WO2006005777A1 - Sistema automático de caracterización de suelos - Google Patents

Sistema automático de caracterización de suelos Download PDF

Info

Publication number
WO2006005777A1
WO2006005777A1 PCT/ES2004/070043 ES2004070043W WO2006005777A1 WO 2006005777 A1 WO2006005777 A1 WO 2006005777A1 ES 2004070043 W ES2004070043 W ES 2004070043W WO 2006005777 A1 WO2006005777 A1 WO 2006005777A1
Authority
WO
WIPO (PCT)
Prior art keywords
blades
soil
sensors
data
motor
Prior art date
Application number
PCT/ES2004/070043
Other languages
English (en)
French (fr)
Inventor
Gregorio Sanchez Mezquita
Margarita Matilde ROS MUÑOZ
Eugenio Villanueva Martinez
María Dolores del CASTILLO SOBRINO
Original Assignee
Consejo Superior De Investigaciones Científicas
Spin Off Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Spin Off Technology, S.L. filed Critical Consejo Superior De Investigaciones Científicas
Priority to PCT/ES2004/070043 priority Critical patent/WO2006005777A1/es
Publication of WO2006005777A1 publication Critical patent/WO2006005777A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2294Sampling soil gases or the like

Definitions

  • the present invention consists of an automatic multisensory system for the remote characterization of a soil, mainly for cultivation, which allows determining the proportion of its different chemical components. .
  • the system analyzes the collected data and automatically establishes the quality of the soil allowing a quick action on the ground in case of any disturbance or variation of the desired conditions.
  • These disturbances can endanger not only crops, if they are agricultural soils, but, in general, produce in the medium and long term an irremediable effect on biomass and microbial activity, closely related to soil fertility.
  • the cultivation soils are geographically far from the agronomists, the implementation of an autonomous system for obtaining information and remote data transmission favors the supervision and / or control of large areas.
  • the system as a whole consists of a country of extraction and transmission of data, which will be located on the land under study, and another part of reception and management thereof. Specifically, it is the mechanism for extracting information about the conditions of a land that is novel.
  • This system integrates in a single team a set of sensors, as many as are necessary for the purpose of the soil study, which can be expanded, depending on the needs, easily without the intervention of specialists. This sensory integration lowers the cost of the study and improves the measurement time.
  • An essential feature of the system is its ease of use since it does not require any manipulation by experts in computer science or electronics which facilitates its handling to an agricultural worker without specialization.
  • the ultimate goal of this system is to allow a group of experts in edaphology and agriculture to analyze the conditions under which crops of large geographical areas are developed for scientific, statistical or advisory purposes automatically and with the lowest possible costs.
  • the usual operation to characterize a soil consists in the laboratory analysis of a soil sample at specific moments of time. Just transferring the sample implies a disturbance of the sample. In addition, the time elapsed between the extraction of the sample and its analysis and subsequent obtaining of results introduces an uncertainty about the real-time conditions of the soil.
  • the bibliography studied on the subject provides only information on laboratory sample studies using specific sensors and the integration of the data obtained from them is carried out manually and at a later time, leaving the data obsolete with respect to the conditions present in the sampled terrain.
  • the invention that represents the system presented in this report is intended to solve the problems existing in current solutions, since it proposes a continuous multisensory information extraction system, integrated into a single device, located on the ground to be analyzed and which It transmits this information remotely to a control device.
  • the automatic soil characterization system consists of two parts: the Control Segment and the Remote Segment.
  • the Control Segment consists essentially of a computer that tracks one or multiple Remote Segments. For this, you must have an Internet connection and specific software to configure the remote computers that are in charge. Communications with the Remote Segment follow a specific protocol for transmitting TCP / IP packets that can be encrypted, according to the user's needs, so the use of the appropriate software is absolutely necessary.
  • the connection of the control center and the remote system can be either continuous, either at the request of the control center or periodically governed by the remote system. The choice of one of the three possibilities depends fundamentally on the availability or not of the source of energy and the costs allowed in communications. It can also be passed from one mode to another dynamically according to the needs.
  • the information accumulated by the sensors can also be downloaded from the remote system to the control center in the form of email. Once the mail with the data has been received, the control center can store and process them in the most convenient way. All remote system configuration possibilities are governed by the control center.
  • the Remote Segment consists of a communications device, which is responsible for managing all communications with the sensor or actuator modules, through a serial channel that uses a specific protocol for packet transmission, has high noise immunity and allows long cable distances
  • the serial channel protocol has a dynamic address assignment mechanism, which allows the control center to be informed when a module has been added or removed from the channel.
  • the communications device has a series of parameters controlled by the control center and which are: key to perform encrypted communications, date and time, date and time of the next connection, time between connections, pin, if communications are made through of a GSM or GPRS MODEM, MODEM configuration commands, Internet access server (ISP) telephone number, ISP access user name, access password, IP address and control center server port, address IP and port of an alternative server to above, IP address of the SMTP server for sending email, IP address of the POP server for receiving email, username and password of the POP server, number of connection attempts allowed, connection mode with the control center , data update mode (email or not) and energy saving modes.
  • ISP Internet access server
  • the communications device has information on events that occurred during disconnection periods, modules currently connected to it and various types of errors generated, and may inform the control center of any incidents.
  • a variable number of modules are connected to the serial channel, which are the sensors and / or actuators involved in a specific application.
  • each module will consist of one or several sensors and / or actuators and an interface with the serial channel, the sensor / actuators and the interface being integrated in the same housing or not.
  • the interface's job is to convert the physical signals from the sensor into signals from the serial channel, in addition to providing the appropriate communications protocol.
  • the modules should also provide, where possible, energy saving mechanisms, a dynamic channel address assignment system and, when necessary, some data recording mechanism.
  • the entire remote system needs a power source whose capacity depends strongly on the consumption of the connected modules.
  • a power source and a converter are needed to adapt it to the levels required by the system.
  • the power source can be a photovoltaic solar panel with its corresponding accumulators.
  • a device For the determination of the concentration of gases present in a soil sample under study, a device is used that basically removes the earth by means of blades that rotate in a chamber where the emanating gases accumulate so that the different sensors can Determine your degree of concentration.
  • the device consists of a triangular platform with rounded vertices to avoid possible damage, with three adjustable screws, one at each vertex, which are anchored in the ground to adapt to the ground level and prevent the device from rotating.
  • a 150 mm diameter tube is mounted on this platform that forms the chamber where the gases accumulate, which can be released from the ground, and where the sensors are arranged for the parameters to be analyzed.
  • This chamber has two blades that rotate in solidarity with an axis activated by an engine and are responsible for removing the earth.
  • This shaft is coupled to the platform by means of a guide bushing and to the motor by means of gears.
  • the device consists of a second shaft with a motor coupled to it by means of a gear that, when rotated, advances the entire shaft and blade assembly to deepen the land sample. The movement of the two engines is synchronized and allows the entire earth to be removed.
  • the necessary control devices are also mounted on the platform. Once the earth removal process has been completed, a period of time is expected to allow the release of gases and the gas sensors are read. The rest of the sensors are also sampled at this time to have all the data taken at the same time.
  • the described device allows a precise measurement of the gases that are mixed with the earth at different depths, which allows to know the evolution of the concentration of the gases object of control. Once the collected data related to the soil conditions have been transmitted, they can be processed through data mining techniques that will allow characterizing the soil, predict the evolution of its characteristic parameters and, therefore, evaluate the possible corrective actions to be taken. out on it.
  • Figure 1- Structure of the coupling device for the capture of gases emitted by a soil sample.
  • Figure 2- Block structure of the constituent parts of the so-called Remote Segment.
  • the number and type of both the concentration sensors (Gl..Gn) and the rest of the sensors (Hl..Hn) can be determined based on the objectives of the field study (biological control of dependent pathogens of temperature and humidity to know soil fertility, excess organic or inorganic fertilization to improve the growth of a crop, etc).
  • a photovoltaic solar energy plate (A) of Im 2 of surface connected to a regulator (B) is placed next to the system to recharge 12V batteries with which to power the entire assembly.
  • the remote communications device (C) incorporates a GSM or GPRS MODEM (D) in PCMCIA card format with the antenna (E) incorporated.
  • the whole assembly must be protected sufficiently to withstand different atmospheric conditions. Spread over the terrain in question and forming a mesh, other similar systems are located to cover the entire terrain. All the information, once collected and processed, will allow experts to get a rough idea of the conditions under which the soil under study is being developed.
  • a non-volatile memory incorporated in each sensor module can store the recorded values of each sensor for one week. This information together with the start date of the recording and the sampling period allow the instants in which the data was collected to be recomposed in the control center.
  • the remote communications device (C) is configured to connect weekly to the planned SMTP server and send all the data stored in the sensor modules at a low hourly rate. Once this operation was done, the sensor modules would have their memory empty to fill up throughout the following week. An email will be sent to the control center with an attached file containing the weekly sensor data.
  • a specific software would be responsible for translating this data into the appropriate format for storing it in a database. After storage, experts can analyze the data together with the models extracted through data mining techniques to issue a report of recommendations or for statistical purposes.
  • the communications device (C) Immediately after successfully sending the email with the data, the communications device (C) checks if there is pending mail on the assigned POP server and, if so, downloads and processes it by sending the data of the modules New settings Once these operations have been successfully completed, the ISP is disconnected.
  • the gas production process is carried out with the device (I), described in Figure 1, which removes the earth by means of blades (1) that rotate in a chamber (2) embedded in the ground to be studied.
  • This device consists of a triangular table (3) with three adjustable screws (8) that introduced into the ground prevent the assembly from rotating and also allows it to adjust the measurement depth.
  • a chamber (2) is mounted in a cylindrical way so that the emanated gases accumulate therein and where the sensors (9) are coupled.
  • the blades (1) that revolve around the shaft (5) governed by the motor (7).
  • the movement of the two engines (11, 7) is synchronized and allows the entire earth to be removed.
  • the process of removing the earth is done before the measurement and with enough time for the gases to accumulate in the chamber (2).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Soil Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Se presenta un sistema automático de caracterización de suelos capaz de determinar en qué proporción se encuentran distintos componentes químicos de una muestra de un terreno. Este sistema consta de dispositivo multisensorial integrado que permite disponer de un solo equipo capaz de medir simultáneamente los parámetros característicos de un suelo, transmitirlos de forma remota a un dispositivo de control y analizarlos cualitativa y cuantitativamente en tiempo real para llevar a cabo operaciones de vigilancia, supervisión y control a distancia de un campo de cultivo.

Description

SISTEMA AUTOMÁTICO DE CARACTERIZACIÓN DE SUELOS
OBJETO DE LA INVENCIÓN La presente invención, tal y como se expresa en el título de esta memoria descriptiva, consiste en un sistema automático multisensorial para la caracterización a distancia de un suelo, principalmente de cultivo, que permite determinar la proporción de sus distintos componentes químicos. El sistema analiza los datos recogidos y establece automáticamente la calidad del suelo permitiendo una actuación rápida sobre el terreno en caso de producirse cualquier perturbación o variación de las condiciones deseadas. Estas perturbaciones pueden poner en peligro no sólo cultivos, en caso de ser suelos agrícolas, sino, en general, producir a medio y largo plazo un efecto irremediable en la biomasa y la actividad microbiana, estrechamente relacionadas con la fertilidad del suelo. Debido a que, generalmente, los suelos de cultivo se encuentran alejados geográficamente de los expertos agrónomos, la implementación de un sistema autónomo de obtención de información y de transmisión remota de datos favorece la supervisión y/o control de extensas áreas.
El sistema en su conjunto consta de una paite de extracción y transmisión de datos, que estará situada en los terrenos bajo estudio, y otra parte de recepción y gestión de los mismos. En concreto, es el mecanismo de extracción de la información sobre las condiciones de un terreno lo que resulta novedoso.
Este sistema integra en un solo equipo un conjunto de sensores, tantos como sean necesario para el objetivo del estudio del suelo, que puede ser ampliado, en función de las necesidades, de forma sencilla sin la intervención de especialistas. Esta integración sensorial abarata el coste del estudio y mejora el tiempo de medida.
Puesto que, en la mayoría de los casos, los terrenos a estudiar se encuentran alejados de la fuentes de energía convencionales, se ha diseñado un sistema autónomo que puede autoabastecerse de energía solar. Las comunicaciones entre el dispositivo de extracción de datos y el de recepción y gestión tiene lugar mediante telefonía fija o móvil, dependiendo de las necesidades de la aplicación.
Una característica esencial del sistema es su facilidad de uso ya que no requiere ninguna manipulación por parte de expertos en informática o electrónica lo que facilita su manejo a un trabajador agrícola sin especialización. El objetivo final de este sistema es permitir que un grupo de expertos en edafología y agricultura puedan analizar las condiciones en que se desarrollan los cultivos de extensas zonas geográficas con fines científicos, estadísticos o de asesoría de forma automática y con los menores costes posibles.
ANTECEDENTESDELAINVENCIÓN
En la actualidad, la operativa habitual para caracterizar un suelo consiste en el análisis en laboratorio de una muestra de suelo en momentos de tiempo puntuales. El solo traslado de la muestra implica una perturbación de la misma. Además, el tiempo transcurrido entre la extracción de la muestra y su análisis y posterior obtención de resultados introduce una incertidumbre sobre las condiciones en tiempo real del suelo. La bibliografía estudiada sobre el tema aporta únicamente información sobre estudios de muestras en laboratorio usando sensores específicos y la integración de los datos obtenidos de ellos se lleva a cabo manualmente y en un tiempo siempre posterior, quedando los datos obsoletos con respecto a las condiciones presentes en el terreno muestreado.
La invención que representa el sistema que se presenta en esta memoria tiene como finalidad solventar los inconvenientes existentes en las soluciones actuales, ya que propone un sistema de extracción de información multisensorial continua, integrado en un solo equipo, situado en el suelo a analizar y que transmite de forma remota dicha información a un dispositivo de control.
El dispositivo de control o parte del sistema encargada de la recepción y gestión de los datos se encuentra desarrollada y recogida en la patente "Dispositivo para sistemas de telemedida y/o telecontrol" de Spin Off Technology, S. L., con número de publicación 2176125 y número de solicitud 200101789, con fecha de presentación 17.01.2001 y fecha de concesión 8.01.2004. Esta misma empresa, Spin Off Technology, S.L., es co- solicitante de la invención descrita en esta memoria. DESCRIPCIÓN DE LA INVENCIÓN
El sistema automático de caracterización de suelos se compone de dos partes: el Segmento de Control y el Segmento Remoto.
El Segmento de Control consta fundamentalmente de un ordenador que realiza el seguimiento de uno o múltiples Segmentos Remotos. Para ello debe disponer de conexión a Internet y un software específico para configurar los equipos remotos que están a su cargo. Las comunicaciones con el Segmento Remoto siguen un protocolo específico de transmisión de paquetes TCP/IP que pueden estar encriptados, según las necesidades del usuario, por lo que el uso del software apropiado es absolutamente necesario. Dependiendo de la configuración final del Segmento Remoto la conexión del centro de control y del sistema remoto puede ser bien continua, bien a petición del centro de control o periódica gobernada por el sistema remoto. La elección de una de las tres posibilidades depende fundamentalmente de la disponibilidad o no de fuente de energía y de los costes permitidos en las comunicaciones. Puede también pasarse de un modo a otro de forma dinámica según las necesidades. En el tercer modo, puede además descargarse la información acumulada por los sensores desde el sistema remoto al centro de control en forma de correo electrónico. Una vez recibido el correo con los datos, el centro de control puede almacenarlos y procesarlos de la forma más conveniente. Todas las posibilidades de configuración del sistema remoto son gobernadas por el centro de control.
El Segmento Remoto consta de un dispositivo de comunicaciones, que se encarga de gestionar todas las comunicaciones con los módulos de sensores o actuadores, a través de un canal serie que utiliza un protocolo específico de transmisión de paquetes, tiene una alta inmunidad al ruido y permite largas distancias de cable. El protocolo del canal serie tiene un mecanismo de asignación dinámica de direcciones, que permite informar al centro de control de cuándo un módulo ha sido añadido o quitado del canal. El dispositivo de comunicaciones tiene una serie de parámetros controlados por el centro de control y que son: clave para realizar comunicaciones encriptadas, fecha y hora, fecha y hora de la siguiente conexión, tiempo entre conexiones, pin, si las comunicaciones se realizan a través de un MODEM GSM o GPRS, comandos de configuración del MODEM, número de teléfono del servidor de acceso a Internet (ISP), nombre de usuario de acceso al ISP, contraseña de acceso, dirección IP y puerto del servidor del centro de control, dirección IP y puerto de un servidor alternativo al anterior, dirección IP del servidor SMTP para el envío de correo electrónico, dirección IP del servidor POP para la recepción de correo electrónico, nombre de usuario y contraseña del servidor POP, numero de intentos de conexión permitidos, modo de conexión con el centro de control, modo de actualización de los datos (correo electrónico o no) y modos de ahorro de energía. Además de estos parámetros el dispositivo de comunicaciones dispone de información sobre eventos ocurridos durante períodos de desconexión, módulos actualmente conectados a él y diversos tipos de errores generados, pudiendo informar al centro de control de las incidencias habidas. Al canal serie se le conectan un numero variable de módulos que son los sensores y/o actuadores que intervienen en una aplicación concreta. En general, cada módulo estará compuesto por uno o varios sensores y/o actuadores y una interfaz con el canal serie pudiendo estar el/los sensores-actuadores y la interfaz integrados en un mismo alojamiento o no. La labor de la interfaz es convertir las señales físicas del sensor en señales del canal serie, además de proveer del protocolo adecuado de comunicaciones. Los módulos deben además suministrar, cuando sea posible, mecanismos de ahorro de energía, un sistema de asignación dinámica de direcciones de canal y, cuando sea necesario, algún mecanismo de registro de datos.
Todo el sistema remoto necesita de una fuente de energía cuya capacidad depende fuertemente del consumo de los módulos conectados. En general, se necesita una fuente de energía y un conversor para adaptarla a los niveles requeridos por el sistema. Opcionalmente, la fuente de energía puede ser un panel solar fotovoltaico con sus correspondientes acumuladores.
Para la determinación de la concentración de gases presentes en una muestra de suelo sometida a estudio se utiliza un dispositivo que, básicamente, remueve la tierra por medio de unas cuchillas que giran en una cámara donde se acumulan los gases emanados para que los distintos sensores puedan determinar su grado de concentración. El dispositivo consta de una plataforma de forma triangular con los vértices redondeados para evitar posibles daños, con tres tornillos ajustables, uno en cada vértice, que se anclan en el terreno para adaptarse al nivel del suelo y evitar el giro del dispositivo.
Sobre esta plataforma se monta un tubo de 150 mm de diámetro que conforma la cámara donde se acumulan los gases, que se pueden desprender del terreno, y donde se disponen los sensores para los parámetros que se pretenden analizar. En el interior de esta cámara hay dos cuchillas que giran solidarias con un eje activado por un motor y que son las encargadas de remover la tierra. Este eje se acopla a la plataforma por medio de un casquillo guía y al motor por medio de unos engranajes. Para permitir que las cuchillas giren en distintas profundidades, y así remover la tierra de toda la cámara, el dispositivo consta de un segundo eje con un motor acoplado a él mediante un engranaje que, al girar, hace avanzar todo el conjunto del eje y cuchillas para profundizar en la muestra de tierra. El movimiento de los dos motores está sincronizado y permite remover toda la tierra. Sobre la plataforma también se montan los dispositivos de control necesarios. Una vez realizado el proceso de remover la tierra se espera un período de tiempo para permitir la liberación de gases y se procede a realizar la lectura de los sensores de gas. El resto de los sensores también se muestrea en este momento para tener todos los datos tomados en el mismo instante de tiempo. El dispositivo descrito permite una medida precisa de los gases que se encuentran mezclados con la tierra a distinta profundidad, lo que permite conocer la evolución de la concentración de los gases objeto de control. Una vez transmitidos los datos recogidos relativos a las condiciones del suelo, éstos pueden ser procesados mediante técnicas de minería de datos que permitirán caracterizar el suelo, predecir la evolución de los parámetros característicos del mismo y, por tanto, evaluar las posibles acciones correctivas a llevar a cabo sobre el mismo.
BREVE ENUNCIADO DE LAS FIGURAS
Figura 1- Estructura del dispositivo acoplador para la captura de gases emitidos por una muestra de tierra. Figura 2- Estructura de bloques de las partes constituyentes del denominado Segmento Remoto.
DESCRIPCIÓN DE UN EJEMPLO DE REALIZACIÓN DE LA INVENCIÓN A continuación se describe una típica aplicación en la que se medirá la concentración de Oxígeno y Dióxido de Carbono emitido por el terreno de muestra. El acoplador (I) (Figuras 1 y 2) entre la tierra y los sensores de concentración o captación (Gl..Gn) estará parcialmente enterrado a la profundidad deseada y los sensores (Gl..Gn) conectados de tal forma que puedan recibir las emanaciones de gas. Alrededor de este conjunto se sitúan otros sensores (Hl..Hn) entre los que se pueden encontrar: sensor de humedad relativa, temperatura, fotómetro, higrómetro, sensor de humedad y ph. El número y tipo tanto de los sensores de concentración (Gl..Gn) como del resto de sensores (Hl..Hn) se pueden determinar en función de los objetivos del estudio que se lleve a cabo del terreno (control biológico de patógenos dependientes de la temperatura y la humedad para conocer la fertilidad del suelo, exceso de fertilización orgánica o inorgánica para mejorar el crecimiento de un cultivo, etc).
Para la provisión de energía eléctrica se sitúa junto al sistema una placa de energía solar fotovoltaica (A) de Im2 de superficie conectada a un regulador (B) para recargar unas baterías de 12V con las que alimentar todo el conjunto. Para las comunicaciones con la central de control, el dispositivo remoto de comunicaciones (C) incorpora un MODEM GSM o GPRS (D) en formato tarjeta PCMCIA con la antena (E) incorporada. Todo el conjunto debe protegerse lo suficiente como para soportar distintas condiciones atmosféricas. Repartido por el terreno en cuestión y formando una malla se sitúan otros sistemas similares para cubrir todo el terreno. Toda la información, una vez recogida y procesada, permitirá a los expertos hacerse una idea bastante aproximada de las condiciones en las que se está desarrollando el suelo en estudio. En esta aplicación, las variaciones de los valores medidos son lentas y los cambios suelen apreciarse en minutos por lo que el período de muestreo puede variar entre 1 y 255 minutos. Una memoria no volátil incorporada en cada módulo sensor (Hl..Hn, Gl..Gn) podrá almacenar los valores registrados de cada sensor durante una semana. Esta información junto con la fecha de inicio del registro y el período de muestreo permiten recomponer en el centro de control los instantes en los que se han recogido los datos. El dispositivo de comunicaciones remoto (C) se configura para que semanalmente y en una hora de tarifa baja, se conecte al servidor SMTP previsto y envíe todos los datos almacenados en los módulos sensores. Una vez realizado esta operación, los módulos sensores tendrían su memoria vacía para irse llenando durante toda la semana siguiente. Al centro de control le llegará un correo electrónico con un fichero adjunto que contiene los datos semanales de los sensores. Un software específico se encargaría de traducir estos datos al formato adecuado para almacenarlos en una base de datos. Posteriormente a su almacenamiento, los expertos podrán analizar los datos junto con los modelos extraídos mediante técnicas de minería de datos para emitir un informe de recomendaciones o con fines estadísticos.
Inmediatamente después de enviar con éxito el correo electrónico con los datos, el dispositivo de comunicaciones (C) comprueba si hay correo pendiente en el servidor POP que tenga asignado y, si es así, lo descarga y lo procesa enviando a los módulos los datos de configuración nuevos. Una vez completadas estas operaciones con éxito se procede a la desconexión del ISP.
El proceso de producción de gases se realiza con el dispositivo (I), descrito en la Figura 1, que remueve la tierra por medio de unas cuchillas (1) que giran en una cámara (2) empotrada en el suelo que se quiere estudiar. Este dispositivo consta de una mesa (3) de forma triangular con tres tornillos (8) ajustables que introducidos en el terreno impiden al conjunto girar y además permite que éste se ajuste la profundidad de medición. Sobre esta mesa (3) se monta una cámara (2) de forma cilindrica con objeto de que se acumulen en ella los gases emanados y donde se acoplan los sensores (9). En el interior de esta cámara se encuentran las cuchillas (1) que giran alrededor del eje (5) gobernado por el motor (7). Para permitir el giro de las cuchillas (1) a diferentes profundidades se dispone de un segundo eje con motor (11) acoplado mediante el engranaje (12) que al girar hace avanzar todo el conjunto del eje de giro (5) de las cuchillas (1). El movimiento de los dos motores (11, 7) se realiza sincronizado y permite remover toda la tierra.
El proceso de remover la tierra se realiza con anterioridad a la medición y con suficiente tiempo para que los gases se acumulen en la cámara (2).

Claims

REIVINDICACIONES
1.- Sistema automático multisensorial de caracterización de suelos gobernado remotamente, con autonomía, caracterizado porque la información necesaria para ser enviada a distancia se obtiene mediante un dispositivo (I) que remueve la tierra por medio de unas cuchillas (1) que giran en una cámara de forma cilindrica (2) empotrada en el suelo con objeto de que se acumulen en ella los gases emanados y donde se sitúan unos sensores (9) que miden la concentración de los mismos; que los datos que contienen las concentraciones se enviarán remotamente por medio de un sistema de comunicaciones. Que dicho dispositivo (I) consta de una mesa (3) de forma triangular con tres tomillos (8) ajustables que, introducidos en el terreno, impiden al conjunto girar permitiendo además variar la profundidad de medición; que las cuchillas (1) giran alrededor del eje (5) gobernado por el motor (7) acoplado a la mesa (3) por medio de un casquillo guía (4) y al motor por medio de unos engranajes (10) y que para permitir el giro de las cuchillas (1) a diferentes profundidades se dispone de un segundo eje con motor (11) acoplado mediante el engranaje (12) que al girar hace avanzar todo el conjunto del eje de giro (5) de las cuchillas (1) .
PCT/ES2004/070043 2004-06-18 2004-06-18 Sistema automático de caracterización de suelos WO2006005777A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/070043 WO2006005777A1 (es) 2004-06-18 2004-06-18 Sistema automático de caracterización de suelos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2004/070043 WO2006005777A1 (es) 2004-06-18 2004-06-18 Sistema automático de caracterización de suelos

Publications (1)

Publication Number Publication Date
WO2006005777A1 true WO2006005777A1 (es) 2006-01-19

Family

ID=35783539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070043 WO2006005777A1 (es) 2004-06-18 2004-06-18 Sistema automático de caracterización de suelos

Country Status (1)

Country Link
WO (1) WO2006005777A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163709A1 (pt) * 2012-05-04 2013-11-07 Lemos Filho-Manuel Xavier Disposição aplicada em equipamento para investigação de solo
CN108133381A (zh) * 2017-12-21 2018-06-08 四川科库科技有限公司 农资监管方法与系统
CN116046475A (zh) * 2023-03-29 2023-05-02 哈尔滨医科大学 一种医疗废水酸碱度检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834194A (en) * 1987-11-13 1989-05-30 Manchak Frank Method and apparatus for detection of volatile soil contaminants in situ
WO1997004213A1 (en) * 1993-11-01 1997-02-06 Terranalysis Corporation Hazardous waste characterizer and remediation method and system
ES2115549A1 (es) * 1996-10-08 1998-06-16 Sidsa Semiconductores Investig Sistema automatizado, via rapido, para el control de nutrientes de pl antas cultivables.
JP2003035633A (ja) * 2001-07-19 2003-02-07 West Japan Environmental Technical Center Inc 土壌中揮発成分の採取方法及び採取装置
US20030136174A1 (en) * 2002-01-18 2003-07-24 Edwards Nelson T. Automated soil gas monitoring chamber
ES2222056A1 (es) * 2001-09-07 2005-01-16 Consejo Sup. Investigaciones Cientif. Sistema automatico de caracterizacion de suelos.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834194A (en) * 1987-11-13 1989-05-30 Manchak Frank Method and apparatus for detection of volatile soil contaminants in situ
US4834194C1 (en) * 1987-11-13 2002-09-03 Manchak Frank Method and apparatus for detection of volatile soil contaminants in situ
WO1997004213A1 (en) * 1993-11-01 1997-02-06 Terranalysis Corporation Hazardous waste characterizer and remediation method and system
ES2115549A1 (es) * 1996-10-08 1998-06-16 Sidsa Semiconductores Investig Sistema automatizado, via rapido, para el control de nutrientes de pl antas cultivables.
JP2003035633A (ja) * 2001-07-19 2003-02-07 West Japan Environmental Technical Center Inc 土壌中揮発成分の採取方法及び採取装置
ES2222056A1 (es) * 2001-09-07 2005-01-16 Consejo Sup. Investigaciones Cientif. Sistema automatico de caracterizacion de suelos.
US20030136174A1 (en) * 2002-01-18 2003-07-24 Edwards Nelson T. Automated soil gas monitoring chamber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163709A1 (pt) * 2012-05-04 2013-11-07 Lemos Filho-Manuel Xavier Disposição aplicada em equipamento para investigação de solo
CN108133381A (zh) * 2017-12-21 2018-06-08 四川科库科技有限公司 农资监管方法与系统
CN116046475A (zh) * 2023-03-29 2023-05-02 哈尔滨医科大学 一种医疗废水酸碱度检测装置
CN116046475B (zh) * 2023-03-29 2023-06-27 哈尔滨医科大学 一种医疗废水酸碱度检测装置

Similar Documents

Publication Publication Date Title
CN103529783B (zh) 一种基于北斗/gis的甘蔗种植监测装置
CN101535838B (zh) 用于地震数据采集的配置工具和方法
US20140165713A1 (en) Systems, devices, and methods for environmental monitoring in agriculture
US20050207939A1 (en) Water-quality assessment system
Abbate et al. Deploying a communicating automatic weather station on an Alpine Glacier
EP3421988A1 (en) Device and a method for the continuous measurement of one or more tree staticity
WO2006005777A1 (es) Sistema automático de caracterización de suelos
CN104697586A (zh) 一种土壤温室气体排放与生境信息集成采集器
ES2222056B1 (es) Sistema automatico de caracterizacion de suelos.
CN204479102U (zh) 一种土壤温室气体排放与生境信息集成采集器
CN212364285U (zh) 多功能便携式土壤参数测量装置
CN101769862B (zh) 分布式大气偏振模式检测系统及系统控制方法
CN103454279A (zh) 一种原位扫描装置
Das et al. Establishing lora based local agri-sensor network through sensor plugin modules and lorawan data concentrator for extensive agriculture automation
US11189178B2 (en) Remote sensor monitoring using LED transmission
CN103837663B (zh) 一种腾散力自动测试系统及方法
CN103454700A (zh) 不同森林类型环境因子观测数据采集装置
Sorokin Wireless sensor networks for agriculture systems
CN203396712U (zh) 一种原位扫描装置
Hirafuji et al. Advanced sensor-network with field monitoring servers and metbroker
Palethorpe et al. Real‐time physical data acquisition through a remote sensing platform on a polar lake
KR20120044116A (ko) 신발 부착형 토양정보 수집장치
El Amraouiyine et al. Design of real-time monitoring system for aquaculture sea-cages with GPRS and embedded systems
Li et al. Environment Factors Monitoring System Based on CAN bus.
CN212254183U (zh) 一种农业一体化数据采集装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase