WO2006008419A1 - Dispositif et procede de mesure de l'energie et de la position d'une particule ionisante, incidente dans un detecteur - Google Patents

Dispositif et procede de mesure de l'energie et de la position d'une particule ionisante, incidente dans un detecteur Download PDF

Info

Publication number
WO2006008419A1
WO2006008419A1 PCT/FR2005/050553 FR2005050553W WO2006008419A1 WO 2006008419 A1 WO2006008419 A1 WO 2006008419A1 FR 2005050553 W FR2005050553 W FR 2005050553W WO 2006008419 A1 WO2006008419 A1 WO 2006008419A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
electrode
signal
energy
pixels
Prior art date
Application number
PCT/FR2005/050553
Other languages
English (en)
Inventor
Eric Gros D'aillon
Loïck Verger
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP05789965.0A priority Critical patent/EP1766437B1/fr
Priority to US11/631,945 priority patent/US7705318B2/en
Publication of WO2006008419A1 publication Critical patent/WO2006008419A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry

Definitions

  • the invention relates to the field of X or gamma imaging, for high spatial resolution based on semiconductor.
  • the invention is also applicable to any semiconductor-based detector where it is desired to locate the interaction position of a radiation in the detector. It is also suitable for the localization of protons, or alpha particles in such detectors.
  • a method of sorting, in real time, events in a detector is known: such a method is described in document FR-2,790,560.
  • the material In order for the signal on each pixel to be representative of the detected photon, the material must be sufficiently homogeneous. However, the presence of defects in the material, such as twins or Tellurium inclusions in the case of CdZnTe, alter the quality of the signal. In addition, with small pixels, the rise time of the signal becomes more difficult to measure as the size of the pixel decreases, which makes less efficient biparametric type correction (amplitude, rise time). This is particularly the case when the smallest dimension of each pixel becomes less than a quarter of the thickness of the detector. The problem is to measure both the interaction position of the photon (in x, y) and its energy.
  • Some techniques use the ratio of the cathode signal to the anode signal, which depends only on the depth of interaction to correct the measurement of the energy measured on the anode. This measure is to be corrected because the anode signal depends on the depth of interaction.
  • all these techniques rely on the good measurement of the signal of the anode, which poses strong constraints on the detector material.
  • the invention firstly relates to a radiation detection device, comprising a detector in semiconductor material, a first and a second electrode, characterized in that the first electrode is in the form of pixels, with a first pitch, on one side of the detector, and in that the device further comprises means for identifying the energy of a photon incident in the detector as a function of signals coming only from the second electrode.
  • Such a detector with a first pixellated electrode, makes it possible, according to the invention, to separate the location of the interactions (in x, y) and the measurement of the energy.
  • each pixel is inscribed in a side square of between 10 ⁇ m and 2 mm or less than half the thickness of the detector.
  • the second electrode can be solid, or segmented, or have the shape of pixels, at a second step greater than the first step.
  • the detector is for example CdZnTe or CdHgTe or CdTe.
  • Such a detector, with a first pixellated electrode, makes it possible, according to the invention, to separate the location of the interactions (in x, y) and the measurement of the energy.
  • the localization is done by the anodes and the energy is measured only with the cathode (or anode).
  • the cathode or anode integrates the movement of the electrons throughout the volume of the detector the stress on the homogeneity of the material is raised.
  • Means are used to identify the position of an incident photon in the detector as a function of signals from the pixels of the first electrode.
  • the interaction position of a photon in the detector is, for its part, identified only with the aid of the first electrode.
  • the invention therefore also relates to a radiation detection method implementing a device as described above, in which the energy of a photon in the detector is identified only with the aid of the signals of the pixels of the detector. the second electrode.
  • the first electrode is the anode.
  • the first electrode is the cathode.
  • the invention proposes to use only the cathode signal, respectively anode.
  • FIGS. 1A-1C show a detector according to the invention
  • FIGS. 2 and 3 represent a measuring device with detector according to the invention.
  • FIGS. 1A-1C A first exemplary embodiment of the invention is illustrated in FIGS. 1A-1C.
  • It relates to a detector 2 CdZnTe, in which comes to interact a radiation 4, for example of the gamma type.
  • the anode 10 of the detector consists of pixels 12 distributed on one side of this detector.
  • the pixels measure, for example, between 10 ⁇ m and 2 mm per side, or are each included or inscribed in a side square of between 10 ⁇ m and 2 mm or, more generally, in a square of side less than half the thickness e. detector (distance between the cathode and anode faces of the detector). They are distributed in a step for example between 20 microns and 2.5 mm.
  • this step of the detector is the distance between the center (or another point) of a pixel and the center (or the same point) of the nearest pixel.
  • a median of the band can be used.
  • each pixel may have a smaller dimension less than a quarter of the thickness of the detector 2.
  • the cathode 14 is in full face on the other face of the detector.
  • the pixels are located at the anode and the cathode is in full face because it is to work with an electron signal, especially when the detector is in CdZnTe, in which the life of the holes is very small.
  • the same technique can be implemented with a cathode that covers only part of the face, or with a segmented cathode.
  • the cathode can also be pixelated, at a step larger than the anode.
  • a CdZnTe or CdTe detector can be used.
  • other semiconductors CdHgTe or CdTe doped Cl or In or Al or CdZnTe doped C1 or In etc.
  • high resistivity semiconductors (10 8 -10 12 ⁇ cm -1 ) can be used
  • the detectors used can be rectangular parallelepipeds which measure between 3 mm and
  • the pixels are represented squares in the figure IC, but other forms (triangles, hexagons, disks, bands ...) are possible.
  • the detector is polarized using polarization means.
  • a photon 4 (for example a gamma photon) arrives in the detector on the cathode side 14. It creates electron-hole pairs that migrate to the anodes under the effect of the applied field.
  • Each block 20 at the output of the detector block represents means constituting a measuring channel (with at least one pre-amplifier, and an amplifier followed by a suitable processing (electronic card, ASIC, or scanning for example)).
  • Each pixel On each pixel 12, the deposited charge is measured. Each pixel has its signal processing path.
  • each electrode is therefore dedicated to a measurement: the pixelated electrode, or the lowest pitch, is used for measuring the position, in the X, Y plane of the detector (FIG. 1C), or substantially perpendicular to the axis of incidence AA '(figure IA) of the photon, of the event that constitutes the interaction of this photon with the detector material.
  • the other electrode which may be common to all the pixels or it also in the form of pixels, but not larger, as explained above, allows the measurement of energy.
  • a biparametric processing or correction method as set forth in FR-2,790,560 may be implemented to improve the energy resolution.
  • a method according to the invention can be implemented using a device as illustrated in FIG.
  • the reference 100 in FIG. 2 denotes a matrix of semiconductor detection elements 102 arranged in a detection plane.
  • Figure 3 shows the example of a structure of a semiconductor detector. This comprises a platform 30 equipped with integrated electronic circuits 32 and on which is mounted a plurality of detection elements 34.
  • the detection elements 34 are each in the form of a semiconductor block with two opposite parallel faces on which electrodes are provided. An electric field applied to the electrodes makes it possible to migrate the charge carriers, that is to say the electrons and the holes formed by the interaction of the radiation with the semiconductor.
  • each detection element not shown in the figure, but having the form indicated above according to the invention, are also intended to receive the charges and transfer them to the integrated circuits of the platform 30 for training a detection signal.
  • the anode signals delivered by the detection elements are directed towards a first integrated circuit, for example a specific integrated circuit (ASIC) 110.
  • ASIC application specific integrated circuit
  • This circuit comprises signal amplification channels for each detection element and means for multiplexing the signals. ways.
  • a second circuit 112 is provided for determining the amplitude and rise time of each signal from the cathode and for formatting data corresponding to these quantities, as well as data representing the coordinates of the events.
  • the coordinates of the events are related to the position of the corresponding detection element in the detection plane.
  • a circuit such as the circuit 112 is for example described in the document FR-2 738 919.
  • the data is directed to a computer 114 intended to perform the calculations and processes related to the calibration phase and intended to construct an image (for example medical) from the data during the acquisition phase.
  • the image is displayed on a screen 116.
  • the data for implementing a processing method can be stored in the computer 114 or in a memory indicated by the reference 120 in FIG. 2.
  • the circuits 110 and 112 establish the data of amplitude, rise time and event coordinates from the signals of the sensing elements.
  • the means 114 can calculate the position in the depth of the detector.
  • a spectrum can be obtained and displayed on the screen 116 during an acquisition.
  • a device and a method according to the invention can be used in the context of examinations performed on small animals.

Abstract

L'invention concerne un dispositif de détection de rayonnement, comportant un détecteur (2) en matériau semi-conducteur, une première et une deuxième électrodes (10, 14), caractérisé en ce que la première électrode (10) a la forme de pixels (12), avec un premier pas, sur un des côtés du détecteur, et en ce que le dispositif comporte en outre des moyens pour identifier l'énergie d'un photon incident dans le détecteur en fonction de signaux provenant uniquement de la deuxième électrode.

Description

DISPOSITIF ET PROCEDE DE MESURE DE L ' ENERGIE ET DE LA POSITION D' UNE PARTICULE
IONISANTE , INCIDENTE DANS UN DETECTEUR
DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEUR
L'invention concerne le domaine de l'imagerie X ou gamma, pour la haute résolution spatiale à base de semi-conducteur.
En particulier, elle peut être utilisée pour l'imagerie de petits animaux avec un détecteur monolithique en CdZnTe.
L'invention est aussi applicable à n'importe quel détecteur à base de semi-conducteur où l'on veut localiser la position d'interaction d'un rayonnement dans le détecteur. Elle convient aussi pour la localisation de protons, ou de particules alpha dans de tels détecteurs.
On connaît un procédé de tri, en temps réel, d'événements dans un détecteur : un tel procédé est décrit dans le document FR-2 790 560.
Cependant, cette technique n'est pas satisfaisante dans le cas de petits pixels.
En effet, pour des petits pixels, millimétriques ou submillimétriques, cette méthode impose des contraintes fortes sur le matériau détecteur.
Pour que le signal sur chaque pixel soit représentatif du photon détecté, le matériau doit être suffisamment homogène. Or la présence de défauts dans le matériau, tels que par exemple des macles ou des inclusions de tellure dans le cas du CdZnTe, altère la qualité du signal. De plus, avec des petits pixels, le temps de montée du signal devient d'autant plus difficile à mesurer que la taille du pixel diminue, ce qui rend moins efficace une correction de type biparamétrique (amplitude, temps de montée) . C'est en particulier le cas lorsque la plus petite dimension de chaque pixel devient inférieure au quart de l'épaisseur du détecteur. Le problème est de mesurer à la fois la position d'interaction du photon (en x, y) et son énergie.
Pour cela on dispose d'un signal induit sur les anodes et de celui induit sur la cathode. Les techniques utilisées actuellement pour faire de l'imagerie à haute résolution spatiale utilisent le signal issu des anodes pour mesurer l'énergie et la position (x, y) .
Certaines techniques utilisent le rapport du signal cathode sur le signal anode, rapport qui ne dépend que de la profondeur d' interaction pour corriger la mesure de l'énergie mesurée sur l'anode. Cette mesure est à corriger car le signal anode dépend de la profondeur d'interaction. Cependant, toutes ces techniques reposent sur la bonne mesure du signal de l'anode, ce qui pose des contraintes fortes sur le matériau détecteur.
EXPOSÉ DE L'INVENTION
L'invention concerne d'abord un dispositif de détection de rayonnement, comportant un détecteur en matériau semi-conducteur, une première et une deuxième électrodes, caractérisé en ce que la première électrode a la forme de pixels, avec un premier pas, sur un des côtés du détecteur, et en ce que le dispositif comporte en outre des moyens pour identifier l'énergie d'un photon incident dans le détecteur en fonction de signaux provenant uniquement de la deuxième électrode.
Un tel détecteur, à première électrode pixellisée, permet, selon l'invention, de séparer la localisation des interactions (en x, y) et la mesure de 1'énergie.
Chaque pixel est par exemple inscrit dans un carré de côté compris entre 10 μm et 2 mm ou inférieur à la moitié de l'épaisseur du détecteur. La deuxième électrode peut être pleine, ou segmentée, ou avoir la forme de pixels, à un deuxième pas supérieur au premier pas .
Le détecteur est par exemple en CdZnTe ou en CdHgTe ou en CdTe. Un tel détecteur, à première électrode pixellisée, permet, selon l'invention, de séparer la localisation des interactions (en x, y) et la mesure de 1'énergie.
La localisation est faite par les anodes et l'énergie est mesurée uniquement avec la cathode (ou 1'anode) .
Comme la cathode (ou l'anode) intègre le mouvement des électrons dans l'ensemble du volume du détecteur la contrainte sur l'homogénéité du matériau est levée. Des moyens permettent d'identifier la position d'un photon incident dans le détecteur en fonction de signaux provenant des pixels de la première électrode. La position d'interaction d'un photon dans le détecteur est donc, quant à elle, identifiée uniquement à l'aide de la première électrode.
L'invention concerne donc également un procédé de détection d'un rayonnement mettant en œuvre un dispositif tel que décrit ci-dessus, dans lequel l'énergie d'un photon dans le détecteur est identifiée uniquement à l'aide des signaux des pixels de la deuxième électrode.
Si le signal induit dans le détecteur est un signal d'électrons, la première électrode est l'anode.
Si le signal induit dans le détecteur est un signal de trous, la première électrode est la cathode.
A la différence des systèmes existants qui mesurent, au moins partiellement, l'énergie avec le signal anode (dans le cas d'un signal d'électrons), ou avec le signal cathode (dans le cas d'un signal de trous), l'invention propose de n'utiliser pour cela que le signal cathode, respectivement anode.
BRÈVE DESCRIPTION DES DESSINS
Les figures 1A-1C représentent un détecteur selon l'invention, les figures 2 et 3 représentent un dispositif de mesure avec détecteur selon l'invention. EXPOSE DETAILLE DE MODES DE REALISATION DE L'INVENTION
Un premier exemple de réalisation de l'invention est illustré sur les figures 1A-1C.
Il concerne un détecteur 2 CdZnTe, dans lequel vient interagir un rayonnement 4, par exemple de type gamma.
L'anode 10 du détecteur est constituée de pixels 12 répartis sur une face de ce détecteur. Les pixels mesurent par exemple entre 10 μm et 2 mm de côté, ou sont chacun compris ou inscrit dans un carré de côté compris entre 10 μm et 2 mm ou, plus généralement dans un carré de côté inférieur à la moitié de l'épaisseur e du détecteur (distance séparant les faces cathode et anode du détecteur) . Ils sont répartis selon un pas par exemple compris entre 20 μm et 2,5 mm.
Si on considère deux pixels de même forme, ce pas du détecteur est la distance entre le centre (ou un autre point) d'un pixel et le centre (ou le même point) du pixel le plus proche. Dans le cas de pixels en forme de bande, on peut utiliser une médiane de la bande.
En particulier, chaque pixel peut avoir une plus petite dimension inférieure au quart de l'épaisseur du détecteur 2.
Dans l'exemple illustré sur les figures, la cathode 14 est en pleine face sur l'autre face du détecteur.
Les pixels sont localisés à l'anode et la cathode est en pleine face car il s'agit de travailler avec un signal d'électrons, notamment lorsque le détecteur est en CdZnTe, dans lequel la durée de vie des trous est très faible.
Mais il est possible de travailler avec un signal trou (ou un signal mixte) , et dans ce cas la cathode est pixellisée et l'anode est pleine.
Dans le cas du signal d'électrons, on peut travailler avec une cathode pleine face, comme indiqué ci-dessus, ce qui donne les meilleurs résultats.
Cependant, la même technique peut être mise en œuvre avec une cathode qui ne couvre qu'une partie de la face, ou encore avec une cathode segmentée. Ou encore, la cathode peut être elle aussi pixellisée, à un pas plus grand que l'anode.
On peut utiliser un détecteur en CdZnTe ou en CdTe. Cependant, d'autres semi-conducteurs (CdHgTe ou CdTe dopé Cl ou In ou Al ou CdZnTe dopé Cl ou In etc.) sont utilisables. De manière générale des semi-conducteurs à haute résistivité (108-1012. Ωcm"1) peuvent être utilisés. Les détecteurs utilisés peuvent être des parallélépipèdes rectangles qui mesurent entre 3 mm et
100 mm de coté et entre 1 mm et 30 mm de haut.
Mais l'invention peut être mise en œuvre avec d'autres dimensions. Les pixels sont représentés carrés sur la figure IC, mais d'autres formes (triangles, hexagones, disques, bandes...) sont envisageables.
En fonctionnement, le détecteur est polarisé à l'aide de moyens de polarisation. Un photon 4 (par exemple un photon gamma) arrive dans le détecteur coté cathode 14. II crée des paires électrons-trous qui migrent vers les anodes 10 sous l'effet du champ appliqué.
Chaque bloc 20 en sortie du bloc détecteur représente des moyens constituant une voie de mesure (avec au moins un préampliplificateur, et un amplificateur suivi d'un traitement adapté (carte électronique, ASIC, ou numérisation par exemple) ) .
Sur chaque pixel 12, on mesure la charge déposée. Chaque pixel a sa voie de traitement du signal.
L'ensemble de ces mesures permet de remonter à la position d'interaction (x, y) du photon 4 dans le détecteur. Sur la cathode (ou sur les segments ou les pixels de la cathode si il s'agit d'une cathode segmentée) sont mesurées à la fois l'amplitude et le temps de montée du signal, comme décrit dans le document FR - 2 790 560 mais sur l'anode. Cette information permet de mesurer l'énergie du photon incident avec une précision suffisante pour les applications visées.
On obtient ainsi des résolutions en énergie inférieures à 15 %. Selon l'invention, chaque électrode est donc dédiée à une mesure : l'électrode pixellisée, ou à pas le plus faible, est utilisée pour la mesure de la position, dans la plan X, Y du détecteur (figure IC) , ou sensiblement perpendiculairement à l'axe d'incidence AA' (figure IA) du photon, de l'événement que constitue l'interaction de ce photon avec le matériau du détecteur.
L'autre électrode, qui peut être commune à tous les pixels ou elle aussi sous forme de pixels, mais à pas plus grand, comme expliqué ci-dessus, permet la mesure de l'énergie.
Ces mesures sont indépendantes l'une de l'autre, contrairement aux procédés décrits dans l'art antérieur. Un procédé de traitement ou de correction biparamétrique tel qu'exposé dans le document FR-2 790 560 peut être mis en œuvre pour améliorer la résolution en énergie.
Un procédé selon l'invention peut être mis en oeuvre à l'aide d'un dispositif tel qu'illustré sur la figure 2.
La référence 100 sur la figure 2 désigne une matrice d'éléments de détection 102 à semi¬ conducteur, agencées dans un plan de détection. La figure 3 montre l'exemple d'une structure d'un détecteur à semi-conducteur. Celui-ci comprend une plate-forme 30 équipée de circuits électroniques 32 intégrés et sur laquelle est montée une pluralité d'éléments de détection 34. Les éléments de détection 34 se présentent chacun sous la forme d'un bloc de semi-conducteur avec deux faces parallèles opposées sur lesquelles sont prévues des électrodes . Un champ électrique appliqué sur les électrodes permet de faire migrer les porteurs de charges, c'est-à-dire les électrons et les trous formés par l'interaction du rayonnement avec le semi-conducteur.
Les électrodes de chaque élément de détection, non représentées sur la figure, mais ayant la forme indiquée ci-dessus selon l'invention, sont également prévues pour recevoir les charges et les transférer vers les circuits intégrés de la plate-forme 30 pour la formation d'un signal de détection.
Les signaux d'anode délivrés par les éléments de détection sont dirigés vers un premier circuit intégré par exemple un circuit intégré spécifique (ASIC) 110. Ce circuit comprend des voies d'amplification des signaux pour chaque élément de détection et des moyens de multiplexage des voies . Un deuxième circuit 112 est prévu pour déterminer l'amplitude et le temps de montée de chaque signal issu de la cathode et pour mettre en forme des données correspondant à ces grandeurs, ainsi que des données représentant les coordonnées des événements . Les coordonnées des événements sont liées à la position de l'élément de détection correspondant dans le plan de détection. Un circuit tel que le circuit 112 est par exemple décrit dans le document FR-2 738 919. Les données sont dirigées vers un ordinateur 114 destiné à effectuer les calculs et traitements liés à la phase de calibrage et destiné à construire une image (par exemple médicale) à partir des données lors de la phase d'acquisition. L'image est affichée sur un écran 116. Les données pour mettre en œuvre un procédé de traitement peuvent être mémorisées dans l'ordinateur 114 ou dans une mémoire indiquée par la référence 120 sur la figure 2. Lors de la phase d'acquisition, les circuits 110 et 112 établissent les données d'amplitude, de temps de montée et de coordonnées des événements à partir des signaux des éléments de détection.
A partir des informations indépendantes de position (en x, y dans le plan de l'anode, voir figure 2) et d'énergie (signal de cathode), les moyens 114 peuvent calculer la position dans la profondeur du détecteur.
Un spectre peut être obtenu et affiché à l'écran 116 au cours d'une acquisition. Un dispositif et un procédé selon l'invention peuvent être utilisés dans le cadre d'examens pratiqués sur de petits animaux.

Claims

REVENDICATIONS
1. Dispositif de détection de rayonnement, comportant un détecteur (2) en matériau semi- conducteur, une première et une deuxième électrodes (10, 14), caractérisé en ce que la première électrode (10) a la forme de pixels (12), avec un premier pas, sur un des côtés du détecteur, et en ce que le dispositif comporte en outre des moyens (114, 120) pour identifier l'énergie d'un photon incident dans le détecteur en fonction de signaux provenant uniquement de la deuxième électrode.
2. Dispositif selon la revendication 1, chaque pixel étant inscrit dans un carré de côté inférieur à la moitié de l'épaisseur du détecteur.
3. Dispositif selon la revendication 1 ou 2, dans lequel la deuxième électrode (14) est pleine.
4. Dispositif selon la revendication 1 ou 2, dans lequel la deuxième électrode (14) est segmentée.
5. Dispositif selon la revendication 1 ou
2, dans lequel la deuxième électrode (14) a la forme de pixels, à un deuxième pas supérieur au premier pas.
6. Dispositif selon l'une des revendications 1 à 5, dans lequel le détecteur est en CdZnTe ou en CdHgTe ou en CdTe ou en un matériau semi¬ conducteur de haute résistivité.
7. Dispositif selon l'une des revendications 1 à 6, comportant en outre des moyens (114,120) pour identifier la position d'un photon incident dans le détecteur en fonction de signaux provenant uniquement de la première électrode.
8. Procédé de détection d'un rayonnement mettant en œuvre un dispositif selon l'une des revendications 1 à 7, dans lequel l'énergie d'un photon dans le détecteur est identifiée uniquement à l'aide des signaux de la deuxième électrode.
9. Procédé selon la revendication 8, le signal induit dans le détecteur étant un signal d'électrons, la première électrode étant l'anode.
10. Procédé selon la revendication 8, le signal induit dans le détecteur étant un signal de trous, la première électrode étant la cathode.
PCT/FR2005/050553 2004-07-09 2005-07-07 Dispositif et procede de mesure de l'energie et de la position d'une particule ionisante, incidente dans un detecteur WO2006008419A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05789965.0A EP1766437B1 (fr) 2004-07-09 2005-07-07 Dispositif et procede de mesure de l'energie et de la position d'une particule ionisante, incidente dans un detecteur
US11/631,945 US7705318B2 (en) 2004-07-09 2005-07-07 Device and method for measuring the energy and position of an incident ionising particle in a detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451491A FR2872921B1 (fr) 2004-07-09 2004-07-09 Dispositif et procede de mesure de l'energie et de la position d'une particule incidente dans un detecteur
FR0451491 2004-07-09

Publications (1)

Publication Number Publication Date
WO2006008419A1 true WO2006008419A1 (fr) 2006-01-26

Family

ID=34946398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050553 WO2006008419A1 (fr) 2004-07-09 2005-07-07 Dispositif et procede de mesure de l'energie et de la position d'une particule ionisante, incidente dans un detecteur

Country Status (4)

Country Link
US (1) US7705318B2 (fr)
EP (1) EP1766437B1 (fr)
FR (1) FR2872921B1 (fr)
WO (1) WO2006008419A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122244A1 (fr) * 2017-12-22 2019-06-27 Orano Mining Procédé d'analyse à l'aide d'un détecteur de particules alpha

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0611620D0 (en) 2006-06-12 2006-07-19 Radiation Watch Ltd Semi-conductor-based personal radiation location system
JP5711476B2 (ja) * 2010-07-29 2015-04-30 日立アロカメディカル株式会社 放射線検出器カード
CN106249270B (zh) * 2016-08-31 2023-04-25 同方威视技术股份有限公司 半导体探测器
JP2019052854A (ja) * 2017-09-12 2019-04-04 株式会社東芝 放射線検出装置および放射線検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738919A1 (fr) * 1995-09-15 1997-03-21 Commissariat Energie Atomique Procede et dispositif pour la correction de mesure spectrometrique dans le domaine de la detection de photons gamma
FR2790560A1 (fr) * 1999-03-05 2000-09-08 Commissariat Energie Atomique Procede et dispositif de tri en temps reel d'evenements de detection d'un detecteur de rayonnements gamma et de correction d'uniformite d'elements de detection du detecteur
WO2002063339A1 (fr) * 2001-02-08 2002-08-15 The University Court Of The University Of Glasgow Dispositif d'imagerie medicale

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL137579A (en) * 2000-07-30 2006-12-31 Orbotech Medical Solutions Ltd Gamma-ray detector for coincidence detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738919A1 (fr) * 1995-09-15 1997-03-21 Commissariat Energie Atomique Procede et dispositif pour la correction de mesure spectrometrique dans le domaine de la detection de photons gamma
FR2790560A1 (fr) * 1999-03-05 2000-09-08 Commissariat Energie Atomique Procede et dispositif de tri en temps reel d'evenements de detection d'un detecteur de rayonnements gamma et de correction d'uniformite d'elements de detection du detecteur
WO2002063339A1 (fr) * 2001-02-08 2002-08-15 The University Court Of The University Of Glasgow Dispositif d'imagerie medicale

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019122244A1 (fr) * 2017-12-22 2019-06-27 Orano Mining Procédé d'analyse à l'aide d'un détecteur de particules alpha
FR3075980A1 (fr) * 2017-12-22 2019-06-28 Areva Mines Procede d'analyse a l'aide d'un detecteur de particules alpha
US11125893B2 (en) 2017-12-22 2021-09-21 Orano Mining Analyzing method using a detector of alpha particles

Also Published As

Publication number Publication date
EP1766437A1 (fr) 2007-03-28
US7705318B2 (en) 2010-04-27
EP1766437B1 (fr) 2014-03-19
FR2872921B1 (fr) 2006-09-15
US20080073544A1 (en) 2008-03-27
FR2872921A1 (fr) 2006-01-13

Similar Documents

Publication Publication Date Title
US7525098B2 (en) High resolution energy detector
EP1766437B1 (fr) Dispositif et procede de mesure de l'energie et de la position d'une particule ionisante, incidente dans un detecteur
EP2798339B1 (fr) Procédé d'analyse d'un échantillon de matériau par diffractométrie et diffractomètre associé
EP0763751A1 (fr) Procédé et dispositif pour la correction de mesure spectrométrique dans le domaine de la détection de photons Y
EP2904425B1 (fr) Procédé et dispositif de détection d'un rayonnement ionisant par un photodétecteur pixellisé
US7518118B2 (en) Depth sensing in CdZnTe pixel detectors
EP1739456B1 (fr) Procédé pour optimiser les performances d'un détecteur à semi-conducteur
US20060118728A1 (en) Wafer bonded silicon radiation detectors
EP3143429B1 (fr) Procédé pour améliorer la résolution en énergie de détecteurs de rayons gamma à scintillation; système, composant et application associés
Oonuki et al. Development of uniform CdTe pixel detectors based on Caltech ASIC
EP1084425B1 (fr) Detecteur de rayonnements ionisants
EP1739458A1 (fr) Dispositif de détection de rayonnements à électrodes empilées et méthode de détection de rayonnements ionisants mettant en oeuvre un tel dispositif
Zhang et al. Analysis of detector response using 3-D position-sensitive CZT gamma-ray spectrometers
FR2965441A1 (fr) Procédé de détermination et de correction de la stabilité de réponse d'un détecteur matriciel a semi-conducteur
FR3013125A1 (fr) Procede pour ameliorer la resolution en energie de detecteurs de rayons gamma a scintillation, systeme, composant et application associes
WO2006059035A1 (fr) Detecteur de neutrons a semi-conducteur
EP2936208B1 (fr) Procede et dispositif de detection de rayonnement ionisant a detecteur semiconducteur
EP2402788A2 (fr) Dispositif de détection de rayonnement et procédé de fabrication
US20230145436A1 (en) Method and apparatus for energy selective direct electron imaging
Verger et al. New perspectives in gamma-ray imaging with CdZnTe/CdTe
US20230326939A1 (en) High-dqe direct detection image sensor for electrons with 40 - 120 kev energy
Narita et al. Development of prototype pixellated PIN CdZnTe detectors
Bolotnikov et al. Spectral responses of virtual Frisch-grid CdZnTe detectors and their relation to IR microscopy and X-ray diffraction topography data
Bosma et al. The influence of edge effects on the detection properties of Cadmium Telluride
Pennicard et al. LAMBDA Detector—An Example of a State-of-the-Art Photon Counting Imaging System

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005789965

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11631945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005789965

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11631945

Country of ref document: US