WO2006004069A1 - Very small capsule and method for producing same - Google Patents

Very small capsule and method for producing same Download PDF

Info

Publication number
WO2006004069A1
WO2006004069A1 PCT/JP2005/012261 JP2005012261W WO2006004069A1 WO 2006004069 A1 WO2006004069 A1 WO 2006004069A1 JP 2005012261 W JP2005012261 W JP 2005012261W WO 2006004069 A1 WO2006004069 A1 WO 2006004069A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcapsule
capsule wall
carrier
core
microcapsules
Prior art date
Application number
PCT/JP2005/012261
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Ohnishi
Toshikazu Hirota
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to JP2006528870A priority Critical patent/JPWO2006004069A1/en
Publication of WO2006004069A1 publication Critical patent/WO2006004069A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat

Definitions

  • the present invention relates to a microcapsule and a method for producing the same.
  • Microcapsules of micrometer to nanometer size, including micro-force pusels, etc., are minute containers with solid and liquid inclusions (core substance) covered with wall material (capsule wall).
  • core substance solid and liquid inclusions
  • wall material capsule wall
  • Microcapsules are used in a wide range of fields such as pharmaceuticals, foods, printing, and liquid crystal for the purpose of protecting unstable substances, isolating reactive substances, and controlling diffusion of inclusions.
  • This type of microcapsule manufacturing method includes interface polymerization, in situ polymerization, and liquid
  • the capsule wall covers the surface of the core material particles in a dispersion medium such as gas or liquid such as air. Will be. That is, the obtained microcapsule has an outer shape that follows the surface shape of the core substance, and the film thickness of the capsule wall is approximately constant.
  • various methods have been tried from the viewpoint of forming a uniform film on the core material and encapsulating the core material. A method for producing microcapsules of the formula has not yet been provided.
  • the present inventors have focused on using a printing method such as a micro-droplet ejection system used in an inkjet printer, and further, a core material and a capsule wall
  • a microcapsule having a three-dimensional shape can be constructed on a surface by adhering a liquid material as a material to a predetermined surface, thereby completing the present invention. That is, according to the present invention, the following means are provided.
  • a microcapsule comprising one or more core materials, and a capsule wall that holds the core material therein, the surface of the micromaterial from the surface of the core material.
  • a microcapsule having anisotropy for a distance up to is provided.
  • the microcapsule includes one or more core substances, and a capsule wall that holds the core substance therein, and the surface of the microcapsules is small.
  • a microcapsule having a flat portion in part In these forms, the capsule wall preferably includes the whole of the one or more core substances, and at least a part of the surface of the microcapsule has a flat portion. Both are preferable.
  • the microcapsule has a plate-like portion. Furthermore, in these microcapsules, it is a preferable aspect to have a flat part, and it is also a preferable aspect to have a spherical part consisting of a part of the spherical body surface. Further, these microcapsules preferably have a circular or elliptical planar form. Moreover, a bank part can also be provided in the periphery of the said flat-shaped part.
  • the core substance is encapsulated in the capsule wall in a flat form.
  • two or more core materials are provided, and the two or more core materials have two or more types of materials, and the capsule wall material has two or more types.
  • the capsule wall includes a first capsule wall that covers a part of the surface of the one or more core substances, and a surface of the one or more core substances. It is preferable that the second capsule wall covering the remaining portion is provided.
  • regions facing each other in the capsule wall have different surface areas. In this embodiment, it is a preferable embodiment that the surface area is different depending on the uneven shape and Z or surface roughness of the opposing regions in the capsule wall.
  • a concave portion and a Z or convex portion are provided in one of the opposing regions of the capsule wall, and the opposing region of the capsule wall has a different thickness and It is also preferable to have Z or composition.
  • one of the opposing regions of the capsule wall is the core substance or its component release control region, and the other is the microcapsule arrival region control region.
  • the maximum dimension is 2 mm or less and the ratio of the maximum dimension to the minimum dimension is 200,000 or less.
  • the capsule wall contains independent pores.
  • the core substance or its components have a concentration gradient.
  • the ratio of the maximum dimension to the minimum dimension of the microcapsules is preferably 5 or more.
  • a method for producing a microcapsule comprising one or more core materials and a capsule wall that holds the core material inside, the capsule wall or a raw material thereof.
  • Supplying the capsule wall material containing at least the surface of the carrier having a surface to which the capsule wall material can adhere, and one or more of the core material or a core material containing the raw material Supplying the material to at least a surface to which the core material can adhere, and supplying these materials, wherein at least a part of the adhering material of the core material on the surface is the capsule wall material
  • the capsule wall material supplying step and the core substance material supplying step are steps of supplying the capsule wall material and the core substance material respectively to predetermined positions on the surface. It is an aspect.
  • the capsule wall material is supplied.
  • At least one of the steps and the supply step of the core material material is preferably performed by discharging droplets of the core material material and / or the capsule wall material by a microphone pump method. It is also a preferred aspect that at least one of the capsule wall material supply step and the core substance material supply step is performed by a screen printing method. Furthermore, it is also preferable that the capsule wall material supply step is performed by a screen printing method, and the core material material supply step is performed by discharging the core material material droplets by a micropump method.
  • the inner layer on which the microcapsules are formed or the inner layer material including the raw material thereof is positioned on the inner layer side with respect to the capsule wall positioned on the outermost layer. It is a preferable aspect to supply to the deposit on the core material or the capsule wall deposit. Furthermore, the capsule The core material supply step is performed on the capsule wall material deposit formed by the wall material supply step, and the capsule wall material supply step is performed on the core material deposit. This is also a preferred embodiment. And in this aspect, prior to the supplying process of the core substance material or following the supplying process, the supplying process of the inner layer material that suppresses the diffusion or penetration of the core substance material into the capsule wall material may be performed. preferable.
  • the carrier is preferably a flexible material, and the carrier is preferably a stretchable material. It is also a preferred embodiment that the carrier has at least a foamable material layer on its surface, and that the carrier also has a liquid repellent layer on at least its surface. Furthermore, it is a preferable aspect that the carrier has a selective permeability to a gas.
  • the carrier has a substantially flat portion, and the carrier is supplied with the core material material and the capsule wall material. It is also a preferred embodiment to have a recess, and in this embodiment, the recess is formed by a flat plate-like first carrier and a through-hole provided in a second flat plate carrier that is superimposed on the first carrier. Preferably, in these embodiments, the through hole is preferably tapered.
  • the method includes a step of separating the microcapsules formed on the carrier from the carrier.
  • the separation step is preferably a step of deforming at least the surface of the carrier with respect to the microcapsules on the carrier.
  • the separation step is a step of deforming the carrier into an uneven shape by applying an external force from a surface opposite to the surface of the carrier.
  • the separation step is preferably a step in which an external force is directly applied to the microcapsules on the carrier.
  • a microcapsule holding body comprising: a carrier; a core material held by the carrier; and a plurality of microcapsules that hold the core material inside. Is done.
  • a part of the carrier constitutes a capsule wall of the microcapsule, and the carrier is soluble or disintegrable in any part of the living body. It is a preferred embodiment that it is a pharmaceutical carrier comprising Brief Description of Drawings
  • FIG. 1 is a diagram showing an example of a microcapsule according to the present invention
  • FIG. 2 is a diagram showing another example of a microcapsule according to the present invention.
  • FIG. 3 is a view showing another example of a microcapsule according to the present invention.
  • FIG. 4 is a view showing another example of a microcapsule according to the present invention.
  • FIG. 5 is a diagram showing a laminated structure of microcapsules according to the present invention.
  • FIG. 6 is a diagram showing a laminated structure of microcapsules according to the present invention.
  • Fig. 7 is a diagram showing the two-dimensional form in the core capsule microcapsule
  • Fig. 8 shows a model of the amount of dissolution per unit time of the core material in various microcapsules.
  • FIG. 9 is a diagram showing an example of a method for producing a microcapsule of the present invention.
  • FIG. 10 is a diagram showing an example of manufacturing a microcapsule using a carrier having a recess corresponding to the size of a microcapsule.
  • Fig. 11 is a diagram showing an example of dividing the carrier.
  • Figure 12 shows another example of dividing the carrier.
  • Fig. 13 shows an example of microcapsules arranged in a desired pattern on a carrier
  • Fig. 14 shows an example of a method for separating microcapsules
  • Fig. 15 is a diagram showing another example of the separation method of microcapsules.
  • Fig. 16 shows another example of a method for separating microcapsules
  • Fig. 17 is a diagram showing another example of the separation method of microcapsules
  • Figure 18 is a diagram showing another example of a method for separating microcapsules
  • FIG. 19 is a diagram showing microcapsule holders (a) and (b) using a pharmaceutical carrier as a carrier.
  • the microcapsule according to the present invention comprises one or more core materials, and a capsule wall that holds the core material inside, and is anisotropic with respect to the distance from the surface of the core material to the surface of the microcapsules. It is characterized by having.
  • This microcapsule has anisotropy in the distance from the core material to the surface of the microcapsule, in other words, the distance between the core substance and the outside. That is, the thickness of the capsule wall differs from site to site with respect to the core material.
  • Such a core substance encapsulating form is a structure that could not be obtained by a conventional method of manufacturing microcapsules that forms a capsule wall following the surface shape of the core substance.
  • the present microcapsule it becomes possible to control the release that could not be achieved with the microcapsule.
  • anisotropy can be imparted to the diffusion or release of the core material.
  • the diffusion timing or release timing of the core substance can be varied depending on the site.
  • the present microcapsule even in a minute size, it is possible to control the release in units of one capsule, so that it is possible to suppress variations in the release control amount, for example, the elution amount of the core substance with respect to time.
  • another microcapsule of the present invention comprises one or more core materials and a capsule wall that holds the core material inside, and a flat portion is provided on at least a part of the surface of the microcapsules. It is characterized by having.
  • this microcapsule unlike the conventional microcapsule, since the flat portion is provided, it is possible to secure a contact area with a site where the microcapsule is to be held, so that the microcapsule can be easily held at the site. Can be made. Therefore, for example, the core material can be held at a specific site until the core material is released, and the core material can be reliably released at a desired site.
  • the strength of the microcapsule can be easily secured. For this reason, breakage of the microcapsules and leakage of the core material can be effectively prevented.
  • the method for producing a microcapsule according to the present invention provides one or more core materials or a core material material containing the raw material to at least a carrier having a surface to which the core material material can adhere. Supplying the capsule wall or the capsule wall material containing the raw material thereof to at least the surface to which the capsule wall material can be attached. It is characterized in that at least a part of the core material adhering material is encapsulated by the capsule wall material adhering material on the surface to which the material can adhere. According to this manufacturing method, it is possible to construct a micro three-dimensional force pellet having a desired three-dimensional shape from the deposit of the core material material and the capsule wall material on the surface of the carrier.
  • the core substance material and the capsule wall material are supplied and adhered to a predetermined surface, and the supply amount and supply site thereof can be easily adjusted.
  • 3D shapes can be freely constructed. Therefore, the microcapsules of the above form can be easily constructed.
  • the present microcapsule 2 includes a core material 4 and a capsule wall 10 that holds the core material 4 inside. Only one core material 4 may be provided, or a plurality of core materials 4 may be provided. In addition, when a plurality of core substances 4 are included, these core substances 4 may be made of two or more kinds of materials, which may be different or the same kind.
  • the core material 4 can be liquid, solid or gaseous. Preferably, it is liquid or solid. Such core material 4 is roughly enclosed by the capsule wall 10. It is sufficient that the core material 4 is filled with the whole or a part of the internal portion (space) formed by the capsule wall 10 and to be filled with the core material 4. If the form is roughly filled, it can contain a lot of core substance 4, and the elution rate of core substance 4 can be differentiated.
  • the form of the core material 4 is assumed to coincide with the space filled with the core substance 4.
  • the presence state of the core material 4 in the microcapsule 2 varies depending on the supply amount and supply form of the core material and the capsule wall material, but as shown in FIGS. 1, 2, 4 and 5. Mononuclear or dispersed as shown in Figures 3 and 6
  • the shape (existing form) of the underlying core substance 4 also varies depending on the supply amount and supply form of the core substance material, etc., but as shown in some examples in FIGS. 1 to 6, it has a flat shape such as a spherical shape or a plate shape. Various forms such as a rod shape and an indefinite shape can be adopted.
  • FIG. 7 shows the two-dimensional form of core material 4.
  • the two-dimensional form is the form from the surface with the largest surface area.
  • a designed planar configuration can be provided.
  • the core material 4 is arranged in a ring shape, and two or more rings can be provided.
  • the ring of the core material 4 does not necessarily have to be continuously present, and may be formed of discontinuous core material 4 dots.
  • the lines of the core material 4 are arranged in a cross shape.
  • the line of the core material 4 may be a single wire, and may not be arranged in a cross shape but may be arranged in parallel. Further, the core material 4 line may be formed by discontinuous core material 4 dots.
  • the above-described anisotropy in the present micro force process 2 can be obtained.
  • the planar form of the microcapsules 2 is all circular, but the same applies to the microcapsules 2 of other planar forms.
  • the concentration of active substance in core substance 4 or core substance 4 Can also be inclined. By giving a concentration gradient, it becomes possible to control the release amount of the core substance 4 or the active ingredient.
  • the form of the concentration gradient of the core substance 4 or active ingredient is not particularly limited, but it has a gradient composition in which the concentration is high on the center side of the microcapsule 2 and decreases from the center toward the outside. Or vice versa. Further, anisotropy can also be provided in the concentration gradient, and for example, a concentration gradient in which the concentration decreases from the central portion of the high concentration toward a part of the surface of the microcapsule 2 can be provided.
  • the concentration gradient may be continuous or non-continuous. A method of forming a concentration gradient for the core substance 4 or its components will be described later.
  • a substance or a composition is selected according to the use of the microcapsule 2.
  • an enzyme agent for example, an enzyme agent, a hormone agent, an antiallergic agent, an antibody drug, a cell medicine, an antibacterial agent, and an antiinflammatory agent.
  • Pain relieving agents for example, anti-cancer agents, anti-diabetic agents, anti-hypertensive agents, thrombus-lysing agents, etc., or compositions containing the same, oligonucleotides such as DNA and vector
  • Nucleotides, deodorants, insecticides, insecticides and agricultural chemicals or compositions containing these, other seasonings such as vitamins, proteins and sugars, food ingredients such as spices, or compositions containing the food ingredients, essential oils and fragrances
  • Readily volatile components such as, or component compositions thereof, oils such as ribosomes and edible oils
  • magnetic materials or magnetic material compositions, liquid crystal materials or liquid crystal compositions, inorganic materials such as metals or ceramics, or compositions thereof Can be mentioned.
  • a magnetic material or a liquid crystal material is used as the core substance 4
  • these materials are encapsulated in a state of being dispersed in an appropriate liquid dispersion medium.
  • magnetic materials include flaky iron, nickel, metal powders or alloys such as iron-nickel alloys, or those coated with an organic compound to improve dispersion stability, or by aluminum vapor deposition.
  • a material having a higher reflectivity can be used.
  • the core substance 4 contains active ingredients in the living body, oral cavity, nasal cavity, ear cavity, lacrimal gland, eye membrane, stomach, small intestine, large intestine, rectum, etc., blood vessels, urinary tract, vagina
  • An adhesive material having adhesiveness on the surface of the mucous membrane of any sunset part in any of various living bodies can also be contained.
  • the adhesive material any material that easily adheres to the surface of the mucous membrane to which the microcapsules 2 are allowed to reach is sufficient, and a material that exhibits an appropriate viscosity is preferably used.
  • various acrylic acid-based copolymers such as strong ruboxy vinyl polymer, acrylic acid, octyl acrylate acrylate copolymer, gum arabic, polyvinyl alcohol, polyvinyl pyrrolidone, etc., or those obtained by adding a plasticizer to these.
  • an adhesive material such as the core substance 4
  • the active ingredient is likely to adhere to the mucosal surface together with these adhesive materials when the microforce pusher 2 collapses or when the core substance 4 is released. As a result, the retention and absorption of the core substance 4 at the target site can be improved.
  • Such a core material 4 is held inside the capsule wall 10.
  • being held inside the capsule wall 10 is sufficient if it is partitioned from the outside by the capsule wall 10. Therefore, the capsule wall 10 may be dense enough to suppress the permeation of components from the outside or the inside thereof, or may be partially missing.
  • the entire core substance 4 may be covered with the capsule wall 10 and enclosed in the capsule wall 10, or the capsule wall 10 having a through hole or arranged oppositely may be provided. It is also possible to adopt a form in which the core substance 4 is held inside the capsule wall 10 where the wall is partially missing, such as a part that is not closed.
  • the core material 4 is sealed inside the capsule wall 10, the core material 4 is protected by the capsule wall 10, and when contacting between the capsules 2, the surface of the capsule 2 in contact with the core material 4 It will not adhere to. For this reason, it is effective when it is desired to elute the core substance by holding the individual microcapsules 2 more accurately at the gettering site such as the surface in the living body without aggregating the microcapsules 2 with each other. It should be noted that the core substance 4 is exposed at the missing portion of the capsule wall 10.
  • Such a capsule wall 10 is also made of a material suitable for the use of the present microcapsule 2. can do.
  • the polymer material include polyolefins such as (meth) acrylate, polyethylene, and polypropylene, polyurethane, polystyrene, polyethylene terephthalate, polyether, polyether ether ketone, naphthalene, polyurea, polyamide, and copolymers thereof. Can also be used.
  • the core substance 4 or a part thereof may also be included in the capsule wall 10.
  • the cab cell wall 10 can be composed of one or more materials.
  • the micro cab cell 2 may be composed of a single capsule wall 10, it can also be provided with a capsule wall 10 of two or more materials.
  • the different types of capsule walls 10 may cover different surfaces, such as covering one side and the other side of the core material 4, or may form different layers around the core material 4. It may be covered.
  • the capsule wall 10 has selective solubility or disintegration at various targeting sites in the living body.
  • the composition having selective or preferable solubility in the oral cavity, stomach, intestine, etc. those known in the pharmaceutical field can be used.
  • the capsule wall 10 can also have adhesion to the mucosa of the targeting site.
  • the microcapsules 10 are encapsulated, granulated, or held on a carrier, the outer skin or matrix can be provided with solubility or disintegration at the gettering site.
  • An adhesive material used for the core substance 4 can be used as a material that exhibits adhesiveness.
  • the capsule wall 10 can contain pores.
  • the dissolution or disintegration rate of the capsule wall 10 can be controlled by containing pores.
  • the core material 4 can be effectively isolated from the outside by the capsule wall 10, and dissolution and disintegration can be promoted.
  • the microcapsule 2 can take various three-dimensional shapes without depending on the three-dimensional shape of the core substance 4. It is not excluded to adopt a three-dimensional shape that depends on the three-dimensional shape of the core material 4.
  • the shape of the capsule wall 10 greatly contributes to the three-dimensional shape of the microcapsule 2.
  • the three-dimensional shape of the micro force pusher 2 can be a desired shape depending on the supply form of the capsule wall material and the supply form.
  • various parts such as a spherical part, a flat part, a cone part, and a columnar part made of at least a part of a spherical body can be included in at least a part thereof.
  • a flat portion it is possible to secure a contact area with respect to a predetermined surface on which the microcapsule 2 is to be attached or held, and to easily hold the microcapsule 2 at the site.
  • the load resistance of the microcapsule 2 can be improved by receiving a load at the flat portion. Therefore, a plate-like body shown in FIGS. 1 to 3, a hemispherical body shown in FIG. 4, a columnar body having a substantially semicircular cross section, and the like are preferable forms.
  • the microcapsule 2 has a flat portion such as a plate-like body, the solubility of the microcapsule 2 in a living body can be improved.
  • the surface of the microcapsule 2 can be provided with irregularities such as a thick portion (semicircular cross section) and a thin portion (flat portion and flat portion). In this way, by combining the flat part with another thick film part, the caps in one micro capsule 2
  • the difference in thickness of the cell walls 10 can be increased, and the range of the sustained release time can be increased.
  • the uneven shape on the surface of the microcapsule 2 may be finer.
  • the recess here includes a hole reaching the core material 4.
  • the planar form of the micro force pusher 2 can be various forms, but it is preferable to take a circular shape or an elliptical shape in consideration of damage or the like.
  • the regions of the capsule wall 10 facing each other in the microcapsule 2 have different surface areas.
  • the release form of the core substance 4 or the active ingredient and the adhesion to the target site can be made different on the surface of the opposing capsule wall 10.
  • the region of the capsule wall 10 in an opposing shape may be a region facing the core substance 4 and may not be parallel.
  • Such a difference in surface area can be created not only by the difference in the form of protrusions and recesses on the surface of the microcapsule 2 described above, but also by the difference in surface roughness.
  • the shape of the unevenness is not particularly limited.
  • the ratio of the width to the height (height / width) is set to 0.0001 or more and 0.003 or less.
  • the width is fixed, the height is reduced, and it is made smaller than 0.0001, it becomes difficult to create a difference in surface area. Also, if it is larger than 0.003, the convex part will be damaged. Furthermore, considering the manufacturing process, the diameter ⁇ of the microcapsule 2 should be 0.1 to 0.2 mm, the convex width should be about 0.01 to 0.075 mm, and the height should be 5 m or less. Is preferred. A more preferable height is 0.5 / zm or less. Also, the difference in surface roughness can be measured by a generally used apparatus capable of measuring the surface roughness.
  • the difference in surface roughness can be detected using any one of or a combination of centerline average roughness (Ra), maximum height (R max), ten-point average height (Rz), etc. .
  • the difference in the unevenness amount can be, for example, a surface roughness with Rmax of 1 / im or less.
  • an optical interferometer such as a Fizeau interferometer using a laser as a light source can be used.
  • the difference in the surface area in the facing region of the microcapsule 2 can be created by combining the above-described unevenness amount and surface roughness, or can be created by only one of them.
  • Microcapsule 2 is a preparation that can be administered to reach any part of the body. If
  • the one region facing the capsule wall 10 can be a release region for the core substance 4 and the other region can be a target site adhesion region.
  • a bank is provided around the flat part at the center, so that a concave part is provided on the surface of one side of the region opposite to the capsule wall 10 of the microcapsule 2. That is, on the side of the microcapsule 2 having the concave portion, the surface area is increased due to the presence of the bank portion, but the portion that can contact the target site is limited to the top portion of the bank portion, so that adhesion to the target site is prevented.
  • the other surface here, having a flat portion without a bank portion selectively functions as an attachment region to the target site.
  • the adhesion region is on one side, the other side can be configured to function as the core material 4 or its component release region.
  • the opposing capsule walls 10 can be configured to have different thicknesses, Zs, or compositions. By doing so, it is possible to impart different functions in each region, for example, the ability to adhere to the target site and the ability to release the three- core substance 4 or the like.
  • Such a microcapsule 2 is constituted by, for example, a laminated form of a core material 4 and a capsule wall 10.
  • 5 and 6 show the laminated structure of the present microcapsule 2.
  • FIG. 5 a disk-shaped core substance 4 is similarly laminated on a disk-shaped capsule wall 10a, and further a disk-shaped capsule 10b is laminated.
  • This laminated structure is one structure for obtaining the outer shape of the microcapsule 2 illustrated in FIG. 1, and according to this structure, the capsule 10a covering a part of the surface of the core material 4; A capsule wall 1 O b covering the remainder of the surface of the core material 4.
  • FIG. 1 A capsule wall 1 O b covering the remainder of the surface of the core material 4.
  • disk-shaped capsule walls 10 a to l 0 c are stacked, and core materials 4 a and 4 b are interposed between the capsule walls.
  • the capsule wall 10 b can be provided not only as a force pzel wall but as an inner layer having other functions. Further, by having such a laminated structure, the capsule walls 10 to be laminated are melted. By making the solution characteristics and strength characteristics different, the sustained release effect and strength can be made different between the front side and the back side.
  • the typical form of the present microcapsule 2 has a flat circular shape or an elliptical outer shape, and a shape in which the flat core substance 4 is held inside the capsule wall 10 constituting such an outer shape. is there. As will be described later, this form is also a typical form obtained by a microcapsule manufacturing method using a printing system.
  • the maximum size of the microcapsule 2 is preferably 2 mm or less.
  • the maximum dimension means any one of the maximum thickness, length, width, and diameter of the capsule.
  • the microcapsule 2 can be efficiently manufactured by using a printing system described later. More preferably, it is 0.5 mm or less.
  • the maximum size of the present microcapsule 2 is preferably 1 zm or more, and if it is less than 1 m, it tends to aggregate and becomes difficult to use as a microcapsule of the intended size. More preferably, it is 10 zim or more, and more preferably 50 m or more.
  • this microcapsule 2 has a cross-sectional or planar aspect ratio of 1 in its outer shape itself, such as a flat shape, a hemispherical shape, a rod shape, or a spindle shape, rather than a spherical shape or a cubic shape. It is possible to easily obtain a form greatly exceeding. For this reason, when the aspect ratio of the present microcapsule 2 is sufficiently large, for example, the smallest dimension (which is the smallest thickness, length, width, or diameter in the force capsule) is several! Even if the size is about ⁇ 1 zm or less, if the maximum dimension is about 10 xm or more, the mutual contact area can be effectively reduced, and the aggregation of the microcapsules 2 can be prevented.
  • the aspect ratio of the present microcapsule 2 is sufficiently large, for example, the smallest dimension (which is the smallest thickness, length, width, or diameter in the force capsule) is several! Even if the size is about ⁇ 1 zm or less, if the maximum dimension is
  • the outer shape of the contact ratio tends to be close to 1 and the volume of contact tends to be larger than that of the volume.
  • aggregation can be suppressed by the outer shape itself.
  • the aspect ratio ratio between the maximum dimension and the minimum dimension
  • the aspect ratio is preferably 100 or less, and when the microcapsule 2 is manufactured, fine cracks are generated in the microforce pusher 2 when it is peeled off from the carrier 20 In view of suppressing the above, 2500 or less is more preferable.
  • the thickness is preferably 10 im or less, and is preferable in consideration of the maximum dimension being 50 / m or more.
  • the aspect ratio is 5 or more
  • the distance from the surface of the core material 4 to the surface of the microcapsule 2 varies depending on the part due to the presence form of the core material 4 and the force pusher wall 10 as described above.
  • Anisotropy can be provided.
  • the anisotropy of the distance in the micro force pusher 2 can be exemplified as follows. In the circular plate-like microcapsule 2 in FIG. 1, the distance L from the left and right ends of the core material 4 to the left and right end surfaces of the microcapsule 2 and the upper direction from the center of the upper portion of the core material 4 in the figure The distance S to the surface of the microcapsule 2 is different. Further, in the circular plate-like microcapsule 2 of FIG.
  • the left and right ends of the core material 4 are exposed on the surface of the microcapsule 2, and the distance SS becomes 0, but the upper left and right sides of the core material 4
  • the distance L in the directly upward direction from the near part is different from the distance S in the upward direction from the center of the upper part.
  • the core materials 4a and 4b are present in eccentric positions in the microcapsule 2, and are directly above the core materials 4a and 4b.
  • the distances S 1 and S 2 in the direction are different from the distances L 1 and L 2 from the core materials 4 a and 4 b to the left and right sides, respectively.
  • the distance S in the upward direction is different from the distance L in the upward direction from the upper center.
  • the distance can be easily and continuously varied by making the core substance 4 exist in a flat form or in an eccentric portion.
  • the distance can be varied by making the core substance 4 in a flat form or in a biased part.
  • the distances can be further diversified. Further, in the microcapsule 2 of FIG. 4, the distances in the left-right direction from the left and right ends of the core material 4 are different from the distance S and the distance L, respectively.
  • the microcapsule 2 has anisotropy at such a distance, so that the sustained release timing or the sustained release rate of the core substance 4 can be controlled.
  • An example of the sustained release effect due to the anisotropy of the distance in the microcapsule 2 is shown in FIG. Fig. 8 shows models for the amount of core material dissolved per unit time in various microcapsules.
  • the dissolution curve a (—dotted line) for a microcapsule with a roughly uniform capsule wall on the outer surface of a conventional core material shows that the core material dissolves all at once after a certain period of time because the capsule wall is approximately uniform in thickness. It shows that On the other hand, the dissolution curve b (thick line) of the plate capsule (in the form of Fig.
  • microcapsules of the present invention can be used in various forms of preparations containing a plurality of microcapsules as pharmaceutical preparations.
  • Such preparations include, but are not limited to, various oral preparations such as tablets, capsules, granules, pills, aerosols, syrups, troches, injections, eye drops, patches, suppositories, transdermal Examples include external preparations, subcutaneous implantable preparations, oral and nasal mucosa application preparations, and the like. It should be noted that a known formulation technology can be applied to various formulations such as tableting, encapsulation, and granulation.
  • FIG. 9 shows an example of the flow of this manufacturing method.
  • This flow is suitable for manufacturing the micro cab cell 2 shown in FIG.
  • This manufacturing method includes a step of supplying a core material 4 such as a liquid containing the core material 4 or its raw material to at least a carrier having a surface to which the core material can adhere, and a liquid containing the capsule wall or its raw material. Supplying a capsule wall material such as the above to the surface to which at least the capsule wall material can adhere.
  • the capsule wall can be made of the materials already mentioned.
  • a capsule wall material configured to finally obtain these materials is prepared and used.
  • the capsule wall 10 is made of a polymer material
  • the polymer material or the material that becomes polymerized by reaction is suspended or dissolved in an appropriate solvent, and various additives are added as necessary.
  • a capsule wall material is prepared.
  • the capsule wall material is preferably prepared in a liquid or best shape. When it is liquid or pasty, it becomes easy to use a printing method to supply the capsule wall material.
  • the liquid state includes solutions and suspensions.
  • the capsule wall material may be in the form of powder in addition to liquid or paste.
  • Capsule wall 10 containing the body can be obtained by introducing bubbles by stirring or the like during preparation of a capsule wall material or by using a chemical foaming agent. In such a force-pessel wall material, it is preferable to previously remove bubbles having a size that hinders supply from a supply means such as a micropump described later.
  • a core material containing the core material 4 already described As the core material, only the core material 4 may be used, but various additives can be added to obtain an appropriate composition. It is also possible to prepare and use two or more types of core material materials having different concentrations of the core material 4 and different types of the core material 4.
  • the core material is preferably in the form of a liquid or paste in the same manner as the capsule wall material.
  • the core material may be in powder form.
  • the carrier 20 for producing the microcapsule 2 will be described.
  • the capsule wall material is supplied to at least the surface of the carrier 20 having the surface 22 to which the capsule wall material can adhere.
  • the carrier 20 may be a solid, liquid, or gel, as long as it has a surface to which the capsule wall material can adhere.
  • the solid or gel may be elastic or plastic.
  • the liquid can hold a minute amount of the capsule wall material on its surface.
  • the carrier 20 can attach and hold the force capsule wall material and can give the capsule wall 10 a shape following the surface 22. Therefore, get
  • a pharmaceutical carrier having solubility or disintegration at any site in the living body can be used.
  • the microcapsule 2 is dissolved or disintegrated at the target site to release the microcapsule.
  • Preparation can be supplied.
  • the carrier 20 can be easily dissolved or disintegrated by moisture such as saliva in the oral cavity. It is preferable to release the microcapsules 2 at.
  • the carrier 20 in order to release the microcapsules 2 in the digestive tract and blood vessels such as the stomach or intestine, can be made of a material and a structure that dissolves or disintegrates at each site.
  • the capsule wall 10 in the living body can be made of an adhesive material having adhesiveness to the mucous membrane of the setting part.
  • a preparation microcapsule holder
  • the carrier 20 can be composed of the same material as that used for the capsule wall 10 already described.
  • the carrier 20 functions as a part of the capsule wall 10.
  • the carrier 20 functions as a part of the capsule wall 10.
  • the remaining capsule wall 10 can be the same as or different from the constituent material of the carrier 20.
  • a lumber carrier that facilitates swallowing or bitterness masking as the carrier 20
  • a large number of microforce pushells 2 or multiple types of microforce pushells 2 can be easily and collectively administered to the carrier 20.
  • the so-called wafer-like or encapsulating material-like functions can be added (Fig. 19 (b)).
  • the carrier 20 having an oblate-like function includes a gum, gel, or a pharmaceutical carrier that absorbs water to form a gel.
  • Examples of the material of the carrier 20 include various polymer materials such as polypyrrolidone, gelatin, polypinyl alcohol, sodium polyacrylate, carboxymethyl cellulose, starch, xanthan gum, caraja gum, sodium alginate, Methylcellulose, strong loxyvinyl polymer, agar, hydro
  • cellulose acetate phthalate, cellulose acetate tetrahydrophthalate, hydroxymethylpropylcellulose terephthalate, polyvinyl acetate phthalate, carboxymethylethylcellulose, and methacrylic acid copolymer are enteric polymer materials. Can be mentioned.
  • the carrier 20 skin substitute materials formed from cultured skin, collagen, gelatin and the like, and various organ substitute materials such as artificial blood vessels can be used.
  • a carrier 20 by forming microcapsules by the micropump method described later, it is possible to suppress the obstacles to these alternative materials and to effectively hold the drug or the like.
  • the required amount of drug can be accurately retained at the required site.
  • the micro force cell 2 formed in this way is used as a micro force cell holder together with the carrier 20.
  • the surface 22 of the carrier 20 may have appropriate liquid repellency.
  • the liquid repellency referred to here is at least liquid repellency to the capsule wall material.
  • the adhesion form of the capsule wall material adhered to the surface 22 can be controlled.
  • the capsule wall material adheres to a highly liquid-repellent surface the form of adhesion is close to a sphere, and when the liquid repellency is low, it becomes a flat form of adhesion.
  • the surface 22 has a liquid-repellent part and a non-liquid-repellent part (part having affinity for the capsule wall material), and a liquid-repellent part is provided around the non-liquid-repellent part.
  • the shape of the carrier 20 is not particularly limited, but is preferably a plate shape or a sheet shape in consideration of use of the printing system. It may have a curved surface to which the printing system can be applied. Also, as shown in FIG. 9, when the surface 22 of the carrier 2.0 is flat, a flat portion can be formed on the capsule wall 10. Further, as shown in FIG. 10, by having a concave portion corresponding to the size of the micro force pusher 2, a shape corresponding to the concave portion can be easily imparted to the microcapsule 2. By forming the hemispherical inner surface in the recess, the micro force pusher 2 having a spherical portion as shown in FIG. 4 can be easily obtained. The Furthermore, as shown in FIG.
  • the first carrier 20 a is a flat plate
  • the second carrier 20 b is a flat plate overlapping the first carrier 20 a
  • the flat plate By forming a through hole corresponding to the microcapsule 2 in 20 b, the carrier 20 having the recess 24 on the surface 22 can be easily obtained. Further, as will be described later, the microcapsule 2 can be easily demolded by dividing the carrier 20 into the first carrier 20a and the second carrier 20b as described above. it can. In addition, as shown in FIG. 12, when the through hole of the second carrier 20b is formed in a taper shape, it can be removed more easily.
  • the carrier 20 is preferably a plastic material.
  • the carrier 20 may be a stretchable material at least in one direction on the surface 22.
  • the microcapsules 2 can be separated by expanding and contracting the carrier 20 along the direction.
  • the carrier 20 may have a foamable material layer 30 on its surface 22. After the microcapsules are manufactured, by heating the carrier 20 or the like, the foaming agent or the like inherent in the foamable material layer 30 is foamed, so that gas is ejected from the surface 22 or the shape of the surface 22 is changed. Microcapsules 2 can be separated.
  • the carrier 20 is preferably provided with a liquid repellent layer at least on the surface 22. This is because the contact area of the micro-force psel 2 on the surface 22 can be reduced and the adhesion strength can be reduced.
  • a material having selective permeability to gas can also be used as the carrier 20. That is, using a material that does not easily allow liquid to pass through and easily allows gas to pass through, and uses the gas-selective permeability of the material so that the gas passes from the surface other than the surface 22 of the carrier 20.
  • the microcapsules 2 formed on the surface 22 of the carrier 20 can be easily separated. Examples of such a selective gas permeable material include the use of porous materials such as ceramics, metals, and polymer materials.
  • the microcapsules 2 can be easily separated by their flexibility. Also, polymer material By utilizing the high water repellency due to the low surface energy of the material, even if the porosity is relatively high, the penetration of the capsule wall material into the pores of the carrier 20 is suppressed and the low ventilation pressure is achieved. Therefore, the microcapsule 2 can be separated.
  • the preferred pore size in such materials varies depending on the water repellency of the material itself, the characteristics of the capsule wall material (surface tension, viscosity, pH, etc.), and the amount of gas applied and pressure, but the average diameter is It is preferably 200 nm or less. The average diameter is more preferably 10 nm or less, and still more preferably 1 nm or less, in order to more reliably suppress the penetration of the capsule wall material and ensure the separation of the microcapsules.
  • a method for supplying the capsule wall material and the core material to the carrier 20 will be described.
  • a printing system specifically, by using the recording material supply method in the printing system, in the core material supply process and the capsule wall supply process,
  • the core material and the capsule wall material can be respectively supplied to two predetermined positions. Therefore, a large number of microcapsules 2 can be easily manufactured, and microcapsules 2 having a desired shape can be manufactured. Furthermore, as shown in FIG. 13, a large number of microcapsules 2 can be arranged in a desired pattern on a carrier 20.
  • the printing system used in this manufacturing method includes a micro-bump method used in ink jet recording and a stencil printing method represented by screen printing.
  • the micropump method microdroplets of the capsule wall material can be ejected onto the carrier 20 and landed on the surface 22 and adhered thereto.
  • supply amount control and landing point control can be performed with high accuracy. Therefore, it is convenient for the supply of the capsule wall material, but it is particularly preferable to perform the core material supply process that requires highly accurate supply amount control and supply position control by the micropump method.
  • it is suitable for the production of micro cab cells 2 that are relatively small (several / several tens of meters).
  • Examples of the micropump method include a charge control method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic suction method. In the present manufacturing method, any of these can be used, but it is preferable to use a piezoelectric liquid discharge method that is an electromechanical conversion method in which a discharge pressure can be obtained without heating the liquid. .
  • a pump section provided with one or more night body pressurizing chambers is connected to a nozzle section provided with a plurality of nozzle holes for ejecting liquid.
  • a part of the wall of the liquid pressurizing chamber may be deformed by a piezoelectric ⁇ electrostrictive element so that the liquid supplied to the liquid pressurizing chamber is ejected from the nozzle hole.
  • liquid inlets used for supplying the liquid to the pressurizing chamber via the liquid reservoir flow path are alternately arranged, it is possible to discharge with an accurate amount of minute droplets. In this manufacturing method, it is not always necessary to use an equivalent to that used in an ink jet recording apparatus.
  • the screen printing method is preferably used.
  • the capsule wall material can be supplied in a desired pattern to the carrier 20 through a screen film patterned in a desired planar form.
  • the microcapsule 2 larger than the inkjet method can be easily manufactured.
  • Screen printing is also suitable for supplying capsule wall materials that are more quantitative than core material materials.
  • the step of supplying the capsule wall material and the core material is performed so that at least a part of the deposit on the core material is encapsulated on the surface 22 with the deposit on the capsule wall material. In this way, at least a part of the microcapsules is manufactured.
  • the capsule wall material is supplied to the surface 22 of the carrier 20, and the core material material is supplied to the adhered substance on the capsule wall material. . In this way, a desired shape can be imparted to the capsule wall 10 using the surface 22.
  • the core material 4 is securely held inside the capsule wall 10 without depending on the type of carrier 20 or the liquidity of the core material. Possible Can be located.
  • the capsule wall material can be cured to a necessary degree by appropriately leaving, drying, heating, and the like.
  • a core material with a different concentration for the core material 4 or component to be concentration-graded is supplied.
  • some effective in the core material 4 Supplying a core material containing an ingredient at a first concentration, then supplying a core material containing the same active ingredient at a second wetness higher than the first concentration, and further supplying the same active ingredient.
  • next core material When the next core material is supplied to the core material and the interface becomes clear depending on the type of core material, etc., it is dried to the extent that the lower core material will diffuse or mix into the next core material.
  • a continuous concentration gradient can be formed by supplying the next core material in the state.
  • the capsule wall material is supplied so as to cover the deposit on the core material.
  • a holding structure is formed by the lower and upper force psell wall materials for the core material.
  • the supply of various materials is the largest for the capsule wall material on the lower side, then the material for the upper capsule wall, and the least amount of material for the core material.
  • a micro force psel 2 that completely encapsulates the whole with the capsule wall 10 can be obtained.
  • the core material is a powerful wall.
  • the capsule wall will eventually end up when it is easy to penetrate or diffuse into the material or in the opposite direction
  • a small amount of capsule wall material or the like can be supplied in advance to the deposits of the core material material to form an inner layer that suppresses such penetration and diffusion.
  • Such an inner layer may be the same as the capsule wall material, but may be configured separately.
  • the inner layer is not limited to such a purpose, and an inner layer material such as a liquid can be appropriately supplied so as to be interposed between the capsule wall 10 and the core substance 4.
  • the microcapsule 2 as illustrated in FIG. 5 can be obtained on the carrier 20.
  • the microcapsule 2 remains attached to the carrier 20. If drying or heating is necessary to finally form the capsule wall 10 in the microcapsule 2 on the carrier 20, these steps may be performed in this state.
  • the microcapsules 2 obtained in this way can be used in a state where a large number of microcapsules 2 are held on the carrier 20. That is, it can be used as a microcapsule holder that holds the microcapsules 2.
  • the microcapsule carrier is a preparation that can be administered as it is.
  • a preparation that is preliminarily provided with a form suitable for administration can be provided by omitting the operations such as capsule filling, granulation, and packing that are usually required for a microphone mouth capsule.
  • the microcapsules 2 are arranged in a predetermined pattern and contain an active ingredient of a pharmaceutical as the core substance 4, the percutaneous external preparation, the subcutaneous implantable preparation, the oral cavity Or it can be used for preparations for nasal mucosa, suppositories, oral preparations, etc. These can also be provided with a dividing line as appropriate.
  • the microcapsule 2 can exhibit a time-release effect or a time-release effect.
  • the carrier 20 can also be used as a packaging carrier that temporarily holds the microcapsules 2. That is, the microcapsule holding body can be used as it is, or a packaging body can be formed by performing a packaging process with a transparent film so that it becomes a normal capsule packaging body as it is.
  • the carrier 20 when the carrier 20 is used as a microcapsule 2 holder, the carrier 20 made of a material suitable for the application is selected, and if necessary, a protective film or binder for the microcapsule 2, An adhesive layer for fixing the carrier 20 to a predetermined site, a protective layer for protecting the adhesive layer, and the like can be provided.
  • Such a microcapsule holder may be formed by forming the capsule wall 10 on the carrier 20, supplying the core substance 4, and supplying the capsule wall 10, but the material and surface 2 of the carrier 20 If the shape of 2 is selected, the core material is supplied directly to the surface of the carrier 20 and
  • the carrier 20 functions as a part of the capsule wall 10 (see FIG. 19 (a)).
  • a step of separating the microcapsules from the carrier 20 is performed.
  • the microcapsules 2 can be separated by deforming at least the surface thereof.
  • the carrier 20 holding the microcapsules 2 is sequentially sent by a belt conveyor or the like, and the carrier 20 is bent at the end of the conveyor, so that the minute at the end. Capsule 2 can be separated.
  • a blade 40 can be provided so that the microcapsules 2 are brought into contact with and pressed at the end portions.
  • the blade 40 can be provided not only with the microcapsule 2 but also with a cutting edge that is easily inserted between the microcapsule 2 and the surface 22.
  • the blade 40 can also be positioned so as to abut on the minute force pusher 2 on the carrier 20 that moves without being bent. In this way, the microcapsule 2 may be separated.
  • an external force that separates the microcapsule 2 from the surface 22 can be applied using a gas shot such as air instead of the blade 40.
  • FIG. 16 by applying an external force from the surface 22 of the carrier 20 holding the microcapsule 2 and the opposite surface 26, the carrier 20 is deformed into an uneven shape.
  • the microcapsules 2 can also be separated from the carrier 20. In FIG.
  • the opposite surface (back surface) of the carrier 20 is a large number of protrusions 52 on the side of 4 and suction holes 5 4 connected to a number of vacuum suction devices provided between the protrusions 52.
  • the microcapsule separating device 50 having the above is disposed, the protrusion 52 is brought into contact with the back surface 26 of the carrier 20, and positioned so as to correspond to the position of the microforce pusher 2.
  • a cavity capable of being vacuum-sucked is formed from the suction hole 54 on the back surface 26 between the adjacent microforce Psell 2 and the microcapsule 2 and the surface between the adjacent protrusions 5 4 of the separation device 20.
  • the back surface 2 6 of the carrier 20 that has formed the cavity is adsorbed to the projection 54 side, and as a result, the micro force push
  • the carrier 20 at the peripheral edge of the bottom of the cell 2 is peeled off from the bottom, and the tip of the protrusion 54 presses the center of the bottom of the microcapsule 2 upward from the back surface 26 of the carrier 20.
  • the micro force psell 2 can be easily separated from the carrier 20.
  • the microcapsule 2 when an elastic material is used as the carrier 20, the microcapsule 2 can be separated by stretching the carrier 20 at least on the surface 22, as shown in FIG. As described above, when the carrier 20 has the foamable material layer 30 at least on the surface layer, the microforce pushell 2 can be separated by foaming by heating or the like. As shown in FIGS. 11 and 12, even when the carrier 20 is divided, the microforce cell 2 can be easily separated from the carrier 20.
  • a selective gas permeable material is used as the carrier 20, by supplying a gas such as air to the carrier 20 so that the gas is discharged from the surface 22 of the carrier 20,
  • the microcapsule 2 can be separated from the surface 22 2 by the pressure of the gas.
  • the amount of the core material 4, the form, the film thickness of the capsule wall 10, and the shape are controlled by using the printing system, and the desired three-dimensional shape micro-cube.
  • a cell can be constructed.
  • it is a method capable of constructing an unwrapped form of the core material 4 that has not existed before.
  • all the various three-dimensional shapes of the microcapsules 2 and the inclusion form of the core substance 4 can be realized.
  • microcapsules are formed on the surface of the carrier 20.
  • the carrier 20 By adjusting the supply pressure of the force-pell wall material, the core material, and the material of the carrier 20 using a micropump, the carrier 20 is supplied so that the capsule wall material and the core material are embedded in the carrier 20
  • Microcapsules 2 can also be formed at 20. Furthermore, the microcapsule 2 can be supplied to the carrier 20 to form a microforce pushell 2 holder. Alternatively, the microcapsule 2 can be formed by injecting only the core material material into the carrier 20 using the carrier 20 as the capsule wall.
  • the carrier on which the microcapsules 2 are formed can be used as a microcapsule holder as it is.
  • the carrier 20 or plasticized with water or heat the carrier is predetermined.
  • the carrier 20 holding the microcapsules 2 can be plasticized under a predetermined condition to give an arbitrary shape.
  • a preparation that reaches a predetermined site in the living body by oral administration or a surgical or tube method it can be formed into a form corresponding to the administration form or administration site.
  • each carrier region on which a certain amount of microforce pusher 2 is formed can be formed into a spherical shape, a rod-like body, a tablet-like shape, or the like presented for oral administration.
  • microcapsule having a capsule wall and the use of a printing system using a micropump or the like in the manufacturing method of the microcapsule have been described.
  • This example is an example of manufacturing a microcapsule having the structure shown in FIG. 5, and conforms to the manufacturing process shown in FIG.
  • the capsule wall material was an anionic polymer based on methacrylic acid and methacrylic acid ester, and an aqueous solution with a polymer concentration of 1 Owt% was used as the force capsule wall material.
  • water-soluble ink solid content 10% by weight
  • the carrier used was a polyethylene terephthalate (PET) sheet of resin.
  • droplets of the capsule wall material and the core material were discharged by an inkjet method using a piezoelectric liquid discharge method.
  • the unit used was the structure disclosed in Japanese Patent Publication No. 2003-75305.
  • the drive waveform applied to the piezoelectric body was adjusted so that the discharge volume was about 200 pl per shot for each material.
  • capsule wall material liquid volume 2000 pL
  • a core material was formed on the capsule wall by discharging one shot of the core material (liquid amount 200 pL) and air-drying (step 2).
  • 1 shot (200 pL) of capsule wall material is discharged and air-dried to form a diffusion suppression layer, and then 4 shots of capsule wall material (liquid amount 800 p 1) are discharged and air-dried to obtain microcapsules. (Process 3). Four such microcapsules were prepared at the same time.
  • the diameter and film thickness of the microcapsules finally obtained were measured, and further, they were observed with a stereomicroscope to confirm the encapsulation.
  • An optical interferometer was used for film thickness measurement, and an optical microscope was used for diameter measurement.
  • the capsule wall formed in step 1 has a diameter of about 0.2 mm and a film thickness of about 300 nm
  • the core material formed in step 2 has a diameter of about 0.05 mm and a film thickness of about 20 nm. It was hot.
  • the capsule wall formed in step 3 had a diameter of about 0.1 mm and a film thickness of about 100 nm.
  • the finally obtained micro-force psell had a film thickness of about 400 nm and a diameter of about 0.2 mm. Furthermore, when the main pushell was confirmed with a stereomicroscope, it was confirmed that it was encapsulated.
  • the surface roughness of the capsule wall (bottom surface) formed in contact with the carrier in step 1 and the force psal wall (top surface) formed in step 3 The Rmax on the bottom surface was 0.1 zm or less, and the Rmax on the top surface was 0.5 xm. From the above, it can be seen that microforce pusels with different surface roughness can be easily produced by producing microforce pusels on a carrier.
  • microcapsules can be constructed on a carrier by using a printing system. Therefore, it can be seen that various forms of microcapsules can be obtained by using a system such as a microdroplet ejection system or a screen printing system.
  • a system such as a microdroplet ejection system or a screen printing system.
  • a microcapsule having a concentration gradient for a certain component in the core material was produced.
  • Water-soluble inks having a solid content of 10% by weight and a solid content of 0.1% by weight were used.
  • the water-soluble ink having a solid content of 0.1% by weight was added with a 1 wt% aqueous solution of the same polymer used in Example 1 and the capsule wall material.
  • the carrier, capsule wall material, and core material material were discharged in the same manner as in the example, and the capsule wall material 10 liquid (liquid volume 2 00 pL) was discharged onto the flat surface of the carrier and landed.
  • the capsule wall was constructed by air drying.
  • microcapsules having a concentration gradient can be obtained by stacking core material materials having different component concentrations.
  • a capsule wall having pores was produced.
  • the material of the capsule wall is an anionic polymer based on methacrylic acid and methacrylic acid ester, and the excitation wavelength is 5500 nm and the detection wavelength is 5700 nm in an aqueous solution with a polymer concentration of 10 wt%.
  • a solution to which a fluorescent agent was added was used as a capsule wall material.
  • This capsule wall material is stirred with a micropipette to introduce bubbles, and then centrifuged to remove large bubbles.
  • a suitable amount is shot and air dried to produce only the capsule wall. did.
  • the capsule wall was observed with a fluorescence microscope, it was confirmed that bubbles (independent pores) of about several millimeters existed in the capsule wall. From the above, it has pores It can be seen that a force pushell wall can be produced.
  • the present invention relates to a Japanese patent application 2 0 0 4-1 9 5 9 1 9 filed on July 1, 2000 and a Japanese application filed on August 20, 2000
  • the national patent application 2 0 0 4-2 4 1 3 8 7 is the basis of the priority claim, and all of its contents are incorporated.

Abstract

Disclosed is a novel method for producing a very small capsule. This method comprises a step wherein a material for capsule wall containing a capsule wall (10) or a raw material thereof is supplied toward a surface (22) of a carrier (20) to which surface (22) at least the material for capsule wall is adherable, and a step wherein a material for core substance containing one or more core substances (4) or raw materials thereof is supplied toward a surface on which at least the material for core substance is adherable.

Description

明細書 微小カプセルおよびその製造方法 技術分野  Technical field
本発明は、 微小カプセルおよびその製造方法に関する。 背景技術  The present invention relates to a microcapsule and a method for producing the same. Background art
マイクロ力プセル等を含むミリメートルからナノメートルレベルのサイズの微 小なカプセルは、 固体状、 液体状の内包物 (芯物質) を壁材 (カプセル壁) により 被覆した微小な容器である。 微小カプセルは、 不安定な物質の保護、 反応性物質の 隔離、 内包物の拡散制御等を目的として、 薬剤分野、 食品分野、 印刷分野、 液晶分 野等の広い分野で利用されている。 この種の微小カプセルの製造方法としては、 界 面重合法、 in situ重合法および液  Small capsules of micrometer to nanometer size, including micro-force pusels, etc., are minute containers with solid and liquid inclusions (core substance) covered with wall material (capsule wall). Microcapsules are used in a wide range of fields such as pharmaceuticals, foods, printing, and liquid crystal for the purpose of protecting unstable substances, isolating reactive substances, and controlling diffusion of inclusions. This type of microcapsule manufacturing method includes interface polymerization, in situ polymerization, and liquid
中硬化被膜法等の化学的方法、 相分離法、 液中乾燥法などの物理化学的方法、 噴霧 乾燥法、 気中懸濁法などの機械的方法が知られている (印刷学会誌 第 3 7巻第 1 号、 p . 2 8 - p . 3 3 )。 これらは、 いずれも芯物質をほとんど拘束しない媒体 に分散させ、 この系にカプセル壁材料を導入して芯物質の表面を夕一ゲッ卜として 芯物質を囲繞する薄膜状のカプセル壁を形成させる点において共通している。 また、 特開 2 0 0 0— 5 5 9 3号公報ゃ特開 2 0 0 1— 2 3 2 1 7 8号公報には、 こうし たカプセル製法において、 芯物質を分散又は供給する手段として、 圧電素子などを 用いたインクジエツト法を用いることが開示されている。 発明の概要 Chemical methods such as medium-curing coating methods, phase separation methods, physicochemical methods such as submerged drying methods, and mechanical methods such as spray drying methods and air suspension methods are known. Vol. 7, No. 1, p. 2 8-p. 3 3). These are all dispersed in a medium in which the core substance is hardly restrained, and a capsule wall material is introduced into this system to form a thin-walled capsule wall surrounding the core substance with the surface of the core substance set as an evening spot. In common. Further, Japanese Patent Application Laid-Open No. 2 00-0 5 593 and Japanese Patent Application Laid-Open No. 2 0 0 1 2 3 2 1 7 8 disclose that in such a capsule manufacturing method, as means for dispersing or supplying a core substance. The use of an ink jet method using a piezoelectric element or the like is disclosed. Summary of the Invention
しかしながら、 これらの方法によって得られる微小カプセルは、 いずれも空気な どのガスや液体などの分散媒中において芯物質粒子の表面をカプセル壁が被覆す ることになる。 すなわち、 得られる微小カプセルは、 芯物質の表面形態に倣った外 形形態を有し、 そのカプセル壁の膜厚もおおよそ一定となる。 また、 微小カプセル の製造方法においては、 従来、 芯物質に対して均一な被膜を形成して芯物質を内包 するという観点から、 各種の方法が試みられてきているが、 これに替わる新たな形 式の微小カプセルの製造方法は未だ提供されていない。 However, in the microcapsules obtained by these methods, the capsule wall covers the surface of the core material particles in a dispersion medium such as gas or liquid such as air. Will be. That is, the obtained microcapsule has an outer shape that follows the surface shape of the core substance, and the film thickness of the capsule wall is approximately constant. In addition, in the manufacturing method of microcapsules, various methods have been tried from the viewpoint of forming a uniform film on the core material and encapsulating the core material. A method for producing microcapsules of the formula has not yet been provided.
そこで、 本発明は、 微小カプセルの新規な製造方法を提供することを 1つの目的 とし、微小カプセルに所望の外形形態を付与可能な微小カプセルの製造方法を提供 することを他の 1つの目的とし、 さらに、 芯物質の新規な内包形態を有する微小力 プセルの製造方法を提供することをさらに他の 1つの目的とする。また、本発明は、 新規な芯物質の内包形態を有する微小カプセルを提供することを一つの目的とし、 新規な外形形態を備える微小カプセルを提供することを他の一つの目的とする。 さ らに、 本発明は、 1又は 2以上の微小カプセルを備える微小カプセル保持体を提供 することも他の 1つの目的とする。  Accordingly, one object of the present invention is to provide a novel method for producing a microcapsule, and another object is to provide a method for producing a microcapsule capable of imparting a desired outer shape to the microcapsule. Furthermore, it is still another object to provide a method for producing a microforce psel having a novel inclusion form of a core substance. Another object of the present invention is to provide a microcapsule having a novel core substance encapsulation form, and another object to provide a microcapsule having a novel outer shape. Furthermore, another object of the present invention is to provide a microcapsule holding body including one or two or more microcapsules.
本発明者らは、 上記した課題を解決するために、 インクジェットプリン夕などに 用いられている微小液滴の吐出システムなどの印刷手法を用いることに着目し、 さ らに、芯物質やカプセル壁の材料となる液状物を所定の表面に付着させることによ り該表面において三次元形状を有する微小カプセルを構築できることを見出し、本 発明を完成した。 すなわち、 本発明によれば以下の手段が提供される。  In order to solve the above-mentioned problems, the present inventors have focused on using a printing method such as a micro-droplet ejection system used in an inkjet printer, and further, a core material and a capsule wall The present inventors have found that a microcapsule having a three-dimensional shape can be constructed on a surface by adhering a liquid material as a material to a predetermined surface, thereby completing the present invention. That is, according to the present invention, the following means are provided.
本発明の一つの形態によれば、微小カプセルであって、 1又は 2以上の芯物質と、 該芯物質を内部に保持するカプセル壁と、 を備え、 前記芯物質表面から前記微小力 プセル表面までの距離につき異方性を有する、 微小カプセルが提供される。 また、 本発明の 1つの形態によれば、 微小カプセルであって、 1又は 2以上の芯物質と、 該芯物質を内部に保持するカプセル壁と、 を備え、 前記微小カプセルの表面の少な くとも一部に平坦状部を有する、 微小カプセルも提供される。 これらの形態におい ては、 前記カプセル壁は、 前記 1又は 2以上の芯物質の全体を内包することが好ま しい態様であり、前記微小カプセルの表面の少なくとも一部が平坦状部を有するこ とも好ましい。また、微小カプセルは板状部位を有することも好ましい態様である。 さらに、 これらの微小カプセルにおいては、 扁平部位を有することが好ましい態様 であり、 球状体表面の一部からなる球状部位を有することも好ましい態様である。 さらに、 これらの微小カプセルにおいては、 その平面形態は円形状又は楕円状であ ることが好ましい。 また、 前記平坦状部の周縁に堤部を有することもできる。 According to one aspect of the present invention, a microcapsule comprising one or more core materials, and a capsule wall that holds the core material therein, the surface of the micromaterial from the surface of the core material. A microcapsule having anisotropy for a distance up to is provided. Further, according to one aspect of the present invention, the microcapsule includes one or more core substances, and a capsule wall that holds the core substance therein, and the surface of the microcapsules is small. There is also provided a microcapsule having a flat portion in part. In these forms, the capsule wall preferably includes the whole of the one or more core substances, and at least a part of the surface of the microcapsule has a flat portion. Both are preferable. It is also a preferred embodiment that the microcapsule has a plate-like portion. Furthermore, in these microcapsules, it is a preferable aspect to have a flat part, and it is also a preferable aspect to have a spherical part consisting of a part of the spherical body surface. Further, these microcapsules preferably have a circular or elliptical planar form. Moreover, a bank part can also be provided in the periphery of the said flat-shaped part.
さらに、 これらのいずれかの微小カプセルにおいて、 前記芯物質は扁平な形態で 前記カプセル壁に内包されていることが好ましい。 また、 前記芯物質を 2つ以上備 え、 該 2つ以上の芯物質の材質は 2種類以上であることが好ましい態様であり、 さ らに、前記カプセル壁の材質は 2種類以上であることも好ましい態様である。また、 これらのいずれかの微小カプセルにおいて、 前記カプセル壁は、 前記 1又は 2以上 の芯物質の表面の一部を被覆する第 1のカプセル壁と、前記 1又は 2以上の芯物質 の表面の残部を被覆する第 2のカプセル壁と、 を備えることが好ましい態様である。 また、 これらのいずれかの微小カプセルにおいて、 前記カプセル壁において対向 する領域は異なる表面積を有することが好ましい態様である。 この態様においては、 該カプセル壁において対向する領域の凹凸形態および Zまたは表面粗さの相違に よって表面積が異なることが好ましい態様である。  Furthermore, in any of these microcapsules, it is preferable that the core substance is encapsulated in the capsule wall in a flat form. In addition, it is preferable that two or more core materials are provided, and the two or more core materials have two or more types of materials, and the capsule wall material has two or more types. Is also a preferred embodiment. In any one of these microcapsules, the capsule wall includes a first capsule wall that covers a part of the surface of the one or more core substances, and a surface of the one or more core substances. It is preferable that the second capsule wall covering the remaining portion is provided. Moreover, in any of these microcapsules, it is preferable that regions facing each other in the capsule wall have different surface areas. In this embodiment, it is a preferable embodiment that the surface area is different depending on the uneven shape and Z or surface roughness of the opposing regions in the capsule wall.
さらに、 上記いずれかの微小カプセルにおいて、 前記カプセル壁の対向する領域 の一方において凹部および Zまたは凸部を備えることも好ましい態様であり、 さら に、 前記カプセル壁の対向する領域は、 異なる厚み及び Z又は組成を有しているこ とも好ましい。 さらに、 前記カプセル壁の対向する領域の一方が前記芯物質又はそ の成分の放出制御領域であり、他方が微小カプセルの到達部位制御領域であること が好ましい態様である。  Furthermore, in any one of the above microcapsules, it is also a preferable aspect that a concave portion and a Z or convex portion are provided in one of the opposing regions of the capsule wall, and the opposing region of the capsule wall has a different thickness and It is also preferable to have Z or composition. Furthermore, it is a preferred embodiment that one of the opposing regions of the capsule wall is the core substance or its component release control region, and the other is the microcapsule arrival region control region.
さらにまた、 これらのいずれかの微小カプセルにおいては、 最大寸法が 2 mm以 下でかつ最大寸法 最小寸法の比が 2 0 0 0 0 0以下であることが好ましい態様 である。 また、 前記カプセル壁は独立状気孔を含有していることが好ましい態様で ある。 さらに、 前記芯物質又はその成分について濃度傾斜を有していることも好ま しい態様であり、 前記微小カプセルの最小寸法に対する最大寸法の比 (最大寸法 Z 最小寸法) が 5以上であることも好ましい態様である。 Furthermore, in any one of these microcapsules, it is preferable that the maximum dimension is 2 mm or less and the ratio of the maximum dimension to the minimum dimension is 200,000 or less. In a preferred embodiment, the capsule wall contains independent pores. Furthermore, it is preferable that the core substance or its components have a concentration gradient. The ratio of the maximum dimension to the minimum dimension of the microcapsules (maximum dimension Z minimum dimension) is preferably 5 or more.
本発明の他の一つの形態によれば、 1又は 2以上の芯物質と該芯物質を内側に保 持するカプセル壁とを備える微小カプセルの製造方法であって、前記カプセル壁又 はその原料を含むカプセル壁用材を、少なくとも該カプセル壁用材が付着可能な表 面を有する担体の該表面を指向して供給する工程と、 1又は 2以上の前記芯物質若 しくはその原料を含む芯物質用材を、少なくとも該芯物質用材が付着可能な表面を 指向して供給する工程と、 を備え、 これらの供給工程を、 前記表面において前記芯 物質用材の付着物の少なくとも一部を前記カプセル壁用材の付着物で内包するよ うに実施する、 微小カプセルの製造方法が提供される。 この形態においては、 前記 カプセル壁用材の供給工程および前記芯物質用材の供給工程は、前記表面の予め定 めた位置に前記カプセル壁用材および前記芯物質用材をそれぞれ供給する工程で あることが好ましい態様である。  According to another embodiment of the present invention, there is provided a method for producing a microcapsule comprising one or more core materials and a capsule wall that holds the core material inside, the capsule wall or a raw material thereof. Supplying the capsule wall material containing at least the surface of the carrier having a surface to which the capsule wall material can adhere, and one or more of the core material or a core material containing the raw material Supplying the material to at least a surface to which the core material can adhere, and supplying these materials, wherein at least a part of the adhering material of the core material on the surface is the capsule wall material There is provided a method for producing a microcapsule, which is carried out so as to be encapsulated with a deposit. In this embodiment, it is preferable that the capsule wall material supplying step and the core substance material supplying step are steps of supplying the capsule wall material and the core substance material respectively to predetermined positions on the surface. It is an aspect.
また、 上記いずれかの微小カプセルの製造方法においては、 前記カプセル壁用材 の供給  Further, in any one of the above microcapsule manufacturing methods, the capsule wall material is supplied.
工程および前記芯物質用材の供給工程のうち少なくとも 1つの供給工程は、マイク 口ポンプ方式によって前記芯物質用材および /または前記カプセル壁用材の液滴 を吐出して行うことが好ましい態様であり、前記カプセル壁用材の供給工程および 前記芯物質用材の供給工程の少なくとも 1つの供給工程は、スクリーン印刷法によ り行うことも好ましい態様である。 さらに、 前記カプセル壁用材の供給工程を、 ス クリーン印刷法により行い、 前記芯物質用材の供給工程を、 マイクロポンプ方式に よって芯物質用材の液滴と吐出して行うことも好ましい。 At least one of the steps and the supply step of the core material material is preferably performed by discharging droplets of the core material material and / or the capsule wall material by a microphone pump method. It is also a preferred aspect that at least one of the capsule wall material supply step and the core substance material supply step is performed by a screen printing method. Furthermore, it is also preferable that the capsule wall material supply step is performed by a screen printing method, and the core material material supply step is performed by discharging the core material material droplets by a micropump method.
さらに、 これらのいずれかの微小カプセルの製造方法において、 微小カプセルの 形成される内層又はその原料を含む内層用材を、最外層に位置されるカプセル壁よ りも内層側に位置されるように前記芯物質用材の付着物又は前記カプセル壁用材 の付着物に対して供給することが好ましい態様である。 さらにまた、 前記カプセル 壁用材の供給工程により形成されたカプセル壁用材の付着物に対して前記芯物質 用材の供給工程を実施し、該芯物質用材の付着物に対して前記カプセル壁用材の供 給工程を実施することも好ましい態様である。 そして、 この態様においては、 前記 芯物質用材の供給工程に先だって又は該供給工程に次いで、前記芯物質用材の前記 カプセル壁用材への拡散又は浸透を抑制する内層用材の供給工程を実施すること が好ましい。 Further, in any one of these microcapsule manufacturing methods, the inner layer on which the microcapsules are formed or the inner layer material including the raw material thereof is positioned on the inner layer side with respect to the capsule wall positioned on the outermost layer. It is a preferable aspect to supply to the deposit on the core material or the capsule wall deposit. Furthermore, the capsule The core material supply step is performed on the capsule wall material deposit formed by the wall material supply step, and the capsule wall material supply step is performed on the core material deposit. This is also a preferred embodiment. And in this aspect, prior to the supplying process of the core substance material or following the supplying process, the supplying process of the inner layer material that suppresses the diffusion or penetration of the core substance material into the capsule wall material may be performed. preferable.
また、 上記いずれかの微小カプセルの製造方法において、 前記担体は可撓性材料 であることが好ましい態様であり、 また、 前記担体は、 伸縮性材料であることも好 ましい態様であり、 前記担体は、 少なくともその表面に発泡性材料層を有すること も好ましい態様であり、 前記担体は、 少なくともその表面に撥液性層を有すること も好ましい態様である。 さらに、 前記担体は、 気体に対する選択的透過性を有して いることも好ましい態様である。  In any one of the above-described microcapsule manufacturing methods, the carrier is preferably a flexible material, and the carrier is preferably a stretchable material. It is also a preferred embodiment that the carrier has at least a foamable material layer on its surface, and that the carrier also has a liquid repellent layer on at least its surface. Furthermore, it is a preferable aspect that the carrier has a selective permeability to a gas.
さらにまた、 上記いずれかの微小カプセルの製造方法において、 前記担体は、 ほ ぼ平坦な部分を有することが好ましい態様であり、 前記担体は、 前記芯物質用材お よび前記カプセル壁用材が供給される凹部を有することも好ましい態様であり、 こ の態様において、前記凹部は平板状の第 1の担体と該第 1の担体に重ねられる第 2 の平板状担体に設けられる貫通孔とによって形成されることが好ましく、 これらの 態様において、 前記貫通孔はテーパ状であることが好ましい。  Furthermore, in any one of the above microcapsule manufacturing methods, it is preferable that the carrier has a substantially flat portion, and the carrier is supplied with the core material material and the capsule wall material. It is also a preferred embodiment to have a recess, and in this embodiment, the recess is formed by a flat plate-like first carrier and a through-hole provided in a second flat plate carrier that is superimposed on the first carrier. Preferably, in these embodiments, the through hole is preferably tapered.
また、 上記いずれかの微小カプセルの製造方法において、 前記担体上に形成した 微小カプセルを前記担体から分離する工程を備えることが好ましい態様である。 こ の態様において、 前記分離工程は、 前記担体上の前記微小カプセルに対して前記担 体の少なくとも前記表面を変形させる工程であることが好ましい。 また、 前記分離 工程は、前記担体の前記表面と反対側の面から外力を作用させることにより前記担 体を凹凸状に変形させる工程であることが好ましい。 さらに、 前記分離工程は、 前 記担体上の前記微小カプセルに対し直接外力を作用させる工程であることが好ま しい。 また、 本発明の他の一つの形態によれば、 担体と、 該担体に保持される、 芯物質 と該芯物質を内側に保持する複数の微小カプセルと、 を備える、 微小カプセル保持 体が提供される。 また、 本形態においては、 前記担体の一部が前記微小カプセルの カプセル壁を構成していることが好ましい態様であり、 また、 前記担体は、 生体内 のいずれかの部位における溶解性又は崩壊性を備える製剤用担体であることが好 ましい態様である。 図面の簡単な説明 In any one of the above-described methods for producing microcapsules, it is preferable that the method includes a step of separating the microcapsules formed on the carrier from the carrier. In this aspect, the separation step is preferably a step of deforming at least the surface of the carrier with respect to the microcapsules on the carrier. Moreover, it is preferable that the separation step is a step of deforming the carrier into an uneven shape by applying an external force from a surface opposite to the surface of the carrier. Furthermore, the separation step is preferably a step in which an external force is directly applied to the microcapsules on the carrier. According to another aspect of the present invention, there is provided a microcapsule holding body comprising: a carrier; a core material held by the carrier; and a plurality of microcapsules that hold the core material inside. Is done. In this embodiment, it is preferable that a part of the carrier constitutes a capsule wall of the microcapsule, and the carrier is soluble or disintegrable in any part of the living body. It is a preferred embodiment that it is a pharmaceutical carrier comprising Brief Description of Drawings
図 1は、 本発明における微小カプセルの一例を示す図、  FIG. 1 is a diagram showing an example of a microcapsule according to the present invention,
図 2は、 本発明における微小カプセルの他の一例を示す図、  FIG. 2 is a diagram showing another example of a microcapsule according to the present invention.
図 3は、 本発明における微小カプセルの他の一例を示す図、  FIG. 3 is a view showing another example of a microcapsule according to the present invention,
図 4は、 本発明における微小カプセルの他の一例を示す図、  FIG. 4 is a view showing another example of a microcapsule according to the present invention,
図 5は、 本発明における微小カプセルの積層構造を示す図、  FIG. 5 is a diagram showing a laminated structure of microcapsules according to the present invention,
図 6は、 本発明における微小カプセルの積層構造を示す図、  FIG. 6 is a diagram showing a laminated structure of microcapsules according to the present invention,
図 7は、 芯物質の微小カプセルにおける二次元存在形態を示す図、  Fig. 7 is a diagram showing the two-dimensional form in the core capsule microcapsule,
図 8は、各種の微小カプセルにおける芯物質の単位時間当たりの溶解量モデルを 示す図、  Fig. 8 shows a model of the amount of dissolution per unit time of the core material in various microcapsules.
図 9は、 本発明の微小カプセルの製造方法の一例を示す図、  FIG. 9 is a diagram showing an example of a method for producing a microcapsule of the present invention,
図 1 0は、微小カプセルの大きさに相当する凹部を有する担体を用いた微小カブ セルの製造例を示す図、  FIG. 10 is a diagram showing an example of manufacturing a microcapsule using a carrier having a recess corresponding to the size of a microcapsule.
図 1 1は、 担体を分割構成する一例を示す図、  Fig. 11 is a diagram showing an example of dividing the carrier.
図 1 2は、 担体を分割構成する他の一例を示す図、  Figure 12 shows another example of dividing the carrier.
図 1 3は、 担体上に所望のパターンで配列された微小カプセルの一例を示す図、 図 1 4は、 微小カプセルの分離方法の一例を示す図、  Fig. 13 shows an example of microcapsules arranged in a desired pattern on a carrier, Fig. 14 shows an example of a method for separating microcapsules,
図 1 5は、 微小カプセルの分離方法の他の一例を示す図、  Fig. 15 is a diagram showing another example of the separation method of microcapsules,
図 1 6は、 微小カプセルの分離方法の他の一例を示す図、 図 1 7は、 微小カプセルの分離方法の他の一例を示す図、 Fig. 16 shows another example of a method for separating microcapsules, Fig. 17 is a diagram showing another example of the separation method of microcapsules,
図 1 8は、 微小カプセルの分離方法の他の一例を示す図、  Figure 18 is a diagram showing another example of a method for separating microcapsules,
図 1 9は、 担体として製剤用担体を用いた微小カプセル保持体 (a ) 及び (b ) を示す図である。 発明を実施するための最良の形態  FIG. 19 is a diagram showing microcapsule holders (a) and (b) using a pharmaceutical carrier as a carrier. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における微小カプセルは、 1又は 2以上の芯物質と、 該芯物質を内側に保 持するカプセル壁と、 を備え、 前記芯物質の表面から前記微小カプセルの表面まで の距離につき異方性を有することを特徴とする。 この微小カプセルによれば、 芯物 質から微小カプセル表面までの距離、換言すれば芯物質と外部との距離につき異方 性を有する。 すなわち、 芯物質に対してカプセル壁の厚みが部位により異なること になる。 かかる芯物質の内包形態は、 芯物質の表面形状に倣ってカプセル壁を形成 する従来の微小カプセルの製造手法では得られなかった構造である。 このため、 本 微小カプセルによれば、微小カプセルでは従来達成しえなかった放出制御が可能と なる。例えば、芯物質の拡散又は放出に異方性を付与することができる。このため、 一つの微小カプセルにおいて、部位により芯物質の拡散又は放出タイミングを異な らせることができる。 また、 本微小カプセルによれば、 微小であっても 1カプセル 単位での放出制御も可能となるため、 放出制御量、 例えば、 時間に対する芯物質の 溶出量のバラツキを抑えることができる。  The microcapsule according to the present invention comprises one or more core materials, and a capsule wall that holds the core material inside, and is anisotropic with respect to the distance from the surface of the core material to the surface of the microcapsules. It is characterized by having. This microcapsule has anisotropy in the distance from the core material to the surface of the microcapsule, in other words, the distance between the core substance and the outside. That is, the thickness of the capsule wall differs from site to site with respect to the core material. Such a core substance encapsulating form is a structure that could not be obtained by a conventional method of manufacturing microcapsules that forms a capsule wall following the surface shape of the core substance. For this reason, according to the present microcapsule, it becomes possible to control the release that could not be achieved with the microcapsule. For example, anisotropy can be imparted to the diffusion or release of the core material. For this reason, in one microcapsule, the diffusion timing or release timing of the core substance can be varied depending on the site. In addition, according to the present microcapsule, even in a minute size, it is possible to control the release in units of one capsule, so that it is possible to suppress variations in the release control amount, for example, the elution amount of the core substance with respect to time.
また、 本発明の他の微小カプセルは、 1又は 2以上の芯物質と、 該芯物質を内側 に保持するカプセル壁と、 を備え、 前記微小カプセルの表面の少なくとも一部に平 坦状部を有することを特徴とする。 この微小カプセルによれば、 平坦状部を有する ことで、 従来の微小カプセルとは異なり、 微小カプセルを保持させようとする部位 に対する接触面積を確保できるため、該部位において微小カプセルを容易に保持さ せることができる。 したがって、 例えば、 芯物質が放出されるまで特定部位に保持 させることが可能となり、 確実に所望の部位における芯物質の放出が可能となる。 また、 平坦状部で荷重を分散して受けることができるため、 微小カプセルの強度を 容易に確保できる。 このため、 微小カプセルの破損や芯物質の漏出を有効に防止で きる。 In addition, another microcapsule of the present invention comprises one or more core materials and a capsule wall that holds the core material inside, and a flat portion is provided on at least a part of the surface of the microcapsules. It is characterized by having. According to this microcapsule, unlike the conventional microcapsule, since the flat portion is provided, it is possible to secure a contact area with a site where the microcapsule is to be held, so that the microcapsule can be easily held at the site. Can be made. Therefore, for example, the core material can be held at a specific site until the core material is released, and the core material can be reliably released at a desired site. In addition, since the load can be distributed and received by the flat portion, the strength of the microcapsule can be easily secured. For this reason, breakage of the microcapsules and leakage of the core material can be effectively prevented.
さらに、 本発明の微小カプセルの製造方法は、 1又は 2以上の前記芯物質若しく はその原料を含む芯物質用材を、少なくとも該芯物質用材が付着可能な表面を有す る担体に対して供給する工程と、前記カプセル壁又はその原料を含むカプセル壁用 材を、少なくとも該カプセル壁用材が付着可能な前記表面に対して供給する工程と、 を備え、 これらの供給工程を、 前記芯物質用材が付着可能な表面において前記芯物 質用材の付着物の少なくとも一部を前記カプセル壁用材の付着物で内包するよう に実施することを特徴とする。 この製造方法によれば、 前記担体の表面において芯 物質用材の付着物とカプセル壁用材との付着物とから所望の三次元形状の微小力 プセルを構築できる。 すなわち、 本製造方法では、 芯物質用材やカプセル壁用材を 所定の表面に供給し付着させるものであるとともに、 これらの供給量や供給部位を 容易に調整できることから、芯物質の内包形態や微小カプセルの三次元形状を自在 に構築できる。 したがって、 上記の形態の微小カプセルも容易に構築できる。  Furthermore, the method for producing a microcapsule according to the present invention provides one or more core materials or a core material material containing the raw material to at least a carrier having a surface to which the core material material can adhere. Supplying the capsule wall or the capsule wall material containing the raw material thereof to at least the surface to which the capsule wall material can be attached. It is characterized in that at least a part of the core material adhering material is encapsulated by the capsule wall material adhering material on the surface to which the material can adhere. According to this manufacturing method, it is possible to construct a micro three-dimensional force pellet having a desired three-dimensional shape from the deposit of the core material material and the capsule wall material on the surface of the carrier. That is, in this manufacturing method, the core substance material and the capsule wall material are supplied and adhered to a predetermined surface, and the supply amount and supply site thereof can be easily adjusted. 3D shapes can be freely constructed. Therefore, the microcapsules of the above form can be easily constructed.
以下、 本発明の実施の形態について、 本発明の微小カプセルについて図を参照し ながら詳細に説明するとともに本発明の微小カプセルの製造方法について説明す る。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings for the microcapsules of the present invention, and the method for producing the microcapsules of the present invention will be described.
(微小カプセル)  (Micro capsule)
本微小カプセル 2は、 図 1〜図 7に示すように、 芯物質 4と該芯物質 4を内側に 保持するカプセル壁 1 0とを備えている。 芯物質 4は、 1つのみ備えられてもよい し、複数個備えられていてもよい。また、複数個の芯物質 4が内包されているとき、 これらの芯物質 4の材質は 2種類以上とすることができ、 異種であってもよいし、 同種であってもよい。  As shown in FIGS. 1 to 7, the present microcapsule 2 includes a core material 4 and a capsule wall 10 that holds the core material 4 inside. Only one core material 4 may be provided, or a plurality of core materials 4 may be provided. In addition, when a plurality of core substances 4 are included, these core substances 4 may be made of two or more kinds of materials, which may be different or the same kind.
芯物質 4は液状、 固体状又は気体状とすることができる。 好ましくは、 液状又は 固体状である。 このような芯物質 4は、 カプセル壁 1 0によっておおよそ内包され ていればよく、カプセル壁 1 0によって形成され芯物質 4が充填されるべき内部部 位 (空間) の全体又は一部を充填していればよいが、 好ましくは、 かかる部位を芯 物質 4がおおよそ充填している形態とすると、 芯物質 4を多く含有でき、 芯物質 4 の溶出速度に差を付けることができる。 以下、 例示する各種形態においては、 芯物 質 4の形態は、 芯物質 4が充填される空間に一致しているものとする。微小カプセ ル 2における芯物質 4の存在形態は、 後述するように、 芯物質用材やカプセル壁用 材の供給量や供給形態によっても異なるが、 図 1、 2、 4および 5に示すような単 一核状または図 3および 6に示すような分散状 The core material 4 can be liquid, solid or gaseous. Preferably, it is liquid or solid. Such core material 4 is roughly enclosed by the capsule wall 10. It is sufficient that the core material 4 is filled with the whole or a part of the internal portion (space) formed by the capsule wall 10 and to be filled with the core material 4. If the form is roughly filled, it can contain a lot of core substance 4, and the elution rate of core substance 4 can be differentiated. Hereinafter, in the various forms exemplified, the form of the core material 4 is assumed to coincide with the space filled with the core substance 4. As will be described later, the presence state of the core material 4 in the microcapsule 2 varies depending on the supply amount and supply form of the core material and the capsule wall material, but as shown in FIGS. 1, 2, 4 and 5. Mononuclear or dispersed as shown in Figures 3 and 6
(多核状) を採ることができる。  (Multinuclear) can be taken.
内在する芯物質 4の形状 (存在形態) も、 芯物質用材等の供給量や供給形態によ つて異なるが、 図 1〜図 6に一部例示するように、 球状、 板状等の扁平状、 棒状、 不定形状等の各種の形態を採ることができる。  The shape (existing form) of the underlying core substance 4 also varies depending on the supply amount and supply form of the core substance material, etc., but as shown in some examples in FIGS. 1 to 6, it has a flat shape such as a spherical shape or a plate shape. Various forms such as a rod shape and an indefinite shape can be adopted.
なお、芯物質 4の微小カプセル 2における存在パターンは単純な単核又は単なる 多核状に限らず、 各種設定することができる。 図 7に芯物質 4の二次元存在形態を 示す。 なお、 二次元存在形態とは、 最も表面積が大きい表面からの形態とする。 例 えば、 図 7 ( a ) および (b ) に示すように、 デザインされた平面形態を備えるこ ともできる。 図 7 ( a ) では、 芯物質 4をリング状に配置してあり、 リングは 2以 上設けることもできる。 なお、 芯物質 4のリングは、 必ずしも芯物質 4が連続して 存在する必要はなく、 不連続な芯物質 4のドットで形成されていてもよい。 また、 図 7 ( b ) では、 芯物質 4のラインをクロス状に配置してある。 芯物質 4のライン は単線であってもよく、 クロス状に配置しなくても、 並行状に配置してもよい。 ま た、 芯物質 4のラインは、 不連続な芯物質 4のドットで形成してもよい。 こうした 芯物質 4の存在形態を採ることにより、本微小力プセル 2における上述の異方性を 得ることができる。 これらの例示においては、 全て微小カプセル 2の平面形態は円 形状となっているが、他の平面形態の微小カプセル 2についても同様に適用できる。 なお、 これらの各種形態において、 芯物質 4又は芯物質 4の中の有効成分の濃度 を傾斜させるようにすることもできる。 濃度傾斜を付与することにより、 芯物質 4 又は有効成分の放出量をコントールすることが可能となる。芯物質 4又は有効成分 の濃度の傾斜の形態としては、 特に限定しないが、 微小カプセル 2の中心側におい て高濃度であり、 中心から外部に向かって低濃度となる傾斜組成を有していてもよ いし、 この逆であってもよい。 また、 濃度の傾斜においても異方性を備えることが でき、 例えば、 高濃度の中心部から微小カプセル 2の表面の一部に向かって低濃度 となる濃度傾斜を備えるようにすることもできる。 なお、 濃度傾斜は、 連続的であ つても非連辣的であってもよい。 このような芯物質 4又はその成分についての濃度 傾斜の形成方法については後述する。 The existence pattern of the core substance 4 in the microcapsule 2 is not limited to a simple mononuclear or simple multinuclear shape, and various patterns can be set. Figure 7 shows the two-dimensional form of core material 4. The two-dimensional form is the form from the surface with the largest surface area. For example, as shown in FIGS. 7 (a) and (b), a designed planar configuration can be provided. In FIG. 7 (a), the core material 4 is arranged in a ring shape, and two or more rings can be provided. The ring of the core material 4 does not necessarily have to be continuously present, and may be formed of discontinuous core material 4 dots. In FIG. 7 (b), the lines of the core material 4 are arranged in a cross shape. The line of the core material 4 may be a single wire, and may not be arranged in a cross shape but may be arranged in parallel. Further, the core material 4 line may be formed by discontinuous core material 4 dots. By adopting the existence form of the core substance 4 as described above, the above-described anisotropy in the present micro force process 2 can be obtained. In these examples, the planar form of the microcapsules 2 is all circular, but the same applies to the microcapsules 2 of other planar forms. In these various forms, the concentration of active substance in core substance 4 or core substance 4 Can also be inclined. By giving a concentration gradient, it becomes possible to control the release amount of the core substance 4 or the active ingredient. The form of the concentration gradient of the core substance 4 or active ingredient is not particularly limited, but it has a gradient composition in which the concentration is high on the center side of the microcapsule 2 and decreases from the center toward the outside. Or vice versa. Further, anisotropy can also be provided in the concentration gradient, and for example, a concentration gradient in which the concentration decreases from the central portion of the high concentration toward a part of the surface of the microcapsule 2 can be provided. The concentration gradient may be continuous or non-continuous. A method of forming a concentration gradient for the core substance 4 or its components will be described later.
このような芯物質 4としては、本微小カプセル 2の用途に応じて物質や組成物が 選択され、 例えば、 酵素剤、 ホルモン剤、 抗アレルギー剤、 抗体医薬、 細胞医薬、 抗菌剤、 抗炎症剤、 疼痛緩和剤、 抗ガン剤、 糖尿病治療薬、 高血圧症治療剤、 血栓 溶解剤等の医薬品の原体又は該原体を含有する組成物、 DNAやべクタ一などのォ リゴヌクレオチドやポリ  As such a core substance 4, a substance or a composition is selected according to the use of the microcapsule 2. For example, an enzyme agent, a hormone agent, an antiallergic agent, an antibody drug, a cell medicine, an antibacterial agent, and an antiinflammatory agent. , Pain relieving agents, anti-cancer agents, anti-diabetic agents, anti-hypertensive agents, thrombus-lysing agents, etc., or compositions containing the same, oligonucleotides such as DNA and vector
ヌクレオチド、防臭剤、防虫剤、殺虫剤や農薬又はこれらを含む組成物、ビタミン、 タンパク質、 糖類などの栄養素の他調味料、 香辛料などの食品成分又は該食品成分 を含有する組成物、 精油や香料などの易揮発性成分又は該成分組成物、 リボソーム や食用油などの油状物、 磁性材料又は磁性材料組成物、 液晶材料又は液晶組成物、 金属又はセラミックスなどの無機系材料又はその組成物などが挙げられる。 なお、 磁性材料や液晶材料を芯物質 4とする場合には、 これらの材料は適当な液状の分散 媒にて分散された状態でカプセル化される。 磁性体としては、 例えば、 薄片状等の 鉄、 ニッケル、 鉄—ニッケル合金等の金属粉又は合金等、 又はこれらに対して有機 化合物などをコートして分散安定性を高めたものやアルミニウム蒸着により反射 率を高めたものを用いることができる。 Nucleotides, deodorants, insecticides, insecticides and agricultural chemicals or compositions containing these, other seasonings such as vitamins, proteins and sugars, food ingredients such as spices, or compositions containing the food ingredients, essential oils and fragrances Readily volatile components such as, or component compositions thereof, oils such as ribosomes and edible oils, magnetic materials or magnetic material compositions, liquid crystal materials or liquid crystal compositions, inorganic materials such as metals or ceramics, or compositions thereof Can be mentioned. When a magnetic material or a liquid crystal material is used as the core substance 4, these materials are encapsulated in a state of being dispersed in an appropriate liquid dispersion medium. Examples of magnetic materials include flaky iron, nickel, metal powders or alloys such as iron-nickel alloys, or those coated with an organic compound to improve dispersion stability, or by aluminum vapor deposition. A material having a higher reflectivity can be used.
また、 芯物質 4には、 有効成分の他に有効成分を生体における、 口腔、 鼻腔、 耳 腔、 涙腺、 眼膜、 胃、 小腸、 大腸、 直腸等の各種消化管、 血管、 尿管、 膣、 子宮な どの各種生体におけるいずれかの夕ーゲティング部位の粘膜の表面に付着性を有 する付着性材料を含有することもできる。 付着性材料としては、 微小カプセル 2を 到達させようとする粘膜の表面に付着しやすい材料であれば足り、適度な粘性を発 現する材料を好ましく用いることが In addition to the active ingredient, the core substance 4 contains active ingredients in the living body, oral cavity, nasal cavity, ear cavity, lacrimal gland, eye membrane, stomach, small intestine, large intestine, rectum, etc., blood vessels, urinary tract, vagina The womb An adhesive material having adhesiveness on the surface of the mucous membrane of any sunset part in any of various living bodies can also be contained. As the adhesive material, any material that easily adheres to the surface of the mucous membrane to which the microcapsules 2 are allowed to reach is sufficient, and a material that exhibits an appropriate viscosity is preferably used.
できる。 例えば、 力ルポキシビ二ルポリマー、 アクリル酸、 アクリル酸ォクチルェ ステル共重合体などの各種アクリル酸系共重合体、 アラビアゴム、 ポリビエルアル コール、ポリビニルピロリドン等又はこれらに可塑剤を添加したものが挙げられる。 芯物質 4としてこうした付着性材料を含有することで、微小力プセル 2の崩壌時又 は芯物質 4の放出時において、有効成分がこれらの付着性材料とともに粘膜表面に 付着されやすくなる。 これにより、 標的部位における芯物質 4の滞留性と吸収性を 向上させることができる。 it can. For example, various acrylic acid-based copolymers such as strong ruboxy vinyl polymer, acrylic acid, octyl acrylate acrylate copolymer, gum arabic, polyvinyl alcohol, polyvinyl pyrrolidone, etc., or those obtained by adding a plasticizer to these. By including such an adhesive material as the core substance 4, the active ingredient is likely to adhere to the mucosal surface together with these adhesive materials when the microforce pusher 2 collapses or when the core substance 4 is released. As a result, the retention and absorption of the core substance 4 at the target site can be improved.
このような芯物質 4は、 カプセル壁 1 0の内側に保持されている。 ここでカプセ ル壁 1 0の内部に保持されているとは、カプセル壁 1 0によって外部と区画されて いれば足りる。 したがって、 カプセル壁 1 0は、 その外側から又は内側からの成分 の透過を抑制できる程度の緻密性を有していてもよいし、 また、 部分的に欠落して いてもよい。 例えば、 芯物質 4の全体がカプセル壁 1 0によって覆われてカプセル 壁 1 0内部に封入されている形態とすることもできるし、 貫通孔を有し、 又は対向 配置されたカプセル壁 1 0が閉じていない部位など部分的に壁が欠落したカプセ ル壁 1 0の内側に芯物質 4を保持している形態とすることもできる。カプセル壁 1 0内部に芯物質 4を封入する形態とすれば、芯物質 4はカプセル壁 1 0により保護 されるとともに、 カプセル 2間で接触した際、 芯物質 4が接触したカプセル 2の表 面に付着することがない。 このため、 微小カプセル 2同士を凝集させることなく、 より正確に個々の微小カプセル 2を生体内の表面などの夕一ゲティング部位で保 持させて芯物質を溶出させたいときに有効である。 なお、 カプセル壁 1 0の欠落部 位においては、 該部位において芯物質 4が露出されることになる。  Such a core material 4 is held inside the capsule wall 10. Here, being held inside the capsule wall 10 is sufficient if it is partitioned from the outside by the capsule wall 10. Therefore, the capsule wall 10 may be dense enough to suppress the permeation of components from the outside or the inside thereof, or may be partially missing. For example, the entire core substance 4 may be covered with the capsule wall 10 and enclosed in the capsule wall 10, or the capsule wall 10 having a through hole or arranged oppositely may be provided. It is also possible to adopt a form in which the core substance 4 is held inside the capsule wall 10 where the wall is partially missing, such as a part that is not closed. If the core material 4 is sealed inside the capsule wall 10, the core material 4 is protected by the capsule wall 10, and when contacting between the capsules 2, the surface of the capsule 2 in contact with the core material 4 It will not adhere to. For this reason, it is effective when it is desired to elute the core substance by holding the individual microcapsules 2 more accurately at the gettering site such as the surface in the living body without aggregating the microcapsules 2 with each other. It should be noted that the core substance 4 is exposed at the missing portion of the capsule wall 10.
このようなカプセル壁 1 0もまた、本微小カプセル 2の用途に応じた材料で構成 することができる。 高分子材料としては、 例えば、 (メタ)ァクリレート、 ポリェチ レン、 ポリプロピレンなどのポリオレフイン、 ポリウレタン、 ポリスチレン、 ポリ エチレンテレフタレート、 ポリエーテル、 ポリエーテル ·エーテルケトン、 ナイ口 ン、 ポリウレア、 ポリアミド又はこれらのコポリマー等を用いることもできる。 な お、 カプセル壁 1 0内においても芯物質 4又はその一部を含んでいてもよい。 カブ セル壁 1 0は、 1種又は 2種以上の材質で構成することができる。 また、 微小カブ セル 2は、 その材質が単一のカプセル壁 1 0で構成されていてもよいが、 2種以上 の材質のカプセル壁 1 0を備えることもできる。 なお、 異種のカプセル壁 1 0は、 芯物質 4の一方側と他方側とをそれぞれ被覆するなど異なる表面を被覆するもの であってもよいし、それぞれ芯物質 4を中心に異なる層を形成して被覆するもので あってもよい。 Such a capsule wall 10 is also made of a material suitable for the use of the present microcapsule 2. can do. Examples of the polymer material include polyolefins such as (meth) acrylate, polyethylene, and polypropylene, polyurethane, polystyrene, polyethylene terephthalate, polyether, polyether ether ketone, naphthalene, polyurea, polyamide, and copolymers thereof. Can also be used. Note that the core substance 4 or a part thereof may also be included in the capsule wall 10. The cab cell wall 10 can be composed of one or more materials. In addition, although the micro cab cell 2 may be composed of a single capsule wall 10, it can also be provided with a capsule wall 10 of two or more materials. The different types of capsule walls 10 may cover different surfaces, such as covering one side and the other side of the core material 4, or may form different layers around the core material 4. It may be covered.
微小カプセル 2を医薬品などの製剤用途に用いる場合、カプセル壁 1 0の少なく とも一部は生体における各種ターゲティング部位における選択的溶解性又は崩壌 性を備えていることが好ましい。 口腔内、 胃、 腸などにおいて選択的な又は好まし い溶解性等を備える組成は、 製剤分野において公知のものを用いることができる。 また、 カプセル壁 1 0は、 ターゲティング部位の粘膜への付着性を備えることもで きる。 後述するように、 微小カプセル 1 0をカプセル化し、 造粒し、 又は担体に保 持させる場合、 これらの外皮やマトリックスに夕一ゲティング部位での溶解性又は 崩壊性を備えさせることができる。 この際、 微小カプセル 2がターゲティング部位 へ付着性を備えていれば、芯物質 4の夕一ゲティング部位への到達性をより高める ことができる。 付着性を発揮させる材料としては、 芯物質 4に用いる付着性材料を 用いることができる。  When the microcapsule 2 is used for pharmaceutical applications such as pharmaceuticals, it is preferable that at least a part of the capsule wall 10 has selective solubility or disintegration at various targeting sites in the living body. As the composition having selective or preferable solubility in the oral cavity, stomach, intestine, etc., those known in the pharmaceutical field can be used. The capsule wall 10 can also have adhesion to the mucosa of the targeting site. As will be described later, when the microcapsules 10 are encapsulated, granulated, or held on a carrier, the outer skin or matrix can be provided with solubility or disintegration at the gettering site. At this time, if the microcapsule 2 has adhesiveness to the targeting site, the reachability of the core substance 4 to the evening site can be further increased. An adhesive material used for the core substance 4 can be used as a material that exhibits adhesiveness.
また、 カプセル壁 1 0は気孔を含有することができる。 気孔を含有することによ り、 カプセル壁 1 0の溶解又は崩壊速度をコントロールできる。 例えば、 気泡など の独立状の気孔を含有する場合には、カプセル壁 1 0によって芯物質 4を効果的に 外部と隔離できるとともに、 溶解や崩壊を促進することができる。 また、 連続状の 気孔を有する場合には、 カプセル壁 1 0自体の溶解や崩壊を促進するほか、 芯物質 4の徐放性に寄与することができる。 The capsule wall 10 can contain pores. The dissolution or disintegration rate of the capsule wall 10 can be controlled by containing pores. For example, in the case of containing independent pores such as bubbles, the core material 4 can be effectively isolated from the outside by the capsule wall 10, and dissolution and disintegration can be promoted. Also, continuous When it has pores, it can contribute to the sustained release of the core substance 4 in addition to promoting the dissolution and disintegration of the capsule wall 10 itself.
微小カプセル 2は、芯物質 4の三次元形状に依存しないで各種の三次元形状を採 ることができる。 なお、 芯物質 4の三次元形状に依存する三次元形状を採ることを 排除するものではない。 本微小カプセル 2にあっては、 カプセル壁 1 0の形状が本 微小カプセル 2の三次元形状に大きく寄与している。微小力プセル 2の三次元形状 は、後述するようにカプセル壁用材の供給量や供給部位などの供給形態によって所 望の形状とすることができる。例えば、球状体の少なくとも一部からなる球状部位、 扁平部位、 錐体状部位、 柱状部位など各種の形態の部位を少なくともその一部に有 することができる。 さらに、 これらの部位とは別に又はこれらの部位との組み合わ せで、 カプセル壁 1 0の表面、 すなわち、 微小カプセル 2の表面の少なくとも一部 に平坦状部を有することが好ましい。 既に述べたように、 かかる平坦状部を有する ことで、微小カプセル 2を付着ないし保持させようとする所定の表面に対する接触 面積を確保でき、 該部位に保持させやすくすることができるからである。 また、 平 坦状部にて荷重を受けることで微小カプセル 2の耐荷重を向上させることができ る。 したがって、 図 1〜図 3に示す板状体や、 図 4に示す半球状体や、 断面略半円 状の柱状体などが好ましい形態である。 また、 微小カプセル 2が板状体であるなど 扁平部位を有する場合には、微小カプセル 2の生体内などにおける溶解性を向上さ せることができる。  The microcapsule 2 can take various three-dimensional shapes without depending on the three-dimensional shape of the core substance 4. It is not excluded to adopt a three-dimensional shape that depends on the three-dimensional shape of the core material 4. In this microcapsule 2, the shape of the capsule wall 10 greatly contributes to the three-dimensional shape of the microcapsule 2. As will be described later, the three-dimensional shape of the micro force pusher 2 can be a desired shape depending on the supply form of the capsule wall material and the supply form. For example, various parts such as a spherical part, a flat part, a cone part, and a columnar part made of at least a part of a spherical body can be included in at least a part thereof. Furthermore, it is preferable to have a flat part on at least a part of the surface of the capsule wall 10, that is, the surface of the microcapsule 2, separately from these parts or in combination with these parts. As described above, by having such a flat portion, it is possible to secure a contact area with respect to a predetermined surface on which the microcapsule 2 is to be attached or held, and to easily hold the microcapsule 2 at the site. In addition, the load resistance of the microcapsule 2 can be improved by receiving a load at the flat portion. Therefore, a plate-like body shown in FIGS. 1 to 3, a hemispherical body shown in FIG. 4, a columnar body having a substantially semicircular cross section, and the like are preferable forms. In addition, when the microcapsule 2 has a flat portion such as a plate-like body, the solubility of the microcapsule 2 in a living body can be improved.
さらに、 図 2にも示したように、 微小カプセル 2の表面には厚肉部分 (断面半円 状) と薄肉部分 (扁平部位かつ平坦状部) とを備えるなど凹凸を備えることもでき る。 このように、 扁平部位と他の厚膜部位と組み合わせることで 1つの微小カプセ レ 2内においてカプ  Furthermore, as shown in FIG. 2, the surface of the microcapsule 2 can be provided with irregularities such as a thick portion (semicircular cross section) and a thin portion (flat portion and flat portion). In this way, by combining the flat part with another thick film part, the caps in one micro capsule 2
セル壁 1 0の厚みの差を大きくすることが可能であり、より徐放時間の範囲を大き くとることができる。 なお、 微小カプセル 2の表面の凹凸形状はより微小であって もよい。さらに、ここでいう凹部は芯物質 4に到達する孔部も包含している。また、 微小力プセル 2の平面形態は各種の形態とすることができるが、破損などを考慮す れば、 円形状又は楕円状とすることが好ましい。 The difference in thickness of the cell walls 10 can be increased, and the range of the sustained release time can be increased. The uneven shape on the surface of the microcapsule 2 may be finer. Further, the recess here includes a hole reaching the core material 4. Also, The planar form of the micro force pusher 2 can be various forms, but it is preferable to take a circular shape or an elliptical shape in consideration of damage or the like.
さらにこのように、微小カプセル 2において対向状にあるカプセル壁 10の領域 は表面積が異なることが好ましい。 こうすることで、 芯物質 4又は有効成分の放出 形態やターゲット部位への付着性を対向するカプセル壁 10の面で異ならせるこ とができる。 ここで、 対向状にあるカプセル壁 10の領域とは、 芯物質 4を挟んで 対向される領域であればよく、 平行でなくてもよい。 このような表面積の差は、 既 に述べた微小カプセル 2表面における凹部ゃ凸部などの凹凸形態の相違によって 創出することができる他、表面粗さの相違によって創出することもできる。ここで、 凹凸形態は、 特に限定されないが、 例えば凸部の場合、 その幅と高さの比 (高さ/ 幅) を、 0. 0001以上0. 003以下とする  Further, in this way, it is preferable that the regions of the capsule wall 10 facing each other in the microcapsule 2 have different surface areas. In this way, the release form of the core substance 4 or the active ingredient and the adhesion to the target site can be made different on the surface of the opposing capsule wall 10. Here, the region of the capsule wall 10 in an opposing shape may be a region facing the core substance 4 and may not be parallel. Such a difference in surface area can be created not only by the difference in the form of protrusions and recesses on the surface of the microcapsule 2 described above, but also by the difference in surface roughness. Here, the shape of the unevenness is not particularly limited. For example, in the case of a convex portion, the ratio of the width to the height (height / width) is set to 0.0001 or more and 0.003 or less.
ことが好ましい。 幅を固定し、 高さを小さくし 0. 0001より小さくしていくと 表面積差をつけにくくなる。 また、 0. 003より大きくしていくと、 凸部が破損 しゃすくなる。 さらに、 製造工程を考慮すると、 微小カプセル 2の直径 φを 0. 1 〜0. 2 mmとし、 凸部幅を 0. 01〜0. 075 mm程度とし、 高さを 5 m以 下とすることが好ましい。なお、より好ましい高さは 0. 5 /zm以下である。また、 表面粗さの相違は、一般的に用いられる表面粗さを測定可能な装置によって測定す ることができる。 なお、 表面粗さの相違は、 中心線平均粗さ (Ra)、 最大高さ (R max), 十点平均高さ (Rz) などのいずれか又はこれらを組み合わせて用いて 検出することができる。 なお、 ここでいう凹凸量の相違とは、 例えば、 Rmaxが 1 /im以下の表面粗さとすることができる。表面粗さの測定装置としては、例えば、 レーザーなどを光源として用いるフィゾー干渉計などの光学式干渉計を用いて測 定することができる。なお、微小カプセル 2の対向する領域における表面積の差は、 上記した凹凸量と表面粗さとを組み合わせて創出することができるほか、 いずれか 一方のみによって創出することもできる。 It is preferable. If the width is fixed, the height is reduced, and it is made smaller than 0.0001, it becomes difficult to create a difference in surface area. Also, if it is larger than 0.003, the convex part will be damaged. Furthermore, considering the manufacturing process, the diameter φ of the microcapsule 2 should be 0.1 to 0.2 mm, the convex width should be about 0.01 to 0.075 mm, and the height should be 5 m or less. Is preferred. A more preferable height is 0.5 / zm or less. Also, the difference in surface roughness can be measured by a generally used apparatus capable of measuring the surface roughness. The difference in surface roughness can be detected using any one of or a combination of centerline average roughness (Ra), maximum height (R max), ten-point average height (Rz), etc. . Here, the difference in the unevenness amount can be, for example, a surface roughness with Rmax of 1 / im or less. As an apparatus for measuring the surface roughness, for example, an optical interferometer such as a Fizeau interferometer using a laser as a light source can be used. In addition, the difference in the surface area in the facing region of the microcapsule 2 can be created by combining the above-described unevenness amount and surface roughness, or can be created by only one of them.
微小カプセル 2を生体のいずれかの部位に到達されるよう投与される製剤とす る場合に Microcapsule 2 is a preparation that can be administered to reach any part of the body. If
は、 カプセル壁 1 0の対向される一方の領域を、 芯物質 4等の放出領域とし、 他方 の領域をターゲット部位付着領域とすることができる。 例えば、 図 2に示す形態で は、 中央の平坦部の周囲に堤部を備えることにより、 微小カプセル 2のカプセル壁 1 0の対向する領域一方側の面において凹部を備える形態となっている。すなわち、 微小カプセル 2の凹部を有する側においては、堤部の存在により表面積が大きくな つている一方、 ターゲット部位と接触可能な部位が堤部の頂部に限定されるため、 ターゲット部位への付着が制限される結果、 他方の面 (ここでは堤部のない平坦状 部を有している)が選択的にターゲット部位への付着領域として機能するようにな つている。 こうして付着領域を一方側とした場合には、 他方側を芯物質 4又はその 成分の放出領域として機能するよう構成することができる。 The one region facing the capsule wall 10 can be a release region for the core substance 4 and the other region can be a target site adhesion region. For example, in the form shown in FIG. 2, a bank is provided around the flat part at the center, so that a concave part is provided on the surface of one side of the region opposite to the capsule wall 10 of the microcapsule 2. That is, on the side of the microcapsule 2 having the concave portion, the surface area is increased due to the presence of the bank portion, but the portion that can contact the target site is limited to the top portion of the bank portion, so that adhesion to the target site is prevented. As a result of the restriction, the other surface (here, having a flat portion without a bank portion) selectively functions as an attachment region to the target site. Thus, when the adhesion region is on one side, the other side can be configured to function as the core material 4 or its component release region.
また、 対向するカプセル壁 1 0には、 それぞれに異なる厚みおよび Zまたは組成 を有するように構成できる。 こうすることによつても、 それぞれの領域において異 なる機能、 例えば、 ターゲット部位への付着能力^3芯物質 4等の放出能力を付与す ることができる。 Further, the opposing capsule walls 10 can be configured to have different thicknesses, Zs, or compositions. By doing so, it is possible to impart different functions in each region, for example, the ability to adhere to the target site and the ability to release the three- core substance 4 or the like.
こうした本微小カプセル 2は、 例えば、 芯物質 4やカプセル壁 1 0の積層形態に よって構成されている。図 5および図 6には、本微小カプセル 2の積層構造を示す。 図 5に示す例では、 円板状のカプセル壁 1 0 a上に同様に円板状の芯物質 4が積層 され、 さらに、 円板状のカプセル 1 0 bが積層されている。 この積層構造は、 図 1 に例示する微小カプセル 2の外形形態を得るための一つの構造であり、該構造によ れば、 芯物質 4の表面の一部を被覆するカプセル 1 0 aと、 芯物質 4の表面の残部 を被覆するカプセル壁 1 O bとを備えることになる。 また、 図 6に示す例では、 円 板状のカプセル壁 1 0 a〜l 0 cが積層され、それぞれのカプセル壁間に芯物質 4 a、 4 bが介在されている。 なお、 カプセル壁 1 0 bは、 カプセル壁 1 0 a、 1 0 cと異なり単に力プゼル壁でなく他の機能を備える内層として備えることもでき る。 また、 このような積層構造を有することにより、 積層するカプセル壁 1 0の溶 解特性や強度特性などを異ならせることにより、徐放効果や強度などを表面側と裏 面側とで異ならせることができる。 なお、 本微小カプセル 2の典型的形態は、 扁平 な円形状又は楕円状である外形形態を備え、 こうした外形形態を構成するカプセル 壁 1 0の内側に扁平状の芯物質 4を保持する形態である。 かかる形態は、 後述する ように、印刷システムを用いた微小カプセルの製造方法によって得られる典型的形 態でもある。 Such a microcapsule 2 is constituted by, for example, a laminated form of a core material 4 and a capsule wall 10. 5 and 6 show the laminated structure of the present microcapsule 2. FIG. In the example shown in FIG. 5, a disk-shaped core substance 4 is similarly laminated on a disk-shaped capsule wall 10a, and further a disk-shaped capsule 10b is laminated. This laminated structure is one structure for obtaining the outer shape of the microcapsule 2 illustrated in FIG. 1, and according to this structure, the capsule 10a covering a part of the surface of the core material 4; A capsule wall 1 O b covering the remainder of the surface of the core material 4. In the example shown in FIG. 6, disk-shaped capsule walls 10 a to l 0 c are stacked, and core materials 4 a and 4 b are interposed between the capsule walls. Unlike the capsule walls 10 a and 10 c, the capsule wall 10 b can be provided not only as a force pzel wall but as an inner layer having other functions. Further, by having such a laminated structure, the capsule walls 10 to be laminated are melted. By making the solution characteristics and strength characteristics different, the sustained release effect and strength can be made different between the front side and the back side. The typical form of the present microcapsule 2 has a flat circular shape or an elliptical outer shape, and a shape in which the flat core substance 4 is held inside the capsule wall 10 constituting such an outer shape. is there. As will be described later, this form is also a typical form obtained by a microcapsule manufacturing method using a printing system.
本微小カプセル 2の最大寸法は 2 mm以下であることが好ましい。 ここで最大寸 法とは、 カプセルにおいて最大となる厚み、 縦、 横又は径のいずれかをいうものと する。最大寸法が 2 mmを超えて扁平化するなどして芯物質 4の内包形態の異方性 やカプセル壁 1 0の溶解性を高めていくと、微小カプセル 2の剛性が低下して変形 等を生じやすくなり平坦状部や扁平部位などを維持できなくなる。 結果として、 生 体内表面への付着性が低下しがちになるなど本微小カプセル 2の本来の有用性が 得られにくくなる。 また、 最大寸法が 2 mm以下であると後述する印刷システムを 利用により効率的に微小カプセル 2を製造できる。 より好ましくは、 0 . 5 mm以 下である。 また、 本微小カプセル 2の最大寸法は、 1 z m以上であることが好まし レ^ 1 m未満であると凝集しやすくなり、 所期のサイズの微小カプセルとして使 用しにくくなるからである。 より好ましくは、 1 0 zi m以上であり、 さらに好まし くは、 5 0 m以上である。  The maximum size of the microcapsule 2 is preferably 2 mm or less. Here, the maximum dimension means any one of the maximum thickness, length, width, and diameter of the capsule. Increasing the anisotropy of the encapsulation form of the core substance 4 and the solubility of the capsule wall 10 by flattening the maximum dimension to exceed 2 mm, etc., reduces the rigidity of the microcapsule 2 and causes deformation, etc. It becomes easy to occur and it becomes impossible to maintain a flat part or a flat part. As a result, the original usefulness of the present microcapsule 2 becomes difficult to obtain, for example, the adhesion to the surface of the living body tends to be lowered. If the maximum dimension is 2 mm or less, the microcapsule 2 can be efficiently manufactured by using a printing system described later. More preferably, it is 0.5 mm or less. In addition, the maximum size of the present microcapsule 2 is preferably 1 zm or more, and if it is less than 1 m, it tends to aggregate and becomes difficult to use as a microcapsule of the intended size. More preferably, it is 10 zim or more, and more preferably 50 m or more.
なお、 本微小カプセル 2は、 上述のように、 球形状や立法形状等というよりも扁 平状や半球状、 棒状、 紡錘状等、 その外形形状自体において断面形態又は平面形態 のアスペクト比が 1を大きく超える形態を容易に得ることができる。 このため、 本 微小カプセル 2のアスペクト比が十分に大きい場合、 例えば、 たとえ最小寸法 (力 プセルにおいて最小となる厚み、 縦、 横又は径のいずれかをいう。) が数 !〜 1 z m以下程度のサイズであったとしても、 最大寸法が 1 0 xm程度以上あれば、 相 互の接触面積を有効に低減できるため微小カプセル 2の凝集を防止できる。従来の 微小カプセルは断面や平面形態のァス ぺクト比が 1に近く体積に比して接触面積が大きくなる傾向の外形形態を有して いたため、直径が数十 /i m程度であっても凝集を生じやすく凹凸などの表面形態を 付与する必要があつたが、本微小カプセル 2によればその外形形状自体によって凝 集抑制可能となっている。 なお、 アスペクト比 (最大寸法ノ最小寸法の比) が 2 0 0 0 0 0以下であることが好ましい。 さらに微小カプセル 2の剛性を考慮すると、 ァスぺクト比は 1 0 0 0以下が好ましく、 微小カプセル 2の製造時において、 担体 2 0から剥離する際に微小力プセル 2に微細なクラックの発生を抑制することを 考慮すると 2 5 0以下がより好ましい。 一方、 微小カプセル 2における歪の発生を 抑制して割れなどを防止するには、厚みが 1 0 i m以下とすることが好ましく、 最 大寸法が 5 0 / m以上であることを考慮すると、好ましいァスぺクト比は 5以上で ある As described above, this microcapsule 2 has a cross-sectional or planar aspect ratio of 1 in its outer shape itself, such as a flat shape, a hemispherical shape, a rod shape, or a spindle shape, rather than a spherical shape or a cubic shape. It is possible to easily obtain a form greatly exceeding. For this reason, when the aspect ratio of the present microcapsule 2 is sufficiently large, for example, the smallest dimension (which is the smallest thickness, length, width, or diameter in the force capsule) is several! Even if the size is about ˜1 zm or less, if the maximum dimension is about 10 xm or more, the mutual contact area can be effectively reduced, and the aggregation of the microcapsules 2 can be prevented. Conventional microcapsules have cross-section or planar shape The outer shape of the contact ratio tends to be close to 1 and the volume of contact tends to be larger than that of the volume. However, according to the present microcapsule 2, aggregation can be suppressed by the outer shape itself. It is preferable that the aspect ratio (ratio between the maximum dimension and the minimum dimension) is 2 0 00 0 0 0 or less. Furthermore, considering the rigidity of the microcapsule 2, the aspect ratio is preferably 100 or less, and when the microcapsule 2 is manufactured, fine cracks are generated in the microforce pusher 2 when it is peeled off from the carrier 20 In view of suppressing the above, 2500 or less is more preferable. On the other hand, in order to suppress the occurrence of strain in the microcapsule 2 and prevent cracking, the thickness is preferably 10 im or less, and is preferable in consideration of the maximum dimension being 50 / m or more. The aspect ratio is 5 or more
このような本微小力プセル 2においては、上記のような芯物質 4および力プセル 壁 1 0の存在形態により、芯物質 4の表面から微小カプセル 2の表面までの距離が 部位によつて異なるという異方性を備えることができる。本微小力プセル 2におけ る前記距離の異方性は以下のように例示できる。図 1の円形板状の微小カプセル 2 においては、芯物質 4の図中左右端部から微小カプセル 2の左右端部表面までの距 離 Lと、芯物質 4の図中上部中央から真上方向における微小カプセル 2の表面まで の距離 Sは異なっている。 また、 図 2の円形板状の微小カプセル 2においては、 芯 物質 4の左右端部は、 微小カプセル 2の表面に露出されており、 前記距離 S Sは 0 となるが、 芯物質 4の上部左右寄りの部位から真上方向における前記距離 Lと、 同 上部中央から真上方向における前記距離 Sとは異なっている。 さらに、 図 3の円形 板状の微小カプセル 2においては、 各芯物質 4 a、 4 bは、 微小カプセル 2内にお いて偏心した位置に存在され、各芯物質 4 a、 4 bから真上方向への前記距離 S 1、 S 2は、 各芯物質 4 a、 4 bからそれぞれ左右側への距離 L 1, L 2と異なってい る。  In such a micro force pusher 2, the distance from the surface of the core material 4 to the surface of the microcapsule 2 varies depending on the part due to the presence form of the core material 4 and the force pusher wall 10 as described above. Anisotropy can be provided. The anisotropy of the distance in the micro force pusher 2 can be exemplified as follows. In the circular plate-like microcapsule 2 in FIG. 1, the distance L from the left and right ends of the core material 4 to the left and right end surfaces of the microcapsule 2 and the upper direction from the center of the upper portion of the core material 4 in the figure The distance S to the surface of the microcapsule 2 is different. Further, in the circular plate-like microcapsule 2 of FIG. 2, the left and right ends of the core material 4 are exposed on the surface of the microcapsule 2, and the distance SS becomes 0, but the upper left and right sides of the core material 4 The distance L in the directly upward direction from the near part is different from the distance S in the upward direction from the center of the upper part. Further, in the circular plate-like microcapsule 2 in FIG. 3, the core materials 4a and 4b are present in eccentric positions in the microcapsule 2, and are directly above the core materials 4a and 4b. The distances S 1 and S 2 in the direction are different from the distances L 1 and L 2 from the core materials 4 a and 4 b to the left and right sides, respectively.
図 4の略半球状の微小力プセル 2においては、芯物質 4の上部左寄りの部位から 真上方向への前記距離 Sは、 同上部中央から真上方向への前記距離 Lと異なってい る。 このように球状部位を有する微小カプセル 2においては、 芯物質 4を扁平形態 で存在させ、 又は偏心部位に存在させることにより、 前記距離を容易にかつ連続的 に異ならせることができる。図 1〜図 3に示す円形板状の微小力プセル 2において は、芯物質 4を扁平形態で内在させるか又は偏よつた部位に内在させることにより、 前記距離を異ならせることができる。 また、 図 2に示すように微小カプセル 2に異 なる形状部位を備えることによれば、 さらに前記距離を多様化させることができる。 さらに、 図 4の微小カプセル 2においては、 芯物質 4の左右端部からそれぞれ左右 方向への前記距離は距離 Sや距離 Lとも異なっている。 In the substantially hemispherical micro-force cell 2 shown in Fig. 4, the upper left part of the core material 4 The distance S in the upward direction is different from the distance L in the upward direction from the upper center. Thus, in the microcapsule 2 having a spherical portion, the distance can be easily and continuously varied by making the core substance 4 exist in a flat form or in an eccentric portion. In the circular plate-shaped micro force pusher 2 shown in FIGS. 1 to 3, the distance can be varied by making the core substance 4 in a flat form or in a biased part. In addition, if the microcapsules 2 are provided with different shape portions as shown in FIG. 2, the distances can be further diversified. Further, in the microcapsule 2 of FIG. 4, the distances in the left-right direction from the left and right ends of the core material 4 are different from the distance S and the distance L, respectively.
本微小カプセル 2は、 このような前記距離において異方性を備えることにより、 芯物質 4の徐放タイミングゃ徐放速度を制御できる。本微小カプセル 2における前 記距離の異方性による徐放効果の一例を図 8に示す。 図 8には、 各種の微小カプセ ルにおける芯物質の単位時間当たりの溶解量モデルを示す。従来の芯物質の外表面 におおよそ均一なカプセル壁を備える微小カプセルの溶解量曲線 a (—点鎖線)は、 カプセル壁がおおよそ均一厚さであるため、一定時間経過後に一挙に芯物質が溶解 することを示している。 これに対して、 本微小カプセル 2の一例である板状カプセ ル (図 1の形態のもの) の溶解量曲線 b (太線) は、 従来例に比べてより遅い時間 で溶解量の最大ピークを示しその大きさは小さくなつており、本微小力プセル 2の 一例である半球状カプセル (図 4に例示のもの) の溶解量曲線 c (細線) は、 一層 遅い時間で最大ピークを示し、 その大きさも一層小さくなつている。 このように、 本微小カプセル 2によれば、単一の微小カプセルでも芯物質 4の時限放出効果ゃ徐 放効果を得ることができる。 なお、 既に述べた芯物質 4の各種の二次元又は三次元 の存在形態を組み合わせることにより、 例えば、 芯物質 4に含まれる有効成分の血 中濃度等を有効治療領域内により長く維持することなど、 より複雑な時限放出制御 ゃ徐  The microcapsule 2 has anisotropy at such a distance, so that the sustained release timing or the sustained release rate of the core substance 4 can be controlled. An example of the sustained release effect due to the anisotropy of the distance in the microcapsule 2 is shown in FIG. Fig. 8 shows models for the amount of core material dissolved per unit time in various microcapsules. The dissolution curve a (—dotted line) for a microcapsule with a roughly uniform capsule wall on the outer surface of a conventional core material shows that the core material dissolves all at once after a certain period of time because the capsule wall is approximately uniform in thickness. It shows that On the other hand, the dissolution curve b (thick line) of the plate capsule (in the form of Fig. 1), which is an example of the present microcapsule 2, shows the maximum peak of dissolution at a later time than in the conventional example. The size of the hemispherical capsule (example shown in Fig. 4) of the hemispherical capsule Psel 2 is small, and the dissolution curve c (thin line) shows the maximum peak at a later time. The size is getting smaller. As described above, according to the present microcapsule 2, even a single microcapsule can provide a timed release effect of the core substance 4 and a sustained release effect. It should be noted that by combining various two-dimensional or three-dimensional forms of the core substance 4 already described, for example, the blood concentration of the active ingredient contained in the core substance 4 can be maintained longer in the effective treatment area, etc. More complicated timed release control
放制御が可能となる。 また、 カプセル壁 1 0の特性を部位により異ならせることに よってもこれらの制御が可能となる。 Release control is possible. Also, the capsule wall 10 has different characteristics depending on the part. Therefore, these controls are possible.
本発明の微小カプセルは、医薬用の製剤として複数の微小カプセルを含有させた 各種形態の製剤に用いることができる。 かかる製剤としては、 特に限定しないで、 錠剤、 カプセル剤、 顆粒剤、 丸剤、 エアゾール剤、 シロップ剤、 トローチ剤等の各 種経口製剤、注射剤、点眼剤、貼付剤、坐剤、経皮型外用剤、皮下埋め込み型製剤、 口腔ないし鼻腔粘膜適用製剤等が挙げられる。 なお、 錠剤化、 カプセル化、 顆粒化 等、 各種の製剤への適用にあたっては公知の製剤化技術を適用することができる。  The microcapsules of the present invention can be used in various forms of preparations containing a plurality of microcapsules as pharmaceutical preparations. Such preparations include, but are not limited to, various oral preparations such as tablets, capsules, granules, pills, aerosols, syrups, troches, injections, eye drops, patches, suppositories, transdermal Examples include external preparations, subcutaneous implantable preparations, oral and nasal mucosa application preparations, and the like. It should be noted that a known formulation technology can be applied to various formulations such as tableting, encapsulation, and granulation.
(微小カプセルの製造方法)  (Method for producing microcapsules)
次に、本微小カプセルの製造に適した微小カプセルの製造方法について説明する。 図 9には、 本製造方法のフローの一例を示す。 このフローは、 図 5に示す微小カブ セル 2を製造するのに適している。 本製造方法は、 芯物質 4又はその原料を含む液 状等の芯物質用材を、少なくとも芯物質用材が付着可能な表面を有する担体に対し て供給する工程と、 カプセル壁又はその原料を含む液状等のカプセル壁用材を、 少 なくともカプセル壁用材が付着可能な前記表面に対して供給する工程と、 を備えて いる。  Next, a method for manufacturing a microcapsule suitable for manufacturing the present microcapsule will be described. Fig. 9 shows an example of the flow of this manufacturing method. This flow is suitable for manufacturing the micro cab cell 2 shown in FIG. This manufacturing method includes a step of supplying a core material 4 such as a liquid containing the core material 4 or its raw material to at least a carrier having a surface to which the core material can adhere, and a liquid containing the capsule wall or its raw material. Supplying a capsule wall material such as the above to the surface to which at least the capsule wall material can adhere.
(カプセル壁用材および芯物質用材の供給工程)  (Process for supplying capsule wall material and core material)
カプセル壁は既に述べたとおりの材料を用いることができる。 本製造方法では、 これらの材料を最終的に得られるように構成したカプセル壁用材を調製し、 これを 用いる。 例えば、 カプセル壁 1 0を高分子材料で構成する場合には、 高分子材料又 は反応により高分子化する材料を適当な溶媒に懸濁又は溶解し、必要に応じて各種 の添加剤を添加してカプセル壁用材を調製する。 カプセル壁用材は、 液状またはべ 一スト状に調製されることが好ましい。 液状またはペースト状であると、 印刷方式 を採用してカプセル壁用材を供給することが容易になる。 なお、 液状という場合に は、 溶液や懸濁液を包含する。 カプセル壁用材は、 液状やペースト状の他、 粉末状 であってもよい。  The capsule wall can be made of the materials already mentioned. In this manufacturing method, a capsule wall material configured to finally obtain these materials is prepared and used. For example, when the capsule wall 10 is made of a polymer material, the polymer material or the material that becomes polymerized by reaction is suspended or dissolved in an appropriate solvent, and various additives are added as necessary. Thus, a capsule wall material is prepared. The capsule wall material is preferably prepared in a liquid or best shape. When it is liquid or pasty, it becomes easy to use a printing method to supply the capsule wall material. In addition, the liquid state includes solutions and suspensions. The capsule wall material may be in the form of powder in addition to liquid or paste.
また、 カプセル壁用材に適宜気泡を導入することで、 気孔 (特に独立状気孔を主 体となる) を含有するカプセル壁 1 0を形成できる。 例えば、 カプセル壁用材を調 製時において攪拌等により気泡を導入するか、又は化学的発泡剤を用いるなどして 気泡を導入することにより、 気孔を含有するカプセル壁用材を得ることができる。 このような力プセル壁用材においては、後述するマイクロポンプ等の供給手段から 供給を阻害する程度の大きさの気泡を予め除去しておくことが好ましい。 In addition, by introducing appropriate bubbles into the capsule wall material, pores (especially independent pores are mainly used). Capsule wall 10 containing the body). For example, a capsule wall material containing pores can be obtained by introducing bubbles by stirring or the like during preparation of a capsule wall material or by using a chemical foaming agent. In such a force-pessel wall material, it is preferable to previously remove bubbles having a size that hinders supply from a supply means such as a micropump described later.
また、 既に述べた芯物質 4を含有する芯物質用材も調製する。 芯物質用材として は芯物質 4のみであってもよいが、各種の添加剤等を加えて適当な組成物とするこ とができる。 また、 芯物質 4の濃度や芯物質 4の種類が異なる 2種類以上の芯物質 用材を調製し、 これを用いることもできる。 芯物質用材も、 カプセル壁用材と同様 好ましくは液状またはペースト状である。 また、 芯物質用材は粉末状であってもよ い。  Also, prepare a core material containing the core material 4 already described. As the core material, only the core material 4 may be used, but various additives can be added to obtain an appropriate composition. It is also possible to prepare and use two or more types of core material materials having different concentrations of the core material 4 and different types of the core material 4. The core material is preferably in the form of a liquid or paste in the same manner as the capsule wall material. The core material may be in powder form.
次に、 微小カプセル 2を製造するための担体 2 0について説明する。 本発明にお いては、 カプセル壁用材材は、 少なくともカプセル壁用材が付着可能な表面 2 2を 有する担体 2 0の該表面に対して供給する。 担体 2 0は、 固体、 液体、 ゲルであつ ても、 カプセル壁用材が付着可能な表面を有していればよい。 固体やゲルは、 弾性 や可塑性を有するものであってもよい。 また、 液体は、 カプセル壁用材の微小量を その表面に保持することができる。 また、 必要に応じて液体の温度又は塩濃度を調 整し、 さらには有機溶媒などを用いることでその粘度や比重を調整するなどして、 カプセル壁用材の付着又は着地に適した表面を構成できる。 また、 担体 2 0は、 力 プセル壁用材を付着させ保持するとともに、その表面 2 2に倣った形状をカプセル 壁 1 0に付与することができる。 したがって、 得よ  Next, the carrier 20 for producing the microcapsule 2 will be described. In the present invention, the capsule wall material is supplied to at least the surface of the carrier 20 having the surface 22 to which the capsule wall material can adhere. The carrier 20 may be a solid, liquid, or gel, as long as it has a surface to which the capsule wall material can adhere. The solid or gel may be elastic or plastic. In addition, the liquid can hold a minute amount of the capsule wall material on its surface. In addition, by adjusting the temperature or salt concentration of the liquid as necessary, and adjusting the viscosity and specific gravity by using an organic solvent, etc., a surface suitable for the attachment or landing of the capsule wall material is constructed. it can. Further, the carrier 20 can attach and hold the force capsule wall material and can give the capsule wall 10 a shape following the surface 22. Therefore, get
うとする微小カプセル 2の形状に応じた表面 2 2を有する担体 2 0を選択するこ とにより、 微小力プセル 2に所望の外形形状を容易に付与できる。 By selecting the carrier 20 having the surface 22 according to the shape of the microcapsule 2 to be intended, a desired outer shape can be easily imparted to the microforce psell 2.
担体 2 0としては、生体内のいずれかの部位における溶解性又は崩壊性を備える 製剤用担体(キャリア)を用いることができる。このような担体 2 0とすることで、 微小カプセル 2を、ターゲット部位において溶解又は崩壊し微小カプセルを放出す ることができる製剤 (微小カプセル保持体) を供給できる。 たとえば、 微小カプセ ル 2を、 口腔粘膜、 歯肉及び歯牙などに作用させる製剤とするときには、 担体 2 0 を、 口腔内での唾液などの水分によって容易に溶解ないし崩壊させる材料及び構成 として、 口腔内にて微小カプセル 2を放出させるようにすることが好ましい。 同様 に、 胃ないし腸などの消化管や血管において微小カプセル 2を放出させるには、 担 体 2 0を、それぞれの部位にて溶解し又は崩壌するような材料及び構成とすること ができる。 さらに、 担体 2 0として、 生体内のカプセル壁 1 0は、 夕ーゲティング 部位の粘膜への付着性を備える付着性材料を用いることもできる。担体 2 0の胃粘 膜や腸管粘膜に対する付着性を向上させることで微小力プセル 2の夕一ゲティン グ部位への到達性を高めた製剤 (微小カプセル保持体) を得ることができる。 担体 2 0としてこのような溶解性や付着性材料を用いる場合、 これらの場合には、 担体 2 0を既に述べたカプセル壁 1 0に用いるのと同様の材料で構成することができ、 担体 2 0は、カプセル壁 1 0の少なくとも一部として機能することとなる。例えば、 図 1 9 ( a )に示す例では、担体 2 0はカプセル壁 1 0の一部として機能している。 なお、 担体 2 0をカプセル壁 1 0の一部とする場合、 残部のカプセル壁 1 0は、 担 体 2 0の構成材料と同一とすることもできるし異なる材料とすることもできる。 ま た、 担体 2 0として、 嚥下を容易化し又は苦味マスキング性を有する製材用担体を 用いることで、担体 2 0に多数個の微小力プセル 2や複数種類の微小力プセル 2を 容易に一括投与できるいわゆるオブラート様又は被包剤材料様機能を付与するこ ともできる (図 1 9 ( b ) )。 なお、 このオブラート様機能を有する担体 2 0として は、 ガム状、 ゲル状、 又は水を吸収してゲル状となる製剤用担体を用いることもで 含る。 As the carrier 20, a pharmaceutical carrier (carrier) having solubility or disintegration at any site in the living body can be used. By using such a carrier 20, the microcapsule 2 is dissolved or disintegrated at the target site to release the microcapsule. Preparation (microcapsule holder) can be supplied. For example, when the microcapsule 2 is used as a preparation that acts on the oral mucosa, gums, teeth, etc., the carrier 20 can be easily dissolved or disintegrated by moisture such as saliva in the oral cavity. It is preferable to release the microcapsules 2 at. Similarly, in order to release the microcapsules 2 in the digestive tract and blood vessels such as the stomach or intestine, the carrier 20 can be made of a material and a structure that dissolves or disintegrates at each site. Further, as the carrier 20, the capsule wall 10 in the living body can be made of an adhesive material having adhesiveness to the mucous membrane of the setting part. By improving the adherence of the carrier 20 to the gastric mucosa and intestinal mucosa, a preparation (microcapsule holder) having improved reachability of the microforce pusher 2 to the evening gating site can be obtained. When such a soluble or adhesive material is used as the carrier 20, in these cases, the carrier 20 can be composed of the same material as that used for the capsule wall 10 already described. 0 functions as at least a part of the capsule wall 10. For example, in the example shown in FIG. 19 (a), the carrier 20 functions as a part of the capsule wall 10. When the carrier 20 is a part of the capsule wall 10, the remaining capsule wall 10 can be the same as or different from the constituent material of the carrier 20. In addition, by using a lumber carrier that facilitates swallowing or bitterness masking as the carrier 20, a large number of microforce pushells 2 or multiple types of microforce pushells 2 can be easily and collectively administered to the carrier 20. The so-called wafer-like or encapsulating material-like functions can be added (Fig. 19 (b)). The carrier 20 having an oblate-like function includes a gum, gel, or a pharmaceutical carrier that absorbs water to form a gel.
このような担体 2 0の材料としては、 各種高分子材料が挙げられ、 たとえば、 ポ リルピロリドン、 ゼラチン、 ポリピニルアルコール、 ポリアクリル酸ナトリウム、 カルボキシメチルセルロース、 デンプン、 キサンタンガム、 カラャガム、 アルギン 酸ナトリウム、 メチルセルロース、 力ルポキシビ二ルポリマー、 カンテン、 ヒドロ キシプロピルセルロースが挙げられ、 特に、 セルロースアセテートフタレート、 セ ルロースアセテートテトラヒドロフタレート、 ヒドロキシメチルプロピルセルロー テレフ夕レート、 ポリビニルアセテートフタレート、 カルボキシメチルェチルセル ロース、 メタクリル酸コポリマー等が腸溶性の高分子材料として挙げられる。 また、 担体 2 0として、 培養皮膚、 コラーゲン、 ゼラチンなどから形成される皮 膚代替材料、 人工血管などの各種臓器代替材料を用いることもできる。 このような 担体 2 0を用いる場合、後述するマイクロポンプ方式によって微小カプセルを形成 することによって、 これらの代替材料への障害を抑制して効果的に薬剤などを保持 させることができる。 また、 必要な部位に必要量の薬剤を正確に保持させることが できる。 なお、 こうして形成された微小力プセル 2は、 担体 2 0とともに微小力プ セル保持体として使用されることになる。 Examples of the material of the carrier 20 include various polymer materials such as polypyrrolidone, gelatin, polypinyl alcohol, sodium polyacrylate, carboxymethyl cellulose, starch, xanthan gum, caraja gum, sodium alginate, Methylcellulose, strong loxyvinyl polymer, agar, hydro In particular, cellulose acetate phthalate, cellulose acetate tetrahydrophthalate, hydroxymethylpropylcellulose terephthalate, polyvinyl acetate phthalate, carboxymethylethylcellulose, and methacrylic acid copolymer are enteric polymer materials. Can be mentioned. Further, as the carrier 20, skin substitute materials formed from cultured skin, collagen, gelatin and the like, and various organ substitute materials such as artificial blood vessels can be used. When such a carrier 20 is used, by forming microcapsules by the micropump method described later, it is possible to suppress the obstacles to these alternative materials and to effectively hold the drug or the like. In addition, the required amount of drug can be accurately retained at the required site. Note that the micro force cell 2 formed in this way is used as a micro force cell holder together with the carrier 20.
また、 担体 2 0の表面 2 2は適度な撥液性を有していてもよい。 ここでいう撥液 性とは、 少なくともカプセル壁用材に対する撥液性である。 表面 2 2が撥液性を有 することにより、 該表面 2 2に付着したカプセル壁用材の付着形態を制御できる。 高い撥液性の表面にカプセル壁用材が付着すると、 付着形態は球にちかづき、 撥液 性が低い場合には、 平坦状の付着形態となる。 さらに、 表面 2 2において、 撥液性 部位と非撥液性部位 (カプセル壁用材に対して親和性のある部位) とを備え、 該非 撥液性部位の周囲に撥液性部位を設ける  Further, the surface 22 of the carrier 20 may have appropriate liquid repellency. The liquid repellency referred to here is at least liquid repellency to the capsule wall material. When the surface 22 has liquid repellency, the adhesion form of the capsule wall material adhered to the surface 22 can be controlled. When the capsule wall material adheres to a highly liquid-repellent surface, the form of adhesion is close to a sphere, and when the liquid repellency is low, it becomes a flat form of adhesion. Furthermore, the surface 22 has a liquid-repellent part and a non-liquid-repellent part (part having affinity for the capsule wall material), and a liquid-repellent part is provided around the non-liquid-repellent part.
ことで力プセル壁用材の付着形態を制御することもできる。 Thus, it is possible to control the adhesion form of the force-pessel wall material.
担体 2 0の形状は特に限定しないが、 印刷システムの利用を考慮すれば、 板状な いしシート状であることが好ましい。 なお、 印刷システムを適用可能な曲面を有し ていてもよい。 また、 図 9に示すように、 担体 2.0の表面 2 2を平坦状とすると、 カプセル壁 1 0に平坦状部を形成することができる。 また、 図 1 0に示すように、 微小力プセル 2の大きさに相当する凹部を有することにより、該凹部に対応する形 状を微小カプセル 2に容易に付与できる。 凹部に半球状の内面を形成することで、 図 4に示すような球状部位を備える微小力プセル 2を容易に得ることができる。 さ らに、 図 1 1に示すように、 第 1の担体 2 0 aを平板状体とし、 第 2の担体 2 0 b を第 1の担体 2 0 aに重ねる平板状体とし、該平板状体 2 0 bに微小カプセル 2に 対応する貫通孔を形成することで、 凹部 2 4を表面 2 2に有する担体 2 0を容易に 得ることができる。 また、 後述するように、 このように、 担体 2 0を第 1の担体 2 0 aと第 2の担体 2 0 bとで分割構成することで、微小カプセル 2の脱型を容易に 行うことができる。 加えて、 図 1 2に示すように、 第 2の担体 2 0 bの貫通孔をテ ーパ状とすると、 一層容易に脱型することができる。 The shape of the carrier 20 is not particularly limited, but is preferably a plate shape or a sheet shape in consideration of use of the printing system. It may have a curved surface to which the printing system can be applied. Also, as shown in FIG. 9, when the surface 22 of the carrier 2.0 is flat, a flat portion can be formed on the capsule wall 10. Further, as shown in FIG. 10, by having a concave portion corresponding to the size of the micro force pusher 2, a shape corresponding to the concave portion can be easily imparted to the microcapsule 2. By forming the hemispherical inner surface in the recess, the micro force pusher 2 having a spherical portion as shown in FIG. 4 can be easily obtained. The Furthermore, as shown in FIG. 11, the first carrier 20 a is a flat plate, the second carrier 20 b is a flat plate overlapping the first carrier 20 a, and the flat plate By forming a through hole corresponding to the microcapsule 2 in 20 b, the carrier 20 having the recess 24 on the surface 22 can be easily obtained. Further, as will be described later, the microcapsule 2 can be easily demolded by dividing the carrier 20 into the first carrier 20a and the second carrier 20b as described above. it can. In addition, as shown in FIG. 12, when the through hole of the second carrier 20b is formed in a taper shape, it can be removed more easily.
また、 後述するように、 担体 2 0上において製造した微小カプセル 2をその表面 2 2から分離することを考慮すると、担体 2 0は可塑性材料であることが好ましい。 担体 2 0の表面 2 2を変形させることで容易に微小カプセル 2を表面 2 2から分 離できる。 また、 担体 2 0は、 少なくとも表面 2 2における一の方向において伸縮 性材料であってもよい。該方向にそって担体 2 0を伸縮させて変形させることで微 小カプセル 2を分離できる。 また、 担体 2 0は、 その表面 2 2に発泡性材料層 3 0 を有していてもよい。 微小カプセル製造後、 担体 2 0を加熱等することで、 発泡性 材料層 3 0に内在する発泡剤などを発泡させることで表面 2 2からガスが噴出し 又は表面 2 2形状が変化することで微小カプセル 2を分離できる。 また、 担体 2 0 は、 少なくとも表面 2 2に撥液性層を備えることも好ましい。 表面 2 2における微 小力プセル 2の接触面積を低減するとともに密着強度を低減できるからである。 また、担体 2 0として気体に対する選択的透過性を有する材料を用いることもで きる。 すなわち、 液体が透過しにくく気体が透過しやすい材料を用い、 該材料の気 体選択的透過性を利用して、担体 2 0の表面 2 2以外の部分から該表面から気体が 通過するように担体 2 0に気体を供給することにより、担体 2 0の表面 2 2に形成 した微小カプセル 2を容易に分離することができる。 このような選択的気体透過性 材料としては、 セラミックス、 金属、 高分子材料の多孔材料を用いることが挙げら れる。 なかでも、 ポリプロピレンのフィルム状体等の高分子材料を用いることによ りその可撓性によって微小カプセル 2の分離を容易に実現できる。 また、 高分子材 料の表面エネルギーの低さによる撥水性の高さを利用することで、比較的気孔率が 高くても、カプセル壁用材の担体 2 0の孔部への侵入を抑制して低い通気圧力によ つて微小カプセル 2を分離できる。 なお、 このような材料における好ましい気孔サ ィズは、 材料自体の有する撥水性、 カプセル壁用材の特性 (表面張力、 粘度、 p H 等) 及び与える気体量や圧力によっても異なるが、 平均直径が 2 0 0 n m以下であ ることが好ましい。 平均直径は、 より確実にカプセル壁用材などの侵入を抑制して 微小カプセルの分離性を確保するには、 1 0 n m以下であることがより好ましく、 さらに好ましくは 1 n m以下である。 As will be described later, in consideration of separating the microcapsules 2 produced on the carrier 20 from the surface 22 thereof, the carrier 20 is preferably a plastic material. By deforming the surface 22 of the carrier 20, the microcapsules 2 can be easily separated from the surface 22. The carrier 20 may be a stretchable material at least in one direction on the surface 22. The microcapsules 2 can be separated by expanding and contracting the carrier 20 along the direction. The carrier 20 may have a foamable material layer 30 on its surface 22. After the microcapsules are manufactured, by heating the carrier 20 or the like, the foaming agent or the like inherent in the foamable material layer 30 is foamed, so that gas is ejected from the surface 22 or the shape of the surface 22 is changed. Microcapsules 2 can be separated. The carrier 20 is preferably provided with a liquid repellent layer at least on the surface 22. This is because the contact area of the micro-force psel 2 on the surface 22 can be reduced and the adhesion strength can be reduced. A material having selective permeability to gas can also be used as the carrier 20. That is, using a material that does not easily allow liquid to pass through and easily allows gas to pass through, and uses the gas-selective permeability of the material so that the gas passes from the surface other than the surface 22 of the carrier 20. By supplying gas to the carrier 20, the microcapsules 2 formed on the surface 22 of the carrier 20 can be easily separated. Examples of such a selective gas permeable material include the use of porous materials such as ceramics, metals, and polymer materials. Among these, by using a polymer material such as a polypropylene film, the microcapsules 2 can be easily separated by their flexibility. Also, polymer material By utilizing the high water repellency due to the low surface energy of the material, even if the porosity is relatively high, the penetration of the capsule wall material into the pores of the carrier 20 is suppressed and the low ventilation pressure is achieved. Therefore, the microcapsule 2 can be separated. The preferred pore size in such materials varies depending on the water repellency of the material itself, the characteristics of the capsule wall material (surface tension, viscosity, pH, etc.), and the amount of gas applied and pressure, but the average diameter is It is preferably 200 nm or less. The average diameter is more preferably 10 nm or less, and still more preferably 1 nm or less, in order to more reliably suppress the penetration of the capsule wall material and ensure the separation of the microcapsules.
次に、カプセル壁用材および芯物質用材を担体 2 0に対して供給する方法につい て説明する。 かかる供給方法としては、 印刷システムを用いることが好ましい。 印 刷システム、 具体的には、 印刷システムにおける記録材の供給方法を用いることに より、 芯物質用材の供給工程および前記カプセル壁用材の供給工程において、 表面 Next, a method for supplying the capsule wall material and the core material to the carrier 20 will be described. As such a supply method, it is preferable to use a printing system. In the printing system, specifically, by using the recording material supply method in the printing system, in the core material supply process and the capsule wall supply process,
2 2の予め定めた位置に芯物質用材およびカプセル壁用材をそれぞれ供給するこ とができる。 したがって、 多数個の微小カプセル 2を容易に製造できるとともに、 所望の形状の微小カプセル 2を製造できる。 さらに、 図 1 3に示すように、 担体 2 0において所望のパターンで多数個の微小カプセル 2を配列させることが可能で める。 22 The core material and the capsule wall material can be respectively supplied to two predetermined positions. Therefore, a large number of microcapsules 2 can be easily manufactured, and microcapsules 2 having a desired shape can be manufactured. Furthermore, as shown in FIG. 13, a large number of microcapsules 2 can be arranged in a desired pattern on a carrier 20.
本製造方法において利用する印刷システムとしては、 具体的には、 インクジエツ ト記録において用いられているマイクロボンプ方式や、スクリ一ン印刷などに代表 される孔版印刷方式である。 マイクロポンプ方式によれば、 カプセル壁用材の微小 液滴を担体 2 0に対して吐出して表面 2 2に着地させ付着させることができる。マ ィクロポンプ方式によれば、供給量の制御や着地点制御を高精度に行うことができ る。 したがって、 カプセル壁用材の供給にも都合がよいが、 特に、 高精度な供給量 制御や供給位置制御が必要となる芯物質用材の供給工程をマイクロポンプ方式で 行うことが好ましい。 また、 比較的小さい (数/ から数十 m程度) の微小カブ セル 2の製造に適している。 マイクロポンプ方式としては、 荷電制御方式、 電気機械変換方式、 電気熱変換方 式および静電吸引方式などが挙げられる。 本製造方法においては、 これらのいずれ であっても用いることができるが、 好ましくは、 液体を加熱することなしに吐出圧 が得られる電気機械変換方式である圧電式液吐出方式を用いることが好ましい。具 体的な装置としては、液体を噴射させる複数のノズル孔が設けられたノズル部に対 して、該ノズル孔に対する 1つまたは複数の ί夜体加圧室が設けられたポンプ部を接 合し、該液体加圧室の壁の一部を圧電 ζ電歪素子によって変形させて該液体加圧室 に供給される液体を、 前記ノズル孔から噴射させるようにしたものが挙げられる。 なお、かかる加圧室に液溜め流路を介して液体を供給するのに用いる液体注入口は 互い違いに配列されていると、 微小液滴の正確な量で吐出できる。 なお、 本製造方 法においては、必ずしもインクジエツト式の記録装置に用いられているものと同等 物を使用する必要はない。 Specifically, the printing system used in this manufacturing method includes a micro-bump method used in ink jet recording and a stencil printing method represented by screen printing. According to the micropump method, microdroplets of the capsule wall material can be ejected onto the carrier 20 and landed on the surface 22 and adhered thereto. According to the micropump method, supply amount control and landing point control can be performed with high accuracy. Therefore, it is convenient for the supply of the capsule wall material, but it is particularly preferable to perform the core material supply process that requires highly accurate supply amount control and supply position control by the micropump method. In addition, it is suitable for the production of micro cab cells 2 that are relatively small (several / several tens of meters). Examples of the micropump method include a charge control method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic suction method. In the present manufacturing method, any of these can be used, but it is preferable to use a piezoelectric liquid discharge method that is an electromechanical conversion method in which a discharge pressure can be obtained without heating the liquid. . As a specific device, a pump section provided with one or more night body pressurizing chambers is connected to a nozzle section provided with a plurality of nozzle holes for ejecting liquid. In addition, a part of the wall of the liquid pressurizing chamber may be deformed by a piezoelectric ζ electrostrictive element so that the liquid supplied to the liquid pressurizing chamber is ejected from the nozzle hole. In addition, if the liquid inlets used for supplying the liquid to the pressurizing chamber via the liquid reservoir flow path are alternately arranged, it is possible to discharge with an accurate amount of minute droplets. In this manufacturing method, it is not always necessary to use an equivalent to that used in an ink jet recording apparatus.
また、 孔版印刷方式のなかでも、 スクリーン印刷方式を用いることが好ましい。 スクリーン印刷は、所望の平面形態にパターニングされたスクリーン膜を介して担 体 2 0に対して所望のパターンでカプセル壁用材を供給することができる。 また、 スクリーン印刷によれば、 インクジェット方式よりも大きな (数十 m〜2 0 0 0 / m以下程度) 微小カプセル 2を容易に製造することができる。 また、 スクリーン 印刷は、 芯物質用材よりも量的に多いカプセル壁用材の供給に適している。  Of the stencil printing methods, the screen printing method is preferably used. In the screen printing, the capsule wall material can be supplied in a desired pattern to the carrier 20 through a screen film patterned in a desired planar form. Moreover, according to screen printing, the microcapsule 2 larger than the inkjet method (several tens of m to 200 / m or less) can be easily manufactured. Screen printing is also suitable for supplying capsule wall materials that are more quantitative than core material materials.
カプセル壁用材および芯物質用材の供給工程は、表面 2 2において芯物質用材の 付着物の少なくとも一部を前記カプセル壁用材の付着物で内包するように実施す る。 こうすることで、 微小カプセルの少なくとも一部が製造される。 本製造方法に おいては、 図 9にも示すように、 まず、 担体 2 0の表面 2 2にカプセル壁用材を供 給し、 このカプセル壁用材の付着物に対して芯物質用材を供給する。 こうすること で、 表面 2 2を利用してカプセル壁 1 0に所望の形状を付与することができる。 ま た、 芯物質用材をカプセル壁用材に対して供給することで、 担体 2 0の種類や芯物 質用材の液性等によらないで確実に芯物質 4をカプセル壁 1 0の内側に保持可能 に位置させることができる。 なお、 カプセル壁用材を表面 2 2に供給した後、 芯物 質用材を供給するのにあたり、 カプセル壁用材を適宜放置、 乾燥、 加熱等すること により必要な程度に硬化させることもできる。 The step of supplying the capsule wall material and the core material is performed so that at least a part of the deposit on the core material is encapsulated on the surface 22 with the deposit on the capsule wall material. In this way, at least a part of the microcapsules is manufactured. In this manufacturing method, as shown in FIG. 9, first, the capsule wall material is supplied to the surface 22 of the carrier 20, and the core material material is supplied to the adhered substance on the capsule wall material. . In this way, a desired shape can be imparted to the capsule wall 10 using the surface 22. In addition, by supplying the core material to the capsule wall material, the core material 4 is securely held inside the capsule wall 10 without depending on the type of carrier 20 or the liquidity of the core material. Possible Can be located. In addition, after supplying the capsule wall material to the surface 22, when supplying the core material, the capsule wall material can be cured to a necessary degree by appropriately leaving, drying, heating, and the like.
芯物質 4又はその成分についての濃度傾斜を形成するには、濃度傾斜させようと する芯物質 4又は成分についての濃度が異なる芯物質用材を供給する。 例えば、 厚 みの中心部分から下層及び上層に向かって濃度がそれぞれ低下していく濃度傾斜 を有する微小カプセル 2を作製するには、 カプセル壁用材を供給後、 芯物質 4中の ある種の有効成分を第 1の濃度で含有する芯物質用材を供給し、 その後、 同じ有効 成分を第 1の濃度よりも高い第 2の濡度で含有する芯物質用材を供給し、 さらに、 同じ有効成分を第 1の濃度で含有する芯物質用材を供給した上、カプセル壁用材を 供給することで濃度傾斜のある微小カプセルを形成できる。 なお、 各種芯物質用材 を積層するにあたり、 下層の芯物質用材が十分  In order to form a concentration gradient for the core material 4 or its components, a core material with a different concentration for the core material 4 or component to be concentration-graded is supplied. For example, in order to produce a microcapsule 2 having a concentration gradient in which the concentration decreases from the central portion of the thickness toward the lower layer and the upper layer, after supplying the capsule wall material, some effective in the core material 4 Supplying a core material containing an ingredient at a first concentration, then supplying a core material containing the same active ingredient at a second wetness higher than the first concentration, and further supplying the same active ingredient By supplying the core substance material contained at the first concentration and supplying the capsule wall material, microcapsules with a concentration gradient can be formed. When laminating various core material materials, the lower core material material is sufficient.
に乾燥してから次の芯物質用材を供給すると、芯物質の種類等によってはこれらの 界面が明確になるときには、下層の芯物質用材が次に重ねる芯物質用材に拡散又は 混合する程度の乾燥状態で次の芯物質用材を供給することで連続的な濃度傾斜を 形成できる。 When the next core material is supplied to the core material and the interface becomes clear depending on the type of core material, etc., it is dried to the extent that the lower core material will diffuse or mix into the next core material. A continuous concentration gradient can be formed by supplying the next core material in the state.
次に、 芯物質用材の付着物を被覆するように、 カプセル壁用材を供給する。 こう することで、芯物質用材の下側および上側の力プセル壁用材による保持構造が形成 される。 なお、 こうした順序で微小カプセルを製造する場合、 各種材料の供給量は 下側のカプセル壁用材を最も多くし、 次いで、 上側カプセル壁用材とし、 芯物質用 材は最も少なくすると、芯物質 4の全体を完全にカプセル壁 1 0で内包する微小力 プセル 2を得ることができる。 なお、 これらの量比は、 下側のカプセル壁と上側の カプセル壁と芯物質との関係においても同様である。  Next, the capsule wall material is supplied so as to cover the deposit on the core material. In this way, a holding structure is formed by the lower and upper force psell wall materials for the core material. When manufacturing microcapsules in this order, the supply of various materials is the largest for the capsule wall material on the lower side, then the material for the upper capsule wall, and the least amount of material for the core material. A micro force psel 2 that completely encapsulates the whole with the capsule wall 10 can be obtained. These quantitative ratios also apply to the relationship between the lower capsule wall, the upper capsule wall, and the core substance.
なお、芯物質用材の供給量と該芯物質用材に対して供給するカプセル壁用材の供 給量が多い場合や、芯物質用材とカプセル壁用材との相溶性があり芯物質用材が力 プセル壁用材へ又は逆方向へ浸透又は拡散しやすい場合など、最終的にカプセル壁 用材を供給するのに先立ってあらかじめ少量のカプセル壁用材等を芯物質用材の 付着物に対して供給して、かかる浸透や拡散を抑制する内層を一旦形成することが できる。 かかる内層は、 カプセル壁用材.と同一であってもよいが、 別途の構成とす ることもできる。 なお、 このような内層がこのような目的に限らず、 カプセル壁 1 0と芯物質 4との間に介在されるように、適宜液状等の内層用材を供給することが できる。 Note that if the supply amount of the core material and the supply amount of the capsule wall material supplied to the core material are large, or the core material and the capsule wall material are compatible, the core material is a powerful wall. The capsule wall will eventually end up when it is easy to penetrate or diffuse into the material or in the opposite direction Prior to supplying the material, a small amount of capsule wall material or the like can be supplied in advance to the deposits of the core material material to form an inner layer that suppresses such penetration and diffusion. Such an inner layer may be the same as the capsule wall material, but may be configured separately. The inner layer is not limited to such a purpose, and an inner layer material such as a liquid can be appropriately supplied so as to be interposed between the capsule wall 10 and the core substance 4.
このようにして、 図 5に例示するような微小カプセル 2を担体 2 0上に得ること ができる。この状態においては、微小カプセル 2は担体 2 0に付着したままである。 担体 2 0上の微小カプセル 2において最終的にカプセル壁 1 0を構成するのに乾 燥や加熱などが必要な場合には、 この状態でこれらの工程を実施してもよい。 こうして得られた微小カプセル 2は、多数個の微小カプセル 2が担体 2 0に保持 されたままの状態で使用に供することもできる。 すなわち、 微小カプセル 2を保持 した微小カプセル保持体として用いることができる。 特に、 担体 2 0として生体内 の所定部位での溶解性又は崩壊性を備える製剤用担体を用いた場合には、微小カブ セル保持体はそのまま投与可能な製剤となる。 こうした製剤によれば、 通常マイク 口カプセルに必要とされる、 カプセル充てん、 造粒、 分包などの作業を省略して、 投与に適した形態を予め備える製剤が提供される。 例えば、 微小カプセル 2が所定 のパターンで配列されている場合であって、芯物質 4として医薬品の有効成分等を 含有している場合には、 このまま経皮型外用剤、 皮下埋め込み型製剤、 口腔ないし 鼻腔粘膜適用製剤、 坐剤、 経口製剤等に用いることができる。 これらは適宜分割可 能に割線を備えることもできる。 これらの用途においても、 微小カプセル 2は、 時 限徐放効果ゃ徐放効果などを発揮できる。  In this way, the microcapsule 2 as illustrated in FIG. 5 can be obtained on the carrier 20. In this state, the microcapsule 2 remains attached to the carrier 20. If drying or heating is necessary to finally form the capsule wall 10 in the microcapsule 2 on the carrier 20, these steps may be performed in this state. The microcapsules 2 obtained in this way can be used in a state where a large number of microcapsules 2 are held on the carrier 20. That is, it can be used as a microcapsule holder that holds the microcapsules 2. In particular, when a pharmaceutical carrier having solubility or disintegration at a predetermined site in the living body is used as the carrier 20, the microcapsule carrier is a preparation that can be administered as it is. According to such a preparation, a preparation that is preliminarily provided with a form suitable for administration can be provided by omitting the operations such as capsule filling, granulation, and packing that are usually required for a microphone mouth capsule. For example, when the microcapsules 2 are arranged in a predetermined pattern and contain an active ingredient of a pharmaceutical as the core substance 4, the percutaneous external preparation, the subcutaneous implantable preparation, the oral cavity Or it can be used for preparations for nasal mucosa, suppositories, oral preparations, etc. These can also be provided with a dividing line as appropriate. In these applications, the microcapsule 2 can exhibit a time-release effect or a time-release effect.
また、 担体 2 0を、 一時的に微小カプセル 2を保持する包装用担体として用いる こともできる。 すなわち、 この微小カプセル保持体は、 そのまま使用に供されるほ か、 このまま通常のカプセル包装体となるよう透明フィルムによるパッケージング 処理を行って包装体を構成することもできる。 なお、 担体 2 0を微小カプセル 2保持体として使用に供する場合には、 用途に適 した材料の担体 2 0を選択するものとし、 また、 必要に応じて、 微小カプセル 2の 保護膜やバインダー、 担体 2 0を所定部位に固着するための接着層、 該接着層を保 護する保護層などを付与することができる。 また、 カプセル壁 1 0として、 担体 2 0に対して結合力のある材料を用いることが好ましい。 こうした微小カプセル保持 体は、 担体 2 0にカプセル壁 1 0を形成した上、 芯物質 4を供給し、 カプセル壁 1 0を供給して形成してもよいが、 担体 2 0の材料や表面 2 2の形状を選択すれば、 担体 2 0の表面に直接芯物質用材を供給し、 そ The carrier 20 can also be used as a packaging carrier that temporarily holds the microcapsules 2. That is, the microcapsule holding body can be used as it is, or a packaging body can be formed by performing a packaging process with a transparent film so that it becomes a normal capsule packaging body as it is. In addition, when the carrier 20 is used as a microcapsule 2 holder, the carrier 20 made of a material suitable for the application is selected, and if necessary, a protective film or binder for the microcapsule 2, An adhesive layer for fixing the carrier 20 to a predetermined site, a protective layer for protecting the adhesive layer, and the like can be provided. In addition, it is preferable to use a material having a binding force to the carrier 20 as the capsule wall 10. Such a microcapsule holder may be formed by forming the capsule wall 10 on the carrier 20, supplying the core substance 4, and supplying the capsule wall 10, but the material and surface 2 of the carrier 20 If the shape of 2 is selected, the core material is supplied directly to the surface of the carrier 20 and
の後カプセル壁用材を供給して、芯物質 4を担体 2 0の表面とカプセル壁 1 0とで 内包するようにしても、 微小カプセル保持体として機能させることができる。 この 場合において、 担体 2 0はカプセル壁 1 0の一部として機能しているといえる (図 1 9 ( a ) 参照)。 Even if the material for the back capsule wall is supplied and the core substance 4 is encapsulated by the surface of the carrier 20 and the capsule wall 10, it can function as a microcapsule holder. In this case, it can be said that the carrier 20 functions as a part of the capsule wall 10 (see FIG. 19 (a)).
微小カプセル 2を個別に用いるためには、担体 2 0から微小カプセルを分離する 工程を実施する。 微小カプセル 2を分離するには、 既に説明したように、 担体 2 0 として可撓性材料を用いた場合には、少なくともその表面を変形させることにより、 微小カプセル 2を分離できる。 例えば、 図 1 4に示すように、 微小カプセル 2を保 持した担体 2 0をベルトコンベア等により順次送りながら、 コンベア端部などにて 担体 2 0を屈曲させることで、 該端部にて微小カプセル 2を分離できる。 より確実 に微小カプセル 2を分離するには、 図 1 5に示すように、 該端部にて微小カプセル 2が当接され押圧されるようなブレード 4 0を備えることができる。ブレード 4 0 は単に微小カプセル 2が当接されるだけでなく、微小カプセル 2と表面 2 2との間 に揷入されやすい刃先を備えることもできる。 なお、 ブレード 4 0は、 屈曲されな い状態で移動する担体 2 0上の微小力プセル 2に当接するように位置させること もできる。 こうすることで微小カプセル 2を分離できる場合もある。 また、 ブレ一 ド 4 0に替えて空気などのガスショットを用いて微小カプセル 2に対して表面 2 2から分離させるような外力を付与することもできる。 また、 図 1 6に示すように、 微小カプセル 2を保持した担体 2 0の表面 2 2と反 対側の面 2 6から外力を作用させることにより担体 2 0を凹凸状に変形させるこ とにより、 微小カプセル 2を担体 2 0から分離することもできる。 図 1 6では、 担 体 2 0の反対面 (裏面) 2 4側に多数個の突起 5 2と該突起 5 2間に備えられる多 数個の真空吸引装置にそれぞれ接続された吸引孔 5 4とを有する微小カプセル分 離装置 5 0を配置し、突起 5 2を担体 2 0の裏面 2 6に当接させるとともに微小力 プセル 2の位置に対応するように位置決めすることで、担体 2 0の隣り合う微小力 プセル 2と微小カプセル 2との間の裏面 2 6と、分離装置 2 0の隣り合う突起 5 4 間の表面において吸引孔 5 4から真空吸引可能なキヤビティが形成される。そうし て、 真空吸引装置を作動させて吸引孔 5 4から真空吸引することで、 キヤビティを 形成していた担体 2 0の裏面 2 6は突起 5 4側に吸着され、 結果として、 微小力プ セル 2の底部周縁部の担体 2 0は該底部から剥離し、突起 5 4の先端が担体 2 0の 裏面 2 6から微小カプセル 2の底部中央部を上方に押圧する。 これにより、 微小力 プセル 2を容易に担体 2 0から分離することができる。 In order to use the microcapsules 2 individually, a step of separating the microcapsules from the carrier 20 is performed. In order to separate the microcapsules 2, as described above, when a flexible material is used as the carrier 20, the microcapsules 2 can be separated by deforming at least the surface thereof. For example, as shown in FIG. 14, the carrier 20 holding the microcapsules 2 is sequentially sent by a belt conveyor or the like, and the carrier 20 is bent at the end of the conveyor, so that the minute at the end. Capsule 2 can be separated. In order to separate the microcapsules 2 more surely, as shown in FIG. 15, a blade 40 can be provided so that the microcapsules 2 are brought into contact with and pressed at the end portions. The blade 40 can be provided not only with the microcapsule 2 but also with a cutting edge that is easily inserted between the microcapsule 2 and the surface 22. The blade 40 can also be positioned so as to abut on the minute force pusher 2 on the carrier 20 that moves without being bent. In this way, the microcapsule 2 may be separated. In addition, an external force that separates the microcapsule 2 from the surface 22 can be applied using a gas shot such as air instead of the blade 40. Also, as shown in FIG. 16, by applying an external force from the surface 22 of the carrier 20 holding the microcapsule 2 and the opposite surface 26, the carrier 20 is deformed into an uneven shape. The microcapsules 2 can also be separated from the carrier 20. In FIG. 16, the opposite surface (back surface) of the carrier 20 is a large number of protrusions 52 on the side of 4 and suction holes 5 4 connected to a number of vacuum suction devices provided between the protrusions 52. The microcapsule separating device 50 having the above is disposed, the protrusion 52 is brought into contact with the back surface 26 of the carrier 20, and positioned so as to correspond to the position of the microforce pusher 2. A cavity capable of being vacuum-sucked is formed from the suction hole 54 on the back surface 26 between the adjacent microforce Psell 2 and the microcapsule 2 and the surface between the adjacent protrusions 5 4 of the separation device 20. Then, by operating the vacuum suction device and vacuum suction from the suction hole 54, the back surface 2 6 of the carrier 20 that has formed the cavity is adsorbed to the projection 54 side, and as a result, the micro force push The carrier 20 at the peripheral edge of the bottom of the cell 2 is peeled off from the bottom, and the tip of the protrusion 54 presses the center of the bottom of the microcapsule 2 upward from the back surface 26 of the carrier 20. Thereby, the micro force psell 2 can be easily separated from the carrier 20.
また、 図 1 7に示すように、 担体 2 0として伸縮性材料を用いたときには、 少な くとも表面 2 2において担体 2 0を伸縮させることで、微小カプセル 2を分離でき、 図 1 8に示すように、担体 2 0として少なくとも表層に発泡性材料層 3 0を有する 場合には、加熱等により発泡させることにより微小力プセル 2を分離できる。なお、 図 1 1および図 1 2に示すように、担体 2 0を分割構成した場合にも容易に微小力 プセル 2を担体 2 0から分離できる。  Also, as shown in FIG. 17, when an elastic material is used as the carrier 20, the microcapsule 2 can be separated by stretching the carrier 20 at least on the surface 22, as shown in FIG. As described above, when the carrier 20 has the foamable material layer 30 at least on the surface layer, the microforce pushell 2 can be separated by foaming by heating or the like. As shown in FIGS. 11 and 12, even when the carrier 20 is divided, the microforce cell 2 can be easily separated from the carrier 20.
また、 担体 2 0として選択的気体透過性材料を用いた場合には、 担体 2 0の表面 2 2から気体が吐出されるように担体 2 0に空気などの気体を供給することによ つて、 この気体の圧力によって微小カプセル 2を表面 2 2から分離することができ る。  When a selective gas permeable material is used as the carrier 20, by supplying a gas such as air to the carrier 20 so that the gas is discharged from the surface 22 of the carrier 20, The microcapsule 2 can be separated from the surface 22 2 by the pressure of the gas.
以上説明したように、 本製造方法によれば、 印刷システムの利用により芯物質 4 の量、 形態、 カプセル壁 1 0の膜厚、 形状を制御して所望の三次元形状の微小カブ セルを構築可能となっている。 また、 従来にない芯物質 4の内包形態を構築可能な 方法となっている。 また、 本製造方法によれば、 上記した本微小カプセル 2の各種 の三次元形状や芯物質 4の内包形態を全て実現することができる。 As described above, according to the present manufacturing method, the amount of the core material 4, the form, the film thickness of the capsule wall 10, and the shape are controlled by using the printing system, and the desired three-dimensional shape micro-cube. A cell can be constructed. In addition, it is a method capable of constructing an unwrapped form of the core material 4 that has not existed before. In addition, according to the present manufacturing method, all the various three-dimensional shapes of the microcapsules 2 and the inclusion form of the core substance 4 can be realized.
なお、 上記説明においては、 担体 2 0の表面に微小カプセルを形成するものとし たが、  In the above description, the microcapsules are formed on the surface of the carrier 20.
マイクロポンプ等による力プセル壁用材ゃ芯物質用材の供給圧力及び担体 2 0の 材料等を調整することにより、担体 2 0中にカプセル壁用材および芯物質用材を埋 め込むように供給して担体 2 0にて微小カプセル 2を形成することもできる。 さら に、 担体 2 0に対して、 微小カプセル 2を供給して、 微小力プセル 2保持体を形成 することもできる。 また、 担体 2 0をカプセル壁として用いて芯物質用材のみを担 体 2 0に注入することで微小カプセル 2を形成することもできる。 By adjusting the supply pressure of the force-pell wall material, the core material, and the material of the carrier 20 using a micropump, the carrier 20 is supplied so that the capsule wall material and the core material are embedded in the carrier 20 Microcapsules 2 can also be formed at 20. Furthermore, the microcapsule 2 can be supplied to the carrier 20 to form a microforce pushell 2 holder. Alternatively, the microcapsule 2 can be formed by injecting only the core material material into the carrier 20 using the carrier 20 as the capsule wall.
また、 上記説明においては、 微小カプセル 2を形成した担体をそのまま微小カブ セル保持体として用いることができるものとしたが、担体 2 0として可塑性材料を 用いる場合、又は水や熱により可塑化して所定の形状を付与可能な材料を用いる場 合には、微小カプセル 2を保持した担体 2 0を所定条件下で可塑化して任意の形状 を付与することができる。 例えば、 経口投与や外科的又は経管的手法により生体内 の所定部位に場合に到達される製剤の場合、投与形態や投与部位に応じた形態に成 形することができる。 例えば、 一定量の微小力プセル 2が形成された担体領域毎に 経口投与に呈した球状、 棒状体やタブレツ卜状等に成形することができる。  In the above description, the carrier on which the microcapsules 2 are formed can be used as a microcapsule holder as it is. However, when a plastic material is used as the carrier 20 or plasticized with water or heat, the carrier is predetermined. In the case of using a material capable of giving the shape, the carrier 20 holding the microcapsules 2 can be plasticized under a predetermined condition to give an arbitrary shape. For example, in the case of a preparation that reaches a predetermined site in the living body by oral administration or a surgical or tube method, it can be formed into a form corresponding to the administration form or administration site. For example, each carrier region on which a certain amount of microforce pusher 2 is formed can be formed into a spherical shape, a rod-like body, a tablet-like shape, or the like presented for oral administration.
なお、 上記説明においては、 カプセル壁を有する微小カプセル及び微小カプセル の製造方法にマイクロポンプ等による印刷システムを用いることについて説明し たが、 マイクロポンプ等による印刷システムは、 特にカプセル壁を有しない形態で ある微小タブレットの作製にも同様に適用できる。 すなわち、 マイクロポンプ方式 により有効成分及び結合材等を担体に対して供給することにより、既に説明した微 小カプセルが有する外形形状および/または積層形状および/または成分分布形 態のタブレツ卜を得ることができる。有効成分と結合材等は同時に供給することも できるし、 別個のショットとして供給することもできる。 したがって、 マイクロポ ンプ等による印刷システムの利用により、 微小カプセル、 微小夕ブレットなどの微 小なサイズの製剤及びその製造方法が提供される。 実施例 1 In the above description, a microcapsule having a capsule wall and the use of a printing system using a micropump or the like in the manufacturing method of the microcapsule have been described. The same applies to the production of microtablets. That is, by supplying the active ingredient and the binding material to the carrier by the micropump method, the already-explained outer shape and / or laminated shape and / or component distribution form of the microcapsule can be obtained. Can do. Active ingredients and binders can be supplied at the same time Can be supplied as separate shots. Therefore, the use of a printing system such as a micro pump provides a micro size preparation such as a micro capsule and a micro evening bullet and a manufacturing method thereof. Example 1
以下、 本発明を、 実施例を挙げて具体的に説明するが、 本発明は以下の実施例に 拘束されるものではない。  EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrained by a following example.
(微小カプセルの製造例 1)  (Production example 1 of microcapsules)
本実施例は、 図 5に示す構造の微小カプセルの製造例であり、 図 9に示す製造ェ 程に準じている。 カプセル壁の材料を、 メタアクリル酸とメタアクリル酸エステル をベースとした陰イオンポリマーとし、 このポリマ一濃度 1 Owt %の水溶液を力 プセル壁用材とした。 また、 芯物質用材とし薬剤の代替品とし水溶性インク (固形 分 10重量%) を使用した。 また担体は樹脂のポリエチレンテレフ夕レート (PE T) シートを使用した。 本例においては、 圧電式液吐出方式によるインクジェット 方式により、 カプセル壁用材および芯物質用材の液滴を吐出した。 ユニットは、 特 開平 2003-75305号に開示された構造のものを用いた。吐出量は各用材と も 1ショット当り約 200 p lとなるように圧電体に印加する駆動波形を調整し た。  This example is an example of manufacturing a microcapsule having the structure shown in FIG. 5, and conforms to the manufacturing process shown in FIG. The capsule wall material was an anionic polymer based on methacrylic acid and methacrylic acid ester, and an aqueous solution with a polymer concentration of 1 Owt% was used as the force capsule wall material. In addition, water-soluble ink (solid content 10% by weight) was used as a core material and as a substitute for drugs. The carrier used was a polyethylene terephthalate (PET) sheet of resin. In this example, droplets of the capsule wall material and the core material were discharged by an inkjet method using a piezoelectric liquid discharge method. The unit used was the structure disclosed in Japanese Patent Publication No. 2003-75305. The drive waveform applied to the piezoelectric body was adjusted so that the discharge volume was about 200 pl per shot for each material.
まず、 カプセル壁用材 10ショット (液量 2000 p L) を、 担体上の平面に吐 出して着地させ風乾してカプセル壁を構成した (工程 1)。 次に、 このカプセル壁 上に芯物質用材を 1ショット (液量 200 pL) 吐出し風乾して、 芯物質を形成し た (工程 2)。 次にカプセル壁用材を 1ショット (200 pL) 吐出して風乾して 拡散抑制層を形成した後、 カプセル壁用材 4ショット (液量 800 p 1)吐出して風 乾して、 微小カプセルを得た (工程 3)。 なお、 このような微小カプセルを同時に 4個作製した。  First, 10 shots of capsule wall material (liquid volume 2000 pL) were discharged on a flat surface on the carrier, landed and air-dried to form a capsule wall (step 1). Next, a core material was formed on the capsule wall by discharging one shot of the core material (liquid amount 200 pL) and air-drying (step 2). Next, 1 shot (200 pL) of capsule wall material is discharged and air-dried to form a diffusion suppression layer, and then 4 shots of capsule wall material (liquid amount 800 p 1) are discharged and air-dried to obtain microcapsules. (Process 3). Four such microcapsules were prepared at the same time.
(微小カプセルの評価) 次に、 各工程において作製される部位 (カプセル壁や芯物質) の径と膜厚を測定 すると (Evaluation of microcapsules) Next, when measuring the diameter and film thickness of the parts (capsule wall and core material) produced in each process
ともに、 最終的に得られた微小カプセルの径と膜厚を測定し、 さらに、 実体顕微鏡 での観察を行いカプセル化の確認をした。 膜厚測定は光学式干渉計、 径の測定には 光学顕微鏡を使用した。 In both cases, the diameter and film thickness of the microcapsules finally obtained were measured, and further, they were observed with a stereomicroscope to confirm the encapsulation. An optical interferometer was used for film thickness measurement, and an optical microscope was used for diameter measurement.
この結果、 工程 1で形成されるカプセル壁は、 径約 0. 2mmで膜厚約 300 n mであり、 工程 2で形成される芯物質は径約.0. 05 mmで膜厚約 20 nmであつ た。 工程 3で形成されるカプセル壁は、 径約 0. 1mmで膜厚は約 100 nmであ つた。 最終的に得られた微小力プセルは約 400 n mの膜厚で径は約 0. 2 mmで あった。 さらに、 本力プセルを実体顕微鏡にて確認したところ、 カプセル化してい ることの確認ができた。  As a result, the capsule wall formed in step 1 has a diameter of about 0.2 mm and a film thickness of about 300 nm, and the core material formed in step 2 has a diameter of about 0.05 mm and a film thickness of about 20 nm. It was hot. The capsule wall formed in step 3 had a diameter of about 0.1 mm and a film thickness of about 100 nm. The finally obtained micro-force psell had a film thickness of about 400 nm and a diameter of about 0.2 mm. Furthermore, when the main pushell was confirmed with a stereomicroscope, it was confirmed that it was encapsulated.
なお、 得られた微小カプセルについて、 フィゾー干渉計を用いて、 工程 1におい て担体に接触されて形成されたカプセル壁 (下面) と工程 3において形成された力 プセル壁 (上面) の表面粗さを測定したところ、 下面の Rmaxは 0. 1 zm以下 であり、 上面の Rmaxは 0. 5 xmであった。 以上のことから、 担体上にて微小 力プセルを作製することにより表面粗さの異なる微小力プセルを容易に作製でき ることがわかる。  For the microcapsules obtained, using a Fizeau interferometer, the surface roughness of the capsule wall (bottom surface) formed in contact with the carrier in step 1 and the force psal wall (top surface) formed in step 3 The Rmax on the bottom surface was 0.1 zm or less, and the Rmax on the top surface was 0.5 xm. From the above, it can be seen that microforce pusels with different surface roughness can be easily produced by producing microforce pusels on a carrier.
以上のことから、 印刷システムの利用により、 担体上において微小カプセルを構 築できることが明らかである。 したがって、 微小液滴の吐出システム又はスクリー ン印刷などのシステムを用いることで、多様な形態の微小カプセルが得られること がわかる。 実施例 2  From the above, it is clear that microcapsules can be constructed on a carrier by using a printing system. Therefore, it can be seen that various forms of microcapsules can be obtained by using a system such as a microdroplet ejection system or a screen printing system. Example 2
(微小カプセルの製造例 2)  (Production example of microcapsule 2)
本実施例では、芯物質中のある成分について濃度傾斜のある微小カプセルを製造 した。 実施例 1と同様のカプセル壁用材を用い、 芯物質用材とし 2種類の固形分濃 度の水溶性インク (固形分 1 0重量%のものと固形分 0 . 1重量%のもの) を使用 した。 なお、 固形分 0 . 1重量%の水溶性インクには、 実施例 1とカプセル壁用材 に用いたのと同一のポリマーの 1 w t %水溶液を添加した。担体及びカプセル壁用 材および芯物質用材の吐出方式も実施例と同様としたうえ、カプセル壁用材 1 0シ ヨット (液量 2 0 0 0 p L ) を、 担体上の平面に吐出して着地させ風乾してカプセ ル壁を構成した。 次に、 このカプセル壁上に低濃度の芯物質用材を 7ショット (液 量 1 4 0 0 p L ) 吐出し風乾後、 高濃度の芯物質用材を 1ショット (液量 2 0 0 p L ) 吐出し風乾後、 低濃度の芯物質用材を 7ショットし風乾して、 芯物質を形成し た。 次にカプセル壁用材を 1 0ショット (2 0 0 0 p L ) 吐出して風乾して微小力 プセルを得た。 In this example, a microcapsule having a concentration gradient for a certain component in the core material was produced. Use the same capsule wall material as in Example 1, and use it as a core material. Water-soluble inks having a solid content of 10% by weight and a solid content of 0.1% by weight were used. The water-soluble ink having a solid content of 0.1% by weight was added with a 1 wt% aqueous solution of the same polymer used in Example 1 and the capsule wall material. The carrier, capsule wall material, and core material material were discharged in the same manner as in the example, and the capsule wall material 10 liquid (liquid volume 2 00 pL) was discharged onto the flat surface of the carrier and landed. The capsule wall was constructed by air drying. Next, 7 shots of low-concentration core material on the capsule wall (liquid volume 140,000 pL) were discharged and air-dried, and then 1 shot of high-concentration core material material (liquid volume 200 pL) After discharging and air-drying, 7 shots of low-concentration core material were air-dried to form a core material. Next, the capsule wall material was discharged by 10 shots (2 0 00 p L) and air-dried to obtain a micro-force psule.
作製した微小カプセルを目視及び顕微鏡にて観察したところ、微小カプセルの中 心側において水溶性ィンクによる濃い着色部分が観察されるこの着色部分の上層 側及び下層側をそれぞれ指向して徐々に着色度合いが低減されていることが観察 された。以上のことから、成分の濃度の異なる芯物質用材を重ねて打つことにより、 濃度傾斜を有する微小カプセルが得られることがわかる。 実施例 3  When the prepared microcapsules are observed visually and under a microscope, dark colored portions due to water-soluble ink are observed at the center of the microcapsules. The degree of coloring gradually toward the upper and lower layers of this colored portion. Was observed to be reduced. From the above, it can be seen that microcapsules having a concentration gradient can be obtained by stacking core material materials having different component concentrations. Example 3
(カプセル壁の製造例)  (Example of capsule wall production)
本実施例では、 気孔を有するカプセル壁を作製した。 カプセル壁の材料を、 メタ アクリル酸とメタアクリル酸エステルをベースとした陰イオンポリマ一とし、 この ポリマー濃度 1 0 w t %の水溶液に励起波長が 5 5 0 n m、検出波長が 5 7 0 n m の蛍光剤を添加した溶液をカプセル壁用材とした。 このカプセル壁用材をマイクロ ピペットで攪拌して気泡を導入した後、 遠心分離を行い大きな気泡を除去し、 実施 例 1と同様の吐出方式により、適当量をショットし風乾してカプセル壁のみを作製 した。 このカプセル壁を蛍光顕微鏡で観察したところ、 カプセル壁内に数^ m程度 の気泡 (独立状気孔) が存在することを確認した。 以上のことから、 気孔を有する 力プセル壁を作製できることがわかる。 In this example, a capsule wall having pores was produced. The material of the capsule wall is an anionic polymer based on methacrylic acid and methacrylic acid ester, and the excitation wavelength is 5500 nm and the detection wavelength is 5700 nm in an aqueous solution with a polymer concentration of 10 wt%. A solution to which a fluorescent agent was added was used as a capsule wall material. This capsule wall material is stirred with a micropipette to introduce bubbles, and then centrifuged to remove large bubbles. By using the same discharge method as in Example 1, a suitable amount is shot and air dried to produce only the capsule wall. did. When the capsule wall was observed with a fluorescence microscope, it was confirmed that bubbles (independent pores) of about several millimeters existed in the capsule wall. From the above, it has pores It can be seen that a force pushell wall can be produced.
本発明は、 2 0 0 4年 7月 1日に出願された日本国特許出願 2 0 0 4 - 1 9 5 9 1 9号、および 2 0 0 4年 8月 2 0日に出願された日本国特許出願 2 0 0 4 - 2 4 1 3 8 7を優先権主張の基礎としており、 その内容のすべてが編入される。  The present invention relates to a Japanese patent application 2 0 0 4-1 9 5 9 1 9 filed on July 1, 2000 and a Japanese application filed on August 20, 2000 The national patent application 2 0 0 4-2 4 1 3 8 7 is the basis of the priority claim, and all of its contents are incorporated.

Claims

請求の範囲 The scope of the claims
1 . 微小カプセルであって、 1. Microcapsules,
1又は 2以上の芯物質と、  One or more core materials,
該芯物質を内部に保持する力プセル壁と、  A force pushell wall that holds the core material therein;
を備え、  With
前記芯物質表面から前記微小カプセル表面までの距離につき異方性を有する、微 小カプセル。  A microcapsule having anisotropy with respect to a distance from the core material surface to the microcapsule surface.
2 . 前記カプセル壁は、 前記 1又は 2以上の芯物質の全体を内包する、 請求項 1 に記載の微小カプセル。  2. The microcapsule according to claim 1, wherein the capsule wall encloses the one or more core substances.
3 . 前記微小カプセルの表面の少なくとも一部が平坦状部を有する、 請求項 1ま たは 2に記載の微小カプセル。  3. The microcapsule according to claim 1 or 2, wherein at least a part of the surface of the microcapsule has a flat portion.
4. 前記微小カプセルは扁平部位を有する、 請求項 1〜 3のいずれかに記載の微 小カプセル。  4. The microcapsule according to any one of claims 1 to 3, wherein the microcapsule has a flat portion.
5 . 前記微小カプセルは板状部位を有する、 請求項 1〜4のいずれかに記載の微 小カプセル。 5. The microcapsule according to any one of claims 1 to 4, wherein the microcapsule has a plate-like portion.
6 . 前記微小カプセルの一部に球状体表面の一部からなる球状部位を有する、 請 求項 1〜 5のいずれかに記載の微小カプセル。  6. The microcapsule according to any one of claims 1 to 5, wherein a part of the microcapsule has a spherical portion made of a part of a spherical surface.
7 . 前記微小カプセルの平面形態は円形状又は楕円状である、 請求項 1〜 6のい ずれかに記載の微小力プセル。  7. The micro force pushell according to any one of claims 1 to 6, wherein a planar form of the microcapsule is circular or elliptical.
8 . 前記芯物質は扁平な形態で前記カプセル壁に内包されている、 請求項 1〜7 のいずれかに記載の微小カプセル。  8. The microcapsule according to any one of claims 1 to 7, wherein the core substance is encapsulated in the capsule wall in a flat form.
9 . 微小カプセルであって、  9. Microcapsules,
1又は 2以上の芯物質と、  One or more core materials,
該芯物質を内部に保持する力プセル壁と、  A force pushell wall that holds the core material therein;
を備え、 前記微小力プセルの表面の少なくとも一部に平坦状部を有する、 微小力プセル。With A micro force pusher having a flat portion on at least a part of the surface of the micro force pusher.
1 0 . 前記芯物質を 2つ以上備え、 該 2つ以上の芯物質の材質は 2種類以上であ る、 請求項 1〜 9のいずれかに記載の微小力プセル。 10. The microforce pushell according to any one of claims 1 to 9, wherein two or more core substances are provided, and the two or more core substances are made of two or more kinds.
1 1 . 前記カプセル壁の材質は 2種類以上である、 請求項 1〜1 0のいずれかに 記載の微小カプセル。  11. The microcapsule according to any one of claims 1 to 10, wherein there are two or more kinds of materials for the capsule wall.
1 2 . 前記力プセル壁は、 前記 1又は 2以上の芯物質の表面の一部を被覆する第 1の力プセル壁と、前記 1又は 2以上の芯物質の表面の残部を被覆する第 2の力プ セル壁と、 を備える、 請求項 1〜1 1のいずれかに記載の微小カプセル。  1 2. The force pusher wall includes a first force pusher wall that covers a part of the surface of the one or more core materials, and a second shell that covers the remainder of the surface of the one or more core materials. The microcapsule according to any one of claims 1 to 11, further comprising:
1 3 . 前記微小カプセルの最大寸法が 2 mm以下かつ最小寸法に対する最大寸法 の比 (最大寸法 Z最小寸法) が 5以上 2 0 0 0 0 0以下の範囲である、 請求項 1〜 1 3. The maximum dimension of the microcapsule is 2 mm or less, and the ratio of the maximum dimension to the minimum dimension (maximum dimension Z minimum dimension) is in the range of 5 or more and 2 0 0 0 0 0 0 or less.
1 2のいずれかに記載の微小カプセル。 1 A microcapsule according to any one of 2 above.
1 4. 前記カプセル壁において対向する領域は異なる表面積を有する、 請求項 1 〜1 3のいずれかに記載の微小カプセル。  1 4. The microcapsule according to any one of claims 1 to 13, wherein opposing regions in the capsule wall have different surface areas.
1 5 . 前記カプセル壁において対向する領域は、 凹凸形態および Zまたは表面粗 さの相違によって表面積が異なる、 請求項 1 4に記載の微小カプセル。  15. The microcapsule according to claim 14, wherein regions facing each other in the capsule wall have different surface areas depending on uneven shapes and differences in Z or surface roughness.
1 6 . 前記カプセル壁の対向する領域の一方において凹部および/または凸部を 備える、 請求項 1〜1 5のいずれかに記載の微小カプセル。  16. The microcapsule according to any one of claims 1 to 15, further comprising a concave portion and / or a convex portion in one of the opposing regions of the capsule wall.
1 7 . 前記カプセル壁の対向する領域は、 異なる厚み及び Z又は組成を有してい る、 請求項 1〜 1 6のいずれかに記載の微小力プセル。  17. The microforce pushell according to any one of claims 1 to 16, wherein the opposing regions of the capsule wall have different thicknesses and Z or compositions.
1 8 . 前記カプセル壁の対向する領域の一方が前記芯物質又はその成分の放出領 域であり、 他方が微小カプセルの到達部位付着領域である、 請求項 1〜1 7のいず れかに記載の微小カプセル。 18. One of the opposing regions of the capsule wall is a release region of the core substance or a component thereof, and the other is a region to which the microcapsule is attached. The microcapsules described.
1 9 . 前記カプセル壁は独立状気孔を含有している、 請求項 1〜 1 8のいずれか に記載の微小カプセル。  19. The microcapsule according to any one of claims 1 to 18, wherein the capsule wall contains independent pores.
2 0 . 前記芯物質又はその成分の濃度について傾斜を有している 1〜 1 9のいず れかに記載の微小カプセル。 20. The microcapsule according to any one of 1 to 19, which has a gradient with respect to the concentration of the core substance or its components.
2 1 . 1又は 2以上の芯物質と該芯物質を内側に保持するカプセル壁とを備える 微小カプセルの製造方法であって、 2 1.1 A method for producing a microcapsule comprising one or more core materials and a capsule wall for holding the core materials inside,
前記カプセル壁又はその原料を含むカプセル壁用材を、少なくとも該カプセル壁 用材が付着可能な表面を有する担体の該表面を指向して供給する工程と、  Supplying the capsule wall material including the capsule wall or the raw material thereof at least toward the surface of the carrier having a surface to which the capsule wall material can adhere; and
1又は 2以上の前記芯物質若しくはその原料を含む芯物質用材を、少なくとも該 芯物質用材が付着可能な表面を指向して供給する工程と、  Supplying one or two or more core substances or a core substance material including the raw material thereof at least on the surface to which the core substance material can be attached;
を備え、 '  With the '
これらの供給工程を、前記芯物質用材が付着可能な前記表面において前記芯物質 用材の付着物の少なくとも一部を前記カプセル壁用材の付着物で内包するように 実施する、 微小カプセルの製造方法。  A method for producing a microcapsule, wherein the supplying step is carried out so that at least a part of the deposit on the core material is encapsulated with the deposit on the capsule wall material on the surface to which the core material can adhere.
2 2 . 前記カプセル壁用材の供給工程および前記芯物質用材の供給工程は、 前記 表面の予め定めた位置に前記カプセル壁用材および前記芯物質用材をそれぞれ供 給する工程である、 請求項 2 1に記載の微小カプセルの製造方法。  2. The capsule wall material supply step and the core substance material supply step are steps of supplying the capsule wall material and the core substance material to predetermined positions on the surface, respectively. The manufacturing method of the microcapsule as described in 1 above.
2 3 . 前記力プセル壁用材の供給工程および前記芯物質用材の供給工程のうち少 なくとも 1つの供給工程は、マイクロポンプ方式によって前記芯物質用材および/ または前記カプセル壁用材の液滴を吐出して行う、請求項 2 1または 2 2に記載の 微小カプセルの製造方法。 2 3. At least one of the force-pell wall material supply step and the core material material supply step discharges the core material material and / or the capsule wall material droplets by a micropump method. The method for producing microcapsules according to claim 21 or 22.
2 4. 前記カプセル壁用材の供給工程および前記芯物質用材の供給工程の少なく とも 1つの供給工程は、 スクリーン印刷法により行う、 請求項 2 1〜2 3のいずれ かに記載の微小カプセルの製造方法。  2 4. The production of microcapsules according to any one of claims 21 to 23, wherein at least one of the supply step of the capsule wall material and the supply step of the core material material is performed by a screen printing method. Method.
2 5 . 前記カプセル壁用材の供給工程を、 スクリーン印刷法により行い、 前記芯 物質用材の供給工程を、マイクロポンプ方式によって芯物質用材の液滴と吐出して 行う、 請求項 2 1〜2 4のいずれかに記載の微小カプセルの製造方法。  25. The capsule wall material supply step is performed by a screen printing method, and the core material material supply step is performed by discharging the core material material droplets with a micropump method. The manufacturing method of the microcapsule in any one of.
2 6 . さらに、 微小カプセルの形成される内層又はその原料を含む内層用材を、 最外層に位置されるカプセル壁よりも内層側に位置されるように前記芯物質用材 の付着物又は前記カプセル壁用材の付着物に対して供給する、請求項 2 1〜2 5の いずれかに記載の微小カプセルの製造方法。 26. Further, the inner layer material on which the microcapsules are formed or the inner layer material containing the raw material is attached to the core material material or the capsule wall so that the inner layer side is positioned with respect to the capsule wall positioned at the outermost layer. It supplies with respect to the deposit | attachment of material. The manufacturing method of the microcapsule in any one.
2 7 . 前記カプセル壁用材の供給工程により形成されたカプセル壁用材の付着物 に対して前記芯物質用材の供給工程を実施し、該芯物質用材の付着物に対して前記 カプセル壁用材の供給工程を実施する、請求項 2 1〜2 6のいずれかに記載の微小 カプセルの製造方法。  27. Carrying out the core material supply step on the capsule wall material deposit formed in the capsule wall material supply step, and supplying the capsule wall material to the core material deposit The method for producing microcapsules according to any one of claims 21 to 26, wherein the step is carried out.
2 8 . 前記芯物質用材の供給工程に先だって又は該供給工程に次いで、 前記芯物 質用材の前記カプセル壁用材への拡散又は浸透を抑制する内層用材の供給工程を 実施する、 請求項 2 4〜2 7のいずれかに記載の微小カプセルの製造方法。  28. The step of supplying an inner layer material that suppresses diffusion or penetration of the core material into the capsule wall material is performed prior to or subsequent to the supply step of the core material material. The manufacturing method of the microcapsule in any one of -27.
2 9 . 前記担体は、 可撓性材料である、 請求項 2 1〜 2 8のいずれかに記載の微 小カプセルの製造方法。  29. The method for producing a microcapsule according to any one of claims 21 to 28, wherein the carrier is a flexible material.
3 0 . 前記担体は、 伸縮性材料である、 請求項 2 1〜 2 8のいずれかに記載の微 小カプセルの製造方法。  30. The method for producing a microcapsule according to any one of claims 21 to 28, wherein the carrier is a stretchable material.
3 1 . 前記担体は、 少なくともその表面に発泡性材料層を有する、 請求項 2 1〜 31. The carrier has a foamable material layer at least on the surface thereof.
2 8のいずれかに記載の微小カプセルの製造方法。 28. A method for producing a microcapsule according to any one of 8 above.
3 2 . 前記担体は、 少なくともその表面に撥液性層を有する、 請求項 2 1〜 2 8 のいずれかに記載の微小力プセルの製造方法。 32. The method for producing a microforce psell according to any one of claims 21 to 28, wherein the carrier has a liquid repellent layer at least on a surface thereof.
3 3 . 前記担体は、 ほぼ平坦な部分を有する、 請求項 2 1〜3 2のいずれかに記 載の微小力プセルの製造方法。  3 3. The method of manufacturing a micro force psel according to any one of claims 21 to 32, wherein the carrier has a substantially flat portion.
3 4. 前記担体は、 前記芯物質用材および前記カプセル壁用材が供給される凹部 を有する、 請求項 2 1〜3 3のいずれかに記載の微小カプセルの製造方法。  3 4. The method for producing a microcapsule according to any one of claims 21 to 33, wherein the carrier has a recess to which the core material and the capsule wall material are supplied.
3 5 . 前記凹部は平板状の第 1の担体と該第 1の担体に重ねられる第 2の平板状 担体に設けられる貫通孔とによって形成される、請求項 3 4に記載の微小カプセル の製造方法。  35. Manufacture of microcapsules according to claim 34, wherein the recess is formed by a flat plate-like first carrier and a through hole provided in a second flat plate-like carrier that is overlapped with the first carrier. Method.
3 6 . 前記貫通孔はテーパ状である、 請求項 3 4または 3 5に記載の微小カプセ ルの製造方法。  36. The method for manufacturing a microcapsule according to claim 34, wherein the through hole is tapered.
3 7 . さらに、 前記担体上に形成した微小カプセルを前記担体から分離する工程 を備える、 請求項 2 1〜 3 6のいずれかに記載の微小カプセルの製造方法。 3 7. Further, the step of separating the microcapsules formed on the carrier from the carrier The method for producing microcapsules according to any one of claims 21 to 36.
3 8 . 前記分離工程は、 前記担体上の前記微小カプセルに対して前記担体の少な くとも前記表面を変形させる工程である、請求項 3 7に記載の微小カプセルの製造 方法。  38. The method for producing microcapsules according to claim 37, wherein the separating step is a step of deforming at least the surface of the carrier with respect to the microcapsules on the carrier.
3 9 . 前記分離工程は、 前記担体の前記表面と反対側の面から外力を作用させる ことにより前記担体を凹凸状に変形させる工程である、請求項 3 8に記載の微小力 プセルの製造方法。 39. The method for producing a micro force psor according to claim 38, wherein the separation step is a step of deforming the carrier into an uneven shape by applying an external force from a surface opposite to the surface of the carrier. .
4 0 . 前記分離工程は、 前記担体上の前記微小カプセルに対し直接外力を作用さ せる工程である、 請求項 3 7〜3 9のいずれかに記載の微小カプセルの製造方法。  40. The method for producing microcapsules according to any one of claims 37 to 39, wherein the separating step is a step of directly applying an external force to the microcapsules on the carrier.
4 1 . 前記担体は、 気体に対する選択的透過性を有している、 請求項 2 1〜4 0 のいずれかに記載の方法。 41. The method according to any one of claims 21 to 40, wherein the carrier has selective permeability to a gas.
4 2 . 担体と、 4 2. With carrier
該担体に保持される、芯物質と該芯物質を内側に保持する複数の微小カプセルと、 を備える、 微小カプセル保持体。  A microcapsule holding body, comprising: a core substance that is held by the carrier; and a plurality of microcapsules that hold the core substance inside.
4 3 . 前記担体の一部が前記微小カプセルのカプセル壁を構成している、 請求項 4 2に記載の微小力プセル保持体。 4 3. The micro force psell holder according to claim 42, wherein a part of the carrier constitutes a capsule wall of the micro capsule.
4 4. 前記担体は、 生体内のいずれかの部位における溶解性又は崩壌性を備える 製剤用担体である、 請求項 4 2または 4 3に記載の微小カプセル保持体。  4. The microcapsule holder according to claim 42 or 43, wherein the carrier is a pharmaceutical carrier having solubility or disintegration at any site in the living body.
PCT/JP2005/012261 2004-07-01 2005-06-27 Very small capsule and method for producing same WO2006004069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528870A JPWO2006004069A1 (en) 2004-07-01 2005-06-27 Microcapsule and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-195919 2004-07-01
JP2004195919 2004-07-01
JP2004-241387 2004-08-20
JP2004241387 2004-08-20

Publications (1)

Publication Number Publication Date
WO2006004069A1 true WO2006004069A1 (en) 2006-01-12

Family

ID=35782873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012261 WO2006004069A1 (en) 2004-07-01 2005-06-27 Very small capsule and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2006004069A1 (en)
WO (1) WO2006004069A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053684A1 (en) * 2006-10-12 2008-05-08 Toray Engineering Co., Ltd. Process for producing microcapsule powder
WO2008053683A1 (en) * 2006-10-12 2008-05-08 Toray Engineering Co., Ltd. Microcapsule sheet
JP2008250797A (en) * 2007-03-30 2008-10-16 Intelligent Software:Kk Storage device with biometrics authentication function
JPWO2007083698A1 (en) * 2006-01-19 2009-06-11 東レエンジニアリング株式会社 Laminated microcapsule sheet and manufacturing method thereof
WO2009123242A1 (en) * 2008-03-31 2009-10-08 東レエンジニアリング株式会社 Method for manufacturing unsymmetric laminated preparation
EP1897611A4 (en) * 2005-04-14 2009-12-09 Toray Eng Co Ltd Process for producing microcapsule, microcapsule production apparatus and microcapsule sheet
JP2016199601A (en) * 2014-02-07 2016-12-01 サイラブス, ファーマシューティカルズ All natural, non-toxic sublingual drug delivery systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338456A (en) * 2001-05-14 2002-11-27 ▲高▼田 ▲寛▼治 Method for producing gastrointestinal mucoadhesive patch system (gi-maps)
JP2003160475A (en) * 2001-11-28 2003-06-03 Bf Co Ltd Method for producing microcapsule
JP2004351033A (en) * 2003-05-30 2004-12-16 ▲高▼田 ▲寛▼治 Method and device for producing uneven millicapsule and microcapsule
JP2005160928A (en) * 2003-12-05 2005-06-23 Bioserentack Co Ltd Method for producing asymmetrical microcapsule having three-layer structure by jet blowout method and screen print method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256166A (en) * 1993-01-06 1994-09-13 ▲寛▼治 ▲高▼田 Pharmaceutical preparation for controlling release of medicine
EP1286663B1 (en) * 2000-05-18 2006-01-18 Therics, Inc. Encapsulating a toxic core within a non-toxic region in an oral dosage form
CA2410293A1 (en) * 2000-05-26 2002-11-26 Kanji Takada Three-layer parenteral preparations
EP1404516A2 (en) * 2000-12-13 2004-04-07 Purdue Research Foundation Microencapsulation of drugs by solvent exchange
ES2316791T3 (en) * 2002-05-06 2009-04-16 Massachusetts Institute Of Technology DOSAGE FORM CONTROLLED BY DIFFUSION AND MANUFACTURING METHOD INCLUSIVE THREE-DIMENSIONAL PRINTING.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338456A (en) * 2001-05-14 2002-11-27 ▲高▼田 ▲寛▼治 Method for producing gastrointestinal mucoadhesive patch system (gi-maps)
JP2003160475A (en) * 2001-11-28 2003-06-03 Bf Co Ltd Method for producing microcapsule
JP2004351033A (en) * 2003-05-30 2004-12-16 ▲高▼田 ▲寛▼治 Method and device for producing uneven millicapsule and microcapsule
JP2005160928A (en) * 2003-12-05 2005-06-23 Bioserentack Co Ltd Method for producing asymmetrical microcapsule having three-layer structure by jet blowout method and screen print method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1897611A4 (en) * 2005-04-14 2009-12-09 Toray Eng Co Ltd Process for producing microcapsule, microcapsule production apparatus and microcapsule sheet
JPWO2007083698A1 (en) * 2006-01-19 2009-06-11 東レエンジニアリング株式会社 Laminated microcapsule sheet and manufacturing method thereof
WO2008053684A1 (en) * 2006-10-12 2008-05-08 Toray Engineering Co., Ltd. Process for producing microcapsule powder
WO2008053683A1 (en) * 2006-10-12 2008-05-08 Toray Engineering Co., Ltd. Microcapsule sheet
JPWO2008053683A1 (en) * 2006-10-12 2010-02-25 東レエンジニアリング株式会社 Micro capsule sheet
JPWO2008053684A1 (en) * 2006-10-12 2010-02-25 東レエンジニアリング株式会社 Microcapsule assembly manufacturing method
JP2008250797A (en) * 2007-03-30 2008-10-16 Intelligent Software:Kk Storage device with biometrics authentication function
WO2009123242A1 (en) * 2008-03-31 2009-10-08 東レエンジニアリング株式会社 Method for manufacturing unsymmetric laminated preparation
JP2016199601A (en) * 2014-02-07 2016-12-01 サイラブス, ファーマシューティカルズ All natural, non-toxic sublingual drug delivery systems
JP2018030896A (en) * 2014-02-07 2018-03-01 サイラブス, ファーマシューティカルズ All natural, non-toxic sublingual drug delivery systems

Also Published As

Publication number Publication date
JPWO2006004069A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
WO2006004069A1 (en) Very small capsule and method for producing same
KR101177782B1 (en) Method of making microcapsules utilizing a fluid ejector
ES2817249T3 (en) Microneedle matrices obtained by dissolution and casting containing an active principle
JP5687276B2 (en) Pulsed release of drug from punctal plug
WO2005041884A9 (en) Polymer-based microstructures
JPH0832622B2 (en) Drug delivery device
EP1413434B1 (en) Pharmaceutical dosage form and method of making
Nuxoll et al. BioMEMS devices for drug delivery
JP7365409B2 (en) Dispensing method for producing soluble unit dose membrane constructs
EP1284137B1 (en) Nonoral preparation having three-layer structure
WO2022127578A1 (en) Magneto-responsive drug-loaded microneedle robot, preparation method therefor and application thereof
JP2009207963A (en) Method of manufacturing gel
JP2013166100A (en) Microcapsule
US20120045504A1 (en) oral drug devices and drug formulations
JP2006036640A (en) Medicine-containing laminate and method for producing the same
JP2005160928A (en) Method for producing asymmetrical microcapsule having three-layer structure by jet blowout method and screen print method
US20080312531A1 (en) Apparatus and Method for Delivery of a Fluid or Sensor
CN116096452A (en) Drug delivery device
Buanz Pharmaceutical applications of thermal inkjet printing
EP2083801A1 (en) Divisible osmotic dosage forms and methods of use
JP2004351033A (en) Method and device for producing uneven millicapsule and microcapsule
Rama et al. International Journal of Pharmaceutical Development & Technology
JP2007246412A (en) Oral preparation for digestive tract, method for producing the same and oral capsule preparation for digestive tract
Narula et al. International Journal of Modern Pharmaceutical Research
JP2006045072A (en) Liquid medicine-containing laminate and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528870

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase