WO2006008629A1 - Current sensor - Google Patents
Current sensor Download PDFInfo
- Publication number
- WO2006008629A1 WO2006008629A1 PCT/IB2005/002017 IB2005002017W WO2006008629A1 WO 2006008629 A1 WO2006008629 A1 WO 2006008629A1 IB 2005002017 W IB2005002017 W IB 2005002017W WO 2006008629 A1 WO2006008629 A1 WO 2006008629A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary coil
- magnetic circuit
- sensor
- gap
- sensor according
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/18—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
- G01R15/183—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
- G01R15/185—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/18—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
- G01R15/186—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using current transformers with a core consisting of two or more parts, e.g. clamp-on type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
- G01R15/207—Constructional details independent of the type of device used
Definitions
- the present invention relates to an electrical current sensor, in particular an electrical current sensor with a secondary coil.
- Closed-loop current sensors for the measurement of an electrical current flowing in a primary conductor are provided with a secondary coil, whereby the measurement of the primary current is determined by measuring the compensating current injected in the secondary coil in order to annul the magnetic field induced.
- the amount of compensating current to be applied to the secondary coil is determined by a magnetic field sensor, such as a Hall effect sensor or a flux gate sensor positioned in an air-gap of a magnetic circuit. It is known to connect the secondary coil and magnetic field sensor to a printed circuit board that also comprises other electronic components for signal processing.
- an object of this invention is to provide an electrical current sensor with secondary coil and integrated primary conductors, that is compact and economic to manufacture.
- an electrical current sensor comprising a magnetic circuit with an air-gap, a magnetic field sensor positioned in the air-gap, and a secondary coil assembly surrounding a branch of the magnetic circuit, wherein the magnetic circuit comprises at least two parts that are assembled together, a branch portion of each part being insertably received in a central cavity of the secondary coil assembly in an axial direction and overlapping each other, the air-gap being arranged between said overlapping branch portions.
- the magnetic field sensor is thus insertably received in the air-gap substantially parallel to the overlapping branch portions of the magnetic circuit.
- the current sensor according to this invention may be very economically assembled in an automated and rapid manner due to the easy assembly of the magnetic circuit portions to the secondary circuit, as well as the magnetic field detector in the air-gap.
- the secondary coil assembly may advantageously be provided with a coil wound on a secondary coil housing that supports the coil and defines the central cavity in which the magnetic circuit branch portions are inserted.
- the secondary coil housing comprises guide and positioning means for positioning the respective branch portions and determining the air-gap therebetween.
- the secondary coil housing may further be provided with stamped and formed terminals connected to the extremities of the secondary coil and integrally molded therein, having connection ends for connection to a printed circuit board of the current sensor.
- the secondary coil housing may also be provided with a cavity or other fixing means, in which the branches of the magnetic circuit opposite the branch provided with an air-gap are inserted and held together.
- the magnetic circuit may advantageously be made from a magnetically permeable strip of sheet metal that is stamped and bent out of the plane of the sheet to form the branches of the magnetic circuit.
- One of the magnetic circuit parts may advantageously comprise a pin terminal at an extremity thereof for connection on the circuit board of the current sensor.
- the pin terminal advantageously projects in the same direction as the terminals of the secondary coil assembly, such that the secondary circuit can be plugged to the terminals in a single operation in the axial direction.
- the magnetic field detector which is mounted on the printed circuit board, may simultaneously be inserted into the air- gap.
- the electric connection of the magnetic circuit to the printed circuit board provides an earth connection to avoid any capacitive charge build up in the magnetic circuit, and possibly also an additional mechanical connection.
- the secondary coil assembly housing may advantageously have studs or other fixing means for securely fastening to the printed circuit board, which is provided with complementary holes or other fixing means.
- the electrical current sensor may advantageously further comprise U-shaped primary conductor portions, stamped and formed of sheet metal, that are partially overmolded in a cover part of the housing.
- the overmolding of the primary conductor portions in the cover part enables the conductor portions to be accurately positioned with respect to each other and automatically assembled around a branch of the magnetic circuit when the cover part is assembled, by clipping, bonding, welding, or by other means to another housing part assembled thereto.
- the cover part also advantageously provides the required electrical insulation between the primary conductors and the other conductors in the sensor, in particular the secondary coil and the magnetic circuit, which are at a different voltage level.
- the secondary coil assembly, magnetic circuit, magnetic field detector and circuit board may be entirely received and positioned in two housing parts that are clipped together.
- One of the housing parts may advantageously comprise an integrally molded hinged flap that allows access to the circuit board for testing purposes during the manufacturing process, the flap being closable by clipping or welding, or otherwise, once the testing is complete.
- the U-shaped primary conductor portions may be arranged adjacent to each other in an offset manner so as to increase the distance between adjacent contacts, thus allowing a more compact layout of primary conductor terminals for connection to a complementary PCB. This also allows a greater number of U-shaped conductor portions to be mounted in the sensor housing, thus increasing the possible number of primary conductor turns and thus the range of use of the sensor while retaining a very compact overall configuration.
- Fig. 1 is an exploded perspective view of a current sensor according to this invention
- Fig. 2 is a cross-sectional view through the current sensor of Fig. 1 ;
- Fig. 3a is a view in perspective, with partial cross-section, of the sensor with the housing parts removed;
- Fig. 3b is a view in perspective of a secondary coil assembly of the sensor according to this invention
- Fig. 3c is a perspective view of a magnetic circuit, mounted on a printed circuit board of the sensor according to this invention
- Figs 4a and 4b are cross-sectional views through embodiments of a housing cover part of the current sensor according to this invention, Figl 4a showing overmoulded conductor terminals and Fig. 4b conductor portions inserted into cavities of the housing cover part;
- Fig. 5a is a view in perspective of a variant of an arrangement of U-shaped primary conductor portions that may be implemented in a sensor according to this invention
- Fig. 5b is a view in perspective of another variant of an arrangement of U-shaped primary conductor portions that may be implemented in a sensor according to this invention.
- Fig. 6 is a view in cross-section showing a magnetic circuit and a variant of a magnetic circuit of the sensor according to this invention.
- an electrical current sensor 2 comprises a housing 4 with a cover part 6 and a base 8, a secondary coil assembly 10 comprising a secondary coil 12 wound on a secondary coil housing 14, a magnetic circuit 16 comprising first and second separate portions 18, 20, a magnetic field detector 22, and a signal processing circuit 24 comprising a printed circuit board 26 on which the magnetic field detector is mounted, as well as other electronic components for controlling the current supplied to the secondary coil and processing the measurement signal.
- the sensor may further comprise U-shaped primary conductor portions 28 that are mounted around a portion of the magnetic circuit, in this embodiment a IB2005/002017
- a magnetic field is generated by the primary current to be measured in the magnetic circuit, that is picked up by the magnetic field detector positioned in an air-gap 30 of the magnetic circuit.
- the signal processing circuit 24 seeks to cancel the magnetic field detected by the magnetic field detector by applying a compensating current in the secondary coil 12 that generates a magnetic field of essentially the same magnitude, but opposite direction to the magnetic field generated by the primary conductors. This is the functional principle of so-called closed-loop type sensors that are per se well-known in the art.
- the magnetic field detector 22 may be a Hall effect detector which finds widespread use in current sensors in view of its relatively low cost and reliable and accurate performance. Other magnetic field detectors may however also be implemented within the scope of the present invention.
- the embodiment of the electrical current sensor shown in Fig. 1 is designed to be mounted and electrically connected to a printed circuit board of an external device or apparatus (not shown) that requires a current measurement sensor.
- the circuit board of the external apparatus may be provided with circuit traces or other conducting parts to connect in various configurations, the U-shaped conductors of the electrical current sensor, so as to create one or a chosen select number of primary conductor turns around the magnetic circuit. This allows the electrical current sensor to be configured for different operating ranges and is perse known in the art.
- the U-shaped primary conductor portions 28 are advantageously directly fixed in the cover part 6 that also serves to close and protect therein the printed circuit board, magnetic circuit and secondary coil assembly by fastening to the complementary base part 8.
- the base part 8 may be provided with various positioning and guide means to receive and position the secondary coil assembly 10, magnetic circuit 16 and printed circuit board 26, that are assembled together beforehand to form a unit as shown in Fig. 3a.
- the unit shown in Fig. 3a can thus be mounted in the base part 8 by insertion thereinto in the direction V as shown in Fig. 1 , and subsequently the cover part 6 with primary conductor portions 28 clipped thereover to the base part 8.
- Fig. 3a can thus be mounted in the base part 8 by insertion thereinto in the direction V as shown in Fig. 1 , and subsequently the cover part 6 with primary conductor portions 28 clipped thereover to the base part 8.
- the conductor portions 28 may advantageously be fixed to the cover part by overmoulding a portion of the conductor portions. Alternatively, the conductor portions 28 may be inserted into corresponding cavities in the cover part 6a, 6b.
- the injection molded housing parts 6, 8 may advantageously be provided with complementary fastening means in the form of clips and complementary latching shoulders 32, 33, but could also be bonded together by other means, such as ultrasound welding, in order to automate the manufacturing steps.
- the sensor housing advantageously comprises a closable flap 34 hingeably attached to one of the housing parts, in this embodiment the base part 8.
- the flap 34 is positioned adjacent the circuit board 24, and allows access to the outer side 36 of the circuit board for testing purposes after the sensor has been assembled. Once testing is complete, the flap can be pivoted to close the housing and protect the circuit board.
- the flap may be provided with latching means 35 to clip onto complementary latching shoulders of the housing when it is closed.
- the flap may also be permanently bonded to the housing after testing by other means, such as ultrasound welding, or with an adhesive.
- the secondary coil assembly 10 has a secondary coil 12 wound around a coil support portion 38 of the secondary coil housing 14, the coil support portion having a cavity 40 extending therethrough for receiving a branch 42 of the substantially rectangular shaped magnetic circuit, along which the air-gap 30 is disposed and in which the magnetic field sensor 22 is positioned.
- the secondary coil thus surrounds the air-gap and magnetic field sensor in order to ensure that the magnetic field generated by the secondary coil is coupled most effectively to the magnetic field detector.
- the support cavity 40 is advantageously provided with guide means, for example in the form of grooves or appropriate projections 43, 44 for positioning and guiding the separate extensions 45, 46 of the magnetic circuit branch 42.
- the magnetic circuit extensions 46, 45 advantageously overlap and are separated by a distance
- the magnetic circuit may also be provided without overlapping extensions other than those 45', 46' provided on either side of the magnetic field sensor to establish the air-gap, as shown in Fig. 6.
- the secondary coil assembly housing may further be provided with a base portion 48 comprising fixing means, such as elastic studs 49, for pluggably fixing the secondary coil assembly 10 to the circuit board 26.
- Electrical terminals 50a, 50b, 50c, 5Od, 5Oe may be fixed to the base portion, for example by overmoulding, bonding, welding or force-fit insertion in cavities in the base portion.
- the terminals are provided with connection ends 25b for pluggable and/or solder connection to an external PCB, and/or connection ends 25a for pluggable and/or solder connection to the circuit board 26 of the signal processing unit.
- the terminals 5Od, 5Oe are connected to the extremities 12a, 12b of the secondary coil, whereby one of the terminals 5Oe is adapted to be connected directly to an external PCB (not shown) to which the sensor is mounted, and the other terminal 5Od is connected to the signal processing unit 24.
- the terminal 50c is connected to the shield around the secondary coil and to the signal processing unit 24 for the purpose of shielding the secondary coil from external electromagnetic noise, as well as reducing the emission of noise from the secondary coil.
- the terminals 50a, 50b are connected to the signal processing unit and to the external PCB and are adapted to supply the sensor in electrical energy.
- the secondary coil housing base portion 48 may also support a branch 52 of the magnetic circuit and comprise a cavity 54 that acts as positioning means for receiving therethrough overlapping extensions 55, 56 of a branch 57 of the magnetic circuit opposed to the branch 42 in which the air-gap 30 is provided.
- the two extensions 55, 56 are held together in the housing in contact with each other, in order to lessen resistance to the magnetic induction.
- the magnetic circuit 16 may advantageously be stamped and formed out of a magnetically permeable strip of sheet metal in two parts 18, 20, that may be assembled together by mounting on the secondary coil assembly 10, in particular by insertion in an axial direction A, as shown in the figures.
- the magnetic circuit may therefore be rapidly and easily assembled to the secondary coil assembly 10 which in turn may be rapidly and easily assembled to the circuit board 26 which is plugged thereto to form a unit 62 received in the base 8 of the housing which is subsequently closed with the cover part 6. All the assembly steps may thus be easily automated.
- An extension of one of the magnetic circuit parts 18 may further comprise a PCB contact portion 60 for connection to an earth connection on the printed circuit board to avoid a capacitive charge building up in the magnetic circuit.
- the orientation of the air-gap 30 between two parallel extensions 45, 46 of the magnetic circuit is particularly advantageous, since it allows the axial insertion of the magnetic field detector 22 into the air-gap 30 when a secondary coil assembly 10 is fixed to the circuit board 26 on which the magnetic field detector 22 is preassembled.
- the air-gap 30 of non-constant width (d, w) over the length of the adjacent extensions 45, 46 of the magnetic circuit increases the coupling coefficient of the equivalent transformer, thus improving the performance of the sensor in alternating current, in particular increasing the bandwidth and the responsiveness to variations in the current di/dt.
- the U-shaped primary conductor portions may advantageously have connection extremities 29, that are offset in the axial direction A with respect to the intermediate portion 27 in order to increase the distance between the connection ends 29 and the terminals 25 of the secondary coil assembly.
- This configuration enables the sensor to be very compact yet respect the requirements and standards for electrical separation between the primary and secondary circuits, as well as achieve good magnetic coupling between the U-shaped primary conductor portions and the secondary coil.
- the U-shaped primary conductor portions may be staggered in a direction B perpendicular to the axial direction A, so as to increase the distance S between connection extremities 29 of adjacent terminals. This enables the conductor portions to be positioned close together to decrease the foot-print surface area required for connection of the conductor terminals (to an external apparatus) or to enable a larger number of conductor portions to be provided in the sensor, while maintaining the sensor as compact as possible.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Fluid Pressure (AREA)
- Transformers For Measuring Instruments (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007520918A JP4796060B2 (en) | 2004-07-16 | 2005-07-06 | Current sensor |
US11/572,189 US7965162B2 (en) | 2004-07-16 | 2005-07-06 | Current sensor |
EP05772161A EP1769254B1 (en) | 2004-07-16 | 2005-07-06 | Current sensor |
DE602005005996T DE602005005996T2 (en) | 2004-07-16 | 2005-07-06 | CURRENT SENSOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405458A EP1617228B1 (en) | 2004-07-16 | 2004-07-16 | Current sensor |
EP04405458.3 | 2004-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006008629A1 true WO2006008629A1 (en) | 2006-01-26 |
Family
ID=34932206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2005/002017 WO2006008629A1 (en) | 2004-07-16 | 2005-07-06 | Current sensor |
Country Status (7)
Country | Link |
---|---|
US (1) | US7965162B2 (en) |
EP (3) | EP1617228B1 (en) |
JP (1) | JP4796060B2 (en) |
CN (1) | CN100504402C (en) |
AT (3) | ATE412188T1 (en) |
DE (3) | DE602004017297D1 (en) |
WO (1) | WO2006008629A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2083277A1 (en) * | 2008-01-25 | 2009-07-29 | Liaisons Electroniques-Mecaniques Lem S.A. | Electrical current sensor |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007036674A1 (en) * | 2007-08-03 | 2009-02-05 | Epcos Ag | Arrangement for measuring a current flowing in an electrical conductor |
DE102007036573A1 (en) * | 2007-08-03 | 2009-02-19 | Epcos Ag | Arrangement and method for measuring a current flowing in an electrical conductor |
US7936164B2 (en) * | 2008-07-03 | 2011-05-03 | Allegro Microsystems, Inc. | Folding current sensor |
US8436260B2 (en) * | 2008-07-29 | 2013-05-07 | Cts Corporation | Coil retention assembly for electronic assembly |
CN202632519U (en) * | 2009-03-02 | 2012-12-26 | 霍为民 | Device used to eliminate standby power consumption of electric appliance with on-off capable of controlled in infrared remote mode |
DE202010000328U1 (en) * | 2009-03-12 | 2010-05-20 | Liaisons Electroniques-Mécaniques LEM S.A. | Electric current sensor |
EP2251704A1 (en) * | 2009-05-11 | 2010-11-17 | Liaisons Electroniques-Mecaniques Lem S.A. | Closed-loop fluxgate current sensor |
JP5730072B2 (en) * | 2011-02-25 | 2015-06-03 | 富士通コンポーネント株式会社 | Current sensor, table tap with current sensor, current sensor cover |
US9146259B2 (en) * | 2011-04-19 | 2015-09-29 | Schneider Electric It Corporation | Smart current transformers |
DE102011080041A1 (en) * | 2011-07-28 | 2013-04-11 | Vacuumschmelze Gmbh & Co. Kg | Flow sensor assembly |
DE102011080034A1 (en) * | 2011-07-28 | 2013-01-31 | Vacuumschmelze Gmbh & Co. Kg | Flow sensor assembly |
EP2587268A1 (en) * | 2011-10-26 | 2013-05-01 | LEM Intellectual Property SA | Electrical current transducer |
JP5873315B2 (en) * | 2011-12-13 | 2016-03-01 | 矢崎総業株式会社 | Shunt resistance type current sensor |
CN202711934U (en) * | 2012-01-19 | 2013-01-30 | 邹高芝 | Axisymmetric magnetic circuit and magnetic core coil block for full printed circuit board (PCB) installation type high-precision closed loop type Hall current transducer |
JP2013148512A (en) * | 2012-01-20 | 2013-08-01 | Aisin Seiki Co Ltd | Current sensor |
WO2013154563A1 (en) | 2012-04-12 | 2013-10-17 | Schneider Electric It Corporation | System and method for detecting branch circuit current |
CN104412113B (en) | 2012-04-25 | 2018-04-20 | 施耐德电气It公司 | Current monitoring device |
EP2660611A1 (en) * | 2012-04-30 | 2013-11-06 | LEM Intellectual Property SA | Electrical current transducer module |
JP6017182B2 (en) * | 2012-05-23 | 2016-10-26 | 旭化成エレクトロニクス株式会社 | Current sensor |
ES2405837B1 (en) * | 2012-11-12 | 2013-10-18 | Premo, S.L. | Surface mount current sensor device |
CN103852619A (en) * | 2012-12-05 | 2014-06-11 | 北京柏艾斯科技有限公司 | Open type current sensor based on closed loop fluxgate technology |
WO2014105018A2 (en) | 2012-12-27 | 2014-07-03 | Schneider Electric USA, Inc. | Power meter with current and phase sensor |
US9291648B2 (en) * | 2013-08-07 | 2016-03-22 | Texas Instruments Incorporated | Hybrid closed-loop/open-loop magnetic current sensor |
EP2853904A1 (en) * | 2013-09-30 | 2015-04-01 | LEM Intellectual Property SA | Clip-on current transducer or current transformer |
US9973036B2 (en) | 2013-12-31 | 2018-05-15 | Schneider Electric It Corporation | Automatic sub-millisecond clock synchronization |
JP6454544B2 (en) * | 2014-12-26 | 2019-01-16 | 甲神電機株式会社 | Saturable core fixture and method, and fluxgate current sensor |
US10114044B2 (en) | 2016-08-08 | 2018-10-30 | Allegro Microsystems, Llc | Current sensor |
US10247758B2 (en) | 2016-08-08 | 2019-04-02 | Allegro Microsystems, Llc | Current sensor |
EP3309559A1 (en) | 2016-10-11 | 2018-04-18 | LEM Intellectual Property SA | Electrical current transducer |
EP3312618B1 (en) * | 2016-10-18 | 2022-03-30 | LEM International SA | Electrical current transducer |
USD830300S1 (en) * | 2017-02-02 | 2018-10-09 | Lem Intellectual Property Sa | Current transducer |
USD861604S1 (en) * | 2017-03-28 | 2019-10-01 | Lem Intellectual Property Sa | Current transducer |
JP2019070578A (en) * | 2017-10-10 | 2019-05-09 | 株式会社タムラ製作所 | Current detector |
EP3710840B1 (en) * | 2017-11-15 | 2023-06-07 | LEM International SA | Current controlling transducer |
USD856928S1 (en) * | 2017-12-07 | 2019-08-20 | Lem Intellectual Property Sa | Current transducer |
FR3075387B1 (en) * | 2017-12-14 | 2019-11-08 | Schneider Electric Industries Sas | ELECTRIC CURRENT MEASURING DEVICE, CURRENT MEASURING APPARATUS, AND METHOD FOR MANUFACTURING CURRENT MEASURING DEVICE |
DE102018202659A1 (en) * | 2018-02-22 | 2019-08-22 | Zf Friedrichshafen Ag | Damping arrangement for power electronics applications |
DE102018111011A1 (en) | 2018-05-08 | 2019-11-14 | Infineon Technologies Ag | Magnetic field sensor device |
DE102018120009A1 (en) * | 2018-08-16 | 2020-02-20 | Phoenix Contact Gmbh & Co. Kg | Current measuring device for detecting a current in an electrical line |
CN109799380B (en) * | 2019-01-29 | 2021-03-02 | 湖南银河电气有限公司 | Integrated current sensor and packaging method thereof |
JP2020148640A (en) * | 2019-03-14 | 2020-09-17 | 株式会社東芝 | Current detector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004974A (en) * | 1989-05-30 | 1991-04-02 | Liasons Electroniques-Mecaniques | Electric current sensing device |
US6064192A (en) * | 1998-04-08 | 2000-05-16 | Ohio Semitronics | Revenue meter with integral current transformer |
WO2001040812A2 (en) * | 1999-11-30 | 2001-06-07 | Honeywell Control Systems Ltd. | Current sensor and method of manufacturing same |
US20030160601A1 (en) * | 2000-01-28 | 2003-08-28 | Friedrich Lenhard | Compensation current sensor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3465238A (en) * | 1967-10-02 | 1969-09-02 | Jacob Marlow | Position and velocity detecting apparatus |
US5552700A (en) * | 1994-09-30 | 1996-09-03 | Stanley Electric Co., Ltd. | Current detecting device with a core having an integrally fixed engaging member |
JP2000284000A (en) | 1999-03-31 | 2000-10-13 | Jeco Co Ltd | Electric current detector |
JP2001074784A (en) * | 1999-08-03 | 2001-03-23 | Eaton Corp | Current sensing device |
EP1074846B1 (en) * | 1999-08-04 | 2007-02-14 | Schneider Electric Industries SAS | Current sensor for an electrical device |
JP2001194391A (en) * | 2000-01-13 | 2001-07-19 | Honda Motor Co Ltd | Current measuring device |
DE10023592A1 (en) * | 2000-05-13 | 2001-11-29 | Bosch Gmbh Robert | Inductive transformer for transmission of data and/or energy e.g. for automobile steering wheel, uses measurement of magnetic field for determining relative spacing of transformer cores |
US6844799B2 (en) * | 2001-04-10 | 2005-01-18 | General Electric Company | Compact low cost current sensor and current transformer core having improved dynamic range |
US6642704B2 (en) * | 2001-09-28 | 2003-11-04 | Eaton Corporation | Device for sensing electrical current and housing therefor |
JP2003215170A (en) * | 2002-01-25 | 2003-07-30 | Nec Tokin Corp | Current sensor |
-
2004
- 2004-07-16 EP EP04405458A patent/EP1617228B1/en not_active Expired - Lifetime
- 2004-07-16 DE DE602004017297T patent/DE602004017297D1/en not_active Expired - Lifetime
- 2004-07-16 AT AT04405458T patent/ATE412188T1/en not_active IP Right Cessation
-
2005
- 2005-07-06 DE DE602005005996T patent/DE602005005996T2/en active Active
- 2005-07-06 JP JP2007520918A patent/JP4796060B2/en not_active Expired - Fee Related
- 2005-07-06 US US11/572,189 patent/US7965162B2/en active Active
- 2005-07-06 AT AT05772161T patent/ATE391921T1/en not_active IP Right Cessation
- 2005-07-06 EP EP05772161A patent/EP1769254B1/en active Active
- 2005-07-06 CN CNB2005800170976A patent/CN100504402C/en active Active
- 2005-07-06 DE DE602005016168T patent/DE602005016168D1/en active Active
- 2005-07-06 AT AT08004898T patent/ATE440288T1/en not_active IP Right Cessation
- 2005-07-06 WO PCT/IB2005/002017 patent/WO2006008629A1/en active IP Right Grant
- 2005-07-06 EP EP08004898A patent/EP1956378B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5004974A (en) * | 1989-05-30 | 1991-04-02 | Liasons Electroniques-Mecaniques | Electric current sensing device |
US6064192A (en) * | 1998-04-08 | 2000-05-16 | Ohio Semitronics | Revenue meter with integral current transformer |
WO2001040812A2 (en) * | 1999-11-30 | 2001-06-07 | Honeywell Control Systems Ltd. | Current sensor and method of manufacturing same |
US20030160601A1 (en) * | 2000-01-28 | 2003-08-28 | Friedrich Lenhard | Compensation current sensor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2083277A1 (en) * | 2008-01-25 | 2009-07-29 | Liaisons Electroniques-Mecaniques Lem S.A. | Electrical current sensor |
WO2009093178A1 (en) * | 2008-01-25 | 2009-07-30 | Liaisons Electroniques-Mecaniques Lem S.A. | Electrical current sensor |
JP2011510318A (en) * | 2008-01-25 | 2011-03-31 | リエゾン、エレクトロニク−メカニク、エルウエム、ソシエテ、アノニム | Current sensor |
JP2012073277A (en) * | 2008-01-25 | 2012-04-12 | Liaisons Electroniques Mech Lem Sa | Current sensor |
JP2012098305A (en) * | 2008-01-25 | 2012-05-24 | Liaisons Electroniques Mech Lem Sa | Electrical current sensor |
US8618796B2 (en) | 2008-01-25 | 2013-12-31 | Lem Intellectual Property Sa | Electrical current sensor |
Also Published As
Publication number | Publication date |
---|---|
EP1617228A1 (en) | 2006-01-18 |
ATE412188T1 (en) | 2008-11-15 |
DE602005005996D1 (en) | 2008-05-21 |
US7965162B2 (en) | 2011-06-21 |
CN100504402C (en) | 2009-06-24 |
ATE440288T1 (en) | 2009-09-15 |
EP1769254A1 (en) | 2007-04-04 |
ATE391921T1 (en) | 2008-04-15 |
US20080094162A1 (en) | 2008-04-24 |
DE602005005996T2 (en) | 2009-05-28 |
EP1956378B1 (en) | 2009-08-19 |
DE602004017297D1 (en) | 2008-12-04 |
EP1956378A1 (en) | 2008-08-13 |
EP1617228B1 (en) | 2008-10-22 |
JP2008506944A (en) | 2008-03-06 |
JP4796060B2 (en) | 2011-10-19 |
EP1769254B1 (en) | 2008-04-09 |
CN1957261A (en) | 2007-05-02 |
DE602005016168D1 (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1769254B1 (en) | Current sensor | |
JP5924951B2 (en) | Current sensor | |
CN106133529B (en) | Current converter | |
EP2073025B1 (en) | Current sensor with laminated magnetic core | |
KR102248948B1 (en) | Magnetic Field Sensor Arrangement and Current Transducer therewith | |
US11112435B2 (en) | Current transducer with integrated primary conductor | |
CN105593690B (en) | Clip power pack or current transformer | |
CN109804255B (en) | Current transducer | |
CN111033276B (en) | Current sensor | |
CN113366322B (en) | Current transducer with magnetic field detector module | |
JP2015132534A (en) | Current detection device | |
JP5704352B2 (en) | Current sensor | |
JPH0815330A (en) | Current detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005772161 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580017097.6 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2007520918 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11572189 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005772161 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2005772161 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11572189 Country of ref document: US |