WO2006006232A1 - Quantum encryption key delivery system - Google Patents

Quantum encryption key delivery system Download PDF

Info

Publication number
WO2006006232A1
WO2006006232A1 PCT/JP2004/009931 JP2004009931W WO2006006232A1 WO 2006006232 A1 WO2006006232 A1 WO 2006006232A1 JP 2004009931 W JP2004009931 W JP 2004009931W WO 2006006232 A1 WO2006006232 A1 WO 2006006232A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum
receiving means
transmission
key distribution
distribution system
Prior art date
Application number
PCT/JP2004/009931
Other languages
French (fr)
Japanese (ja)
Inventor
Jun'ichi Abe
Katsuhiro Shimizu
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2006527665A priority Critical patent/JPWO2006006232A1/en
Priority to PCT/JP2004/009931 priority patent/WO2006006232A1/en
Publication of WO2006006232A1 publication Critical patent/WO2006006232A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Definitions

  • the present invention relates to a quantum encryption key distribution system, and more particularly to a quantum encryption key distribution system for sharing a quantum encryption key among three or more users.
  • An encryption key distribution system is a system whose purpose is to share a random bit string (encryption key) between transmission / reception means.
  • quantum key distribution technology that can deliver a safe and secure cryptographic key, regardless of the computational capability of the attacker, has attracted attention.
  • Non-Patent Documents 1 and 2 a quantum key distribution technique using a single photon light source known as a BB84 method is widely known (for example, Non-Patent Documents 1 and 2). ).
  • the quantum key distribution technology disclosed in these documents uses the uncertainty (randomness) of the quantum signal bits to avoid eavesdropping by an eavesdropper (sender) and receiving means ( The key can be shared with the recipient.
  • quantum cryptography communication which is the basis of quantum cryptography key distribution technology
  • photons photons
  • 1-bit information is generated by 1 photon so that quantum effects such as the uncertainty principle occur. Is transmitted.
  • the eavesdropper selects an arbitrary basis without knowing the quantum state such as the polarization and phase, and measures the photon, the quantum state changes. Therefore, the receiver can recognize whether or not the transmission data has been wiretapped by confirming the change in the quantum state of the photon.
  • the quantum key distribution technique according to the prior art has a characteristic that the quantum key sharing and the eavesdropper detection are physically guaranteed.
  • Non-Patent Document 1 CH Bennett, and G. Brassard, : Quantum Cryptogra phy: Public Key Distribution and Coin Tossing, In Proceedings of I EEE Conference on Computers, System and signal Processing, Ban galore, India, pp. 175 -179 (DEC. 1984).
  • Patent Document 2 CH Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68, 3121 (1992). Disclosure of the Invention
  • the BB84 system has a problem in that each user who uses the system must have a photon generator.
  • the BB84 system provides a mechanism for sharing a quantum encryption key between two parties, but there is a problem that it is difficult to share an encryption key between three or more parties.
  • the present invention enables three or more users to share a quantum encryption key easily and securely, and sharing a photon generator among a plurality of users or a plurality of systems. It is an object of the present invention to provide a quantum key distribution system that enables the above. Means for solving the problem
  • the quantum cryptography key distribution system that is effective in the present invention has a photon generating means and two or more selectable modulation systems in the quantum cryptography key distribution system for sharing the quantum cryptography key.
  • a transmission means comprising a modulation means, two or more transmission paths connected to the transmission means, and two or more selectable demodulation systems connected to each of the two or more transmission paths.
  • Two or more receiving means including a demodulating means, and the pulse sent to each transmission path is controlled so that two or more photons are not included, and the transmitting means and the 2
  • the modulation system information selected by the transmission unit is exchanged with at least one of the above reception units, and the demodulation system information selected by each of the two or more reception units and photon arrival information are exchanged.
  • Presence / absence information is All of the two or more receiving means receive the photons, and all of the demodulation systems selected by each of the two or more receiving means and the modulation system selected by the transmitting means are exchanged between the two. And the quantum encryption key is shared when the two match.
  • a pulse transmitted to each transmission path includes two or more photons.
  • the modulation system information selected by the transmission means is exchanged between the transmission means and at least one of the two or more reception means, and each of the two or more reception means is selected.
  • Demodulated system information and presence / absence information of photon are exchanged between the receiving means, all of the two or more receiving means receive the photons, and each of the two or more receiving means is selected.
  • the quantum encryption key is shared between two or more receiving means.
  • all of the two or more receiving units receive the photons, and each of the two or more receiving units selects all of the demodulation systems and the transmission system. Since the quantum encryption key is shared when the modulation system selected by the transmission means matches, the ability to easily and safely share the quantum encryption key among three or more users including the sender If you can S, you will have the effect.
  • FIG. 1 is a conceptual diagram showing a configuration of a quantum key distribution system according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a configuration of a quantum key distribution system according to a second embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing a configuration of a quantum key distribution system according to a third embodiment of the present invention.
  • FIG. 4 is a conceptual diagram showing a configuration of a quantum key distribution system according to a fourth embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing the configuration of the quantum key distribution system according to the fifth embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing a configuration example of a quantum key distribution system according to the prior art using the BB84 method.
  • FIG. 7 is a diagram showing a configuration example when a phase modulator is used for each of the modulation means 5 and the demodulation means 7 of the quantum key distribution system shown in FIG.
  • FIG. 1 is a conceptual diagram showing a configuration of the quantum key distribution system according to the first exemplary embodiment of the present invention.
  • the quantum cryptography key distribution system of this embodiment includes a transmission means 1 used on the transmission side, three transmission lines 3a, 3b, 3c connected to the transmission means 1, and a transmission line on the reception side.
  • the transmitting means 1 has a photon generator 4, a modulating means 5, and a demultiplexing means 11, and each receiving means has a demodulating means 7 and a light receiving means 8.
  • a phase modulator, a polarization modulator, or the like can be used as the modulation means 5 and the demodulation means 7, a phase modulator, a polarization modulator, or the like can be used.
  • the photon generator 4 for example, a light source such as a laser diode is generally used.
  • the transmission wavelength is suitable for transmission line 3. Any wavelength can be used.
  • the branching means 11, for example, a light power bra or the like can be used.
  • the transmission lines 3a, 3b, and 3c various optical signal transmission lines such as a single mode optical fiber and a dispersion shifted optical fiber can be used.
  • the transmission line need not be wired, but may be a wireless transmission line such as spatial transmission.
  • FIG. 6 is a conceptual diagram showing a configuration example of a quantum cryptography key distribution system using the BB84 method and working on the prior art.
  • the transmission means 1 includes a photon generator 4, a modulation means 5, and a signal processing means 6a.
  • a phase modulator is used as the modulation means 5.
  • transmission means 1 either [0, ⁇ ] system or [ ⁇ / 2, 3 ⁇ ⁇ 2] system phase modulation system is selected for each pulse, and a signal of “0” or “1” is transmitted on transmission line 3 Sent to.
  • signal transmission two modulation systems are used, and only one photon is used per pulse.
  • the receiving means 2 includes a demodulating means 7, a light receiving means 8, and a signal processing means 6b.
  • a received pulse is observed using an arbitrary demodulation system, and it is determined whether it is "0", "1", or "no photon".
  • the selected modulation / demodulation system information and the presence / absence information of the arrival of the pulse are exchanged by the information exchange means 9 such as a public line that may be intercepted.
  • the information exchange means 9 such as a public line that may be intercepted.
  • many pulses result in “no photons.” Only when the photon is received by the receiving means 2 and the system matches between the transmission and reception, the bit string is shared between the two. The shared bit string is used as a quantum encryption key after error detection and error correction by the error rate detection means 10.
  • FIG. 7 is a diagram showing a configuration example when a phase modulator is used for each of the modulating means 5 and the demodulating means 7 of the quantum key distribution system shown in FIG.
  • the modulation means 5 is constituted by a demultiplexing means l la, a phase modulator 13a, and a multiplexing means 14a
  • the demodulation means 7 is constituted by a demultiplexing means l lb, a phase modulator 13b, and a multiplexing means 14b. Is done.
  • the transmission means 1 selects the [0, ⁇ ] system (“ ⁇ ” measurement system)
  • the phase modulator 13a generates a phase modulation amount “0” for the signal “0”.
  • phase modulator 13a uses the phase modulation amount “ ⁇ / 2” for the signal "0”. Generates a phase modulation amount “3 ⁇ / 2” for signal '.
  • the phase modulator 13b when the receiving means 2 selects the [0, ⁇ ] system (“ ⁇ ” measurement system) as the demodulator, the phase modulator 13b generates the phase modulation amount “0”, and [ ⁇ / 2, When the 3 ⁇ / 2] system (“ ⁇ / 2” measurement system) is selected, the phase modulator 13b generates a phase modulation amount “ ⁇ / 2”.
  • the light receiving means 8 can detect a correct signal only when the transmitting means 1 and the receiving means 2 select the same modulation / demodulation system.
  • the polarization direction observed by means 2 changes to [ ⁇ / 2, 3 ⁇ / 2].
  • the signal in the polarization direction is observed in the [0, ⁇ ] system, which is the same measurement system used in the transmission means 1, in the receiving means 2, the signal "0" and the signal "1" Since “and” are observed with equal probability, the probability that the receiving means 2 observes the signal “0” transmitted by the transmitting device 1 as the signal “ ⁇ ” is 1/4.
  • the number of check bits m is made sufficiently large, the error rate always approaches 25% according to the law of large numbers, so the probability that wiretapping cannot be detected can be made small enough to be ignored. If the number of selectable modulation / demodulation systems is 3 or more, the number of check bits m required to prevent eavesdropping can be reduced. Thus, the presence of an eavesdropper can always be detected by performing error detection between the transmission side and the reception side.
  • This BB84 system has a significant meaning that the sharing of the quantum key and the detection of an eavesdropper are physically guaranteed by quantum mechanical complementarity, which is the principle of quantum mechanics.
  • the receiving means 2a, 2b, and 2c exchange the selected demodulation system information with the presence / absence information of the pulse, and the information is not the measurement result information measured by each receiving means. Even if it is done, the security of quantum key sharing is not compromised, so it can be sent and received using a public line.
  • the bit strings are shared among the three parties.
  • the shared bit string of the receiving means is used as a quantum encryption key between the three parties after error detection and error correction are performed as necessary.
  • the feature is that the three parties sharing the quantum encryption key do not need to have a photon generator.
  • the transmission means 1 does not necessarily need to know the demodulation system selected by the reception means 2a, 2b, 2c. Further, the transmission means 1 does not necessarily need to exchange the selected modulation / demodulation system information with all the reception means 2a, 2b, 2c. That is, any one of the receiving means 2a, 2b, 2c may know the modulation system information of the transmitting means 1. Further, the transmission means 1 does not need to know the quantum encryption key shared by the reception means 2a, 2b, 2c.
  • FIG. 1 shows an example in which the number of receiving means is three, the number of receiving means may be two or four or more.
  • the number of receiving means increases because bit information is shared between receiving means only when all receiving means receive photons and all receiving means adopt the same demodulation system.
  • the quantum key sharing speed decreases.
  • the quantum encryption key sharing rate is independent of the information transmission rate, and in many cases, the quantum encryption key sharing rate is not so important as long as it is above a certain level.
  • control is performed so that two or more photons are not included in a pulse transmitted to each transmission path, and transmission is performed.
  • Means for transmitting between the means and at least one of the two or more receiving means Is exchanged, and the demodulation system information selected by each of the two or more receiving means and the presence / absence information of photon are exchanged between the receiving means, and all of the two or more receiving means are
  • the quantum encryption key is shared. Therefore, multiple users including the sender can share the quantum encryption key easily and securely.
  • FIG. 2 is a conceptual diagram showing a configuration of the quantum key distribution system according to the second exemplary embodiment of the present invention.
  • the difference between the quantum cryptographic key distribution system shown in FIG. 1 and FIG. 1 is that variable attenuators 12a, 12b, and 12c are provided at the three outputs of the demultiplexing means 11.
  • Other configurations are the same as or equivalent to those of the first embodiment, and these portions are denoted by the same reference numerals.
  • variable attenuator is set to 12a, 12b, 12c so that the optical signal power transmitted to transmission lines 3a, 3b, 3c does not exceed 1 photon per SI pulse.
  • noise on the transmission path affects the results measured by the receiving means 2a, 2b, and 2c and the transmission result on the transmission side, so variable attenuation is applied to each of the transmission paths 3a, 3b, and 3c.
  • variable attenuators 12a, 12b, and 12c are inserted into the equipment, and the attenuation can be controlled according to the transmission path characteristics of each transmission path.
  • the variable attenuators 12a, 12b, and 12c may be configured to use, for example, a feedback circuit that monitors light intensity and the like.
  • the quantum key distribution system of this embodiment since it is configured such that a variable attenuator is further provided in two or more transmission paths connected to the transmission means. Therefore, the number of photons per pulse of the optical signal transmitted to each transmission line can be controlled so as not to exceed 1, and the quantum encryption key can be shared reliably and stably.
  • FIG. 3 is a schematic diagram showing the configuration of the quantum key distribution system according to the third embodiment of the present invention. It is a mere idea. The difference between the quantum key distribution system shown in FIG. 1 and FIG. 1 is that transmission means 1 and reception means 2 are provided with respective signal processing means 6a and 6b, and a part of transmission means 1 and reception means 2 ( In the example of FIG. 3, the receiving means 2c) is provided with an error rate detecting means 10 that shares its function. Other configurations are the same as or equivalent to those of the first embodiment, and these portions are denoted by the same reference numerals.
  • an error between transmission and reception is detected by the error rate detection means 10.
  • the error rate detection means 10 By detecting an error between the transmission means and the reception means, it is possible to share the quantum encryption key while reliably detecting the presence of an eavesdropper based on the same principle as that of the conventional technology such as the BB84 method.
  • the major difference from the prior art is that error detection only needs to be performed by the transmission means and a part of the reception means. Since it is not necessary for the transmitting means to know the demodulation system selected by all the receiving means, the transmitting means need not know the quantum encryption key shared by the receiving means.
  • all receiving means can perform error detection with the transmitting means, but it is not essential that all receiving means perform error detection with the transmitting means. Moreover, it does not prevent the receiving means from performing error detection.
  • all of the two or more receiving means receive the photons, and each of the two or more receiving means has selected the demodulation. Since the error rate of the bit string shared between the transmission means and two or more receivers is detected only when all the systems match the modulation system selected by the transmission means, eavesdropping Quantum encryption keys can be shared while reliably detecting the presence of a person.
  • FIG. 4 is a schematic diagram showing a configuration of the quantum key distribution system according to the fourth embodiment of the present invention.
  • the difference between the quantum key distribution system shown in FIG. 3 and FIG. 3 is that the receiving means 2a, 2b, 2c are provided with respective signal processing means 6b_l, 6b_2, 6b_3, and only the receiving means 2a, 2b, 2c (the transmitting means is (Not used) is equipped with error rate detection means 10 that share its functions.
  • Other configurations are the same as or equivalent to those of the third embodiment, and these portions are denoted by the same reference numerals.
  • the transmission means 1 transmits transmission modulation system information. Do not receive any information such as demodulated information or photon reception from the receiving means. In addition, by detecting errors between receiving means, it is possible to detect the presence of an eavesdropper with the same principle as that of the prior art such as the BB84 method, while quantizing with a receiver using three or more receiving means.
  • the encryption key can be shared. However, unlike the prior art, it is sufficient to perform error detection only between the receiving means, without the need for the transmitting means to know the demodulation system of the receiving means. Further, the transmission means may not know the quantum encryption key shared by the reception means. Because of these characteristics, the sender using the transmission means does not have to be an absolutely reliable target. If such a feature is used, for example, a quantum encryption key can be shared only by an arbitrary receiver using a quantum communication channel provided by a third party.
  • the quantum key distribution system of this embodiment all of the two or more receiving units receive the photons, and each of the two or more receiving units selects the demodulation.
  • the error rate of the bit string shared with two or more receivers is detected only when all of the systems match the modulation system selected by the transmission means.
  • the quantum encryption key can be shared only by an arbitrary receiver.
  • FIG. 5 is a conceptual diagram showing a configuration of the quantum key distribution system according to the fifth exemplary embodiment of the present invention.
  • the difference between the quantum key distribution system shown in FIG. 1 and FIG. 1 is that the number of receiving means is increased.
  • Other configurations are the same as or equivalent to those of the third embodiment, and these portions are denoted by the same reference numerals.
  • the demodulation system information mutually selected by the receiving means 2a, 2b, and 2c and the presence / absence information on the arrival of the pulse are exchanged, and the quantum information is exchanged between these three parties.
  • the encryption key is shared.
  • the receiving means 2d and 2e also exchange the demodulated system information selected with each other and the presence / absence information of the arrival of the pulse, and the quantum encryption key is shared between these two parties.
  • the receiving means 2a, 2b, 2c and the receiving means 2d, 2e receive the optical pulse transmitted by the same transmitting means 1, the receiving means The quantum encryption key shared by 2a, 2b, and 2c and the quantum encryption key shared by the receiving means 2d and 2e can be different from each other. Therefore, the same transmission means sends By using optical pulses, multiple groups can share a quantum encryption key almost simultaneously.
  • the optical pulse transmitted by the transmission means having the photon generator can be shared by a plurality of users and a plurality of systems, so that the construction of the system is inexpensive and easy. Arise.
  • the presence of an eavesdropper can be ensured by performing error detection for each group, as in the quantum key distribution system of Embodiment 3 shown in FIG. Detecting force S is positive.
  • the photon generating means is shared by a plurality of quantum encryption key distribution systems. This makes it possible to share photon generators, making the system configuration cheap and simple.
  • the quantum cryptography key distribution system is useful for sharing quantum cryptography keys among a plurality of users or a plurality of systems, and in particular, an object that can be absolutely trusted by a sender.
  • This is suitable as a quantum key distribution system that can flexibly respond to various needs, such as when it is difficult to share a quantum encryption key for each of a plurality of user groups.

Abstract

A quantum encryption key delivery system wherein three or more users can easily and safely share a quantum encryption key and wherein a plurality of users can share a photon generator. There are provided transmitting means (1) comprising photon generating means (4) and modulating means (5); two or more receiving means (2a,2b,2c) comprising demodulating means (7a,7b,7c) connected to the respective ones of two or more transmission paths (3a,3b,3c) connected to the transmitting means (1). It is arranged that pulses transmitted to each transmission path do not include two or more photons. Modulation system information selected by the transmitting means is exchanged between the transmitting means and at least one of the receiving means. Demodulation system information selected by the receiving means and information indicative of whether a photon arrives are exchanged between the receiving means. When all the receiving means receive photons, and all the demodulation systems selected by the receiving means coincide with the modulation system selected by the transmitting means, the quantum encryption key is shared.

Description

明 細 書  Specification
量子喑号鍵配送システム  Quantum 喑 key distribution system
技術分野  Technical field
[0001] 本発明は、量子暗号鍵配送システムに関するものであり、特に、 3者以上のユーザ 間で量子暗号鍵を共有するための量子暗号鍵配送システムに関するものである。 背景技術  The present invention relates to a quantum encryption key distribution system, and more particularly to a quantum encryption key distribution system for sharing a quantum encryption key among three or more users. Background art
[0002] 暗号鍵配送システムは送受信手段間でランダムなビット列(暗号鍵)を共有すること を目的とするシステムである。近年、暗号鍵の中でも、攻撃者の計算能力によらず安 全の保証された暗号鍵を配送することができる量子暗号鍵配送技術が注目されてレ、 る。  An encryption key distribution system is a system whose purpose is to share a random bit string (encryption key) between transmission / reception means. In recent years, quantum key distribution technology that can deliver a safe and secure cryptographic key, regardless of the computational capability of the attacker, has attracted attention.
[0003] 量子暗号鍵配送にかかる従来技術としては、 BB84方式として知られている単一光 子光源を用いた量子暗号鍵配送技術が広く知られている (例えば、非特許文献 1、 2 など)。これらの文献に開示されている量子暗号鍵配送技術は、量子信号ビットの不 確定性 (ランダム性)を利用して、盗聴者の盗聴を回避しつつ送信手段 (送信者)と受 信手段 (受信者)との間で鍵を共有することができる。  [0003] As a conventional technique related to quantum key distribution, a quantum key distribution technique using a single photon light source known as a BB84 method is widely known (for example, Non-Patent Documents 1 and 2). ). The quantum key distribution technology disclosed in these documents uses the uncertainty (randomness) of the quantum signal bits to avoid eavesdropping by an eavesdropper (sender) and receiving means ( The key can be shared with the recipient.
[0004] 量子暗号鍵配送技術のベースとなる量子暗号通信では、通信手段としてフォトン( 光子)が用いられ、不確定性原理等の量子効果が生じるように 1個のフオトンで 1ビッ トの情報を伝送する。このとき、盗聴者が、その偏光および位相等の量子状態を知ら ずに任意の基底を選んでフオトンを測定すると、その量子状態に変化が生じる。した がって、受信側では、このフォトンの量子状態の変化を確認することによって、伝送デ ータが盗聴されたかどうかを認識することができる。すなわち、従来技術にかかる量 子暗号鍵配送技術では量子暗号鍵の共有と盗聴者の検出が物理的に保証されると レ、う特徴を有している。  [0004] In quantum cryptography communication, which is the basis of quantum cryptography key distribution technology, photons (photons) are used as a communication means, and 1-bit information is generated by 1 photon so that quantum effects such as the uncertainty principle occur. Is transmitted. At this time, if the eavesdropper selects an arbitrary basis without knowing the quantum state such as the polarization and phase, and measures the photon, the quantum state changes. Therefore, the receiver can recognize whether or not the transmission data has been wiretapped by confirming the change in the quantum state of the photon. In other words, the quantum key distribution technique according to the prior art has a characteristic that the quantum key sharing and the eavesdropper detection are physically guaranteed.
[0005] 非特許文献 1 : C. H. Bennett, and G. Brassard, : Quantum Cryptogra phy: Public Key Distribution and Coin Tossing, In Proceedings of I EEE Conference on Computers, System and signal Processing, Ban galore, India, pp. 175-179 (DEC. 1984) . 特許文献 2 : C. H. Bennett, "Quantum Cryptography Using Any T wo Nonorthogonal States, " Phys. Rev. Lett. 68, 3121 (1992) . 発明の開示 [0005] Non-Patent Document 1: CH Bennett, and G. Brassard, : Quantum Cryptogra phy: Public Key Distribution and Coin Tossing, In Proceedings of I EEE Conference on Computers, System and signal Processing, Ban galore, India, pp. 175 -179 (DEC. 1984). Patent Document 2: CH Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68, 3121 (1992). Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力 ながら、上記の非特許文献 1、 2などに開示された BB84方式では、送信者は [0006] However, in the BB84 system disclosed in Non-Patent Documents 1 and 2 above, the sender is
1パルスあたり 1フオトン以下の微小な光信号を精度よく送出する必要があるため、複 雑で高価な光子発生器を持たなければならないという課題があった。  There is a problem that a complicated and expensive photon generator must be provided because it is necessary to accurately transmit a minute optical signal of less than 1 photon per pulse.
[0007] また、 BB84方式においては、システムを利用するユーザ個々がフオトン発生器を 持たなければならないとレ、う課題があった。 [0007] Further, the BB84 system has a problem in that each user who uses the system must have a photon generator.
さらに、 BB84方式では 2者間にて量子暗号鍵を共有する仕組みを提供するが、 3 者以上の多者間での暗号鍵共有が難しいという課題があった。  Furthermore, the BB84 system provides a mechanism for sharing a quantum encryption key between two parties, but there is a problem that it is difficult to share an encryption key between three or more parties.
[0008] このような状況に鑑み、本発明は、 3者以上の複数ユーザが量子暗号鍵を容易か つ安全に共有することを可能とし、複数のユーザあるいは複数システム間でフォトン 発生器の共有を可能とする量子暗号鍵配送システムを提供することを目的とする。 課題を解決するための手段 [0008] In view of such a situation, the present invention enables three or more users to share a quantum encryption key easily and securely, and sharing a photon generator among a plurality of users or a plurality of systems. It is an object of the present invention to provide a quantum key distribution system that enables the above. Means for solving the problem
[0009] 本発明に力かる量子暗号鍵配送システムにあっては、量子暗号鍵を共有するため の量子暗号鍵配送システムにおいて、フオトン発生手段と、選択可能な 2系以上の変 調系を有する変調手段と、を具備する送信手段と、前記送信手段に接続された 2経 路以上の伝送路と、前記 2経路以上の伝送路のそれぞれに接続され、選択可能な 2 系以上の復調系を有する復調手段を具備する 2以上の受信手段と、を備え、前記各 伝送路に送出されるパルスには 2つ以上のフオトンが含まれることがないように制御さ れ、前記送信手段と前記 2以上の受信手段のうちの少なくとも一つの受信手段との間 で該送信手段が選択した変調系情報が交換され、前記 2以上の受信手段のそれぞ れが選択した復調系情報と、フオトン到着の有無情報とが該受信手段のそれぞれの 間で交換され、前記 2以上の受信手段の全てがフオトンを受信し、かつ、該 2以上の 受信手段のそれぞれが選択した復調系の全てと、前記送信手段の選択した変調系 とが一致した場合に前記量子暗号鍵を共有することを特徴とする。  [0009] The quantum cryptography key distribution system that is effective in the present invention has a photon generating means and two or more selectable modulation systems in the quantum cryptography key distribution system for sharing the quantum cryptography key. A transmission means comprising a modulation means, two or more transmission paths connected to the transmission means, and two or more selectable demodulation systems connected to each of the two or more transmission paths. Two or more receiving means including a demodulating means, and the pulse sent to each transmission path is controlled so that two or more photons are not included, and the transmitting means and the 2 The modulation system information selected by the transmission unit is exchanged with at least one of the above reception units, and the demodulation system information selected by each of the two or more reception units and photon arrival information are exchanged. Presence / absence information is All of the two or more receiving means receive the photons, and all of the demodulation systems selected by each of the two or more receiving means and the modulation system selected by the transmitting means are exchanged between the two. And the quantum encryption key is shared when the two match.
[0010] 本発明によれば、各伝送路に送出されるパルスには 2つ以上のフオトンが含まれる ことがないように制御され、送信手段と 2以上の受信手段のうちの少なくとも一つの受 信手段との間で送信手段が選択した変調系情報が交換され、 2以上の受信手段の それぞれが選択した復調系情報と、フオトン到着の有無情報とが受信手段のそれぞ れの間で交換され、 2以上の受信手段の全てがフオトンを受信し、かつ、 2以上の受 信手段のそれぞれが選択した復調系の全てと、送信手段の選択した変調系とがー致 した場合に 2以上の受信手段の間で量子暗号鍵が共有される。 [0010] According to the present invention, a pulse transmitted to each transmission path includes two or more photons. The modulation system information selected by the transmission means is exchanged between the transmission means and at least one of the two or more reception means, and each of the two or more reception means is selected. Demodulated system information and presence / absence information of photon are exchanged between the receiving means, all of the two or more receiving means receive the photons, and each of the two or more receiving means is selected. When all of the demodulated systems match the modulation system selected by the transmitting means, the quantum encryption key is shared between two or more receiving means.
発明の効果  The invention's effect
[0011] 本発明に力かる量子暗号鍵配送システムによれば、 2以上の受信手段の全てがフ オトンを受信し、かつ、 2以上の受信手段のそれぞれが選択した復調系の全てと、送 信手段の選択した変調系とがー致した場合に量子暗号鍵を共有するようにしている ので、送信者を含む 3者以上の複数ユーザが量子暗号鍵を容易かつ安全に共有す ること力 Sできるとレ、う効果を奏する。  [0011] According to the quantum key distribution system according to the present invention, all of the two or more receiving units receive the photons, and each of the two or more receiving units selects all of the demodulation systems and the transmission system. Since the quantum encryption key is shared when the modulation system selected by the transmission means matches, the ability to easily and safely share the quantum encryption key among three or more users including the sender If you can S, you will have the effect.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明の実施の形態 1にかかる量子暗号鍵配送システムの構成を示す 概念図である。  FIG. 1 is a conceptual diagram showing a configuration of a quantum key distribution system according to a first embodiment of the present invention.
[図 2]図 2は、本発明の実施の形態 2にかかる量子暗号鍵配送システムの構成を示す 概念図である。  FIG. 2 is a conceptual diagram showing a configuration of a quantum key distribution system according to a second embodiment of the present invention.
[図 3]図 3は、本発明の実施の形態 3にかかる量子暗号鍵配送システムの構成を示す 概念図である。  FIG. 3 is a conceptual diagram showing a configuration of a quantum key distribution system according to a third embodiment of the present invention.
[図 4]図 4は、本発明の実施の形態 4にかかる量子暗号鍵配送システムの構成を示す 概念図である。  FIG. 4 is a conceptual diagram showing a configuration of a quantum key distribution system according to a fourth embodiment of the present invention.
[図 5]図 5は、本発明の実施の形態 5にかかる量子暗号鍵配送システムの構成を示す 概念図である。  FIG. 5 is a conceptual diagram showing the configuration of the quantum key distribution system according to the fifth embodiment of the present invention.
[図 6]図 6は、 BB84方式を用いた従来技術にかかる量子暗号鍵配送システムの構成 例を示す概念図である。  FIG. 6 is a conceptual diagram showing a configuration example of a quantum key distribution system according to the prior art using the BB84 method.
[図 7]図 7は、図 6に示した量子暗号鍵配送システムの変調手段 5および復調手段 7 のそれぞれに位相変調器を用いた場合の構成例を示す図である。  FIG. 7 is a diagram showing a configuration example when a phase modulator is used for each of the modulation means 5 and the demodulation means 7 of the quantum key distribution system shown in FIG.
符号の説明 [0013] 1 送信手段 Explanation of symbols [0013] 1 Transmission means
2, 2a, 2b, 2c, 2d, 2e 受信手段  2, 2a, 2b, 2c, 2d, 2e receiving means
3a, 3b, 3c is送路  3a, 3b, 3c is route
4 フオトン発生器  4 Photon generator
5 変調手段  5 Modulation means
6a, 6b 信号処理手段  6a, 6b Signal processing means
7 復調手段  7 Demodulation means
8 受光手段  8 Light receiving means
9 情報交換手段  9 Information exchange means
10 誤り率検出手段  10 Error rate detection means
11 , 11a, l ib 分波手段  11, 11a, l ib Demultiplexing means
12a, 12b, 12c 可変減衰器  12a, 12b, 12c Variable attenuator
13a, 13b 位相変調器  13a, 13b phase modulator
14a, 14b 合波手段  14a, 14b multiplexing means
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下に添付図面を参照して、本発明にかかる量子暗号鍵配送システムの好適な実 施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるもので はない。  [0014] Exemplary embodiments of a quantum key distribution system according to the present invention will be described below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.
[0015] 実施の形態 1.  [0015] Embodiment 1.
まず、本発明の実施の形態 1にかかる量子暗号鍵配送システムについて説明する 。図 1は、本発明の実施の形態 1にかかる量子暗号鍵配送システムの構成を示す概 念図である。この実施の形態の量子暗号鍵配送システムは、送信側で使用される送 信手段 1と、送信手段 1に接続された 3つの伝送路 3a、 3b、 3cと、受信側の伝送路そ れぞれに接続された受信手段 2a、 2b、 2cと、を備えるように構成される。送信手段 1 はフオトン発生器 4、変調手段 5、分波手段 11を有し、それぞれの受信手段は復調手 段 7、受光手段 8を具備する。ここで、変調手段 5、復調手段 7としては位相変調器、 偏波変調器などを用いることができる。フオトン発生器 4としては、例えば、レーザダイ オードなどの光源を用いるのが一般的である。伝送波長は伝送路 3に適した波長で あれば、いかなる波長であっても構わない。分波手段 11としては、例えば、光力ブラ などを用いることができる。伝送路 3a、 3b、 3cとしては、シングルモード光ファイバ、 分散シフト光ファイバなどの各種光信号用伝送路を用いることができる。また、伝送 路は必ずしも有線である必要はなぐ空間伝送など無線伝送路でも構わなレ、。 First, the quantum key distribution system according to the first exemplary embodiment of the present invention will be described. FIG. 1 is a conceptual diagram showing a configuration of the quantum key distribution system according to the first exemplary embodiment of the present invention. The quantum cryptography key distribution system of this embodiment includes a transmission means 1 used on the transmission side, three transmission lines 3a, 3b, 3c connected to the transmission means 1, and a transmission line on the reception side. Receiving means 2a, 2b, 2c connected thereto. The transmitting means 1 has a photon generator 4, a modulating means 5, and a demultiplexing means 11, and each receiving means has a demodulating means 7 and a light receiving means 8. Here, as the modulation means 5 and the demodulation means 7, a phase modulator, a polarization modulator, or the like can be used. As the photon generator 4, for example, a light source such as a laser diode is generally used. The transmission wavelength is suitable for transmission line 3. Any wavelength can be used. As the branching means 11, for example, a light power bra or the like can be used. As the transmission lines 3a, 3b, and 3c, various optical signal transmission lines such as a single mode optical fiber and a dispersion shifted optical fiber can be used. Also, the transmission line need not be wired, but may be a wireless transmission line such as spatial transmission.
[0016] つぎに、上記に示した本発明に力かる量子暗号鍵配送システムの理解を容易にす るため、 BB84方式を用いた従来技術に力、かる量子暗号鍵配送システムを例にとり、 その動作について説明する。  Next, in order to facilitate understanding of the quantum cryptography key distribution system that can be used in the present invention described above, the quantum cryptography key distribution system that is effective in the prior art using the BB84 system is taken as an example. The operation will be described.
[0017] 図 6は、 BB84方式を用いた従来技術に力かる量子暗号鍵配送システムの構成例 を示す概念図である。同図において、送信手段 1は、フオトン発生器 4、変調手段 5、 信号処理手段 6aを備える。ここでは、変調手段 5として位相変調器を用いるものとし て説明する。送信手段 1では、 [0, π ]系もしくは [ π /2, 3 π Ζ2]系のいずれかの 位相変調系が 1パルスごとに選択され、 "0"または "1 "の信号が伝送路 3に送信され る。信号伝送に際し、 2つの変調系が用いられ、 1パルスあたり 1フオトンしか使わない ことが特徴である。一方、受信手段 2は、復調手段 7、受光手段 8、信号処理手段 6b を備える。受信手段 2では、任意の復調系を用いて受信パルスが観測され、 "0"、 " 1 "、 "フォトン無し"、のいずれであるかが判定される。また、送信手段 1および受信手 段 2では、選択された変復調系情報と、パルスの到着の有無情報とが、盗聴されても よい公衆回線などの情報交換手段 9にて交換される。損失がある伝送路では、多くの パルスが"フオトン無じ'という結果となる。受信手段 2でフオトンが受信され、かつ、送 受信間で系が一致した場合にのみ両者間でビット列が共有される。共有されたビット 列は誤り率検出手段 10にて、誤り検出、誤り訂正された後に、量子暗号鍵として使用 される。  [0017] FIG. 6 is a conceptual diagram showing a configuration example of a quantum cryptography key distribution system using the BB84 method and working on the prior art. In the figure, the transmission means 1 includes a photon generator 4, a modulation means 5, and a signal processing means 6a. Here, description will be made assuming that a phase modulator is used as the modulation means 5. In transmission means 1, either [0, π] system or [π / 2, 3 π Ζ2] system phase modulation system is selected for each pulse, and a signal of “0” or “1” is transmitted on transmission line 3 Sent to. In signal transmission, two modulation systems are used, and only one photon is used per pulse. On the other hand, the receiving means 2 includes a demodulating means 7, a light receiving means 8, and a signal processing means 6b. In the receiving means 2, a received pulse is observed using an arbitrary demodulation system, and it is determined whether it is "0", "1", or "no photon". Further, in the transmission means 1 and the reception means 2, the selected modulation / demodulation system information and the presence / absence information of the arrival of the pulse are exchanged by the information exchange means 9 such as a public line that may be intercepted. In a lossy transmission line, many pulses result in “no photons.” Only when the photon is received by the receiving means 2 and the system matches between the transmission and reception, the bit string is shared between the two. The shared bit string is used as a quantum encryption key after error detection and error correction by the error rate detection means 10.
[0018] また、図 7は、図 6に示した量子暗号鍵配送システムの変調手段 5および復調手段 7のそれぞれに位相変調器を用いた場合の構成例を示す図である。同図において、 変調手段 5は、分波手段 l la、位相変調器 13a、合波手段 14aから構成され、復調 手段 7は、分波手段 l lb、位相変調器 13b、合波手段 14bから構成される。いま、送 信手段 1が [0, π ]系(" π "測定系)を選択する場合には、信号" 0"に対して位相変 調器 13aは位相変調量" 0"を発生し、信号" 1 "に対しては位相変調量" π "を発生す る。送信手段 1が [ π /2, 3 π /2]系(" π /2"測定系)を選択する場合には、信号" 0"に対して位相変調器 13aは位相変調量" π /2"を発生し、信号' Τに対しては位 相変調量" 3 π /2"を発生する。一方、受信手段 2が復調器として [0, π ]系(" π "測 定系)を選択する場合には、位相変調器 13bは位相変調量" 0"を発生し、 [ π /2, 3 π /2]系(" π /2"測定系)を選択する場合には位相変調器 13bは位相変調量" π /2"を発生する。送信手段 1および受信手段 2が、同一の変調 ·復調系を選択した 場合にのみ、受光手段 8は正しい信号を検出することができる。 FIG. 7 is a diagram showing a configuration example when a phase modulator is used for each of the modulating means 5 and the demodulating means 7 of the quantum key distribution system shown in FIG. In the figure, the modulation means 5 is constituted by a demultiplexing means l la, a phase modulator 13a, and a multiplexing means 14a, and the demodulation means 7 is constituted by a demultiplexing means l lb, a phase modulator 13b, and a multiplexing means 14b. Is done. When the transmission means 1 selects the [0, π] system (“π” measurement system), the phase modulator 13a generates a phase modulation amount “0” for the signal “0”. Generates phase modulation amount “π” for signal “1” The When the transmission means 1 selects the [π / 2, 3π / 2] system ("π / 2" measurement system), the phase modulator 13a uses the phase modulation amount "π / 2" for the signal "0". Generates a phase modulation amount “3π / 2” for signal '. On the other hand, when the receiving means 2 selects the [0, π] system (“π” measurement system) as the demodulator, the phase modulator 13b generates the phase modulation amount “0”, and [π / 2, When the 3π / 2] system (“π / 2” measurement system) is selected, the phase modulator 13b generates a phase modulation amount “π / 2”. The light receiving means 8 can detect a correct signal only when the transmitting means 1 and the receiving means 2 select the same modulation / demodulation system.
[0019] 上述の処理のように、 1パルスあたり 1フオトンし力、使用されないので、通信路に送出 された信号を盗聴するためには、盗聴者は一度フォトンを抜き出して観測した後、そ のフオトンを再び通信路に戻さなければならなレ、。しかし、量子力学の不確定性原理 により、フオトンの量子状態に擾乱を与えずに観測を行うことはできないため、上述の プロトコルでは盗聴者が存在すると受信側において 1Z4の確率で誤りが生じることに なる。例えば、送信手段 1から [0, π ]系の信号" 0"が送信された場合、盗聴者が誤 つた [ π /2, 3 π /2]系を選択する確率力 であり、そのとき受信手段 2が観測 する偏光方向は [ π /2, 3 π /2]に変化する。一方、受信手段 2において、この偏 光方向の信号が送信手段 1において使用された測定系と同一の測定系である [0, π ]系で観測された場合、信号" 0"と信号" 1 "とが等確率で観測されるので、送信手 段 1が送信した信号" 0"を受信手段 2が信号' Τとして観測する確率は 1/4となる。  [0019] Like the above-described processing, 1 foot per pulse is used, and since it is not used, in order to eavesdrop on the signal sent to the communication path, the eavesdropper once extracts and observes the photon, and then I have to return Huotong to the communication channel again. However, due to the uncertainty principle of quantum mechanics, observation cannot be performed without disturbing the quantum state of photon, so if there is an eavesdropper in the above protocol, an error will occur with a probability of 1Z4 on the receiving side. Become. For example, when [0, π] system signal “0” is transmitted from transmission means 1, it is the probability that an eavesdropper selects the [π / 2, 3 π / 2] system, which is received at that time. The polarization direction observed by means 2 changes to [π / 2, 3π / 2]. On the other hand, when the signal in the polarization direction is observed in the [0, π] system, which is the same measurement system used in the transmission means 1, in the receiving means 2, the signal "0" and the signal "1" Since “and” are observed with equal probability, the probability that the receiving means 2 observes the signal “0” transmitted by the transmitting device 1 as the signal “Τ” is 1/4.
[0020] チェックビット数 mを十分に大きくすれば、大数の法則によって誤り率は必ず 25% に近づくため、盗聴を検出できない確率は、無視できる程度に十分小さくできる。ま た、選択可能な変 ·復調系の数を 3以上にすれば盗聴防止に要するチェックビット数 mを低減することができる。このように、送信側—受信側間で誤り検出を行うことにより 、盗聴者の存在は必ず検知することができる。なお、この BB84方式は、量子喑号鍵 の共有と盗聴者の検出が量子力学の原理である量子力学的相補性によって物理的 に保証されていることに大きな意味がある。  [0020] If the number of check bits m is made sufficiently large, the error rate always approaches 25% according to the law of large numbers, so the probability that wiretapping cannot be detected can be made small enough to be ignored. If the number of selectable modulation / demodulation systems is 3 or more, the number of check bits m required to prevent eavesdropping can be reduced. Thus, the presence of an eavesdropper can always be detected by performing error detection between the transmission side and the reception side. This BB84 system has a significant meaning that the sharing of the quantum key and the detection of an eavesdropper are physically guaranteed by quantum mechanical complementarity, which is the principle of quantum mechanics.
[0021] つぎに、図 1に戻り、この実施の形態の量子暗号鍵配送システムの動作に関し、変 調手段 5に位相変調器を用いた場合について説明する。送信手段 1では、 [0, π ] 系もしくは [ π /2, 3 π Ζ2]系のいずれかの位相変調系が 1パルスごとに選択され た同一信号が 3つの伝送路 3a、 3b、 3cに略同時に送信される。ここで重要なことは、 いずれの伝送路においても、 1パルスあたりのフォトン数は 1以下となるように制御さ れることである。受信手段 2a、 2b、 2cでは、それぞれが独立に任意の復調系にて受 信パルスが観測され、 "0"、 " 1"、 "フオトン無じ'、のいずれであるかが判定される。受 信手段 2a、 2b、 2cは、選択した復調系情報とパルスの到着の有無情報とが相互に 交換される。また、これらの情報は、各受信手段が測定した測定結果情報ではなぐ たとえ盗聴されたとしても量子暗号鍵共有の安全性を損なうことがないため、公衆回 線を用いて送受することができる。 Next, returning to FIG. 1, the operation of the quantum cryptographic key distribution system of this embodiment will be described in the case where a phase modulator is used as the modulation means 5. In transmission means 1, either [0, π] system or [π / 2, 3 π Ζ2] system is selected for each pulse. The same signal is transmitted almost simultaneously to the three transmission lines 3a, 3b, and 3c. What is important here is that the number of photons per pulse is controlled to be 1 or less in any transmission path. In the receiving means 2a, 2b, and 2c, the received pulse is independently observed in an arbitrary demodulation system, and it is determined whether it is “0”, “1”, or “without photon”. The receiving means 2a, 2b, and 2c exchange the selected demodulation system information with the presence / absence information of the pulse, and the information is not the measurement result information measured by each receiving means. Even if it is done, the security of quantum key sharing is not compromised, so it can be sent and received using a public line.
[0022] 受信手段 2a、 2b、 2cの全てがフオトンを受信し、かつ、 3者が選択した受信系が全 て送信手段の変調系に一致した場合にのみ 3者間でビット列が共有される。受信手 段の共有されたビット列は必要に応じて誤り検出、誤り訂正された後に、 3者間の量 子暗号鍵として使用される。量子暗号鍵を共有する 3者がフォトン発生器を持つ必要 がないことが特徴である。  [0022] Only when all of the receiving means 2a, 2b, and 2c receive photons and the receiving systems selected by the three parties match the modulation system of the transmitting means, the bit strings are shared among the three parties. . The shared bit string of the receiving means is used as a quantum encryption key between the three parties after error detection and error correction are performed as necessary. The feature is that the three parties sharing the quantum encryption key do not need to have a photon generator.
[0023] このとき、送信手段 1は必ずしも受信手段 2a、 2b、 2cが選択した復調系を知る必要 はない。また、送信手段 1は必ずしも受信手段 2a、 2b、 2c全員と選択した変復調系 情報を交換する必要はない。すなわち、受信手段 2a、 2b、 2cのいずれかが、送信手 段 1の変調系情報を知ればよい。また、送信手段 1は受信手段 2a、 2b、 2cで共有さ れた量子暗号鍵を知る必要はない。  At this time, the transmission means 1 does not necessarily need to know the demodulation system selected by the reception means 2a, 2b, 2c. Further, the transmission means 1 does not necessarily need to exchange the selected modulation / demodulation system information with all the reception means 2a, 2b, 2c. That is, any one of the receiving means 2a, 2b, 2c may know the modulation system information of the transmitting means 1. Further, the transmission means 1 does not need to know the quantum encryption key shared by the reception means 2a, 2b, 2c.
[0024] なお、図 1では、受信手段数が 3である例を示したが、受信手段数は 2であってもよ ぐまた、 4以上であっても構わない。  [0024] Although FIG. 1 shows an example in which the number of receiving means is three, the number of receiving means may be two or four or more.
[0025] また、全ての受信手段がフオトンを受信し、かつ、全ての受信手段が同一の復調系 を採用した場合にのみ、受信手段間でビット情報が共有されるため、受信手段数が 増加すると、量子暗号鍵の共有速度は低下する。しかしながら、量子暗号鍵の共有 速度は、情報の伝送速度とは無関係であり、多くの場合、量子暗号鍵の共有速度は 一定以上であればあまり重要ではない。  [0025] In addition, the number of receiving means increases because bit information is shared between receiving means only when all receiving means receive photons and all receiving means adopt the same demodulation system. As a result, the quantum key sharing speed decreases. However, the quantum encryption key sharing rate is independent of the information transmission rate, and in many cases, the quantum encryption key sharing rate is not so important as long as it is above a certain level.
[0026] 以上説明したように、この実施の形態の量子暗号鍵配送システムによれば、各伝送 路に送出されるパルスには 2つ以上のフオトンが含まれることがないように制御され、 送信手段と 2以上の受信手段のうちの少なくとも一つの受信手段との間で送信手段 が選択した変調系情報が交換され、 2以上の受信手段のそれぞれが選択した復調 系情報と、フオトン到着の有無情報とが受信手段のそれぞれの間で交換され、 2以上 の受信手段の全てがフオトンを受信し、かつ、 2以上の受信手段のそれぞれが選択し た復調系の全てと、送信手段の選択した変調系とがー致した場合に量子暗号鍵を共 有するようにしてレ、るので、送信者を含む 3者以上の複数ユーザが量子暗号鍵を容 易かつ安全に共有することができる。 [0026] As described above, according to the quantum key distribution system of this embodiment, control is performed so that two or more photons are not included in a pulse transmitted to each transmission path, and transmission is performed. Means for transmitting between the means and at least one of the two or more receiving means Is exchanged, and the demodulation system information selected by each of the two or more receiving means and the presence / absence information of photon are exchanged between the receiving means, and all of the two or more receiving means are When all of the demodulation systems selected by each of the two or more receiving means and the modulation system selected by the transmitting means coincide with each other, the quantum encryption key is shared. Therefore, multiple users including the sender can share the quantum encryption key easily and securely.
[0027] 実施の形態 2.  Embodiment 2.
図 2は、本発明の実施の形態 2にかかる量子暗号鍵配送システムの構成を示す概 念図である。同図に示す量子暗号鍵配送システムの図 1との相違は、分波手段 1 1の 3つの各出力に可変減衰器 12a、 12b, 12cを備えた点にある。なお、その他の構成 については実施の形態 1の構成と同一、あるいは同等であり、これらの部分について は同一符号を付して示している。  FIG. 2 is a conceptual diagram showing a configuration of the quantum key distribution system according to the second exemplary embodiment of the present invention. The difference between the quantum cryptographic key distribution system shown in FIG. 1 and FIG. 1 is that variable attenuators 12a, 12b, and 12c are provided at the three outputs of the demultiplexing means 11. Other configurations are the same as or equivalent to those of the first embodiment, and these portions are denoted by the same reference numerals.
[0028] 上述のように、量子暗号鍵配送システムでは、 1パルスあたりのフオトン数が 1以下と なるように制御することが重要である。そこで、図 2に示す量子暗号鍵配送システムで は、伝送路 3a、 3b、 3cにそれぞれ送出される光信号力 S Iパルスあたり 1フォトンを超 えないように、可変減衰器を 12a、 12b、 12cをそれぞれ用いて制御している。また、 受信手段 2a、 2b、 2cで測定された結果と送信側の送信結果とが不一致となる要因と して伝送路上のノイズが影響するので、伝送路 3a、 3b、 3cのそれぞれに可変減衰器 を 12a、 12b、 12cを挿入し、各伝送路の伝送路特性に応じた減衰量の制御を可能と する構成としている。なお、可変減衰器 12a、 12b、 12cの制御には、例えば、光強度 などをモニタしたフィードバック回路を用いるように構成すればよい。  [0028] As described above, in the quantum key distribution system, it is important to control so that the number of photons per pulse is 1 or less. Therefore, in the quantum key distribution system shown in Fig. 2, the variable attenuator is set to 12a, 12b, 12c so that the optical signal power transmitted to transmission lines 3a, 3b, 3c does not exceed 1 photon per SI pulse. Are controlled using each. In addition, noise on the transmission path affects the results measured by the receiving means 2a, 2b, and 2c and the transmission result on the transmission side, so variable attenuation is applied to each of the transmission paths 3a, 3b, and 3c. 12a, 12b, and 12c are inserted into the equipment, and the attenuation can be controlled according to the transmission path characteristics of each transmission path. Note that the variable attenuators 12a, 12b, and 12c may be configured to use, for example, a feedback circuit that monitors light intensity and the like.
[0029] 以上説明したように、この実施の形態の量子暗号鍵配送システムによれば、送信手 段に接続される 2経路以上の伝送路に可変減衰器をさらに備えるように構成している ので、各伝送路にそれぞれ送出される光信号の 1パルスあたりのフオトン数が 1を超 えないように制御することができ、量子暗号鍵の共有を確実かつ安定的に行うことが できる。  [0029] As described above, according to the quantum key distribution system of this embodiment, since it is configured such that a variable attenuator is further provided in two or more transmission paths connected to the transmission means. Therefore, the number of photons per pulse of the optical signal transmitted to each transmission line can be controlled so as not to exceed 1, and the quantum encryption key can be shared reliably and stably.
[0030] 実施の形態 3.  [0030] Embodiment 3.
図 3は、本発明の実施の形態 3にかかる量子暗号鍵配送システムの構成を示す概 念図である。同図に示す量子暗号鍵配送システムの図 1との相違は、送信手段 1と受 信手段 2とが、それぞれの信号処理手段 6a、 6bを備え、送信手段 1および受信手段 2の一部(図 3の例では受信手段 2c)がその機能を共有する誤り率検出手段 10を備 えた点にある。なお、その他の構成については実施の形態 1の構成と同一、あるいは 同等であり、これらの部分にっレ、ては同一符号を付して示してレ、る。 FIG. 3 is a schematic diagram showing the configuration of the quantum key distribution system according to the third embodiment of the present invention. It is a mere idea. The difference between the quantum key distribution system shown in FIG. 1 and FIG. 1 is that transmission means 1 and reception means 2 are provided with respective signal processing means 6a and 6b, and a part of transmission means 1 and reception means 2 ( In the example of FIG. 3, the receiving means 2c) is provided with an error rate detecting means 10 that shares its function. Other configurations are the same as or equivalent to those of the first embodiment, and these portions are denoted by the same reference numerals.
[0031] 図 3に示す量子暗号鍵配送システムでは、誤り率検出手段 10によって送受信間の 誤りが検出される。送信手段と受信手段間で誤りを検出することにより、 BB84方式な どの従来技術と同一原理により盗聴者の存在を確実に検出しつつ、量子暗号鍵の 共有が可能となる。ただし、従来技術との大きな相違点は、誤り検出を送信手段と受 信手段の一部とのみで行えばよいことにある。送信手段が全ての受信手段が選択し た復調系を知る必要はないため、送信手段は受信手段が共有した量子暗号鍵を知 らなくてもよい。 In the quantum key distribution system shown in FIG. 3, an error between transmission and reception is detected by the error rate detection means 10. By detecting an error between the transmission means and the reception means, it is possible to share the quantum encryption key while reliably detecting the presence of an eavesdropper based on the same principle as that of the conventional technology such as the BB84 method. However, the major difference from the prior art is that error detection only needs to be performed by the transmission means and a part of the reception means. Since it is not necessary for the transmitting means to know the demodulation system selected by all the receiving means, the transmitting means need not know the quantum encryption key shared by the receiving means.
[0032] なお、全ての受信手段が送信手段との間で誤り検出を行うこともできるが、全ての受 信手段が送信手段との間で誤り検出を行うことは必須ではない。また、受信手段同士 が誤り検出を行うことを妨げるものでもない。  [0032] It should be noted that all receiving means can perform error detection with the transmitting means, but it is not essential that all receiving means perform error detection with the transmitting means. Moreover, it does not prevent the receiving means from performing error detection.
[0033] 以上説明したように、この実施の形態の量子暗号鍵配送システムによれば、 2以上 の受信手段の全てがフオトンを受信し、かつ、 2以上の受信手段のそれぞれが選択し た復調系の全てと、送信手段の選択した変調系とがー致した場合にのみ、送信手段 と、 2以上の受信者との間で共有したビット列の誤り率を検出するようにしているので、 盗聴者の存在を確実に検出しつつ、量子暗号鍵の共有が可能となる。  [0033] As described above, according to the quantum key distribution system of this embodiment, all of the two or more receiving means receive the photons, and each of the two or more receiving means has selected the demodulation. Since the error rate of the bit string shared between the transmission means and two or more receivers is detected only when all the systems match the modulation system selected by the transmission means, eavesdropping Quantum encryption keys can be shared while reliably detecting the presence of a person.
[0034] 実施の形態 4.  [0034] Embodiment 4.
図 4は、本発明の実施の形態 4にかかる量子暗号鍵配送システムの構成を示す概 念図である。同図に示す量子暗号鍵配送システムの図 3との相違は、受信手段 2a、 2b、 2cがそれぞれの信号処理手段 6b_l、 6b_2、 6b_3を備え、受信手段 2a、 2b、 2cのみ(送信手段は利用しない)がその機能を共有する誤り率検出手段 10を備えた 点にある。なお、その他の構成については実施の形態 3の構成と同一、あるいは同等 であり、これらの部分にっレ、ては同一符号を付して示してレ、る。  FIG. 4 is a schematic diagram showing a configuration of the quantum key distribution system according to the fourth embodiment of the present invention. The difference between the quantum key distribution system shown in FIG. 3 and FIG. 3 is that the receiving means 2a, 2b, 2c are provided with respective signal processing means 6b_l, 6b_2, 6b_3, and only the receiving means 2a, 2b, 2c (the transmitting means is (Not used) is equipped with error rate detection means 10 that share its functions. Other configurations are the same as or equivalent to those of the third embodiment, and these portions are denoted by the same reference numerals.
[0035] 図 4に示す量子暗号鍵配送システムでは、送信手段 1は送信変調系情報の送信を 行い、受信手段からの復調系の情報 ·光子受信などの一切の情報を受け取らない。 また、受信手段間で誤りを検出することにより、 BB84方式などの従来技術と同一原 理により盗聴者の存在を確実に検出しつつ、 3以上の受信手段を利用する受信者と の間で量子暗号鍵の共有が可能となる。ただし、従来技術と大きき異なり、送信手段 が受信手段の復調系を知る必要がなぐ誤り検出を受信手段間のみで行えばよい。 また、送信手段は、受信手段が共有した量子暗号鍵を知らなくてもよい。このような特 徴から、送信手段を利用する送信者が絶対的に信頼できる対象でなくともよい。この ような特徴を利用すれば、例えば、第 3者が提供した量子通信路を利用して任意の 受信者のみで量子暗号鍵の共有が可能となる。 In the quantum cryptographic key distribution system shown in FIG. 4, the transmission means 1 transmits transmission modulation system information. Do not receive any information such as demodulated information or photon reception from the receiving means. In addition, by detecting errors between receiving means, it is possible to detect the presence of an eavesdropper with the same principle as that of the prior art such as the BB84 method, while quantizing with a receiver using three or more receiving means. The encryption key can be shared. However, unlike the prior art, it is sufficient to perform error detection only between the receiving means, without the need for the transmitting means to know the demodulation system of the receiving means. Further, the transmission means may not know the quantum encryption key shared by the reception means. Because of these characteristics, the sender using the transmission means does not have to be an absolutely reliable target. If such a feature is used, for example, a quantum encryption key can be shared only by an arbitrary receiver using a quantum communication channel provided by a third party.
[0036] 以上説明したように、この実施の形態の量子暗号鍵配送システムによれば、 2以上 の受信手段の全てがフオトンを受信し、かつ、 2以上の受信手段のそれぞれが選択し た復調系の全てと、送信手段の選択した変調系とがー致した場合にのみ、 2以上の 受信者との間で共有したビット列の誤り率を検出するようにしているので、誤り検出を 受信手段間のみで行えばよぐまた、送信手段にとって受信手段が共有した量子喑 号鍵を知る必要がないので、任意の受信者のみで量子暗号鍵の共有が可能となる。  [0036] As described above, according to the quantum key distribution system of this embodiment, all of the two or more receiving units receive the photons, and each of the two or more receiving units selects the demodulation. The error rate of the bit string shared with two or more receivers is detected only when all of the systems match the modulation system selected by the transmission means. In addition, since it is not necessary for the transmitting means to know the quantum key shared by the receiving means, the quantum encryption key can be shared only by an arbitrary receiver.
[0037] 実施の形態 5.  [0037] Embodiment 5.
図 5は、本発明の実施の形態 5にかかる量子暗号鍵配送システムの構成を示す概 念図である。同図に示す量子暗号鍵配送システムの図 1との相違は、受信手段の数 力 ¾となった点にある。なお、その他の構成については実施の形態 3の構成と同一、 あるいは同等であり、これらの部分については同一符号を付して示している。  FIG. 5 is a conceptual diagram showing a configuration of the quantum key distribution system according to the fifth exemplary embodiment of the present invention. The difference between the quantum key distribution system shown in FIG. 1 and FIG. 1 is that the number of receiving means is increased. Other configurations are the same as or equivalent to those of the third embodiment, and these portions are denoted by the same reference numerals.
[0038] 図 5に示す量子暗号鍵配送システムでは、受信手段 2a、 2b、 2cにて相互に選択し た復調系情報とパルスの到着の有無情報とが交換され、これらの 3者間で量子暗号 鍵が共有される。略同時に、受信手段 2d、 2eも互いに選択した復調系情報とパルス の到着の有無情報とが交換され、これらの 2者間で量子暗号鍵が共有される。ところ が、すでに上述した量子通信の原理から明らかように、受信手段 2a、 2b、 2cと、受信 手段 2d、 2eとが同一な送信手段 1が送出する光パルスを受信したとしても、受信手 段 2a、 2b、 2cが共有する量子暗号鍵と、受信手段 2d、 2eが共有する量子暗号鍵と を異なる量子暗号鍵とすることが可能となる。したがって、同一の送信手段が送出す る光パルスを用いて、複数のグループが略同時に量子暗号鍵を共有することができ る。 In the quantum key distribution system shown in FIG. 5, the demodulation system information mutually selected by the receiving means 2a, 2b, and 2c and the presence / absence information on the arrival of the pulse are exchanged, and the quantum information is exchanged between these three parties. The encryption key is shared. At substantially the same time, the receiving means 2d and 2e also exchange the demodulated system information selected with each other and the presence / absence information of the arrival of the pulse, and the quantum encryption key is shared between these two parties. However, as is clear from the principle of quantum communication already described above, even if the receiving means 2a, 2b, 2c and the receiving means 2d, 2e receive the optical pulse transmitted by the same transmitting means 1, the receiving means The quantum encryption key shared by 2a, 2b, and 2c and the quantum encryption key shared by the receiving means 2d and 2e can be different from each other. Therefore, the same transmission means sends By using optical pulses, multiple groups can share a quantum encryption key almost simultaneously.
[0039] また、力かる構成によれば、フオトン発生器を有する送信手段が送出する光パルス を複数のユーザ、複数のシステムで共有できるので、システムの構築が安価かつ簡 易となるという効果が生ずる。  [0039] Further, according to the powerful configuration, the optical pulse transmitted by the transmission means having the photon generator can be shared by a plurality of users and a plurality of systems, so that the construction of the system is inexpensive and easy. Arise.
[0040] なお、図 5のシステムにおいても、図 3に示す実施の形態 3の量子喑号鍵配送シス テムと同様に、各グループごとに誤り検出を行うことで、盗聴者の存在を確実に検出 すること力 S可肯 となる。 In the system of FIG. 5 as well, the presence of an eavesdropper can be ensured by performing error detection for each group, as in the quantum key distribution system of Embodiment 3 shown in FIG. Detecting force S is positive.
[0041] 以上説明したように、この実施の形態の量子暗号鍵配送システムによれば、フオトン 発生手段を複数の量子暗号鍵配送システムで共有するようにしているので、複数の ユーザあるいは複数システム間でフォトン発生器の共有が可能となり、システムの構 成を安価、かつ簡易な構成とすることができる。  [0041] As described above, according to the quantum key distribution system of this embodiment, the photon generating means is shared by a plurality of quantum encryption key distribution systems. This makes it possible to share photon generators, making the system configuration cheap and simple.
産業上の利用可能性  Industrial applicability
[0042] 以上のように、本発明に力かる量子暗号鍵配送システムは、複数のユーザあるいは 複数システム間での量子暗号鍵の共有に有用であり、特に、送信者が絶対的に信頼 できる対象でなレ、場合や、複数のユーザグループごとに個別に量子暗号鍵を共有し たい場合など、さまざまなニーズに柔軟に対応できる量子暗号鍵配送システムとして 好適である。 As described above, the quantum cryptography key distribution system according to the present invention is useful for sharing quantum cryptography keys among a plurality of users or a plurality of systems, and in particular, an object that can be absolutely trusted by a sender. This is suitable as a quantum key distribution system that can flexibly respond to various needs, such as when it is difficult to share a quantum encryption key for each of a plurality of user groups.

Claims

請求の範囲 The scope of the claims
[1] 量子暗号鍵を共有するための量子暗号鍵配送システムにおいて、  [1] In a quantum key distribution system for sharing a quantum key,
フオトン発生手段と、選択可能な 2系以上の変調系を有する変調手段と、を具備す る送信手段と、  Transmitting means comprising photon generating means and modulation means having two or more selectable modulation systems;
前記送信手段に接続された 2経路以上の伝送路と、  Two or more transmission lines connected to the transmission means;
前記 2経路以上の伝送路のそれぞれに接続され、選択可能な 2系以上の復調系を 有する復調手段を具備する 2以上の受信手段と、  Two or more receiving means connected to each of the two or more transmission paths and including a demodulating means having two or more selectable demodulation systems;
を備え、  With
前記各伝送路に送出されるパルスには 2つ以上のフオトンが含まれることがないよう に制御され、  The pulses sent to each transmission line are controlled so as not to contain two or more photons,
前記送信手段と前記 2以上の受信手段のうちの少なくとも一つの受信手段との間で 該送信手段が選択した変調系情報が交換され、  Modulation system information selected by the transmission means is exchanged between the transmission means and at least one reception means of the two or more reception means,
前記 2以上の受信手段のそれぞれが選択した復調系情報と、フオトン到着の有無 情報とが該受信手段のそれぞれの間で交換され、  The demodulation system information selected by each of the two or more receiving means and the presence / absence information of photon are exchanged between the receiving means,
前記 2以上の受信手段の全てがフオトンを受信し、かつ、該 2以上の受信手段のそ れぞれが選択した復調系の全てと、前記送信手段の選択した変調系とがー致した場 合に前記量子暗号鍵を共有することを特徴とする量子暗号鍵配送システム。  When all of the two or more receiving means receive the photons, and all of the demodulation systems selected by each of the two or more receiving means and the modulation system selected by the transmitting means match. A quantum key distribution system, wherein the quantum encryption key is shared.
[2] 前記送信手段と、該送信手段に接続された 2経路以上の伝送路との間にそれぞれ 挿入される可変減衰器をさらに備えることを特徴とする請求項 1に記載の量子暗号鍵 酉己送システム。 [2] The quantum cryptography key 酉 according to claim 1, further comprising a variable attenuator inserted between the transmission unit and two or more transmission paths connected to the transmission unit. Self-sending system.
[3] 前記 2以上の受信手段の全てがフオトンを受信し、かつ、該 2以上の受信手段のそ れぞれが選択した復調系の全てと、前記送信手段の選択した変調系とがー致した場 合にのみ、該送信手段と、該 2以上の受信者との間でビット列を共有し、該共有した ビット列の誤り率を検出する誤り率検出手段をさらに備えることを特徴とする請求項 1 に記載の量子暗号鍵配送システム。  [3] All of the two or more receiving means receive photons, and all of the demodulation systems selected by each of the two or more receiving means and the modulation system selected by the transmitting means are Only when it does, the transmission means and the two or more recipients share a bit string, and further comprise an error rate detection means for detecting an error rate of the shared bit string. Item 2. The quantum key distribution system according to item 1.
[4] 前記 2以上の受信手段の全てがフオトンを受信し、かつ、該 2以上の受信手段のそ れぞれが選択した復調系の全てと、前記送信手段の選択した変調系とがー致した場 合にのみ、該 2以上の受信者との間でビット列を共有し、該共有したビット列の誤り率 を検出する誤り率検出手段をさらに備えることを特徴とする請求項 1に記載の量子暗 号鍵配送システム。 [4] All of the two or more receiving means receive photons, and all of the demodulation systems selected by each of the two or more receiving means and the modulation system selected by the transmitting means are Only if it does, share the bit string with the two or more recipients, and the error rate of the shared bit string 2. The quantum encryption key distribution system according to claim 1, further comprising error rate detection means for detecting.
[5] 前記フオトン発生手段は、複数の量子暗号鍵配送システムで共有されることを特徴 とする請求項 1に記載の量子暗号鍵配送システム。  5. The quantum key distribution system according to claim 1, wherein the photon generating means is shared by a plurality of quantum key distribution systems.
[6] 変調系および復調系として位相変調器を用いることを特徴とする請求項 1に記載の 量子暗号鍵配送システム。 6. The quantum key distribution system according to claim 1, wherein a phase modulator is used as the modulation system and the demodulation system.
[7] 変調系および復調系として偏波変調器を用いることを特徴とする請求項 1に記載の 量子暗号鍵配送システム。 7. The quantum key distribution system according to claim 1, wherein a polarization modulator is used as the modulation system and the demodulation system.
PCT/JP2004/009931 2004-07-12 2004-07-12 Quantum encryption key delivery system WO2006006232A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006527665A JPWO2006006232A1 (en) 2004-07-12 2004-07-12 Quantum cryptographic key distribution system
PCT/JP2004/009931 WO2006006232A1 (en) 2004-07-12 2004-07-12 Quantum encryption key delivery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009931 WO2006006232A1 (en) 2004-07-12 2004-07-12 Quantum encryption key delivery system

Publications (1)

Publication Number Publication Date
WO2006006232A1 true WO2006006232A1 (en) 2006-01-19

Family

ID=35783598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009931 WO2006006232A1 (en) 2004-07-12 2004-07-12 Quantum encryption key delivery system

Country Status (2)

Country Link
JP (1) JPWO2006006232A1 (en)
WO (1) WO2006006232A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116520A (en) * 2005-10-21 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> Quantum private key delivery system and method
JP2009055346A (en) * 2007-08-27 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> Quantum key delivery system
JP2009147460A (en) * 2007-12-11 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Quantum encryption apparatus
JP2011510583A (en) * 2008-01-25 2011-03-31 キネテイツク・リミテツド Multi-community network with quantum key distribution
JP2015142339A (en) * 2014-01-30 2015-08-03 株式会社東芝 Quantum key delivery device, quantum key delivery system and quantum key delivery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037593A (en) * 2001-07-25 2003-02-07 Mitsubishi Electric Corp Optical signal transmitter and method for optical signal transmission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0717896B1 (en) * 1993-09-09 1999-01-07 BRITISH TELECOMMUNICATIONS public limited company System and method for key distribution using quantum cryptography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037593A (en) * 2001-07-25 2003-02-07 Mitsubishi Electric Corp Optical signal transmitter and method for optical signal transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MU Y. ET AL: "Multi-user quantum cryptography", PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, 1994, pages 245 - 250, XP002980290 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116520A (en) * 2005-10-21 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> Quantum private key delivery system and method
JP2009055346A (en) * 2007-08-27 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> Quantum key delivery system
JP2009147460A (en) * 2007-12-11 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Quantum encryption apparatus
JP2011510583A (en) * 2008-01-25 2011-03-31 キネテイツク・リミテツド Multi-community network with quantum key distribution
JP2015142339A (en) * 2014-01-30 2015-08-03 株式会社東芝 Quantum key delivery device, quantum key delivery system and quantum key delivery method

Also Published As

Publication number Publication date
JPWO2006006232A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
CN108809638B (en) Apparatus and method for decoy state tri-state quantum key distribution
JP5631743B2 (en) Quantum cryptography equipment
US7760883B2 (en) Any-point-to-any-point (AP2AP) quantum key distribution protocol for optical ring network
US8650401B2 (en) Network having quantum key distribution
EP1755269B1 (en) Secret communication system and method for generating shared secret information
JP4398374B2 (en) Cryptographic communication device
US7787628B2 (en) Double phase encoding quantum key distribution
EP2533459B1 (en) Optical transmission device and receiving device for yuen encryption, optical transmission method and receiving method for yuen encryption, and encrypted communication system
EP2003812A2 (en) Method and device for managing cryptographic keys in secret communications network
US20140098955A1 (en) Quantum enabled security for optical communications
WO2021213631A1 (en) Improved cryptographic method and system
KR20170133245A (en) Method, apparatus and system for code based quantum key distribution
Thangavel et al. Performance of integrated quantum and classical cryptographic model for password authentication
WO2006006232A1 (en) Quantum encryption key delivery system
JP2007189517A (en) Quantum cryptography device
Malathy et al. Quantum Cryptographic Techniques
Marhoefer et al. Applicability of quantum cryptography for securing mobile communication networks
WO2023096586A2 (en) Quantum key generation method and system
Grice et al. Quantum Key Distribution for the Smart Grid
Fujiwara et al. 3-1 Research and Development of Quantum Key Distribution Network in NICT
Cincotti On the security of spectrally encoded quantum-encryption protocols
Kumar Practical quantum communications for telecom networks
Antoniades et al. Quantum cryptography: The ultimate solution to secure data transmission?
Thorne Quantum Cryptography
Jackson Quantum Cryptography and Secure Data Transfer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006527665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase