WO2006008208A1 - Electrovalve for an injector for common rail fuel injection systems, comprising a damping element - Google Patents

Electrovalve for an injector for common rail fuel injection systems, comprising a damping element Download PDF

Info

Publication number
WO2006008208A1
WO2006008208A1 PCT/EP2005/052501 EP2005052501W WO2006008208A1 WO 2006008208 A1 WO2006008208 A1 WO 2006008208A1 EP 2005052501 W EP2005052501 W EP 2005052501W WO 2006008208 A1 WO2006008208 A1 WO 2006008208A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
injector
fuel
armature
damping element
Prior art date
Application number
PCT/EP2005/052501
Other languages
German (de)
French (fr)
Inventor
Rainer Haeberer
Frieder Buerkle
Stephan Amelang
Anastasios Manoussopoulos
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2006008208A1 publication Critical patent/WO2006008208A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the invention relates to a solenoid valve for an injector for a common rail injection system with a valve control for opening and closing a nozzle, wherein within the solenoid valve, a movably mounted solenoid valve armature is provided, which in turn with a valve spool and this in turn with a nozzle needle, which is arranged in the nozzle, is in connection PHg.
  • An injector is intended to inject high-pressure fuel in very small amounts into a combustion chamber of a fuel-fired engine.
  • the injector consists of a control part and an injection part.
  • the control part comprises an inlet, which is provided for the fuel which leads into the injector and which is under high pressure.
  • a solenoid valve is arranged in the control part, which essentially comprises a magnet valve armature and a coil surrounding the solenoid valve armature.
  • the solenoid valve armature is held in a position corresponding to a spring.
  • the solenoid valve anchor further comprises ei ⁇ NEN control valve seat, which corresponds to a throttle valve.
  • the injection part of the injector comprises the valve control piston, which in turn communicates with the throttle valve and a nozzle needle which is arranged in a nozzle.
  • the nozzle needle itself is also spring loaded.
  • the solenoid valve In the idle state, the solenoid valve is not current-driven and therefore the solenoid valve armature is pressed in the direction of the nozzle due to the spring. Thus, the throttle valve is closed and the Ven ⁇ til thoroughlykolben presses against the nozzle needle, which in turn closes the nozzle itself.
  • the fuel pressure is continuously applied to the seat of the nozzle needle.
  • the same pressure prevails on the control part above the valve control piston.
  • the solenoid valve armature is raised in the opening direction. As a result, it releases a very exactly tolerated and manufactured cross-section of the throttle valve in the control part, as a result of which the pressure acting on the valve control piston itself quickly breaks down. As a result, the nozzle needle is lifted off the seat and the injection process starts. This is limited by the interruption of the magnetic current.
  • Injection system it may happen that air is sucked in with the fuel, especially when using suction pumps.
  • the air is dissolved in the fuel. However, it enters the state that when the throttle valve is open fuel in the return device by significantly lower pressures are present, so that the corresponding air leaves the ge dissolved state.
  • the distance traveled by the magnetic valve armature, as it is also flushed with fuel can very much depend on how large the proportion of air in the fuel is.
  • the movement of the solenoid valve anchor and in particular the stop behavior depends on the pressure environment.
  • Air inclusions can therefore lead to unwanted and uncontrolled impact behavior, which in turn has the consequence that the opening times of the injector are subject to uncertainty and thus the injection quantities are not correctly defined.
  • the object of the invention is to further develop an injector of the type present in such a way that the bouncing behavior caused by air entrapment, which is present in a fuel, is reduced by appropriate design of the injector.
  • the damping element compensates for pressure drops in the valve control chamber and slight variations in pressure.
  • the bounce behavior of the solenoid valve anchor is thereby predictable and adjustable by the choice of the damping parameters.
  • the dynamics of the movements of the solenoid valve anchor have a direct influence on the injection quantity of the fuel into the combustion chamber. If the solenoid valve armature makes a controlled movement, the fuel injection quantity is also controllable. For this reason, it is appropriate to use damping agents in this area.
  • the solenoid valve anchor when opening the injector. If the solenoid valve arm moves without counter-pressure, the nozzle opens abruptly and it is immediately possible for a certain amount of fuel to flow into the combustion chamber. On the other hand, if the solenoid valve armature moves against a backpressure present in the valve control chamber, the nozzle is only gradually opened and initially only a small amount of fuel can flow into the combustion chamber. The amount gradually increases with the deflection of the solenoid valve armature and thus with the displacement of the valve spool.
  • the other extreme region, in which the attenuation plays a special role, is the closing process of the injector.
  • the solenoid valve armature moves in the closing direction into its so-called equilibrium position. In this case, it is surrounded by fuel and is subject to the actual spring pressure and ei ⁇ nem hydraulic pressure. However, if air pockets are present in the fuel, the hydraulic equilibrium pressure drops and the solenoid valve bounces into its equilibrium position almost without resistance, which in turn leads to a so-called closing bounce behavior of the magnet valve with several oscillations again affects the opening and closing of the nozzle.
  • the injector With each ringing, the injector is thus reopened and, even after the closing time fixed by the end of the energization, fuel can flow into the combustion chamber and thus considerably change the running properties of the fuel engine.
  • the additional damping element according to the invention ensures that, regardless of the pressure conditions in the valve control chamber, there is a damped closing action of the solenoid valve armature comes. It is prevented that the solenoid valve armature carries out a prolonged oscillation after the end of the energization, without further fuel being able to flow into the combustion chamber.
  • the damping element is designed such that it has a spring and a defined mass.
  • the damping force exerted by the damping element is generated in this case by the inertia of the mass and the Federkon ⁇ constant of the spring.
  • FIG. 2 shows a schematic representation of the injector as in FIG. 1, but with respect to FIG. 1 in the injection state;
  • FIG. 3 is an enlarged view of an embodiment of an injector according to the invention in section;
  • FIG. 1 shows an overall view of an injector 1 comprising a control part S and an injection part E.
  • the fuel which is to be injected into the combustion chamber of a fuel-injection engine is supplied by a common-rail injection system (not shown) via a fuel supply line 2 , which is arranged on the control part S of the injector 1, guided via inlet channels 3 to the injection part E in the direction of the nozzle 4.
  • the nozzle 4 itself is controlled via a nozzle needle 5, which in turn is connected to a valve control piston 6 and this, in turn, to a valve control chamber 7.
  • the valve control chamber 7, which is arranged in the control part S of the injector 1, comprises a solenoid valve 8 with a Magnetven ⁇ tilanker 9, the solenoid valve armature 9 provides a control valve seat 10 which corresponds in the state shown in Figure 1 with a throttle valve 11.
  • the solenoid valve armature 9 is controlled by a coil 12.
  • a return line 13 for the fuel is provided in the control part S of the injector 1.
  • the solenoid valve armature 9 moves in the opening direction 14 and the corresponding throttle valve 11 is released so that fuel can flow via the inlet 3 in the direction of the nozzle 4 as well can flow into the valve control chamber 7 and the return line 13.
  • FIG. 3 shows a partial illustration of the embodiment according to the invention.
  • a damping element 15 is arranged in the region of the magnet valve armature 9, which consists of a spring 16 and a mass disk 17.
  • the damping element 15 is connected both to the solenoid valve armature 9 and to the solenoid valve 8, so that the solenoid valve armature 9, when moving in the closing direction 18 and in the opening direction 14, operates the damping force generated by the damping element 15.
  • the damping element 15 thus has a damping effect which corresponds to the hydraulic damping force of a solenoid valve umströ ⁇ ing in the figure not shown fuel.
  • FIG. 4 the embodiment which has the design according to the invention of the magnetic valve 8 according to FIG. 3 is shown by means of measuring curves in comparison to the solutions shown in the prior art.
  • the measured curves show the so-called injection rate (amount of ein ⁇ injected fuel) in the ordinate right over the time shown. In the ordinate on the left, the deflection of the Magnetven ⁇ tilankers 9 is shown from its rest position.
  • the sizes are arbitrary.
  • the negative deflection of the solenoid valve armature 9 is plotted from the closed position over time in the curve 101, if due to an air inclusion (here about 44%) in the fuel only low damping forces.
  • the solenoid valve armature 9 After completion of the energization of the solenoid valve 8, the solenoid valve armature 9 does not return to the closed position in an over-damped motion, but executes a series of closing bounces, which are seen as strong deflections 104 of the curve 101.
  • Curve 201 shows the injection rate for a solenoid valve armature 9 with virtually undamped motion, this curve 201 being comparable to the curve 101.
  • Curve 202 shows for a solenoid valve armature 9 a damped movement, comparable to curve 102.
  • the rapid opening 103 of the un-damped magnet valve armature 9 leads to a rapid increase in the injection rate and the oscillations during closing (region 104) of the undamped magnet valve armature 9 result in a longer duration of the injection and thus in a higher Ein ⁇ injection rate when closing.
  • This period of time 206 is decisive for the difference in the amount of fuel flowed in, which results from the temporal integrals of the curves 201 and 202 for the fuel rate.
  • the damping element 15 introduced according to the invention thus leads to a smoothing of the curve 106 of the magnet valve armature 9.
  • the injector 1 is insensitive to a higher Luftan ⁇ part, which is trapped in the fuel, although the hydaulic damping due to these air pockets reduced.
  • the construction according to the invention is very simple and effective and can be inserted without special configuration of the injector 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to an electrovalve for an injector for a common rail fuel injection system, comprising a valve control system for opening and closing a nozzle. The aim of the invention is to compensate for pressure drops inside the injector (1), for example caused by air inclusion in the fuel to be injected. To this end, a damping element (15) is arranged between the electrovalve (8) and the electrovalve armature (9), said damping element exerting a damping force on the electrovalve armature (9) and thus on the nozzle needle (5).

Description

Magnetventil für einen Injektor für Common-Rail- Kraftstoffeinspritzsysteme mit DämpfungselementSolenoid valve for an injector for common rail fuel injection systems with damping element
Die Erfindung betrifft ein Magnetventil für einen Injektor für ein Common-Rail-Einspritzsystem mit einer Ventilsteuerung zum Öffnen und Schließen einer Düse, wobei innerhalb des Magnetventils ein beweglich gelagerter Magnetventilanker vorgesehen ist, der über ein Drosselventil mit einem Ventilsteuerkolben und dieser wiederum mit einer Düsennadel, die in der Düse angeordnet ist, in Verbin- düng steht.The invention relates to a solenoid valve for an injector for a common rail injection system with a valve control for opening and closing a nozzle, wherein within the solenoid valve, a movably mounted solenoid valve armature is provided, which in turn with a valve spool and this in turn with a nozzle needle, which is arranged in the nozzle, is in connection düng.
Stand der TechnikState of the art
Ein Injektor soll unter Hochdruck stehenden Kraftstoff in sehr kleinen Teilmengen in einen Brennraum einer Brennstoffkraftmaschi- ne einspritzen. Der Injektor besteht aus einem Steuerteil und aus einem Einspritzteil. Das Steuerteil umfasst unter anderem einen Zulauf, der für den in den Injektor hinein führenden Kraftstoff, der unter Hochdruck steht, vorgesehen ist. Zudem ist in dem Steu- erteil ein Magnetventil angeordnet, das im Wesentlichen einen Mag¬ netventilanker sowie eine den Magnetventilanker umgebende Spule umfasst. Der Magnetventilanker ist über eine Feder entsprechend in einer Position gehalten. Der Magnetventilanker umfasst ferner ei¬ nen Steuerventilsitz, der mit einem Drosselventil korrespondiert. Das Einspritzteil des Injektors umfasst den Ventilsteuerkolben, der wiederum mit dem Drosselventil in Verbindung steht und eine Düsennadel, die in einer Düse angeordnet ist. Die Düsennadel selbst ist ebenfalls federbelastet.An injector is intended to inject high-pressure fuel in very small amounts into a combustion chamber of a fuel-fired engine. The injector consists of a control part and an injection part. Among other things, the control part comprises an inlet, which is provided for the fuel which leads into the injector and which is under high pressure. In addition, a solenoid valve is arranged in the control part, which essentially comprises a magnet valve armature and a coil surrounding the solenoid valve armature. The solenoid valve armature is held in a position corresponding to a spring. The solenoid valve anchor further comprises ei¬ NEN control valve seat, which corresponds to a throttle valve. The injection part of the injector comprises the valve control piston, which in turn communicates with the throttle valve and a nozzle needle which is arranged in a nozzle. The nozzle needle itself is also spring loaded.
Im Ruhezustand ist das Magnetventil nicht stromangesteuert und da¬ her wird der Magnetventilanker aufgrund der Feder in Richtung Düse gedrückt. Damit ist das Drosselventil geschlossen und der Ven¬ tilsteuerkolben drückt gegen die Düsennadel, die wiederum die Düse selbst verschließt.In the idle state, the solenoid valve is not current-driven and therefore the solenoid valve armature is pressed in the direction of the nozzle due to the spring. Thus, the throttle valve is closed and the Ven¬ tilsteuerkolben presses against the nozzle needle, which in turn closes the nozzle itself.
Zusätzlich steht der Kraftstoffdruck kontinuierlich am Sitz der Düsennadel an. Zudem herrscht derselbe Druck an dem Steuerteil oberhalb des Ventilsteuerkolbens.In addition, the fuel pressure is continuously applied to the seat of the nozzle needle. In addition, the same pressure prevails on the control part above the valve control piston.
Aufgrund der unterschiedlichen Querschnittsflächenverhältnisse von Ventilsteuerkolben und Düsennadel wirkt die gesamte resultierende hydraulische Kraftkomponente in Schließrichtung.Due to the different cross-sectional area ratios of the valve spool and the nozzle needle, the entire resulting hydraulic force component acts in the closing direction.
Sobald das Magnetventil bestromt wird, wird der Magnetventilanker in Öffnungsrichtung angehoben. Er gibt dadurch einen sehr exakt tolerierten und gefertigten Querschnitt des Drosselventils in dem Steuerteil frei, wodurch der Druck, der an sich auf den Ven¬ tilsteuerkolben wirkt, schnell einbricht. Die Düsennadel wird da- durch von dem Sitz abgehoben und der Einspritzvorgang startet. Dieser wird durch das Unterbrechen des Magnetstroms begrenzt.As soon as the solenoid valve is energized, the solenoid valve armature is raised in the opening direction. As a result, it releases a very exactly tolerated and manufactured cross-section of the throttle valve in the control part, as a result of which the pressure acting on the valve control piston itself quickly breaks down. As a result, the nozzle needle is lifted off the seat and the injection process starts. This is limited by the interruption of the magnetic current.
Nachteile des Standes der Technik Durch das Einpumpen des Kraftstoffs in das Common-Rail-Disadvantages of the prior art By pumping the fuel into the common rail
EinspritzSystem kann es dazu kommen, dass Luft mit dem Kraftstoff angesaugt wird, insbesondere bei Verwendung von Saugpumpen.Injection system, it may happen that air is sucked in with the fuel, especially when using suction pumps.
In dem Hochdruckspeicher (Common-Rail) ist die Luft in dem Kraft¬ stoff gelöst. Es tritt jedoch der Zustand ein, dass bei geöffnetem Drosselventil Kraftstoff in den Rücklauf gerät, indem wesentlich geringere Drücke vorliegen, so dass die entsprechende Luft den ge¬ lösten Zustand verlässt. Somit kann die Wegstrecke, die der Mag- netventilanker zurück legt, da dieser ebenfalls von Kraftstoff um¬ spült ist, sehr stark davon abhängen, wie groß der Luftanteil in dem Kraftstoff ist.In the high-pressure accumulator (common rail), the air is dissolved in the fuel. However, it enters the state that when the throttle valve is open fuel in the return device by significantly lower pressures are present, so that the corresponding air leaves the ge dissolved state. Thus, the distance traveled by the magnetic valve armature, as it is also flushed with fuel, can very much depend on how large the proportion of air in the fuel is.
Die Bewegung des Magnetventilankers und insbesondere das Anschlag- verhalten ist seinerseits von der Druckumgebung abhängig. BeiThe movement of the solenoid valve anchor and in particular the stop behavior in turn depends on the pressure environment. at
Lufteinschlüssen kann es daher zu ungewollten und unkontrollierten Prallverhalten kommen, die wiederum zur Folge haben, dass die Öff¬ nungszeiten des Injektors mit einer Unsicherheit behaftet und so¬ mit die Einspritzmengen nicht korrekt definiert sind.Air inclusions can therefore lead to unwanted and uncontrolled impact behavior, which in turn has the consequence that the opening times of the injector are subject to uncertainty and thus the injection quantities are not correctly defined.
Aufgabe der ErfindungObject of the invention
Die Aufgabe der Erfindung besteht darin, einen Injektor der vor¬ stehenden Art derart weiter zu bilden, dass das durch Luftein- Schlüsse, die in einem Kraftstoff vorhanden sind, hervorgerufene Prellverhalten durch entsprechende Ausbildung des Injektors ver¬ ringert wird.The object of the invention is to further develop an injector of the type present in such a way that the bouncing behavior caused by air entrapment, which is present in a fuel, is reduced by appropriate design of the injector.
Lösung der Aufgabe Die Aufgabe wird dadurch gelöst, dass innerhalb des Steuerteils des Injektors zwischen dem Magnetventil und dem Magnetventilanker ein Dämpfungselement angeordnet ist, das eine entsprechende Dämp¬ fungskraft ausübt.Solution of the task The object is achieved in that within the control part of the injector between the solenoid valve and the solenoid valve armature, a damping element is arranged, which exerts a corresponding damping force.
Vorteile der ErfindungAdvantages of the invention
Das Dämpfungselement kompensiert Druckabfälle im Ventilsteuerraum und leichte Variationen des Druckes aus. Das Prellverhalten des Magnetventilankers wird dadurch vorhersehbar und durch die Wahl der Dämpfungsparameter einstellbar.The damping element compensates for pressure drops in the valve control chamber and slight variations in pressure. The bounce behavior of the solenoid valve anchor is thereby predictable and adjustable by the choice of the damping parameters.
Die Dynamik der Bewegungen des Magnetventilankers hat unmittelba¬ ren Einfluss auf die Einspritzmenge des Kraftstoffs in den Brenn- räum. Führt der Magnetventilanker eine kontrollierte Bewegung aus, so ist die Kraftstoffeinspritzmenge ebenfalls kontrollierbar. Aus diesem Grund ist es angebracht, Dämpfungsmittel in diesem Bereich einzusetzen.The dynamics of the movements of the solenoid valve anchor have a direct influence on the injection quantity of the fuel into the combustion chamber. If the solenoid valve armature makes a controlled movement, the fuel injection quantity is also controllable. For this reason, it is appropriate to use damping agents in this area.
Diese zusätzliche Dämpfung wirkt sich besonders in zwei Extrembe¬ reichen aus.This additional damping has a particularly great effect in two extreme ranges.
Zunächst hat sie einen Einfluss auf die Bewegung des Magnetventil¬ ankers beim Öffnen des Injektors. Bewegt sich der Magnetventilan- ker dabei ohne Gegendruck, so öffnet sich die Düse schlagartig und es kann sofort eine gewisse Menge Kraftstoff in den Brennraum ein¬ strömen. Bewegt sich der Magnetventilanker hingegen gegen einen Gegendruck, der im Ventilsteuerraum vorliegt, so wird die Düse erst allmählich geöffnet und es kann zunächst nur wenig Kraftstoff in den Brennraum einströmen. Die Menge steigert sich graduell mit der Auslenkung des Magnetventilankers und somit mit der Verschie¬ bung des Ventilsteuerkolbens.First, it has an influence on the movement of the solenoid valve anchor when opening the injector. If the solenoid valve arm moves without counter-pressure, the nozzle opens abruptly and it is immediately possible for a certain amount of fuel to flow into the combustion chamber. On the other hand, if the solenoid valve armature moves against a backpressure present in the valve control chamber, the nozzle is only gradually opened and initially only a small amount of fuel can flow into the combustion chamber. The amount gradually increases with the deflection of the solenoid valve armature and thus with the displacement of the valve spool.
Für die optimale Verbrennung ist ein anfänglich langsamerer An- stieg der Kraftstoffmenge von Vorteil.For optimal combustion, an initially slower increase in fuel quantity is an advantage.
Der andere Extrembereich, in dem der Dämpfung eine besondere Be¬ deutung zukommt, ist der Schließvorgang des Injektors.The other extreme region, in which the attenuation plays a special role, is the closing process of the injector.
Wird die Beaufschlagung des Magnetventilankers mit Strom beendet, so bewegt sich der Magnetventilanker in Schließrichtung in seine sogenannte Gleichgewichtsposition. Dabei wird er von Kraftstoff umströmt und unterliegt neben dem eigentlichen Federdruck auch ei¬ nem hydraulischen Druck. Liegen in dem Kraftstoff jedoch Luftein- Schlüsse vor, so kommt es zu einem Druckabfall des hydraulischen Gleichgewichtsdrucks und der Magnetventilanker prallt nahezu ohne Widerstand in seine Gleichgewichtsposition, was wiederum dazu führt, dass ein sogenanntes Schließprellverhalten des Magnetven¬ tilankers mit mehreren Nachschwingungen vorliegt, das sich wieder- um auf das Öffnen und Schließen der Düse auswirkt.If the loading of the solenoid valve armature is stopped with power, then the solenoid valve armature moves in the closing direction into its so-called equilibrium position. In this case, it is surrounded by fuel and is subject to the actual spring pressure and ei¬ nem hydraulic pressure. However, if air pockets are present in the fuel, the hydraulic equilibrium pressure drops and the solenoid valve bounces into its equilibrium position almost without resistance, which in turn leads to a so-called closing bounce behavior of the magnet valve with several oscillations again affects the opening and closing of the nozzle.
Bei jedem Nachschwingen wird somit der Injektor wieder geöffnet und es kann auch noch nach dem durch das Ende der Bestromung fest¬ gelegten SchließZeitpunkt Kraftstoff in den Brennraum fließen und damit die Laufeigenschaften der Brennstoffkraftmaschine erheblich verändern.With each ringing, the injector is thus reopened and, even after the closing time fixed by the end of the energization, fuel can flow into the combustion chamber and thus considerably change the running properties of the fuel engine.
Das erfindungsgemäße zusätzliche Dämpfungselement stellt jedoch sicher, dass es ungeachtet der Druckverhältnisse im Ventilsteuer- räum zu einem gedämpften Schließvorgang des Magnetventilankers kommt. Es wird verhindert, dass der Magnetventilanker nach dem En¬ de der Bestromung eine länger andauernde Schwingung ausführt, ohne dass weiterer Kraftstoff in den Brennraum einströmen kann.The additional damping element according to the invention, however, ensures that, regardless of the pressure conditions in the valve control chamber, there is a damped closing action of the solenoid valve armature comes. It is prevented that the solenoid valve armature carries out a prolonged oscillation after the end of the energization, without further fuel being able to flow into the combustion chamber.
In einer bevorzugten Ausführungsform ist das Dämpfungselement der¬ art ausgebildet, dass es eine Feder und eine definierte Masse auf¬ weist. Die durch das Dämpfungselement ausgeübte Dämpfungskraft wird in diesem Fall durch die Trägheit der Masse und die Federkon¬ stante der Feder erzeugt. Durch eine geeignete Auswahl dieser Pa- rameter kann die entsprechende Dämpfungskraft derart eingestellt werden, dass die im Ventilsteuerräum vorkommenden Druckschwankun¬ gen entsprechend kompensiert werden.In a preferred embodiment, the damping element is designed such that it has a spring and a defined mass. The damping force exerted by the damping element is generated in this case by the inertia of the mass and the Federkon¬ constant of the spring. By a suitable selection of these parameters, the corresponding damping force can be set such that the pressure fluctuations occurring in the valve control chamber are compensated accordingly.
Weitere vorteilhafte Ausgestaltungen gehen aus den nachfolgenden Beschreibungen, Zeichnungen sowie Ansprüchen hervor.Further advantageous embodiments will become apparent from the following descriptions, drawings and claims.
Zeichnungen Es zeigen:Drawings Show:
Fig. 1 eine schematische Darstellung des Injektors im Ruhezu¬ stand;1 is a schematic representation of the injector in Ruhezu¬ stand;
Fig. 2 eine schematische Darstellung des Injektors wie in Fi¬ gur 1, jedoch gegenüber Figur 1 im Einspritzzustand;FIG. 2 shows a schematic representation of the injector as in FIG. 1, but with respect to FIG. 1 in the injection state;
Fig. 3 eine vergrößerte Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Injektors im Schnitt;3 is an enlarged view of an embodiment of an injector according to the invention in section;
Fig. 4 Messkurven, in denen die Bewegung des Magnetventilan- kers sowie die Einspritzrate des Kraftstoffs in den Brennraum einer Brennstoffkraftmaschine in Abhängigkeit der Zeit dargestellt sind, zum einen für einen Injek¬ tor, in dem Kraftstoff mit Lufteinschluss im Ven- tilsteuerraum vorgesehen ist, einmal mit Dämpfungsele¬ ment und einmal ohne Dämpfungselement.4 shows measurement curves in which the movement of the solenoid valve anchor as well as the injection rate of the fuel into the Combustion chamber of a fuel engine as a function of time are shown, on the one hand for an Injek¬ gate, is provided in the fuel with air trapped in the valve control room, once with Dämpfungsele¬ element and once without damping element.
Beschreibung eines AusführungsbeispielsDescription of an embodiment
In Figur 1 ist eine Gesamtdarstellung eines Injektors 1, bestehend aus einem Steuerteil S und einem Einspritzteil E dargestellt- Der Kraftstoff, der in den Brennraum einer Brennstoffkraftmaschine einzuspritzen ist, wird von einem nicht näher dargestellten Com- mon-Rail-Einspritzsystem über eine KraftstoffZuleitung 2, die an dem Steuerteil S des Injektors 1 angeordnet ist, über Zulaufkanäle 3 zum Einspritzteil E in Richtung der Düse 4 geführt. Die Düse 4 selbst wird über eine Düsennadel 5 gesteuert, die wiederum mit ei¬ nem Ventilsteuerkolben 6 und dieser wiederum mit einem Ventilsteu¬ erraum 7 verbunden ist.FIG. 1 shows an overall view of an injector 1 comprising a control part S and an injection part E. The fuel which is to be injected into the combustion chamber of a fuel-injection engine is supplied by a common-rail injection system (not shown) via a fuel supply line 2 , which is arranged on the control part S of the injector 1, guided via inlet channels 3 to the injection part E in the direction of the nozzle 4. The nozzle 4 itself is controlled via a nozzle needle 5, which in turn is connected to a valve control piston 6 and this, in turn, to a valve control chamber 7.
Der Ventilsteuerraum 7, der in dem Steuerteil S des Injektors 1 angeordnet ist, umfasst ein Magnetventil 8 mit einem Magnetven¬ tilanker 9, wobei der Magnetventilanker 9 einen Steuerventilsitz 10 vorsieht, der in dem in Figur 1 dargestellten Zustand mit einem Drosselventil 11 korrespondiert. Der Magnetventilanker 9 wird von einer Spule 12 gesteuert.The valve control chamber 7, which is arranged in the control part S of the injector 1, comprises a solenoid valve 8 with a Magnetven¬ tilanker 9, the solenoid valve armature 9 provides a control valve seat 10 which corresponds in the state shown in Figure 1 with a throttle valve 11. The solenoid valve armature 9 is controlled by a coil 12.
Ferner ist eine Rücklaufleitung 13 für den Kraftstoff in dem Steu¬ erteil S des Injektors 1 vorgesehen. Wird die Spule 12 des Magnetenventils 8 bestromt (Fig. 2) , so be¬ wegt sich der Magnetventilanker 9 in Öffnungsrichtung 14 und das entsprechende Drosselventil 11 wird frei gegeben, so dass Kraft¬ stoff über den Zulauf 3 in Richtung der Düse 4 als auch in den Ventilsteuerraum 7 und über die Rücklaufleitung 13 fließen kann.Furthermore, a return line 13 for the fuel is provided in the control part S of the injector 1. When the coil 12 of the solenoid valve 8 is energized (FIG. 2), the solenoid valve armature 9 moves in the opening direction 14 and the corresponding throttle valve 11 is released so that fuel can flow via the inlet 3 in the direction of the nozzle 4 as well can flow into the valve control chamber 7 and the return line 13.
In Figur 3 ist eine Teildarstellung des erfindungsgemäßen Ausfüh¬ rungsbeispiels dargestellt. In dem Steuerteil S ist im Bereich des Magnetventilankers 9 ein Dämpfungselement 15 angeordnet, das aus einer Feder 16 und einer Massenscheibe 17 besteht. Das Dämpfungs¬ element 15 ist sowohl mit dem Magnetventilanker 9 als auch mit dem Magnetventil 8 verbunden, so dass der Magnetventilanker 9 bei ei¬ ner Bewegung in Schließrichtung 18 und in Öffnungsriehtung 14 ge¬ gen die von dem Dämpfungselement 15 erzeugte Dämpfungskraft arbei- tet.FIG. 3 shows a partial illustration of the embodiment according to the invention. In the control part S, a damping element 15 is arranged in the region of the magnet valve armature 9, which consists of a spring 16 and a mass disk 17. The damping element 15 is connected both to the solenoid valve armature 9 and to the solenoid valve 8, so that the solenoid valve armature 9, when moving in the closing direction 18 and in the opening direction 14, operates the damping force generated by the damping element 15.
Das Dämpfungselement 15 hat somit eine dämpfende Wirkung, die der hydraulischen Dämpfungskraft eines den Magnetventilanker 9 umströ¬ menden in der Figur nicht gezeigten Kraftstoffs entspricht.The damping element 15 thus has a damping effect which corresponds to the hydraulic damping force of a solenoid valve umströ¬ ing in the figure not shown fuel.
In Figur 4 ist die Ausführung, die die erfindungsgemäße Ausbildung des Magnetventils 8 gemäß Figur 3 aufweist, anhand von Messkurven im Vergleich zu den aus dem Stand der Technik dargestellten Lösun¬ gen aufgezeigt. In FIG. 4, the embodiment which has the design according to the invention of the magnetic valve 8 according to FIG. 3 is shown by means of measuring curves in comparison to the solutions shown in the prior art.
Die Messkurven zeigen die sogenannte Einspritzrate (Menge des ein¬ gespritzten Kraftstoffs) in der Ordinate rechts über der Zeit dar- gestellt. In der Ordinate links ist die Auslenkung des Magnetven¬ tilankers 9 aus seiner Ruhelage dargestellt. Die Größenangaben hierfür sind willkürlich.The measured curves show the so-called injection rate (amount of ein¬ injected fuel) in the ordinate right over the time shown. In the ordinate on the left, the deflection of the Magnetven¬ tilankers 9 is shown from its rest position. The sizes are arbitrary.
Zunächst ist in der Kurve 101 die negative Auslenkung des Magnet- ventilankers 9 aus der Schließposition über der Zeit aufgetragen, wenn aufgrund eines Lufteinschlusses (hier ca. 44%) im Kraftstoff nur geringe Dämpfungskräfte vorliegen. Die Kurve 101 weist unmit¬ telbar nach dem Öffnen, welches bei einer Zeit t = 0 stattfindet, sogenannte Öffnungspreller 103 auf. Diese entstehen, da der Mag- netventilanker 9 wenig gedämpft von seinem Sitz abhebt, wodurch er in eine Schwingung gerät.First, the negative deflection of the solenoid valve armature 9 is plotted from the closed position over time in the curve 101, if due to an air inclusion (here about 44%) in the fuel only low damping forces. The curve 101 points immediately after opening, which takes place at a time t = 0, so-called opening preheater 103. These arise because the magnet valve anchor 9 lifts off from its seat with little damping, causing it to vibrate.
Nach der Beendigung der Beaufschlagung des Magnetventils 8 mit Strom kehrt der Magnetventilanker 9 nicht in einer überdämpften Bewegung in die Schließposition zurück, sondern führt eine Reihe von Schließprellern aus, die als starke Ausschläge 104 der Kurve 101 erkennbar sind.After completion of the energization of the solenoid valve 8, the solenoid valve armature 9 does not return to the closed position in an over-damped motion, but executes a series of closing bounces, which are seen as strong deflections 104 of the curve 101.
In der Kurve 102 ist die negative Auslenkung des Magnetventilan- kers 9 aus der Schließposition über die Zeit aufgetragen, wobei in diesem gezeigten Fall eine Dämpfung vorliegt.In the curve 102, the negative deflection of the magnetic valve armature 9 from the closed position is plotted over time, in which case a damping is present.
Diese wird zum einen deutlich, da die Öffnung des Magnetventilan¬ kers 9 (Kurve 106 des Öffnungsverlaufs) wesentlich langsamer ver- läuft als vergleichbar im ungedämpften Fall und der Schließverlauf quasi überdämpft ist, also keine erkennbaren Schwingungsausschlage vorliegen.This becomes clear, on the one hand, since the opening of the solenoid valve armature 9 (curve 106 of the course of the opening) runs much more slowly than in the unattenuated case and the closing process is quasi over-damped, so there are no discernible vibration outbreaks.
Die entsprechenden Einspritzraten des Kraftstoffs in den Brennraum über die Zeit sind in den Kurven 201 und 202 aufgetragen. Kurve 201 zeigt die Einspritzrate für einen Magnetventilanker 9 mit praktisch ungedämpfter Bewegung, wobei diese Kurve 201 mit der Kurve 101 vergleichbar ist.The corresponding injection rates of the fuel into the combustion chamber over time are plotted in curves 201 and 202. Curve 201 shows the injection rate for a solenoid valve armature 9 with virtually undamped motion, this curve 201 being comparable to the curve 101.
Kurve 202 zeigt für einen Magnetventilanker 9 eine gedämpfte Bewe¬ gung, vergleichbar mit Kurve 102. Das schnelle Öffnen 103 des un¬ gedämpften Magnetventilankers 9 führt zu einem schnellen Anstieg der Einspritzrate und die Schwingungen beim Schließen (Bereich 104) des ungedämpften Magnetventilankers 9 resultieren in einer längeren Dauer der Einspritzung und damit in einer höheren Ein¬ spritzrate beim Schließen.Curve 202 shows for a solenoid valve armature 9 a damped movement, comparable to curve 102. The rapid opening 103 of the un-damped magnet valve armature 9 leads to a rapid increase in the injection rate and the oscillations during closing (region 104) of the undamped magnet valve armature 9 result in a longer duration of the injection and thus in a higher Ein¬ injection rate when closing.
Im Vergleich mit dem Schließverhalten des gedämpften Magnetventil¬ ankers 9 zeigt sich, dass der Kraftstoff im ungedämpften Fall um eine bestimmte Zeitspanne 206 länger einströmen kann.In comparison with the closing behavior of the damped solenoid valve armature 9, it can be seen that in the undamped case, the fuel can flow in for a certain period of time 206.
Diese Zeitspanne 206 ist maßgeblich für den Unterschied der einge¬ strömten Kraftstoffmengen, die sich aus den zeitlichen Integralen der Kurven 201 und 202 für die Kraftstoffrate ergeben.This period of time 206 is decisive for the difference in the amount of fuel flowed in, which results from the temporal integrals of the curves 201 and 202 for the fuel rate.
Das erfindungsgemäß eingeführte Dämpfungselement 15 führt somit zu einer Glättung der Kurve 106 des Magnetventilankers 9. Der Injektor 1 wird unempfindlich gegenüber einem höheren Luftan¬ teil, der im Kraftstoff eingeschlossen ist, obwohl sich die hyd¬ raulische Dämpfung aufgrund dieser Lufteinschlüsse reduziert.The damping element 15 introduced according to the invention thus leads to a smoothing of the curve 106 of the magnet valve armature 9. The injector 1 is insensitive to a higher Luftan¬ part, which is trapped in the fuel, although the hydaulic damping due to these air pockets reduced.
Die erfindungsgemäße Ausbildung ist sehr einfach und effektiv und kann ohne besondere Ausgestaltung des Injektors 1 eingefügt wer¬ den. The construction according to the invention is very simple and effective and can be inserted without special configuration of the injector 1.

Claims

A N S P R U C H E
1. Magnetventil für einen Injektor für ein Common-Rail- Einspritzsystem mit einer Ventilsteuerung zum Öffnen und Schließen einer Düse, wobei innerhalb des Magnetventils ein be¬ weglich gelagerter Magnetventilanker vorgesehen ist, der über ein Drosselventil mit einem Ventilsteuerkolben und dieser wie¬ derum mit einer Düsennadel, die in der Düse angeordnet ist, in Verbindung steht, dadurch gekennzeichnet, dass zwischen Magnet- ventil (8) und Magnetventilanker (9) ein Dämpfungselement (15) angeordnet ist, das eine entsprechende Dämpfungskraft auf den Magnetventilanker (9) und damit auf die Düsennadel (5) ausübt.1. Solenoid valve for an injector for a common rail injection system with a valve control for opening and closing a nozzle, wherein within the solenoid valve, a movably mounted ge solenoid valve armature is provided via a throttle valve with a valve spool and this in turn with a Nozzle needle, which is arranged in the nozzle, is in communication, characterized in that between magnetic valve (8) and solenoid valve armature (9) a damping element (15) is arranged, which has a corresponding damping force on the solenoid valve armature (9) and thus the nozzle needle (5) exerts.
2. Magnetventil gemäß Anspruch 1, dadurch gekennzeichnet, dass Dämpfungselement (15) ein Feder-Masse-Element ist.2. Solenoid valve according to claim 1, characterized in that the damping element (15) is a spring-mass element.
3. Magnetventil gemäß mindestens einem der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, dass das Dämpfungselement (15) derart an¬ geordnet ist, dass der Magnetventilanker (9) in Schließrichtung (18) gegen die Dämpfungskraft arbeitet. 3. Solenoid valve according to at least one of claims 1 or 2, da¬ characterized in that the damping element (15) is arranged such an¬ that the solenoid valve armature (9) in the closing direction (18) operates against the damping force.
4. Magnetventil gemäß mindestens einem der Ansprüche 1 bis 3, da¬ durch gekennzeichnet/, dass das Dämpfungselement (15) derart an- geordnet ist, dass der Magnetventilanker (9) in Öffnungsrich- tung (14) gegen die Dämpfungskraft arbeitet.4. Solenoid valve according to at least one of claims 1 to 3, da¬ characterized / in that the damping element (15) is arranged such that the solenoid valve armature (9) in the opening direction (14) operates against the damping force.
5. Injektor für ein Common-Rail-Einspritzsystem mit einer Ven¬ tilsteuerung zum Öffnen und Schließen einer Düse, dadurch ge- kennzeichnet, dass ein Magnetventil (8) gemäß dem Anspruch 1 und wahlweise gemäß mindestens einem der Ansprüche 2 bis 4 vor¬ gesehen ist. 5. Injector for a common rail injection system with a valve control for opening and closing a nozzle, characterized in that a solenoid valve (8) according to claim 1 and optionally according to at least one of claims 2 to 4 vor¬ seen is.
PCT/EP2005/052501 2004-07-21 2005-06-01 Electrovalve for an injector for common rail fuel injection systems, comprising a damping element WO2006008208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410035291 DE102004035291A1 (en) 2004-07-21 2004-07-21 Solenoid valve for an injector for common rail fuel injection systems with damping element
DE102004035291.7 2004-07-21

Publications (1)

Publication Number Publication Date
WO2006008208A1 true WO2006008208A1 (en) 2006-01-26

Family

ID=34969248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052501 WO2006008208A1 (en) 2004-07-21 2005-06-01 Electrovalve for an injector for common rail fuel injection systems, comprising a damping element

Country Status (3)

Country Link
DE (1) DE102004035291A1 (en)
TW (1) TW200604432A (en)
WO (1) WO2006008208A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511515A1 (en) * 2011-04-14 2012-10-17 Continental Automotive GmbH Injector for injecting fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020724A1 (en) * 2006-05-04 2007-11-08 Robert Bosch Gmbh Solenoid valve with self-centering anchor bolt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305355B1 (en) * 1998-05-07 2001-10-23 Daimlerchrysler Ag Control device for a high-pressure injection nozzle for liquid injection media
US20030062492A1 (en) * 2001-06-28 2003-04-03 Robert Bosch Gmbh Magnet valve with damped one-piece armature element
US20040026540A1 (en) * 2000-11-23 2004-02-12 Rainer Haeberer Electromagnetic valve for controlling a fuel injection of an internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305355B1 (en) * 1998-05-07 2001-10-23 Daimlerchrysler Ag Control device for a high-pressure injection nozzle for liquid injection media
US20040026540A1 (en) * 2000-11-23 2004-02-12 Rainer Haeberer Electromagnetic valve for controlling a fuel injection of an internal combustion engine
US20030062492A1 (en) * 2001-06-28 2003-04-03 Robert Bosch Gmbh Magnet valve with damped one-piece armature element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511515A1 (en) * 2011-04-14 2012-10-17 Continental Automotive GmbH Injector for injecting fluid

Also Published As

Publication number Publication date
TW200604432A (en) 2006-02-01
DE102004035291A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
EP2220360B1 (en) Switching valve for injectors
DE19640826B4 (en) Storage fuel injection device and pressure control device therefor
DE69820351T2 (en) Fuel injection control device
EP2536942B1 (en) High-pressure fuel injection valve for an internal combustion engine
WO2002042632A2 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1316719B1 (en) Injector with a magnetic valve for controlling an injection valve
EP1203151B1 (en) Two-stage electromagnetic valve for an injector of internal combustion engines
DE10060811A1 (en) Fuel injection system for internal combustion engines
DE10060812A1 (en) Fuel injection system for internal combustion engines
EP1387937B1 (en) Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations
EP1390614B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
DE19740997A1 (en) Fuel injection valve for diesel engines
WO2007141094A1 (en) Fuel injection device for an internal combustion engine
WO2006008208A1 (en) Electrovalve for an injector for common rail fuel injection systems, comprising a damping element
DE10009037A1 (en) Control valve for fuel injection nozzle, has armature plate arranged in damping chamber and is integral with pressure piece that cooperates with valve element
WO2006125689A1 (en) Injector for a fuel-injection system
DE10113008A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
DE102004054589B4 (en) Control valve and injector
DE10038995A1 (en) Fuel metering control method for i.c. engine has setting element for fuel feed valve controlled to provide intermediate valve position under given operating conditions
DE19837213A1 (en) Fuel injection for internal combustion engine
DE102007061946A1 (en) Fuel injection device operating method for internal-combustion engine, involves detecting closing of valve element based on evaluation of voltage applied on piezoelectric actuator according to actuator load
EP2229527B1 (en) On-off valve for injectors
DE10059399B4 (en) Device for improving the injection sequence in fuel injection systems
EP1176306A2 (en) Fuel injection system for internal combustion engine
WO2002086307A1 (en) Fuel injection device for an internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase