WO2006004116A1 - Water-containing material freezing/thawing apparatus and method therefor - Google Patents

Water-containing material freezing/thawing apparatus and method therefor Download PDF

Info

Publication number
WO2006004116A1
WO2006004116A1 PCT/JP2005/012407 JP2005012407W WO2006004116A1 WO 2006004116 A1 WO2006004116 A1 WO 2006004116A1 JP 2005012407 W JP2005012407 W JP 2005012407W WO 2006004116 A1 WO2006004116 A1 WO 2006004116A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
moisture
containing material
phase change
water
Prior art date
Application number
PCT/JP2005/012407
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Shindo
Kodo Kawase
Yuichi Ogawa
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2006004116A1 publication Critical patent/WO2006004116A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing

Definitions

  • the present invention relates to an apparatus and method for freezing and thawing water-containing materials such as water and ice, foods, and DNA samples.
  • Non-Patent Document 1 reports the measurement results of the ice optical constants at the terahertz frequency.
  • Non-Patent Document 2 reports the optical constants of ice from ultraviolet to microwave.
  • Non-Patent Document 3 describes general physical properties of water.
  • Patent Document 1 has been proposed as a device that utilizes changes in physical properties when phase changes to hydro ice.
  • the "automatic ice making device" of Patent Document 1 is a device in which a phase change detection sensor 52 for detecting a phase change of water in an ice making container 51 to ice is attached to an ice making container installation part.
  • this phase change detection sensor 52 includes an excitation electrode 54 connected to a high-frequency oscillator 53, and a detection coil for reception that receives an electromagnetic wave that is insulated from the excitation electrode and oscillates from the excitation electrode.
  • the phase change of the water in the ice making container surrounding the receiving detection coil is captured by the change in the resonant voltage induced in the receiving detection coil or the change in the resonant frequency as a change in conductivity and dielectric constant. Is.
  • Non-Patent Document 1 Chun Zhang et al. "Optical constant of ice Ih crystal at terahertz frequencies", APPLIED PHYSICS LETTERS, Vol. 7 9, No. 4, 2001, P491-493
  • Non-Patent Document 2 Stephen G. Warren “Optical constant of ice from the ultraviolet to the microwave ", APPLIED OPTICS, Vol. 23, No. 8, 1984, P1206-1225
  • Non-Patent Document 3 Marvin R. Querry et al. "Water (H20) HANDBOOK OF OPTICAL CONSTANTS OF SOLIDS II, 1991, P1059-1077 [0007] Patent Document 1: Japanese Utility Model Publication No. 5-8360," Automatic Ice Maker "
  • Patent Document 1 detects a phase change of water as a change in conductivity and dielectric constant.
  • this method has a problem that it cannot detect a phase change process in which water and ice are mixed. For this reason, extra cooling was required even after the phase change, and there was a limit to further improving the ice making speed.
  • the cells may be destroyed by the growth of ice crystals when icing the moisture, and the quality may be degraded. It is most desirable to keep it cool. However, in the past, such a supercooled state could not be detected.
  • the present invention has been developed to solve the above-described problems.
  • the purpose of the present invention is to accurately detect the phase change state during freezing or thawing of water contained in water and ice, food, DNA samples, etc., thereby increasing the ice making speed and supercooling.
  • To provide a device and a method for freezing and thawing moisture-containing materials that can maintain the state confirm the frozen state of the entire object from the outside, hold the entire object immediately before thawing, and shorten the thawing time. is there.
  • a cooling and radiating device that cools or dissipates heat containing moisture, including moisture, Wavelength of 0. lmn!
  • a millimeter wave irradiation device that emits a millimeter wave of up to 100 mm, a millimeter wave detection device that detects the millimeter wave that has passed through the moisture-containing material,
  • a phase change detection device for calculating the absorption amount of the moisture-containing material from the irradiation output and detection output of the millimeter wave and detecting the phase change state of the moisture-containing material
  • a water-freezing and thawing device comprising: a detected phase change state force; and a cold thawing control device that controls the cooling and heat dissipation device.
  • a cooling / dissipating step for cooling or dissipating the moisture-containing material containing moisture
  • Wavelength of 0. lmn A millimeter wave irradiation step of irradiating a millimeter wave of up to 100 mm; a millimeter wave detection step of detecting the millimeter wave that has passed through the moisture-containing material;
  • the absorption coefficient changes greatly during the phase change process. It can detect the phase change state accurately by calculating the absorption coefficient of water-containing substances using water of ⁇ 100mm. Therefore, it is possible to feed back the detected phase change state and maintain the absorption coefficient within a predetermined range, thereby increasing the ice making speed, maintaining the supercooled state, and confirming the complete freezing of the entire object from the outside. The entire object can be held immediately before thawing to shorten the thawing time.
  • the millimeter wave irradiation device includes a millimeter wave oscillator that oscillates a millimeter wave having a frequency of 100 kHz to 5 OGHz, and an oscillation that irradiates the millimeter wave toward a moisture-containing material. It consists of a horn antenna for
  • the millimeter wave detection device includes a reception horn antenna that receives the millimeter wave that has passed through the moisture-containing material, a power sensor that detects the received millimeter wave and converts it into an electrical signal, and the electrical signal force is also output as a millimeter wave. And a power meter for detecting
  • the entire millimeter wave having a frequency of 100 kHz to 50 GHz oscillated by a millimeter wave oscillator can be obtained.
  • the horn antenna for oscillation can accurately irradiate the moisture content.
  • the entire millimeter wave that has passed through the moisture-containing material can be received by the receiving horn antenna, and the detection output can be accurately detected by this force power sensor and power meter. Therefore, it is possible to minimize the millimeter waves scattered without passing through the moisture content, accurately calculate the absorption coefficient, and accurately detect the phase change state during freezing or thawing. .
  • the apparatus and method for freezing and thawing water-containing materials of the present invention accurately detects the phase change state during freezing or thawing of water contained in water and ice, food, DNA samples, etc. This can increase the ice making speed, maintain the supercooled state, confirm the complete freezing of the entire object from the outside, and hold the entire object immediately before thawing to shorten the thawing time. It has excellent effects such as being able to.
  • FIG. 1 is a schematic diagram of an “automatic ice making device” of [Patent Document 1].
  • FIG. 2 is an overall configuration diagram of the freezing and thawing device of the present invention.
  • FIG. 3 is a flowchart of the freeze-thawing method of the present invention.
  • FIG. 4 Relationship between water and ice absorption coefficient and wavelength.
  • FIG. 5 is a measurement result of an absorption coefficient according to the first embodiment of the present invention.
  • FIG. 6 is a measurement result of an absorption coefficient according to the second embodiment of the present invention.
  • FIG. 7 is a measurement result of an absorption coefficient according to the third embodiment of the present invention.
  • FIG. 2 is an overall configuration diagram of the freezing and thawing device of the present invention.
  • the freezing and thawing device 10 of the present invention includes a cooling and radiating device 12, a millimeter wave irradiation device 14, a millimeter wave detection device 16, a phase change detection device 18, and a cold thawing control device 20.
  • the cooling heat dissipating device 12 includes a freezing container 12a that contains a water-containing material 1 containing water, a refrigerator 12b that cools or dissipates heat in the freezing container, and a temperature at which the temperature of the water-containing material 1 is detected. It consists of a detector 12c (for example, a thermocouple).
  • the millimeter wave irradiation device 14 has a water content of 1 with a wavelength of 0.1 lmn! ⁇ 100mm millimeter wave 2 Irradiate the target millimeter wave).
  • the millimeter wave irradiation device 14 has a frequency of 100 kHz to 5
  • It consists of a millimeter wave oscillator 14a that oscillates OGHz irradiation millimeter wave 2 and an oscillating horn antenna 14b that irradiates the irradiation millimeter wave 2 toward moisture-containing materials.
  • the millimeter wave detection device 16 detects a millimeter wave 3 that has passed through the moisture-containing material 1 (hereinafter referred to as a transmitted millimeter wave).
  • the millimeter wave detection device 16 includes a receiving horn antenna 16a that receives the transmitted millimeter wave 3 that has passed through the moisture-containing material 1, and a power sensor 16b that detects the received transmitted millimeter wave 3 and converts it into an electrical signal.
  • the converted electric signal force also comprises a parameter 16c for detecting the output of the transmitted millimeter wave 3.
  • the phase change detection device 18 calculates the absorption coefficient of the moisture-containing material from the irradiation outputs and detection outputs of the millimeter waves 2 and 3, and detects the phase change state of the moisture-containing material.
  • the cold thawing control device 20 controls the detected phase change state force cooling heat dissipation device 12.
  • phase change detection device 18 and the cold thawing control device 20 are, for example, P
  • the detection data of the temperature detector 12c is also the cold thawing control device 20 or
  • FIG. 3 is a flowchart of the freeze-thaw method of the present invention.
  • the freezing and thawing method of the present invention comprises a cooling heat release step Sl, a millimeter wave irradiation step S2, a millimeter wave detection step S3, a phase change detection step S4, and a speed control step S5.
  • the water-containing material 1 containing water is cooled or radiated by the cooling and heat radiating device 12.
  • the water content 1 is irradiated with the millimeter wave 2 (irradiation millimeter wave) having a wavelength of 0.1 mm to LOOmm by the millimeter wave irradiation device 14.
  • the millimeter wave detection device 16 detects the millimeter wave 3 (transmitted millimeter wave) that has passed through the moisture-containing material 1.
  • phase change detection step S4 the phase change detection device 18 calculates the absorption amount of the moisture-containing substance 1 from the irradiation outputs and detection outputs of the millimeter waves 2 and 3, and detects the phase change state of the moisture-containing substance.
  • control step S5 the cooling or radiating rate of the moisture-containing material 1 is maintained by the cold thawing control device 20 so as to maintain the absorption coefficient within a predetermined range from the detected phase change state. To control.
  • FIG. 4 is a graph showing the relationship between the absorption coefficient of water and ice and the wavelength.
  • the horizontal axis represents the wavelength and frequency of electromagnetic waves
  • the vertical axis represents the absorption coefficient.
  • the solid line in the figure indicates solid (ice), and the alternate long and short dash line indicates liquid (water).
  • the absorption coefficient of water and ice is greatly different in the region where the wavelength is about 100 / ⁇ ⁇ (0.1 mm) or more.
  • the absorption coefficient of ice and water at 35GHz are each 42 cm "1, 7 X 10- 3 cm- 1 mm, there are about 6000-fold difference.
  • the wavelength at which the absorption coefficient changes greatly during the phase change process is 0. lmn! Since a millimeter wave of ⁇ 100 mm is used, the absorption coefficient of moisture-containing material 1 containing moisture can be calculated accurately and its phase change state can be detected accurately. Therefore, it is possible to feed back the detected phase change state and maintain the absorption coefficient within a predetermined range, thereby increasing the ice making speed, maintaining the supercooled state, and completely freezing the entire object from the outside. It can be confirmed and the entire object can be held immediately before thawing to shorten the thawing time.
  • a gun oscillator (TERA BEAM, oscillation frequency 35GHZ) was used as the millimeter oscillator (mmW-Source).
  • the maximum output power is 10mW and continuous oscillation is possible.
  • the rated input voltage is 6.5V.
  • the horn antenna used was Custom MZW H022R, the gain was 24 dBi, and the measured full width at half maximum was 14.53 deg.
  • the power transmitted through the horn antenna is a waveguide?
  • detection was performed with a power sensor (Anritsu MA2475A) and a power meter (Anritsu ML2437) which are diode waveform wattmeters.
  • the dynamic range of detection sensitivity was 90 dB (-70 to +20 dBm), and the measurable frequency range was 100 kHz to 50 GHz.
  • FIG. 5 shows the measurement results of the absorption coefficient obtained in this test.
  • the horizontal axis is temperature and the vertical axis is absorption coefficient.
  • a mixed water having a sucrose concentration of 10% was used as a sample, and the sample was put in a polyethylene terephthalate cell having the same optical path length of 1 mm as in the first example, and the same test was performed.
  • Mixed water with a sucrose concentration of 10% simulates vegetables and fruits.
  • FIG. 6 shows the measurement results of the absorption coefficient obtained in this test.
  • the horizontal axis is temperature and the vertical axis is absorption coefficient. From this figure, it can be seen that in the cooling process of A, B, C, and D, the supercooling release occurs instantaneously through the supercooled state (point B) as in the case of pure water. In this example, it was also confirmed that the absorption coefficient decreases with decreasing temperature, even in the solid phase, until the C point force reaches the D point.
  • Minced meat simulates meat, fresh fish, frozen food, DNA samples, and so on.
  • FIG. 7 shows the measurement results of the absorption coefficient obtained in this test.
  • the horizontal axis is temperature and the vertical axis is absorption coefficient. From this figure, in the cooling process of A, B, C, D, a clear supercooling state is not detected, but the gel state (points A to B) and the solid state (points C to D) are It was confirmed that the change characteristics of the absorption coefficient are completely different.

Abstract

There is provided an apparatus comprising cooling heat radiation unit (12) for cooling of or heat radiation from water-containing material (1), extremely high frequency wave (EHF) irradiation unit (14) for irradiating the water-containing material with EHF of 0.1 to 100 mm wavelength (2), EHF detector (16) for detecting of EHF (1) having transmitted the water-containing material, phase change detector (18) for computing of the level of absorption by the water-containing material from EHF irradiation output and detection output to thereby detect the state of phase change of the water-containing material, and freezing/thawing control unit (20) for controlling of the cooling heat radiation unit depending on the state of phase change detected.

Description

明 細 書  Specification
水分含有物の冷凍解凍装置と方法  Apparatus and method for freezing and thawing moisture content
発明の技術分野  TECHNICAL FIELD OF THE INVENTION
[0001] 本発明は、水と氷、食品、 DNAサンプルなどの水分含有物の冷凍解凍装置と方法 に関する。  [0001] The present invention relates to an apparatus and method for freezing and thawing water-containing materials such as water and ice, foods, and DNA samples.
関連技術の説明  Explanation of related technology
[0002] 水を冷却すると氷に相変化することは、広く知られており、その際に種々の物理特 性も変化する。かかる水及び氷の特性は、例えば非特許文献 1〜3に開示されている  [0002] It is widely known that when water is cooled, the phase changes to ice, and various physical characteristics change accordingly. Such characteristics of water and ice are disclosed in Non-Patent Documents 1 to 3, for example.
[0003] [非特許文献 1]は、テラへルツ周波数における氷の光学的定数の計測結果を報告 している。 [0003] [Non-Patent Document 1] reports the measurement results of the ice optical constants at the terahertz frequency.
[非特許文献 2]は、紫外線からマイクロ波における氷の光学的定数を報告している  [Non-Patent Document 2] reports the optical constants of ice from ultraviolet to microwave.
[非特許文献 3]には、水の一般的な物理特性が記載されている。 [Non-Patent Document 3] describes general physical properties of water.
[0004] 一方、水力 氷に相変化する際の物性変化を利用した装置として、例えば [特許文 献 1]が提案されている。 [0004] On the other hand, for example, [Patent Document 1] has been proposed as a device that utilizes changes in physical properties when phase changes to hydro ice.
[0005] 特許文献 1の「自動製氷装置」は、製氷容器設置部に、製氷容器 51内の水が氷に 相変化するのを検知する相変化検知センサ 52を取り付けたものである。図 1に示す ように、この相変化検知センサ 52は、高周波発振器 53に接続された励起用電極 54 と、この励起用電極に対し絶縁され、励起用電極より発振する電磁波を受ける受信 用検出コイル 55から構成され、受信用検出コイル周辺をなす製氷容器内の水の相 変化を電導率、誘電率の変化として、受信用検出コイルに誘導される共振電圧、若 しくは共振周波数の変化で捕らえるものである。 [0005] The "automatic ice making device" of Patent Document 1 is a device in which a phase change detection sensor 52 for detecting a phase change of water in an ice making container 51 to ice is attached to an ice making container installation part. As shown in FIG. 1, this phase change detection sensor 52 includes an excitation electrode 54 connected to a high-frequency oscillator 53, and a detection coil for reception that receives an electromagnetic wave that is insulated from the excitation electrode and oscillates from the excitation electrode. The phase change of the water in the ice making container surrounding the receiving detection coil is captured by the change in the resonant voltage induced in the receiving detection coil or the change in the resonant frequency as a change in conductivity and dielectric constant. Is.
[0006] 非特許文献 1 : Chun Zhang et al. "Optical constant of ice Ih crystal at terahertz frequencies", APPLIED PHYSICS LETTERS, Vol. 7 9, No. 4, 2001, P491-493 [0006] Non-Patent Document 1: Chun Zhang et al. "Optical constant of ice Ih crystal at terahertz frequencies", APPLIED PHYSICS LETTERS, Vol. 7 9, No. 4, 2001, P491-493
非特許文献 2 : Stephen G. Warren "Optical constant of ice from the ultraviolet to the microwave", APPLIED OPTICS, Vol. 23, No. 8, 1984, P1206-1225 Non-Patent Document 2: Stephen G. Warren "Optical constant of ice from the ultraviolet to the microwave ", APPLIED OPTICS, Vol. 23, No. 8, 1984, P1206-1225
非特許文献 3 : Marvin R. Querry et al. "Water (H20) HANDBOOK OF OPTICAL CONSTANTS OF SOLIDS II, 1991, P1059- 1077 [0007] 特許文献 1 :実開平 5— 8360号公報、「自動製氷装置」  Non-Patent Document 3: Marvin R. Querry et al. "Water (H20) HANDBOOK OF OPTICAL CONSTANTS OF SOLIDS II, 1991, P1059-1077 [0007] Patent Document 1: Japanese Utility Model Publication No. 5-8360," Automatic Ice Maker "
[0008] 水から氷を製氷する場合、特許文献 1では水の相変化を電導率、誘電率の変化と して検出している。しかし、この手段では、水と氷が混在している相変化過程を検出 できない問題点があった。そのため、相変化後も余分な冷却が必要であり、一層の製 氷速度の向上に限界があった。  [0008] When making ice from water, Patent Document 1 detects a phase change of water as a change in conductivity and dielectric constant. However, this method has a problem that it cannot detect a phase change process in which water and ice are mixed. For this reason, extra cooling was required even after the phase change, and there was a limit to further improving the ice making speed.
また細胞膜内に水分を含む野菜、果物、食肉等の場合、水分を氷らせる際氷結晶 の成長により細胞を破壊することがあり品質の劣化のおそれがあるため、相変化の直 前の過冷却状態で保持することが最も望ましい。しかし、従来はかかる過冷却状態の 検出はできな力つた。  In addition, in the case of vegetables, fruits, meat, etc. that contain moisture in the cell membrane, the cells may be destroyed by the growth of ice crystals when icing the moisture, and the quality may be degraded. It is most desirable to keep it cool. However, in the past, such a supercooled state could not be detected.
さらに、食肉、鮮魚、冷凍食品、 DNAサンプルなどでは、一般に冷凍時には短時 間に全体を完全に凍結させる必要があり、未凍結部分が残存すると雑菌が繁殖する おそれがある。しかし、従来は、単に急速冷却するにすぎず、対象物全体が完全に 凍結していることを外部から切断することなく確認する手段がな力つた。  In addition, meat, fresh fish, frozen foods, DNA samples, etc., generally need to be completely frozen in a short time when frozen, and if unfrozen parts remain, there is a risk that germs will propagate. However, in the past, it was merely rapid cooling, and there was a powerful means to confirm that the entire object was completely frozen without cutting it from the outside.
また、逆に解凍時には、例えばマグロに代表されるように、内部の細胞膜が破壊し ないように、解凍に十分時間をかける必要があった。そのため、解凍に時間がかかり すぎる問題点があった。  Conversely, when thawing, it was necessary to allow sufficient time for thawing so that the inner cell membrane would not be destroyed, for example, as represented by tuna. Therefore, there was a problem that it took too long to defrost.
[0009] 本発明は上述した問題点を解決するために創案されたものである。すなわち、本発 明の目的は、水と氷、食品、 DNAサンプルなどに含まれる水分の凍結時又は解凍 時の相変化状態を正確に検出することができ、これにより製氷速度を高め、過冷却状 態を保持し、対象物全体の凍結状態を外部から確認でき、対象物全体を解凍直前 に保持して解凍時間を短縮することができる水分含有物の冷凍解凍装置と方法を提 供することにある。 [0009] The present invention has been developed to solve the above-described problems. In other words, the purpose of the present invention is to accurately detect the phase change state during freezing or thawing of water contained in water and ice, food, DNA samples, etc., thereby increasing the ice making speed and supercooling. To provide a device and a method for freezing and thawing moisture-containing materials that can maintain the state, confirm the frozen state of the entire object from the outside, hold the entire object immediately before thawing, and shorten the thawing time. is there.
発明の要約  Summary of invention
[0010] 本発明によれば、水分を含む水分含有物を冷却または放熱する冷却放熱装置と、 該水分含有物に波長 0. lmn!〜 100mmのミリ波を照射するミリ波照射装置と、 水分含有物を透過した前記ミリ波を検出するミリ波検出装置と、 [0010] According to the present invention, a cooling and radiating device that cools or dissipates heat containing moisture, including moisture, Wavelength of 0. lmn! A millimeter wave irradiation device that emits a millimeter wave of up to 100 mm, a millimeter wave detection device that detects the millimeter wave that has passed through the moisture-containing material,
前記ミリ波の照射出力と検出出力から水分含有物の吸収量を演算し水分含有物の 相変化状態を検出する相変化検出装置と、  A phase change detection device for calculating the absorption amount of the moisture-containing material from the irradiation output and detection output of the millimeter wave and detecting the phase change state of the moisture-containing material;
検出された相変化状態力 前記冷却放熱装置を制御する冷解凍制御装置と、を備 えたことを特徴とする水分含有物の冷凍解凍装置が提供される。  A water-freezing and thawing device is provided, comprising: a detected phase change state force; and a cold thawing control device that controls the cooling and heat dissipation device.
[0011] また、本発明によれば、水分を含む水分含有物を冷却または放熱する冷却放熱ス テツプと、 [0011] Further, according to the present invention, a cooling / dissipating step for cooling or dissipating the moisture-containing material containing moisture,
該水分含有物に波長 0. lmn!〜 100mmのミリ波を照射するミリ波照射ステップと、 水分含有物を透過した前記ミリ波を検出するミリ波検出ステップと、  Wavelength of 0. lmn! A millimeter wave irradiation step of irradiating a millimeter wave of up to 100 mm; a millimeter wave detection step of detecting the millimeter wave that has passed through the moisture-containing material;
前記ミリ波の照射出力と検出出力から水分含有物の吸収係数を演算し水分含有物 の相変化状態を検出する相変化検出ステップと、  A phase change detection step of calculating an absorption coefficient of the moisture content from the irradiation output and detection output of the millimeter wave and detecting a phase change state of the moisture content;
検出された相変化状態力 前記吸収係数を所定の範囲に維持するように水分含有 物の冷却速度または放熱速度を制御する速度制御ステップと、を備えることを特徴と する水分含有物の冷凍解凍方法が提供される。  A detected phase change state force, and a speed control step for controlling a cooling rate or a heat release rate of the water-containing material so as to maintain the absorption coefficient within a predetermined range. Is provided.
[0012] 上記本発明の装置及び方法によれば、相変化過程で吸収係数が大きく変化する 波長 0. lmn!〜 100mmのミリ波を用いて水分を含む水分含有物の吸収係数を演算 し、その相変化状態を正確に検出することができる。従って、検出された相変化状態 をフィードバックして吸収係数を所定の範囲に維持することができ、これにより、製氷 速度を高め、過冷却状態を保持し、対象物全体の完全凍結を外部から確認でき、対 象物全体を解凍直前に保持して解凍時間を短縮することができる。 [0012] According to the apparatus and method of the present invention, the absorption coefficient changes greatly during the phase change process. It can detect the phase change state accurately by calculating the absorption coefficient of water-containing substances using water of ~ 100mm. Therefore, it is possible to feed back the detected phase change state and maintain the absorption coefficient within a predetermined range, thereby increasing the ice making speed, maintaining the supercooled state, and confirming the complete freezing of the entire object from the outside. The entire object can be held immediately before thawing to shorten the thawing time.
[0013] 本発明の好ましい実施形態によれば、前記ミリ波照射装置は、周波数 100kHz〜5 OGHzのミリ波を発振するミリ波発振器と、該ミリ波を水分含有物に向けて照射する発 振用ホーンアンテナとからなり、 According to a preferred embodiment of the present invention, the millimeter wave irradiation device includes a millimeter wave oscillator that oscillates a millimeter wave having a frequency of 100 kHz to 5 OGHz, and an oscillation that irradiates the millimeter wave toward a moisture-containing material. It consists of a horn antenna for
前記ミリ波検出装置は、水分含有物を透過した前記ミリ波を受信する受信用ホーン アンテナと、受信したミリ波を検出し電気信号に変換するパワーセンサと、該電気信 号力もミリ波の出力を検出するパワーメータとからなる。  The millimeter wave detection device includes a reception horn antenna that receives the millimeter wave that has passed through the moisture-containing material, a power sensor that detects the received millimeter wave and converts it into an electrical signal, and the electrical signal force is also output as a millimeter wave. And a power meter for detecting
[0014] この構成により、ミリ波発振器で発振した周波数 100kHz〜50GHzのミリ波全体を 、発振用ホーンアンテナで水分含有物に向けて正確に照射することができる。また、 受信用ホーンアンテナで水分含有物を透過したミリ波全体を受信することができ、こ れ力 パワーセンサとパワーメータで検出出力を正確に検出することができる。従つ て、水分含有物と透過せずに飛散するミリ波を最小限に抑えることができ、吸収係数 を正確に演算し、凍結時又は解凍時の相変化状態を正確に検出することができる。 [0014] With this configuration, the entire millimeter wave having a frequency of 100 kHz to 50 GHz oscillated by a millimeter wave oscillator can be obtained. The horn antenna for oscillation can accurately irradiate the moisture content. In addition, the entire millimeter wave that has passed through the moisture-containing material can be received by the receiving horn antenna, and the detection output can be accurately detected by this force power sensor and power meter. Therefore, it is possible to minimize the millimeter waves scattered without passing through the moisture content, accurately calculate the absorption coefficient, and accurately detect the phase change state during freezing or thawing. .
[0015] 上述したように、本発明の水分含有物の冷凍解凍装置と方法は、水と氷、食品、 D NAサンプルなどに含まれる水分の凍結時又は解凍時の相変化状態を正確に検出 することができ、これにより製氷速度を高め、過冷却状態を保持し、対象物全体の完 全凍結を外部から確認でき、対象物全体を解凍直前に保持して解凍時間を短縮す ることができる、等の優れた効果を有する。 [0015] As described above, the apparatus and method for freezing and thawing water-containing materials of the present invention accurately detects the phase change state during freezing or thawing of water contained in water and ice, food, DNA samples, etc. This can increase the ice making speed, maintain the supercooled state, confirm the complete freezing of the entire object from the outside, and hold the entire object immediately before thawing to shorten the thawing time. It has excellent effects such as being able to.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1] [特許文献 1]の「自動製氷装置」の模式図である。 FIG. 1 is a schematic diagram of an “automatic ice making device” of [Patent Document 1].
[図 2]本発明の冷凍解凍装置の全体構成図である。  FIG. 2 is an overall configuration diagram of the freezing and thawing device of the present invention.
[図 3]本発明の冷凍解凍方法のフロー図である。  FIG. 3 is a flowchart of the freeze-thawing method of the present invention.
[図 4]水と氷の吸収係数と波長との関係図である。  [Fig. 4] Relationship between water and ice absorption coefficient and wavelength.
[図 5]本発明の第 1実施例による吸収係数の計測結果である。  FIG. 5 is a measurement result of an absorption coefficient according to the first embodiment of the present invention.
[図 6]本発明の第 2実施例による吸収係数の計測結果である。  FIG. 6 is a measurement result of an absorption coefficient according to the second embodiment of the present invention.
[図 7]本発明の第 3実施例による吸収係数の計測結果である。  FIG. 7 is a measurement result of an absorption coefficient according to the third embodiment of the present invention.
好ましい実施例の説明  DESCRIPTION OF PREFERRED EMBODIMENTS
[0017] 以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図におい て共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the duplicate description is abbreviate | omitted.
[0018] 図 2は、本発明の冷凍解凍装置の全体構成図である。この図において、本発明の 冷凍解凍装置 10は、冷却放熱装置 12、ミリ波照射装置 14、ミリ波検出装置 16、相 変化検出装置 18及び冷解凍制御装置 20を備える。 FIG. 2 is an overall configuration diagram of the freezing and thawing device of the present invention. In this figure, the freezing and thawing device 10 of the present invention includes a cooling and radiating device 12, a millimeter wave irradiation device 14, a millimeter wave detection device 16, a phase change detection device 18, and a cold thawing control device 20.
[0019] 冷却放熱装置 12は、水分を含む水分含有物 1を内部に収容する冷凍容器 12aと、 冷凍容器内を冷却または放熱する冷凍機 12bと、水分含有物 1の温度を検出する温 度検出器 12c (例えば熱電対)とからなる。 [0019] The cooling heat dissipating device 12 includes a freezing container 12a that contains a water-containing material 1 containing water, a refrigerator 12b that cools or dissipates heat in the freezing container, and a temperature at which the temperature of the water-containing material 1 is detected. It consists of a detector 12c (for example, a thermocouple).
[0020] ミリ波照射装置 14は、水分含有物 1に波長 0. lmn!〜 100mmのミリ波 2 (以下、照 射ミリ波と呼ぶ)を照射する。ミリ波照射装置 14は、この例では、周波数 100kHz〜5[0020] The millimeter wave irradiation device 14 has a water content of 1 with a wavelength of 0.1 lmn! ~ 100mm millimeter wave 2 Irradiate the target millimeter wave). In this example, the millimeter wave irradiation device 14 has a frequency of 100 kHz to 5
OGHzの照射ミリ波 2を発振するミリ波発振器 14aと、照射ミリ波 2を水分含有物に向 けて照射する発振用ホーンアンテナ 14bとからなる。 It consists of a millimeter wave oscillator 14a that oscillates OGHz irradiation millimeter wave 2 and an oscillating horn antenna 14b that irradiates the irradiation millimeter wave 2 toward moisture-containing materials.
[0021] ミリ波検出装置 16は、水分含有物 1を透過したミリ波 3 (以下、透過ミリ波と呼ぶ)を 検出する。ミリ波検出装置 16は、この例では、水分含有物 1を透過した透過ミリ波 3を 受信する受信用ホーンアンテナ 16aと、受信した透過ミリ波 3を検出し電気信号に変 換するパワーセンサ 16bと、変換した電気信号力も透過ミリ波 3の出力を検出するパ ヮーメータ 16cとからなる。 The millimeter wave detection device 16 detects a millimeter wave 3 that has passed through the moisture-containing material 1 (hereinafter referred to as a transmitted millimeter wave). In this example, the millimeter wave detection device 16 includes a receiving horn antenna 16a that receives the transmitted millimeter wave 3 that has passed through the moisture-containing material 1, and a power sensor 16b that detects the received transmitted millimeter wave 3 and converts it into an electrical signal. And the converted electric signal force also comprises a parameter 16c for detecting the output of the transmitted millimeter wave 3.
[0022] 相変化検出装置 18は、ミリ波 2、 3の照射出力と検出出力から水分含有物の吸収 係数を演算し水分含有物の相変化状態を検出する。冷解凍制御装置 20は、検出さ れた相変化状態力 冷却放熱装置 12を制御する。 [0022] The phase change detection device 18 calculates the absorption coefficient of the moisture-containing material from the irradiation outputs and detection outputs of the millimeter waves 2 and 3, and detects the phase change state of the moisture-containing material. The cold thawing control device 20 controls the detected phase change state force cooling heat dissipation device 12.
相変化検出装置 18と冷解凍制御装置 20は、例えばデータ入出力装置を備えた P The phase change detection device 18 and the cold thawing control device 20 are, for example, P
C (パソコン)である。なお、温度検出器 12cの検出データも冷解凍制御装置 20又はC (PC). The detection data of the temperature detector 12c is also the cold thawing control device 20 or
PCに入力される。 Input to the PC.
[0023] 図 3は、本発明の冷凍解凍方法のフロー図である。この図に示すように、本発明の 冷凍解凍方法は、冷却放熱ステップ Sl、ミリ波照射ステップ S2、ミリ波検出ステップ S 3、相変化検出ステップ S4及び速度制御ステップ S5からなる。  [0023] FIG. 3 is a flowchart of the freeze-thaw method of the present invention. As shown in this figure, the freezing and thawing method of the present invention comprises a cooling heat release step Sl, a millimeter wave irradiation step S2, a millimeter wave detection step S3, a phase change detection step S4, and a speed control step S5.
[0024] 冷却放熱ステップ S1では、冷却放熱装置 12により、水分を含む水分含有物 1を冷 却または放熱する。  In the cooling and heat radiation step S 1, the water-containing material 1 containing water is cooled or radiated by the cooling and heat radiating device 12.
ミリ波照射ステップ S2では、ミリ波照射装置 14により、水分含有物 1に波長 0. lmm 〜: LOOmmのミリ波 2 (照射ミリ波)を照射する。  In the millimeter wave irradiation step S2, the water content 1 is irradiated with the millimeter wave 2 (irradiation millimeter wave) having a wavelength of 0.1 mm to LOOmm by the millimeter wave irradiation device 14.
ミリ波検出ステップ S3では、ミリ波検出装置 16により、水分含有物 1を透過したミリ 波 3 (透過ミリ波)を検出する。  In the millimeter wave detection step S3, the millimeter wave detection device 16 detects the millimeter wave 3 (transmitted millimeter wave) that has passed through the moisture-containing material 1.
[0025] 相変化検出ステップ S4では、相変化検出装置 18により、ミリ波 2、 3の照射出力と 検出出力から水分含有物 1の吸収量を演算し水分含有物の相変化状態を検出する 速度制御ステップ S5では、冷解凍制御装置 20により、検出された相変化状態から 吸収係数を所定の範囲に維持するように水分含有物 1の冷却速度または放熱速度 を制御する。 [0025] In the phase change detection step S4, the phase change detection device 18 calculates the absorption amount of the moisture-containing substance 1 from the irradiation outputs and detection outputs of the millimeter waves 2 and 3, and detects the phase change state of the moisture-containing substance. In control step S5, the cooling or radiating rate of the moisture-containing material 1 is maintained by the cold thawing control device 20 so as to maintain the absorption coefficient within a predetermined range from the detected phase change state. To control.
[0026] 図 4は、水と氷の吸収係数と波長との関係図である。この図において、横軸は電磁 波の波長と周波数、縦軸は吸収係数である。また、図中の実線は固体 (氷)、一点鎖 線は液体 (水)を示している。  FIG. 4 is a graph showing the relationship between the absorption coefficient of water and ice and the wavelength. In this figure, the horizontal axis represents the wavelength and frequency of electromagnetic waves, and the vertical axis represents the absorption coefficient. The solid line in the figure indicates solid (ice), and the alternate long and short dash line indicates liquid (water).
この図から、波長が約 100 /ζ πι (0. 1mm)以上の領域では、水と氷の吸収係数が 大きく相違することがわかる。例えば、 35GHzでの氷と水の吸収係数はそれぞれ 42 cm"1, 7 X 10— 3cm— 1程度であり、約 6000倍程度の違いがある。 From this figure, it can be seen that the absorption coefficient of water and ice is greatly different in the region where the wavelength is about 100 / ζ πι (0.1 mm) or more. For example, the absorption coefficient of ice and water at 35GHz are each 42 cm "1, 7 X 10- 3 cm- 1 mm, there are about 6000-fold difference.
なお、波長が 100mmを超えると、水分含有物 1を透過せずに周り込む比率が高く なるため、計測精度が低下する。  Note that when the wavelength exceeds 100 mm, the ratio of encircling without passing through the moisture-containing substance 1 increases, and the measurement accuracy decreases.
[0027] また図 4から、水分を含む水分含有物は、その固相と液相に大きな吸収差があるこ とが予測できる。本発明はカゝかる水分含有物の吸収係数の相違に着眼し創案された ものである。 [0027] From Fig. 4, it can be predicted that the moisture-containing material containing moisture has a large absorption difference between the solid phase and the liquid phase. The present invention has been devised with a focus on the difference in absorption coefficient of the water-containing material.
[0028] すなわち、上述した本発明の装置及び方法によれば、相変化過程で吸収係数が 大きく変化する波長 0. lmn!〜 100mmのミリ波を用いるので、水分を含む水分含有 物 1の吸収係数を正確に演算し、その相変化状態を正確に検出することができる。従 つて、検出された相変化状態をフィードバックして吸収係数を所定の範囲に維持する ことができ、これにより、製氷速度を高め、過冷却状態を保持し、対象物全体の完全 凍結を外部から確認でき、対象物全体を解凍直前に保持して解凍時間を短縮するこ とがでさる。  That is, according to the above-described apparatus and method of the present invention, the wavelength at which the absorption coefficient changes greatly during the phase change process is 0. lmn! Since a millimeter wave of ˜100 mm is used, the absorption coefficient of moisture-containing material 1 containing moisture can be calculated accurately and its phase change state can be detected accurately. Therefore, it is possible to feed back the detected phase change state and maintain the absorption coefficient within a predetermined range, thereby increasing the ice making speed, maintaining the supercooled state, and completely freezing the entire object from the outside. It can be confirmed and the entire object can be held immediately before thawing to shorten the thawing time.
[0029] 以下、本発明の実施例を説明する。  Hereinafter, examples of the present invention will be described.
実施例 1  Example 1
[0030] 図 2に示した本発明の冷凍解凍装置 10を用い純水をサンプルとして試験した。この 試験では、光路長 lmmのポリエチレンテレフタノートのセルにサンプル(純水)を入 れ、液体から固体へと相変化する際のミリ波の透過率を計測した。またサンプルの温 度は熱電対により測定した。各測定は 90秒ごとに繰返した。  [0030] Using the freezing and thawing apparatus 10 of the present invention shown in FIG. 2, pure water was tested as a sample. In this test, a sample (pure water) was placed in a polyethylene terephthalate cell with an optical path length of 1 mm, and the millimeter wave transmission during phase transition from liquid to solid was measured. The temperature of the sample was measured with a thermocouple. Each measurement was repeated every 90 seconds.
[0031] この試験では、ミリ発振器(mmW-Source)にはガンオシレータ(TERA BEAM 社、発振周波数 35GHZ)を利用した。最大出力電力は 10mWであり、連続発振が 可能である。定格入力電圧 6. 5Vである。 また、使用したホーンアンテナ(Horn Antenna)は Custom MZW社 H022R であり、その利得は 24dBi、半値全幅の測定値は 14. 53deg.であった。 [0031] In this test, a gun oscillator (TERA BEAM, oscillation frequency 35GHZ) was used as the millimeter oscillator (mmW-Source). The maximum output power is 10mW and continuous oscillation is possible. The rated input voltage is 6.5V. The horn antenna used was Custom MZW H022R, the gain was 24 dBi, and the measured full width at half maximum was 14.53 deg.
受信系では、ホーンアンテナ力 伝わる電力は導波管?同軸変換後、ダイオード検 波形電力計であるパワーセンサ(Anritsu社 MA2475A)とパワーメータ(Anritsu社 ML2437)により検出した。検出感度のダイナミックレンジは 90dB (- 70〜 + 20dBm )であり、測定可能な周波数範囲は 100kHz〜50GHzであった。  In the reception system, the power transmitted through the horn antenna is a waveguide? After coaxial conversion, detection was performed with a power sensor (Anritsu MA2475A) and a power meter (Anritsu ML2437) which are diode waveform wattmeters. The dynamic range of detection sensitivity was 90 dB (-70 to +20 dBm), and the measurable frequency range was 100 kHz to 50 GHz.
[0032] 図 5は、この試験で得られた吸収係数の計測結果である。この図において、横軸は 温度、縦軸は吸収係数である。 FIG. 5 shows the measurement results of the absorption coefficient obtained in this test. In this figure, the horizontal axis is temperature and the vertical axis is absorption coefficient.
図 5に示すように、約 16°Cの液体 (純水)を A点力も冷却していくと、 B点において 一度 3. 1°Cまで温度が下がり過冷却状態が観察された。その後、 C点で瞬間的に 過冷却解除が起こり、再び 0°Cに戻ったとき相変位が起こり固相になったと考えられる その後、 40分程度かけて温度一定(一 0. 8°C)で D点まで吸収係数が下がり続け た。次いで、 D点において吸収係数が— 15cm 1程度になったところで、再び温度の 低下が始まった。それとともに緩やかに吸収係数も低下した。その後、 13°C (E点) から冷凍庫の到達冷却温度の 20°C (F点)まで、吸収係数は一定となった。 As shown in Fig. 5, when the liquid at about 16 ° C (pure water) was also cooled down at point A, the temperature dropped to 3.1 ° C once at point B, and an overcooled state was observed. After that, the supercooling was instantaneously released at point C, and when it returned to 0 ° C again, it was thought that the phase displacement occurred and it became a solid phase. Then, the temperature was kept constant for about 40 minutes (1. 8 ° C) At this point, the absorption coefficient continued to drop to point D. Next, at point D, when the absorption coefficient reached about -15 cm 1 , the temperature began to drop again. At the same time, the absorption coefficient gradually decreased. After that, the absorption coefficient became constant from 13 ° C (point E) to the ultimate cooling temperature of the freezer 20 ° C (point F).
[0033] 過冷却になるまでの液相の状態 (A点〜 B点)において、温度変化とともに吸収係 数が下がっていくことが確認された。この結果から、 0〜5°Cの液相の状態では 0. 8c の傾きを持つことがわかる。 [0033] In the liquid phase state (point A to point B) until supercooling, it was confirmed that the absorption coefficient decreased with temperature change. From this result, it can be seen that the liquid phase at 0-5 ° C has a slope of 0.8c.
また、吸収係数が過冷却 (B点)後、固体に変化した (C点)後、吸収係数が大きく変 化することがわかる。この様子から、液相から固相への相変化の様子や凍結状態をミ リ波の透過量、すなわち吸収係数で明確に判別することが可能であることが確認でき た。  It can also be seen that after the absorption coefficient is supercooled (point B) and then changed to a solid (point C), the absorption coefficient changes greatly. From this situation, it was confirmed that the state of phase change from the liquid phase to the solid phase and the frozen state can be clearly discriminated by the transmission amount of the millimeter wave, that is, the absorption coefficient.
また、吸収係数は— 13°C (E点)になるまでは緩やかに減少し、その後— 20°C (F 点)まで安定することがわかる。これは氷としての水分子の分子構造が安定したため と考えられる。  It can also be seen that the absorption coefficient decreases gradually until it reaches -13 ° C (E point) and then stabilizes until -20 ° C (F point). This is thought to be due to the stable molecular structure of water molecules as ice.
現在、このように透過量の測定により内部の凍結を確認する簡便な方法は他には ない。従って、この技術は冷凍解凍時のモニタリングに応用が可能である。 実施例 2 At present, there is no other simple method for confirming internal freezing by measuring the amount of permeation. Therefore, this technique can be applied to monitoring during freezing and thawing. Example 2
[0034] 次に、スクロース濃度 10%の混合水をサンプルとし、第 1実施例と同じ光路長 lmm のポリエチレンテレフタノートのセルにサンプルを入れ、同様の試験を実施した。スク ロース濃度 10%の混合水は、野菜や果物を模擬したものである。  Next, a mixed water having a sucrose concentration of 10% was used as a sample, and the sample was put in a polyethylene terephthalate cell having the same optical path length of 1 mm as in the first example, and the same test was performed. Mixed water with a sucrose concentration of 10% simulates vegetables and fruits.
[0035] 図 6は、この試験で得られた吸収係数の計測結果である。この図において、横軸は 温度、縦軸は吸収係数である。この図から、 A, B, C, Dの冷却過程において、純水 の場合と同様に過冷却状態 (B点)を経て、瞬間的に過冷却解除が起こることがわか る。またこの例では、固相においても、 C点力も D点まで、温度の低下と共に吸収係 数も低下することが確認された。  FIG. 6 shows the measurement results of the absorption coefficient obtained in this test. In this figure, the horizontal axis is temperature and the vertical axis is absorption coefficient. From this figure, it can be seen that in the cooling process of A, B, C, and D, the supercooling release occurs instantaneously through the supercooled state (point B) as in the case of pure water. In this example, it was also confirmed that the absorption coefficient decreases with decreasing temperature, even in the solid phase, until the C point force reaches the D point.
この結果から、吸収係数を所定の範囲(この例では約 10〜20cm に維持すること により、野菜、果物、食肉等を相変化の直前の過冷却状態で保持することが可能で あることがわ力る。  From this result, it is understood that by maintaining the absorption coefficient within a predetermined range (in this example, about 10 to 20 cm), it is possible to hold vegetables, fruits, meat, etc. in a supercooled state immediately before the phase change. Power.
実施例 3  Example 3
[0036] 厚さ lcm程度のひき肉をサンプルとし、第 1実施例と同様の試験を実施した。ひき 肉は、食肉、鮮魚、冷凍食品、 DNAサンプル等を模擬したものである。  [0036] The same test as in the first example was performed using minced meat with a thickness of about 1 cm as a sample. Minced meat simulates meat, fresh fish, frozen food, DNA samples, and so on.
[0037] 図 7は、この試験で得られた吸収係数の計測結果である。この図において、横軸は 温度、縦軸は吸収係数である。この図から、 A, B, C, Dの冷却過程において、明確 な過冷却状態は検出されな 、が、ゲル状態 (A点〜 B点)と固体状態 (C点〜 D点)と は、吸収係数の変化特性は全く相違することが確認された。 FIG. 7 shows the measurement results of the absorption coefficient obtained in this test. In this figure, the horizontal axis is temperature and the vertical axis is absorption coefficient. From this figure, in the cooling process of A, B, C, D, a clear supercooling state is not detected, but the gel state (points A to B) and the solid state (points C to D) are It was confirmed that the change characteristics of the absorption coefficient are completely different.
図 7から、未凍結部分が残存する場合、その吸収係数はゲル状態と固体状態の中 間値を示すことから、対象物全体が完全に凍結して 、ることを外部力 切断すること なく確認できることがわかる。  From Fig. 7, when the unfrozen part remains, the absorption coefficient shows an intermediate value between the gel state and the solid state, so it can be confirmed that the entire object is completely frozen without external force cutting. I understand that I can do it.
また、逆に解凍時に、固体状態 (C点〜 D点)の吸収係数に保持することにより、内 部の細胞膜が破壊しないように保持しながら、解凍時間を大幅に短縮することができ ることがゎカゝる。  Conversely, when thawing, the absorption coefficient in the solid state (C point to D point) is maintained, so that the thawing time can be significantly shortened while keeping the inner cell membrane from being destroyed.ゎ ゎ.
[0038] なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸 脱しな 、範囲で種々変更できることは勿論である。  It should be noted that the present invention is not limited to the above-described examples and embodiments, and various modifications can be made without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 水分を含む水分含有物を冷却または放熱する冷却放熱装置と、  [1] a cooling / dissipating device that cools or dissipates moisture containing moisture, and
該水分含有物に波長 0. lmn!〜 100mmのミリ波を照射するミリ波照射装置と、 水分含有物を透過した前記ミリ波を検出するミリ波検出装置と、  Wavelength of 0. lmn! A millimeter wave irradiation device that emits a millimeter wave of up to 100 mm, a millimeter wave detection device that detects the millimeter wave that has passed through the moisture-containing material,
前記ミリ波の照射出力と検出出力から水分含有物の吸収量を演算し水分含有物の 相変化状態を検出する相変化検出装置と、  A phase change detection device for calculating the absorption amount of the moisture-containing material from the irradiation output and detection output of the millimeter wave and detecting the phase change state of the moisture-containing material;
検出された相変化状態力 前記冷却放熱装置を制御する冷解凍制御装置と、を備 えたことを特徴とする水分含有物の冷凍解凍装置。  A water-freezing and thawing device, comprising: a detected phase change state force;
[2] 前記ミリ波照射装置は、周波数 100kHz〜50GHzのミリ波を発振するミリ波発振器と[2] The millimeter wave irradiation apparatus includes a millimeter wave oscillator that oscillates a millimeter wave having a frequency of 100 kHz to 50 GHz.
、該ミリ波を水分含有物に向けて照射する発振用ホーンアンテナとからなり、 前記ミリ波検出装置は、水分含有物を透過した前記ミリ波を受信する受信用ホーン アンテナと、受信したミリ波を検出し電気信号に変換するパワーセンサと、該電気信 号力もミリ波の出力を検出するパワーメータとからなる、ことを特徴とする請求項 1に記 載の水分含有物の冷凍解凍装置。 An oscillation horn antenna that irradiates the millimeter wave toward the moisture-containing material, the millimeter-wave detection device comprising: a reception horn antenna that receives the millimeter wave that has passed through the moisture-containing material; and the received millimeter wave 2. The moisture-containing freezing and thawing device according to claim 1, comprising a power sensor that detects and converts an electric signal into an electric signal, and a power meter that detects an output of millimeter waves.
[3] 水分を含む水分含有物を冷却または放熱する冷却放熱ステップと、 [3] a cooling / dissipating step for cooling or dissipating moisture containing moisture,
該水分含有物に波長 0. lmn!〜 100mmのミリ波を照射するミリ波照射ステップと、 水分含有物を透過した前記ミリ波を検出するミリ波検出ステップと、  Wavelength of 0. lmn! A millimeter wave irradiation step of irradiating a millimeter wave of up to 100 mm; a millimeter wave detection step of detecting the millimeter wave that has passed through the moisture-containing material;
前記ミリ波の照射出力と検出出力から水分含有物の吸収係数を演算し水分含有物 の相変化状態を検出する相変化検出ステップと、  A phase change detection step of calculating an absorption coefficient of the moisture content from the irradiation output and detection output of the millimeter wave and detecting a phase change state of the moisture content;
検出された相変化状態力 前記吸収係数を所定の範囲に維持するように水分含有 物の冷却速度または放熱速度を制御する速度制御ステップと、を備えることを特徴と する水分含有物の冷凍解凍方法。  A detected phase change state force, and a speed control step for controlling a cooling rate or a heat release rate of the water-containing material so as to maintain the absorption coefficient within a predetermined range. .
PCT/JP2005/012407 2004-07-05 2005-07-05 Water-containing material freezing/thawing apparatus and method therefor WO2006004116A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004197593A JP2006017418A (en) 2004-07-05 2004-07-05 Device and method for freezing and defrosting water content containing object
JP2004-197593 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006004116A1 true WO2006004116A1 (en) 2006-01-12

Family

ID=35782915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012407 WO2006004116A1 (en) 2004-07-05 2005-07-05 Water-containing material freezing/thawing apparatus and method therefor

Country Status (2)

Country Link
JP (1) JP2006017418A (en)
WO (1) WO2006004116A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991073A1 (en) * 2006-02-15 2008-11-19 LG Electronics, Inc. Refrigerator and method of operating a refrigerator
WO2014207613A1 (en) * 2013-06-28 2014-12-31 Koninklijke Philips N.V. Method and device for processing frozen food
WO2015146600A1 (en) * 2014-03-28 2015-10-01 株式会社前川製作所 Method for measuring internal temperature of object to be frozen and device for measuring internal temperature of object to be frozen
CN105325055A (en) * 2013-06-28 2016-02-10 皇家飞利浦有限公司 Method and device for processing frozen food
WO2017051461A1 (en) * 2015-09-24 2017-03-30 株式会社前川製作所 Method of measuring internal temperature of frozen object and device for measuring internal temperature of frozen object

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920310B2 (en) * 2013-10-24 2016-05-18 三菱電機株式会社 refrigerator
JP5861179B1 (en) * 2015-06-04 2016-02-16 株式会社Cq−Sネット Status detector using standing wave radar

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356794B2 (en) * 1982-02-19 1988-11-09 Hitachi Netsu Kigu Kk
JPH0247553U (en) * 1988-09-28 1990-03-30
JPH058360U (en) * 1991-07-08 1993-02-05 東陶機器株式会社 Automatic ice machine
JPH07260711A (en) * 1994-03-17 1995-10-13 Oval Corp Measuring device of concentration of ice in ice slurry and calorimeter
JPH08210993A (en) * 1994-10-17 1996-08-20 Hughes Aircraft Co Surface-state detecting system
JP2004077475A (en) * 2002-08-01 2004-03-11 Nagoya Electric Works Co Ltd Road surface condition determination method and device
JP7094943B2 (en) * 2016-08-23 2022-07-04 ネクシオン リミテッド Silicon-based active material particles for secondary batteries and their manufacturing methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356794B2 (en) * 1982-02-19 1988-11-09 Hitachi Netsu Kigu Kk
JPH0247553U (en) * 1988-09-28 1990-03-30
JPH058360U (en) * 1991-07-08 1993-02-05 東陶機器株式会社 Automatic ice machine
JPH07260711A (en) * 1994-03-17 1995-10-13 Oval Corp Measuring device of concentration of ice in ice slurry and calorimeter
JPH08210993A (en) * 1994-10-17 1996-08-20 Hughes Aircraft Co Surface-state detecting system
JP2004077475A (en) * 2002-08-01 2004-03-11 Nagoya Electric Works Co Ltd Road surface condition determination method and device
JP7094943B2 (en) * 2016-08-23 2022-07-04 ネクシオン リミテッド Silicon-based active material particles for secondary batteries and their manufacturing methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1991073A1 (en) * 2006-02-15 2008-11-19 LG Electronics, Inc. Refrigerator and method of operating a refrigerator
EP1991073A4 (en) * 2006-02-15 2010-06-02 Lg Electronics Inc Refrigerator and method of operating a refrigerator
US8151576B2 (en) 2006-02-15 2012-04-10 Lg Electronics Inc. Refrigerator and method of operating a refrigerator
WO2014207613A1 (en) * 2013-06-28 2014-12-31 Koninklijke Philips N.V. Method and device for processing frozen food
CN105325055A (en) * 2013-06-28 2016-02-10 皇家飞利浦有限公司 Method and device for processing frozen food
US20160128138A1 (en) * 2013-06-28 2016-05-05 Koninklijke Philips N.V. Method and device for processing frozen food
WO2015146600A1 (en) * 2014-03-28 2015-10-01 株式会社前川製作所 Method for measuring internal temperature of object to be frozen and device for measuring internal temperature of object to be frozen
JPWO2015146600A1 (en) * 2014-03-28 2017-04-13 株式会社前川製作所 Method for measuring internal temperature of frozen object and apparatus for measuring internal temperature of frozen object
US10161809B2 (en) 2014-03-28 2018-12-25 Mayekawa Mfg. Co., Ltd. Method for measuring internal temperature of freezing target object and internal temperature measurement device for freezing target object
WO2017051461A1 (en) * 2015-09-24 2017-03-30 株式会社前川製作所 Method of measuring internal temperature of frozen object and device for measuring internal temperature of frozen object
JPWO2017051461A1 (en) * 2015-09-24 2018-04-12 株式会社前川製作所 Method for measuring internal temperature of frozen object and apparatus for measuring internal temperature of frozen object

Also Published As

Publication number Publication date
JP2006017418A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
WO2006004116A1 (en) Water-containing material freezing/thawing apparatus and method therefor
US20160128138A1 (en) Method and device for processing frozen food
JP2020004720A (en) Thawing apparatus and thawing method
JP6276384B2 (en) Method for measuring internal temperature of frozen object and apparatus for measuring internal temperature of frozen object
Pilossof et al. Note: A 95 GHz mid-power gyrotron for medical applications measurements
Mizuno et al. Monitoring the frozen state of freezing media by using millimeter waves
RU2528130C1 (en) Device for measurement of property of dielectric material
Geifman et al. Raising the sensitivity of the electron-paramagnetic-resonance spectrometer using a ferroelectric resonator
WO2020217050A1 (en) Microwave-based method and apparatus for monitoring a process variable
WO2014077736A1 (en) Moisture meter for bulk solids
JP6400854B2 (en) Method for measuring internal temperature of frozen object and apparatus for measuring internal temperature of frozen object
RU128333U1 (en) HUMIDIFIER OF BULK MATERIALS
WO2013034199A1 (en) Pulsed level gauge system with supply voltage controlled delay
Torrezan et al. 10.6: Operation of a tunable second-harmonic 330 GHz CW gyrotron
Bordonskii Electromagnetic properties of ice near the water-ice phase transition temperature
Chernousov et al. The magnetron synchronization band
Dahiya et al. A Computer Controlled Microwave Resonant Cavity used for the Dielectric Studies of Liquid Crystals
Colligiani ESR spectroscopy at 75 GHz by using a whispering gallery mode dielectric resonator and an electromagnet: Part I
Foosang et al. Study on the Resonant Cavity for Low-level RF System at the PBP-CMU Electron Linac Laboratory
Ogawa et al. Monitoring of water/ice state using millimeter waves for the agricultural field
Mittal et al. Development of an instrument to measure density and moisture content of snow
RU2330268C2 (en) Uhf-method of controlling humidity of solid materials
Polevoy et al. A technique for non-contact identification of liquids in closed containers using microwave planar metamaterial
Arkhypova et al. EHF Dielectrometry of High-Loss Media. Radiation Source, the Interaction Region
Kuzikov et al. Studies of thermal fatigue caused by RF pulsed heating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase