracy. Since it is not necessary to move the mirror with high accuracy, the apparatus cost can be reduced and the assembly process can be simplified.
[0009] 本発明におけるミラーの移動手段は、各ミラーを固定しているミラー固定部材を移 動させるものであれば良い。つまり、各ミラーはミラー固定部材を介して移動する。  [0009] The mirror moving means in the present invention may be any means that moves the mirror fixing member that fixes each mirror. That is, each mirror moves via the mirror fixing member.
[0010] この構成によれば、第 1及び第 2の各ミラーの相対的な位置が変化することのない 安定した状態で、これらミラーを光路上に移動できる。  [0010] According to this configuration, these mirrors can be moved on the optical path in a stable state in which the relative positions of the first and second mirrors do not change.
[0011] 前記ミラー固定部材は、互いに平行な第 1の面部及び第 2の面部を有し、前記第 1 のミラーを前記第 1の面部に沿って固定し、前記第 2のミラーを前記第 2の面部に沿 つて固定するように構成することができる。  The mirror fixing member has a first surface portion and a second surface portion parallel to each other, fixes the first mirror along the first surface portion, and fixes the second mirror to the first surface portion. It can be configured to be fixed along the two face portions.
[0012] ミラー固定部材の第 1の面部及び第 2の面部は、既存の機械加工設備等で比較的 容易に平行に加工できる。第 1及び第 2の各ミラーをこれら面部に沿って固定すれば 、各ミラーの反射面を比較的簡単かつ高精度に平行に配置することができる。ミラー 固定部材は、例えばセラミックス、ガラス、シリコンや金属など、比較的に機械加工が 容易で、第 1及び第 2の各面部の平行度が確認し易い材料力 形成すれば良い。  [0012] The first surface portion and the second surface portion of the mirror fixing member can be processed in parallel relatively easily by an existing machining facility or the like. If the first and second mirrors are fixed along these surface portions, the reflecting surfaces of the mirrors can be arranged in parallel relatively easily and with high accuracy. The mirror fixing member may be formed of a material force, such as ceramics, glass, silicon, or metal, which is relatively easy to machine and easily confirms the parallelism of the first and second surface portions.
[0013] 各ミラーをミラー固定部材に固定するに際し、前記第 1のミラーの反射面を前記ミラ 一固定部材の前記第 1の面部に合わせ、前記第 2のミラーの反射面を前記ミラー固 定部材の前記第 2の面部に合わせるのが良い。  [0013] When each mirror is fixed to the mirror fixing member, the reflection surface of the first mirror is aligned with the first surface portion of the mirror fixing member, and the reflection surface of the second mirror is fixed to the mirror fixing member. It is preferable to match with the second surface portion of the member.
[0014] この構成によれば、平行に加工形成されたミラー固定部材の第 1及び第 2の各面部 に各ミラーの反射面を合わせることで、各ミラーの反射面の平行状態をより簡単かつ 高精度に得ることができる。  [0014] According to this configuration, the reflecting surfaces of the mirrors are aligned with the first and second surface portions of the mirror fixing member processed and processed in parallel, so that the reflecting surfaces of the mirrors can be more easily and in parallel. It can be obtained with high accuracy.
[0015] 第 1のミラー及び第 2のミラーは、それぞれの反射面が互いに向かい合う状態でミラ 一固定部材に固定するのが好ましい。  [0015] It is preferable that the first mirror and the second mirror are fixed to the mirror fixing member with their respective reflecting surfaces facing each other.
[0016] この構成によれば、入射した光線が反射面に直接的に当たって反射する(例えばミ ラーの反射膜を支える板ガラスなどの材料中を透過する必要がない)ことから、偏波 依存損失の低減を図ることができ、また、大光量への対応性も向上できる。  [0016] According to this configuration, the incident light ray directly hits the reflection surface and is reflected (for example, it is not necessary to transmit through a material such as a plate glass that supports the mirror reflection film). Reduction can be achieved, and the compatibility with a large amount of light can also be improved.
[0017] 第 1のミラー及び第 2のミラーは、ミラー固定部材の第 1の面部及び第 2の面部に対 して、間に異物 (例えば接着剤など)を介在させることなく直接的に接触した状態で固 定するのが良い。その固定方法は、例えば融接法 (融着または溶着)やろう付け法を 採用できる。 [0017] The first mirror and the second mirror are opposed to the first surface portion and the second surface portion of the mirror fixing member. Thus, it is preferable to fix in a state of direct contact without interposing a foreign substance (for example, adhesive). As the fixing method, for example, a fusion welding method (fusion or welding) or a brazing method can be employed.
[0018] これによれば、平行にカ卩ェ形成されたミラー固定部材の各面部に合わせて、各ミラ 一の反射面をより高精度に平行に配置できる。  [0018] According to this, it is possible to arrange the mirror reflecting surfaces of each mirror in parallel with higher accuracy in accordance with each surface portion of the mirror fixing member formed in parallel.
[0019] また、本発明の光路切換装置において、第 1のミラーの反射面は、所定範囲内の波 長の光線に対する反射率が、その範囲外の波長の光線に対する反射率に比べて低 く設定することがでさる。 In the optical path switching device according to the present invention, the reflection surface of the first mirror has a lower reflectance for light rays having a wavelength within the predetermined range than that for light rays having wavelengths outside the predetermined range. It can be set.
[0020] この構成では、第 1のミラーの反射面は所定範囲内の波長の光線を透過する。これ によれば、本発明の光路切換装置は、任意の波長の光線のみを取り出して光路を切 り換えることができる。第 1のミラーは、光が透過する方向の厚み (板ガラス等の基板 および反射膜の厚み)をプリズムに比べて薄く設定できるため、光の透過に伴う偏波 依存損失を極めて小さく抑えることができる。 [0020] In this configuration, the reflecting surface of the first mirror transmits a light beam having a wavelength within a predetermined range. According to this, the optical path switching device of the present invention can switch the optical path by taking out only a light beam having an arbitrary wavelength. The first mirror can set the thickness in the light transmission direction (thickness of the substrate such as plate glass and the reflection film) to be thinner than that of the prism, so that the polarization dependent loss due to the transmission of the light can be kept extremely small. .
発明の効果  The invention's effect
[0021] 本発明の光路切換装置によれば、光路の切り換えにミラーの反射を用いることで( プリズムを用 、た場合に比べて)透過率の無用な低下および光の損失を有効に防ぎ ながら、このミラーの高精度な移動を不要にできるものである。  [0021] According to the optical path switching device of the present invention, by using the reflection of the mirror for switching the optical path (as compared with the case of using a prism), it is possible to effectively prevent unnecessary reduction in transmittance and light loss. The mirror can be moved with high accuracy.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態について、図面を用いて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023] (第 1の実施の形態)  [0023] (First embodiment)
まず、第 1の実施の形態に係る光路切換装置の構成について説明する。  First, the configuration of the optical path switching device according to the first embodiment will be described.
[0024] 図 1に示すように、本実施の形態に係る光路切換装置 10は、光線 11が入力される 入力手段としてのファイバコリメータ 20と、ファイバコリメータ 20を支持したファイバコリ メータ支持板 30と、光線 11を出力する出力手段としてのファイバコリメータ 40、 50と 、ファイバコリメータ 40、 50を支持したファイバコリメータ支持板 60と、光線 11を反射 することによって光線 11の光路を変位する第 1のミラーとしてのミラー 71と、ミラー 71 によって反射された光線 11を反射することによって光線 11の光路を変位する第 2の ミラーとしてのミラー 72と、ミラー 71、 72を支持したミラー支持板 75と、ファイバコリメ ータ 20からファイバコリメータ 50までの光線 11の光路上にミラー 71、 72を移動させ る移動手段としてのソレノィドアクチユエータ等の駆動ァクチユエータ 76とを備えた 1 入力、 2出力の I X 2光路切換装置である。これらミラー 71、 72は、それぞれの反射 面 71r、 72rが互いに平行な状態でミラー固定部材(図 1および図 2には現れない)に 固定されている。このミラー固定部材をミラー支持板 75に固定することによって、各ミ ラー 71、 72は、ミラー固定部材を介してミラー支持板 75に支持されている。駆動ァク チユエータ 76はこのミラー支持板 75と接続されている。こうした構成によって、これら 一対のミラー 71、 72は、ミラー固定部材により互いの反射面を平行に保持された状 態で、駆動ァクチユエータ 76により光路上に移動されるので、その移動に高い精度 を必要としない。また、その移動は各ミラー 71、 72の相対的な位置が変化しない安 定した状態で行うことができる。 As shown in FIG. 1, an optical path switching apparatus 10 according to the present embodiment includes a fiber collimator 20 as input means for receiving a light beam 11, and a fiber collimator support plate 30 that supports the fiber collimator 20. , Fiber collimators 40 and 50 as output means for outputting the light beam 11, a fiber collimator support plate 60 that supports the fiber collimators 40 and 50, and a first mirror that displaces the optical path of the light beam 11 by reflecting the light beam 11. A mirror 71 as a second mirror, a mirror 72 as a second mirror that displaces the optical path of the light beam 11 by reflecting the light beam 11 reflected by the mirror 71, a mirror support plate 75 that supports the mirrors 71 and 72, and a fiber. Collime 1-input, 2-output IX 2 equipped with a drive actuator 76 such as a solenoid actuator as a moving means for moving the mirrors 71 and 72 on the optical path of the light beam 11 from the data 20 to the fiber collimator 50 It is an optical path switching device. These mirrors 71 and 72 are fixed to a mirror fixing member (not appearing in FIGS. 1 and 2) with their reflecting surfaces 71r and 72r being parallel to each other. By fixing this mirror fixing member to the mirror support plate 75, each mirror 71, 72 is supported by the mirror support plate 75 via the mirror fixing member. The drive actuator 76 is connected to the mirror support plate 75. With this configuration, the pair of mirrors 71 and 72 are moved on the optical path by the drive actuator 76 with their reflecting surfaces held in parallel by the mirror fixing member, so that high accuracy is required for the movement. And not. The movement can be performed in a stable state in which the relative positions of the mirrors 71 and 72 do not change.
[0025] ファイバコリメータ 20は、光ファイバ 21及びレンズ 22から構成されている。ここで、 光ファイバ 21には、外部力も光線 11が入力されるための入力ポート 21aが形成され ている。なお、ファイバコリメータ 20のレンズ 22から出力される光線 11は、平行ビーム である。 The fiber collimator 20 includes an optical fiber 21 and a lens 22. Here, the optical fiber 21 is formed with an input port 21a for inputting the light beam 11 as an external force. The light beam 11 output from the lens 22 of the fiber collimator 20 is a parallel beam.
[0026] また、ファイバコリメータ 40は、光ファイバ 41及びレンズ 42から構成されている。ここ で、光ファイバ 41には、外部に光線 11を出力するための出力ポート 41aが形成され ている。同様に、ファイバコリメータ 50は、光ファイバ 51及びレンズ 52から構成されて いる。ここで、光ファイバ 51には、外部に光線 11を出力するための出力ポート 51aが 形成されている。  The fiber collimator 40 includes an optical fiber 41 and a lens 42. Here, the optical fiber 41 is formed with an output port 41a for outputting the light beam 11 to the outside. Similarly, the fiber collimator 50 includes an optical fiber 51 and a lens 52. Here, the optical fiber 51 is formed with an output port 51a for outputting the light beam 11 to the outside.
[0027] また、ミラー 71、 72は、図 2に示すように、光線 11が略 45° で入射する角度に互い に平行に配置されている。各ミラー 71、 72は、板ガラスカゝらなる基板 71b、 72bに、反 射面 71r、 72rを形成するための反射膜のコーティングが施されている。基板 71bの 材質は、ここではガラスを用いている力 この他にプラスチック、セラミックス、金属など を採用することちできる。  Further, as shown in FIG. 2, the mirrors 71 and 72 are arranged in parallel to each other at an angle at which the light beam 11 is incident at about 45 °. In each of the mirrors 71 and 72, a substrate 71b or 72b made of a sheet glass cover is coated with a reflective film for forming the reflecting surfaces 71r and 72r. For the material of the substrate 71b, plastic, ceramics, metal, or the like can be used in addition to the force using glass here.
[0028] 次に、光路切換装置 10の動作について説明する。  [0028] Next, the operation of the optical path switching device 10 will be described.
[0029] 図 1 (a)に示すように、光線 11の光路の下方にミラー 71、 72が駆動ァクチユエータ 76によって移動させられると(つまり、一対のミラー 71、 72が光線 11上力も退避した 位置に移動させられると)、ファイバコリメータ 20から出射した光線 11は、ミラー 71、 7 2に入射せずに直進し、ファイバコリメータ 40に入射する。即ち、ファイバコリメータ 20 の入力ポート 21aはファイバコリメータ 40の出力ポート 41aと接続される。一方、図 1 ( b)に示すように、光線 11の光路上にミラー 71、 72が駆動ァクチユエータ 76によって 移動させられると、ファイバコリメータ 20から出射した光線 11は、ミラー 71に入射して ミラー 71の反射面 71rによって光路が変位されて、更にミラー 72に入射してミラー 72 の反射面 72rによって光路が変位された後、ファイバコリメータ 50に入射する。即ち、 ファイバコリメータ 20の入力ポート 21aはファイバコリメータ 50の出力ポート 51aと接 続される。このように、光路切換装置 10は、光線 11の光路に対してミラー 71、 72を 挿抜することによって光線 11の光路を切り換える。 [0029] As shown in FIG. 1 (a), when the mirrors 71 and 72 are moved below the optical path of the light beam 11 by the drive actuator 76 (that is, the pair of mirrors 71 and 72 also retracts the force on the light beam 11). When moved to the position), the light beam 11 emitted from the fiber collimator 20 goes straight without entering the mirrors 71 and 72 and enters the fiber collimator 40. That is, the input port 21a of the fiber collimator 20 is connected to the output port 41a of the fiber collimator 40. On the other hand, as shown in FIG. 1B, when the mirrors 71 and 72 are moved on the optical path of the light beam 11 by the drive actuator 76, the light beam 11 emitted from the fiber collimator 20 enters the mirror 71 and enters the mirror 71. The optical path is displaced by the reflecting surface 71r of the mirror 72, and further enters the mirror 72. The optical path is displaced by the reflecting surface 72r of the mirror 72, and then enters the fiber collimator 50. That is, the input port 21a of the fiber collimator 20 is connected to the output port 51a of the fiber collimator 50. In this way, the optical path switching device 10 switches the optical path of the light beam 11 by inserting and removing the mirrors 71 and 72 with respect to the optical path of the light beam 11.
[0030] なお、光線 11の光路の変位は、図 2に示すように、ミラー 71の反射面 71rでの反射 と、ミラー 72の反射面 72rでの反射とを利用する。したがって、ミラー 71、 72の幅 70a (ファイバコリメータ 20の光出射方向の幅)は、原理的には光線 11のビーム直径より 若干長ければ良い。光路切換装置 10の組み立て易さや取り扱い易さを考慮すると、 幅 70aは、例えば 3mmとなる。また、ミラー 71、 72の幅 70b (ファイバコリメータ 20の 光出射方向に直交する方向の幅)は、光線 11の光路の必要な変位量 11a (図 1参照 )によって決まり、例えば 5mmとなる。  As shown in FIG. 2, the displacement of the optical path of the light beam 11 uses reflection on the reflection surface 71r of the mirror 71 and reflection on the reflection surface 72r of the mirror 72. Therefore, in principle, the width 70a of the mirrors 71 and 72 (the width of the fiber collimator 20 in the light emitting direction) may be slightly longer than the beam diameter of the light beam 11. Considering the ease of assembly and handling of the optical path switching device 10, the width 70a is, for example, 3 mm. Further, the width 70b of the mirrors 71 and 72 (the width in the direction perpendicular to the light emitting direction of the fiber collimator 20) is determined by the required displacement 11a (see FIG. 1) of the optical path of the light beam 11, and is, for example, 5 mm.
[0031] これら一対のミラー 71、 72は、それぞれの反射面 71r、 72rが互いに向かい合う状 態で設置されている。光線 11は、基板 71b、 72bを透過することなぐ各反射面 71r、 72rに直接的に当たって反射する。したがって、光線が無反射膜やプリズム内部を透 過する従来に比べて、透過率の無用な低下および光の損失を有効に防ぐことができ る。  [0031] The pair of mirrors 71 and 72 are installed in a state where the reflecting surfaces 71r and 72r face each other. The light beam 11 is reflected by directly hitting the reflecting surfaces 71r and 72r that do not pass through the substrates 71b and 72b. Therefore, it is possible to effectively prevent unnecessary reduction in transmittance and light loss compared to the conventional case where light passes through the antireflection film or the inside of the prism.
[0032] また、光路切換装置 10は、従来のようにガラス等で形成されたプリズム内部を光線 11に透過させる代りに、光線 11に空気中を透過させるので、光線 11の散乱損失を 従来より低減することができ、挿入損を従来より低減することができる。  [0032] Further, the optical path switching device 10 allows the light beam 11 to pass through the air instead of transmitting the inside of the prism formed of glass or the like to the light beam 11 as in the prior art. The insertion loss can be reduced as compared with the conventional case.
[0033] また、光路切換装置 10は、従来のように小型で高精度な平行四辺形プリズムを備 える必要が無 、ので、従来より製造コストを低減することができる。  [0033] In addition, since the optical path switching device 10 does not need to be provided with a small and highly accurate parallelogram prism as in the prior art, the manufacturing cost can be reduced as compared with the prior art.
[0034] なお、小型部品の特定の面のみに特定の膜をコーティングすることは困難であるの で、従来の光路切換装置の平行四辺形プリズムのように、透過面にコーティングされ る無反射膜及び反射面にコーティングされる反射膜という複数種類の膜がコーティン グされる小型部品においては、反射面に無反射膜が及んだり、透過面に反射膜が及 んだりする不具合が製造工程で生じることがある。し力しながら、光路切換装置 10は 、ミラー 71、 72が光線 11を透過させずに反射するだけであるので、ミラー 71、 72へ の反射膜のコーティングが光線 11の反射面以外の面に及んで ヽても構わな 、。した がって、光路切換装置 10は、従来と比較して、膜のコーティングの精度が低くても良 ぐ容易に製造することができる。 [0034] It is difficult to coat a specific film only on a specific surface of a small component. On the other hand, in the case of small parts coated with multiple types of films, such as a non-reflective film coated on the transmissive surface and a reflective film coated on the reflective surface, like the parallelogram prism of the conventional optical path switching device, There may be a problem in the manufacturing process that the non-reflective film reaches the surface or the reflective film reaches the transmissive surface. However, since the optical path switching device 10 only reflects the mirrors 71 and 72 without transmitting the light beam 11, the coating of the reflective film on the mirrors 71 and 72 is applied to a surface other than the reflection surface of the light beam 11. It ’s okay to go over there. Therefore, the optical path switching device 10 can be easily manufactured even if the accuracy of the coating of the film is low compared to the conventional case.
[0035] (第 2の実施の形態)  [0035] (Second embodiment)
第 2の実施の形態に係る光路切換装置の構成について説明する。  The configuration of the optical path switching device according to the second embodiment will be described.
[0036] なお、本実施の形態に係る光路切換装置の構成のうち、第 1の実施の形態に係る 光路切換装置 10 (図 1参照)の構成と同様な構成については、同一の符号を付して 詳細な説明を省略する。  Note that, in the configuration of the optical path switching apparatus according to the present embodiment, the same reference numerals are given to the same configurations as those of the optical path switching apparatus 10 (see FIG. 1) according to the first embodiment. Detailed description will be omitted.
[0037] 図 3に示すように、本実施の形態に係る光路切換装置の構成は、第 1の面部として の面部 81と、第 2の面部としての面部 82とを有したミラー固定部材 80を光路切換装 置 10が備えた構成と同様である。ミラー固定部材 80の各面部 81および 82は、既存 の機械加工設備を用いた切削加工によって、互いに平行に形成されている。これら 各面部 81、 82に沿って各ミラー 71、 72を固定することにより、これらミラー 71および 72の各反射面 71r、 72rを平行に設置することができる。ミラー固定部材 80の各面部 81、 82は、外側に向いており、各ミラー 71、 72の表面(光線 11の入射面)と向力 ヽ 合うように構成している。この場合、各ミラー 71、 72の表面を基準にして、それぞれの 反射面 71r、 72rを平行に設置することになる。これに代えて、各面部 81、 82は、内 側に向けて (例えば、断面凹状の内側面に)形成し、各ミラー 71、 72の裏面と向かい 合うように構成することもできる。この場合、各ミラー 71、 72の裏面を基準にして、各 反射面 71r、 72rを平行に設置することになる。本実施形態では、各ミラー 71、 72は 、それぞれの表面を反射面 7 lr、 72rとし、それら反射面 71r、 72rをミラー固定部材 8 0の各面部 81、 82に合わせて(つまり、互いの面が向かい合うように)固定している。 反射面 71r、 72rを基準にすることで、各ミラー 71、 72の表面と裏面との平行度に関 係なぐ各面部 81、 82の平行に合わせて各ミラー 71、 72の反射面 71r、 72rをより高 精度に平行に設置することができる。 As shown in FIG. 3, the configuration of the optical path switching device according to the present embodiment includes a mirror fixing member 80 having a surface portion 81 as a first surface portion and a surface portion 82 as a second surface portion. The configuration is the same as that of the optical path switching device 10. The surface portions 81 and 82 of the mirror fixing member 80 are formed in parallel to each other by cutting using an existing machining facility. By fixing the mirrors 71 and 72 along the surface portions 81 and 82, the reflecting surfaces 71r and 72r of the mirrors 71 and 72 can be installed in parallel. The surface portions 81 and 82 of the mirror fixing member 80 face outward, and are configured to face the surfaces of the mirrors 71 and 72 (incident surface of the light beam 11). In this case, the reflecting surfaces 71r and 72r are installed in parallel with respect to the surfaces of the mirrors 71 and 72, respectively. Alternatively, each of the surface portions 81 and 82 may be formed inward (for example, on the inner surface having a concave cross section) so as to face the back surface of each of the mirrors 71 and 72. In this case, the reflecting surfaces 71r and 72r are installed in parallel with the back surfaces of the mirrors 71 and 72 as a reference. In the present embodiment, the mirrors 71 and 72 have their respective surfaces as reflecting surfaces 7 lr and 72 r, and the reflecting surfaces 71 r and 72 r are aligned with the surface portions 81 and 82 of the mirror fixing member 80 (that is, each other). It is fixed so that the faces face each other. By using the reflective surfaces 71r and 72r as a reference, the parallelism between the front and back surfaces of each mirror 71 and 72 is considered. The reflecting surfaces 71r and 72r of the mirrors 71 and 72 can be installed in parallel with higher accuracy in accordance with the parallel of the surface portions 81 and 82 to be engaged.
[0038] ここで、ミラー 71、 72は、その各反射面 71r、 72rの一部がミラー固定部材 80の面 部 81、 82に直接的に接触した状態で (接着剤などの異物を間に介在させることなく) 固定している。これによれば、平行にカ卩ェ形成したミラー固定部材 80の各面部 81、 8 2に合わせて、各ミラー 71、 72の反射面 71r、 72rをより高精度に平行に配置できる。 ミラー固定部材 80をガラスで構成すれば、その各面部 81、 82に同じガラス材カもな るミラー 71、 72を溶着によって比較的容易に固定できる。  [0038] Here, the mirrors 71 and 72 have their respective reflecting surfaces 71r and 72r in direct contact with the surface portions 81 and 82 of the mirror fixing member 80 (with a foreign substance such as an adhesive in between). It is fixed without any intervention. According to this, the reflecting surfaces 71r and 72r of the mirrors 71 and 72 can be arranged in parallel with higher accuracy in accordance with the surface portions 81 and 82 of the mirror fixing member 80 formed in parallel. If the mirror fixing member 80 is made of glass, the mirrors 71 and 72 having the same glass material capacity can be relatively easily fixed by welding.
[0039] また、ミラー支持板 75は、ミラー固定部材 80を介してミラー 71、 72を支持している。  In addition, the mirror support plate 75 supports the mirrors 71 and 72 via the mirror fixing member 80.
移動手段 76は、ミラー支持板 75およびミラー固定部材 80を介して一対のミラー 71、 72を移動させる。これにより、各ミラー 71、 72の相対的な位置が変化することのない 安定した状態で、一対のミラー 71、 72を光路上に移動できる。  The moving means 76 moves the pair of mirrors 71 and 72 via the mirror support plate 75 and the mirror fixing member 80. Thus, the pair of mirrors 71 and 72 can be moved on the optical path in a stable state where the relative positions of the mirrors 71 and 72 do not change.
[0040] 以上に説明したように、本実施の形態に係る光路切換装置は、ミラー固定部材 80 の互いに平行な面部 81、 82にそれぞれミラー 71、 72が固定されるので、ミラー 71、 72の反射面 71r、 72rを互いに平行にする作業を容易化することができる。  [0040] As described above, in the optical path switching device according to the present embodiment, the mirrors 71 and 72 are fixed to the mutually parallel surface portions 81 and 82 of the mirror fixing member 80, respectively. The work of making the reflecting surfaces 71r and 72r parallel to each other can be facilitated.
[0041] (第 3の実施の形態)  [0041] (Third embodiment)
第 3の実施形態に係る光路切換装置 310の構成について説明する。  The configuration of the optical path switching device 310 according to the third embodiment will be described.
[0042] 光路切換装置 310の全体構成を図 4に示す。本実施形態に係る光路切換装置 31 0の構成のうち、上述した第 1の実施の形態に係る光路切換装置 10 (図 1参照)の構 成と同様な構成については、同一の符号を付して詳細な説明を省略する。第 1の実 施形態と基本的に異なるのは、第 1のミラー 371である。本実施形態におけるミラー 3 71は、所定範囲内の波長の光線に対する反射率力 その範囲外の波長の光線に対 する反射率に比べて低く設定されている。つまり、ミラー 371の反射面 371rは、フィ ルタ機能を備えており、基本的に所定範囲内の波長の光のみを透過するように設定 されている。他方のミラー 72は、第 1の実施の形態と同じように全反射ミラーである。  FIG. 4 shows the overall configuration of the optical path switching device 310. Of the configurations of the optical path switching apparatus 310 according to the present embodiment, the same reference numerals are given to the same configurations as those of the optical path switching apparatus 10 (see FIG. 1) according to the first embodiment described above. Detailed description is omitted. The first mirror 371 is basically different from the first embodiment. The mirror 371 in the present embodiment is set to have a low reflectance relative to a light beam having a wavelength within a predetermined range compared to a reflectivity for a light beam having a wavelength outside that range. That is, the reflecting surface 371r of the mirror 371 has a filter function, and is basically set to transmit only light having a wavelength within a predetermined range. The other mirror 72 is a total reflection mirror as in the first embodiment.
[0043] 本実施形態における第 1のミラー 371の反射率と波長との関係を図 6に示す。第 1 のミラー 371は、ある特定範囲内の高い波長 λ 1の光の反射率を 80%以上とし、別 の特定範囲内にある低 、波長 λ 2の光の反射率を 30%以下として 、る。 [0044] 図 4 (a)に示すように、一対のミラー 371、 72が光線 11上力 退避した位置にあると き、入力手段 (ファイバコリメータ 20)が出射した波長 λ 1およびえ 2を含む光線 11は 、ミラー 71、 72に入射することなく直進し、出力手段 (ファイバコリメータ 40)から出力 ポート 41aを通して外部へ出射される。一方、図 4 (b)および図 5に示すように、駆動 ァクチユエータ 76によって一対のミラー 371、 72が光線 11を遮る位置(光線 11の光 路上)に移動すると、その光線 11のうち波長 λ 1の光が第 1のミラー 371および第 2の ミラー 72で反射され、別の出力手段 (ファイバコリメータ 50)から出力ポート 51aを通し て外部へ出射される。その光線 11のうち波長え 2の光は、第 1のミラー 371を透過し ながら直進し、出力手段 (ファイバコリメータ 40)から出力ポート 41aを通して外部へ出 射される。 FIG. 6 shows the relationship between the reflectance and wavelength of the first mirror 371 in the present embodiment. The first mirror 371 has a reflectance of 80% or more of light with a high wavelength λ 1 within a specific range, and a reflectance of light with a low wavelength λ 2 within another specific range of 30% or less. The [0044] As shown in Fig. 4 (a), when the pair of mirrors 371 and 72 are in a position where the force of the light beam 11 is retracted, the input means (fiber collimator 20) includes the wavelengths λ1 and 2 emitted. The light beam 11 travels straight without entering the mirrors 71 and 72, and is emitted from the output means (fiber collimator 40) to the outside through the output port 41a. On the other hand, as shown in FIGS. 4 (b) and 5, when the pair of mirrors 371 and 72 are moved by the drive actuator 76 to a position where the mirror 11 intercepts the light beam 11 (on the optical path of the light beam 11), the wavelength λ 1 of the light beam 11 Are reflected by the first mirror 371 and the second mirror 72, and emitted from another output means (fiber collimator 50) through the output port 51a to the outside. Of the light beam 11, light having a wavelength of 2 travels straight through the first mirror 371 and is emitted to the outside from the output means (fiber collimator 40) through the output port 41 a.
[0045] 本実施形態の光路切換装置 310によれば、波長 λ 2の光はミラー 71、 72の移動に 関係なく常に出力ポート 41aから出力され、波長 λ 1の光はミラー 71、 72の移動に応 じて出力ポート 41a又は 51aのいずれかから出力される。これにより、所望の波長に 応じた光の分割が可能となるため、例えば光信号を波長毎に割り付ける光通信シス テム(OADMシステム)用の光スィッチ等が実現できる。  According to the optical path switching device 310 of the present embodiment, the light with the wavelength λ 2 is always output from the output port 41a regardless of the movement of the mirrors 71 and 72, and the light with the wavelength λ 1 is moved by the mirrors 71 and 72. Depending on the output, it is output from either output port 41a or 51a. This makes it possible to divide the light according to the desired wavelength. For example, an optical switch for an optical communication system (OADM system) that allocates an optical signal for each wavelength can be realized.
[0046] (第 4の実施の形態)  [0046] (Fourth embodiment)
第 3の実施の形態に示したようなフィルタ機能を備えたミラーを含む切換手段は、複 数を一つの光路切換装置の中に組み込んで使用することもできる。その一例を第 4 の実施の形態として示す。ここでいう切換手段は、一対のミラーおよびこれらミラーを 固定するミラー固定部材と、ミラーを移動させるためのミラー支持板および駆動ァクチ ユエ一タとを含み、光路切換装置のうち光路の切り換えを担う部分的要素である。図 7はこの第 4の実施の形態における光路切換装置 410を上力も見た図である。なお、 上述した第 1の実施形態に係る光路切換装置 10の構成と同様な構成については、 同一の符号を付して詳細な説明を省略する。  The switching means including a mirror having a filter function as shown in the third embodiment can be used by incorporating a plurality of switching means in one optical path switching device. One example is shown as the fourth embodiment. The switching means here includes a pair of mirrors, a mirror fixing member for fixing these mirrors, a mirror support plate for moving the mirrors, and a drive actuator, and is responsible for switching the optical path in the optical path switching device. It is a partial element. FIG. 7 is a view of the optical path switching device 410 according to the fourth embodiment as well. In addition, about the structure similar to the structure of the optical path switching apparatus 10 which concerns on 1st Embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0047] 本実施の形態に係る光路切換装置 410も、他の実施の形態と同様、 1入力 2出 力の 1 X 2光路切換装置である。一方の入力手段 (ファイバコリメータ 20)側に第 1の 切換手段 491として一対のミラー(第 1のミラー 711および第 2のミラー 721)を配し、 さらに他方の出力手段 (ファイバコリメータ 40、 50)側に第 2の切換手段 492として一 対のミラー(第 1のミラー 712および第 2のミラー 722)を配する。各一対のミラー 711、 721および 712、 722は、それぞれ図示しないミラー固定部材に固定され、ミラー支 持板を介して駆動ァクチユエータにより移動可能である。図 8は各第 1のミラー 711、 712の反射率と波長との関係を示した特性図である。第 1の切換手段 491における 第 1のミラー 711は、ある特定範囲内の高い波長 λ 1の光の反射率を 80%以上とし、 別の特定範囲内にある中間波長 λ 2および低い波長 λ 3の光の反射率を 30%以下 としている。他方、第 2の切換手段 492における第 1のミラー 712は、中間波長え 2の 光の反射率を 80%以上とし、別の高い波長 λ 1および低い波長 λ 3の光の反射率を 30%以下としている。各第 2のミラー 721、 722は、いずれも全反射ミラーである。 The optical path switching device 410 according to the present embodiment is also a 1 × 2 optical path switching device with 1 input and 2 outputs, as in the other embodiments. One input means (fiber collimator 20) is provided with a pair of mirrors (first mirror 711 and second mirror 721) as the first switching means 491, and the other output means (fiber collimators 40, 50). Side as second switching means 492 A pair of mirrors (first mirror 712 and second mirror 722) are arranged. Each pair of mirrors 711, 721 and 712, 722 is fixed to a mirror fixing member (not shown), and can be moved by a drive actuator via a mirror support plate. FIG. 8 is a characteristic diagram showing the relationship between the reflectance and wavelength of each of the first mirrors 711 and 712. The first mirror 711 in the first switching means 491 has a reflectance of light having a high wavelength λ 1 within a specific range of 80% or more, and an intermediate wavelength λ 2 and a low wavelength λ 3 within another specific range. The reflectance of light is 30% or less. On the other hand, the first mirror 712 in the second switching means 492 has a reflectance of 80% or more for the light of the intermediate wavelength 2 and a reflectance of 30% for the light of the other high wavelength λ 1 and low wavelength λ 3. It is as follows. Each of the second mirrors 721 and 722 is a total reflection mirror.
[0048] これらミラーによる光路の切り換え状況を下表に示す。表 1は、出力ポート 41aから 射出される光の波長について示し、表 2は、出力ポート 51aから射出される光の波長 について示す。それぞれ示す。入力手段であるファイバコリメータ 20からは各波長え 1、 λ 2およびえ 3を含む光線 11が出射される。また、表中の第 1および第 2の切換手 段について、各ミラーが光線上に移動した状態を「ΟΝ」とし、各ミラーが光線上から 退避した状態を「OFF」として示す。  [0048] The table below shows the switching conditions of the optical paths by these mirrors. Table 1 shows the wavelength of light emitted from the output port 41a, and Table 2 shows the wavelength of light emitted from the output port 51a. Each is shown. A fiber collimator 20 as an input means emits a light beam 11 including each wavelength 1, λ 2 and 3. For the first and second switching means in the table, the state where each mirror has moved onto the light beam is indicated as “ΟΝ”, and the state where each mirror is retracted from the light beam is indicated as “OFF”.
[0049] [表 1]  [0049] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0050] [表 2]  [0050] [Table 2]
Figure imgf000012_0002
Figure imgf000012_0002
本実施形態に示す光路切換装置 410によれば、三種類の各波長 λ 1〜え 3に応じ た光の分割が可能となる。本実施の形態では二つの切換手段を直列に設けている が、これに限ることなぐ複数 (二つまたはそれ以上)の切換手段を直列または並列に 設けることもできる。切換手段を複数備えた場合でも、各切換手段における一対のミ ラーの各反射面が平行に保たれているため、ミラーの移動を高い精度で行う必要が ない。また、各切換手段の互いの位置も高い精度で合わせる必要がないので、装置 の組立工程を簡素化して製造コストを抑えることができる。 According to the optical path switching device 410 shown in the present embodiment, it becomes possible to divide light according to the three types of wavelengths λ 1 to 3. In the present embodiment, two switching means are provided in series. However, the present invention is not limited to this, and a plurality of (two or more) switching means are provided in series or in parallel. It can also be provided. Even when a plurality of switching means are provided, the mirrors need not be moved with high accuracy because the reflecting surfaces of the pair of mirrors in each switching means are kept parallel. In addition, since it is not necessary to match the positions of the switching means with high accuracy, the assembly process of the apparatus can be simplified and the manufacturing cost can be reduced.
産業上の利用可能性  Industrial applicability
[0052] 以上のように、本発明に係る光路切換装置は、光路の切り換えにミラーの反射を用 V、ることで (プリズムを用いた場合に比べて)透過率の無用な低下および光の損失を 有効に防ぎながら、このミラーの高精度な移動を不要にできるという効果を有し、光情 報ネットワーク、光 LAN (Local Area Network)等の光通信分野に使用される光 路切換装置として有用である。  [0052] As described above, the optical path switching device according to the present invention uses the reflection of the mirror for switching the optical path, thereby reducing unnecessary transmission loss and light transmission (as compared to the case of using a prism). As an optical path switching device used in the optical communication field such as optical information network and optical LAN (Local Area Network), it has the effect of eliminating the need for high-precision movement of this mirror while effectively preventing loss. Useful.
図面の簡単な説明  Brief Description of Drawings
[0053] [図 1] (a)は本発明の第 1の実施形態に係る光路切換装置 10の斜視図、(b)はこの( a)において光路を切り換えた状況を示す斜視図である。  FIG. 1 (a) is a perspective view of an optical path switching device 10 according to the first embodiment of the present invention, and FIG. 1 (b) is a perspective view showing a state in which the optical path is switched in (a).
[図 2]図 1 (b)に示す光路切換装置 10のミラー付近の上面図である。  2 is a top view of the vicinity of a mirror of the optical path switching device 10 shown in FIG. 1 (b).
[図 3] (a)は本発明の第 2の実施形態に係る光路切換装置のミラー付近の斜視図、 (b )はこの(a)の上面図である。  [FIG. 3] (a) is a perspective view of the vicinity of a mirror of an optical path switching device according to a second embodiment of the present invention, and (b) is a top view of (a).
[図 4] (a)は本発明の第 3の実施形態に係る光路切換装置 310の斜視図、 (b)はこの [Fig. 4] (a) is a perspective view of an optical path switching device 310 according to a third embodiment of the present invention, and (b) is this view.
(a)にお 、て光路を切り換えた状況を示す斜視図である。 FIG. 6 (a) is a perspective view showing a state where the optical path is switched.
[図 5]図 4 (b)に示す光路切換装置 310のミラー付近の上面図である。  FIG. 5 is a top view of the vicinity of a mirror of the optical path switching device 310 shown in FIG. 4 (b).
[図 6]図 4に示す第 1のミラー 371の特性図である。  FIG. 6 is a characteristic diagram of the first mirror 371 shown in FIG.
[図 7]本発明の第 4の実施形態に係る光路切換装置 410の上面図である。  FIG. 7 is a top view of an optical path switching device 410 according to a fourth embodiment of the present invention.
[図 8]図 7に示す第 1のミラー 711、 712の特性図である。  FIG. 8 is a characteristic diagram of first mirrors 711 and 712 shown in FIG.
符号の説明  Explanation of symbols
[0054] 10、 310、 410 光路切換装置 [0054] 10, 310, 410 Optical path switching device
11 光線  11 rays
20 ファイバコリメータ (入力手段)  20 Fiber collimator (input means)
40、 50 ファイバコリメータ(出力手段)  40, 50 Fiber collimator (output means)
71、 371、 711、 712 ミラー(第 1のミラー) 72、 372、 721、 722 ミラー(第 2のミラー) 71r、 371r (第 1のミラーの)反射面 72r、 372r (第 2のミラーの)反射面 76 駆動ァクチユエータ (移動手段) 80 ミラー固定部材 71, 371, 711, 712 mirror (first mirror) 72, 372, 721, 722 Mirror (second mirror) 71r, 371r (first mirror) reflecting surface 72r, 372r (second mirror) reflecting surface 76 Drive actuator (moving means) 80 Mirror fixing member
81 面部 (第 1の面部) 81 face part (first face part)
82 面部 (第 2の面部) 82 face part (second face part)

Claims

請求の範囲 The scope of the claims
[1] 外部から光線を入力する入力手段と、前記光線を外部へ出力する出力手段と、前記 光線を反射することによって前記光線の光路を変位する反射面を有する第 1のミラー と、前記第 1のミラーによって反射された前記光線をさらに反射することによって前記 光線の光路を変位する反射面を有する第 2のミラーと、前記入力手段から前記出力 手段までの前記光線の光路上に前記第 1のミラー及び前記第 2のミラーを移動させる 移動手段とを備え、前記第 1のミラー及び前記第 2のミラーは、それぞれの反射面が 互いに平行な状態でミラー固定部材に固定されていることを特徴とする光路切換装 置。  [1] An input means for inputting a light beam from the outside, an output means for outputting the light beam to the outside, a first mirror having a reflecting surface for displacing the light path of the light beam by reflecting the light beam, A second mirror having a reflecting surface for displacing the light path of the light beam by further reflecting the light beam reflected by the first mirror; and the first mirror on the light path of the light beam from the input means to the output means. And a moving means for moving the second mirror, and the first mirror and the second mirror are fixed to the mirror fixing member in a state in which the respective reflecting surfaces are parallel to each other. Characteristic optical path switching device.
[2] 前記移動手段は、前記ミラー固定部材を移動させることによって、前記光線の光路 上に前記第 1のミラー及び前記第 2のミラーを移動させることを特徴とする、請求項 1 に記載の光路切換装置。  [2] The moving means according to claim 1, wherein the moving means moves the first mirror and the second mirror on an optical path of the light beam by moving the mirror fixing member. Optical path switching device.
[3] 前記ミラー固定部材は、互いに平行な第 1の面部及び第 2の面部を有し、前記第 1の ミラーを前記第 1の面部に沿って固定し、前記第 2のミラーを前記第 2の面部に沿つ て固定したことを特徴とする、請求項 1又は 2に記載の光路切換装置。 [3] The mirror fixing member has a first surface portion and a second surface portion which are parallel to each other, fixes the first mirror along the first surface portion, and the second mirror is the first surface portion. The optical path switching device according to claim 1, wherein the optical path switching device is fixed along the surface portion of 2.
[4] 前記第 1のミラーの反射面を前記ミラー固定部材の前記第 1の面部に合わせ、前記 第 2のミラーの反射面を前記ミラー固定部材の前記第 2の面部に合わせることを特徴 とする、請求項 3に記載の光路切換装置。 [4] The reflective surface of the first mirror is aligned with the first surface portion of the mirror fixing member, and the reflective surface of the second mirror is aligned with the second surface portion of the mirror fixing member. The optical path switching device according to claim 3.
[5] 前記第 1のミラー及び第 2のミラーは、それぞれの前記反射面が互いに向かい合う状 態で前記ミラー固定部材に固定する、請求項 3又は 4に記載の光路切換装置。 [5] The optical path switching device according to claim 3 or 4, wherein the first mirror and the second mirror are fixed to the mirror fixing member in a state where the reflecting surfaces face each other.
[6] 前記第 1のミラー及び第 2のミラーは、前記ミラー固定部材の第 1の面部及び第 2の 面部に対し、間に異物を介在させることなく直接的に接触した状態で固定する、請求 項 3〜5に記載の光路切換装置。 [6] The first mirror and the second mirror are fixed in a state of being in direct contact with the first surface portion and the second surface portion of the mirror fixing member without interposing foreign matter therebetween. The optical path switching device according to claim 3.
[7] 前記第 1のミラーの反射面は、所定範囲内の波長の光線に対する反射率が、その範 囲外の波長の光線に対する反射率に比べて低く設定されていることを特徴とする、 請求項 1又は 2に記載の光路切換装置。 [7] The reflective surface of the first mirror is characterized in that the reflectance with respect to a light beam having a wavelength within a predetermined range is set to be lower than the reflectance with respect to a light beam with a wavelength outside the range. The optical path switching device according to claim 1 or 2.
PCT/JP2005/013354 2004-07-21 2005-07-21 Light path switchover device WO2006009191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-213046 2004-07-21
JP2004213046 2004-07-21

Publications (1)

Publication Number Publication Date
WO2006009191A1 true WO2006009191A1 (en) 2006-01-26

Family

ID=35785298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013354 WO2006009191A1 (en) 2004-07-21 2005-07-21 Light path switchover device

Country Status (1)

Country Link
WO (1) WO2006009191A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198828A (en) * 2008-02-21 2009-09-03 Toshiba Corp Optical rotary joint
CN114353961A (en) * 2021-12-01 2022-04-15 北京仿真中心 Infrared broadband large dynamic complex imaging target and interference simulation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525023A (en) * 1978-08-09 1980-02-22 Kokusai Denshin Denwa Co Ltd <Kdd> Photo switch
JPS6457225A (en) * 1987-08-28 1989-03-03 Matsushita Electric Ind Co Ltd Optical switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525023A (en) * 1978-08-09 1980-02-22 Kokusai Denshin Denwa Co Ltd <Kdd> Photo switch
JPS6457225A (en) * 1987-08-28 1989-03-03 Matsushita Electric Ind Co Ltd Optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198828A (en) * 2008-02-21 2009-09-03 Toshiba Corp Optical rotary joint
CN114353961A (en) * 2021-12-01 2022-04-15 北京仿真中心 Infrared broadband large dynamic complex imaging target and interference simulation device

Similar Documents

Publication Publication Date Title
US7108383B1 (en) Optical system with reflection-angle-selective mirror
JP2594377B2 (en) Electromagnetic radiation switching device and communication system using the same
EP1291690B1 (en) Optical switch with converging element
JP2933919B1 (en) Optical attenuator and optical attenuator module
US20030228100A1 (en) Fiber collimator array
US6477289B1 (en) Optical wedge switch
US6909548B2 (en) Optical filter using a linear variable filter with elliptical beam geometry
EP3182180B1 (en) Multichannel fiber optic rotary joint(forj) having an achromatic metasurface
EP1837687B1 (en) Optical switch having angle tuning elements and multiple-fiber collimators
JP2006126566A (en) Collimator array and method of manufacturing same
JP4152836B2 (en) Optical component with wavelength division function and wavelength dispersion compensator
EP2385403B1 (en) Polarization maintaining optical rotary joint
WO2006009191A1 (en) Light path switchover device
WO2016013425A1 (en) Optical element
EP1222487B1 (en) Optical imaging system
JP2003262804A (en) Device for switching optical path
JP4311739B2 (en) Light amount ratio adjusting filter for interferometer device, interferometer device, and optical interference measurement method
KR19990024008A (en) Optical Disc Device
US20010024329A1 (en) Beamsplitter
JP4388634B2 (en) Virtually imaged phased array (VIPA) with spacer member and optical path length adjustment member
US6909820B2 (en) 2×2 fiber optic switch with reflective element
US6970618B1 (en) Wavelength division multiplexer and fiber arrangement thereof
US6430338B1 (en) Measuring device with an optical interface with low polarization dependent loss (PDL)
JP2003222710A (en) Low pdl beam splitter
JP2003005098A (en) Optical path switching device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP