WO2006003877A1 - Receptor ligand - Google Patents

Receptor ligand Download PDF

Info

Publication number
WO2006003877A1
WO2006003877A1 PCT/JP2005/011801 JP2005011801W WO2006003877A1 WO 2006003877 A1 WO2006003877 A1 WO 2006003877A1 JP 2005011801 W JP2005011801 W JP 2005011801W WO 2006003877 A1 WO2006003877 A1 WO 2006003877A1
Authority
WO
WIPO (PCT)
Prior art keywords
gpr92
group
test substance
hydrogen atom
protein
Prior art date
Application number
PCT/JP2005/011801
Other languages
French (fr)
Japanese (ja)
Inventor
Junji Ichihara
Naoko Ohmi
Shinichi Kojima
Toshiyuki Mikami
Tadahiko Yoshima
Original Assignee
Dainippon Sumitomo Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Sumitomo Pharma Co., Ltd. filed Critical Dainippon Sumitomo Pharma Co., Ltd.
Priority to JP2006528689A priority Critical patent/JPWO2006003877A1/en
Publication of WO2006003877A1 publication Critical patent/WO2006003877A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/661Phosphorus acids or esters thereof not having P—C bonds, e.g. fosfosal, dichlorvos, malathion or mevinphos
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/48Drugs for disorders of the endocrine system of the pancreatic hormones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Definitions

  • the present invention relates to a novel use of G protein-coupled receptor (GPCR): GPR92 / 93, its ligand, and the like. More specifically, based on the identification of an agonist ligand of GPR92 / 93 and the discovery of a pharmaceutical use of the agonist ligand as an insulin secretagogue.
  • GPCR G protein-coupled receptor
  • Type 1 is a pathological condition based on insulin secretion dysfunction in the spleen
  • type 2 is a pathological condition mainly due to insulin resistance in insulin-sensitive tissues and abnormal insulin secretion in the spleen.
  • type 1 is a pathological condition based on insulin secretion dysfunction in the spleen
  • type 2 is a pathological condition mainly due to insulin resistance in insulin-sensitive tissues and abnormal insulin secretion in the spleen.
  • obesity and associated lifestyle diseases especially type 2 diabetes patients, have increased.
  • the spleen is thought to play a central role in blood glucose regulation.
  • Insulin a major glycemic hormone, is secreted from beta cells in the splenic islets of Langerin. ⁇ cells secrete the necessary amount of insulin quickly in response to blood glucose that rises transiently after eating.
  • Peripheral tissues such as muscle and fat regulate the increased blood glucose level by taking up sugar in response to insulin secreted from the spleen.
  • gluconeogenesis is suppressed in response to insulin, and blood glucose is regulated. Diabetes is thought to develop as a result of this cycle failure.
  • many of type 1 diabetes are those in which spleen is autoimmunely destroyed and insulin secretion becomes insufficiency, making blood glucose control impossible. It is known that it will cause blood sugar.
  • GPR92 / 93 is known as an orphan G protein coupled receptor (GPCR) whose ligand in vivo is unknown (see Non-Patent Document 1). It has been reported that GPR92 / 93 is expressed in tissues including the brain (see Non-Patent Document 2), but its function is not known.
  • GPCR G protein coupled receptor
  • lysophosphatidic acid is a kind of phospholipid and has been known as a biosynthetic intermediate of phospholipid, but since then it has been proved to be an extracellular signaling molecule for various biological reactions.
  • the biological reaction include cell division promotion, apoptosis suppression, remodeling of the cytoplasmic skeleton, induction of cell shape change, tumor cell invasion, and the like (see Non-Patent Document 3).
  • the insulin secretion promoting action of LPA was not known.
  • Non-Patent Document 1 Lee, D. K. et al., Gene, 2001 Sep 5; 275 (1): 83-91.
  • Non-Patent Document 2 Demetrios, K. Vassilatis et al., Proc. Nat. Acad. Science, USA, 2003 Ap ril 15; 100 (8): 4903-4908.
  • Non-Patent Document 3 Yoh Takuwa et al., J. Biochem., 767-771 (2002)
  • G protein-coupled receptor an agonist ligand that can be a GPR92 / 93 agonist, a medicine containing a GPR92 / 93 agonist as an active ingredient, Specifically, it is intended to provide a method for screening for insulin secretagogues, GPR92 / 93 agonists or antagonists, and a method for screening for insulin secretagogues.
  • GPCR G protein-coupled receptor
  • the present inventors have conducted extensive studies in view of the above problems, and have identified a factor that is expressed and localized in the normal spleen Langer's island. That is, the present inventors compare the genes expressed in the normal human spleen Langerhans Island with those expressed in other tissues in the normal state, thereby expressing the expression station in the normal human spleen Langerno and Nun Island. Relics I have identified the gene. Next, when the protein encoded by the gene was examined, it was found to be GPR92 / 93, an orphan GP CR.
  • the present inventors searched for a substance serving as a ligand that causes GPR92 / 93-mediated signal transduction.
  • a substance serving as a ligand that causes GPR92 / 93-mediated signal transduction As a result, it was proved to be a ligand of lysophosphatidic acid (hereinafter sometimes abbreviated as LPA), which is a kind of in vivo lipid, and its derivative power GPR92 / 93.
  • LPA lysophosphatidic acid
  • lysophosphatidic acid has an insulin secretion promoting action in spleen cells. That is, it was found that GPR92 / 93 is a GPCR having an insulin secretion-regulating action, and its agonist ligand SLPA.
  • the present invention has been completed based on the above findings.
  • the present invention relates to pharmaceutical uses and the like of GPR92 / 93 agonists:
  • Insulin secretion promoter containing GPR92 / 93 agonist as active ingredient
  • R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
  • R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
  • R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms.
  • Insulin secretion-promoting agent which is a compound strength represented by formula (1) lysophosphatidic acid, 1-Acy ⁇ PAF, or a pharmaceutically acceptable salt thereof; [5] In formula (1), characterized in that R ⁇ R 2 and R 3 represents a combination of the following, insulin secretagogues described in [3]:
  • R 1 represents an oleoyl group
  • R 2 and R 3 represent a hydrogen atom
  • R 1 represents a palmitoyl group
  • R 2 represents a acetyl group
  • R 3 represents a 2-ammoethyl group
  • R 1 represents a docosahexaenoyl group
  • R 2 and R 3 represent a hydrogen atom
  • R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
  • R 1 represents a stearoyl group
  • R 3 represents a hydrogen atom
  • R 2 represents a myo-inositol-1-yl group
  • R 3 represents a stearoyl group
  • R 1 represents a hydrogen atom
  • R 2 represents a myo-inositol-1-yl group
  • R 2 represents a phosphono group
  • R 1 and R 3 represent an otatanyl group
  • R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
  • R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
  • R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms.
  • GPR92 / 93 agonist according to [10] which is a compound represented by
  • R 1 represents an oleoyl group
  • R 2 and R 3 represent a hydrogen atom
  • R 1 represents a palmitoyl group
  • R 2 represents a acetyl group
  • R 3 represents a 2-ammoethyl group
  • R 1 represents a docosahexaenoyl group
  • R 2 and R 3 represent a hydrogen atom
  • R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
  • R 1 represents a stearoyl group
  • R 3 represents a hydrogen atom
  • R 2 represents a myo-inositol-1-yl group
  • R 3 represents a stearoyl group
  • R 1 represents a hydrogen atom
  • R 2 represents a myo-inositol-1-yl group
  • R 2 represents a phosphono group
  • R 1 and R 3 represent an otatanyl group
  • GPR92 / 93 or a fragment to which a ligand can bind is contacted with a test substance and a reference substance selected from Z or lysophosphatidic acid, a derivative thereof, and a pharmaceutically acceptable salt thereof, and the GPR92 / 93 Or a method for screening a GPR92 / 93 ligand, comprising selecting a compound having a higher binding activity to a fragment to which a ligand can bind than the reference substance;
  • reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
  • R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
  • R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
  • R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms.
  • R 2 and R 3 represent the following combinations:
  • R 1 represents an oleoyl group
  • R 2 and R 3 represent a hydrogen atom
  • R 1 represents a palmitoyl group
  • R 2 represents a acetyl group
  • R 3 represents a 2-ammoethyl group
  • R 1 represents a docosahexaenoyl group
  • R 2 and R 3 represent a hydrogen atom
  • R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
  • R 1 represents a stearoyl group
  • R 3 represents a hydrogen atom
  • R 2 represents a myo-inositol-1-yl group
  • R 3 represents a stearoyl group
  • R 1 represents a hydrogen atom
  • R 2 represents a myo-inositol-1-yl group
  • R 2 represents a phosphono group
  • R 1 and R 3 represent an otatanyl group
  • a screening method for an insulin secretagogue comprising selecting a compound with an indicator that the test substance is a GPR92 / 93 agonist;
  • reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
  • Insulin secretion promoter obtained by the method according to any one of [24] to [29]; [34] Insulin secretion promoter according to [33], which is a blood glucose regulator [35] The insulin secretagogue according to [33], which is an agent for improving glucose tolerance abnormality;
  • a method for screening a fat accumulation-inhibiting drug comprising selecting a compound using as an index that the test substance is a GPR92 / 93 antagonist;
  • a reference substance selected from lysophosphatidic acid, a derivative thereof, and a pharmaceutically acceptable salt thereof is added to GPR92 / 93 or a fragment to which a ligand can bind in the presence or absence of a test substance.
  • the reaction system is The
  • the screening method according to [42] which is an animal cell endogenously expressing a G protein that can be coupled to / 93 and GPR92 / 93, a homogenate of these cells, or a membrane fraction derived from those cells;
  • a method for producing a biologically-derived fatty acid derivative comprising the following steps:
  • the present invention provides an orphan G protein-coupled receptor (GPCR): GPR92 / 93 ligand, a method for screening a GPR92 / 93 agonist or antagonist using the ligand, and the like. It became possible.
  • GPR92 / 93 agonist of the present invention exhibits insulin secretion promoting activity and can be a glucose tolerance ameliorating agent or a diabetes therapeutic agent.
  • GPR92 / 93 is a protein known as a kind of GPCR, specifically, the protein represented by SEQ ID NO: 2 (human GPR92 / 93) [See Genbank Acc. No. NM — 020400; Gene, 275 (1), p83-91 (2001)]. Further, in this specification, GPR92 / 93 includes homologues and mutants. For example, homologues include proteins from other species such as mice that correspond to human proteins, and these are identified by HomoloGene (http: //www.ncbi.nlm.nih. Gov / HomoloGene /) The base sequence ability of the generated gene can be identified a priori. Specific examples include mouse GPR92 / 93 (Genbank Acc. No. XM_355812) represented by SEQ ID NO: 4 or 10.
  • Variants include naturally occurring allelic variants and non-naturally occurring variants. Specifically, (a) the amino acid sequence set forth in SEQ ID NO: 2 lacks one or more amino acids. A protein that retains GPCR function, and (b) an amino acid sequence that has 80% or more sequence identity with the amino acid sequence described in SEQ ID NO: 2, A protein to be retained, (c) a DNA having a nucleotide sequence complementary to the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1, and an amino acid sequence encoded by the DNA that is hybridized under stringent conditions, Examples include proteins that retain the functions of GPC R.
  • GPCR function specifically refers to the same ligand-receptor interaction as natural human GPR92 / 93 represented by SEQ ID NO: 2 and activates conjugated Ga. And a protein having an activity of promoting the GDP / GTP exchange reaction of Ga.
  • the “deletion, addition or substitution” of amino acids in (a) and “80% or more sequence identity” in (d) include, for example, a protein having the amino acid sequence represented by SEQ ID NO: 2 Include naturally occurring mutations due to processing in cells, species differences of individuals from which the protein is derived, individual differences, differences between tissues, and the like, and artificial amino acid mutations.
  • amino acid modification for example, the amino acid represented by SEQ ID NO: 2
  • a conventional site-directed mutagenesis is performed on the DNA encoding the sequence, and then this DNA is expressed by a conventional method.
  • site-directed mutagenesis methods for example, a method using amber mutation (gapped 'duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), PCR using mutagenesis primers By Etc.
  • the number of amino acids modified as described above is at least one residue, specifically one or several, or more. The number of such modifications is acceptable as long as the GPCR function can be maintained.
  • Sequence identity in (b) refers to sequence identity and homology between two DNAs or two proteins.
  • the “sequence identity” is determined by comparing two sequences that are optimally aligned over the region of the sequence to be compared.
  • the DNA or protein to be compared may have an addition or a deletion (for example, a gap) in the optimal alignment of the two sequences.
  • sequence identity is calculated, for example, by creating an alignment using the ClustalW algorithm (Nucleic Acid Res., 22 (22): 4673-4680 (1994) using Vector NTI.
  • sequence identity is measured using sequence analysis software, specifically analysis tools provided by Vector NTI, GENETYX-MAC, or public databases, where the public database is f
  • the public database is f
  • the sequence identity in the present invention may be 80% or more. Preferably it is 95% or more, and still more preferably 97%.
  • stringent conditions refers to, for example, 6xSSC (solution containing 0.5 M NaCl, 0.15 M trisodium citrate as lOxSSC), 45 ° C in a solution containing 50% formamide. The following conditions may be mentioned: a hybrid is formed and then washed with 2 ⁇ SSC at 50 ° C.
  • the salt concentration in the washing step should be selected from, for example, conditions of 50 ° C at 2xSSC (low stringency conditions) and conditions up to 50 ° C at 2xSSC (high stringency conditions). Can do.
  • the temperature in the washing step can be selected, for example, from room temperature (low stringency conditions) to 65 ° C. (high stringency conditions). It is also possible to change both the salt concentration and the temperature.
  • the “complementary base sequence” in the above (c) is a base complementary to the base sequence of DNA encoding GPR92 / 93 based on the base pair relationship such as A: T and G: C. It is intended to mean a related polynucleotide.
  • GPR92 / 93 is used in a sense that encompasses all of the recombinant GPR92 / 93 produced by recombinant cell power containing the DNA encoding GPR92 / 93 and functional fragments thereof. .
  • DNA comprising a base sequence encoding GPR92 / 93 represents DNA encoding the amino acid sequence of GPR92 / 93, and GPR92 / 93 derived from humans and other mammals, or the GPR92 / 93 In the amino acid sequence of 93, one or more amino acids are substituted, deleted, inserted, attached or modified, and have the same ligand-receptor interaction as natural GPR92 / 93, and are conjugated. There is no particular limitation as long as it is a DNA encoding a polypeptide having an activity that promotes the GDP ′ GTP exchange reaction of the subunit.
  • GPR92 / 93 DNA encoding GPR92 / 93 derived from mammals other than humans such as ushi, pig, monkey, mouse, rat, etc. is exemplified, and these include the spleen of mammals
  • a cDNA clone of human GPR92 / 93 can be isolated as a probe from a cDNA library derived from kidney or lung cells or a genomic library.
  • GPR92 / 93 may be one in which a mutation has been partially introduced by artificial treatment such as site-directed mutagenesis based on the cDNA clone of human GPR92 / 93.
  • DNA encoding human-derived GPR92 / 93 represented by SEQ ID NO: 1 and DNA encoding mouse-derived GPR92 / 93 represented by SEQ ID NO: 3 or 9.
  • GPR92 / 93 is affinity chromatography using an anti-GPR92 / 93 antibody from a membrane-containing fraction of cells transfected with an expression vector containing DNA encoding GPR92 / 93 or a fragment thereof. Can be isolated. Alternatively, c derived from the cell
  • GPR92 / 93 cDNA clone isolated from a DNA library or genomic library is cloned into an appropriate expression vector, introduced into host cells for expression, and contained in a cell culture membrane
  • the fraction can also be purified by affinity chromatography using anti-GPR92 / 93 antibody, His-tag, GST-tag or the like.
  • GPR92 / 93 with a fluorescent substance such as GFP, G It is also possible to select only FP positive cells, that is, cells into which GPR92 / 93 has been transfected and use it for screening (Xu et al., Nat. Cell Biol, 2, 261-267 (2000)) .
  • a mutation may be partially introduced by artificial treatment such as site-directed mutagenesis based on the GPR92 / 93 cDNA clone.
  • site-directed mutagenesis based on the GPR92 / 93 cDNA clone.
  • the ligand binding domain needs to be highly conserved, it is desirable not to introduce mutations in such regions.
  • Conservative amino acid substitutions are well known, and those skilled in the art can introduce mutations into GPR92 / 93 as appropriate without changing the properties of GPR92 / 93!
  • GPR92 / 93 ligand refers to an antigen that is formed only by lysophosphatidic acid and its derivatives described later (that is, it binds to the physiological ligand binding site of the receptor and is ligand-like). ) And antagonists (substances that bind to the physiological ligand binding site of the receptor, but do not exhibit ligand-like activity) and inverse agonists (substances that bind to any site of the receptor Substances that change conformation and inactivate receptors) are also included.
  • GPR92 / 93 agonist is used as a general term for substances that bind to GPR92 / 93 and promote the activity of the receptor, and is represented by lysophosphatidic acid typified by lysophosphatidic acid described later. In addition to acid derivatives, etc., all compounds having agonist activity against GPR92 / 93 are included.
  • GPR92 / 93 antagonist is used as a general term for substances that bind to GPR92 / 93 and inhibit the signal transduction activity of the receptor, and include the aforementioned GPR92 / 93 antagonist and GPR92 / 93. Equivalent to 93 inverse ghosts.
  • the first aspect of the present invention is a GPR92 / 93 agonist comprising lysophosphatidic acid, a derivative thereof, or a pharmaceutically acceptable salt thereof as an active ingredient, and an insulin secretagogue comprising a GPR92 / 93 agonist, etc. About.
  • lysophosphatidic acid (hereinafter sometimes abbreviated as “LPA”) represents 1 asinole sn glyce mouth 1-nore-3-phosphate (1-Acy ⁇ sn-glycero ⁇ 3-phosphate).
  • acyl represents a linear acyl group having 14 to 22 carbon atoms and having 0 to 6 double bonds.
  • equation (2) [0024] [Chemical 4]
  • lysophosphatidic acid derivative means that LPA has been modified to one or more of the following (i) to (vii): Examples include:
  • the 01-position acyloxy group is a hydroxyl group, a mercapto group, an amino group, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, an alkylamino group having 1 to 4 carbon atoms, or a dialkylamino group having 1 to 4 carbon atoms. Modification to convert to group,
  • the hydroxyl group at position 2 is an acyloxy group, a mercapto group, an amino group, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, an alkylamino group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Modification to convert to a dialkylamino group,
  • R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
  • R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
  • R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. ] The compound represented by this is mentioned.
  • examples of the acyl group having 8 to 22 carbon atoms include a 0 to 6 double bond! /, May! /, And a straight chain acyl group.
  • examples of the acyl group having 2 to 22 carbon atoms include straight chain acyl groups having 0 to 6 double bonds.
  • examples of the 1-alkenyl group having 8 to 22 carbon atoms include groups in which the ester moiety of the acyl group is modified to vinyl ether. That is, Plasmalogen is mentioned as a compound of the formula (1) in which R 1 represents a 1-alkenyl group.
  • Diacylglycerol pyrophosphate may be referred to as DG PP (8: 0)
  • PA phosphatidic acid
  • LPC lysophosphatidylcholine
  • PA 1,2-di (cis 9-octadecenoyl) sn-glycerol 3 phosphate sodium 3 ⁇ 4_
  • LPC includes Lushi [Lushi brain L- ⁇ lysophosphatidylcholine] derived from commercial sales.
  • examples of the compound represented by the formula (1) include lysophosphatidylcholine plasmalogen (eg, Lys phosphatidylcholine plasmalogen; for example, a commercial rush heart L-a-lysophosphatidinorecolin plasmalogen).
  • lysophosphatidylcholine plasmalogen eg, Lys phosphatidylcholine plasmalogen; for example, a commercial rush heart L-a-lysophosphatidinorecolin plasmalogen.
  • the 2-position acyloxy compound in which the 1-position acyl group is transferred to the 2-position hydroxyl group in LPA or LPI is also within the category of LPA or LPI in the present invention.
  • L-NASPA ⁇ -Palmitoyl L-serine- ⁇ hosphoric acid
  • the LPA, LPA derivative and L-NASPA of the present invention may form pharmaceutically acceptable salts.
  • alkali metal salts such as sodium salt, potassium salt or cesium salt, calcium salt or magnesium
  • Alkaline earth metal salts such as salts
  • inorganic metal salts such as zinc salts
  • organic salts such as triethylamine salts, triethanolamine salts, trihydroxymethylaminoamino salts or pyridinium salts, ammonia salts Etc.
  • GPR92 / 93 agonists in the present invention include the above-mentioned LPA, LPA derivatives or L-NASPA. That is, the above-mentioned LPA, LPA derivative or L-NASPA is a compound having an agonist activity for GPR92 / 93.
  • the agonist activity against GPR92 / 93 represents an activity that causes GPCR function by binding to GPR92 / 93, which will be described later.
  • GPR92 / 93 agonists show insulin secretion promoting activity in splenic Langerhans islet cells and are effective as drugs for improving impaired glucose tolerance, drugs for treating diabetes, and the like.
  • GPR92 / 93 agonist of the present invention preferably LPA, LPA derivative, L-NASPA or a pharmaceutically acceptable salt thereof, or GP R92 / 93 agonist obtained by the screening method of the present invention described later or
  • the antagonist is formulated into a dosage form suitable for oral or parenteral administration with a pharmaceutically acceptable carrier.
  • Examples of pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, and other excipients, cellulose, methylcellulose, hydroxypropylcellulose, Binders such as polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch, starch, carboxymethylcellulose, hydroxypropyl starch, sodium glycol glycol starch, sodium bicarbonate, calcium phosphate, calcium citrate, etc.
  • Disintegrants magnesium stearate, air mouth gill, talc, sodium lauryl sulfate, lubricants, citrate, menthol, glycyllysine Fragrances such as sodium salt, glycine, orange powder, preservatives such as sodium benzoate, sodium hydrogen sulfite, methylparaben, propylparaben, stabilizers such as citrate, sodium citrate, acetic acid, methylcellulose, polybutylpyrrolidone, Ability to include suspension agents such as aluminum stearate, dispersants such as surfactants, diluents such as water, saline, orange juice, base waxes such as cacao butter, polyethylene glycolol, white kerosene, etc. It is not limited.
  • a formulation suitable for oral administration is a solution in which an effective amount of GPR92 / 93 agonist is dissolved in a diluent such as water, physiological saline or orange juice, and an effective amount of GPR92 / 93 agonist is solid.
  • a diluent such as water, physiological saline or orange juice
  • GPR92 / 93 agonist is solid.
  • An emulsion in which a solution is dispersed in an appropriate dispersion medium and emulsified. “Effective amount” as used herein means a sufficient amount of GPR92 / 93 agonist to ameliorate each disease when used to treat patients with impaired glucose tolerance, diabetes or other lifestyle-related diseases Say.
  • Suitable formulations for parenteral administration include aqueous and non-aqueous isotonic sterile There are injection solutions, which may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like.
  • injection solutions which may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like.
  • Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like.
  • a sustained-release preparation can be obtained using a biocompatible material such as collagen.
  • GPR92 / 93 agonist can be enclosed in a container in unit doses or multiple doses like ampoules or vials.
  • GPR92 / 93 agonists and pharmaceutically acceptable carriers can be lyophilized and dissolved or suspended in a suitable sterile vehicle just prior to use!
  • the dosage of the preparation of the present invention containing a GPR92 / 93 agonist as an active ingredient is the type of the active ingredient, the administration route, the severity of the disease, the animal species to be administered, the drug acceptability of the administration subject, Forces that vary depending on body weight, age, etc.
  • GPR92 / 93 agonists can be administered, for example, from about 0.01 to about 10 mg / kg, preferably from about 0.1 to about 500 mg Zkg per day for an adult.
  • GPR92 / 93 agonists of the present invention are also useful as screening tools for screening for GPR92 / 93 ligands, ie, GPR92 / 93 agonists or GPR92 / 93 antagonists, as described below.
  • the second aspect of the present invention relates to a screening method for GPR92 / 93 ligand, that is, a GPR92 / 93 agonist or antagonist.
  • the present invention also provides a GPR92 / 93 agonist screening system and a method for screening the ligand using the same.
  • the test substance in the screening method of the present invention may be any known compound and novel compound, for example, a compound library prepared using combinatorial chemistry techniques, solid-phase synthesis and phage. Examples thereof include a random peptide library prepared by the display method, or natural components derived from microorganisms, animals and plants, marine organisms, and the like.
  • the test substance is preferably a compound having a molecular weight of 200 to 2000, and more preferably a compound having a molecular weight of 300 to 800.
  • a GPR92 / 93 agonist can be efficiently evaluated by using a fatty acid derivative such as the above-mentioned LPA derivative as a test substance.
  • the screening method of the present invention uses a reference substance selected from LPA, LPA derivatives, L-NASPA, and pharmaceutically acceptable salts thereof as an indicator of the binding activity to GPR92 / 93, and has a higher binding activity than the reference substance.
  • This method comprises selecting a test substance as a GPR92 / 93 ligand.
  • the screening method of the present invention comprises GPR92 / 93 or a fragment to which a ligand can bind (hereinafter sometimes collectively referred to as “GPR92 / 93 etc.”), test substance and Z or lysophosphatidic acid, A reference substance selected from the derivatives and pharmaceutically acceptable salts thereof is contacted, and a compound having a higher binding activity to the GPR92 / 93 or a fragment to which the ligand can bind than the reference substance. Including selecting.
  • a screening method including
  • the binding activity between the test substance and GPR92 / 93 is obtained by immobilizing a cell membrane fraction such as GPR92 / 93 on the chip, loading the test substance solution on the chip, and performing surface plasmon resonance. This is derived by measuring the binding and dissociation of the test substance to the membrane by the method, and calculating the affinity between the test substance and GPR92 / 93 from the rate of binding or dissociation or the amount of binding.
  • GPR92 / 93 or a fragment thereof is expressed in their form. It can be provided in the form bound to a cell, a cell membrane fraction of the cell, or an affinity column.
  • Examples of cells expressing GPR92 / 93 include cells transfected with an expression vector containing DNA encoding GPR92 / 93 or a fragment thereof.
  • an affinity column an anti-GPR92 / 93 antibody column, a column using a ligand, and, when GPR92 / 93 is provided as a recombinant protein, a metal chelate having a specific affinity with a His tag or a GST tag.
  • a dartathione column can be used.
  • Examples of a method for detecting the binding activity between GPR92 / 93 or a fragment thereof and a ligand include, for example, a method for detecting the amount of ligand, or a method for detecting the amount of label bound to GPR92 / 93 or a fragment thereof by labeling the ligand. The method of measuring is mentioned.
  • Examples of the labeling method of the ligand include a method of labeling with a radioisotope such as 3H, 14C, 32P and 33P.
  • a radioisotope such as 3H, 14C, 32P and 33P.
  • an LPA derivative in which the hydrogen atom of the fatty acid part is labeled with 3H or an LPA derivative in which the phosphorus atom is labeled with 32P can be used.
  • 32P-labelled LPA and 1-oleoyl [oleoyl- 9,10- 3 H] LPA (1- 01eoyl [oleoyl-9, 10- J H] LPA; NEN Life Science products commercially;. Songzhu An, et al J Biol C hem, Vol 273, Issue 14, 7906- 7910, April 3, 1998).
  • 1-Acy ⁇ PAF (Registry No .: 163005-42-3 compound) in which the hydrogen atom of the acetyl group is labeled with tritium
  • 1-Acyl-PAF compound in which the hydrogen atom of the palmitoyl group is labeled with tritium
  • 1-Acy ⁇ PAF compound of Registry No.:112015-19-7) in which the carbon atom of the palmitoyl group is labeled with 14C [See Methods in Enzymology (1987), 141 (Cell. ReguL, Pt. B), 301-13].
  • the present invention also provides a GPR92 / 93 ligand screening method using a lipid bilayer containing GPR92 / 93 and a G protein (particularly a Ga subunit) conjugated to GPR92 / 93. That is, the present invention provides a test substance and Z or lysophosphatidic acid, a derivative thereof, in a reaction system comprising a lipid bilayer containing GPR92 / 93 and an a subunit of G protein that can be conjugated to GPR92 / 93.
  • reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
  • reaction system comprising a lipid bilayer containing GPR92 / 93 and an ⁇ subunit of G protein that can be conjugated to GPR92 / 93
  • a host eukaryotic cell transfected with an expression vector containing (ii) a DNA encoding a polypeptide in which the ⁇ subunit of G protein that can be conjugated to GPR92 / 93 is fused to the C-terminal side of GPR92 / 93
  • GPR92 / 93 And animal cells that endogenously express G protein that can be coupled to GPR92 / 93, homogenates of these cells
  • screening for GPCR agonists is performed using GTP ⁇ GDP exchange reaction in Ga or cell stimulating activity of coupled G protein as an index.
  • specific procedures such as effector selection and activity measurement method are determined depending on the mode of Ga to be conjugated.
  • adenylate cyclase is used.
  • Ga containing a region that interacts with the phospholipase C specifically, including an effector-interacting region of Ga belonging to the Gi family or Gs family
  • Go including a region that interacts with 8 specifically, including an effector interaction region of Ga belonging to the Gq family
  • Agonists can be screened.
  • G o of GPR92 / 93 is considered to belong to the Gs family.
  • animal cells eg, HEK293 cells, L1.2 cells, etc.
  • G ⁇ ⁇ y trimeric G protein containing the Ga
  • G ⁇ 92 / 93 activated G ⁇ j8 ⁇ can dissociate into G ⁇ and G j8 ⁇ Free G ⁇ y can interact with phospholipase C
  • GPR92 / 93 to be used in the screening of the present invention is an anti-GPR92 / 93 antibody derived from a membrane-containing fraction of a cell transfected with an expression vector containing DNA encoding GPR92 / 93 or a fragment thereof. It can be isolated by the affinity chromatography used. Alternatively, a DNA clone isolated using the GPR92 / 93 cDNA clone from the cell-derived cDNA library or genomic library as a probe can be cloned into an appropriate expression vector and introduced into a host cell for expression. Cell culture membrane The contained fraction can also be purified by affinity chromatography using anti-GPR92 / 93 antibody, His-tag, GST-tag or the like.
  • GFP fluorescent substance
  • a fusion protein of GPR92 / 93 by expressing a fluorescent substance such as GFP and a fusion protein of GPR92 / 93, it is possible to select only GFP positive cells, that is, cells transfected with GPR92 / 93 and use them for screening ( Xu et al., Nat. Cell Biol, 2, 261-267 (2000)).
  • a mutation may be partially introduced by artificial treatment such as site-specific mutagenesis based on the GPR92 / 93 cDNA clone.
  • the ligand binding domain needs to be highly conserved, it is desirable not to introduce mutations in such regions.
  • Conservative amino acid substitutions are well known, and those skilled in the art can introduce mutations into GPR92 / 93 as appropriate without changing the properties of GPR92 / 93.
  • the origin of the lipid bilayer membrane retaining GPR92 / 93 is not particularly limited as long as the receptor can assume the original three-dimensional structure, but preferably human, ushi, pig, monkey, mouse, rat, etc. Fractions containing cell membranes of mammalian cells such as intact cells, cell homogenates, or cell membrane fractions fractionated from the homogenates by centrifugation or the like.
  • an artificial lipid bilayer membrane prepared by an ordinary method such as a solution force prepared by mixing various lipids such as phosphatidylcholine, phosphatidylserine, and cholesterol at an appropriate ratio, preferably a ratio close to that in the cell membrane of a mammalian cell is also used. Can be preferably used in one embodiment of the present invention.
  • the Ga conjugated with GPR92 / 93 needs to have at least a region involved in binding of the Ga to GPCR and a region involved in binding of any Ga guanine nucleotide.
  • G a conjugated with GPR92 / 93 is considered to belong to the Gs family (Gs a)
  • the G a used has at least the GPCR binding region of Gs a
  • the Gs a guanonucleotide It has a binding region or a guanine nucleotide binding region derived from Ga belonging to another family. From the results of X-ray crystal structure analysis of Ga, etc., a sequence of about 5 amino acids at the C-terminus is important for binding to GPCR.
  • the guanine nucleotide binding region is the nucleotide binding site of ras protein. Homologous regions (from the N-terminal side, including amino acids motifs called P bots, G, boxes, G boxes, and G "boxes, and the beginning of a E helix and a F helix in highly helix domains) Arco It is clear.
  • Ga conjugated to GPCR belongs to the Gi family (Gi a) or Gq family (Gq ⁇ )
  • the Ga to be used has at least the Gi ⁇ or Gq a GPCR binding region, respectively. And having a guanine nucleotide-binding region of Ga belonging to the corresponding family or a Ga-derived guanine nucleotide-binding region belonging to another family.
  • Ga activation domain of the receptor interacts with the GPCR binding region of Ga, resulting in a conformational change of Ga.
  • Nin nucleotide binding domain force also dissociates GDP and binds GTP quickly.
  • binding of inverse ghosts decreases the activated Ga — GTP level because the Ga active domain is inactivated by changes in receptor conformation.
  • GTPase activity of Ga such as 35S-labeled GTP y S! / ⁇ If a GTP analog is added to the system, the presence or absence of the test substance is present.
  • GPR92 / 93 antagonists were measured by comparing the radioactivity bound to the membrane in the presence and absence of the test substance in a system coexisting with a bioactive ligand such as LPA and its derivatives. Can be screened. That is, if the radioactivity decreases in the presence of the test substance as compared to the absence of the test substance, the test substance is an antagonist.
  • screening can be performed by monitoring the binding of GTP analog to Ga using the surface plasmon resonance method or the like.
  • the aforementioned cell stimulating activity can also be measured using the effect of conjugated Ga on the effector as an index.
  • the screening system of the present invention further includes GPR92 / 93. It is necessary to include a lipid bilayer membrane containing an effector as a constituent element.
  • the conjugated Go must further include a region for interacting with the effector. This region may be the original effector interaction region of G ⁇ or may be an effector interaction region of Ga belonging to a different family. For example, for Gsa, Gq belonging to a different family includes Gq ⁇ , Gi ⁇ , G12 ⁇ and the like.
  • G o that contains effector interaction regions of G o belonging to different families (eg Gq); (eg Gs a)
  • Gq effector interaction regions of G o belonging to different families
  • Gs a As the simplest example of a chimera, about 5 amino acids at the C-terminus of Gq a Examples include those substituted with the C terminal sequence of a (Gqs a).
  • G a conjugated to GPR92 / 93 contains an effector interaction region of Gs a
  • a lipid bilayer membrane containing adenylate cyclase is used as an effector.
  • the conjugated Ga contains the effector interaction region of Gqa
  • conjugate Ga contains the effector interaction region of Gs a
  • a lipid bilayer membrane containing adenylate cyclase is used as the effector.
  • Ligand activity is evaluated using the promoting action of acid cyclase activity as an index.
  • AC adenylate cyclase
  • an effector that is, a chimera containing Ga or Ga or an effector interaction region of Gsa or Gia
  • proteins in the case of Chimera Gs a or Chia Gi a
  • ATP is added to a membrane fraction containing AC, and the amount of cAMP produced is determined using RI (1251), anti-cAMP antibody, Competing with cAMP labeled with enzymes (alkaline phosphatase, peroxidase, etc.), fluorescent substances (FITC, rhodamine, etc.), etc., or by adding [ ⁇ -32P] ATP to membrane fractions containing AC [32P]
  • RI 1251
  • anti-cAMP antibody Competing with cAMP labeled with enzymes (alkaline phosphatase, peroxidase, etc.), fluorescent substances (FITC, rhodamine, etc.), etc.
  • FITC alkaline phosphatase, peroxidase, etc.
  • FITC fluorescent substances
  • rhodamine etc.
  • the method of measuring the radioactivity after separating cAMP with an alumina column or the like is mentioned, but is not limited thereto.
  • G a Gs a
  • a system that coexists with a physiologically active ligand such as LPA Measure the AC activity in the presence and absence of the test substance. If the AC activity decreases in the presence of the test substance than in the absence of the test substance, the test sample is an antagonist of GPR92 / 93. .
  • G a G i
  • the AC activity is measured and compared in the presence and absence of the test substance, and if the AC activity increases in the presence of the test substance, the test substance is inverted by GPR92 / 93. -A strike, and an agonist if activity decreases.
  • AC activity was measured and compared in the presence and absence of the test substance in a system coexisting with a physiologically active ligand such as LPA, and the AC activity increased in the presence of the test substance than in the absence of the test substance.
  • the test sample is then an antagonist of GPR 92/93.
  • the action of Ga on AC was generated by the ability to measure intracellular cAMP levels or by labeling cells with [3H] adenine [3H It can also be evaluated by measuring the radioactivity of cAMP.
  • the amount of intracellular cAMP is measured by incubating the cells for an appropriate period of time in the presence and absence of the test substance, and then performing the above competitive immunoassay on the extract obtained by disrupting the cells. Any other known method can be used
  • a method for evaluating the amount of cAMP by measuring the expression level of a ribota gene under the control of a cAMP response element (CRE).
  • CRE cAMP response element
  • animal cells introduced with a vector containing an expression cassette linked to a DNA encoding a reporter protein downstream of a promoter containing CRE are introduced into the presence of a test substance.
  • the amount of cAMP in the cells is evaluated by measuring and comparing the expression of the reporter gene in the extract obtained by culturing the cells for an appropriate period of time in the absence and absence and disrupting the cells using a known method. Is.
  • G a is Gs a
  • the test substance can be inverted to GPR92 / 93.
  • -A strike and if it increases, it is an agony.
  • the amount of cAMP in the presence and absence of the test substance is measured and compared to screen for GPR92 / 93 antagonists. But it can. That is, if the amount of cAMP decreases in the presence of the test substance than in the absence of the test substance, the test substance is antagonist.
  • Ga is Gi a
  • intracellular cAMP or the expression level of reporter gene under CRE control
  • the test substance is an inverse agonist of GPR92 / 93. Yes, if it decreases, it will be an asset.
  • GPR92 / 93 antagonists can be screened by measuring and comparing the amount of cAMP in the presence and absence of the test substance in a system coexisting with a biologically active ligand such as LPA. . That is, if the amount of cAMP increases in the presence of the test substance than in the absence of the test substance, the test substance is an antagonist.
  • a screening system containing phospholipase C ⁇ (hereinafter also referred to as PLC ⁇ ! /)
  • an effector ie, a chimeric protein containing G a as an effector interaction region of G q a
  • the effect of the Gq a or the chimeric Gq a on the effector can be evaluated by directly measuring the PLC
  • PLC j8 activity can be determined, for example, by adding 3H-labeled phosphatidylinositol 1,4,5-diphosphate to the PLC j8-containing membrane fraction and measuring the amount of inositol phosphate produced using a known method.
  • GPR92 / 93 antagonists can be screened by measuring and comparing PLC ⁇ activity in the presence and absence of the test substance in a system coexisting with a bioactive ligand such as LPA. . That is, if the PLC activity decreases in the presence of the test substance than in the absence of the test substance, the test substance is antagonist.
  • Gq a or chimeric Gq a on PLC j8 is produced by adding [3H] inositol to the cells and producing [3H] inositol phosphate. It can also be evaluated by measuring the radioactivity of cells or measuring the intracellular Ca2 + level. Intracellular Ca2 + levels can be determined using a fluorescent probe (fora-2, indo-1, fluor-3, Calcium-Green I, etc.) after incubating the cells for an appropriate time in the presence or absence of the test substance. Optically measured or calcium sensitive photoprotein Force that can be measured using equolin, etc. Any other known method may be used. An apparatus suitable for spectroscopic measurement using a fluorescent probe is the FLIPR (Molecular Devices) system.
  • the test substance is an agonist of GPR92 / 93, If it decreases, it is an inverse ghost.
  • the GPR92 / 93 ligand screening method using GPR92 / 93 and conjugated Ga described above is performed in the presence of a ligand for GPR92 / 93, for example, LPA, the GPR92 / 93 is further used against GPR92 / 93. You can easily select a tral antagonist.
  • GPR92 / 93 ligands can be screened using various physiological actions dependent on GPR92 / 93 as indices.
  • the physiological action include activation of ERK, which is a kind of MAP kinase.
  • ERK which is a kind of MAP kinase.
  • a method of measuring whether or not a test substance promotes phosphorylation of ERK by measuring the amount of phosphorylated ERK by Western blotting or the like (Kabarowski et al. al., Proc. Natl. Acad. Sci. USA, 97, 12109-12114 (2000)).
  • Another example is a method of screening for a GPR92 / 93 ligand by measuring GPR92 / 93-dependent DNA synthesis promoting activity (cell growth promoting activity).
  • a method for screening a GPR92 / 93 ligand by measuring GPR92 / 93 dependent DNA synthesis inhibitory activity (cell growth inhibitory activity) can be mentioned.
  • the test substance is a GPR92 / 93 antigen, and if it is decreased, it is an inverse agonist.
  • the amount of Ca 2+ (or the expression level of reporter gene under SRE control) in the presence and absence of the test substance in a system coexisting with a physiologically active ligand such as LPA GPR92 / 93 antagonists can be screened. That is, if the amount of Ca 2+ (or the expression level of the reporter gene under SRE control) decreases in the presence of the test substance than in the absence of the test substance, the test substance is an antagonist.
  • a preferred embodiment of a screening system provided for the screening method of the present invention, comprising a lipid bilayer membrane comprising GPR92 / 93, and a Ga conjugated with GPR92 / 93 as a constituent element, A polypeptide comprising at least a region involved in the binding of GPR92 / 93-encoding DNA to a conjugated Ga G PCR and a region involved in the binding of any Ga guanine nucleotide.
  • an expression vector containing the encoding DNA A transfected host eukaryotic cell, a homogenate of the cell, or a membrane fraction derived from the cell.
  • the Ga is not particularly limited as long as it is conjugated with GPR92 / 93! Each gene of / Ga is known and can be easily obtained.
  • DNA encoding a polypeptide containing G ⁇ that is conjugated to GPR92 / 93 includes at least a sequence encoding a region involved in binding to a GPCR of conjugated Ga, and an arbitrary guanine nucleotide of Ga. It is necessary to have a sequence encoding a region involved in the binding of. As described above, from the results of X-ray crystal structure analysis of Ga, the GPCR binding region and the guanine nucleotide binding region are well known, and those skilled in the art can delete part of the Ga coding sequence if desired. It is easy to construct the fragment.
  • the DNA encoding Ga conjugated with GPR92 / 93 further comprises a nucleotide sequence encoding a region for interacting with a desired effector. Need to include.
  • the DNA contains a nucleotide sequence encoding an effector interaction region of Gi or Gsa.
  • the DNA contains a nucleotide sequence encoding the effector interaction region of Gqa.
  • Go gene is known and its effector interaction region is also well known.
  • DNA encoding a chimeric Ga protein by appropriately combining known genetic engineering techniques.
  • DNA encoding the chimeric protein eg, Gqs
  • a sequence encoding about 5 amino acids at the C-terminus of Gqa cDNA can be obtained by using a known technique such as PCR. Examples include those substituted with a DNA sequence encoding a C-terminal sequence.
  • DNA encoding GPR92 / 93 and DNA encoding Ga conjugated to GPR92 / 93 must be functionally linked to a promoter capable of exhibiting promoter activity in a host eukaryotic cell. Don't be.
  • the promoter used is not particularly limited as long as it can function in the host eukaryotic cell.
  • SV40-derived early promoter cytomegalovirus LTR, rous sarcoma virus LTR, MoMuLV-derived LTR, adenovirus-derived Initial promoter, baculovirus-derived polyhedrin promoter, etc.
  • a promoter of a constituent protein gene of a eukaryote-derived cell such as a virus promoter, a j8-actin gene promoter, a PGK gene promoter, and a transferrin gene promoter.
  • the expression vector used should be capable of inserting a coding DNA between the promoter region and the terminator region, which preferably contains a transcription termination signal, that is, a terminator region downstream of the promoter.
  • the expression vector is a selectable marker gene (tetracycline, ampicillin, kanamycin, no, idaguchimycin, phosphinothricin and other drug resistance genes, auxotrophic mutation complementary genes, etc.
  • vectors used in the screening system of the present invention in addition to plasmid vectors, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, vaccinia viruses suitable for use in mammals such as humans. Also, box virus, poliovirus, Sindbis virus, Sendai virus, etc., or a vacuum virus vector suitable for use in insect cells.
  • the DNA encoding GPR92 / 93 and the DNA encoding Ga conjugated to GPR92 / 93 may be carried on two separate expression vectors and co-transfected into a host cell. Alternatively, it may be inserted dicistronic or monocistronic on one vector and introduced into a host cell.
  • the host cell is not particularly limited as long as it is a mammalian cell such as a human, monkey, mouse, rat, hamster, or a certain insect cell.
  • a mammalian cell such as a human, monkey, mouse, rat, hamster, or a certain insect cell.
  • Examples include monkey-derived cells such as Vero, human-derived cells such as HeLa, HEK293, and MCFIOA, and insect-derived cells such as S19, Sf21, and High Five.
  • Gene transfer into a host cell may be performed using any known method that can be used for gene transfer in eukaryotic cells.
  • any known method that can be used for gene transfer in eukaryotic cells.
  • calcium phosphate coprecipitation method, electroversion method, ribosome method, Examples include a microinjection method.
  • Host cells into which the gene has been introduced contain, for example, a minimal amount of about 5-20% urine fetal serum. It can be cultured using an essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), Ham's F-12 medium, RPMI 1640 medium, 199 medium, Grace's insect cell culture medium, or the like.
  • the culture temperature which is preferably about 6 to about 8 for the medium, is usually about 27 to about 40 ° C.
  • the eukaryotic cells into which the DNA encoding GPR92 / 93 and the DNA encoding Ga conjugated to GPR92 / 93 obtained as described above are intact are allowed to remain intact depending on the screening method used. It may be used as a cell! /, Or a cell homogenate obtained by disrupting the cell in an appropriate buffer, or by centrifuging the homogenate under an appropriate condition (for example, about 1 After centrifugation at about 000 X g, the supernatant is recovered, and then the precipitate is recovered by centrifugation at about 100,000 X g).
  • the screening system to be used is preferably a cell force as described above. It is a membrane fraction to be prepared.
  • the screen system used is intact eukaryotic cells.
  • the host eukaryotic cell contains a vector containing an expression cassette operably linked to a DNA encoding a reporter protein downstream of a promoter region containing a cAMP response element (CRE) or a TPA response element (TRE). It must be introduced.
  • CRE is a cis element that activates gene transcription in the presence of cAMP. The ability to include a sequence containing TGACGTCA as a consensus sequence.
  • TRE is a cis element that activates gene transcription in the presence of Ca2 +, and a sequence that includes TGACTCA as a consensus sequence. As long as it retains Ca2 + responsiveness, a part of the sequence is deleted or replaced. It can be an array containing insertions or attachments.
  • a promoter sequence containing CRE or TRE The above-mentioned viral promoters and mammalian constituent protein gene promoters can be used in the same manner, and a CRE or TRE sequence is placed downstream of the promoter sequence using a restriction enzyme and DNA ligase, or using PCR or the like.
  • any known gene capable of detecting and quantifying gene expression quickly and easily can be used.
  • luciferase, ⁇ -galactosidase, 13-glucuronidase, alkaline phosphatase The ability to include DNA encoding a reporter protein such as peroxidase is not limited to these. It is more preferable that a terminator sequence is arranged downstream of the reporter gene.
  • a vector carrying such a CRE (or TRE) -reporter expression cassette a known plasmid vector or viral vector can be used.
  • An expression vector containing a reporter gene under the control of a serum response element (SRE) can also be prepared in the same manner as described above.
  • FIG. 1 Another preferred embodiment of a screening system provided for the screening method of the present invention, comprising a lipid bilayer membrane comprising GPR92 / 93, and Ga conjugated to GPR92 / 93 as a constituent element
  • a lipid bilayer membrane comprising GPR92 / 93, and Ga conjugated to GPR92 / 93 as a constituent element
  • Is an expression vector comprising DNA encoding a fusion protein in which a polypeptide containing at least a GPCR binding region of a conjugated G chain and an arbitrary guanine nucleotide binding region of Ga is linked to the C-terminal side of GPR92 / 93.
  • DNA encoding GPR92 / 93 and DNA encoding a polypeptide containing a GPCR binding region of Ga and any Ga guanine nucleotide binding region conjugated to GPR92 / 93 are as described above. Can be obtained. Those skilled in the art can construct a DNA encoding a fusion protein of GPR92 / 93 and Ga by appropriately combining known genetic engineering techniques based on these DNA sequences. In brief, DNA or other DNA DNA encoding GPR92 / 93 has been removed using PCR, etc. so that DNA encoding DNA encodes the DNA reading frame, ie, in-frame. Use to ligate. At this time, a part of the C terminus of GPR92 / 93 may be deleted, or a linker sequence such as a His tag may be inserted between GPR92 / 93 and G ⁇ .
  • the DNA encoding the obtained fusion protein is inserted into an expression vector as described above. And introduced into a host eukaryotic cell using the above-described gene transfer technique.
  • the fusion protein is expressed on the membrane of the resulting eukaryotic cell, the Ga activation domain on the third intracellular loop of the receptor and the coupled Ga receptor binding region are against GPR92 / 93. It can interact in the absence of physiological ligands to promote the GDP 'GTP exchange reaction in Ga. Therefore, Ga is constantly activated.
  • One receptor G o When using fusion protein-expressing cells for screening using the effect of Ga on the effector as an indicator, it is understood that Ga is linked to the receptor. If it interferes with the action, an amino acid sequence (for example, a thrombin sensitive sequence) that is cleaved by a specific protease is introduced at the junction between the receptor and Ga, and the fusion protein is expressed on the membrane. Later, the protease can act to separate the receptor from Ga.
  • an amino acid sequence for example, a thrombin sensitive sequence
  • any form of intact cells, cell homogenates, and membrane fractions can be appropriately selected and used depending on the screening method used.
  • Still another embodiment of the screening system provided for the screening method of the present invention comprising a lipid bilayer membrane containing GPR92 / 93, and Ga conjugated to GPR92 / 93 as a component, A cell prepared by transfecting a host animal cell that endogenously expresses the conjugated G protein with an expression vector containing DNA encoding GPR92 / 93, a homogenate of the cell, or a membrane derived from the cell Minutes.
  • an expression vector into which the DNA is inserted, and the expression vector into a host cell those described above can be used.
  • the screening system of the present invention comprises GPR92 / 93 and animal cells that endogenously express GPR92 / 93 and a G protein conjugated with GPR92 / 93, It is a cell-derived membrane fraction.
  • Preferred examples of such cells include mammalian spleen, kidney and lung-derived cells.
  • GPR92/93 as a screening system containing a lipid bilayer membrane containing GPR92 / 93 and Ga conjugated to GPR92 / 93 as a constituent element.
  • a fusion protein of conjugated Ga or purified receptor and conjugated Ga What was reconstituted in the engineered lipid bilayer membrane can be used.
  • GPR92 / 93 can be purified from membrane fractions obtained from spleen, kidney or lung-derived cells of humans or other mammals by affinity chromatography using anti-GPR92 / 93 antibody.
  • the receptor can be obtained by using an anti-GPR92 / 93 antibody, His-tag, GST-tag, or the like from a recombinant cell into which an expression vector containing DNA encoding GPR92 / 93 has been introduced. It can also be purified from sugar etc.
  • a fusion protein of the receptor and conjugated Ga can also be obtained from an anti-GPR92 / 93 antibody, His-tag, GST-tag from a recombinant cell introduced with an expression vector containing DNA encoding the fusion protein. It can be purified by affinity chromatography using the above.
  • lipids constituting the artificial lipid bilayer membrane include phosphatidylcholine (PC), phosphatidylserine (PS), cholesterol (Ch), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). A mixture of one or more of these in an appropriate ratio is preferably used.
  • Add the appropriate amount of purified receptor and G ⁇ or the receptor G ⁇ fusion protein incubate for about 20-30 minutes with occasional stirring in ice, and then dialyze against an appropriate buffer.
  • Proteolibosomes can be prepared by centrifuging at about 100,000 8 for 30-60 minutes and collecting the sediment.
  • the GPR92 / 93 agonist selected by the above-described screening method of the present invention that is, the GPR92 / 93 agonist, exhibits insulin secretagogue activity in the splenic Langerhans Islet as well as the physiological ligand of GPR92 / 93. As a result, it shows an effect of improving glucose tolerance abnormality. Therefore, by combining these with appropriate additives, it can be made into a drug for improving glucose tolerance. Therefore, the present invention also provides a drug for improving impaired glucose tolerance by combining a GPR92 / 93 agonist selected by the screening method of the present invention and a pharmaceutically acceptable carrier, Or provide lifestyle-related disease treatment, especially diabetes treatment.
  • GPR92 / 93 antagonists such as GPR92 / 93 antagonists and inverse agonists selected by the above-described screening method of the present invention inhibit insulin secretion and suppress sugar uptake in adipocytes. It is thought that. Therefore, it is clear that GPR92 / 93 antagonists exhibit anti-obesity action, and therefore, they can be made anti-obesity drugs by combining them with appropriate additives.
  • Bioly-derived fatty acid derivatives are known to be difficult to produce by chemical synthesis because they contain many geometric isomers and optical isomers.
  • a method for purifying low molecular weight organic compounds by removing abundant substances such as proteins from samples derived from living organisms such as animal organs reverse phase HPLC, gel filtration, extraction with organic solvents
  • proteins by heat denaturation and acid denaturation, etc., but it is difficult to process a large amount of biological sample!
  • problems such as that only a part of the bioactive component having very low efficiency can be recovered, and that the bioactive component cannot be recovered because it is denatured and deactivated.
  • the present inventors have found a method for efficiently purifying a biologically derived fatty acid derivative from a biologically derived sample such as pig brain or spleen.
  • the present invention also provides a method for producing a biologically-derived fatty acid derivative and a low-molecular component, characterized by comprising a purification step that combines extraction using solid-phase extraction coagulant and reverse-phase HPLC. That is, the following steps:
  • a method for producing a biologically-derived fatty acid derivative and a low-molecular component containing thiophene is also within the scope of the present invention.
  • the solid-phase extraction resin is a resin that adsorbs a fatty acid derivative-containing fraction and a low-molecular component and does not adsorb a protein.
  • Oasis HLB resin manufactured by Waters
  • the f column can be displayed.
  • Examples of biological samples include mammal-derived organ samples that are not particularly limited. Mammals include, but are not limited to, rodents such as mice or rats, rabbits, dogs, pigs, cows, humans, and the like. Examples of the organ include, but are not limited to, brain, spleen, liver, heart, kidney, lung, stomach, adrenal gland, and the like.
  • Examples of the biologically derived fatty acid derivatives include linear or branched, saturated or unsaturated fatty acid derivatives having 5 to 30 carbon atoms. Specifically, a linear or branched saturated fatty acid having 5 to 30 carbon atoms, an unsaturated fatty acid having a straight chain or branched 1 to 10 double bond or triple bond having 5 to 30 carbon atoms. And esters of saturated or unsaturated fatty acids. And the ester.
  • the dalyceride may have an ester bond with 3 to 3 saturated fatty acids or unsaturated fatty acids.
  • an arbitrary hydroxyl group of the glycerin structure may form a phosphate ester.
  • the phosphate ester may be a phosphoric acid such as an alkyl ester having 1 to 6 carbon atoms or glyceride.
  • Examples include zylcholine, phosphatidylserine, or phosphatidylinositol.
  • hydrophilic organic solvent examples include methanol, acetonitrile, and mixed solvents thereof. Preferable examples include 10% to 95% methanol, 10% to 95% acetonitrile.
  • aqueous solution containing these hydrophilic organic solvents used as an eluent examples include water and a buffer solution, and the pH is preferably adjusted to 2 to 10 as appropriate. Specifically, 0.05M to 0.5 acetic acid, 0.03% to 0.3% TFA, 0.03% to 0.3% formic acid, 0.1% to 1% ammonia and the like may be contained.
  • the eluate containing hydrophilic organic solvent is usually eluted with 0.5 to 5 L.
  • the eluate can be fractionated as appropriate, and the fraction containing the desired biologically derived fatty acid derivative can be obtained using biological activity as an index.
  • the obtained fraction can be further purified by a purification method known to those skilled in the art as appropriate to obtain a single compound.
  • the purification method include reverse phase HPLC, normal phase HPLC, silica gel column chromatography, ion exchange chromatography, and recrystallization.
  • reverse Phase HPLC is mentioned.
  • LPA (22: 6) represented by formula (3) or its isomer (2-acyl form
  • the Oasis HLB resin column is washed with water and then with 2% to 10% methanol water. After that, LPA (22: 6) -containing fraction can be obtained using 10% -90% acetonitrile- 10% -90% methanol as eluent.
  • the ligand of the present invention such as LPI (18: 0) represented by the formula (6) or its isomer (2-acyl form) can also be obtained as a single compound by the same method.
  • mice were immunized according to the following schedule, and antiserum-resistant polyclonal antibodies were prepared.
  • FCA Complete Usagi (KBL JW 11 weeks)
  • FCA Compl ete Freuncfs Adjuvant
  • Tissue sections were prepared at 4-5 ⁇ m thickness from paraffin blocks of biopsy tissue samples (57-year-old male, 95-year-old male, etc.). Slide samples were deparaffinized with xylene, Hydrated again through the treatment. Subsequently, antigen activation by autoclaving was performed in Target Retrieval Solution (DAKO). Subsequent operations used Vectastain ABC-AP kit (Vector). After blocking with the attached reagent, it was incubated for 45 minutes with the primary antibody prepared in (1) above. After washing, the cells were incubated with an anti-rabbit secondary antibody (8-1000) diluted to 5 11 ⁇ 21 for 30 minutes. After washing, Vector ABC-AP (AK-5000) reagent was added, and color was developed with Vector Red (SK-5100).
  • DAKO Target Retrieval Solution
  • TLARPDATQSQRRRKTVRL (SEQ ID NO: 6) was used as the GPR92 / 93 antigen peptide, and as a result of examining the localization of expression by the same method, it became clear that it was significantly expressed in Langerno and Seungsu Island. .
  • a mixture of 11 ⁇ 1 containing 10 ⁇ g of total RNA and 7- (dT) 24 primer (manufactured by Amersham) lOOpmol was heated at 70 ° C. for 10 minutes and then cooled on ice. After cooling, the mixture is mixed with Super bcnpt Choice system for cDNA Synthesis (Gibco—BRL) [included 5xFirst Strand cDNA Buffer 4 / z 1, 0.1M DTT 2 ⁇ 1 included in the kit and the kit 10 mM dNTP Mix 1 ⁇ 1 contained in the solution was added, and the mixture was heated at 42 ° C. for 2 minutes.
  • Super Scriptll RT 21 400 U included in the kit was added to the mixed solution, and the mixed solution was heated at 42 ° C. for 1 hour and then cooled on ice. After cooling, DEPC-treated sterilized distilled water 9 1 ⁇ 1, 5xSecond Strand Reaction Buffer 30 ⁇ 1, included in the kit, lOmM dNTP Mix 3 1, included in the kit, E. coli DNA Ligase 1 ⁇ 1 (10U), E. included in the kit. E. coli DNA Polymerase I 4 1 (40 U) and E. coli RNase H 1 ⁇ 1 (2 U) contained in the kit were added, and the mixture was reacted at 16 ° C. for 2 hours.
  • the recovered aqueous layer was mixed with 7.5M ammonium acetate solution (72.5 ⁇ 1) and ethanol (362.5 ⁇ 1), and the mixture was centrifuged at 4 ° C., 14,000 rpm for 20 minutes. After centrifugation, the supernatant was discarded to obtain a DNA pellet. Thereafter, 0.5 mL of 80% ethanol was added to the DNA pellet. The mixture was centrifuged at 14,000 rpm for 5 minutes at 4 ° C, and the supernatant was discarded to obtain a DNA pellet again. To the obtained DNA pellet, 0.5 mL of 80% ethanol was added again.
  • the mixture was centrifuged at 4 ° C, 14,000 rpm for 5 minutes, and the supernatant was discarded to obtain a DNA pellet.
  • the obtained DNA pellet was dried and then dissolved in DEPC-treated sterile distilled water 121 to obtain a cDNA solution.
  • PCR is performed under the conditions of first repeating a heat insulation cycle consisting of 94 ° C for 30 seconds, then 65 ° C for 30 seconds, and then 72 ° C for 1.5 minutes, and finally warming at 72 ° C for 5 minutes. It was broken. After PCR, a PCR product showing about 1.2 kbp was recovered by agarose electrophoresis. The recovered PCR product was subcloned into pT7-Blue vector (Novagen), and E.coli JM109 strain competent cell (Toyobo) was transformed with the plasmid. It is obtained by culturing transformed cells in lOOmL of LB medium containing 50 ⁇ g / mL ampicillin. The plasmid containing the base sequence of the mouse-derived gene (mGPR92) was obtained by separating and purifying from the cultured cells using QIAGEN Plasmid Maxi kit (QIAGEN).
  • the primer prepared from the cDNA prepared in Example 3 in the form of a cage the primer consisting of the nucleotide sequence represented by SEQ ID NO: 11 3 20 pmol, the primer capable of the nucleotide sequence represented by SEQ ID NO: 12 4 20 pmol, Pfe Platinum Polymerase (Invitrogen) 2.5 U, 50 ⁇ L of a reaction solution containing 5 ⁇ L of buffer attached to Pfe Platinum polymerase and 7.5 ⁇ L of dNTP mixture (2 mM) was prepared. PCR is performed at 94 ° C for 1 minute, followed by 30 heat insulation cycles of 94 ° C for 15 seconds, 55 ° C for 30 seconds, and 68 ° C for 1 minute 20 seconds. It was conducted.
  • PCR product showing about 1.2 kbp was recovered by agarose electrophoresis.
  • the recovered PCR product was inserted into pDONR221 (Invitrogen) using the BP reaction (Invitrogen) of GATEWAY system, and E.coli DH5 strain competent cell (Toyobo) was transformed with the plasmid. Culturing transformed cells in a kanamycin-containing medium cultivated bacterial strength by purifying the plasmid, the entry vector containing the nucleotide sequence of the ORF part of this mouse-derived gene (m GPR92) pENTR / mGPR92 Got / 93.
  • pENTR / mGPR92 / 93 was inserted into the destination vector pCAGGS-DES T (described later) using the LR reaction (Invitrogen) of the GATEWAY system, and then E.coli DH5 A strain, a competent cell (Toyobo Co., Ltd.) was transformed. Obtained by culturing colonies obtained by transformation in a medium containing ampicillin. The plasmid for introduction into animal cells was prepared by separating and purifying from the cultured cells using QIAGEN Plasmid Maxi kit (QIAGEN).
  • the destination vector pCAGGS-DEST is a mammalian cell expression vector p
  • GATEWAY reading frame B is inserted in the same direction as the promoter.
  • the gene and the introduction reagent were mixed and prepared as follows. That is, mix the GPR92 / 93 incorporation vector prepared in Example 6 0.05 ⁇ g / Opti-MEM medium 5 ⁇ 1 and Lipofectamine 0.3 ⁇ 1 / Opti-MEM medium 5 ⁇ 1 at the well of a 96-well plate at room temperature. And then allowed to stand for 30 minutes, F-12 medium 40 1 was added to obtain a gene introduction solution.
  • the medium of CHO-K1 cells which were cultured in 96-well plate the day before at 2 x 10 4 cells / 100 ⁇ 1 / well (medium: 10% FBSZF-12) and cultured at 5% CO, 37 ° C for 22-24 hours Aspirate and remove F
  • the cells were cultured at 37 ° C for 3.5 hours. Aspirate the medium, wash once with 10% FBS ZF-12 medium, add 100 1 / well of 10% FBSZF-12 medium, and add 5% CO.
  • the cells were further cultured at 37 ° C for 24 hours.
  • the culture supernatant of the cells transiently transfected with the method (1) above was removed and washed with PBS (—).
  • the seal was peeled off, and the intensity of the long-lived fluorescence of 620 nm generated by XL665 that received energy transfer from the excited cryptate and the long-lived fluorescence of 665 nm generated by the energy transfer from the excited cryptate were measured with a measuring instrument ARVO.
  • Table 1 shows the amount of cAMP for which the measured force was also calculated. As shown in Table 1, cAMP production was increased in cells in which human and mouse GPR92 / 93 were transiently introduced, and GPR92 / 93 was estimated to be a GPCR co-operating with Gs.
  • the GPCR92 / 93 gene was transiently introduced into the cells by the method shown in Example 7 (1).
  • Example 7 (2) When quantifying the amount of cAMP by the method in Example 7 (2), after washing with PBS (—) at the beginning, various concentrations of LPA SniM IBMX / lmg / ml BSA / PBS (—) 50 ⁇ I / well The mixture was added and allowed to stand at room temperature for 30 minutes. Thereafter, the amount of cAMP was quantified by the method (2).
  • GPR92 / 93 ligands (agonist and inverse agonist) can be evaluated by using a test substance instead of LPA.
  • ICR mice (CLEA Japan, SPF, o 71) from the spleen islets were isolated by collagenase digestion method. The procedure is shown below. ICR mice bred under free-feeding conditions are opened under Nembutal anesthesia, and the lower abdominal vena cava is cut to cause blood loss. Place the duodenum so that the common bile duct is exposed, and ligate the common bile duct just before the duodenum. Insert a force fluid from the liver side of the common bile duct, inject 3 ml of 0.02% collagenase solution, and then remove the spleen. After digestion at 37 ° C for 20 minutes in a 5 ml collagenase solution, vigorously penetrate to disrupt the spleen.
  • La Islet was transferred into KRB (containing 0.5% BSA), sized, and incubated in a thermostat set at 37 ° C for 30 minutes. Pre-heat KRB with LPA added to each condition in a 37 ° C constant temperature bath. After completion of the incubation, 5 islands of La Islet were added in a Z tube, incubated for exactly 30 minutes and then transferred to ice to stop the secretion reaction. The supernatant of each tube was collected, and the insulin concentration was measured using a Levis insulin kit mouse (Shibagoat). The results are shown in Table 4.
  • DMSO is a solvent-only negative control
  • GLP-1 is a peptide compound known to have an insulin secretion-promoting action, that is, a positive control.
  • LPA showed insulin secretion promoting activity in a dose-dependent manner.
  • LPA Insulin secretion promoting activity at 10 ⁇ was almost the same as GLP-1 (100 ⁇ ).
  • Example 2 GPR92 / 93 expression strain prepared in (1) is seeded in a flask, and 10% FBS (manufactured by Gibco) is cultured in the medium until 60 to 70% confluent. Cells are collected and buffer A (50 mM
  • HEPES HEPES
  • 10 mM 2-ME, ImM PMSF 0.25 M sucrose
  • Homogenize 400 rpm, 20 strokes
  • centrifuge 100000 g for 60 minutes
  • resuspend the resulting precipitate in buffer A again.
  • This suspension is layered on 35% (mass / vol) sucrose in buffer A and centrifuged at 45000 g for 45 minutes. Collect the interface fraction, suspend in buffer A, and centrifuge at 100000g for 60 minutes.
  • the resulting precipitate is suspended in buffer A containing 20 ⁇ g / ml aprotinin and used in the following assembly.
  • GPR92 / 93-expressing cell membrane fraction (eg, 1-10 ⁇ g) prepared in the above procedure is dissolved in 10 mM acetate buffer (pH 4) and fixed to the matrix on the surface of Biacore sensor chip CM5 via carboxyl groups. Turn into.
  • GPR92 / 93 ( ⁇ _020400; SEQ ID NO: 13) was amplified by PCR using the following primers.
  • AtGPR92M GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCatgttagccaacagc tcctcaac (SEQ ID NO: 15)
  • AtGPR92R GGGGACCACTTTGTACAAGAAAGCTGGGTCAtcagagggcggaatcctggg gacac (Eye number 16)
  • the fragment obtained was subjected to the BP reaction between PDONR201 and the GATEWAY system.
  • PENTR / GPR92 / 93 was obtained.
  • the nucleotide sequence of the obtained clone was confirmed.
  • a GPR92 / 93 expression vector was constructed from pENTR / GPR92 / 93 by a method commonly used by those skilled in the art.
  • the clones thus obtained were expanded and cultured, and plasmid DNA for introduction was purified using the Qiagen MAXI kit.
  • CHO-K1 cells were seeded in 96-well plates at 2xl0 4 cells / well and cultured in a C02 incubator for 24 hours using a medium not containing antibiotics.
  • 50 ng of GPR92 / 93 expression plasmid DNA (GP R92 / 93 / pCAGGS) was diluted in 51 OPTI-MEM, and 0.31 LipofectAmine was diluted in 51 OPT-MEM. Both were mixed and allowed to stand at room temperature for 30 minutes, and then 40 1 serum-free F12 medium was added and added to a well washed once with serum-free F12 medium.
  • the medium was replaced with F12 medium supplemented with 10% FBS (washed once), and cultured in a C02 incubator for 24 hours.
  • the cells were washed with PBS ( ⁇ ) and replaced with Hanks Hepes solution containing 50 ⁇ l of 0.5 mM IBMX containing the porcine organ activity fraction. After 15 minutes, Hanks Hepes solution was aspirated and 40 ⁇ l of Lysis buffer (1% Triton X100, 50 mM phosphate buffer (pH 7.0), 0.2% BSA) was added to lyse the cells. Of the cell lysates, 101 was used for cAMP quantitative assay.
  • a column (900 ml capacity) packed with 300 g of Oasis HLB resin from Waters was preliminarily washed with 1 L of methanol, and then equilibrated with 2 L or more of water. The centrifugation supernatant was passed through an equilibrated Oasis HL B resin column and adsorbed. Wash the column with 5 L of water (C1 and After washing with 5 L of 5% aqueous methanol (labeled C2), the active ingredient was eluted by passing 4 L of 90% acetonitrile- 10% methanol (labeled C3).
  • the eluate C3 was purified by reverse phase liquid chromatography. 4 L of eluate C3 was concentrated under reduced pressure using an evaporator, and the concentrate was dissolved in a small amount of methanol. The concentrated solution was passed through a ZORBAX Eclipse XDB-C18 column manufactured by Agilent, and the active ingredient was eluted by increasing the acetonitrile concentration in a 0.1% trichloroacetic acid / acetononitrile solvent system. The gradient conditions were implemented according to the following conditions.
  • Each fraction 50 1 was concentrated under reduced pressure using a speed-back concentrator, and then dissolved in 11 DMSO, and the activity was measured by the assay method using GPR92 / 93-expressing CHO-K1 cells. Activity was eluted in fraction 64 and fraction 65. The amount of cA MP produced was 1.9 nM and 3.1 nM, respectively.
  • Each fraction 101 was concentrated under reduced pressure using a speed-back concentrator, and then the activity was measured by the Atsy method (see Example 13) using GPR92 / 93-expressing CHO-K1 cells dissolved in 1 ⁇ 1 DMSO. . Activity was eluted in fraction 16. The amount of cAMP produced was 32 nM.
  • Fraction 16 (700 1) was concentrated under reduced pressure using a speed-back concentrator, dissolved in 200 1 methanol, passed through an Atlantis column manufactured by Waters, and the acetonitrile concentration was adjusted with a 0.1% trichloroacetic acid / acetonitrile solvent system. The active ingredient was eluted by boosting [].
  • the gradient conditions were as follows.
  • Each fraction 201 was concentrated under reduced pressure using a speed-back concentrator, and then dissolved in 11 DMSO, and the activity was measured by the assay method using GPR92 / 93-expressing CHO-K1 cells. Activity was eluted in fractions 41 and 47. The respective cA MP production was 4.3 nM and 5.1 nM.
  • a Micomass QTOF2 mass spectrometer equipped with a Nanospray ion source and a Thermo Electoron ion trap mass spectrometer LCQ were used for the analysis.
  • the sample was dissolved in 0.1% AcOH-H20 / MeOH / AcCN (l: 1: 1), and Nanospray measurement was performed at a flow rate of 200 nL / min.
  • the capillary temperature was set to 150 ° C and the ionization voltage was set to 1.8 kV, and measurements were performed in both positive and negative modes. In QTOF2, only the positive ion mode was measured.
  • the activity of the structurally similar compounds of the active compounds was measured by the Atsy method (see Example 13) using GPR92 / 93-expressing CHO-K1 cells. The activity measurement results are shown in Table 1.
  • the GPR92 / 93 agonist of the present invention exhibits insulin secretion promoting activity, is useful as a glucose tolerance ameliorating agent and a diabetes therapeutic agent, and can also be used as a research reagent.
  • the screening method of the present invention makes it possible to search for GPR92 / 93 agonists and antagonists that can be drug candidates.
  • SEQ ID NO: 5 Antigenic peptide
  • SEQ ID NO: 6 antigenic peptide
  • SEQ ID NO: 7 PCR primer
  • SEQ ID NO: 8 PCR primer SEQ ID NO: 11: PCR primer SEQ ID NO: 12: PCR primer SEQ ID NO: 15: PCR primer SEQ ID NO: 16: PCR primer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Diabetes (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Obesity (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

It is intended to provide a drug for improving abnormal glucose tolerance or an antidiabetic drug comprising a GPR92/93 agonist as the active ingredient; a method of screening a drug for improving abnormal glucose tolerance or an antidiabetic drug depending on the fact that a test substance is a GPR92/93 ligand as an indication; and so on.

Description

明 細 書  Specification
受容体リガンド  Receptor ligand
技術分野  Technical field
[0001] 本発明は Gタンパク質結合受容体 (GPCR): GPR92/93の新規用途及びそのリガン ド等に関する。より詳細には、 GPR92/93のァゴニストリガンドを同定したこと、及び当 該ァゴニストリガンドのインスリン分泌促進薬としての医薬用途を見出したことに基づ [0001] The present invention relates to a novel use of G protein-coupled receptor (GPCR): GPR92 / 93, its ligand, and the like. More specifically, based on the identification of an agonist ligand of GPR92 / 93 and the discovery of a pharmaceutical use of the agonist ligand as an insulin secretagogue.
<o <o
背景技術  Background art
[0002] 糖尿病はその病態から 1型と 2型に分類される。すなわち、 1型は脾臓におけるイン スリン分泌機能不全に基づく病態であり、 2型はインスリン感受性組織におけるインス リン抵抗性と脾臓におけるインスリン分泌異常が主たる病態である。近年、食生活の 西洋化や社会的ストレスの増加等により、肥満とそれに付随する生活習慣病、特に 2 型糖尿病患者の増加が著し 、。  [0002] Diabetes is classified into type 1 and type 2 based on its pathology. That is, type 1 is a pathological condition based on insulin secretion dysfunction in the spleen, and type 2 is a pathological condition mainly due to insulin resistance in insulin-sensitive tissues and abnormal insulin secretion in the spleen. In recent years, with the westernization of eating habits and increased social stress, obesity and associated lifestyle diseases, especially type 2 diabetes patients, have increased.
[0003] 血糖調節において脾臓は中心的役割をはたすと考えられている。主要な血糖調節 ホルモンであるインスリンは脾臓のランゲルノヽンス島の β細胞から分泌される。 β細 胞は食後などに一過的に上昇する血糖に応答して迅速に必要量のインスリンを分泌 する。筋肉、脂肪等の末梢組織では脾臓カゝら分泌されたインスリンに応答して糖を取 り込むことにより、上昇した血糖の調節を行っている。さらに、肝臓ではインスリンに応 答して糖新生が抑制され、血糖の調節が行われている。このようなサイクルに破綻が 生じることにより糖尿病が発症すると考えられている。事実、 1型糖尿病の多くは、脾 臓が自己免疫的に破壊されインスリン分泌不全になることにより血糖コントロールが 不能になるものであり、 2型糖尿病ではインスリン分泌における第一相の分泌不良が 高血糖を招来することが知られて 、る。  [0003] The spleen is thought to play a central role in blood glucose regulation. Insulin, a major glycemic hormone, is secreted from beta cells in the splenic islets of Langerin. β cells secrete the necessary amount of insulin quickly in response to blood glucose that rises transiently after eating. Peripheral tissues such as muscle and fat regulate the increased blood glucose level by taking up sugar in response to insulin secreted from the spleen. Furthermore, in the liver, gluconeogenesis is suppressed in response to insulin, and blood glucose is regulated. Diabetes is thought to develop as a result of this cycle failure. In fact, many of type 1 diabetes are those in which spleen is autoimmunely destroyed and insulin secretion becomes insufficiency, making blood glucose control impossible. It is known that it will cause blood sugar.
[0004] 上述のような観点から、脾臓におけるインスリン分泌の促進は糖尿病病態の改善効 果に大きく貢献すると考えられる。このような作用機序を持つ薬剤としては、現在のと ころスルホ -ルゥレア剤などが上巿されて ヽるが、血糖値に応じたインスリン分泌調 節作用がないため、血糖が低下してもなおインスリン分泌促進効果が持続して低血 糖に陥り、昏睡、さらには死亡を招く危険性がある。現在、血糖値に応じたインスリン 分泌促進効果が得られると ヽうような特徴をもつ安全な薬剤は上巿されておらず、こ のような薬剤の開発が望まれている。 [0004] From the above viewpoint, it is considered that promotion of insulin secretion in the spleen greatly contributes to the effect of improving the diabetic condition. As drugs with such a mechanism of action, sulfo-lurea drugs are currently being promoted, but since there is no insulin secretion regulating action according to blood sugar level, even if blood sugar falls Insulin secretion promoting effect continues and low blood There is a risk of falling into sugar, coma and even death. Currently, there are no safe drugs that have the characteristics that insulin secretion is promoted according to the blood glucose level, and the development of such drugs is desired.
[0005] ところで、 GPR92/93は、生体内におけるリガンドが不明の、ォーファン Gタンパク質 結合受容体(G protein coupled receptor; GPCR)として知られている(非特許文献 1 を参照)。 GPR92/93は脳をはじめとする組織に発現して 、ることが報告されて ヽた( 非特許文献 2を参照)が、その機能は知られていない。  [0005] By the way, GPR92 / 93 is known as an orphan G protein coupled receptor (GPCR) whose ligand in vivo is unknown (see Non-Patent Document 1). It has been reported that GPR92 / 93 is expressed in tissues including the brain (see Non-Patent Document 2), but its function is not known.
一方リゾホスファチジン酸 (LPA)はリン脂質の一種であり、リン脂質の生合成中間体 として知られて ヽたが、その後様々な生体反応の細胞外シグナル伝達分子であるこ とがわ力 てきた。当該生体反応としては、細胞分裂促進、アポトーシス抑制、ァクチ ン細胞骨格再構築や細胞の形態変化の誘導、腫瘍細胞浸潤等が挙げられる (非特 許文献 3を参照)。しかしながら、 LPAのインスリン分泌促進作用については、知られ ていなかった。  On the other hand, lysophosphatidic acid (LPA) is a kind of phospholipid and has been known as a biosynthetic intermediate of phospholipid, but since then it has been proved to be an extracellular signaling molecule for various biological reactions. Examples of the biological reaction include cell division promotion, apoptosis suppression, remodeling of the cytoplasmic skeleton, induction of cell shape change, tumor cell invasion, and the like (see Non-Patent Document 3). However, the insulin secretion promoting action of LPA was not known.
非特許文献 1 : Lee, D. K.ら、 Gene, 2001 Sep 5; 275(1):83- 91.  Non-Patent Document 1: Lee, D. K. et al., Gene, 2001 Sep 5; 275 (1): 83-91.
非特許文献 2 : Demetrios, K. Vassilatisら、 Proc. Nat. Acad. Science, USA, 2003 Ap ril 15; 100(8):4903-4908.  Non-Patent Document 2: Demetrios, K. Vassilatis et al., Proc. Nat. Acad. Science, USA, 2003 Ap ril 15; 100 (8): 4903-4908.
非特許文献 3 :Yoh Takuwaら、 J. Biochem., 767-771(2002)  Non-Patent Document 3: Yoh Takuwa et al., J. Biochem., 767-771 (2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明が解決しょうとする課題は、 Gタンパク質結合受容体 (GPCR): GPR92/93作 動薬となり得るァゴ-ストリガンド、 GPR92/93作動薬を有効成分として含有する医薬、 具体的にはインスリン分泌促進薬、 GPR92/93作動薬もしくは拮抗薬をスクリーニング する方法、及びインスリン分泌促進薬のスクリーニング方法等を提供することにある。 課題を解決するための手段 [0006] The problem to be solved by the present invention is as follows: G protein-coupled receptor (GPCR): an agonist ligand that can be a GPR92 / 93 agonist, a medicine containing a GPR92 / 93 agonist as an active ingredient, Specifically, it is intended to provide a method for screening for insulin secretagogues, GPR92 / 93 agonists or antagonists, and a method for screening for insulin secretagogues. Means for solving the problem
[0007] 本発明者らは上記課題に鑑みて鋭意検討を行 ヽ、正常人の脾臓ランゲルノヽンス氏 島において発現局在する因子を同定した。すなわち、本発明者らは正常人の脾臓ラ ンゲルハンス氏島に発現する遺伝子と正常状態のその他の諸組織に発現する遺伝 子を比較することにより、正常人の脾臓ランゲルノ、ンス氏島において発現局在する遺 伝子を同定した。次に、該遺伝子がコードする蛋白質を調べたところ、ォーファン GP CRである、 GPR92/93であることがわかった。 [0007] The present inventors have conducted extensive studies in view of the above problems, and have identified a factor that is expressed and localized in the normal spleen Langer's island. That is, the present inventors compare the genes expressed in the normal human spleen Langerhans Island with those expressed in other tissues in the normal state, thereby expressing the expression station in the normal human spleen Langerno and Nun Island. Relics I have identified the gene. Next, when the protein encoded by the gene was examined, it was found to be GPR92 / 93, an orphan GP CR.
[0008] 本発明者らは、次に、 GPR92/93を介したシグナル伝達を生じさせるリガンドとなる 物質を探索した。その結果、生体内脂質の一種である、リゾホスファチジン酸 (以下 L PAと略す場合がある)及びその誘導体力GPR92/93のリガンドであることがわ力つた。 更に、リゾホスファチジン酸が脾臓細胞におけるインスリン分泌促進作用を有すること がわかった。すなわち、 GPR92/93はインスリン分泌調節作用を有する GPCRであり、 そのァゴニストリガンドカ SLPAであることを見出した。  [0008] Next, the present inventors searched for a substance serving as a ligand that causes GPR92 / 93-mediated signal transduction. As a result, it was proved to be a ligand of lysophosphatidic acid (hereinafter sometimes abbreviated as LPA), which is a kind of in vivo lipid, and its derivative power GPR92 / 93. Furthermore, it was found that lysophosphatidic acid has an insulin secretion promoting action in spleen cells. That is, it was found that GPR92 / 93 is a GPCR having an insulin secretion-regulating action, and its agonist ligand SLPA.
本発明は、上記の知見を元に完成するに至ったものである。  The present invention has been completed based on the above findings.
[0009] すなわち本発明は、 GPR92/93作動薬の医薬用途等に関する:  [0009] That is, the present invention relates to pharmaceutical uses and the like of GPR92 / 93 agonists:
〔1〕 GPR92/93作動薬を有効成分として含有する、インスリン分泌促進薬; [1] Insulin secretion promoter containing GPR92 / 93 agonist as active ingredient;
〔2〕 GPR92/93作動薬がリゾホスファチジン酸、その誘導体、 L-NASPA又はそれら の薬学上許容される塩である、〔1〕に記載のインスリン分泌促進薬; [2] The insulin secretagogue according to [1], wherein the GPR92 / 93 agonist is lysophosphatidic acid, a derivative thereof, L-NASPA or a pharmaceutically acceptable salt thereof;
〔3〕 リゾホスファチジン酸又はその誘導体力 式(1):  [3] Lysophosphatidic acid or its derivative power Formula (1):
[0010] [化 1]  [0010] [Chemical 1]
Figure imgf000004_0001
Figure imgf000004_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は炭素数 8〜22の 1ーァルケ 二ノレ基を表し、 [In the formula, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕 で表される化合物である、〔2〕に記載のインスリン分泌促進薬; R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. ] The insulin secretagogue according to [2], which is a compound represented by
〔4〕 式(1)で表される化合物力 リゾホスファチジン酸、 1-Acy卜 PAF又はそれらの薬 学上許容される塩である、〔3〕に記載のインスリン分泌促進薬; 〔5〕 式(1)において、 R^ R2及び R3が以下の組み合わせを表すことを特徴とする、〔 3〕に記載のインスリン分泌促進薬: [4] Insulin secretion-promoting agent according to [3], which is a compound strength represented by formula (1) lysophosphatidic acid, 1-Acy 卜 PAF, or a pharmaceutically acceptable salt thereof; [5] In formula (1), characterized in that R ^ R 2 and R 3 represents a combination of the following, insulin secretagogues described in [3]:
1) R1がォレオイル基を表し、 R2及び R3が水素原子を表す; 1) R 1 represents an oleoyl group, R 2 and R 3 represent a hydrogen atom;
2) R1がパルミトイル基を表し、 R2がァセチル基を表し、 R3が 2—アンモ-ォェチル基 を表す; 2) R 1 represents a palmitoyl group, R 2 represents a acetyl group, and R 3 represents a 2-ammoethyl group;
3) R1がドコサへキサエノィル基を表し、 R2及び R3が水素原子を表す; 3) R 1 represents a docosahexaenoyl group, R 2 and R 3 represent a hydrogen atom;
4) R3がドコサへキサエノィル基を表し、 R2及び R1が水素原子を表す; 4) R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
5) R1がステアロイル基を表し、 R3が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す; 5) R 1 represents a stearoyl group, R 3 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group;
6) R3がステアロイル基を表し、 R1が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す;又は 6) R 3 represents a stearoyl group, R 1 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; or
7) R2がホスホノ基を表し、 R1及び R3がオタタノィル基を表す; 7) R 2 represents a phosphono group, R 1 and R 3 represent an otatanyl group;
〔6〕 血糖調節薬であることを特徴とする、〔1〕〜〔5〕のいずれかに記載のインスリン 分泌促進薬;  [6] The insulin secretagogue according to any one of [1] to [5], which is a blood glucose regulator;
〔7〕 耐糖能異常改善薬であることを特徴とする、〔1〕〜〔5〕のいずれかに記載のィ ンスリン分泌促進薬;  [7] The insulin secretion promoter according to any one of [1] to [5], which is a drug for improving glucose tolerance abnormality;
〔8〕 生活習慣病治療薬であることを特徴とする、〔1〕〜〔5〕のいずれかに記載のィ ンスリン分泌促進薬;  [8] The insulin secretion promoter according to any one of [1] to [5], which is a drug for lifestyle-related diseases;
〔9〕 糖尿病治療薬であることを特徴とする、〔1〕〜〔5〕のいずれかに記載のインスリ ン分泌促進薬;  [9] The insulin secretion promoter according to any one of [1] to [5], which is a therapeutic agent for diabetes;
〔10〕 リゾホスファチジン酸、その誘導体、 L-NASPA又はそれらの薬学上許容される 塩を有効成分として含有する、 GPR92/93作動薬;  [10] GPR92 / 93 agonist containing lysophosphatidic acid, a derivative thereof, L-NASPA or a pharmaceutically acceptable salt thereof as an active ingredient;
〔11〕 リゾホスファチジン酸又はその誘導体力 式(1): [11] Lysophosphatidic acid or its derivative power Formula (1):
[化 2] [Chemical 2]
Figure imgf000005_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は炭素数 8〜22の 1ーァルケ 二ノレ基を表し、
Figure imgf000005_0001
[In the formula, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕 で表される化合物である、〔10〕に記載の GPR92/93作動薬; R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. GPR92 / 93 agonist according to [10], which is a compound represented by
〔12〕 式(1)で表される化合物力 リゾホスファチジン酸、 1-Acy卜 PAF又はそれらの 薬学上許容される塩である、〔11〕に記載のインスリン分泌促進薬;  [12] The compound strength represented by the formula (1): an insulin secretagogue according to [11], which is lysophosphatidic acid, 1-Acy 卜 PAF, or a pharmaceutically acceptable salt thereof;
〔13〕 式(1)において、
Figure imgf000006_0001
R2及び R3が以下の組み合わせを表すことを特徴とする、 〔11〕に記載の GPR92/93作動薬:
[13] In formula (1),
Figure imgf000006_0001
The GPR92 / 93 agonist according to [11], wherein R 2 and R 3 represent the following combinations:
1) R1がォレオイル基を表し、 R2及び R3が水素原子を表す; 1) R 1 represents an oleoyl group, R 2 and R 3 represent a hydrogen atom;
2) R1がパルミトイル基を表し、 R2がァセチル基を表し、 R3が 2—アンモ-ォェチル基 を表す; 2) R 1 represents a palmitoyl group, R 2 represents a acetyl group, and R 3 represents a 2-ammoethyl group;
3) R1がドコサへキサエノィル基を表し、 R2及び R3が水素原子を表す; 3) R 1 represents a docosahexaenoyl group, R 2 and R 3 represent a hydrogen atom;
4) R3がドコサへキサエノィル基を表し、 R2及び R1が水素原子を表す; 4) R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
5) R1がステアロイル基を表し、 R3が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す; 5) R 1 represents a stearoyl group, R 3 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group;
6) R3がステアロイル基を表し、 R1が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す;又は 6) R 3 represents a stearoyl group, R 1 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; or
7) R2がホスホノ基を表し、 R1及び R3がオタタノィル基を表す; 7) R 2 represents a phosphono group, R 1 and R 3 represent an otatanyl group;
〔14〕 GPR92/93又はリガンドが結合し得るそのフラグメントに、被験物質及び Z又は リゾホスファチジン酸、その誘導体及びそれらの薬学上許容される塩から選択される 基準物質を接触させ、該 GPR92/93又はリガンドが結合し得るそのフラグメントに対す る結合活性が、前記基準物質よりも高い化合物を選択することを含む、 GPR92/93リ ガンドのスクリーニング方法;  [14] GPR92 / 93 or a fragment to which a ligand can bind is contacted with a test substance and a reference substance selected from Z or lysophosphatidic acid, a derivative thereof, and a pharmaceutically acceptable salt thereof, and the GPR92 / 93 Or a method for screening a GPR92 / 93 ligand, comprising selecting a compound having a higher binding activity to a fragment to which a ligand can bind than the reference substance;
〔15〕 以下の(a)〜(d)の工程: [15] The following steps (a) to (d):
(a) 被験物質と、 GPR92/93又はリガンドが結合し得るそのフラグメントを接触させる 工程、 (a) Contact the test substance with GPR92 / 93 or a fragment to which the ligand can bind Process,
(b) (a)における被験物質と GPR92/93又はリガンドが結合し得るそのフラグメントに 対する結合活性を測定する工程、  (b) measuring the binding activity of the test substance in (a) to GPR92 / 93 or a fragment to which the ligand can bind;
(c) 前記 (b)の測定値を、被験物質として基準物質を用いた場合の測定値と比較 する工程、及び  (c) comparing the measured value of (b) with the measured value when a reference substance is used as a test substance; and
(d) 前記 (c)の結果に基づき、前記 (b)の測定値が前記 (c)の測定値と同等以上で ある被験物質を GPR92/93リガンドとして選択する工程、  (d) a step of selecting, as a GPR92 / 93 ligand, a test substance whose measured value of (b) is equal to or greater than the measured value of (c) based on the result of (c),
を含む、〔14〕に記載のスクリーニング方法; Including the screening method according to [14];
〔16〕 以下の(a)〜(c)の工程: [16] The following steps (a) to (c):
(a) 被験物質の存在下及び非存在下で、基準物質、及び GPR92/93又はリガンドが 結合し得るそのフラグメントを接触させる工程、  (a) contacting a reference substance and a fragment to which GPR92 / 93 or a ligand can bind in the presence and absence of a test substance;
(b) (a)における基準物質と GPR92/93又はリガンドが結合し得るそのフラグメントに 対する結合活性を測定し、被験物質存在下における測定値と被験物質非存在下に おける測定値とを比較する工程、及び  (b) Measure the binding activity of the reference substance in (a) to GPR92 / 93 or a fragment to which the ligand can bind, and compare the measured value in the presence of the test substance with the measured value in the absence of the test substance. Process, and
(c) 被験物質存在下における前記 (b)の測定値が、被験物質非存在下における前 記 (b)の測定値よりも大きい被験物質を、 GPR92/93リガンドとして選択する工程、 を含む、〔14〕に記載のスクリーニング方法;  (c) selecting as a GPR92 / 93 ligand a test substance in which the measured value of (b) in the presence of the test substance is larger than the measured value of (b) in the absence of the test substance, [14] the screening method according to [14];
〔 17] GPR92/93を含む脂質二重層及び GPR92/93に共役し得る G蛋白質の αサブ ユニットを含んでなる反応系にお 、て、被験物質及び Ζ又はリゾホスファチジン酸、 その誘導体及びそれらの薬学上許容される塩から選択される基準物質を接触させ、 該サブユニットの GDP'GTP交換反応又は該 G蛋白質の細胞刺激活性力 前記基 準物質よりも高 、化合物を選択することを含む、 GPR92/93リガンドのスクリーニング 方法;  [17] In a reaction system comprising a lipid bilayer containing GPR92 / 93 and an α subunit of a G protein that can be conjugated to GPR92 / 93, the test substance and sputum or lysophosphatidic acid, its derivatives and their derivatives Contacting a reference substance selected from pharmaceutically acceptable salts, and selecting a compound that is higher in GDP 'GTP exchange reaction of the subunit or cell stimulating activity of the G protein than the reference substance. GPR92 / 93 ligand screening method;
〔18〕 反応系が、  [18] The reaction system is
(0 GPR92/93をコードする DNAを含む発現ベクターをトランスフエタトした宿主真核 生物細胞、 GO GPR92/93の C末端側に GPR92/93に共役し得る G蛋白質の αサブュ ニットが融合したポリペプチドをコードする DNAを含む発現ベクターでトランスフエタト した宿主真核生物細胞、 Gii) GPR92/93をコードする DNAを含む発現ベクターでトラ ンスフ タトした、 GPR92/93に共役し得る G蛋白質を内因的に発現する宿主動物細 胞、又は Gv) GPR92/93及び GPR92/93に共役し得る G蛋白質を内因的に発現する動 物細胞、それらの細胞のホモジネート又はそれらの細胞由来の膜画分である、〔17〕 に記載のスクリーニング方法; (0) Host eukaryotic cells transfected with an expression vector containing DNA encoding GPR92 / 93, GO GPR92 / 93 C-terminal polymorphic G protein α-subunit fused to GPR92 / 93 Host eukaryotic cells transfected with an expression vector containing DNA encoding the peptide, Gii) Traited with an expression vector containing DNA encoding GPR92 / 93 A host animal cell that endogenously expresses a G protein that can be coupled to GPR92 / 93, or Gv) an animal cell that endogenously expresses a G protein that can be coupled to GPR92 / 93 and GPR92 / 93, The screening method according to [17], which is a homogenate of these cells or a membrane fraction derived from those cells;
〔19〕 以下の(a)〜(d)の工程: [19] The following steps (a) to (d):
(a) 被験物質と、 GPR92/93を含む脂質二重層及び GPR92/93に共役し得る Gタン パク質の OCサブユニットを含んでなる反応系を接触させる工程、  (a) contacting a test substance with a reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定する工程、  (b) measuring the GDP · GTP exchange reaction of the subunits in (a) or the cell stimulating activity of the G protein;
(c) 前記 (b)の測定値を、被験物質としてリゾホスファチジン酸、その誘導体及びそ れらの薬学上許容される塩から選択される基準物質を用いた場合の測定値と比較す る工程、及び  (c) A step of comparing the measured value of (b) with the measured value when a reference substance selected from lysophosphatidic acid, its derivatives and pharmaceutically acceptable salts thereof is used as a test substance. ,as well as
(d) 前記 (c)の結果に基づき、前記 (b)の測定値が前記 (c)の測定値と同等以上で ある被験物質を GPR92/93作動薬として選択する工程、  (d) a step of selecting, as a GPR92 / 93 agonist, a test substance whose measured value of (b) is equal to or greater than the measured value of (c) based on the result of (c),
を含む、〔17〕又は〔18〕に記載のスクリーニング方法; Including the screening method according to [17] or [18];
〔20〕 以下の(a)〜(c)の工程: [20] The following steps (a) to (c):
(a) 被験物質の存在下及び非存在下で、リゾホスファチジン酸、その誘導体及びそ れらの薬学上許容される塩から選択される基準物質、及び GPR92/93を含む脂質二 重層及び GPR92/93に共役し得る Gタンパク質の αサブユニットを含んでなる反応系 を接触させる工程、  (a) a reference substance selected from lysophosphatidic acid, its derivatives and pharmaceutically acceptable salts thereof, and a lipid bilayer containing GPR92 / 93 and GPR92 / in the presence and absence of the test substance Contacting a reaction system comprising an α subunit of a G protein that can be conjugated to 93,
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定し、被験物質存在下における測定値と被験物質非存在下における 測定値とを比較する工程、及び  (b) measuring the GDP-GTP exchange reaction of the subunit in (a) or the cell stimulating activity of the G protein, and comparing the measured value in the presence of the test substance with the measured value in the absence of the test substance; as well as
(c) 被験物質存在下における前記 (b)の測定値が、被験物質非存在下における前 記 (b)の測定値よりも小さ!/、被験物質を、 GPR92/93拮抗薬として選択する工程、 を含む、〔17〕又は〔18〕に記載のスクリーニング方法;  (c) the measurement value of (b) in the presence of the test substance is smaller than the measurement value of (b) in the absence of the test substance! /, the step of selecting the test substance as a GPR92 / 93 antagonist The screening method according to [17] or [18], comprising:
〔21〕 リゾホスファチジン酸又はその誘導体力 式(1): [21] Lysophosphatidic acid or its derivative power Formula (1):
[化 3]
Figure imgf000009_0001
[Chemical 3]
Figure imgf000009_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は炭素数 8〜22の 1ーァルケ 二ノレ基を表し、 [In the formula, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕 で表される化合物である、〔17〕〜〔20〕に記載のスクリーニング方法; R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. ] The screening method according to any one of [17] to [20], which is a compound represented by:
[22] 式(1)で表される化合物力 リゾホスファチジン酸、 1-Acy卜 PAF又はそれらの 薬学上許容される塩である、〔21〕に記載のスクリーニング方法;  [22] The compound power represented by the formula (1): the screening method according to [21], which is lysophosphatidic acid, 1-Acy 卜 PAF, or a pharmaceutically acceptable salt thereof;
〔23〕 式(1)において、
Figure imgf000009_0002
R2及び R3が以下の組み合わせを表すことを特徴とする、
[23] In formula (1),
Figure imgf000009_0002
R 2 and R 3 represent the following combinations:
〔21〕に記載のインスリン分泌促進薬: [21] the insulin secretagogue according to:
1) R1がォレオイル基を表し、 R2及び R3が水素原子を表す; 1) R 1 represents an oleoyl group, R 2 and R 3 represent a hydrogen atom;
2) R1がパルミトイル基を表し、 R2がァセチル基を表し、 R3が 2—アンモ-ォェチル基 を表す; 2) R 1 represents a palmitoyl group, R 2 represents a acetyl group, and R 3 represents a 2-ammoethyl group;
3) R1がドコサへキサエノィル基を表し、 R2及び R3が水素原子を表す; 3) R 1 represents a docosahexaenoyl group, R 2 and R 3 represent a hydrogen atom;
4) R3がドコサへキサエノィル基を表し、 R2及び R1が水素原子を表す; 4) R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
5) R1がステアロイル基を表し、 R3が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す; 5) R 1 represents a stearoyl group, R 3 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group;
6) R3がステアロイル基を表し、 R1が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す;又は 6) R 3 represents a stearoyl group, R 1 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; or
7) R2がホスホノ基を表し、 R1及び R3がオタタノィル基を表す; 7) R 2 represents a phosphono group, R 1 and R 3 represent an otatanyl group;
〔24〕 被験物質が GPR92/93作動薬であることを指標として化合物を選択することを 含む、インスリン分泌促進薬のスクリーニング方法;  [24] A screening method for an insulin secretagogue, comprising selecting a compound with an indicator that the test substance is a GPR92 / 93 agonist;
〔25〕 GPR92/93,又はリガンドが結合し得るそのフラグメントに被験物質を接触させ 、該 GPR92/93又は該フラグメントに結合する化合物を選択することを特徴とする、 [2 4〕に記載の方法; [25] Contact the test substance with GPR92 / 93 or a fragment to which the ligand can bind. The method according to [24], wherein a compound that binds to the GPR92 / 93 or the fragment is selected;
〔26〕 GPR92/93を含む脂質二重層及び GPR92/93に共役し得る G蛋白質の αサブ ユニットを含んでなる反応系にお 、て、該サブユニットの GDP · GTP交換反応又は 該 G蛋白質の細胞刺激活性を、被験物質の存在下と非存在下で比較する工程を含 む、〔24〕に記載の方法;  [26] In a reaction system comprising a lipid bilayer containing GPR92 / 93 and an α subunit of G protein that can be conjugated to GPR92 / 93, the GDP / GTP exchange reaction of the subunit or the G protein The method according to [24], comprising a step of comparing cell stimulating activity in the presence and absence of a test substance;
[27] 反応系が、 [27] The reaction system is
(0 GPR92/93をコードする DNAを含む発現ベクターをトランスフエタトした宿主真核 生物細胞、 GO GPR92/93の C末端側に GPR92/93に共役し得る G蛋白質の αサブュ ニットが融合したポリペプチドをコードする DNAを含む発現ベクターでトランスフエタト した宿主真核生物細胞、 Gii) GPR92/93をコードする DNAを含む発現ベクターでトラ ンスフ タトした、 GPR92/93に共役し得る G蛋白質を内因的に発現する宿主動物細 胞、又は Gv) GPR92/93及び GPR92/93に共役し得る G蛋白質を内因的に発現する動 物細胞、それらの細胞のホモジネート又はそれらの細胞由来の膜画分である、〔26〕 に記載のスクリーニング方法;  (0) Host eukaryotic cells transfected with an expression vector containing DNA encoding GPR92 / 93, GO GPR92 / 93 C-terminal polymorphic G protein α-subunit fused to GPR92 / 93 Host eukaryotic cells transfected with an expression vector containing DNA encoding the peptide, Gii) G protein endogenously coupled with GPR92 / 93, transfected with an expression vector containing DNA encoding GPR92 / 93 Gv) GPR92 / 93 and animal cells that endogenously express G protein that can be conjugated to GPR92 / 93, homogenates of those cells, or membrane fractions derived from those cells A screening method according to [26],
〔28〕 以下の(a)〜(d)の工程: [28] The following steps (a) to (d):
(a) 被験物質と、 GPR92/93を含む脂質二重層及び GPR92/93に共役し得る Gタン パク質の OCサブユニットを含んでなる反応系を接触させる工程、  (a) contacting a test substance with a reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定する工程、及び  (b) a step of measuring the GDP · GTP exchange reaction of the subunit in (a) or the cell stimulating activity of the G protein; and
(c) (b)の結果に基づき、細胞刺激活性を有する被験物質を GPR92/93作動薬とし て選択する工程、  (c) selecting a test substance having cell stimulating activity as a GPR92 / 93 agonist based on the result of (b),
を含む、〔26〕又は〔27〕に記載のスクリーニング方法; Including the screening method according to [26] or [27];
〔29〕 〔14〕〜〔19〕のいずれかに記載の方法で、被験物質が GPR92/93作動薬であ るか否かを評価することを含む、〔24〕に記載の方法;  [29] The method according to [24], comprising evaluating whether the test substance is a GPR92 / 93 agonist by the method according to any one of [14] to [19];
〔30〕 インスリン分泌促進薬が血糖調節薬である、〔24〕〜〔29〕のいずれかに記載 のスクリーニング方法;  [30] The screening method according to any one of [24] to [29], wherein the insulin secretagogue is a blood glucose regulator;
〔31〕 インスリン分泌促進薬が耐糖能異常改善薬である、〔24〕〜〔29〕のいずれか に記載のスクリーニング方法; [31] Any of [24] to [29], wherein the insulin secretagogue is a drug for improving glucose tolerance The screening method according to 1;
〔32〕 インスリン分泌促進薬が糖尿病治療薬である、〔24〕〜〔29〕のいずれかに記 載のスクリーニング方法;  [32] The screening method according to any one of [24] to [29], wherein the insulin secretagogue is a therapeutic agent for diabetes;
〔33〕 〔24〕〜〔29〕の 、ずれかに記載の方法により得られるインスリン分泌促進薬; 〔34〕 血糖調節薬であることを特徴とする、〔33〕に記載のインスリン分泌促進薬; 〔35〕 耐糖能異常改善薬であることを特徴とする、〔33〕に記載のインスリン分泌促 進薬;  [33] Insulin secretion promoter obtained by the method according to any one of [24] to [29]; [34] Insulin secretion promoter according to [33], which is a blood glucose regulator [35] The insulin secretagogue according to [33], which is an agent for improving glucose tolerance abnormality;
〔36〕 生活習慣病治療薬であることを特徴とする、〔33〕に記載のインスリン分泌促 進薬;  [36] The insulin secretagogue according to [33], which is a drug for lifestyle-related diseases;
〔37〕 糖尿病治療薬であるであることを特徴とする、〔33〕に記載のインスリン分泌促 進薬;  [37] The insulin secretagogue according to [33], which is a therapeutic agent for diabetes;
〔38〕 GPR92/93拮抗薬を有効成分として含有する、脂肪蓄積抑制薬;  [38] Fat accumulation inhibitor containing a GPR92 / 93 antagonist as an active ingredient;
〔39〕 抗肥満薬であることを特徴とする、〔38〕に記載の脂肪蓄積抑制薬; [39] The fat accumulation-suppressing drug according to [38], which is an anti-obesity drug;
〔40〕 被験物質が GPR92/93拮抗薬であることを指標として化合物を選択することを 含む、脂肪蓄積抑制薬のスクリーニング方法; [40] A method for screening a fat accumulation-inhibiting drug, comprising selecting a compound using as an index that the test substance is a GPR92 / 93 antagonist;
〔41〕 被験物質の存在下又は非存在下で、 GPR92/93又はリガンドが結合し得るそ のフラグメントに、リゾホスファチジン酸、その誘導体及びそれらの薬学上許容される 塩から選択される基準物質を接触させ、基準物質と該 GPR92/93又は該フラグメント の結合を阻害する化合物を選択することを特徴とする、〔40〕に記載の方法; 〔42〕 被験物質の存在下又は非存在下で、 GPR92/93を含む脂質二重層及び GPR 92/93に共役し得る G蛋白質の αサブユニットを含んでなる反応系にリゾホスファチジ ン酸、その誘導体及びそれらの薬学上許容される塩から選択される基準物質を接触 させ、当該基準物質の該サブユニットの GDP'GTP交換反応又は該 G蛋白質の細 胞刺激活性を阻害する化合物を選択することを特徴とする、〔40〕に記載の方法; 〔43〕 反応系が、  [41] A reference substance selected from lysophosphatidic acid, a derivative thereof, and a pharmaceutically acceptable salt thereof is added to GPR92 / 93 or a fragment to which a ligand can bind in the presence or absence of a test substance. The method according to [40], wherein the compound that inhibits the binding of the reference substance and the GPR92 / 93 or the fragment is selected; and [42] in the presence or absence of the test substance, Criteria selected from lysophosphatidic acid, its derivatives and their pharmaceutically acceptable salts in a reaction system comprising a lipid bilayer containing GPR92 / 93 and an α subunit of G protein that can be conjugated to GPR 92/93 43. A method according to [40], wherein the compound is contacted and a compound that inhibits the GDP′GTP exchange reaction of the subunit of the reference substance or the cell stimulating activity of the G protein is selected. ] The reaction system is The
(0 GPR92/93をコードする DNAを含む発現ベクターをトランスフエタトした宿主真核 生物細胞、 GO GPR92/93の C末端側に GPR92/93に共役し得る G蛋白質の αサブュ ニットが融合したポリペプチドをコードする DNAを含む発現ベクターでトランスフエタト した宿主真核生物細胞、 Gii) GPR92/93をコードする DNAを含む発現ベクターでトラ ンスフ タトした、 GPR92/93に共役し得る G蛋白質を内因的に発現する宿主動物細 胞、又は Gv) GPR92/93及び GPR92/93に共役し得る G蛋白質を内因的に発現する動 物細胞、それらの細胞のホモジネート又はそれらの細胞由来の膜画分である、〔42〕 に記載のスクリーニング方法; (0) Host eukaryotic cells transfected with an expression vector containing DNA encoding GPR92 / 93, GO GPR92 / 93 C-terminal polymorphic G protein α-subunit fused to GPR92 / 93 Transform with an expression vector containing DNA encoding the peptide Host eukaryotic cells, Gii) host animal cells endogenously expressing a G protein that can be coupled to GPR92 / 93, transformed with an expression vector containing DNA encoding GPR92 / 93, or Gv) GPR92 The screening method according to [42], which is an animal cell endogenously expressing a G protein that can be coupled to / 93 and GPR92 / 93, a homogenate of these cells, or a membrane fraction derived from those cells;
〔44〕 脂肪蓄積抑制薬が抗肥満薬である、〔40〕〜〔43〕のいずれかに記載のスクリ 一二ング方法;  [44] The screening method according to any one of [40] to [43], wherein the fat accumulation inhibitor is an anti-obesity agent;
〔45〕 〔40〕〜〔43〕の 、ずれかに記載の方法により得られる脂肪蓄積抑制薬; 〔46〕 抗肥満薬であることを特徴とする、〔45〕に記載の脂肪蓄積抑制薬; 〔47〕 以下の工程を含むことを特徴とする生体由来脂肪酸誘導体の製造方法: [45] Fat accumulation inhibitor obtained by the method according to any one of [40] to [43]; [46] Fat accumulation inhibitor according to [45], which is an anti-obesity agent [47] A method for producing a biologically-derived fatty acid derivative comprising the following steps:
(a)固相抽出樹脂と生体由来サンプルを接触させ、生体由来脂肪酸誘導体および 低分子成分を吸着させる工程、及び (a) contacting the solid-phase extraction resin with the biological sample to adsorb the biological fatty acid derivative and the low molecular component; and
(b) 10%〜95%の親水性有機溶媒を含む水溶液により、生体由来脂肪酸誘導体含 有画分および低分子成分を溶出する工程。  (b) A step of eluting the fatty acid derivative-containing fraction and low-molecular components from an aqueous solution containing 10% to 95% of a hydrophilic organic solvent.
本発明のさらなる特徴及び本発明の利点について、以下により詳細に説明する。 発明の効果  Further features of the present invention and advantages of the present invention are described in more detail below. The invention's effect
[0013] 本発明により、ォーファン Gタンパク質結合受容体(GPCR): GPR92/93のァゴ-スト リガンド、当該リガンドを用いて GPR92/93作動薬もしくは拮抗薬をスクリーニングする 方法等を提供することが可能になった。また、本発明の GPR92/93作動薬は、インスリ ン分泌促進活性を示し、耐糖能異常改善薬、糖尿病治療薬となり得る。  [0013] The present invention provides an orphan G protein-coupled receptor (GPCR): GPR92 / 93 ligand, a method for screening a GPR92 / 93 agonist or antagonist using the ligand, and the like. It became possible. In addition, the GPR92 / 93 agonist of the present invention exhibits insulin secretion promoting activity and can be a glucose tolerance ameliorating agent or a diabetes therapeutic agent.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本明細書において、アミノ酸、(ポリ)ペプチド、(ポリ)ヌクレオチドなどの略号による 表示は、 IUPAC— IUBの規定〔IUPAC- IUB Communication on Biological Nomencl ature, Eur. J. Biochem., 138: 9 (1984)〕、「塩基配列又はアミノ酸配列を含む明細書 等の作成のためのガイドライン」(日本国特許庁編)、および当該分野における慣用 記号に従う。 [0014] In the present specification, the abbreviations of amino acids, (poly) peptides, (poly) nucleotides, etc. are defined by IUPAC—IUB [IUPAC-IUB Communication on Biological Nomenclature, Eur. J. Biochem., 138: 9 (1984)], “Guidelines for the preparation of specifications including base sequences or amino acid sequences” (edited by the Japan Patent Office), and conventional symbols in the field.
[0015] 本明細書において、「GPR92/93」とは、 GPCRの一種として知られているタンパク質 であり、具体的には配列番号 2で表されるタンパク質 (ヒト GPR92/93)を例示すること ができる〔Genbank Acc. No. NM_020400 ; Gene, 275(1), p83- 91(2001)を参照〕。 また、本明細書において、 GPR92/93には、同族体 (ホモログ)および変異体等が包 含される。例えば、同族体 (ホモログ)としては、ヒトのタンパク質に対応するマウスなど 他生物種のタンパク質が例示でき、これらは HomoloGene (http: //www.ncbi.nlm.nih. gov/HomoloGene/)により同定された遺伝子の塩基配列力 演繹的に同定すること ができる。具体的には、配列番号 4もしくは 10で表されるマウス GPR92/93 (Genbank Acc. No. XM_355812)を挙げることができる。 [0015] In this specification, "GPR92 / 93" is a protein known as a kind of GPCR, specifically, the protein represented by SEQ ID NO: 2 (human GPR92 / 93) [See Genbank Acc. No. NM — 020400; Gene, 275 (1), p83-91 (2001)]. Further, in this specification, GPR92 / 93 includes homologues and mutants. For example, homologues include proteins from other species such as mice that correspond to human proteins, and these are identified by HomoloGene (http: //www.ncbi.nlm.nih. Gov / HomoloGene /) The base sequence ability of the generated gene can be identified a priori. Specific examples include mouse GPR92 / 93 (Genbank Acc. No. XM_355812) represented by SEQ ID NO: 4 or 10.
また変異体としては、天然に存在するアレル変異体及び天然に存在しな 、変異体 が挙げられ、具体的には(a)配列番号 2に記載のアミノ酸配列において 1もしくは複 数のアミノ酸が欠失、付加もしくは置換されたアミノ酸配列力もなり、 GPCRの機能を 保持するタンパク質、(b)配列番号 2に記載のアミノ酸配列と 80%以上の配列同一 性を有するアミノ酸配列力もなり、 GPCRの機能を保持するタンパク質、(c)配列番号 1に記載の塩基配列からなる DNAと相補的な塩基配列力 なる DNAと、ストリンジ ントな条件下でノヽイブリダィズする DNAによりコードされるアミノ酸配列カゝらなり、 GPC Rの機能を保持するタンパク質が挙げられる。  Variants include naturally occurring allelic variants and non-naturally occurring variants. Specifically, (a) the amino acid sequence set forth in SEQ ID NO: 2 lacks one or more amino acids. A protein that retains GPCR function, and (b) an amino acid sequence that has 80% or more sequence identity with the amino acid sequence described in SEQ ID NO: 2, A protein to be retained, (c) a DNA having a nucleotide sequence complementary to the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1, and an amino acid sequence encoded by the DNA that is hybridized under stringent conditions, Examples include proteins that retain the functions of GPC R.
ここで、 「GPCRの機能を保持する」とは、具体的には配列番号 2で表される天然のヒ ト GPR92/93と同じリガンド—レセプター相互作用を示し、且つ共役する G aを活性化 して該 G aの GDP · GTP交換反応を促進する活性を有するタンパク質を ヽぅ。  Here, “retaining GPCR function” specifically refers to the same ligand-receptor interaction as natural human GPR92 / 93 represented by SEQ ID NO: 2 and activates conjugated Ga. And a protein having an activity of promoting the GDP / GTP exchange reaction of Ga.
また、前記 (a)における、アミノ酸の「欠失、付加もしくは置換」や前記 (d)における「 80%以上の配列同一性」には、例えば、配列番号 2で表されるアミノ酸配列を有する 蛋白質が細胞内で受けるプロセシング、該蛋白質が由来する生物の種差、個体差、 組織間の差異等により天然に生じる変異や、人為的なアミノ酸の変異等が含まれる。 前記 (b)におけるアミノ酸の「欠失、付加もしくは置換」(以下、総じてアミノ酸の改変と 記すこともある。)を人為的に行う場合の手法としては、例えば、配列番号 2で表され るアミノ酸配列をコードする DNAに対して慣用の部位特異的変異導入を施し、その後 この DNAを常法により発現させる手法が挙げられる。ここで部位特異的変異導入法と しては、例えば、アンバー変異を利用する方法 (ギャップド'デュプレックス法、 Nucleic Acids Res., 12, 9441-9456(1984))、変異導入用プライマーを用いた PCRによる方法 等が挙げられる。前記で改変されるアミノ酸の数については、少なくとも 1残基、具体 的には 1若しくは数個、又はそれ以上である。かかる改変の数は、 GPCRの機能を保 持することのできる範囲であれば良 、。 In addition, the “deletion, addition or substitution” of amino acids in (a) and “80% or more sequence identity” in (d) include, for example, a protein having the amino acid sequence represented by SEQ ID NO: 2 Include naturally occurring mutations due to processing in cells, species differences of individuals from which the protein is derived, individual differences, differences between tissues, and the like, and artificial amino acid mutations. As a technique for artificially performing the “deletion, addition or substitution” of amino acids in the above (b) (hereinafter sometimes referred to as amino acid modification), for example, the amino acid represented by SEQ ID NO: 2 For example, a conventional site-directed mutagenesis is performed on the DNA encoding the sequence, and then this DNA is expressed by a conventional method. Here, as site-directed mutagenesis methods, for example, a method using amber mutation (gapped 'duplex method, Nucleic Acids Res., 12, 9441-9456 (1984)), PCR using mutagenesis primers By Etc. The number of amino acids modified as described above is at least one residue, specifically one or several, or more. The number of such modifications is acceptable as long as the GPCR function can be maintained.
[0017] 前記 (b)における「配列同一性」とは、 2つの DNA又は 2つの蛋白質間における配 列の同一性及び相同性をいう。前記「配列同一性」は、比較対象の配列の領域にわ たって、最適な状態にアラインメントされた 2つの配列を比較することにより決定される 。ここで、比較対象の DNA又は蛋白質は、 2つの配列の最適なアラインメントにおい て、付加又は欠失 (例えばギャップ等)を有していてもよい。このような配列同一性に 関しては、例えば、 Vector NTIを用いて、 ClustalWアルゴリズム (Nucleic Acid Res., 2 2(22):4673-4680(1994)を利用してアラインメントを作成することにより算出することが できる。尚、配列同一性は、配列解析ソフト、具体的には Vector NTI、 GENETYX- M ACや公共のデータベースで提供される解析ツールを用いて測定される。前記公共 データベースは、 f列えば、ホームページアドレス http://www.ddbj.nig.ac.jpにおいて 一般的に利用可能である。本発明における配列同一性は、 80%以上であればよい 力 好ましくは 90%以上、より好ましくは 95%以上、さらにより好ましくは 97%である。  [0017] "Sequence identity" in (b) refers to sequence identity and homology between two DNAs or two proteins. The “sequence identity” is determined by comparing two sequences that are optimally aligned over the region of the sequence to be compared. Here, the DNA or protein to be compared may have an addition or a deletion (for example, a gap) in the optimal alignment of the two sequences. Such sequence identity is calculated, for example, by creating an alignment using the ClustalW algorithm (Nucleic Acid Res., 22 (22): 4673-4680 (1994) using Vector NTI. Note that sequence identity is measured using sequence analysis software, specifically analysis tools provided by Vector NTI, GENETYX-MAC, or public databases, where the public database is f For example, it can be generally used at the homepage address http://www.ddbj.nig.ac.jp The sequence identity in the present invention may be 80% or more. Preferably it is 95% or more, and still more preferably 97%.
[0018] また、前記 (c)における「ストリンジヱントな条件」に関して、ここで使用されるハイプリ ダイゼーシヨンは、例えば、 Sambrook J., Frisch E. F., Maniatis T.著、モレキュラーク ローニング第 2版(Molecular Cloning 2nd edition)、コールド スプリング ハーバー ラボラトリー発行(Cold Spring Harbor Laboratory press)等に記載される通常の方法 に準じて行うことができる。また「ストリンジェントな条件下」とは、例えば、 6xSSC (l . 5 M NaCl、0. 15M クェン酸三ナトリウムを含む溶液を lOxSSCとする)、 50%フオルム アミドを含む溶液中で 45°Cにてハイブリッドを形成させた後、 2xSSCで 50°Cにて洗浄 するような条件(Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1- 6.3.6)等 を挙げることができる。洗浄ステップにおける塩濃度は、例えば、 2xSSCで 50°Cの条 件(低ストリンジエンシーな条件)力ら 0. 2xSSCで 50°Cまでの条件(高ストリンジェンシ 一な条件)から選択することができる。洗浄ステップにおける温度は、例えば、室温( 低ストリンジエンシーな条件)から 65°C (高ストリンジエンシーな条件)までの温度から 選択することができる。また、塩濃度と温度の両方を変えることもできる。 前記 (c)における「相補的な塩基配列」とは、 GPR92/93をコードする DNAの塩基 配列に対して、 A:Tおよび G:Cといった塩基対関係に基づいて、塩基的に相補的な 関係にあるポリヌクレオチドを意味するものである。 [0018] Regarding the “stringent conditions” in (c) above, the high-prisition dies used here are, for example, by Sambrook J., Frisch EF, Maniatis T., Molecular Cloning 2nd Edition (Molecular Cloning 2nd Edition). edition), Cold Spring Harbor Laboratory Press (Cold Spring Harbor Laboratory press), etc. “Stringent conditions” refers to, for example, 6xSSC (solution containing 0.5 M NaCl, 0.15 M trisodium citrate as lOxSSC), 45 ° C in a solution containing 50% formamide. The following conditions may be mentioned: a hybrid is formed and then washed with 2 × SSC at 50 ° C. (Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6). The salt concentration in the washing step should be selected from, for example, conditions of 50 ° C at 2xSSC (low stringency conditions) and conditions up to 50 ° C at 2xSSC (high stringency conditions). Can do. The temperature in the washing step can be selected, for example, from room temperature (low stringency conditions) to 65 ° C. (high stringency conditions). It is also possible to change both the salt concentration and the temperature. The “complementary base sequence” in the above (c) is a base complementary to the base sequence of DNA encoding GPR92 / 93 based on the base pair relationship such as A: T and G: C. It is intended to mean a related polynucleotide.
本明細書において、 GPR92/93には、前記 GPR92/93をコードする DNAを含む組換 え細胞力 製造される組換え GPR92/93、それらの機能的フラグメントの全てを包含 する意味で使用される。  In the present specification, GPR92 / 93 is used in a sense that encompasses all of the recombinant GPR92 / 93 produced by recombinant cell power containing the DNA encoding GPR92 / 93 and functional fragments thereof. .
[0019] 「GPR92/93をコードする塩基配列からなる DNA」は、前記 GPR92/93のアミノ酸配 列をコードする DNAを表し、ヒト及び他の哺乳動物由来の GPR92/93、あるいは該 GP R92/93のアミノ酸配列において、 1もしくは複数のアミノ酸が置換、欠失、挿入、付カロ または修飾されたアミノ酸配列力 なり、天然 GPR92/93と同じリガンドーレセプター相 互作用を示し、且つ共役する G aを活性ィ匕して該サブユニットの GDP ' GTP交換反 応を促進する活性を有するポリペプチドをコードする DNAであれば特に制限はない 。ヒト GPR92/93 cDNAのコーディング領域の他、ゥシ、ブタ、サル、マウス、ラット等の ヒト以外の哺乳動物由来の GPR92/93をコードする DNA等が例示され、これらは、哺 乳動物の脾臓、もしくは腎臓、肺の細胞由来の cDNAライブラリーもしくはゲノミツクラ イブラリーから、ヒト GPR92/93の cDNAクローンをプローブとして単離され得る。また、 GPR92/93は、ヒト GPR92/93の cDNAクローンを基に、部位特異的変異誘発等の人 為的処理により一部に変異を導入したものであってもよい。 [0019] "DNA comprising a base sequence encoding GPR92 / 93" represents DNA encoding the amino acid sequence of GPR92 / 93, and GPR92 / 93 derived from humans and other mammals, or the GPR92 / 93 In the amino acid sequence of 93, one or more amino acids are substituted, deleted, inserted, attached or modified, and have the same ligand-receptor interaction as natural GPR92 / 93, and are conjugated. There is no particular limitation as long as it is a DNA encoding a polypeptide having an activity that promotes the GDP ′ GTP exchange reaction of the subunit. In addition to the coding region of human GPR92 / 93 cDNA, DNA encoding GPR92 / 93 derived from mammals other than humans such as ushi, pig, monkey, mouse, rat, etc. is exemplified, and these include the spleen of mammals Alternatively, a cDNA clone of human GPR92 / 93 can be isolated as a probe from a cDNA library derived from kidney or lung cells or a genomic library. In addition, GPR92 / 93 may be one in which a mutation has been partially introduced by artificial treatment such as site-directed mutagenesis based on the cDNA clone of human GPR92 / 93.
具体的には、配列番号 1で表されるヒト由来の GPR92/93をコードする DNA、配列番 号 3もしくは 9で表されるマウス由来の GPR92/93をコードする DNA等が挙げられる。  Specific examples include DNA encoding human-derived GPR92 / 93 represented by SEQ ID NO: 1, and DNA encoding mouse-derived GPR92 / 93 represented by SEQ ID NO: 3 or 9.
[0020] GPR92/93は、 GPR92/93又はそのフラグメントをコードする DNAを含む発現べクタ 一でトランスフエタトされた細胞の膜含有画分から、抗 GPR92/93抗体を用いたァフィ 二ティークロマトグラフィーにより単離することができる。あるいは、当該細胞由来の c[0020] GPR92 / 93 is affinity chromatography using an anti-GPR92 / 93 antibody from a membrane-containing fraction of cells transfected with an expression vector containing DNA encoding GPR92 / 93 or a fragment thereof. Can be isolated. Alternatively, c derived from the cell
DNAライブラリーもしくはゲノミックライブラリーから、 GPR92/93の cDNAクローンをプ ローブとして単離される DNAクローンを適当な発現ベクター中にクローユングし、宿 主細胞に導入して発現させ、細胞培養物の膜含有画分から抗 GPR92/93抗体や、 Hi s-tag、 GST-tag等を用いたァフィユティークロマトグラフィーにより精製することもでき る。また、 GFP等の蛍光物質と GPR92/93の融合タンパク質を発現させることにより、 G FP陽性細胞、すなわち GPR92/93がトランスフエタトされた細胞のみを選択してスクリ 一ユングに用いることも可能である(Xu et al., Nat. Cell Biol, 2, 261-267 (2000) )。 また、 GPR92/93の cDNAクローンを基に、部位特異的変異誘発等の人為的処理に より一部に変異を導入したものであってもよい。しかしながら、リガンド結合ドメインは 高度に保存されている必要があるので、このような領域には変異を導入しないことが 望ましい。保存的アミノ酸置換は周知であり、当業者は GPR92/93の特性を変化させ な!、範囲で、 GPR92/93に適宜変異を導入することができる。 GPR92 / 93 cDNA clone isolated from a DNA library or genomic library is cloned into an appropriate expression vector, introduced into host cells for expression, and contained in a cell culture membrane The fraction can also be purified by affinity chromatography using anti-GPR92 / 93 antibody, His-tag, GST-tag or the like. In addition, by expressing a fusion protein of GPR92 / 93 with a fluorescent substance such as GFP, G It is also possible to select only FP positive cells, that is, cells into which GPR92 / 93 has been transfected and use it for screening (Xu et al., Nat. Cell Biol, 2, 261-267 (2000)) . Alternatively, a mutation may be partially introduced by artificial treatment such as site-directed mutagenesis based on the GPR92 / 93 cDNA clone. However, since the ligand binding domain needs to be highly conserved, it is desirable not to introduce mutations in such regions. Conservative amino acid substitutions are well known, and those skilled in the art can introduce mutations into GPR92 / 93 as appropriate without changing the properties of GPR92 / 93!
[0021] 「GPR92/93リガンド」とは、特にことわらない限り、後述するリゾホスファチジン酸及 びその誘導体だけでなぐァゴ-スト (即ち、レセプターの生理的リガンド結合部位に 結合して、リガンド様の活性を示す物質)やアンタゴ-スト(レセプターの生理的リガン ド結合部位に結合するが、リガンド様の活性を示さな 、物質)及びインバースァゴ- スト(レセプターのいずれかの部位に結合してそのコンフオメーシヨンを変化させ、レ セプターを不活性ィ匕する物質)をも包含するものとする。  [0021] Unless otherwise specified, "GPR92 / 93 ligand" refers to an antigen that is formed only by lysophosphatidic acid and its derivatives described later (that is, it binds to the physiological ligand binding site of the receptor and is ligand-like). ) And antagonists (substances that bind to the physiological ligand binding site of the receptor, but do not exhibit ligand-like activity) and inverse agonists (substances that bind to any site of the receptor Substances that change conformation and inactivate receptors) are also included.
[0022] 本明細書において、「GPR92/93作動薬」とは、 GPR92/93に結合して該レセプター の活性を促進する物質の総称として用いられ、後述するリゾホスファチジン酸に代表 されるリゾホスファチジン酸誘導体等の他、 GPR92/93に対するァゴニスト活性を有す るあらゆる化合物を包含する。  In the present specification, the “GPR92 / 93 agonist” is used as a general term for substances that bind to GPR92 / 93 and promote the activity of the receptor, and is represented by lysophosphatidic acid typified by lysophosphatidic acid described later. In addition to acid derivatives, etc., all compounds having agonist activity against GPR92 / 93 are included.
本明細書において、「GPR92/93拮抗薬」とは、 GPR92/93に結合して該レセプター のシグナル伝達活性を阻害する物質の総称として用いられ、前記の GPR92/93アンタ ゴ-スト及び GPR92/93インバースァゴ-ストに相当する。  In the present specification, the term “GPR92 / 93 antagonist” is used as a general term for substances that bind to GPR92 / 93 and inhibit the signal transduction activity of the receptor, and include the aforementioned GPR92 / 93 antagonist and GPR92 / 93. Equivalent to 93 inverse ghosts.
[0023] (D GPR92/93作動薬  [0023] (D GPR92 / 93 agonist
本発明の第一の態様は、リゾホスファチジン酸、その誘導体又はそれらの薬学上許 容される塩を有効成分とする GPR92/93作動薬、及び GPR92/93作動薬からなるイン スリン分泌促進薬等に関する。  The first aspect of the present invention is a GPR92 / 93 agonist comprising lysophosphatidic acid, a derivative thereof, or a pharmaceutically acceptable salt thereof as an active ingredient, and an insulin secretagogue comprising a GPR92 / 93 agonist, etc. About.
本明細書において、リゾホスファチジン酸 (以下 LPAと略する場合がある)とは、 1 アシノレ sn グリセ口一ノレ—3—ホスフェート ( 1— Acy卜 sn— glycero卜 3— phosphate)を 表す。ここで「ァシル」は、炭素数 14〜22であり、 0〜6の二重結合を有する直鎖のァ シル基を表す。具体的には、式(2): [0024] [化 4]
Figure imgf000017_0001
In the present specification, lysophosphatidic acid (hereinafter sometimes abbreviated as “LPA”) represents 1 asinole sn glyce mouth 1-nore-3-phosphate (1-Acy 卜 sn-glycero 卜 3-phosphate). Here, “acyl” represents a linear acyl group having 14 to 22 carbon atoms and having 0 to 6 double bonds. Specifically, equation (2): [0024] [Chemical 4]
Figure imgf000017_0001
で表される LPA (18:1)、式(3):  LPA (18: 1) represented by the formula (3):
[0025] [化 5] H
Figure imgf000017_0002
[0025] [Chemical 5] H
Figure imgf000017_0002
で表される LPA (22:6)が挙げられる。  LPA (22: 6) represented by
[0026] 本明細書にぉ 、て、リゾホスファチジン酸誘導体(LPA誘導体)とは、 LPAにお!/ヽて 、以下の (i)〜(vii)の 1又は複数の改変が施されたィ匕合物等が挙げられる: [0026] In the present specification, lysophosphatidic acid derivative (LPA derivative) means that LPA has been modified to one or more of the following (i) to (vii): Examples include:
(01位ァシルォキシ基を水酸基、メルカプト基、アミノ基、炭素数 1〜4のアルコキシ基 、炭素数 1〜4のアルキルチオ基、炭素数 1〜4のアルキルアミノ基又は炭素数 1〜4 のジアルキルアミノ基に変換する改変、  (The 01-position acyloxy group is a hydroxyl group, a mercapto group, an amino group, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, an alkylamino group having 1 to 4 carbon atoms, or a dialkylamino group having 1 to 4 carbon atoms. Modification to convert to group,
(ii) l位炭素原子を、カルボ-ル基もしくはチォカルボ-ル基に変換する改変、 (ii) a modification that converts the carbon atom at position 1 into a carbo group or a thio group;
(iii) 1位ァシルォキシ基におけるエステルをアミドもしくはチォエステルに変換する改 変、 (iii) modification to convert ester at the 1-position acyloxy group to amide or thioester,
(iv) 2位水酸基をァシルォキシ基、メルカプト基、アミノ基、炭素数 1〜4のアルコキシ 基、炭素数 1〜4のアルキルチオ基、炭素数 1〜4のアルキルアミノ基又は炭素数 1〜 4のジアルキルアミノ基に変換する改変、  (iv) The hydroxyl group at position 2 is an acyloxy group, a mercapto group, an amino group, an alkoxy group having 1 to 4 carbon atoms, an alkylthio group having 1 to 4 carbon atoms, an alkylamino group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Modification to convert to a dialkylamino group,
(v) 2位水酸基がァシルイ匕されたィ匕合物において、エステルをアミドもしくはチォエステ ルに変換する改変、  (v) a modification in which an ester is converted to an amide or thiester in a compound in which the hydroxyl group at the 2-position is acylated;
(vi) 3位リン酸基とコリン、リン酸もしくはイノシトールを縮合させる改変、又は  (vi) a modification that condenses the 3-position phosphate group with choline, phosphate or inositol, or
(vii) l位ァシルォキシ基におけるエステル結合部分力 ビュルエーテル結合に変換さ れたプラズマローゲン (plasmalogen)への改変。  (vii) Partial bond strength of ester bond at the l-position acyloxy group Modification to plasmalogen converted to a bull ether bond.
[0027] LPA又は LPA誘導体として具体的には、以下の式(1):  [0027] Specifically as LPA or LPA derivative, the following formula (1):
[0028] [化 6]
Figure imgf000018_0001
[0028] [Chemical 6]
Figure imgf000018_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は炭素数 8〜22の 1ーァルケ 二ノレ基を表し、 [In the formula, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕で表され る化合物が挙げられる。 R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. ] The compound represented by this is mentioned.
ここで炭素数 8〜22のァシル基としては 0〜6の二重結合を有して!/、てもよ!/、直鎖 のァシル基が挙げられる。炭素数 2〜22のァシル基としては、 0〜6の二重結合を有 して 、てもよ 、直鎖のァシル基が挙げられる。  Here, examples of the acyl group having 8 to 22 carbon atoms include a 0 to 6 double bond! /, May! /, And a straight chain acyl group. Examples of the acyl group having 2 to 22 carbon atoms include straight chain acyl groups having 0 to 6 double bonds.
また、炭素数 8〜22の 1—アルケニル基としては、前記ァシル基のエステル部分構 造力 ビニルエーテルに改変された基が挙げられる。即ち、 R1が 1—アルケニル基を 表す式(1)の化合物としては、 Plasmalogenが挙げられる。 In addition, examples of the 1-alkenyl group having 8 to 22 carbon atoms include groups in which the ester moiety of the acyl group is modified to vinyl ether. That is, Plasmalogen is mentioned as a compound of the formula (1) in which R 1 represents a 1-alkenyl group.
式(1)で表される化合物としては、上述の LPAの他、式(5):  As a compound represented by Formula (1), in addition to the above-mentioned LPA, Formula (5):
[化 7] [Chemical 7]
Figure imgf000018_0002
Figure imgf000018_0002
で表される 1 - O-パルミトイル 2— 0-ァセチル sn グリセリル 3 ホスホリルコ リン ( 1 -O-palmitoyl-2-O-acetyl-sn-glyceryl- j-phosphorylcnoline; 1 -Acyl-PAF) ^ 式 (6) : 1-O-palmitoyl 2—0-acetylyl sn glyceryl 3 phosphorylcholine (1-O-palmitoyl-2-O-acetyl-sn-glyceryl-j-phosphorylcnoline; 1-Acyl-PAF) ^ Formula (6 ):
[化 8]
Figure imgf000019_0001
[Chemical 8]
Figure imgf000019_0001
で表される 1-リゾホスファチジル -sn-グリセ口- 3-ホスホノ -(1-D-myo-イノシトール)(以 下 LPI (18 : 0)と略する場合がある)、式(7):  1-lysophosphatidyl-sn-glyceguchi-3-phosphono- (1-D-myo-inositol) (hereinafter sometimes abbreviated as LPI (18: 0)), formula (7):
[0031] [化 9]  [0031] [Chemical 9]
Figure imgf000019_0002
Figure imgf000019_0002
で表されるジァシルグリセロールピロホスフェート〔Diacylglycero卜 pyrophosphate; DG PP(8:0)と称する場合がある〕、ホスファチジン酸(Phosphatidic acid ; PA)、又はリゾホ スファチジルコリン(Lysophosphatidylcholine ; LPC)等が挙げられる。ここで、 PAとし ては、 1,2-ジ(シス一 9—ォクタデセノィル) sn—グリセロール 3 ホスフェート ナ トリウム ¾_ (1,2— Di(cis— 9— octadecenoyl)—sn— glycerol 3-pnospnate sodium saltj等力罕 げられる。また、 LPCとしては、巿販ゥシ由来 LPC〔ゥシ脳 L- α リゾホスファチジルコ リン〕が挙げられる。  Diacylglycerol pyrophosphate (may be referred to as DG PP (8: 0)), phosphatidic acid (PA), lysophosphatidylcholine (LPC), etc. Is mentioned. Here, as PA, 1,2-di (cis 9-octadecenoyl) sn-glycerol 3 phosphate sodium ¾_ (1,2-di (cis—9-octadecenoyl) -sn-glycerol 3-pnospnate sodium saltj In addition, LPC includes Lushi [Lushi brain L-α lysophosphatidylcholine] derived from commercial sales.
また、式(1)で表される化合物として、リゾホスファチジルコリン プラズマロゲン(Lys ◦phosphatidylcholine plasmalogen ;例えば巿販ゥシ心臓 L- a—リゾホスファチジノレコ リン プラズマロゲン)が挙げられる。  In addition, examples of the compound represented by the formula (1) include lysophosphatidylcholine plasmalogen (eg, Lys phosphatidylcholine plasmalogen; for example, a commercial rush heart L-a-lysophosphatidinorecolin plasmalogen).
更に、上記式(5)〜式(7)で表される化合物において、グリセロール骨格の 1位ァシ ルォキシ基、 2位水酸基もしくはァシルォキシ基又は 3位リン酸基が改変された化合 物もまた LPA誘導体に含まれ、改変としては前記の (i)〜(vii)が挙げられる。  Further, in the compounds represented by the above formulas (5) to (7), compounds in which the 1-position, 2-position, 2-hydroxyl group, or 3-position phosphate group of the glycerol skeleton is modified are also LPA. Examples of modifications included in the derivatives include the above (i) to (vii).
また、 LPAもしくは LPIにお 、て 1位ァシル基が 2位水酸基に転移した 2位ァシルォキ シ体もまた、本発明における LPA又は LPIの範疇である。  In addition, the 2-position acyloxy compound in which the 1-position acyl group is transferred to the 2-position hydroxyl group in LPA or LPI is also within the category of LPA or LPI in the present invention.
[0032] 又は以下の式 (4) : [0032] or the following equation (4):
[0033] [化 10] (4)[0033] [Chemical 10] ( 4 )
Figure imgf000020_0001
Figure imgf000020_0001
で表される Ν—パルミトイルー L—セリンホスホリックアシッド(Ν- Palmitoy卜 L- serine- ρ hosphoric acid; L- NASPA)も又、本発明の GPR92/93作動薬に含まれる。  Ν-Palmitoyl L-serine-ρhosphoric acid (L-NASPA) is also included in the GPR92 / 93 agonist of the present invention.
本発明の LPA、 LPA誘導体及び L-NASPAは、薬学上許容される塩を形成していて もよぐ具体的には、ナトリウム塩、カリウム塩もしくはセシウム塩等のアルカリ金属塩、 カルシウム塩もしくはマグネシウム塩等のアルカリ土類金属塩、亜鉛塩等の無機金属 塩、トリェチルァミン塩、トリエタノールアミン塩、トリヒドロキシメチルァミノメタン塩もしく はピリジ-ゥム塩等の有機塩、アンモ-ゥム塩等が挙げられる。  The LPA, LPA derivative and L-NASPA of the present invention may form pharmaceutically acceptable salts. Specifically, alkali metal salts such as sodium salt, potassium salt or cesium salt, calcium salt or magnesium Alkaline earth metal salts such as salts, inorganic metal salts such as zinc salts, organic salts such as triethylamine salts, triethanolamine salts, trihydroxymethylaminoamino salts or pyridinium salts, ammonia salts Etc.
[0034] 本発明にお!/、て、 GPR92/93作動薬として具体的には、上記の LPA、 LPA誘導体又 は L-NASPAが挙げられる。すなわち上記 LPA、 LPA誘導体又は L-NASPAは、 GPR92 /93に対するァゴ-スト活性を有する化合物である。ここで GPR92/93に対するァゴ- スト活性とは、後述する GPR92/93に結合することによって GPCRの機能を生じさせる 活性を表す。 [0034] Specific examples of GPR92 / 93 agonists in the present invention include the above-mentioned LPA, LPA derivatives or L-NASPA. That is, the above-mentioned LPA, LPA derivative or L-NASPA is a compound having an agonist activity for GPR92 / 93. Here, the agonist activity against GPR92 / 93 represents an activity that causes GPCR function by binding to GPR92 / 93, which will be described later.
[0035] 本明細書実施例に示すとおり、 GPR92/93作動薬は脾臓ランゲルハンス氏島細胞 においてインスリン分泌促進活性を示し、耐糖能異常改善薬、糖尿病治療薬等とし て有効である。  [0035] As shown in the Examples of the present specification, GPR92 / 93 agonists show insulin secretion promoting activity in splenic Langerhans islet cells and are effective as drugs for improving impaired glucose tolerance, drugs for treating diabetes, and the like.
[0036] 本発明の GPR92/93作動薬、好ましくは LPA、 LPA誘導体、 L-NASPAもしくはそれら の薬学上許容される塩、又は後述する本発明のスクリーニング方法により得られる GP R92/93作動薬もしくは拮抗薬は、医薬上許容される担体とともに経口的もしくは非経 口的投与に適した剤形に製剤化される。医薬上許容される担体としては、例えば、シ ョ糖、デンプン、マンニット、ソルビット、乳糖、グルコース、セルロース、タルク、リン酸 カルシウム、炭酸カルシウム等の賦形剤、セルロース、メチルセルロース、ヒドロキシ プロピルセルロース、ポリプロピルピロリドン、ゼラチン、アラビアゴム、ポリエチレングリ コール、ショ糖、デンプン等の結合剤、デンプン、カルボキシメチルセルロース、ヒドロ キシプロピルスターチ、ナトリウムーグリコールースターチ、炭酸水素ナトリウム、リン酸 カルシウム、クェン酸カルシウム等の崩壊剤、ステアリン酸マグネシウム、エア口ジル、 タルク、ラウリル硫酸ナトリウム等の滑剤、クェン酸、メントール、グリシルリシン'アンモ ニゥム塩、グリシン、オレンジ粉等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウ ム、メチルパラベン、プロピルパラベン等の保存剤、クェン酸、クェン酸ナトリウム、酢 酸等の安定剤、メチルセルロース、ポリビュルピロリドン、ステアリン酸アルミニウム等 の懸濁剤、界面活性剤等の分散剤、水、生理食塩水、オレンジジュース等の希釈剤 、カカオ脂、ポリエチレングリコーノレ、白灯油等のベースワックスなどが挙げられる力 それらに限定されるものではない。 [0036] GPR92 / 93 agonist of the present invention, preferably LPA, LPA derivative, L-NASPA or a pharmaceutically acceptable salt thereof, or GP R92 / 93 agonist obtained by the screening method of the present invention described later or The antagonist is formulated into a dosage form suitable for oral or parenteral administration with a pharmaceutically acceptable carrier. Examples of pharmaceutically acceptable carriers include sucrose, starch, mannitol, sorbit, lactose, glucose, cellulose, talc, calcium phosphate, calcium carbonate, and other excipients, cellulose, methylcellulose, hydroxypropylcellulose, Binders such as polypropylpyrrolidone, gelatin, gum arabic, polyethylene glycol, sucrose, starch, starch, carboxymethylcellulose, hydroxypropyl starch, sodium glycol glycol starch, sodium bicarbonate, calcium phosphate, calcium citrate, etc. Disintegrants, magnesium stearate, air mouth gill, talc, sodium lauryl sulfate, lubricants, citrate, menthol, glycyllysine Fragrances such as sodium salt, glycine, orange powder, preservatives such as sodium benzoate, sodium hydrogen sulfite, methylparaben, propylparaben, stabilizers such as citrate, sodium citrate, acetic acid, methylcellulose, polybutylpyrrolidone, Ability to include suspension agents such as aluminum stearate, dispersants such as surfactants, diluents such as water, saline, orange juice, base waxes such as cacao butter, polyethylene glycolol, white kerosene, etc. It is not limited.
[0037] 経口投与に好適な製剤は、水、生理食塩水、オレンジジュースのような希釈液に有 効量の GPR92/93作動薬を溶解させた液剤、有効量の GPR92/93作動薬を固体ゃ顆 粒として含んでいるカプセル剤、サッシェ剤または錠剤、適当な分散媒中に有効量 の GPR92/93作動薬を懸濁させた懸濁液剤、有効量の GPR92/93作動薬を溶解させ た溶液を適当な分散媒中に分散させ乳化させた乳剤等である。ここで「有効量」とは 、 GPR92/93作動薬を耐糖能異常患者、糖尿病患者または他の生活習慣病患者の 治療のために使用する場合にそれぞれの疾患を改善させるのに十分な量をいう。  [0037] A formulation suitable for oral administration is a solution in which an effective amount of GPR92 / 93 agonist is dissolved in a diluent such as water, physiological saline or orange juice, and an effective amount of GPR92 / 93 agonist is solid. Capsules, sachets or tablets contained as condyles, suspensions in which an effective amount of GPR92 / 93 agonist is suspended in an appropriate dispersion medium, and effective amounts of GPR92 / 93 agonist are dissolved. An emulsion in which a solution is dispersed in an appropriate dispersion medium and emulsified. “Effective amount” as used herein means a sufficient amount of GPR92 / 93 agonist to ameliorate each disease when used to treat patients with impaired glucose tolerance, diabetes or other lifestyle-related diseases Say.
[0038] 非経口的な投与 (例えば、静脈内注射、動脈内注射、皮下注射、筋肉注射、局所 注入、腹腔内投与など)に好適な製剤としては、水性および非水性の等張な無菌の 注射液剤があり、これには抗酸化剤、緩衝液、制菌剤、等張化剤等が含まれていて もよい。また、水性および非水性の無菌の懸濁液剤が挙げられ、これには懸濁剤、可 溶化剤、増粘剤、安定化剤、防腐剤等が含まれていてもよい。あるいは、コラーゲン 等の生体親和性の材料を用いて、徐放性製剤とすることもできる。  [0038] Suitable formulations for parenteral administration (eg, intravenous injection, intraarterial injection, subcutaneous injection, intramuscular injection, local injection, intraperitoneal administration, etc.) include aqueous and non-aqueous isotonic sterile There are injection solutions, which may contain antioxidants, buffers, antibacterial agents, isotonic agents and the like. Aqueous and non-aqueous sterile suspensions are also included, which may contain suspending agents, solubilizers, thickeners, stabilizers, preservatives and the like. Alternatively, a sustained-release preparation can be obtained using a biocompatible material such as collagen.
[0039] 当該 GPR92/93作動薬の製剤は、アンプルやバイアルのように単位投与量あるいは 複数回投与量ずつ容器に封入することができる。また、 GPR92/93作動薬、および医 薬上許容される担体を凍結乾燥し、使用直前に適当な無菌のビヒクルに溶解または 懸濁すればよ!、状態で保存することもできる。  [0039] The preparation of the GPR92 / 93 agonist can be enclosed in a container in unit doses or multiple doses like ampoules or vials. Alternatively, GPR92 / 93 agonists and pharmaceutically acceptable carriers can be lyophilized and dissolved or suspended in a suitable sterile vehicle just prior to use!
[0040] GPR92/93作動薬を有効成分とする本発明の製剤の投与量は、有効成分の種類、 投与経路、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、 年齢等によって異なる力 GPR92/93作動薬を、例えば、成人 1日あたり約 0. 01〜約 lOOOmg/kg,好ましくは約 0. 1〜約 500mgZkg投与することができる。  [0040] The dosage of the preparation of the present invention containing a GPR92 / 93 agonist as an active ingredient is the type of the active ingredient, the administration route, the severity of the disease, the animal species to be administered, the drug acceptability of the administration subject, Forces that vary depending on body weight, age, etc. GPR92 / 93 agonists can be administered, for example, from about 0.01 to about 10 mg / kg, preferably from about 0.1 to about 500 mg Zkg per day for an adult.
[0041] (Π)スクリーニング方法 本発明の GPR92/93作動薬はまた、以下に述べるとおり、 GPR92/93リガンド、すな わち GPR92/93作動薬もしくは GPR92/93拮抗薬をスクリーニングするためのスクリー ユングツールとして有用である。 [0041] (Π) Screening method The GPR92 / 93 agonists of the present invention are also useful as screening tools for screening for GPR92 / 93 ligands, ie, GPR92 / 93 agonists or GPR92 / 93 antagonists, as described below.
すなわち本発明の第 2の態様は、 GPR92/93リガンド、すなわち GPR92/93作動薬又 は拮抗薬のスクリーニング方法に関する。  That is, the second aspect of the present invention relates to a screening method for GPR92 / 93 ligand, that is, a GPR92 / 93 agonist or antagonist.
本発明はまた、 GPR92/93作動薬のスクリ一ユング系及びそれを用 、た当該リガンド のスクリ一二ング方法を提供する。  The present invention also provides a GPR92 / 93 agonist screening system and a method for screening the ligand using the same.
本発明のスクリーニング方法における被験物質としては、いかなる公知化合物及び 新規ィ匕合物であってもよぐ例えば、コンビナトリアルケミストリー技術を用いて作製さ れたィ匕合物ライブラリー、固相合成やファージディスプレイ法により作製されたランダ ムペプチドライブラリー、あるいは微生物、動植物、海洋生物等由来の天然成分等が 挙げられる。被験物質は好ましくは分子量 200〜2000の化合物であり、更に好まし くは分子量 300〜800の化合物である。例えば、被験物質として上記 LPA誘導体な どの脂肪酸誘導体を用いることにより、効率良く GPR92/93作動薬を評価することがで きる。  The test substance in the screening method of the present invention may be any known compound and novel compound, for example, a compound library prepared using combinatorial chemistry techniques, solid-phase synthesis and phage. Examples thereof include a random peptide library prepared by the display method, or natural components derived from microorganisms, animals and plants, marine organisms, and the like. The test substance is preferably a compound having a molecular weight of 200 to 2000, and more preferably a compound having a molecular weight of 300 to 800. For example, a GPR92 / 93 agonist can be efficiently evaluated by using a fatty acid derivative such as the above-mentioned LPA derivative as a test substance.
(1) 結合活¾の測定によるスクリーニング (1) Screening by measurement of binding activity
本発明のスクリーニング方法は、 LPA、 LPA誘導体、 L-NASPA及びこれらの薬学上 許容される塩から選択される基準物質の GPR92/93に対する結合活性を指標として、 当該基準物質よりも結合活性が大きい被験物質を GPR92/93リガンドとして選択する ことを特徴とする方法である。 すなわち、本発明のスクリーニング方法は、 GPR92/93 又はリガンドが結合し得るそのフラグメント(以下これらを併せて「GPR92/93等」と称す る場合がある)に、被験物質及び Z又はリゾホスファチジン酸、その誘導体及びそれ らの薬学上許容される塩から選択される基準物質を接触させ、該 GPR92/93又はリガ ンドが結合し得るそのフラグメントに対する結合活性が、前記基準物質よりも高い化 合物を選択することを含む。  The screening method of the present invention uses a reference substance selected from LPA, LPA derivatives, L-NASPA, and pharmaceutically acceptable salts thereof as an indicator of the binding activity to GPR92 / 93, and has a higher binding activity than the reference substance. This method comprises selecting a test substance as a GPR92 / 93 ligand. That is, the screening method of the present invention comprises GPR92 / 93 or a fragment to which a ligand can bind (hereinafter sometimes collectively referred to as “GPR92 / 93 etc.”), test substance and Z or lysophosphatidic acid, A reference substance selected from the derivatives and pharmaceutically acceptable salts thereof is contacted, and a compound having a higher binding activity to the GPR92 / 93 or a fragment to which the ligand can bind than the reference substance. Including selecting.
具体的には、以下の(a)〜(d)の工程:  Specifically, the following steps (a) to (d):
(a) 被験物質と、 GPR92/93又はリガンドが結合し得るそのフラグメントを接触させる 工程、 (b) (a)における被験物質と GPR92/93又はリガンドが結合し得るそのフラグメントに 対する結合活性を測定する工程、 (a) contacting the test substance with GPR92 / 93 or a fragment to which a ligand can bind; (b) measuring the binding activity of the test substance in (a) to GPR92 / 93 or a fragment to which the ligand can bind;
(c) 前記 (b)の測定値を、被験物質として基準物質を用いた場合の測定値と比較 する工程、及び  (c) comparing the measured value of (b) with the measured value when a reference substance is used as a test substance; and
(d) 前記 (c)の結果に基づき、前記 (b)の測定値が前記 (c)の測定値と同等以上で ある被験物質を GPR92/93リガンドとして選択する工程、  (d) a step of selecting, as a GPR92 / 93 ligand, a test substance whose measured value of (b) is equal to or greater than the measured value of (c) based on the result of (c),
を含む、スクリーニング方法が挙げられる。  A screening method including
この場合、被験物質と GPR92/93等との結合活性は、例えば、 GPR92/93等の細胞 膜画分をチップ上に固定し、該チップ上に被験物質溶液をロードして、表面ブラズモ ン共鳴法により被験物質の膜への結合及び解離を測定し、結合及び解離の速度あ るいは結合量から、被験物質と GPR92/93等との親和性を算出することにより導かれ る。  In this case, the binding activity between the test substance and GPR92 / 93, for example, is obtained by immobilizing a cell membrane fraction such as GPR92 / 93 on the chip, loading the test substance solution on the chip, and performing surface plasmon resonance. This is derived by measuring the binding and dissociation of the test substance to the membrane by the method, and calculating the affinity between the test substance and GPR92 / 93 from the rate of binding or dissociation or the amount of binding.
[0043] また、以下の(a)〜(c)の工程:  [0043] Further, the following steps (a) to (c):
(a) 被験物質の存在下及び非存在下で、基準物質、及び GPR92/93又はリガンドが 結合し得るそのフラグメントを接触させる工程、  (a) contacting a reference substance and a fragment to which GPR92 / 93 or a ligand can bind in the presence and absence of a test substance;
(b) (a)における基準物質と GPR92/93又はリガンドが結合し得るそのフラグメントに 対する結合活性を測定し、被験物質存在下における測定値と被験物質非存在下に おける測定値とを比較する工程、及び  (b) Measure the binding activity of the reference substance in (a) to GPR92 / 93 or a fragment to which the ligand can bind, and compare the measured value in the presence of the test substance with the measured value in the absence of the test substance. Process, and
(c) 被験物質存在下における前記 (b)の測定値が、被験物質非存在下における前 記 (b)の測定値よりも大きい被験物質を、 GPR92/93リガンドとして選択する工程、 を含む、スクリーニング方法が挙げられる。  (c) selecting as a GPR92 / 93 ligand a test substance in which the measured value of (b) in the presence of the test substance is larger than the measured value of (b) in the absence of the test substance, Examples include screening methods.
ここで用いられる例えば LPA、 L- NASPA、 1- Acyl- PAF、 LPI、 DGPP(8:0)、 LPC、 LP C plasmalogen等の基準物質は下記に述べるように適宜放射性同位元素等で標識 することができ、標識された化合物も LPA又は LPA誘導体の概念に含まれる。  Reference materials such as LPA, L-NASPA, 1-Acyl-PAF, LPI, DGPP (8: 0), LPC, and LPC plasmalogen used here should be appropriately labeled with radioactive isotopes as described below. Labeled compounds are also included in the concept of LPA or LPA derivatives.
上記の方法で選択される GPR92/93リガンドカ GPR92/93作動薬である力、 GPR92 /93拮抗薬であるかについては、以下に述べる G蛋白質を用いるスクリーニング方法 等により確認することができる。  The ability to be a GPR92 / 93 ligand and a GPR92 / 93 agonist selected by the above method and whether it is a GPR92 / 93 antagonist can be confirmed by a screening method using the G protein described below.
[0044] 上記の!/、ずれの態様にお 、ても、 GPR92/93又はそのフラグメントは、それらの発現 細胞、該細胞の細胞膜画分、あるいはァフィユティーカラムに結合した形態で提供さ れ得る。 GPR92/93の発現細胞としては、 GPR92/93又はそのフラグメントをコードする DNAを含む発現ベクターでトランスフエタトされた細胞等が挙げられる。また、ァフィ ユティーカラムとしては、抗 GPR92/93抗体カラム、リガンドを用いたカラム、また、 GPR 92/93が組換えタンパク質として提供される場合、 Hisタグや GSTタグと特異的親和性 を有する金属キレートもしくはダルタチオンカラムを用いることができる。 [0044] In the above-mentioned! /, Deviation mode, GPR92 / 93 or a fragment thereof is expressed in their form. It can be provided in the form bound to a cell, a cell membrane fraction of the cell, or an affinity column. Examples of cells expressing GPR92 / 93 include cells transfected with an expression vector containing DNA encoding GPR92 / 93 or a fragment thereof. In addition, as an affinity column, an anti-GPR92 / 93 antibody column, a column using a ligand, and, when GPR92 / 93 is provided as a recombinant protein, a metal chelate having a specific affinity with a His tag or a GST tag. Alternatively, a dartathione column can be used.
[0045] GPR92/93またはそのフラグメントとリガンドとの結合活性の検出する方法としては、 例えば、リガンド量を検出する方法、またはリガンドを標識して、 GPR92/93またはその フラグメントに結合した標識量を測定する方法が挙げられる。 [0045] Examples of a method for detecting the binding activity between GPR92 / 93 or a fragment thereof and a ligand include, for example, a method for detecting the amount of ligand, or a method for detecting the amount of label bound to GPR92 / 93 or a fragment thereof by labeling the ligand. The method of measuring is mentioned.
リガンドの標識方法としては、 3H、 14C、 32Pおよび 33P等の放射性同位元素で標識 する方法等が挙げられる。具体的には、脂肪酸部分の水素原子が 3Hでラベルされた LPA誘導体またはリン原子が 32Pでラベルされた LPA誘導体等を用いることができ、 例えば、 32P- labelled LPA、及び 1-ォレオイル [ォレオイル- 9,10- 3H] LPA (1- 01eoyl[ oleoyl-9, 10-JH]LPA; NEN Life Science Products市販品; Songzhu An,et al J Biol C hem, Vol. 273, Issue 14, 7906-7910, April 3, 1998)を用いることができる。 Examples of the labeling method of the ligand include a method of labeling with a radioisotope such as 3H, 14C, 32P and 33P. Specifically, an LPA derivative in which the hydrogen atom of the fatty acid part is labeled with 3H or an LPA derivative in which the phosphorus atom is labeled with 32P can be used. For example, 32P-labelled LPA, and 1-oleoyl [oleoyl- 9,10- 3 H] LPA (1- 01eoyl [oleoyl-9, 10- J H] LPA; NEN Life Science products commercially;. Songzhu An, et al J Biol C hem, Vol 273, Issue 14, 7906- 7910, April 3, 1998).
また、ァセチル基の水素原子がトリチウムでラベルされた 1-Acy卜 PAF (Registry No. : 163005-42-3の化合物)や、パルミトイル基の水素原子がトリチウムでラベルされた 1- Acyl-PAF (Registry No. :112602-69-4の化合物)、パルミトイル基のカルボ-ル基の 炭素原子が 14Cでラベルされた 1-Acy卜 PAF (Registry No.:112015-19-7の化合物) を挙げることができる [Methods in Enzymology (1987), 141(Cell. ReguL, Pt. B), 301- 13を参照]。  In addition, 1-Acy 卜 PAF (Registry No .: 163005-42-3 compound) in which the hydrogen atom of the acetyl group is labeled with tritium, or 1-Acyl-PAF (compound in which the hydrogen atom of the palmitoyl group is labeled with tritium ( Registry No.:112602-69-4), 1-Acy 卜 PAF (compound of Registry No.:112015-19-7) in which the carbon atom of the palmitoyl group is labeled with 14C [See Methods in Enzymology (1987), 141 (Cell. ReguL, Pt. B), 301-13].
[0046] (2) シグナル伝達の測定によるスクリーニング  [0046] (2) Screening by measuring signal transduction
GPR92/93は、ある種の三量体 G蛋白質と共役して細胞内にシグナルを伝達する。 従って、本発明はまた、 GPR92/93を含む脂質二重層と、 GPR92/93と共役する G蛋 白質 (特に G aサブユニット)とを用いた GPR92/93リガンドのスクリーニング方法を提 供する。すなわち、本発明は GPR92/93を含む脂質二重層及び GPR92/93に共役し 得る G蛋白質の aサブユニットを含んでなる反応系にお 、て、被験物質及び Z又は リゾホスファチジン酸、その誘導体、 L-NASPA及びそれらの薬学上許容される塩から 選択される基準物質を接触させ、該サブユニットの GDP'GTP交換反応又は該 G蛋 白質の細胞刺激活性が、前記基準物質よりも高い化合物を選択することを含む、 GP R92/93リガンドのスクリーニング方法を包含する。 GPR92 / 93 couples with certain trimeric G proteins and transmits signals into cells. Therefore, the present invention also provides a GPR92 / 93 ligand screening method using a lipid bilayer containing GPR92 / 93 and a G protein (particularly a Ga subunit) conjugated to GPR92 / 93. That is, the present invention provides a test substance and Z or lysophosphatidic acid, a derivative thereof, in a reaction system comprising a lipid bilayer containing GPR92 / 93 and an a subunit of G protein that can be conjugated to GPR92 / 93. From L-NASPA and their pharmaceutically acceptable salts Screening for a GP R92 / 93 ligand, comprising contacting a selected reference substance, and selecting a compound whose GDP 'GTP exchange reaction of the subunit or cell stimulating activity of the G protein is higher than that of the reference substance Includes methods.
具体的には、以下の(a)〜(d)の工程:  Specifically, the following steps (a) to (d):
(a) 被験物質と、 GPR92/93を含む脂質二重層及び GPR92/93に共役し得る Gタン パク質の OCサブユニットを含んでなる反応系を接触させる工程、  (a) contacting a test substance with a reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定する工程、  (b) measuring the GDP · GTP exchange reaction of the subunits in (a) or the cell stimulating activity of the G protein;
(c) 前記 (b)の測定値を、被験物質として基準物質を用いた場合の測定値と比較 する工程、及び  (c) comparing the measured value of (b) with the measured value when a reference substance is used as a test substance; and
(d) 前記 (c)の結果に基づき、前記 (b)の測定値が前記 (c)の測定値と同等以上で ある被験物質を GPR92/93作動薬として選択する工程、  (d) a step of selecting, as a GPR92 / 93 agonist, a test substance whose measured value of (b) is equal to or greater than the measured value of (c) based on the result of (c),
を含む、 GPR92/93作動薬のスクリーニング方法が挙げられる。 And a method for screening for GPR92 / 93 agonists.
また、以下の(a)〜(c)の工程:  In addition, the following steps (a) to (c):
(a) 被験物質の存在下及び非存在下で、基準物質、及び GPR92/93を含む脂質二 重層及び GPR92/93に共役し得る Gタンパク質の αサブユニットを含んでなる反応系 を接触させる工程、  (a) contacting a reference system, a lipid bilayer containing GPR92 / 93, and a reaction system comprising a G protein α-subunit capable of coupling to GPR92 / 93 in the presence and absence of a test substance ,
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定し、被験物質存在下における測定値と被験物質非存在下における 測定値とを比較する工程、及び  (b) measuring the GDP-GTP exchange reaction of the subunit in (a) or the cell stimulating activity of the G protein, and comparing the measured value in the presence of the test substance with the measured value in the absence of the test substance; as well as
(c) 被験物質存在下における前記 (b)の測定値が、被験物質非存在下における前 記 (b)の測定値よりも小さ!/、被験物質を、 GPR92/93拮抗薬として選択する工程、 を含む、 GPR92/93拮抗薬のスクリーニング方法が挙げられる。  (c) the measurement value of (b) in the presence of the test substance is smaller than the measurement value of (b) in the absence of the test substance! /, the step of selecting the test substance as a GPR92 / 93 antagonist And a screening method for GPR92 / 93 antagonists.
上記において、「GPR92/93を含む脂質二重層及び GPR92/93に共役し得る G蛋白 質の αサブユニットを含んでなる反応系」として、具体的には、 (0 GPR92/93をコード する DNAを含む発現ベクターをトランスフエタトした宿主真核生物細胞、(ii) GPR92/ 93の C末端側に GPR92/93に共役し得る G蛋白質の αサブユニットが融合したポリべ プチドをコードする DNAを含む発現ベクターでトランスフエタトした宿主真核生物細 胞、(iii) GPR92/93をコードする DNAを含む発現ベクターでトランスフエタトした、 GPR 92/93に共役し得る G蛋白質を内因的に発現する宿主動物細胞、又は (iv) GPR92/9 3及び GPR92/93に共役し得る G蛋白質を内因的に発現する動物細胞、それらの細 胞のホモジネート又はそれらの細胞由来の膜画分等が挙げられる。 In the above, specifically, “reaction system comprising a lipid bilayer containing GPR92 / 93 and an α subunit of G protein that can be conjugated to GPR92 / 93” is specifically described as (DNA encoding 0 GPR92 / 93) A host eukaryotic cell transfected with an expression vector containing (ii) a DNA encoding a polypeptide in which the α subunit of G protein that can be conjugated to GPR92 / 93 is fused to the C-terminal side of GPR92 / 93 Host eukaryotic cells transfected with the expression vector Or (iii) a host animal cell that endogenously expresses a G protein that can be coupled to GPR 92/93, transfected with an expression vector containing DNA encoding GPR92 / 93, or (iv) GPR92 / 93 And animal cells that endogenously express G protein that can be coupled to GPR92 / 93, homogenates of these cells, or membrane fractions derived from these cells.
[0048] 一般に、 GPCR作動薬のスクリーニングは、 G aにおける GTP · GDP交換反応また は共役する G蛋白質の細胞刺激活性を指標として行われる。 G蛋白質の細胞刺激活 性を指標とする場合、共役させる G aの態様に応じて、エフェクターの選択や活性測 定方法等の具体的な手順が決定されるが、通常、アデ二ル酸シクラーゼと相互作用 する領域を含む G a (具体的には Giファミリー又は Gsファミリーに属する G aのェフエ クタ一相互作用領域を含む)を用いる場合には例えば cAMP量を測定することにより 、ホスホリパーゼ C |8と相互作用する領域を含む G o; (具体的には Gqファミリーに属 する G aのエフェクター相互作用領域を含む)を用いる場合には例えば細胞内カル シゥムイオンの量を測定することにより、 GPCR作動薬をスクリーニングすることができ る。 [0048] In general, screening for GPCR agonists is performed using GTP · GDP exchange reaction in Ga or cell stimulating activity of coupled G protein as an index. When the cell stimulation activity of G protein is used as an index, specific procedures such as effector selection and activity measurement method are determined depending on the mode of Ga to be conjugated. Usually, adenylate cyclase is used. In the case of using a Ga containing a region that interacts with the phospholipase C (specifically, including an effector-interacting region of Ga belonging to the Gi family or Gs family), for example, by measuring the amount of cAMP, the phospholipase C | In the case of using Go including a region that interacts with 8 (specifically, including an effector interaction region of Ga belonging to the Gq family), for example, by measuring the amount of intracellular calcium ions, Agonists can be screened.
本発明実施例が示すとおり、 GPR92/93の G o;は Gsファミリーに属すると考えられる  As shown in the examples of the present invention, G o of GPR92 / 93 is considered to belong to the Gs family.
[0049] また、 G aの供給源として該 G aを含む三量体 G蛋白質 (G α β y )を内因的に発 現する動物細胞 (例えば、 HEK293細胞、 L1. 2細胞等)を用いる場合、 GPR92/93 によって活性化された G α j8 γは G αと G j8 γに解離する力 遊離の G β yはホスホ リパーゼ C |8に相互作用して細胞内カルシウムイオン濃度を上昇させ得るので、共役 する G aのファミリーに関係なく細胞内カルシウムイオンを指標にしてリガンドスタリー ニングを行うことも可能である。 [0049] In addition, animal cells (eg, HEK293 cells, L1.2 cells, etc.) that endogenously express the trimeric G protein (G α β y) containing the Ga are used as a source of Ga. G α92 / 93 activated G α j8 γ can dissociate into G α and G j8 γ Free G β y can interact with phospholipase C | 8 to increase intracellular calcium ion concentration Therefore, ligand staring can be performed using intracellular calcium ions as an index regardless of the conjugated Ga family.
[0050] 本発明のスクリーニングで用いられる GPR92/93は、 GPR92/93又はそのフラグメント をコードする DNAを含む発現ベクターでトランスフエタトされた細胞の膜含有画分か ら、抗 GPR92/93抗体を用いたァフィユティークロマトグラフィーにより単離することが できる。あるいは、当該細胞由来の cDNAライブラリーもしくはゲノミックライブラリーか ら、 GPR92/93の cDNAクローンをプローブとして単離される DNAクローンを適当な 発現ベクター中にクロー-ングし、宿主細胞に導入して発現させ、細胞培養物の膜 含有画分から抗 GPR92/93抗体や、 His- tag、 GST- tag等を用いたァフィユティークロ マトグラフィ一により精製することもできる。また、 GFP等の蛍光物質と GPR92/93の融 合蛋白質を発現させることにより、 GFP陽性細胞、すなわち GPR92/93がトランスフエク トされた細胞のみを選択してスクリーニングに用いることも可能である(Xu et al., Nat. Cell Biol, 2, 261-267 (2000) )。また、 GPR92/93の cDNAクローンを基に、部位特 異的変異誘発等の人為的処理により一部に変異を導入したものであってもよい。し 力しながら、リガンド結合ドメインは高度に保存されている必要があるので、このような 領域には変異を導入しないことが望ましい。保存的アミノ酸置換は周知であり、当業 者は GPR92/93の特性を変化させな 、範囲で、 GPR92/93に適宜変異を導入すること ができる。 [0050] GPR92 / 93 to be used in the screening of the present invention is an anti-GPR92 / 93 antibody derived from a membrane-containing fraction of a cell transfected with an expression vector containing DNA encoding GPR92 / 93 or a fragment thereof. It can be isolated by the affinity chromatography used. Alternatively, a DNA clone isolated using the GPR92 / 93 cDNA clone from the cell-derived cDNA library or genomic library as a probe can be cloned into an appropriate expression vector and introduced into a host cell for expression. Cell culture membrane The contained fraction can also be purified by affinity chromatography using anti-GPR92 / 93 antibody, His-tag, GST-tag or the like. In addition, by expressing a fluorescent substance such as GFP and a fusion protein of GPR92 / 93, it is possible to select only GFP positive cells, that is, cells transfected with GPR92 / 93 and use them for screening ( Xu et al., Nat. Cell Biol, 2, 261-267 (2000)). Alternatively, a mutation may be partially introduced by artificial treatment such as site-specific mutagenesis based on the GPR92 / 93 cDNA clone. However, since the ligand binding domain needs to be highly conserved, it is desirable not to introduce mutations in such regions. Conservative amino acid substitutions are well known, and those skilled in the art can introduce mutations into GPR92 / 93 as appropriate without changing the properties of GPR92 / 93.
[0051] GPR92/93を保持する脂質二重層膜の由来は、当該レセプターが本来の立体構造 をとることができる限り特に制限されないが、好ましくはヒト、ゥシ、ブタ、サル、マウス、 ラット等の哺乳動物細胞の細胞膜を含有する画分、例えば、無傷細胞、細胞ホモジ ネート、あるいは該ホモジネートから遠心分離等により分画される細胞膜画分が挙げ られる。また、例えば、ホスファチジルコリン、ホスファチジルセリン、コレステロール等 の各種脂質を適当な比率、好ましくは哺乳動物細胞の細胞膜におけるそれに近い 比率で混合した溶液力ゝら常法により調製される人工脂質二重膜もまた、本発明の一 実施態様において好ましく使用され得る。  [0051] The origin of the lipid bilayer membrane retaining GPR92 / 93 is not particularly limited as long as the receptor can assume the original three-dimensional structure, but preferably human, ushi, pig, monkey, mouse, rat, etc. Fractions containing cell membranes of mammalian cells such as intact cells, cell homogenates, or cell membrane fractions fractionated from the homogenates by centrifugation or the like. In addition, an artificial lipid bilayer membrane prepared by an ordinary method such as a solution force prepared by mixing various lipids such as phosphatidylcholine, phosphatidylserine, and cholesterol at an appropriate ratio, preferably a ratio close to that in the cell membrane of a mammalian cell is also used. Can be preferably used in one embodiment of the present invention.
[0052] GPR92/93と共役する G aは、少なくとも該 G aの GPCRとの結合に関与する領域 及び任意の G aのグァニンヌクレオチドとの結合に関与する領域を有することが必要 である。具体的には、 GPR92/93と共役する G aは Gsファミリーに属する(Gs a )と考 えられるので、用いる G aは Gs aの GPCR結合領域を少なくとも有し、 Gs aのグァ- ンヌクレオチド結合領域もしくは他のファミリーに属する G a由来のグァニンヌクレオ チド結合領域を有するものである。 G aの X線結晶構造解析の結果等から、 GPCRと の結合には C末端の約 5アミノ酸程度の配列が重要であり、一方、グァニンヌクレオチ ド結合領域は、 ras蛋白質のヌクレオチド結合部位と相同な領域 (N末端側から、 Pボ ッタス、 G,ボックス、 Gボックス、 G"ボックスと呼ばれるアミノ酸モチーフ、並びに高度 にへリックス化したドメイン内の a Eヘリックスの先頭及び a Fヘリックスなど)であるこ とが明らかになつている。 [0052] The Ga conjugated with GPR92 / 93 needs to have at least a region involved in binding of the Ga to GPCR and a region involved in binding of any Ga guanine nucleotide. Specifically, since G a conjugated with GPR92 / 93 is considered to belong to the Gs family (Gs a), the G a used has at least the GPCR binding region of Gs a, and the Gs a guanonucleotide It has a binding region or a guanine nucleotide binding region derived from Ga belonging to another family. From the results of X-ray crystal structure analysis of Ga, etc., a sequence of about 5 amino acids at the C-terminus is important for binding to GPCR. On the other hand, the guanine nucleotide binding region is the nucleotide binding site of ras protein. Homologous regions (from the N-terminal side, including amino acids motifs called P bots, G, boxes, G boxes, and G "boxes, and the beginning of a E helix and a F helix in highly helix domains) Arco It is clear.
一方 GPCRと共役する G aが Giファミリーに属する場合 (Gi a )や、 Gqファミリーに 属する場合(Gq α )も同様に、用いる G aはそれぞれ Gi αもしくは Gq aの GPCR結 合領域を少なくとも有し、対応するファミリーに属する G aのグァニンヌクレオチド結合 領域もしくは他のファミリーに属する G a由来のグァニンヌクレオチド結合領域を有す るものである。  On the other hand, when Ga conjugated to GPCR belongs to the Gi family (Gi a) or Gq family (Gq α), the Ga to be used has at least the Gi α or Gq a GPCR binding region, respectively. And having a guanine nucleotide-binding region of Ga belonging to the corresponding family or a Ga-derived guanine nucleotide-binding region belonging to another family.
[0053] GPR92/93に対する生理的リガンド又はァゴニストが該レセプターに結合すると、該 レセプターの G a活性化ドメインと G aの GPCR結合領域とが相互作用して G aのコ ンフオメーシヨン変化を生じ、グァニンヌクレオチド結合領域力も GDPが解離して速 やかに GTPを結合する。一方、インバースァゴ-ストが結合すると、レセプターのコン フオメーシヨン変化により G a活性ィ匕ドメインが不活性ィ匕されるので、活性化型の G a — GTPレベルが減少する。ここで、 GTPの代わりに 35S標識した GTP y Sなどの G aの GTPase活性によって加水分解を受けな!/ヽ GTPアナログを系に添カ卩しておけば 、被験物質の存在下と非存在下での膜に結合した放射活性を測定'比較することに より、 GPR92/93のァゴ-スト又はインバースァゴ-ストをスクリーニングすることができ る。即ち、被験物質の存在下で放射活性が増加すれば、該被験物質はァゴニストで あり、放射活性が減少すればインバースァゴ-ストである。 35S標識した GTP y S (G ΤΡ [ γ 3 ] )を用いる方法については、 Heise et al., Molecular Pharmacology, 60, 11 73-1180 (2001)、又は Im et al., Molecular Pharmacology, 57, 753-759 (2000)に記載 されている。 [0053] When a physiological ligand or agonist for GPR92 / 93 binds to the receptor, the Ga activation domain of the receptor interacts with the GPCR binding region of Ga, resulting in a conformational change of Ga. Nin nucleotide binding domain force also dissociates GDP and binds GTP quickly. On the other hand, binding of inverse ghosts decreases the activated Ga — GTP level because the Ga active domain is inactivated by changes in receptor conformation. Here, instead of GTP, it is not hydrolyzed by GTPase activity of Ga such as 35S-labeled GTP y S! / ヽ If a GTP analog is added to the system, the presence or absence of the test substance is present. By measuring and comparing the radioactivity bound to the membrane below, it is possible to screen the GPR92 / 93 or the inverse antigen. That is, if the radioactivity increases in the presence of the test substance, the test substance is an agonist, and if the radioactivity decreases, it is an inverse ghost. For methods using 35S-labeled GTP y S (G ΤΡ [γ 3 ]), see Heise et al., Molecular Pharmacology, 60, 11 73-1180 (2001), or Im et al., Molecular Pharmacology, 57, 753. -759 (2000).
尚、 LPA、その誘導体等の生理活性リガンドを共存させた系で、被験物質の存在下 と非存在下での膜に結合した放射活性を測定 '比較することにより、 GPR92/93のアン タゴニストをスクリーニングすることができる。即ち、被験物質の存在下で、被験物質 の非存在下よりも放射活性が減少すれば、該被験物質はアンタゴニストである。  In addition, GPR92 / 93 antagonists were measured by comparing the radioactivity bound to the membrane in the presence and absence of the test substance in a system coexisting with a bioactive ligand such as LPA and its derivatives. Can be screened. That is, if the radioactivity decreases in the presence of the test substance as compared to the absence of the test substance, the test substance is an antagonist.
[0054] あるいは、 G aへの GTPアナログの結合を、表面プラズモン共鳴法等を用いてモ- タリングすることによつてもスクリーニングが可能である。 [0054] Alternatively, screening can be performed by monitoring the binding of GTP analog to Ga using the surface plasmon resonance method or the like.
[0055] 前述の細胞刺激活性は、共役する G aのエフェクターへの作用を指標として測定 することもできる。この場合、本発明のスクリーニング系は、 GPR92/93に加えて、さら にエフェクターを含む脂質二重層膜を構成要素として含む必要がある。また、共役す る G o;は該エフェクターと相互作用するための領域をさらに含む必要がある。当該領 域はその G α本来のエフェクター相互作用領域であってもよいし、異なるファミリーに 属する G aのエフェクター相互作用領域であってもよい。例えば Gs aに対しては異 なるファミリーに属する G aとして Gq α、 Gi α、 G12 α等が挙げられる。異なるファミリ 一に属する G o; (例えば Gqひ)のエフェクター相互作用領域を含む G o; (例えば Gs a )キメラの最も簡便な例としては、 Gq aの C末端の約 5アミノ酸程度を、 Gs aの C末 端配列で置換したもの(Gqs a )が挙げられる。 [0055] The aforementioned cell stimulating activity can also be measured using the effect of conjugated Ga on the effector as an index. In this case, the screening system of the present invention further includes GPR92 / 93. It is necessary to include a lipid bilayer membrane containing an effector as a constituent element. The conjugated Go; must further include a region for interacting with the effector. This region may be the original effector interaction region of Gα or may be an effector interaction region of Ga belonging to a different family. For example, for Gsa, Gq belonging to a different family includes Gq α, Gi α, G12 α and the like. G o that contains effector interaction regions of G o belonging to different families (eg Gq); (eg Gs a) As the simplest example of a chimera, about 5 amino acids at the C-terminus of Gq a Examples include those substituted with the C terminal sequence of a (Gqs a).
[0056] GPR92/93と共役する G aが Gs aのエフェクター相互作用領域を含む場合、ェフエ クタ一としてアデ二ル酸シクラーゼを含む脂質二重層膜が用いられる。一方、共役 G aが Gq aのエフェクター相互作用領域を含む場合は、エフェクターとしてホスホリパ ーゼ C βを含む脂質二重層膜を用いる必要がある。 [0056] When G a conjugated to GPR92 / 93 contains an effector interaction region of Gs a, a lipid bilayer membrane containing adenylate cyclase is used as an effector. On the other hand, when the conjugated Ga contains the effector interaction region of Gqa, it is necessary to use a lipid bilayer membrane containing phospholipase Cβ as an effector.
尚、共役 G aが Gs aのエフェクター相互作用領域を含む場合には、エフェクターと してアデ二ル酸シクラーゼを含む脂質二重層膜が用いられ、 Gi aの場合とは逆に、 アデ二ル酸シクラーゼ活性の促進作用を指標としてリガンド活性が評価される。  In addition, when the conjugate Ga contains the effector interaction region of Gs a, a lipid bilayer membrane containing adenylate cyclase is used as the effector. Ligand activity is evaluated using the promoting action of acid cyclase activity as an index.
[0057] エフェクターとしてアデ-ル酸シクラーゼ(以下、 ACともいう)を含むスクリーニング 系(即ち、 G aが Gs aもしくは Gi aであるか又は Gs aもしくは Gi aのエフェクター相 互作用領域を含むキメラ蛋白質 (キメラ Gs aもしくはキメラ Gi a )の場合)にお!/ヽては 、 G aのエフェクターへの作用は、 AC活性を直接測定することにより評価することが できる。 AC活性の測定には公知のいかなる手法を用いてもよぐ例えば、 ACを含む 膜画分に ATPを添カ卩し、生成する cAMP量を、抗 c AMP抗体を用いて RI ( 1251)、 酵素(アルカリホスファターゼ、ペルォキシダーゼ等)、蛍光物質 (FITC、ローダミン 等)等で標識した cAMPとの競合ィムノアッセィにより測定する方法や、 ACを含む膜 画分に [ α - 32P]ATPを添加し、生成する [32P] cAMPをアルミナカラム等で分離後 、その放射活性を測定する方法が挙げられるが、これに限定されない。 G aが Gs a の場合、被験物質の存在下及び非存在下で AC活性を測定'比較し、被験物質存在 下で AC活性が減少すれば被験物質は GPR92/93のインバースァゴ-ストであり、活 性が増加すればァゴニストである。また、 LPA等の生理活性リガンドを共存させた系 で、被験物質の存在下及び非存在下で AC活性を測定 '比較し、被験物質存在下で 被験物質非存在下よりも AC活性が減少すれば被験試料は GPR92/93のアンタゴ- ストである。 [0057] A screening system containing adenylate cyclase (hereinafter also referred to as AC) as an effector (that is, a chimera containing Ga or Ga or an effector interaction region of Gsa or Gia) For proteins (in the case of Chimera Gs a or Chia Gi a)! In the meantime, the effect of Ga on the effector can be evaluated by directly measuring AC activity. Any known technique can be used to measure AC activity.For example, ATP is added to a membrane fraction containing AC, and the amount of cAMP produced is determined using RI (1251), anti-cAMP antibody, Competing with cAMP labeled with enzymes (alkaline phosphatase, peroxidase, etc.), fluorescent substances (FITC, rhodamine, etc.), etc., or by adding [α-32P] ATP to membrane fractions containing AC [32P] The method of measuring the radioactivity after separating cAMP with an alumina column or the like is mentioned, but is not limited thereto. If G a is Gs a, measure the AC activity in the presence and absence of the test substance and compare them.If the AC activity decreases in the presence of the test substance, the test substance is an inverse PR of GPR92 / 93, If activity increases, it is an agonist. A system that coexists with a physiologically active ligand such as LPA Measure the AC activity in the presence and absence of the test substance.If the AC activity decreases in the presence of the test substance than in the absence of the test substance, the test sample is an antagonist of GPR92 / 93. .
一方、 G aが Gi aの場合、被験物質の存在下及び非存在下で AC活性を測定 '比 較し、被験物質存在下で AC活性が増加すれば被験物質は GPR92/93のインバース ァゴ-ストであり、活性が減少すればァゴニストである。また、 LPA等の生理活性リガ ンドを共存させた系で、被験物質の存在下及び非存在下で AC活性を測定,比較し、 被験物質存在下で被験物質非存在下よりも AC活性が増加すれば被験試料は GPR 92/93のアンタゴニストである。  On the other hand, when G a is G i, the AC activity is measured and compared in the presence and absence of the test substance, and if the AC activity increases in the presence of the test substance, the test substance is inverted by GPR92 / 93. -A strike, and an agonist if activity decreases. In addition, AC activity was measured and compared in the presence and absence of the test substance in a system coexisting with a physiologically active ligand such as LPA, and the AC activity increased in the presence of the test substance than in the absence of the test substance. The test sample is then an antagonist of GPR 92/93.
[0058] スクリーニング系として無傷真核生物細胞を用いる場合は、 G aの ACへの作用は 、細胞内の cAMP量を測定する力 あるいは細胞を [3H]アデニンで標識し、生成し た [3H] cAMPの放射活性を測定することによつても評価することができる。細胞内 c AMP量は、被験物質の存在下及び非存在下で細胞を適当な時間インキュベートし た後、細胞を破砕して得られる抽出液について、上記の競合ィムノアツセィを実施す ることにより測定することができる力 公知の他のいかなる方法も使用することができる [0058] When intact eukaryotic cells are used as a screening system, the action of Ga on AC was generated by the ability to measure intracellular cAMP levels or by labeling cells with [3H] adenine [3H It can also be evaluated by measuring the radioactivity of cAMP. The amount of intracellular cAMP is measured by incubating the cells for an appropriate period of time in the presence and absence of the test substance, and then performing the above competitive immunoassay on the extract obtained by disrupting the cells. Any other known method can be used
[0059] 別の態様として、 cAMP量を cAMP応答エレメント(CRE)の制御下にあるリボータ 一遺伝子の発現量を測定することにより、評価する方法もある。ここで使用される発現 ベクターについては後に詳述する力 概説すると、 CREを含むプロモーターの下流 にリポーター蛋白質をコードする DNAを連結した発現カセットを含むベクターを導入 された動物細胞を、被験物質の存在下及び非存在下で適当な時間培養し、細胞を 破砕して得られた抽出液におけるリポーター遺伝子の発現を公知の手法を用いて測 定-比較することにより、細胞内 cAMP量を評価するというものである。 [0059] As another embodiment, there is also a method for evaluating the amount of cAMP by measuring the expression level of a ribota gene under the control of a cAMP response element (CRE). The expression vectors used here will be described in detail later. In summary, animal cells introduced with a vector containing an expression cassette linked to a DNA encoding a reporter protein downstream of a promoter containing CRE are introduced into the presence of a test substance. The amount of cAMP in the cells is evaluated by measuring and comparing the expression of the reporter gene in the extract obtained by culturing the cells for an appropriate period of time in the absence and absence and disrupting the cells using a known method. Is.
[0060] 従って、 G aが Gs aの場合、被験物質の存在下で細胞内 cAMP量 (もしくは CRE 制御下にあるリポーター遺伝子の発現量)が減少すれば、該被験物質は GPR92/93 のインバースァゴ-ストであり、増加すればァゴ-ストである。また、 LPA、その誘導体 等の生理活性リガンドを共存させた系で、被験物質の存在下と非存在下での cAMP 量を測定'比較することにより、 GPR92/93のアンタゴ-ストをスクリーニングすることが できる。即ち、被験物質の存在下で被験物質の非存在下よりも cAMP量が減少すれ ば該被験物質はアンタゴ-ストである。 [0060] Therefore, when G a is Gs a, if the intracellular cAMP level (or the expression level of the reporter gene under the control of CRE) decreases in the presence of the test substance, the test substance can be inverted to GPR92 / 93. -A strike, and if it increases, it is an agony. In addition, in a system where physiologically active ligands such as LPA and its derivatives coexist, the amount of cAMP in the presence and absence of the test substance is measured and compared to screen for GPR92 / 93 antagonists. But it can. That is, if the amount of cAMP decreases in the presence of the test substance than in the absence of the test substance, the test substance is antagonist.
一方、 G aが Gi aの場合、被験物質の存在下で細胞内 cAMP (もしくは CRE制御 下にあるリポーター遺伝子の発現量)が増加すれば、該被験物質は GPR92/93のイン バースァゴニストであり、減少すればァゴ-ストである。また、 LPA等の生理活性リガン ドを共存させた系で、被験物質の存在下と非存在下での cAMP量を測定'比較する ことにより、 GPR92/93のアンタゴ-ストをスクリーニングすることができる。即ち、被験 物質の存在下で被験物質の非存在下よりも cAMP量が増加すれば該被験物質はァ ンタゴ二ストである。  On the other hand, when Ga is Gi a, if intracellular cAMP (or the expression level of reporter gene under CRE control) increases in the presence of the test substance, the test substance is an inverse agonist of GPR92 / 93. Yes, if it decreases, it will be an asset. In addition, GPR92 / 93 antagonists can be screened by measuring and comparing the amount of cAMP in the presence and absence of the test substance in a system coexisting with a biologically active ligand such as LPA. . That is, if the amount of cAMP increases in the presence of the test substance than in the absence of the test substance, the test substance is an antagonist.
[0061] 一方、エフェクターとしてホスホリパーゼ C β (以下、 PLC βとも!/、う)を含むスクリー ユング系(即ち、 G aが Gq aであるか又は Gq aのエフェクター相互作用領域を含む キメラ蛋白質 (キメラ Gq a )の場合)にお 、ては、該 Gq a又はキメラ Gq aのエフエタ ターへの作用は、 PLC |8活性を直接測定することにより評価することができる。 PLC j8活性は、例えば、 3H標識したホスファチジルイノシトール一 4, 5—二リン酸を PLC j8含有膜画分に添加し、生成するイノシトールリン酸量を、公知の手法を用いて測定 すること〖こより評価することができる。被験物質の存在下及び非存在下で PLC β活 性を測定'比較し、被験物質存在下で PLC β活性が増加すれば該被験物質は GPR 92/93のァゴ-ストであり、活性が減少すればインバースァゴ-ストである。また、 LPA 等の生理活性リガンドを共存させた系で、被験物質の存在下と非存在下での PLC β 活性を測定'比較することにより、 GPR92/93のアンタゴ-ストをスクリーニングすること ができる。即ち、被験物質の存在下で被験物質の非存在下よりも PLC 活性が減少 すれば該被験物質はアンタゴ-ストである。  [0061] On the other hand, a screening system containing phospholipase C β (hereinafter also referred to as PLC β! /) As an effector (ie, a chimeric protein containing G a as an effector interaction region of G q a ( In the case of the chimeric Gq a), the effect of the Gq a or the chimeric Gq a on the effector can be evaluated by directly measuring the PLC | 8 activity. PLC j8 activity can be determined, for example, by adding 3H-labeled phosphatidylinositol 1,4,5-diphosphate to the PLC j8-containing membrane fraction and measuring the amount of inositol phosphate produced using a known method. Can be evaluated. Measure PLC β activity in the presence and absence of the test substance '' and compare it.If the PLC β activity increases in the presence of the test substance, the test substance is an agonist of GPR 92/93. If it decreases, it is an inverse ghost. In addition, GPR92 / 93 antagonists can be screened by measuring and comparing PLC β activity in the presence and absence of the test substance in a system coexisting with a bioactive ligand such as LPA. . That is, if the PLC activity decreases in the presence of the test substance than in the absence of the test substance, the test substance is antagonist.
[0062] スクリーニング系として無傷真核生物細胞を用いる場合は、 Gq a又はキメラ Gq a の PLC j8への作用は、細胞に [3H]イノシトールを添カ卩し、生成した [3H]イノシトー ルリン酸の放射活性を測定したり、細胞内の Ca2+量を測定したりすることによつても 評価することができる。細胞内 Ca2+量は、被験物質の存在下及び非存在下で細胞 を適当な時間インキュベートした後、蛍光プローブ(fora- 2、 indo- 1、 fluor- 3、 Calcium -Green I等)を用いて分光学的に測定するか、カルシウム感受性発光蛋白質である ェクオリン等を用いて測定することができる力 公知の他のいかなる方法を使用しても よい。蛍光プローブを用いた分光学的測定に適した装置として、 FLIPR (Molecular D evices社)システムが挙げられる。 [0062] When intact eukaryotic cells are used as a screening system, the action of Gq a or chimeric Gq a on PLC j8 is produced by adding [3H] inositol to the cells and producing [3H] inositol phosphate. It can also be evaluated by measuring the radioactivity of cells or measuring the intracellular Ca2 + level. Intracellular Ca2 + levels can be determined using a fluorescent probe (fora-2, indo-1, fluor-3, Calcium-Green I, etc.) after incubating the cells for an appropriate time in the presence or absence of the test substance. Optically measured or calcium sensitive photoprotein Force that can be measured using equolin, etc. Any other known method may be used. An apparatus suitable for spectroscopic measurement using a fluorescent probe is the FLIPR (Molecular Devices) system.
[0063] 別の態様として、 Ca2+によりアップレギュレートされる TPA (12 O—テトラデカノィ ルホルボール 13 アセテート)応答エレメント (TRE)の制御下にあるリポーター遺 伝子の発現量を測定することにより、 Ca2+量を評価する方法もある。ここで使用され る発現ベクターについては後に詳述する力 概説すると、 TREを含むプロモーター の下流にリポーター蛋白質をコードする DNAを連結した発現カセットを含むベクター を導入された真核生物細胞を、被験物質の存在下及び非存在下で適当な時間培養 し、細胞を破砕して得られた抽出液におけるリポーター遺伝子の発現を公知の手法 を用いて測定 ·比較することにより、細胞内 Ca2+量を評価するというものである。 [0063] In another embodiment, by measuring the expression level of a reporter gene under the control of a TPA (12 O-tetradecanol phorbol 13 acetate) response element (TRE) up-regulated by Ca 2+ There is also a method for evaluating the amount of Ca2 +. The expression vectors used here will be described in detail later. In summary, eukaryotic cells into which a vector containing an expression cassette linked to a DNA encoding a reporter protein is introduced downstream of a promoter containing TRE are treated as test substances. Intracellular Ca2 + levels are evaluated by measuring and comparing the expression of the reporter gene in the extract obtained by culturing the cells for an appropriate period of time in the presence and absence of cells and disrupting the cells using known methods. That's it.
[0064] 従って、被験物質の存在下で細胞内 Ca2+量 (もしくは TRE制御下にあるリポーター 遺伝子の発現量)が増加すれば、該被験物質は GPR92/93のァゴ-ストであり、減少 すればインバースァゴ-ストである。また、 LPA等の生理活性リガンドを共存させた系 で、被験物質の存在下と非存在下での Ca2+量 (もしくは TRE制御下にあるリポーター 遺伝子の発現量)を測定'比較することにより、 GPR92/93のアンタゴ-ストをスクリー ユングすることができる。即ち、被験物質の存在下で被験物質の非存在下よりも Ca2+ 量 (もしくは TRE制御下にあるリポーター遺伝子の発現量)が減少すれば該被験物 質はアンタゴニストである。 [0064] Therefore, if the intracellular Ca 2+ level (or the expression level of the reporter gene under TRE control) increases in the presence of the test substance, the test substance is an agonist of GPR92 / 93, If it decreases, it is an inverse ghost. In addition, by measuring and comparing the amount of Ca 2+ (or the expression level of the reporter gene under TRE control) in the presence and absence of the test substance in a system coexisting with a bioactive ligand such as LPA Can screen GPR92 / 93 Antagost. That is, if the amount of Ca 2+ (or the expression level of a reporter gene under TRE control) decreases in the presence of the test substance than in the absence of the test substance, the test substance is an antagonist.
[0065] 上記の GPR92/93と共役 G aとを用いた GPR92/93リガンドのスクリーニング方法を、 GPR92/93に対するリガンド、例えば、 LPAの共存下で行えば、さらに GPR92/93に対 する-ユートラルアンタゴ-ストを容易に選抜することができる。  [0065] If the GPR92 / 93 ligand screening method using GPR92 / 93 and conjugated Ga described above is performed in the presence of a ligand for GPR92 / 93, for example, LPA, the GPR92 / 93 is further used against GPR92 / 93. You can easily select a tral antagonist.
[0066] また、別の態様として、 GPR92/93依存的な種々の生理作用を指標として、 GPR92/ 93リガンドをスクリーニングすることも可能である。該生理作用としては、 MAPキナーゼ の一種である ERKの活性化が挙げられる。具体的には、 GPR92/93の存在下に、被 験物質が ERKのリン酸化を促進するか否かを、リン酸化 ERK量をウェスタンブロッティ ング等で検出することによって測定する方法(Kabarowski et al., Proc. Natl. Acad. Sc i. U.S.A., 97, 12109-12114 (2000) )が挙げられる。 [0067] また、 GPR92/93依存的な DNA合成促進活性 (細胞増殖促進活性)を測定すること によって、 GPR92/93リガンドをスクリーニングする方法が挙げられる。また、 GPR92/9 3依存的な DNA合成抑制活性 (細胞増殖抑制活性)を測定することによって、 GPR92 /93リガンドをスクリーニングする方法が挙げられる。 [0066] In another embodiment, GPR92 / 93 ligands can be screened using various physiological actions dependent on GPR92 / 93 as indices. Examples of the physiological action include activation of ERK, which is a kind of MAP kinase. Specifically, in the presence of GPR92 / 93, a method of measuring whether or not a test substance promotes phosphorylation of ERK by measuring the amount of phosphorylated ERK by Western blotting or the like (Kabarowski et al. al., Proc. Natl. Acad. Sci. USA, 97, 12109-12114 (2000)). [0067] Another example is a method of screening for a GPR92 / 93 ligand by measuring GPR92 / 93-dependent DNA synthesis promoting activity (cell growth promoting activity). In addition, a method for screening a GPR92 / 93 ligand by measuring GPR92 / 93 dependent DNA synthesis inhibitory activity (cell growth inhibitory activity) can be mentioned.
具体的には、 GPR92/93の存在下に、 [3H]チミジン取り込み量、もしくは MTT ((3-4、 5— dimethylthazol— 2— yl)— 2 , 5— diphenyltetrazolium bromide)の斑兀反 J心を U疋するこ とができる(J. Biol. Chem., 276(44), p41325— p41335 (2001) )。  Specifically, in the presence of GPR92 / 93, [3H] thymidine uptake or MTT ((3-4, 5-dimethylthazol- 2-yl) — 2, 5-diphenyltetrazolium bromide) (J. Biol. Chem., 276 (44), p41325—p41335 (2001)).
[0068] また、血清応答エレメント (Serum-response element; SRE)の制御下にあるリボータ 一遺伝子の発現量を測定することにより、 G蛋白質の細胞刺激活性を評価する方法 もある(An et al" J. Biol, Chem., 273,7906-7910, (1999); An et al" Mol. Pharmacol. , 55, 787-794 (1999))。ここで使用される発現ベクターについては後に詳述するが、 概説すると、 SREを含むプロモーターの下流にリポーター蛋白質をコードする DNAを 連結した発現カセットを含むベクターを導入された真核生物細胞を、被験物質の存 在下及び非存在下で適当な時間培養し、細胞を破砕して得られる抽出液におけるリ ポーター遺伝子の発現を公知の方法を用 、て測定'比較することにより、細胞内 Ca2 +量を評価するというものである。従って、 SRE制御下にあるリポーター遺伝子の量が 増加すれば、該被験物質は GPR92/93のァゴ-ストであり、減少すればインバースァ ゴニストである。また、 LPA等の生理活性リガンドを共存させた系で、被験物質の存在 下と非存在下での Ca2+量 (もしくは SRE制御下にあるリポーター遺伝子の発現量)を 測定'比較することにより、 GPR92/93のアンタゴ-ストをスクリーニングすることができ る。即ち、被験物質の存在下で被験物質の非存在下よりも Ca2+量 (もしくは SRE制御 下にあるリポーター遺伝子の発現量)が減少すれば該被験物質はアンタゴ-ストであ る。 [0068] There is also a method for evaluating cell-stimulating activity of G protein by measuring the expression level of a rebolite gene under the control of a serum-response element (SRE) (An et al " J. Biol, Chem., 273,7906-7910, (1999); An et al "Mol. Pharmacol., 55, 787-794 (1999)). The expression vector used here will be described in detail later. In summary, eukaryotic cells into which a vector containing an expression cassette linked with a DNA encoding a reporter protein is introduced downstream of a promoter containing SRE are examined. Measure the expression of the reporter gene in the extract obtained by culturing for an appropriate period of time in the presence and absence of the substance and disrupting the cells using a known method. Is to evaluate. Therefore, if the amount of reporter gene under SRE control is increased, the test substance is a GPR92 / 93 antigen, and if it is decreased, it is an inverse agonist. In addition, by measuring and comparing the amount of Ca 2+ (or the expression level of reporter gene under SRE control) in the presence and absence of the test substance in a system coexisting with a physiologically active ligand such as LPA GPR92 / 93 antagonists can be screened. That is, if the amount of Ca 2+ (or the expression level of the reporter gene under SRE control) decreases in the presence of the test substance than in the absence of the test substance, the test substance is an antagonist.
[0069] 本発明のスクリーニング法のために提供される、 GPR92/93を含む脂質二重層膜、 及び GPR92/93と共役する G aを構成要素として含有するスクリーニング系の好まし い一実施態様は、 GPR92/93をコードする DNAを含む発現ベクターと、共役 G aの G PCRとの結合に関与する領域及び任意の G aのグァニンヌクレオチドとの結合に関 与する領域を少なくとも含むポリペプチドをコードする DNAを含む発現ベクターとで トランスフエタトした宿主真核生物細胞、該細胞のホモジネートまたは該細胞由来の 膜画分である。 [0069] A preferred embodiment of a screening system provided for the screening method of the present invention, comprising a lipid bilayer membrane comprising GPR92 / 93, and a Ga conjugated with GPR92 / 93 as a constituent element, A polypeptide comprising at least a region involved in the binding of GPR92 / 93-encoding DNA to a conjugated Ga G PCR and a region involved in the binding of any Ga guanine nucleotide. With an expression vector containing the encoding DNA A transfected host eukaryotic cell, a homogenate of the cell, or a membrane fraction derived from the cell.
[0070] G aとしては、 GPR92/93と共役するものであれば特に制限はな!/ G aの各遺伝 子は公知であり、容易に入手可能である。 GPR92/93と共役する G αを含むポリぺプ チドをコードする DNAは、少なくとも共役 G aの GPCRとの結合に関与する領域をコ ードする配列と、任意の G aのグァニンヌクレオチドとの結合に関与する領域をコード する配列を有することが必要である。上述の通り、 G aの X線結晶構造解析の結果か ら、 GPCR結合領域及びグァニンヌクレオチド結合領域はよく知られており、当業者 は、所望により G aのコーディング配列の一部を欠失したフラグメントを容易に構築す ることがでさる。  [0070] The Ga is not particularly limited as long as it is conjugated with GPR92 / 93! Each gene of / Ga is known and can be easily obtained. DNA encoding a polypeptide containing Gα that is conjugated to GPR92 / 93 includes at least a sequence encoding a region involved in binding to a GPCR of conjugated Ga, and an arbitrary guanine nucleotide of Ga. It is necessary to have a sequence encoding a region involved in the binding of. As described above, from the results of X-ray crystal structure analysis of Ga, the GPCR binding region and the guanine nucleotide binding region are well known, and those skilled in the art can delete part of the Ga coding sequence if desired. It is easy to construct the fragment.
[0071] G aのエフェクターへの作用を指標とするスクリーニング系においては、 GPR92/93 と共役する G aをコードする DNAは、所望のエフェクターと相互作用するための領域 をコードするヌクレオチド配列をさらに含む必要がある。エフェクターとしてアデ-ル 酸シクラーゼを用いる場合は、該 DNAは Giひもしくは Gs aのエフェクター相互作用 領域をコードするヌクレオチド配列を含む。一方、エフェクターとしてホスホリパーゼ C βを用いる場合には、該 DNAは Gq aのエフェクター相互作用領域をコードするヌク レオチド配列を含む。各 G o;遺伝子は公知であり、それらのエフェクター相互作用領 域もよく知られている。従って、当業者は、公知の遺伝子工学的手法を適宜組み合 わせることにより、容易にキメラ G a蛋白質をコードする DNAを構築することもできる。 当該キメラ蛋白質 (例えば、 Gqsひ)をコードする DNAの最も簡便な例としては、 Gq aの cDNAの C末端の約 5アミノ酸をコードする配列を、 PCR等の公知の手法を用い て Gs aの C末端配列をコードする DNA配列に置換したものが挙げられる。  [0071] In a screening system using the action of Ga on an effector as an index, the DNA encoding Ga conjugated with GPR92 / 93 further comprises a nucleotide sequence encoding a region for interacting with a desired effector. Need to include. When adenylate cyclase is used as an effector, the DNA contains a nucleotide sequence encoding an effector interaction region of Gi or Gsa. On the other hand, when phospholipase Cβ is used as an effector, the DNA contains a nucleotide sequence encoding the effector interaction region of Gqa. Each Go gene is known and its effector interaction region is also well known. Therefore, those skilled in the art can easily construct a DNA encoding a chimeric Ga protein by appropriately combining known genetic engineering techniques. As the simplest example of DNA encoding the chimeric protein (eg, Gqs), a sequence encoding about 5 amino acids at the C-terminus of Gqa cDNA can be obtained by using a known technique such as PCR. Examples include those substituted with a DNA sequence encoding a C-terminal sequence.
[0072] GPR92/93をコードする DNA、及び GPR92/93と共役する G aをコードする DNAは 、宿主真核生物細胞内でプロモーター活性を発揮し得るプロモーターに機能的に連 結されていなければならない。使用されるプロモーターは、宿主真核生物細胞内で 機能し得るものであれば特に制限はないが、例えば、 SV40由来初期プロモーター、 サイトメガロウィルス LTR、ラウス肉腫ウィルス LTR、 MoMuLV由来 LTR、アデノウ ィルス由来初期プロモーター、バキュロウィルス由来ポリへドリンプロモーター等のゥ ィルスプロモーター、並びに j8—ァクチン遺伝子プロモーター、 PGK遺伝子プロモ 一ター、トランスフェリン遺伝子プロモーター等の真核生物由来細胞の構成蛋白質遺 伝子のプロモーターなどが挙げられる。使用される発現ベクターは、上記プロモータ 一に加えて、その下流に転写終結シグナル、すなわちターミネータ一領域を含有す ることが好ましぐプロモーター領域とターミネータ一領域の間にコーディング DNAを 挿入し得るように、適当な制限酵素認識部位、好ましくは該ベクターを 1箇所のみで 切断するユニークな制限酵素認識部位を有することが望ましい。さらに、該発現べク ターは、選択マーカー遺伝子 (テトラサイクリン、アンピシリン、カナマイシン、ノ、イダ口 マイシン、ホスフィノスリシン等の薬剤抵抗性遺伝子、栄養要求性変異相補遺伝子等[0072] DNA encoding GPR92 / 93 and DNA encoding Ga conjugated to GPR92 / 93 must be functionally linked to a promoter capable of exhibiting promoter activity in a host eukaryotic cell. Don't be. The promoter used is not particularly limited as long as it can function in the host eukaryotic cell. For example, SV40-derived early promoter, cytomegalovirus LTR, rous sarcoma virus LTR, MoMuLV-derived LTR, adenovirus-derived Initial promoter, baculovirus-derived polyhedrin promoter, etc. And a promoter of a constituent protein gene of a eukaryote-derived cell such as a virus promoter, a j8-actin gene promoter, a PGK gene promoter, and a transferrin gene promoter. The expression vector used should be capable of inserting a coding DNA between the promoter region and the terminator region, which preferably contains a transcription termination signal, that is, a terminator region downstream of the promoter. Furthermore, it is desirable to have an appropriate restriction enzyme recognition site, preferably a unique restriction enzyme recognition site that cuts the vector at only one site. In addition, the expression vector is a selectable marker gene (tetracycline, ampicillin, kanamycin, no, idaguchimycin, phosphinothricin and other drug resistance genes, auxotrophic mutation complementary genes, etc.
)をさらに含有していてもよい。 ) May be further contained.
[0073] 本発明のスクリーニング系に使用されるベクターとしてはプラスミドベクターの他、ヒ ト等の哺乳動物での使用に好適なレトロウイルス、アデノウイルス、アデノ随伴ウィル ス、ヘルぺスウィルス、ワクシニアウィルス、ボックスウィルス、ポリオウイルス、シンドビ スウィルス、センダイウィルス等、あるいは昆虫細胞での使用に好適なバキュ口ウィル スベクター等も挙げられる。  [0073] As vectors used in the screening system of the present invention, in addition to plasmid vectors, retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, vaccinia viruses suitable for use in mammals such as humans. Also, box virus, poliovirus, Sindbis virus, Sendai virus, etc., or a vacuum virus vector suitable for use in insect cells.
[0074] GPR92/93をコードする DNAと、 GPR92/93と共役する G aをコードする DNAは、 2 つの別個の発現ベクター上に担持されて宿主細胞に共トランスフエタトされてもよいし 、あるいは、 1つのベクター上に、ジシストロニックもしくはモノシストロニックに挿入さ れて、宿主細胞内に導入されてもよい。 [0074] The DNA encoding GPR92 / 93 and the DNA encoding Ga conjugated to GPR92 / 93 may be carried on two separate expression vectors and co-transfected into a host cell. Alternatively, it may be inserted dicistronic or monocistronic on one vector and introduced into a host cell.
[0075] 宿主細胞は、ヒト、サル、マウス、ラット、ハムスター等の哺乳動物細胞、ある ヽは昆 虫細胞であれば特に制限はない。具体的には、 COP、 L、 C127、 Sp2/0、 NS-1、 NIH3 T3、 ST2等のマウス由来細胞、ラット由来細胞、 BHK、 CHO等のハムスター由来細胞 、 COSl、 COS3、 COS7、 CV1、 Vero等のサル由来細胞、 HeLa、 HEK293、 MCFIOA等 のヒト由来細胞、および S19、 Sf21、 High Five等の昆虫由来細胞などが例示される。  [0075] The host cell is not particularly limited as long as it is a mammalian cell such as a human, monkey, mouse, rat, hamster, or a certain insect cell. Specifically, COP, L, C127, Sp2 / 0, NS-1, NIH3 T3, ST2 and other mouse-derived cells, rat-derived cells, BHK, CHO and other hamster-derived cells, COSl, COS3, COS7, CV1, Examples include monkey-derived cells such as Vero, human-derived cells such as HeLa, HEK293, and MCFIOA, and insect-derived cells such as S19, Sf21, and High Five.
[0076] 宿主細胞への遺伝子導入は、真核生物細胞の遺伝子導入に使用できる公知のい かなる方法を用いて行ってもよぐ例えば、リン酸カルシウム共沈殿法、エレクトロボレ ーシヨン法、リボソーム法、マイクロインジェクション法等が挙げられる。  [0076] Gene transfer into a host cell may be performed using any known method that can be used for gene transfer in eukaryotic cells. For example, calcium phosphate coprecipitation method, electroversion method, ribosome method, Examples include a microinjection method.
[0077] 遺伝子を導入された宿主細胞は、例えば、約 5〜20%のゥシ胎仔血清を含む最少 必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、 Ham' s F- 12培地、 RPMI 1640培地、 199培地、 Grace' s昆虫細胞培養用培地等を用いて培養することができる 。培地の pHは約 6〜約 8であるのが好ましぐ培養温度は、通常約 27〜約 40°Cであ る。 [0077] Host cells into which the gene has been introduced contain, for example, a minimal amount of about 5-20% urine fetal serum. It can be cultured using an essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), Ham's F-12 medium, RPMI 1640 medium, 199 medium, Grace's insect cell culture medium, or the like. The culture temperature, which is preferably about 6 to about 8 for the medium, is usually about 27 to about 40 ° C.
[0078] 上記のようにして得られる、 GPR92/93をコードする DNA及び GPR92/93と共役する G aをコードする DNAを導入された真核生物細胞は、使用するスクリーニング法に 応じてそのまま無傷細胞として使用してもよ!/、し、あるいは適当な緩衝液中で該細胞 を破砕して得られる細胞ホモジネートや、該ホモジネートを適当な条件で遠心分離す るなどして (例えば、約 1 , 000 X g程度で遠心して上清を回収した後、約 100, 000 X g程度で遠心して沈渣を回収する)単離される膜画分の形態であってもよ 、。  [0078] The eukaryotic cells into which the DNA encoding GPR92 / 93 and the DNA encoding Ga conjugated to GPR92 / 93 obtained as described above are intact are allowed to remain intact depending on the screening method used. It may be used as a cell! /, Or a cell homogenate obtained by disrupting the cell in an appropriate buffer, or by centrifuging the homogenate under an appropriate condition (for example, about 1 After centrifugation at about 000 X g, the supernatant is recovered, and then the precipitate is recovered by centrifugation at about 100,000 X g).
[0079] 例えば、 GTP y S結合アツセィや、エフェクターの活性を直接測定することにより、 被験物質のリガンド特性を評価する場合には、使用するスクリーニング系は、好ましく は、上記のようにして細胞力 調製される膜画分である。一方、細胞内 cAMP量 (もし くは cAMP応答性リポーターの発現量)や細胞内 Ca2+量 (もしくは Ca2+応答性リポ 一ターの発現量)を測定することにより、被験物質のリガンド特性を評価する場合に は、使用するスクリ一ユング系は無傷真核生物細胞である。  [0079] For example, when the ligand characteristics of a test substance are evaluated by directly measuring GTP y S binding activity or effector activity, the screening system to be used is preferably a cell force as described above. It is a membrane fraction to be prepared. On the other hand, when assessing the ligand characteristics of a test substance by measuring intracellular cAMP level (or expression level of cAMP-responsive reporter) and intracellular Ca2 + level (or expression level of Ca2 + -responsive reporter). In addition, the screen system used is intact eukaryotic cells.
[0080] 尚、リガンド活性の評価を、 cAMP応答性リポーター(エフェクターがアデ-ル酸シ クラーゼの場合)もしくは Ca2+応答性リポーター(エフェクターがホスホリパーゼ C β の場合)の発現量を指標として行う場合には、宿主真核生物細胞は、 cAMP応答ェ レメント(CRE)または TP A応答エレメント (TRE)を含むプロモーター領域の下流にリ ポーター蛋白質をコードする DNAが機能的に連結した発現カセットを含むベクター を導入されたものである必要がある。 CREは cAMPの存在下に遺伝子の転写を活 性化するシスエレメントであり、コンセンサス配列として TGACGTCAを含む配列が挙 げられる力 cAMP応答性を保持する限り当該配列の一部に欠失、置換、挿入また は付カ卩を含む配列であってもよい。一方、 TREは Ca2+の存在下に遺伝子の転写を 活性化するシスエレメントであり、コンセンサス配列として TGACTCAを含む配列が挙 げられる力 Ca2+応答性を保持する限り当該配列の一部に欠失、置換、挿入または 付カ卩を含む配列であってもよ 、。 CRE又は TREを含むプロモーター配列としては、 上記のようなウィルスプロモーターや哺乳動物の構成蛋白質遺伝子プロモーターが 同様に使用可能であり、制限酵素及び DNAリガーゼを用いて、あるいは PCR等を 利用して、該プロモーター配列の下流に CREまたは TRE配列を挿入することができ る。 CRE又は TREの制御下におかれるリポーター遺伝子としては、迅速且つ簡便に 遺伝子発現を検出 ·定量できる公知のいかなる遺伝子を使用してもよぐ例えば、ル シフェラーゼ、 β ガラクトシダーゼ、 13ーグルクロニダーゼ、アルカリホスファターゼ 、ペルォキシダーゼ等のリポーター蛋白質をコードする DNAが挙げられる力 これら に限定されない。リポーター遺伝子の下流にはターミネータ一配列が配置されること 力 り好ましい。このような CRE (又は TRE)—リポーター発現カセットを担持するべク ターとしては、公知のプラスミドベクター又はウィルスベクターを使用することができる 。血清応答エレメント (SRE)の制御下にあるリポーター遺伝子含む発現ベクターにつ いても、上記と同様に調製することができる。 [0080] In addition, when the ligand activity is evaluated using the expression level of a cAMP-responsive reporter (when the effector is adenylate cyclase) or Ca2 + -responsive reporter (when the effector is phospholipase Cβ) as an index, The host eukaryotic cell contains a vector containing an expression cassette operably linked to a DNA encoding a reporter protein downstream of a promoter region containing a cAMP response element (CRE) or a TPA response element (TRE). It must be introduced. CRE is a cis element that activates gene transcription in the presence of cAMP. The ability to include a sequence containing TGACGTCA as a consensus sequence. As long as it retains cAMP responsiveness, deletion, substitution, It may be an array containing insertions or attachments. On the other hand, TRE is a cis element that activates gene transcription in the presence of Ca2 +, and a sequence that includes TGACTCA as a consensus sequence. As long as it retains Ca2 + responsiveness, a part of the sequence is deleted or replaced. It can be an array containing insertions or attachments. As a promoter sequence containing CRE or TRE, The above-mentioned viral promoters and mammalian constituent protein gene promoters can be used in the same manner, and a CRE or TRE sequence is placed downstream of the promoter sequence using a restriction enzyme and DNA ligase, or using PCR or the like. Can be inserted. As the reporter gene under the control of CRE or TRE, any known gene capable of detecting and quantifying gene expression quickly and easily can be used.For example, luciferase, β-galactosidase, 13-glucuronidase, alkaline phosphatase The ability to include DNA encoding a reporter protein such as peroxidase is not limited to these. It is more preferable that a terminator sequence is arranged downstream of the reporter gene. As a vector carrying such a CRE (or TRE) -reporter expression cassette, a known plasmid vector or viral vector can be used. An expression vector containing a reporter gene under the control of a serum response element (SRE) can also be prepared in the same manner as described above.
[0081] 本発明のスクリーニング法のために提供される、 GPR92/93を含む脂質二重層膜、 及び GPR92/93と共役する G aを構成要素として含有するスクリーニング系の別の好 ましい実施態様は、 GPR92/93の C末端側に、共役 Gひの GPCR結合領域及び任意 の G aのグァニンヌクレオチド結合領域を少なくとも含むポリペプチドが連結した融合 蛋白質をコードする DNAを含む発現ベクターでトランスフエタトした宿主真核生物細 胞、該細胞のホモジネートまたは該細胞由来の膜画分である。  [0081] Another preferred embodiment of a screening system provided for the screening method of the present invention, comprising a lipid bilayer membrane comprising GPR92 / 93, and Ga conjugated to GPR92 / 93 as a constituent element Is an expression vector comprising DNA encoding a fusion protein in which a polypeptide containing at least a GPCR binding region of a conjugated G chain and an arbitrary guanine nucleotide binding region of Ga is linked to the C-terminal side of GPR92 / 93. Host eukaryotic cells, homogenates of the cells or membrane fractions derived from the cells.
[0082] GPR92/93をコードする DNA、及び GPR92/93と共役する G aの GPCR結合領域及 び任意の G aのグァニンヌクレオチド結合領域を含むポリペプチドをコードする DNA は、上述のようにして取得することができる。当業者は、これらの DNA配列をもとにし て、公知の遺伝子工学的手法を適宜組み合わせることにより、 GPR92/93と G aとの 融合蛋白質をコードする DNAを構築することができる。簡潔にいえば、 PCR等を用 いて GPR92/93をコードする DNAの終始コドンを除去したものに、 G aをコードする D NAを読み枠が合うように、即ちインフレームに、 DN Aリガーゼを用いてライゲーショ ンする。この際、 GPR92/93の C末の一部を欠失させたり、 GPR92/93と G αとの間に H isタグ等のリンカ一配列を挿入したりしてもよい。  [0082] DNA encoding GPR92 / 93 and DNA encoding a polypeptide containing a GPCR binding region of Ga and any Ga guanine nucleotide binding region conjugated to GPR92 / 93 are as described above. Can be obtained. Those skilled in the art can construct a DNA encoding a fusion protein of GPR92 / 93 and Ga by appropriately combining known genetic engineering techniques based on these DNA sequences. In brief, DNA or other DNA DNA encoding GPR92 / 93 has been removed using PCR, etc. so that DNA encoding DNA encodes the DNA reading frame, ie, in-frame. Use to ligate. At this time, a part of the C terminus of GPR92 / 93 may be deleted, or a linker sequence such as a His tag may be inserted between GPR92 / 93 and Gα.
[0083] 得られた融合蛋白質をコードする DNAは、上述のような発現ベクター中に挿入さ れ、宿主真核生物細胞に上記の遺伝子導入技術を用いて導入される。得られた真 核生物細胞の膜上に当該融合蛋白質が発現すると、レセプターの細胞内第 3ルー プ上の G a活性化ドメインと共役 G aのレセプター結合領域とは、 GPR92/93に対す る生理的リガンドの非存在下に相互作用して、 G aにおける GDP ' GTP交換反応を 促進し得る。従って、 G aは恒常的に活性化された状態となる。 [0083] The DNA encoding the obtained fusion protein is inserted into an expression vector as described above. And introduced into a host eukaryotic cell using the above-described gene transfer technique. When the fusion protein is expressed on the membrane of the resulting eukaryotic cell, the Ga activation domain on the third intracellular loop of the receptor and the coupled Ga receptor binding region are against GPR92 / 93. It can interact in the absence of physiological ligands to promote the GDP 'GTP exchange reaction in Ga. Therefore, Ga is constantly activated.
[0084] レセプタ一一 G o;融合蛋白質発現細胞を、 G aのエフェクターへの作用を指標にし たスクリーニングに使用する場合において、 G aがレセプターと連結していることがェ フエクタ一との相互作用の妨げとなる場合には、レセプターと G aとのジャンクション 部位に、特異的なプロテアーゼによって切断されるアミノ酸配列(例えば、トロンビン 感受性配列等)を導入し、融合蛋白質を膜上に発現させた後に当該プロテアーゼを 作用させてレセプターと G aとを切り離すことができる。  [0084] One receptor G o; When using fusion protein-expressing cells for screening using the effect of Ga on the effector as an indicator, it is understood that Ga is linked to the receptor. If it interferes with the action, an amino acid sequence (for example, a thrombin sensitive sequence) that is cleaved by a specific protease is introduced at the junction between the receptor and Ga, and the fusion protein is expressed on the membrane. Later, the protease can act to separate the receptor from Ga.
[0085] レセプタ一一 G a融合蛋白質発現細胞についても、使用するスクリーニング法に応 じて、無傷細胞、細胞ホモジネート、膜画分のいずれかの形態を適宜選択して用い ることがでさる。  [0085] For the receptor-expressing Ga fusion protein-expressing cells, any form of intact cells, cell homogenates, and membrane fractions can be appropriately selected and used depending on the screening method used.
[0086] 本発明のスクリーニング法のために提供される、 GPR92/93を含む脂質二重層膜、 及び GPR92/93と共役する G aを構成要素として含有するスクリーニング系のさらに別 の実施態様は、共役 G蛋白質を内因的に発現する宿主動物細胞を、 GPR92/93をコ ードする DNAを含む発現ベクターでトランスフエタトすることにより調製される細胞、 該細胞のホモジネートまたは該細胞由来の膜画分である。  [0086] Still another embodiment of the screening system provided for the screening method of the present invention, comprising a lipid bilayer membrane containing GPR92 / 93, and Ga conjugated to GPR92 / 93 as a component, A cell prepared by transfecting a host animal cell that endogenously expresses the conjugated G protein with an expression vector containing DNA encoding GPR92 / 93, a homogenate of the cell, or a membrane derived from the cell Minutes.
GPR92/93をコードする DNA、該 DNAを挿入する発現ベクター、該発現べクタ一の 宿主細胞への導入法は、上述の通りのものを使用することができる。  As a method for introducing GPR92 / 93-encoding DNA, an expression vector into which the DNA is inserted, and the expression vector into a host cell, those described above can be used.
[0087] 本発明のさらに別の態様においては、本発明のスクリーニング系は、 GPR92/93及 び GPR92/93と共役する G蛋白質を内因的に発現する動物細胞、該細胞のホモジネ ートまたは該細胞由来の膜画分である。このような細胞としては、哺乳動物の脾臓も しくは腎臓、肺由来細胞が好ましく例示される。  [0087] In yet another embodiment of the present invention, the screening system of the present invention comprises GPR92 / 93 and animal cells that endogenously express GPR92 / 93 and a G protein conjugated with GPR92 / 93, It is a cell-derived membrane fraction. Preferred examples of such cells include mammalian spleen, kidney and lung-derived cells.
[0088] 本発明のさらに別の態様においては、 GPR92/93を含む脂質二重層膜、及び GPR9 2/93と共役する G aを構成要素として含有するスクリーニング系として、精製した GPR 92/93と共役 G a、あるいは精製した該レセプターと共役 G aとの融合蛋白質を、人 工脂質二重層膜中に再構成させたものを使用することができる。 GPR92/93は、ヒト又 は他の哺乳動物の脾臓もしくは腎臓、肺由来細胞から得られる膜画分から、抗 GPR9 2/93抗体を用いたァフィユティークロマトグラフィー等により精製することができる。あ るいは、該レセプターは、 GPR92/93をコードする DNAを含む発現ベクターを導入さ れた組換え細胞から、抗 GPR92/93抗体や、 His- tag、 GST- tag等を用いたァフィ-テ ィークロマトグラフィー等〖こより精製することもできる。同様に、該レセプターと共役 G aとの融合蛋白質も、該融合蛋白質をコードする DNAを含む発現ベクターを導入さ れた組換え細胞から、抗 GPR92/93抗体や、 His- tag、 GST- tag等を用いたァフィ-テ ィークロマトグラフィー等〖こより精製することができる。 [0088] In still another embodiment of the present invention, purified GPR 92/93 as a screening system containing a lipid bilayer membrane containing GPR92 / 93 and Ga conjugated to GPR92 / 93 as a constituent element. A fusion protein of conjugated Ga or purified receptor and conjugated Ga What was reconstituted in the engineered lipid bilayer membrane can be used. GPR92 / 93 can be purified from membrane fractions obtained from spleen, kidney or lung-derived cells of humans or other mammals by affinity chromatography using anti-GPR92 / 93 antibody. Alternatively, the receptor can be obtained by using an anti-GPR92 / 93 antibody, His-tag, GST-tag, or the like from a recombinant cell into which an expression vector containing DNA encoding GPR92 / 93 has been introduced. It can also be purified from sugar etc. Similarly, a fusion protein of the receptor and conjugated Ga can also be obtained from an anti-GPR92 / 93 antibody, His-tag, GST-tag from a recombinant cell introduced with an expression vector containing DNA encoding the fusion protein. It can be purified by affinity chromatography using the above.
[0089] 人工脂質二重層膜を構成する脂質としては、ホスファチジルコリン (PC)、ホスファ チジルセリン(PS)、コレステロール(Ch)、ホスファチジルイノシトール(PI)、ホスファ チジルエタノールァミン (PE)等が挙げられ、これら 1種または 2種以上を適当な比率 で混合したものが好ましく使用される。  [0089] Examples of lipids constituting the artificial lipid bilayer membrane include phosphatidylcholine (PC), phosphatidylserine (PS), cholesterol (Ch), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). A mixture of one or more of these in an appropriate ratio is preferably used.
[0090] 例えば、レセプターと G a、又はレセプタ一一 G a融合蛋白質を組み込んだ人工脂 質二重層膜 (プロテオリボソーム)は、 PC: PI: Ch= 12: 12: 1の混合脂質クロ口ホル ム溶液を適当量ガラスチューブに分取し、窒素ガス蒸気でクロ口ホルムを蒸発させて 脂質をフィルム状に乾燥させた後、適当な緩衝液を加えて懸濁、次いで超音波処理 により均一に分散させ、コール酸ナトリウム等の界面活性剤を含む緩衝液をさらにカロ えて脂質を完全に懸濁する。ここに、精製したレセプターと G α、又はレセプタ一一 G α融合蛋白質を、適量添加し、氷中で時々攪拌しながら 20〜30分間程度インキュ ペートした後、適当な緩衝液に対して透析する。約 100, 000 8で30〜60分間遠 心して沈渣を回収することにより、プロテオリボソームを調製することができる。 [0090] For example, an artificial lipid bilayer membrane (proteoribosome) incorporating a receptor and Ga or a receptor-specific Ga fusion protein is a mixed lipid chromatophore of PC: PI: Ch = 12: 12: 1 Aliquot the appropriate amount of the solution into a glass tube, evaporate the black mouth form with nitrogen gas vapor, dry the lipid into a film, add an appropriate buffer to suspend, and then homogenize by sonication. Disperse and add a buffer containing a surfactant such as sodium cholate to completely suspend the lipid. Add the appropriate amount of purified receptor and G α or the receptor G α fusion protein, incubate for about 20-30 minutes with occasional stirring in ice, and then dialyze against an appropriate buffer. . Proteolibosomes can be prepared by centrifuging at about 100,000 8 for 30-60 minutes and collecting the sediment.
[0091] 上記の本発明のスクリーニング法により選択される GPR92/93ァゴニスト、すなわち G PR92/93作動薬は、 GPR92/93の生理的リガンドと同様に、脾臓ランゲルハンス氏島 においてインスリン分泌促進活性を示し、その結果耐糖能異常改善作用を示す。従 つて、これらを適当な添加剤と組み合わせることにより、耐糖能異常改善薬とすること ができる。従って、本発明はまた、本発明のスクリーニング法により選抜された GPR92 /93作動薬と、医薬上許容される担体とを配合させることによる、耐糖能異常改善薬、 又は生活習慣病治療、特に糖尿病治療を提供する。 [0091] The GPR92 / 93 agonist selected by the above-described screening method of the present invention, that is, the GPR92 / 93 agonist, exhibits insulin secretagogue activity in the splenic Langerhans Islet as well as the physiological ligand of GPR92 / 93. As a result, it shows an effect of improving glucose tolerance abnormality. Therefore, by combining these with appropriate additives, it can be made into a drug for improving glucose tolerance. Therefore, the present invention also provides a drug for improving impaired glucose tolerance by combining a GPR92 / 93 agonist selected by the screening method of the present invention and a pharmaceutically acceptable carrier, Or provide lifestyle-related disease treatment, especially diabetes treatment.
また、上記の本発明のスクリーニング法により選択される GPR92/93アンタゴ-ストも しくはインバースァゴ-スト等の GPR92/93拮抗薬は、インスリン分泌を抑制することか ら、脂肪細胞における糖取り込みを抑制すると考えられる。従って、 GPR92/93拮抗 薬は、抗肥満作用を示すことは明白であり、従って、これらを適当な添加剤と組み合 わせることにより、抗肥満薬とすることができる。  In addition, GPR92 / 93 antagonists such as GPR92 / 93 antagonists and inverse agonists selected by the above-described screening method of the present invention inhibit insulin secretion and suppress sugar uptake in adipocytes. It is thought that. Therefore, it is clear that GPR92 / 93 antagonists exhibit anti-obesity action, and therefore, they can be made anti-obesity drugs by combining them with appropriate additives.
[0092] (III) 生体由来脂肪酸誘導体および低分子化合物の製造方法 (III) Process for producing biologically derived fatty acid derivative and low molecular weight compound
生体由来脂肪酸誘導体は、多数の幾何異性体や光学異性体を含むことから、化学 合成で製造することが困難であることが知られている。一方、動物の臓器等の生体由 来サンプルから、タンパク質等多量に含まれる物質を除去して低分子有機化合物を 精製する方法としては、逆相 HPLCを用いる方法、ゲルろ過法、有機溶媒で抽出する 方法、およびタンパク質を加熱変性および酸変性することにより除去する方法等が知 られて 、るが、多量の生体試料を処理しがた!/、ため多量のタンパク質力 微量生体 成分を精製するのは効率が非常に悪ぐ一部の生体活性成分しか回収できない、ま た生体活性成分が変性および失活することから回収できな 、など、問題点があった。  Biologically-derived fatty acid derivatives are known to be difficult to produce by chemical synthesis because they contain many geometric isomers and optical isomers. On the other hand, as a method for purifying low molecular weight organic compounds by removing abundant substances such as proteins from samples derived from living organisms such as animal organs, reverse phase HPLC, gel filtration, extraction with organic solvents There are known methods for removing proteins by heat denaturation and acid denaturation, etc., but it is difficult to process a large amount of biological sample! However, there are problems such as that only a part of the bioactive component having very low efficiency can be recovered, and that the bioactive component cannot be recovered because it is denatured and deactivated.
[0093] 本発明者らは、ブタ脳もしくは脾臓といった生体由来サンプルから、生体由来脂肪 酸誘導体を効率良く精製する方法を見出した。 [0093] The present inventors have found a method for efficiently purifying a biologically derived fatty acid derivative from a biologically derived sample such as pig brain or spleen.
すなわち本発明はまた、固相抽出榭脂を用いる抽出と逆相 HPLCを組み合わせた 精製工程を含むことを特徴とする、生体由来脂肪酸誘導体および低分子成分の製 造方法を提供する。すなわち、以下の工程:  That is, the present invention also provides a method for producing a biologically-derived fatty acid derivative and a low-molecular component, characterized by comprising a purification step that combines extraction using solid-phase extraction coagulant and reverse-phase HPLC. That is, the following steps:
(a) 固相抽出樹脂と生体由来サンプルを接触させ、生体由来脂肪酸誘導体および 低分子成分を吸着させる工程、及び  (a) contacting the solid-phase extraction resin with the biological sample to adsorb the biological fatty acid derivative and the low molecular component; and
(b) 10%〜95%の親水性有機溶媒を含む水溶液により、生体由来脂肪酸誘導体含 有画分および低分子成分を溶出する工程、  (b) a step of eluting biologically derived fatty acid derivative-containing fractions and low-molecular components with an aqueous solution containing 10% to 95% hydrophilic organic solvent;
を含む生体由来脂肪酸誘導体および低分子成分の製造方法もまた、本発明の範疇 である。  A method for producing a biologically-derived fatty acid derivative and a low-molecular component containing thiophene is also within the scope of the present invention.
ここで、固相抽出樹脂とは、脂肪酸誘導体含有画分および低分子成分を吸着しタ ンパク質を吸着しない榭脂であり、具体的には Oasis HLB榭脂 (ウォーターズ社製)等 を f列示することができる。 Here, the solid-phase extraction resin is a resin that adsorbs a fatty acid derivative-containing fraction and a low-molecular component and does not adsorb a protein. Specifically, Oasis HLB resin (manufactured by Waters), etc. The f column can be displayed.
生体由来サンプルとしては特に限定は無ぐ哺乳動物由来の臓器サンプル等が挙 げられる。哺乳動物としては、特に限定は無いが、マウスもしくはラット等のげつ歯類 動物、ゥサギ、ィヌ、ブタ、牛、ヒト等が挙げられる。臓器としては、特に限定は無いが 、脳、脾臓、肝臓、心臓、腎臓、肺、胃、副腎等が挙げられる。  Examples of biological samples include mammal-derived organ samples that are not particularly limited. Mammals include, but are not limited to, rodents such as mice or rats, rabbits, dogs, pigs, cows, humans, and the like. Examples of the organ include, but are not limited to, brain, spleen, liver, heart, kidney, lung, stomach, adrenal gland, and the like.
[0094] 生体由来脂肪酸誘導体としては、炭素数 5〜30の直鎖もしくは分枝の、飽和もしく は不飽和の脂肪酸誘導体が挙げられる。具体的には、炭素数 5〜30の直鎖もしくは 分枝の飽和脂肪酸、炭素数 5〜30の直鎖もしくは分枝の 1〜10個の二重結合もしく は三重結合を含む不飽和脂肪酸、前記飽和脂肪酸もしくは不飽和脂肪酸のエステ ルが挙げられる。前記エステルとが挙げられる。前記ダリセライドには、前記飽和脂肪 酸もしくは不飽和脂肪酸力^〜 3個エステル結合していてもよい。また、前記ダリセラ イドには、グリセリン構造の任意の水酸基はリン酸エステルを形成していてもよぐ当 該リン酸エステルしては、炭素数 1〜6のアルキルエステル、グリセライド、等のリン酸 としては、リン酸(一 OP(=0)(OH) )、ジリン酸(一 OP(=0)0- P(=0)(OH) ),ホスファチ  [0094] Examples of the biologically derived fatty acid derivatives include linear or branched, saturated or unsaturated fatty acid derivatives having 5 to 30 carbon atoms. Specifically, a linear or branched saturated fatty acid having 5 to 30 carbon atoms, an unsaturated fatty acid having a straight chain or branched 1 to 10 double bond or triple bond having 5 to 30 carbon atoms. And esters of saturated or unsaturated fatty acids. And the ester. The dalyceride may have an ester bond with 3 to 3 saturated fatty acids or unsaturated fatty acids. In addition, in the dalyceride, an arbitrary hydroxyl group of the glycerin structure may form a phosphate ester. The phosphate ester may be a phosphoric acid such as an alkyl ester having 1 to 6 carbon atoms or glyceride. As phosphoric acid (one OP (= 0) (OH)), diphosphoric acid (one OP (= 0) 0-P (= 0) (OH)), phosphati
2 2  twenty two
ジルコリン、ホスファチジルセリンもしくはホスファチジルイノシトール等が挙げられる。  Examples include zylcholine, phosphatidylserine, or phosphatidylinositol.
[0095] 前記親水性有機溶媒としては、メタノール、ァセトニトリル又はこれらの混合溶媒が 挙げられる。好ましくは、 10%〜95%メタノール、 10%〜95%ァセトニトリル等が挙げ られる。溶出液として用いられるこれらの親水性有機溶媒を含む水溶液としては、水 、緩衝液等が挙げられ、 pHは適宜 2〜10に調節することが好ましい。具体的には、 0. 05M〜0.5酢酸、 0.03%〜 0.3%TFA、 0.03%〜0.3%ギ酸、 0.1%〜1%アンモニア 等を含有していてもよい。  [0095] Examples of the hydrophilic organic solvent include methanol, acetonitrile, and mixed solvents thereof. Preferable examples include 10% to 95% methanol, 10% to 95% acetonitrile. Examples of the aqueous solution containing these hydrophilic organic solvents used as an eluent include water and a buffer solution, and the pH is preferably adjusted to 2 to 10 as appropriate. Specifically, 0.05M to 0.5 acetic acid, 0.03% to 0.3% TFA, 0.03% to 0.3% formic acid, 0.1% to 1% ammonia and the like may be contained.
通常は生体由来サンプル lkgあたり、固相抽出榭脂 100〜500gを用い、親水性有 機溶媒を含む溶出液は通常 0.5L〜5L用いて溶出する。溶出液は適宜分画し、生物 活性等を指標にして、 目的とする生体由来脂肪酸誘導体を含む画分を取得すること ができる。  Normally, 100 to 500 g of solid phase extraction resin is used per 1 kg of biological sample, and the eluate containing hydrophilic organic solvent is usually eluted with 0.5 to 5 L. The eluate can be fractionated as appropriate, and the fraction containing the desired biologically derived fatty acid derivative can be obtained using biological activity as an index.
取得された画分は適宜当業者に知られた精製方法で更に精製し、単一化合物とす ることができる。当該精製方法としては逆相 HPLC、順相 HPLC、シリカゲルカラムクロ マトグラフィー、イオン交換クロマトグラフィー、再結晶等が挙げられる。好ましくは、逆 相 HPLCが挙げられる。 The obtained fraction can be further purified by a purification method known to those skilled in the art as appropriate to obtain a single compound. Examples of the purification method include reverse phase HPLC, normal phase HPLC, silica gel column chromatography, ion exchange chromatography, and recrystallization. Preferably reverse Phase HPLC is mentioned.
[0096] 例えば、式(3)で表される LPA(22:6)もしくはその異性体(2—ァシル体)については 、 Oasis HLB榭脂カラムを水、次いで 2%〜10%メタノール水で洗浄した後に、 10% 〜90%ァセトニトリル- 10%〜90%メタノールを溶出液として用いて LPA(22:6)含有画 分を取得することができる。  [0096] For example, for LPA (22: 6) represented by formula (3) or its isomer (2-acyl form), the Oasis HLB resin column is washed with water and then with 2% to 10% methanol water. After that, LPA (22: 6) -containing fraction can be obtained using 10% -90% acetonitrile- 10% -90% methanol as eluent.
式 (6)で表される LPI(18:0)もしくはその異性体 (2—ァシル体)等の本発明のリガンド につ 、ても、同様の方法で単一化合物として得ることができる。  The ligand of the present invention such as LPI (18: 0) represented by the formula (6) or its isomer (2-acyl form) can also be obtained as a single compound by the same method.
[0097] 以下に実施例を挙げて本発明をより具体的に説明する力 これらは単なる例示で あって、本発明の範囲を何ら限定するものではない。  [0097] The ability to describe the present invention more specifically with reference to the following examples. These are merely examples, and do not limit the scope of the present invention in any way.
実施例 1  Example 1
[0098] (正常人の脾臓ランゲルノヽンス氏島における GPR92/93の発現局在)  [0098] (Expression localization of GPR92 / 93 in normal human spleen Langernoens island)
(1)ゥサギ由来ポリクローナル抗体の作成  (1) Production of Usagi-derived polyclonal antibodies
GPR92/93抗原ペプチドとして、アミノ酸配列: AQSERSAVTTDATRPD (配列番号: 5)の部分ペプチドを公知の方法で合成し、マススペクトル及び HPLCにより配列を確 した 0 As GPR92 / 93 antigen peptide, the amino acid sequence: AQSERSAVTTDATRPD (SEQ ID NO: 5) a partial peptide synthesized by a known method, was Make a sequence by mass spectrometry and HPLC 0
公知の方法に従い、以下のスケジュールで動物を免疫し、抗血清力 ポリクローナ ル抗体の作成を行った。すなわち、ゥサギ (KBL JW 11週齢) 2匹を用い、飼育 1日 目に FCA (Completeゥサギ(KBL JW 11週令) 2匹を用い、飼育 1日目に FCA(Compl ete Freuncfs Adjuvant)に溶解させた抗原ペプチド 200 μ g/匹を腹腔内に注入した。 更に、飼育 14、 28、 42、 57、 70、 84日目に FCA (Complete Freund' s Adjuvant)に 溶解させた抗原ペプチド 100 μ g/匹を腹腔内に注入した。飼育 49、 63日に抗体 力価確認のための採血を行った。抗体力価の上昇を確認後、飼育 77日目〖こ 20〜30 ml/匹、飼育 91日目に 50〜70ml/匹の採血を行い、抗血清を得て抗原ペプチドを固 定したカラムでァフィユティー精製を行い、 1次抗体を得た。精製された抗体は 0.01% アジィ匕ナトリウムを含む PBSに置換し使用まで冷凍保存した。  According to a known method, animals were immunized according to the following schedule, and antiserum-resistant polyclonal antibodies were prepared. In other words, two rabbits (KBL JW 11 weeks old) were used, and FCA (Complete Usagi (KBL JW 11 weeks)) was used on the first day of breeding, and dissolved in FCA (Compl ete Freuncfs Adjuvant) on the first day of breeding. 200 μg / animal of the antigen peptide was injected intraperitoneally, and the antigen peptide dissolved in FCA (Complete Freund's Adjuvant) on days 14, 28, 42, 57, 70, 84 The animals were injected intraperitoneally, and blood was collected for confirmation of antibody titer on the 49th and 63rd day of breeding. On day 91, blood was collected at 50 to 70 ml / animal, and purified with a column on which an antiserum was obtained and an antigen peptide was immobilized to obtain a primary antibody, which was purified with 0.01% azido sodium. It was replaced with PBS containing and stored frozen until use.
(2)ゥサギ抗体を用いた免疫組織染色  (2) Immunohistochemical staining with Usagi antibody
生検組織サンプル (57歳男性、 95歳男性等)のパラフィンブロックから 4〜5 μ mの厚 さで組織切片を作成した。スライドサンプルはキシレンで除パラフィンを行い、アルコ ール処理を経て再度水和させた。その後 Target Retrieval Solution (DAKO社)中で オートクレーブ処理による抗原賦活化を行った。以降の操作は Vectastain ABC-AP k it (Vector社)を用いた。添付試薬でブロッキング後、上記 (1)で作成した 1次抗体で 45 分インキュベートした。洗浄後、 5 1½1に希釈した抗ゥサギ2次抗体(8 -1000)で30 分インキュベートした。洗浄後 Vector ABC-AP (AK- 5000) reagentを添カ卩し、 Vector Red (SK-5100)にて発色させた。 Tissue sections were prepared at 4-5 μm thickness from paraffin blocks of biopsy tissue samples (57-year-old male, 95-year-old male, etc.). Slide samples were deparaffinized with xylene, Hydrated again through the treatment. Subsequently, antigen activation by autoclaving was performed in Target Retrieval Solution (DAKO). Subsequent operations used Vectastain ABC-AP kit (Vector). After blocking with the attached reagent, it was incubated for 45 minutes with the primary antibody prepared in (1) above. After washing, the cells were incubated with an anti-rabbit secondary antibody (8-1000) diluted to 5 1½1 for 30 minutes. After washing, Vector ABC-AP (AK-5000) reagent was added, and color was developed with Vector Red (SK-5100).
結果を表 1に示した。表 1のとおり、 GPR92/93は他組織と比較して脾臓に強く発現 していることがわ力つた。更に、脾臓組織中での発現分布を詳細に検討したところ、 腺房などではほとんど発現しておらず、ランゲルノヽンス島に発現が局在していること が明らかとなった。  The results are shown in Table 1. As shown in Table 1, GPR92 / 93 was strongly expressed in the spleen compared to other tissues. Furthermore, when the expression distribution in the spleen tissue was examined in detail, it was found that the expression distribution was localized in the islets of Langeron, with little expression in the acinar.
さらに、 GPR92/93抗原ペプチドとして TLARPDATQSQRRRKTVRL (配列番号: 6) を用い、同様の手法で発現局在を検討した結果、ランゲルノ、ンス氏島に有意に発現 していることが明ら力となった。  Furthermore, TLARPDATQSQRRRKTVRL (SEQ ID NO: 6) was used as the GPR92 / 93 antigen peptide, and as a result of examining the localization of expression by the same method, it became clear that it was significantly expressed in Langerno and Seungsu Island. .
[0099] [表 1]
Figure imgf000043_0001
実施例 2
[0099] [Table 1]
Figure imgf000043_0001
Example 2
[0100] (cDNAの調製) [0100] (Preparation of cDNA)
RNeasy Mini Kit(QIAGEN)を用いて、マウス Islet組織から total RNAを抽出した。得 られた total RNA 10 μ g、 Τ7- (dT)24プライマー (Amersham社製) lOOpmolを含む 11 μ 1 の混合液を、 70°C、 10分間加熱後、氷上で冷却した。冷却後、当該混合液に、 Super bcnpt Choice system for cDNA Synthesis(Gibco— BRL社製)【こ まれる 5xFirst Stran d cDNA Buffer 4 /z 1、該キットに含まれる 0.1M DTT 2 μ 1及び当該キットに含まれる 10 mM dNTP Mix 1 μ 1を添カ卩し、この混合液を 42°C、 2分間加熱した。更に、当該混合 液に、当該キットに含まれる Super Scriptll RT 2 1(400U)を添カ卩し、この混合液を 42 °C、 1時間加熱後、氷上で冷却した。冷却後、当該混合液に DEPC処理滅菌蒸留水 9 1 μ 1、当該キットに含まれる 5xSecond Strand Reaction Buffer 30 μ 1、 lOmM dNTP Mi x 3 1、当該キットに含まれる E. coli DNA Ligase 1 μ 1(10U)、当該キットに含まれる E. coli DNA Polymerase I 4 1(40U)及び当該キットに含まれる E. coli RNaseH 1 μ 1(2U) を添加し、この混合液を 16°C、 2時間反応させた。次いで、当該混合液に当該キット に含まれる T4 DNA Polymerase 2 μ 1(10U)をカ卩え、この混合液を 16°C、 5分間反応さ せた後、当該混合液に 0.5M EDTA 10 1を添加した。次いで、この混合液にフエノー ル /クロ口ホルム/イソァミルアルコール溶液(二ツボンジーン社製) 162 μ 1を添カ卩し、混 合した。当該混合液を、予め室温、 14,000rpm、 30秒間遠心分離しておいた Phase Lo ck Gel Light (エツペンドルフ社製)に移し、これを室温、 14,000rpm、 2分間遠心分離し た。遠心分離後、 145 1の水層をエツペンドルフチューブに回収した。回収された水 層に、 7.5M酢酸アンモ-ゥム溶液 72.5 μ 1及びエタノール 362.5 μ 1をカ卩ぇ混合した後 、この混合液を 4°C、 14,000rpm、 20分間遠心分離した。遠心分離後、上清を捨て、 D NAペレットを得た。その後、 DNAペレットに 80%エタノール 0.5mLを添カ卩した。この混 合液を 4°C、 14,000rpm、 5分間遠心分離した後、上清を捨て、 DNAペレットを再び得 た。得られた DNAペレットに再度 80%エタノール 0.5mLを添カ卩した。この混合液を 4°C、 14,000rpm、 5分間遠心分離した後、上清を捨て、 DNAペレットを得た。得られた DN Aペレットを乾燥させた後、 DEPC処理滅菌蒸留水 12 1に溶解することにより、 cDNA 溶液を得た。 Total RNA was extracted from mouse Islet tissue using RNeasy Mini Kit (QIAGEN). A mixture of 11 μ 1 containing 10 μg of total RNA and 7- (dT) 24 primer (manufactured by Amersham) lOOpmol was heated at 70 ° C. for 10 minutes and then cooled on ice. After cooling, the mixture is mixed with Super bcnpt Choice system for cDNA Synthesis (Gibco—BRL) [included 5xFirst Strand cDNA Buffer 4 / z 1, 0.1M DTT 2 μ1 included in the kit and the kit 10 mM dNTP Mix 1 μ1 contained in the solution was added, and the mixture was heated at 42 ° C. for 2 minutes. Further, Super Scriptll RT 21 (400 U) included in the kit was added to the mixed solution, and the mixed solution was heated at 42 ° C. for 1 hour and then cooled on ice. After cooling, DEPC-treated sterilized distilled water 9 1 μ1, 5xSecond Strand Reaction Buffer 30 μ1, included in the kit, lOmM dNTP Mix 3 1, included in the kit, E. coli DNA Ligase 1 μ1 (10U), E. included in the kit. E. coli DNA Polymerase I 4 1 (40 U) and E. coli RNase H 1 μ 1 (2 U) contained in the kit were added, and the mixture was reacted at 16 ° C. for 2 hours. Next, add 2 μ1 (10 U) of T4 DNA Polymerase contained in the kit to the mixture, react this mixture at 16 ° C for 5 minutes, and add 0.5 M EDTA 10 1 to the mixture. Was added. Next, a phenol / black mouth / isoamyl alcohol solution (Nitsubon Gene Co., Ltd.) 162 μ1 was added to the mixture and mixed. The mixture was transferred to Phase Lock Gel Light (manufactured by Eppendorf) which had been previously centrifuged at 14,000 rpm for 30 seconds at room temperature, and centrifuged at 14,000 rpm for 2 minutes at room temperature. After centrifugation, 1451 aqueous layers were collected in an Eppendorf tube. The recovered aqueous layer was mixed with 7.5M ammonium acetate solution (72.5 μ1) and ethanol (362.5 μ1), and the mixture was centrifuged at 4 ° C., 14,000 rpm for 20 minutes. After centrifugation, the supernatant was discarded to obtain a DNA pellet. Thereafter, 0.5 mL of 80% ethanol was added to the DNA pellet. The mixture was centrifuged at 14,000 rpm for 5 minutes at 4 ° C, and the supernatant was discarded to obtain a DNA pellet again. To the obtained DNA pellet, 0.5 mL of 80% ethanol was added again. The mixture was centrifuged at 4 ° C, 14,000 rpm for 5 minutes, and the supernatant was discarded to obtain a DNA pellet. The obtained DNA pellet was dried and then dissolved in DEPC-treated sterile distilled water 121 to obtain a cDNA solution.
実施例 3 Example 3
(マウス由来の遺伝子のクローユング) (Cloning of mouse-derived genes)
実施例 2で調整した cDNA 1 μ L、配列番号 7で示される塩基配列カゝらなるプライマ 一 1 20pmol、配列番号 8で示される塩基配列からなるプライマー 2 20pmol、 TaKaRa Ex- Taqポリメラーゼ(宝酒造社) 2U、 TaKaRa Ex- Taqポリメラーゼ添付のバッファー 5 μ L及び TaKaRa Ex- Taqポリメラーゼ添付の dNTP mixture (2.5mM) 4 iu Lを含む 50 μ Lの反応液を調製した。 PCRは、まず 94°Cで 30秒間、次いで 65°Cで 30秒間、更に 72 °Cで 1.5分間からなる保温サイクルを 40回繰り返し、最後に 72°Cで 5分間保温する条 件にて行われた。 PCR後、ァガロース電気泳動で約 1.2kbpを示す PCR産物を回収し た。回収された PCR産物を pT7- Blue vector(Novagen社)にサブクローニングした後、 当該プラスミドで E.coliJM109株コンビテントセル (東洋紡社)を形質転換した。形質転 換された細胞を 50 μ g/mLアンピシリン含有 LB培地 lOOmLで培養することにより得ら れる培養菌体から QIAGEN Plasmid Maxi kit(QIAGEN社)を用いて分離'精製するこ とにより、マウス由来の遺伝子 (mGPR92)の塩基配列を含むプラスミドを得た。 1 μL of the cDNA prepared in Example 2, a primer consisting of the base sequence shown by SEQ ID NO: 7, 1 20 pmol, a primer consisting of the base sequence shown by SEQ ID NO: 8, 20 pmol, TaKaRa Ex- Taq polymerase (Takara Shuzo) ) A 50 μL reaction solution containing 5 μL of buffer attached to 2U and TaKaRa Ex-Taq polymerase and dNTP mixture (2.5 mM) 4 i uL attached to TaKaRa Ex-Taq polymerase was prepared. PCR is performed under the conditions of first repeating a heat insulation cycle consisting of 94 ° C for 30 seconds, then 65 ° C for 30 seconds, and then 72 ° C for 1.5 minutes, and finally warming at 72 ° C for 5 minutes. It was broken. After PCR, a PCR product showing about 1.2 kbp was recovered by agarose electrophoresis. The recovered PCR product was subcloned into pT7-Blue vector (Novagen), and E.coli JM109 strain competent cell (Toyobo) was transformed with the plasmid. It is obtained by culturing transformed cells in lOOmL of LB medium containing 50 μg / mL ampicillin. The plasmid containing the base sequence of the mouse-derived gene (mGPR92) was obtained by separating and purifying from the cultured cells using QIAGEN Plasmid Maxi kit (QIAGEN).
実施例 4  Example 4
[0102] (マウス由来の遺伝子の塩基配列の決定)  [0102] (Determination of the nucleotide sequence of a mouse-derived gene)
実施例 3で得られた PCR産物(約 1.2kbp)を含むプラスミドを铸型として、 Thermo Se quenase IIダイ'ターミネータ一キット (Amersham Pharmacia Biotech社)及び ABI373D NA配列読み取り装置(PE Applied Biosystems社)を用いて、サンガーの方法〔F.Sang er'S.Nicklen'A.R.し oulson着、 Proceedings of National Academy of science U.b.A.(19 77), 74, 5463-5467]により、配列番号 9で示される塩基配列からなるマウス由来の本 遺伝子 (mGPR92)の塩基配列を決定した。  Using the plasmid containing the PCR product (about 1.2 kbp) obtained in Example 3 as a saddle, Thermo Sequence II dye terminator kit (Amersham Pharmacia Biotech) and ABI373D NA sequence reader (PE Applied Biosystems) In accordance with Sanger's method [F.Sanger'S.Nicklen'AR and oulson, Proceedings of National Academy of science UbA (1977), 74, 5463-5467] The base sequence of this gene (mGPR92) derived from was determined.
実施例 5  Example 5
[0103] (マウス由来の遺伝子発現ベクターの構築)  [0103] (Construction of mouse-derived gene expression vector)
実施例 3で調製した cDNAを铸型として配列番号 11で示される塩基配列カゝらなるプ ライマー 3 20pmol、配列番号 12で示される塩基配列力もなるプライマー 4 20pmol、 Pfe Platinumポリメラーゼ(インビトロジェン社) 2.5U、 Pfe Platinumポリメラーゼ添付の バッファー 5 μ L及び dNTP mixture (2mM) 7.5 μ Lを含む 50 μ Lの反応液を調製した 。 PCRは、まず 94°Cで 1分間の熱処理を行い、続いて 94°Cで 15秒間、 55°Cで 30秒間、 68°Cで 1分 20秒間からなる保温サイクルを 30回繰り返す条件にて行われた。 PCR後 、ァガロース電気泳動で約 1.2kbpを示す PCR産物を回収した。回収された PCR産物 を GATEWAYシステムの BP反応(インビトロジェン社)を用いて pDONR221 (インビトロ ジェン社)に挿入した後、当該プラスミドで E.coli DH5ひ株コンビテントセル (東洋紡 社)を形質転換した。形質転換された細胞をカナマイシン含有培地で培養すること〖こ より得られる培養菌体力 プラスミドを精製することにより、マウス由来の本遺伝子 (m GPR92)の ORF部分の塩基配列を含むエントリーベクター pENTR/mGPR92/93を得た 。塩基配列に誤りのないことを確認した後、 pENTR/mGPR92/93を GATEWAYシステ ムの LR反応(インビトロジェン社)を用いてデスティネーションベクター pCAGGS-DES T (後述)に挿入した後、 E.coli DH5 a株コンビテントセル (東洋紡社)を形質転換した 。形質転換にて得られたコロニーをアンピシリン含有培地で培養することにより得られ る培養菌体から QIAGEN Plasmid Maxi kit(QIAGEN社)を用いて分離'精製すること により、動物細胞導入用プラスミドを調製した。 目的の発現ベクターが得られたことは 制限酵素による切断にて確認し、本プラスミドを pCAGGS/mGPR92/93と命名した。 なお、デスティネーションベクター pCAGGS-DESTは哺乳動物細胞発現ベクター pThe primer prepared from the cDNA prepared in Example 3 in the form of a cage, the primer consisting of the nucleotide sequence represented by SEQ ID NO: 11 3 20 pmol, the primer capable of the nucleotide sequence represented by SEQ ID NO: 12 4 20 pmol, Pfe Platinum Polymerase (Invitrogen) 2.5 U, 50 μL of a reaction solution containing 5 μL of buffer attached to Pfe Platinum polymerase and 7.5 μL of dNTP mixture (2 mM) was prepared. PCR is performed at 94 ° C for 1 minute, followed by 30 heat insulation cycles of 94 ° C for 15 seconds, 55 ° C for 30 seconds, and 68 ° C for 1 minute 20 seconds. It was conducted. After PCR, a PCR product showing about 1.2 kbp was recovered by agarose electrophoresis. The recovered PCR product was inserted into pDONR221 (Invitrogen) using the BP reaction (Invitrogen) of GATEWAY system, and E.coli DH5 strain competent cell (Toyobo) was transformed with the plasmid. Culturing transformed cells in a kanamycin-containing medium cultivated bacterial strength by purifying the plasmid, the entry vector containing the nucleotide sequence of the ORF part of this mouse-derived gene (m GPR92) pENTR / mGPR92 Got / 93. After confirming that there are no errors in the nucleotide sequence, pENTR / mGPR92 / 93 was inserted into the destination vector pCAGGS-DES T (described later) using the LR reaction (Invitrogen) of the GATEWAY system, and then E.coli DH5 A strain, a competent cell (Toyobo Co., Ltd.) was transformed. Obtained by culturing colonies obtained by transformation in a medium containing ampicillin. The plasmid for introduction into animal cells was prepared by separating and purifying from the cultured cells using QIAGEN Plasmid Maxi kit (QIAGEN). It was confirmed by digestion with a restriction enzyme that the target expression vector was obtained, and this plasmid was named pCAGGS / mGPR92 / 93. The destination vector pCAGGS-DEST is a mammalian cell expression vector p
CAGGSの Xhol部位を平滑化後、 GATEWAYリーディングフレーム Bをプロモーターと 同じ方向に挿入したものである。 After smoothing the Xhol site of CAGGS, GATEWAY reading frame B is inserted in the same direction as the promoter.
実施例 6  Example 6
[0104] (ヒト由来遺伝子発現ベクター) [0104] (Human-derived gene expression vector)
巿販 ESTクローン〔IMAGE クローン: ID=4335693 (5') (ResGen社)〕力 制限酵素を 用いてタンパク質コード領域を切り出し、ベクターにつなげることにより調製した。ここ で導入したコード領域がコードするアミノ酸配列が配列番号 2に記載のアミノ酸配列と 同一であることを、配列分析により確認した。  Commercially available EST clone [IMAGE clone: ID = 4335693 (5 ′) (ResGen)] force It was prepared by excising the protein coding region using a restriction enzyme and connecting it to a vector. It was confirmed by sequence analysis that the amino acid sequence encoded by the coding region introduced here was identical to the amino acid sequence described in SEQ ID NO: 2.
実施例 7  Example 7
[0105] (共役 Gタンパク質) [0105] (Conjugated G protein)
(1)細胞への GPR92/93の一過的導入  (1) Transient introduction of GPR92 / 93 into cells
一過性遺伝子導入のために、遺伝子と導入用試薬を以下のように混合調製した。 すなわち、 96wellプレートの lwellにっき、実施例 6で調製した GPR92/93組み込みべ クタ一 0.05 μ g/Opti- MEM培地 5 μ 1と Lipofectamine 0.3 μ 1/Opti- MEM培地 5 μ 1 を混合し、室温で 30分間静置した後に F-12培地 40 1を加えて遺伝子導入用溶液と した。前日に 96wellプレートに 2 x 104 cells/100 μ 1/well (培地: 10% FBSZF- 12)で捲 き込んで 5% CO、 37°Cで 22〜24時間培養した CHO-K1細胞の培地を吸引除去し、 F For transient gene introduction, the gene and the introduction reagent were mixed and prepared as follows. That is, mix the GPR92 / 93 incorporation vector prepared in Example 6 0.05 μg / Opti-MEM medium 5 μ 1 and Lipofectamine 0.3 μ 1 / Opti-MEM medium 5 μ 1 at the well of a 96-well plate at room temperature. And then allowed to stand for 30 minutes, F-12 medium 40 1 was added to obtain a gene introduction solution. The medium of CHO-K1 cells, which were cultured in 96-well plate the day before at 2 x 10 4 cells / 100 μ 1 / well (medium: 10% FBSZF-12) and cultured at 5% CO, 37 ° C for 22-24 hours Aspirate and remove F
2  2
-12培地で 2回洗浄した後、上述の遺伝子導入用溶液 50 1/wellを添カ卩して、 5% CO  After washing twice with -12 medium, add 50 1 / well of the above gene transfer solution and add 5% CO
2 2
、 37°Cで 3.5時間培養した。培地を吸引除去し、 10% FBS ZF-12培地で一回洗浄後 、 100 1/wellの 10% FBSZF-12培地を添カ卩して 5% CO The cells were cultured at 37 ° C for 3.5 hours. Aspirate the medium, wash once with 10% FBS ZF-12 medium, add 100 1 / well of 10% FBSZF-12 medium, and add 5% CO.
2、 37°Cでさらに 24時間培養し た。  2. The cells were further cultured at 37 ° C for 24 hours.
(2) cAMP産生量の測定  (2) Measurement of cAMP production
上記 (1)の方法で一過的に遺伝子導入した細胞の培養上清を除去し、 PBS (—)で洗 浄した。 0.5mM IBMX/lmg/ml BSA/PBS (-) 50 μ 1/wellを添カ卩して室温で 30分間 静置した後、溶液を除去し、 80 μ 1/wellの lysis buffer(l'M KF/l.25% Triton X100/5 OmMリン酸緩衝液 (pH7.0))を加えて細胞を溶解させた。この溶解液 20 1/wellを 384 well白色プレートに移し、同じ 384wellプレートに標準曲線作成用の cAMP希釈液 (0, 0 .8, 2.4, 8, 24, 80, 320 nM)を各 20 /z l / well添加した。 cAMP定量キットである HTRF r eagent set (CIS bio international)の cAMP - XL665 conjugateおよび anti - c AMP crypta te conjugate溶液を lmg/ml BSAZPBS (―)で 40倍希釈して各 10 μ 1 I weir添加し、シ ールして室温でー晚静置した。シールをはがし、測定機 ARVOにて、 cryptate力 出 る 620nmの長寿命蛍光と、励起された cryptateからエネルギー転移を受けた XL665 が生じる 665nmの長寿命蛍光の強度を、時間分解 2波長測定した。 The culture supernatant of the cells transiently transfected with the method (1) above was removed and washed with PBS (—). Add 0.5 mM IBMX / lmg / ml BSA / PBS (-) 50 μ 1 / well for 30 minutes at room temperature After standing, remove the solution and add 80 μl / well lysis buffer (l'M KF / l.25% Triton X100 / 5 OmM phosphate buffer (pH 7.0)) to lyse the cells. It was. Transfer 20 1 / well of this lysate to a 384-well white plate, and add 20 ml of cAMP diluent (0, 0.8, 2.4, 8, 24, 80, 320 nM) for standard curve preparation to the same 384-well plate. / well added. cAMP-XL665 conjugate and anti-c AMP cryptate conjugate solution of HTRF reagent set (CIS bio international), a cAMP quantification kit, is diluted 40-fold with lmg / ml BSAZPBS (-), and each 10 μ 1 I weir is added. Then, it was sealed and allowed to stand at room temperature. The seal was peeled off, and the intensity of the long-lived fluorescence of 620 nm generated by XL665 that received energy transfer from the excited cryptate and the long-lived fluorescence of 665 nm generated by the energy transfer from the excited cryptate were measured with a measuring instrument ARVO.
測定結果力も算出した cAMP量を、表 1に示した。表 1のとおり、ヒトおよびマウスの G PR92/93を一過性導入した細胞で cAMP産生量が増加しており、 GPR92/93は Gsと共 役する GPCRであると推定された。  Table 1 shows the amount of cAMP for which the measured force was also calculated. As shown in Table 1, cAMP production was increased in cells in which human and mouse GPR92 / 93 were transiently introduced, and GPR92 / 93 was estimated to be a GPCR co-operating with Gs.
[表 2]
Figure imgf000047_0001
[Table 2]
Figure imgf000047_0001
(ここで、データは η = 3で測定した平均値を表す) (Here, the data represents the average value measured at η = 3)
実施例 8  Example 8
[0107] (LPAの添加による、濃度依存的な cAMPの上昇)  [0107] (Concentration-dependent increase in cAMP by addition of LPA)
実施例 7の (1)に示した方法で GPCR92/93遺伝子を細胞に一過的に導入した。実 施例 7の (2)の方法で cAMP量を定量する際、冒頭の PBS (—)洗浄後に、種々の濃度 の LPA SniM IBMX/lmg/ml BSA/PBS (—) 50 μ I/wellを添加し、室温で 30分間 静置した。以降は、同(2)の方法で cAMP量を定量した。  The GPCR92 / 93 gene was transiently introduced into the cells by the method shown in Example 7 (1). When quantifying the amount of cAMP by the method in Example 7 (2), after washing with PBS (—) at the beginning, various concentrations of LPA SniM IBMX / lmg / ml BSA / PBS (—) 50 μI / well The mixture was added and allowed to stand at room temperature for 30 minutes. Thereafter, the amount of cAMP was quantified by the method (2).
結果を表 3に示したが、 GPR92/93導入細胞では添加した LPA濃度に依存した cAM P量の増加が見られた。  The results are shown in Table 3. In GPR92 / 93-introduced cells, an increase in the amount of cAMP depending on the LPA concentration added was observed.
[0108] [表 3] [0108] [Table 3]
慰正された用紙 cAMP産生量(p mol/wel I) Comforted paper cAMP production (p mol / wel I)
PA濃度 M)  PA concentration M)
一(mock導入細胞) ヒト GPR92/93導入細胞 マウス GPR92/93導入細胞  One (mock introduced cell) Human GPR92 / 93 introduced cell Mouse GPR92 / 93 introduced cell
0.03±0.01 2.06±0.14 2.64±0.42  0.03 ± 0.01 2.06 ± 0.14 2.64 ± 0.42
.01 0.04±0.01 2.63±0.22 3.12±0.07  .01 0.04 ± 0.01 2.63 ± 0.22 3.12 ± 0.07
.1 0.05±0.01 4.59±0.52 5.60±0.30  .1 0.05 ± 0.01 4.59 ± 0.52 5.60 ± 0.30
0.08±0.03 7.67±0.65 8.90±0.71  0.08 ± 0.03 7.67 ± 0.65 8.90 ± 0.71
(ここで測定値は n= 3の平均値である。 ) (Here, the measured value is the average value of n = 3.)
ここで、 LPAのかわりに、被験物質を用いることによって、 GPR92/93リガンド(ァゴ二 スト及びインバースァゴ-スト)を評価することができる。  Here, GPR92 / 93 ligands (agonist and inverse agonist) can be evaluated by using a test substance instead of LPA.
実施例 9  Example 9
[0109] (単離ラ氏島でのインスリン分泌) [0109] (Insulin secretion in isolated La Island)
ICRマウス(日本クレア、 SPF、 o71)から、コラゲナーゼ消化法により脾臓ラ氏島を単 離した。手順を以下に示す。 自由摂食状態で飼育した ICRマウスをネンブタール麻酔 下にて開腹し、下腹部大静脈を切断して脱血死させる。総胆管が露出するように十 二指腸を配置し、総胆管を十二指腸直前部分で結紮する。総胆管の肝臓側より力二 ユーレを挿入し、 0.02%コラゲナーゼ液 3mlを注入した後に脾臓を摘出する。 5mlのコラ ゲナーゼ液中に浸潰した状態で 37°C、 20分間消化した後、激しく浸透して脾臓を破 砕する。 RPMI1640培地 (10%FCS、抗生物質入り)にて 50mlにメスアップし、懸濁した後 に lOOOrpmXl分間遠心し、上清を除去する。同じ作業をさらに 2回繰り返した後に、 実態顕微鏡観察下、ピペットマンを用いてラ氏島をピックアップし、 RIMI培地中、 37°C 、 5% CO /95% Airにて一晩インキュベートした後に実験に供した。 ICR mice (CLEA Japan, SPF, o 71) from the spleen islets were isolated by collagenase digestion method. The procedure is shown below. ICR mice bred under free-feeding conditions are opened under Nembutal anesthesia, and the lower abdominal vena cava is cut to cause blood loss. Place the duodenum so that the common bile duct is exposed, and ligate the common bile duct just before the duodenum. Insert a force fluid from the liver side of the common bile duct, inject 3 ml of 0.02% collagenase solution, and then remove the spleen. After digestion at 37 ° C for 20 minutes in a 5 ml collagenase solution, vigorously penetrate to disrupt the spleen. Make up to 50 ml with RPMI1640 medium (10% FCS, with antibiotics). After suspension, centrifuge for lOOOrpmXl minutes and remove the supernatant. After repeating the same procedure twice more, under the actual microscope observation, pick up La Island using a pipetman and incubate overnight at 37 ° C, 5% CO / 95% Air in RIMI medium. Provided.
2  2
ラ氏島を KRB(0.5%BSAを含む)中に移し、サイズを揃えた後に、 37°C設定の恒温 機中にて 30分間インキュベートした。予め各条件の LPAを添加した KRBを 37°C恒温 槽にセットし、予熱しておく。インキュベートの終了したラ氏島を 5個 Zチューブにて添 加し、正確に 30分インキュベートした後に氷中に移し、分泌反応を停止させた。各チ ユーブの上清を回収し、レビス インスリンキットマウス(シバヤギ)を用いてインスリン 濃度を測定した。結果を表 4に示した。  La Islet was transferred into KRB (containing 0.5% BSA), sized, and incubated in a thermostat set at 37 ° C for 30 minutes. Pre-heat KRB with LPA added to each condition in a 37 ° C constant temperature bath. After completion of the incubation, 5 islands of La Islet were added in a Z tube, incubated for exactly 30 minutes and then transferred to ice to stop the secretion reaction. The supernatant of each tube was collected, and the insulin concentration was measured using a Levis insulin kit mouse (Shibagoat). The results are shown in Table 4.
[0110] [表 4] [0110] [Table 4]
添加薬剤 DMS0 GLP-1 (lOOnM) LPA (2μΜ) LPA (10 μΜ)  Additives DMS0 GLP-1 (lOOnM) LPA (2 μΜ) LPA (10 μΜ)
インスリン分泌量 3338±1534 7264±4959 4171±1720 6312±2904 表 2おいて DMSOは溶媒のみのネガティブコントロールであり、 GLP-1はインスリン 分泌促進作用を有することが公知のペプチド化合物、すなわちポジティブコントロー ルである。表 2からわ力るように LPAは用量依存的にインスリン分泌促進活性を示し、 LPA: 10 μ Μにおけるインスリン分泌促進活性は GLP- 1(100 μ Μ)とほぼ同程度であ つた ο Insulin secretion 3338 ± 1534 7264 ± 4959 4171 ± 1720 6312 ± 2904 In Table 2, DMSO is a solvent-only negative control, and GLP-1 is a peptide compound known to have an insulin secretion-promoting action, that is, a positive control. As shown in Table 2, LPA showed insulin secretion promoting activity in a dose-dependent manner. LPA: Insulin secretion promoting activity at 10 μΜ was almost the same as GLP-1 (100 μΜ).
実施例 10  Example 10
[0111] (バインディングアツセィによるスクリ一ユング、  [0111] (Screening by Binding Atsay,
(1)細胞膜画分の調製  (1) Preparation of cell membrane fraction
実施例 2 (1)で調製した GPR92/93発現株をフラスコに播種し、 10%FBS (Gibco社製) を培地中で 60〜70%コンフルェントになるまで培養する。細胞を回収し buffer A(50mM Example 2 GPR92 / 93 expression strain prepared in (1) is seeded in a flask, and 10% FBS (manufactured by Gibco) is cultured in the medium until 60 to 70% confluent. Cells are collected and buffer A (50 mM
HEPES(pH7.0), 10mM 2- ME, ImM PMSF, 0.25M sucrose)に懸濁する。 Potter型ホ モジェナイザーでホモジナイズ (400rpm、 20ストローク)したのち、 100000gで 60分遠 心分離を行い、得られた沈殿を再度 buffer Aに懸濁する。この懸濁液を 35%(mass/vol )sucrose in buffer Aの上に重層し 45000gで 45分遠心分離を行う。界面の画分を回収 し buffer Aに懸濁し、 100000gで 60分遠心分離を行う。得られた沈殿を 20 μ g/ml apro tininを含む buffer Aに懸濁し以下のアツセィに用いる。 Suspend in HEPES (pH 7.0), 10 mM 2-ME, ImM PMSF, 0.25 M sucrose). Homogenize with a Potter type homogenizer (400 rpm, 20 strokes), centrifuge at 100000 g for 60 minutes, and resuspend the resulting precipitate in buffer A again. This suspension is layered on 35% (mass / vol) sucrose in buffer A and centrifuged at 45000 g for 45 minutes. Collect the interface fraction, suspend in buffer A, and centrifuge at 100000g for 60 minutes. The resulting precipitate is suspended in buffer A containing 20 μg / ml aprotinin and used in the following assembly.
(2)レセプターバインディングアツセィ  (2) Receptor binding assembly
MultiscreenGVPlate(Miripore)に反応バッファー (50mM Hepes pH7.4、 12.5mM酢酸 マグネシウム、 3.125mM塩化マグネシウム、 0.125mg/ml BSA)に懸濁した [3H]LPAと 希釈した被験物質 (DMSO溶液)とを添カ卩しする。 30°Cでインキュベートしたのち上記 の手順で調整した膜画分を添加する。 30°Cでインキュベートしたのち等量の 20%TC Aを添加し、上清を吸引除去しタンパク質を沈殿させる。 10%TCAで数回洗浄した後 、 37°Cで乾燥させた膜をパンチアウトし γカウンターで測定する。被験物質における 放射活性が、被験物質として DMSOのみを用いた対照における放射活性よりも大きけ れば、当該被験物質は、 GPR92/93リガンドであると決定できる。  [3H] LPA suspended in MultibufferGVPlate (Miripore) in reaction buffer (50 mM Hepes pH7.4, 12.5 mM magnesium acetate, 3.125 mM magnesium chloride, 0.125 mg / ml BSA) and diluted test substance (DMSO solution) Click Incubate at 30 ° C, and add the membrane fraction prepared as described above. After incubation at 30 ° C, add an equal volume of 20% TCA, and aspirate the supernatant to precipitate the protein. After washing several times with 10% TCA, the membrane dried at 37 ° C is punched out and measured with a γ counter. If the radioactivity in the test substance is greater than that in a control using only DMSO as the test substance, the test substance can be determined to be a GPR92 / 93 ligand.
実施例 11  Example 11
[0112] (ビアコアを用いたスクリーニング) [0112] (Screening using Biacore)
(1)細胞膜画分の調製 実施例 2(1)に記載の GPR92/93発現株をフラスコに播種し、 10%FBS (Gibco)を培地 中で 60〜70%コンフルェントになるまで培養する。細胞を回収し buffer A(50mM HEPE S(pH7.0), lOmM 2- ME, ImM PMSF, 0.25M sucrose)に懸濁する。 Potter型ホモジェ ナイザーでホモジナイズ (400rpm、 20ストローク)したのち、 100000gで 60分遠心分離 を行い、得られた沈殿を再度 buffer Aに懸濁する。この懸濁液を 35%(mass/vol)sucros e in buffer Aの上に重層し 45000gで 45分遠心分離を行う。界面の画分を回収し buffer Aに懸濁し、 100000gで 60分遠心分離を行う。得られた沈殿を 20 μ g/ml aprotininを 含む buffer Aに懸濁し以下のアツセィに用いる。 (1) Preparation of cell membrane fraction The GPR92 / 93-expressing strain described in Example 2 (1) is seeded in a flask, and 10% FBS (Gibco) is cultured in the medium until it becomes 60-70% confluent. The cells are collected and suspended in buffer A (50 mM HEPE S (pH 7.0), lOmM2-ME, ImM PMSF, 0.25M sucrose). Homogenize with a Potter type homogenizer (400 rpm, 20 strokes), centrifuge at 100000 g for 60 minutes, and resuspend the resulting precipitate in buffer A again. This suspension is layered on 35% (mass / vol) success in buffer A and centrifuged at 45000 g for 45 minutes. Collect the interface fraction, suspend in buffer A, and centrifuge at 100000g for 60 minutes. Suspend the resulting precipitate in buffer A containing 20 μg / ml aprotinin and use it in the following assembly.
(2)ビアコアでの結合測定 (2) Measurement of coupling at via core
文献 [Anal Biochem. 1998 Dec 15;265(2):340- 50. Markgren PO et al.]に記載され て 、る一般的な方法を用いる。上記手順で調整した GPR92/93発現細胞膜画分 (例 えば 1〜10 μ g)を 10mMの酢酸バッファー(pH4)に溶解し、ビアコアのセンサーチッ プ CM5の表面のマトリックスにカルボキシル基を介して固定化する。  The general method described in the literature [Anal Biochem. 1998 Dec 15; 265 (2): 340-50. Markgren PO et al.] Is used. GPR92 / 93-expressing cell membrane fraction (eg, 1-10 μg) prepared in the above procedure is dissolved in 10 mM acetate buffer (pH 4) and fixed to the matrix on the surface of Biacore sensor chip CM5 via carboxyl groups. Turn into.
HBSバッファー(アマシャム フアルマシア バオテク株式会社製)をセンサーチッ プに 20 1Z分の流速で流し、ノ ックグラウンドの値を記録する。途中力も HBSバッフ ァ一に 10ηΜ〜10 /ζ Mの濃度で溶解した被験物質に切り替えて 1分間流し、薬剤の 結合に伴う値の変化を記録する。再び、薬剤を含まない HBSバッファーに切り替え、 結合した薬剤の解離に伴う値の変化を記録する。結合と解離の速度、あるいは最大 結合量力 被験物質と GPR92/93との親和性を計算する。  Run HBS buffer (Amersham Falmacia Baotech Co., Ltd.) through the sensor chip at a flow rate of 201 Z and record the knock ground value. The intermediate force is also switched to the test substance dissolved in the HBS buffer at a concentration of 10ηΜ to 10 / ζM for 1 minute, and the change in value associated with drug binding is recorded. Switch back to HBS buffer without drug and record the change in value as the bound drug dissociates. Binding and dissociation rates, or maximum binding capacity Calculate the affinity between the test substance and GPR92 / 93.
実施例 12 Example 12
プラスミド DNA作製方法 Plasmid DNA production method
GPR92/93 (ΝΜ_020400 ;配列番号 13)を以下のプライマーを用いた PCRを行うこと で増幅した。  GPR92 / 93 (ΝΜ_020400; SEQ ID NO: 13) was amplified by PCR using the following primers.
atGPR92M: GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCatgttagccaacagc tcctcaac (配列番号 15) atGPR92M: GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCatgttagccaacagc tcctcaac (SEQ ID NO: 15)
atGPR92R: GGGGACCACTTTGTACAAGAAAGCTGGGTCAtcagagggcggaatcctggg gacac (目己列番号 16) atGPR92R: GGGGACCACTTTGTACAAGAAAGCTGGGTCAtcagagggcggaatcctggg gacac (Eye number 16)
得られた断片を PDONR201と GATEWAYシステムの BP反応( 、ずれもインビトロジェ ン社)を行うことにより pENTR/GPR92/93を得た。得られたクローンについて塩基配列 を確認した。さらに、 pENTR/GPR92/93から、当業者に汎用されている方法で GPR92 /93発現ベクターを構築した。このようにして得られたクローンを拡大培養し、キアゲン MAXIキットを利用して導入用プラスミド DNAを精製した。 The fragment obtained was subjected to the BP reaction between PDONR201 and the GATEWAY system. PENTR / GPR92 / 93 was obtained. The nucleotide sequence of the obtained clone was confirmed. Furthermore, a GPR92 / 93 expression vector was constructed from pENTR / GPR92 / 93 by a method commonly used by those skilled in the art. The clones thus obtained were expanded and cultured, and plasmid DNA for introduction was purified using the Qiagen MAXI kit.
実施例 13  Example 13
[0114] アツセィ方法 [0114] Atsay method
CHO-K1細胞を 2xl04個/ wellで 96穴プレートにまき、抗生物質を含まない培地を用い て C02インキュベータで 24時間培養した。 50 ngの GPR92/93発現プラスミド DNA(GP R92/93/pCAGGS)を 5 1の OPTI- MEMに希釈し、また 0.3 1の LipofectAmineを 5 1の OPTト MEMに希釈した。両者を混合し室温で 30分間静置後、 40 1の血清無 添カ卩の F12培地をカ卩え、血清無添カ卩の F12培地で 1回洗浄した wellに添カ卩した。 C02 インキュベータで 4時間培養後、 10% FBS添加 F12培地に置き換え(1回洗浄)、 C02ィ ンキュベータで 24時間培養した。細胞を PBS (-)で洗浄し、ブタ臓器活性画分を含む 5 0 μ 1の 0.5 mM IBMXを含んだ Hanks Hepes液に置換した。 15分後に、 Hanks Hepes 液を吸引し、 40 μ 1の Lysis buffer (1% TritonX100、 50 mMリン酸バッファー (pH7.0)、 0 .2% BSA)を添加し、細胞を溶解した。細胞溶解液うち 10 1を cAMP定量アツセィ〖こ 使用した。 10 μ 1の反応液を 384- well white plateに入れ、 5 μ 1ずつの cAMP- XL665 c onjugateと Mab anti- cAMP- Cryptate conjugateを添カ卩した。室温で 2時間反応させた 後、マルチプレートリーダー ARVOを用いて、 TR- FRET法による cAMPの定量をおこ なった。 CHO-K1 cells were seeded in 96-well plates at 2xl0 4 cells / well and cultured in a C02 incubator for 24 hours using a medium not containing antibiotics. 50 ng of GPR92 / 93 expression plasmid DNA (GP R92 / 93 / pCAGGS) was diluted in 51 OPTI-MEM, and 0.31 LipofectAmine was diluted in 51 OPT-MEM. Both were mixed and allowed to stand at room temperature for 30 minutes, and then 40 1 serum-free F12 medium was added and added to a well washed once with serum-free F12 medium. After culturing in a C02 incubator for 4 hours, the medium was replaced with F12 medium supplemented with 10% FBS (washed once), and cultured in a C02 incubator for 24 hours. The cells were washed with PBS (−) and replaced with Hanks Hepes solution containing 50 μl of 0.5 mM IBMX containing the porcine organ activity fraction. After 15 minutes, Hanks Hepes solution was aspirated and 40 μl of Lysis buffer (1% Triton X100, 50 mM phosphate buffer (pH 7.0), 0.2% BSA) was added to lyse the cells. Of the cell lysates, 101 was used for cAMP quantitative assay. 10 μl of the reaction solution was placed in a 384-well white plate, and 5 μl each of cAMP-XL665 conjugate and Mab anti-cAMP-Cryptate conjugate were added. After reacting for 2 hours at room temperature, cAMP was quantified by the TR-FRET method using a multiplate reader ARVO.
実施例 14  Example 14
[0115] ブタ脳組織由来活性成分 LPAおよび LPIの単離  [0115] Isolation of active ingredients LPA and LPI from porcine brain tissue
ブタ新鮮脳 9個 (湿重量 924.9 g)を採取した。当日、新鮮脳 9個に生理食塩水 5Lを 加えホモゲナイズした後に、 4°Cに冷却し 9,000Gで 30分間高速遠心して上清 4,277g を取得した。  Nine fresh pig brains (wet weight 924.9 g) were collected. On that day, 5 L of physiological saline was added to 9 fresh brains, homogenized, cooled to 4 ° C, and centrifuged at 9,000 G for 30 minutes to obtain 4,277 g of supernatant.
ウォーターズ社 Oasis HLB榭脂 300gを充填したカラム(容量 900ml)にメタノール 1L を流し予め洗浄し、次いで水 2L以上を流して平衡ィ匕させた。平衡ィ匕させた Oasis HL B榭脂カラムに上記の遠心上清を通液し吸着させた。カラムを水 5Lで洗浄し (C1とラ ベル)、 5%メタノール水 5Lで洗浄した後に(C2とラベル)、 90%ァセトニトリル- 10%メ タノール 4Lを通液して活性成分を溶出させた (C3とラベル)。その後にァセトニトリル- 10%メタノール- 10% 0.1M酢酸 3Lを通液し(C4とラベル) 、 80%ァセトニトリル- 10% メタノール- 10% 0.1%ギ酸 3Lを通液し(C5とラベル) 、 80%ァセトニトリル- 10%メタ ノール- 10% 0.1%トリクロ口酢酸 TFA3Lを通液した(C6とラベル)。それぞれの溶出 液について活性測定した結果、活性成分は C3に溶出されていることが判った。 A column (900 ml capacity) packed with 300 g of Oasis HLB resin from Waters was preliminarily washed with 1 L of methanol, and then equilibrated with 2 L or more of water. The centrifugation supernatant was passed through an equilibrated Oasis HL B resin column and adsorbed. Wash the column with 5 L of water (C1 and After washing with 5 L of 5% aqueous methanol (labeled C2), the active ingredient was eluted by passing 4 L of 90% acetonitrile- 10% methanol (labeled C3). Next, pass 3L of acetonitrile, 10% methanol, 10% 0.1M acetic acid (labeled C4), 80% acetonitrile, 10% methanol, 10% 0.1% formic acid, 3L (labeled C5), 80% Acetonitrile-10% methanol-10% 0.1% Trichloroacetic acid TFA3L was passed through (labeled C6). As a result of measuring the activity of each eluate, it was found that the active ingredient was eluted in C3.
溶出液 C3について逆相液体クロマトグラフィー法により精製した。 4Lの溶出液 C3を エバポレーターで減圧濃縮し、濃縮液を少量のメタノールに溶解した。濃縮液を Agil ent社製の ZORBAX Eclipse XDB- C18カラムに通液し、 0.1%トリクロ口酢酸/ァセトニ トリル溶媒系でァセトニトリル濃度を増加させて活性成分を溶出した。グラジェント条 件は下記の条件に従って実施した。  The eluate C3 was purified by reverse phase liquid chromatography. 4 L of eluate C3 was concentrated under reduced pressure using an evaporator, and the concentrate was dissolved in a small amount of methanol. The concentrated solution was passed through a ZORBAX Eclipse XDB-C18 column manufactured by Agilent, and the active ingredient was eluted by increasing the acetonitrile concentration in a 0.1% trichloroacetic acid / acetononitrile solvent system. The gradient conditions were implemented according to the following conditions.
(Zorbax-C 18- HPLC条件) (Zorbax-C 18-HPLC conditions)
Lし装 : Applied Biosystems Integral HPLし L Cloth: Applied Biosystems Integral HPL
カラム: ZORBAX Eclipse XDB- C18 4.6x250mm (Agilent) Column: ZORBAX Eclipse XDB- C18 4.6x250mm (Agilent)
移動相: A: 0.1%TFA-H2O B: 0.08%TFA- 90%ACN Mobile phase: A: 0.1% TFA-H2O B: 0.08% TFA- 90% ACN
0%B(0min)-20%B(10min)-60%B(40min)-100%B(40min)-100%B(5min) 0% B (0min) -20% B (10min) -60% B (40min) -100% B (40min) -100% B (5min)
流速: l.OmL/min Flow rate: l.OmL / min
分画: l.Omin/Fr Fractionation: l.Omin / Fr
検出: UV220nm,280nm Detection: UV220nm, 280nm
各フラクション 50 1についてスピードバック濃縮装置を用いて減圧濃縮した後に、 1 1の DMSOに溶解し GPR92/93発現 CHO- K1細胞を使用するアツセィ法により活性 を測定した。活性はフラクション 64およびフラクション 65に溶出された。それぞれの cA MP生成量は 1.9nMおよび 3.1nMであった。 Each fraction 50 1 was concentrated under reduced pressure using a speed-back concentrator, and then dissolved in 11 DMSO, and the activity was measured by the assay method using GPR92 / 93-expressing CHO-K1 cells. Activity was eluted in fraction 64 and fraction 65. The amount of cA MP produced was 1.9 nM and 3.1 nM, respectively.
上記のフラクション 64およびフラクション 65それぞれ 800 μ 1をスピードバック濃縮装 置により減圧濃縮した後に、 200 1のメタノールに溶解し、 Waters社製の Xterraカラム に通液し、 0.1%トリクロ口酢酸/ァセトニトリル溶媒系でァセトニトリル濃度を増加させ て活性成分を溶出した。グラジェント条件は下記の条件に従って実施した。  800 μl of each of the above-mentioned fraction 64 and fraction 65 was concentrated under reduced pressure using a speed-back concentrator, dissolved in 200 1 methanol, passed through an Xterra column manufactured by Waters, and 0.1% trichloroacetic acid / acetonitrile solvent. The active ingredient was eluted by increasing the acetonitrile concentration in the system. The gradient conditions were carried out according to the following conditions.
(Xterra- HPLC条件) LC装置: Applied Biosystems Integral HPLC (Xterra-HPLC conditions) LC instrument: Applied Biosystems Integral HPLC
カラム: Xterra (登録商標) RP18 4.6x150mm (Waters) Column: Xterra (registered trademark) RP18 4.6x150mm (Waters)
移動相: A: 0.1%TFA-H2O B: 0.08%TFA- 90%ACN Mobile phase: A: 0.1% TFA-H2O B: 0.08% TFA- 90% ACN
0%B(0min)-50%B(5min)-58%B(8min)-70%B(24min)-75%B(5min)-100%B(10min) 0% B (0min) -50% B (5min) -58% B (8min) -70% B (24min) -75% B (5min) -100% B (10min)
-100%(3min) -100% (3min)
流速: 0.8mL/min Flow rate: 0.8mL / min
分画: l.Omin/Fr Fractionation: l.Omin / Fr
検出: UV220nm,280nm Detection: UV220nm, 280nm
各フラクション 10 1についてスピードバック濃縮装置を用いて減圧濃縮した後に、 1 μ 1の DMSOに溶解し GPR92/93発現 CHO- K1細胞を使用するアツセィ法(実施例 13 を参照)により活性を測定した。活性はフラクション 16に溶出された。 cAMP生成量は 3 2nMであった。  Each fraction 101 was concentrated under reduced pressure using a speed-back concentrator, and then the activity was measured by the Atsy method (see Example 13) using GPR92 / 93-expressing CHO-K1 cells dissolved in 1 μ1 DMSO. . Activity was eluted in fraction 16. The amount of cAMP produced was 32 nM.
フラクション 16 (700 1)をスピードバック濃縮装置により減圧濃縮した後に、 200 1 のメタノールに溶解し、 Waters社製の Atlantisカラムに通液し、 0.1%トリクロ口酢酸/ァ セトニトリル溶媒系でァセトニトリル濃度を増力 []させて活性成分を溶出した。グラジェ ント条件は下記の条件に従って実施した。  Fraction 16 (700 1) was concentrated under reduced pressure using a speed-back concentrator, dissolved in 200 1 methanol, passed through an Atlantis column manufactured by Waters, and the acetonitrile concentration was adjusted with a 0.1% trichloroacetic acid / acetonitrile solvent system. The active ingredient was eluted by boosting []. The gradient conditions were as follows.
(Atlantis -HPLC条件)  (Atlantis -HPLC conditions)
Lし装 : Applied Biosystems Integral HPLし  L Cloth: Applied Biosystems Integral HPL
カラム: Atlantis (登録商標) dC18 4.6x150mm (Waters) Column: Atlantis® dC18 4.6x150mm (Waters)
移動相: A: 0.1%TFA-H2O B: 0.08%TFA- 90%ACN Mobile phase: A: 0.1% TFA-H2O B: 0.08% TFA- 90% ACN
0%B(0min)-50%B(5min)-58%B(8min)-70%B(24min)-100%B(5min)  0% B (0min) -50% B (5min) -58% B (8min) -70% B (24min) -100% B (5min)
流速: 0.8mL/min Flow rate: 0.8mL / min
分画: 0.3min/Fr Fractionation: 0.3min / Fr
検出: UV220nm,280nm Detection: UV220nm, 280nm
各フラクション 20 1についてスピードバック濃縮装置を用いて減圧濃縮した後に、 1 1の DMSOに溶解し GPR92/93発現 CHO- K1細胞を使用するアツセィ法により活性 を測定した。活性はフラクション 41およびフラクション 47に溶出された。それぞれの cA MP生成量は 4.3nMおよび 5.1nMであった。 実施例 15 Each fraction 201 was concentrated under reduced pressure using a speed-back concentrator, and then dissolved in 11 DMSO, and the activity was measured by the assay method using GPR92 / 93-expressing CHO-K1 cells. Activity was eluted in fractions 41 and 47. The respective cA MP production was 4.3 nM and 5.1 nM. Example 15
ブタ脳組織由来活性成分 LPAおよび LPIの構造解析 Structural analysis of porcine brain tissue-derived active ingredients LPA and LPI
質量分析には Nanosprayイオン源を装着した Micomass社 QTOF2質量分析計および Thermo Electoron社イオントラップ質量分析計 LCQを解析に使用した。試料は 0.1%A cOH-H20/MeOH/AcCN(l : 1:1)に溶解し、流速 200nL/minにて Nanospray測定を行 つた。 LCQではキヤピラリー温度 150°C、イオン化電圧 1.8kVに設定し、 positive測定 および negative測定の両モードでの測定を行った。 QTOF2では positiveイオンモード のみ測定を行った。 For the mass analysis, a Micomass QTOF2 mass spectrometer equipped with a Nanospray ion source and a Thermo Electoron ion trap mass spectrometer LCQ were used for the analysis. The sample was dissolved in 0.1% AcOH-H20 / MeOH / AcCN (l: 1: 1), and Nanospray measurement was performed at a flow rate of 200 nL / min. In LCQ, the capillary temperature was set to 150 ° C and the ionization voltage was set to 1.8 kV, and measurements were performed in both positive and negative modes. In QTOF2, only the positive ion mode was measured.
(1)活性フラクション 41の構造解析  (1) Structural analysis of active fraction 41
活性フラクション 41のマススペクトルを取得したところ、負イオンモードでは [M-H]-と 考えられるピーク m/z599.9が検出され、正イオンモードでは [M+H]+=601.7, [M+Na]+, When the mass spectrum of the active fraction 41 was obtained, the peak m / z 599.9 considered to be [MH]-was detected in the negative ion mode, and [M + H] + = 601.7, [M + Na] in the positive ion mode. +,
[2M+H1+, [M+H-H20]+が検出され、本成分の分子量は 600と決定でき、単一成分 に精製されていることがわ力つた。負イオン MS/MSスペクトルで検出されたフラグメン トイオン m/z419, m/z241からイノシトールリン脂質と推定され、さらに、 m/z315, m/z34 1のフラグメントイオンから、本リガンド候補成分は lysophosphatidylinositol (LPI (18:0) )と推定することができた。 lysophosphatidylinositol (LPI (18:0) )標品の MS/MSスぺタト ルを取得したところ、フラグメントイオンが一致し、 MW600活性成分は lysophosphatidy linositol (LPI (18:0) )と決定した。 [2M + H1 +, [M + H-H20] + was detected, and the molecular weight of this component was determined to be 600, indicating that it was purified to a single component. From the fragment ions m / z419 and m / z241 detected in the negative ion MS / MS spectrum, it was estimated to be inositol phospholipid.From the fragment ions of m / z315 and m / z341, the candidate ligand component was (18: 0)). When MS / MS spectrum of lysophosphatidylinositol (LPI (18: 0)) sample was obtained, the fragment ions matched and the active component of MW600 was determined to be lysophosphatidylinositol (LPI (18: 0)).
(2)活性フラクション 47の構造解析  (2) Structure analysis of active fraction 47
活性フラクション 47のマススペクトルを取得したところ、負イオンスペクトルでは、 [M- H]-および [2M- H]-のピークが検出され、正イオンスペクトルでは、 [M+H]+, [2M+H1+ , [3M+H]+, [M+Na]+, [M+H- H20]+のピークが検出されたことから、本成分の分子量 は 482と決定でき、単一成分に精製されていることがわ力つた。正イオン m/z483.8から の MS/MSスペクトルでは- 98フラグメントが検出され、リン酸基があることが示唆された 。負イオン m/z481.8からの MS/MSスペクトルでは、グリセロールリン酸に特徴的な m/z 153のフラグメントイオンが検出され、本成分はリゾリン脂質の一種であるリゾフォスフ ァチジン酸 Docosahexaenoy卜 LPA (LPA (22:6) )と推定できた。本 MS/MSスペクトルで は、ァシル基の結合部位 (sn-1あるいは sn-2)は確定できず、両方の可能性がある。 酵素合成法(Tokumur, A.ら、 Biochem J. 2002 Aug l;365(Pt 3):617- 28.)により調製 した Docosahexaenoy卜 LPA (LPA (22:6) )標品の MS/MSスペクトルを取得したところ、 フラグメントイオンが一致し、 MW482活性成分は Docosahexaenoy卜 LPA (LPA (22:6) ) と決定した。 When the mass spectrum of active fraction 47 was obtained, the [M- H]-and [2M- H]-peaks were detected in the negative ion spectrum, and [M + H] +, [2M + Since the peaks of H1 +, [3M + H] +, [M + Na] +, [M + H-H20] + were detected, the molecular weight of this component could be determined to be 482, and it was purified into a single component. It was a great help. In the MS / MS spectrum from the positive ion m / z 483.8, a -98 fragment was detected, suggesting the presence of a phosphate group. In the MS / MS spectrum from the negative ion m / z 481.8, a fragment ion of m / z 153 characteristic of glycerol phosphate was detected, and this component is lysophospholipid, a kind of lysophospholipid Docosahexaenoy 卜 LPA (LPA (22: 6))). In this MS / MS spectrum, the binding site of the acyl group (sn-1 or sn-2) cannot be determined, and both are possible. MS / MS spectrum of DocosahexaenoyenoLPA (LPA (22: 6)) preparation prepared by enzymatic synthesis (Tokumur, A. et al., Biochem J. 2002 Aug l; 365 (Pt 3): 617-28.) As a result, the fragment ions coincided and the active component of MW482 was determined to be Docosahexaenoy LPA (LPA (22: 6)).
実施例 16  Example 16
[0117] 各種類縁化合物の活性 [0117] Activity of various related compounds
上記活性化合物の構造類似化合物について GPR92/93発現 CHO-K1細胞を使用す るアツセィ法 (実施例 13を参照)により活性を測定した。活性測定結果を表 1に示した  The activity of the structurally similar compounds of the active compounds was measured by the Atsy method (see Example 13) using GPR92 / 93-expressing CHO-K1 cells. The activity measurement results are shown in Table 1.
[0118] [表 5] [0118] [Table 5]
Figure imgf000055_0001
Figure imgf000055_0001
*(被験物質存在下での cAMP量) (被験物質非存在下での cAMP量) * (CAMP amount in the presence of the test substance) (cAMP amount in the absence of the test substance)
産業上の利用可能性  Industrial applicability
[0119] 本発明の GPR92/93作動薬は、インスリン分泌促進活性を示し、耐糖能異常改善薬 、糖尿病治療薬として有用である他、研究用試薬として利用することもできる。また、 本発明のスクリーニング方法により、医薬品の候補ィ匕合物となり得る、 GPR92/93作動 薬及び拮抗薬を探索することが可能になった。 [0119] The GPR92 / 93 agonist of the present invention exhibits insulin secretion promoting activity, is useful as a glucose tolerance ameliorating agent and a diabetes therapeutic agent, and can also be used as a research reagent. In addition, the screening method of the present invention makes it possible to search for GPR92 / 93 agonists and antagonists that can be drug candidates.
配列表フリーテキスト  Sequence listing free text
[0120] 配列番号 5:抗原ペプチド [0120] SEQ ID NO: 5: Antigenic peptide
配列番号 6 :抗原ペプチド  SEQ ID NO: 6: antigenic peptide
配列番号 7: PCR用プライマー  SEQ ID NO: 7: PCR primer
配列番号 8: PCR用プライマー 配列番号 11: PCR用プライマー 配列番号 12 :PCR用プライマー 配列番号 15: PCR用プライマー 配列番号 16 :PCR用プライマー SEQ ID NO: 8: PCR primer SEQ ID NO: 11: PCR primer SEQ ID NO: 12: PCR primer SEQ ID NO: 15: PCR primer SEQ ID NO: 16: PCR primer

Claims

請求の範囲 The scope of the claims
[1] GPR92/93作動薬を有効成分として含有する、インスリン分泌促進薬。  [1] An insulin secretagogue that contains a GPR92 / 93 agonist as an active ingredient.
[2] GPR92/93作動薬がリゾホスファチジン酸、その誘導体、 L-NASPA又はそれらの薬 学上許容される塩である、請求項 1に記載のインスリン分泌促進薬。  [2] The insulin secretagogue according to claim 1, wherein the GPR92 / 93 agonist is lysophosphatidic acid, a derivative thereof, L-NASPA, or a pharmaceutically acceptable salt thereof.
[3] リゾホスファチジン酸又はその誘導体力 式(1): [3] Lysophosphatidic acid or its derivative power Formula (1):
[化 11]  [Chemical 11]
Figure imgf000057_0001
Figure imgf000057_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は炭素数 8〜22の 1ーァルケ 二ノレ基を表し、 [In the formula, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕 で表される化合物である、請求項 2に記載のインスリン分泌促進薬。 R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. ] The insulin secretion promoter of Claim 2 which is a compound represented by these.
[4] 式(1)で表される化合物力 リゾホスファチジン酸、 1-Acy卜 PAF又はそれらの薬学 上許容される塩である、請求項 3に記載のインスリン分泌促進薬。  [4] The insulin secretagogue according to claim 3, wherein the compound is represented by the formula (1): lysophosphatidic acid, 1-Acy の PAF, or a pharmaceutically acceptable salt thereof.
[5] 式(1)において、
Figure imgf000057_0002
R2及び R3が以下の組み合わせを表すことを特徴とする、請求 項 3に記載のインスリン分泌促進薬:
[5] In equation (1),
Figure imgf000057_0002
The insulin secretagogue according to claim 3, characterized in that R 2 and R 3 represent the following combinations:
1) R1がォレオイル基を表し、 R2及び R3が水素原子を表す; 1) R 1 represents an oleoyl group, R 2 and R 3 represent a hydrogen atom;
2) R1がパルミトイル基を表し、 R2がァセチル基を表し、 R3が 2—アンモ-ォェチル基 を表す; 2) R 1 represents a palmitoyl group, R 2 represents a acetyl group, and R 3 represents a 2-ammoethyl group;
3) R1がドコサへキサエノィル基を表し、 R2及び R3が水素子を表す; 3) R 1 represents a docosahexaenoyl group, R 2 and R 3 represent a water element;
4) R3がドコサへキサエノィル基を表し、 R2及び R1が水素原子を表す; 4) R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
5) R1がステアロイル基を表し、 R3が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す; 6) R3がステアロイル基を表し、 R1が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す;又は 5) R 1 represents a stearoyl group, R 3 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; 6) R 3 represents a stearoyl group, R 1 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; or
7) R2がホスホノ基を表し、 R1及び R3がオタタノィル基を表す。 7) R 2 represents a phosphono group, and R 1 and R 3 represent an otatanyl group.
[6] 血糖調節薬であることを特徴とする、請求項 1〜5のいずれかに記載のインスリン分 泌促進薬。  [6] The insulin secretion promoter according to any one of claims 1 to 5, which is a blood glucose regulator.
[7] 耐糖能異常改善薬であることを特徴とする、請求項 1〜5のいずれかに記載のイン スリン分泌促進薬。  [7] The insulin secretagogue according to any one of claims 1 to 5, wherein the insulin secretagogue is a drug for improving glucose tolerance.
[8] 生活習慣病治療薬であることを特徴とする、請求項 1〜5のいずれかに記載のイン スリン分泌促進薬。  [8] The insulin secretagogue according to any one of claims 1 to 5, which is a drug for lifestyle-related diseases.
[9] 糖尿病治療薬であることを特徴とする、請求項 1〜5のいずれかに記載のインスリン 分泌促進薬。  [9] The insulin secretagogue according to any one of claims 1 to 5, which is a therapeutic agent for diabetes.
[10] リゾホスファチジン酸、その誘導体、 L-NASPA又はそれらの薬学上許容される塩を 有効成分として含有する、 GPR92/93作動薬。  [10] A GPR92 / 93 agonist comprising lysophosphatidic acid, a derivative thereof, L-NASPA or a pharmaceutically acceptable salt thereof as an active ingredient.
[11] リゾホスファチジン酸又はその誘導体力 式(1): [11] Lysophosphatidic acid or its derivative power Formula (1):
式 (1) :  Equation (1):
[化 12]  [Chemical 12]
Figure imgf000058_0001
Figure imgf000058_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は炭素数 8〜22の 1ーァルケ 二ノレ基を表し、 [In the formula, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkene binole group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group,
R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕 で表される化合物である、請求項 10に記載の GPR92/93作動薬。 R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. The GPR92 / 93 agonist according to claim 10, which is a compound represented by the following formula:
[12] 式(1)で表される化合物力 リゾホスファチジン酸、 1-Acy卜 PAF又はそれらの薬学 上許容される塩である、請求項 11に記載の GPR92/93作動薬。 [12] Compound power represented by the formula (1): lysophosphatidic acid, 1-Acy 又 は PAF or pharmacy thereof 12. A GPR92 / 93 agonist according to claim 11 which is a top acceptable salt.
[13] 式(1)において、
Figure imgf000059_0001
R2及び R3が以下の組み合わせを表すことを特徴とする、請求 項 11に記載の GPR92/93作動薬:
[13] In equation (1),
Figure imgf000059_0001
Characterized in that R 2 and R 3 represents a combination of the following, GPR92 / 93 agonist of Claim 11:
1) R1がォレオイル基を表し、 R2及び R3が水素原子を表す; 1) R 1 represents an oleoyl group, R 2 and R 3 represent a hydrogen atom;
2) R1がパルミトイル基を表し、 R2がァセチル基を表し、 R3が 2—アンモ-ォェチル基 を表す; 2) R 1 represents a palmitoyl group, R 2 represents a acetyl group, and R 3 represents a 2-ammoethyl group;
3) R1がドコサへキサエノィル基を表し、 R2及び R3が水素原子を表す; 3) R 1 represents a docosahexaenoyl group, R 2 and R 3 represent a hydrogen atom;
4) R3がドコサへキサエノィル基を表し、 R2及び R1が水素原子を表す; 4) R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
5) R1がステアロイル基を表し、 R3が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す; 5) R 1 represents a stearoyl group, R 3 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group;
6) R3がステアロイル基を表し、 R1が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す;又は 6) R 3 represents a stearoyl group, R 1 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; or
7) R2がホスホノ基を表し、 R1及び R3がオタタノィル基を表す。 7) R 2 represents a phosphono group, and R 1 and R 3 represent an otatanyl group.
[14] GPR92/93又はリガンドが結合し得るそのフラグメントに、被験物質及び Z又はリゾ ホスファチジン酸、その誘導体及びそれらの薬学上許容される塩から選択される基準 物質を接触させ、該 GPR92/93又はリガンドが結合し得るそのフラグメントに対する結 合活性が、前記基準物質よりも高い化合物を選択することを含む、 GPR92/93リガンド のスクリーニング方法。  [14] GPR92 / 93 or a fragment to which a ligand can bind is contacted with a test substance and a reference substance selected from Z or lysophosphatidic acid, a derivative thereof, and a pharmaceutically acceptable salt thereof, and the GPR92 / 93 Or a method for screening a GPR92 / 93 ligand, comprising selecting a compound having a higher binding activity to a fragment to which the ligand can bind than the reference substance.
[15] 以下の(a)〜(d)の工程:  [15] The following steps (a) to (d):
(a) 被験物質と、 GPR92/93又はリガンドが結合し得るそのフラグメントを接触させる 工程、  (a) contacting the test substance with GPR92 / 93 or a fragment to which a ligand can bind;
(b) (a)における被験物質と GPR92/93又はリガンドが結合し得るそのフラグメントに 対する結合活性を測定する工程、  (b) measuring the binding activity of the test substance in (a) to GPR92 / 93 or a fragment to which the ligand can bind;
(c) 前記 (b)の測定値を、被験物質として基準物質を用いた場合の測定値と比較 する工程、及び  (c) comparing the measured value of (b) with the measured value when a reference substance is used as a test substance; and
(d) 前記 (c)の結果に基づき、前記 (b)の測定値が前記 (c)の測定値と同等以上で ある被験物質を GPR92/93リガンドとして選択する工程、  (d) a step of selecting, as a GPR92 / 93 ligand, a test substance whose measured value of (b) is equal to or greater than the measured value of (c) based on the result of (c),
を含む、請求項 14に記載のスクリーニング方法。 The screening method according to claim 14, comprising:
[16] 以下の(a)〜(c)の工程: [16] The following steps (a) to (c):
(a) 被験物質の存在下及び非存在下で、基準物質、及び GPR92/93又はリガンドが 結合し得るそのフラグメントを接触させる工程、  (a) contacting a reference substance and a fragment to which GPR92 / 93 or a ligand can bind in the presence and absence of a test substance;
(b) (a)における基準物質と GPR92/93又はリガンドが結合し得るそのフラグメントに 対する結合活性を測定し、被験物質存在下における測定値と被験物質非存在下に おける測定値とを比較する工程、及び  (b) Measure the binding activity of the reference substance in (a) to GPR92 / 93 or a fragment to which the ligand can bind, and compare the measured value in the presence of the test substance with the measured value in the absence of the test substance. Process, and
(c) 被験物質存在下における前記 (b)の測定値が、被験物質非存在下における前 記 (b)の測定値よりも大きい被験物質を、 GPR92/93リガンドとして選択する工程、 を含む、請求項 14に記載のスクリーニング方法。  (c) selecting as a GPR92 / 93 ligand a test substance in which the measured value of (b) in the presence of the test substance is larger than the measured value of (b) in the absence of the test substance, The screening method according to claim 14.
[17] GPR92/93を含む脂質二重層及び GPR92/93に共役し得る G蛋白質の αサブュ- ットを含んでなる反応系において、被験物質及び Ζ又はリゾホスファチジン酸、その 誘導体及びそれらの薬学上許容される塩から選択される基準物質を接触させ、該サ ブユニットの GDP'GTP交換反応又は該 G蛋白質の細胞刺激活性が、前記基準物 質よりも高 、化合物を選択することを含む、 GPR92/93リガンドのスクリーニング方法。 [17] In a reaction system comprising a lipid bilayer containing GPR92 / 93 and an α protein subset of G protein that can be conjugated to GPR92 / 93, the test substance and sputum or lysophosphatidic acid, its derivatives and their pharmacology Contacting a reference substance selected from the above-mentioned acceptable salts, and selecting a compound whose GDP 'GTP exchange reaction of the subunit or the cell stimulating activity of the G protein is higher than that of the reference substance. Screening method for GPR92 / 93 ligand.
[18] 反応系が、 [18] The reaction system is
(0 GPR92/93をコードする DNAを含む発現ベクターをトランスフエタトした宿主真核 生物細胞、 GO GPR92/93の C末端側に GPR92/93に共役し得る G蛋白質の αサブュ ニットが融合したポリペプチドをコードする DNAを含む発現ベクターでトランスフエタト した宿主真核生物細胞、 Gii) GPR92/93をコードする DNAを含む発現ベクターでトラ ンスフ タトした、 GPR92/93に共役し得る G蛋白質を内因的に発現する宿主動物細 胞、又は Gv) GPR92/93及び GPR92/93に共役し得る G蛋白質を内因的に発現する動 物細胞、それらの細胞のホモジネート又はそれらの細胞由来の膜画分である、請求 項 17に記載のスクリーニング方法。  (0) Host eukaryotic cells transfected with an expression vector containing DNA encoding GPR92 / 93, GO GPR92 / 93 C-terminal polymorphism of G protein α-subunit fused to GPR92 / 93 Host eukaryotic cells transformed with an expression vector containing DNA encoding the peptide, Gii) G protein endogenously transferred with an expression vector containing DNA encoding GPR92 / 93 and capable of coupling to GPR92 / 93 Gv) GPR92 / 93 and animal cells that endogenously express G protein that can be conjugated to GPR92 / 93, homogenates of those cells, or membrane fractions derived from those cells The screening method according to claim 17, wherein
[19] 以下の(a)〜(d)の工程: [19] The following steps (a) to (d):
(a) 被験物質と、 GPR92/93を含む脂質二重層及び GPR92/93に共役し得る Gタン パク質の OCサブユニットを含んでなる反応系を接触させる工程、  (a) contacting a test substance with a reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定する工程、 (c) 前記 (b)の測定値を、被験物質としてリゾホスファチジン酸、その誘導体及びそ れらの薬学上許容される塩から選択される基準物質を用いた場合の測定値と比較す る工程、及び (b) measuring the GDP · GTP exchange reaction of the subunits in (a) or the cell stimulating activity of the G protein; (c) A step of comparing the measured value of (b) with the measured value when a reference substance selected from lysophosphatidic acid, its derivatives and pharmaceutically acceptable salts thereof is used as a test substance. ,as well as
(d) 前記 (C)の結果に基づき、前記 (b)の測定値が前記 (C)の測定値と同等以上で ある被験物質を GPR92/93作動薬として選択する工程、  (d) a step of selecting, as a GPR92 / 93 agonist, a test substance having a measured value of (b) equal to or greater than the measured value of (C) based on the result of (C),
を含む、請求項 17又は 18に記載のスクリ一ユング方法。  The screening method according to claim 17 or 18, comprising:
[20] 以下の(a)〜(c)の工程: [20] The following steps (a) to (c):
(a) 被験物質の存在下及び非存在下で、リゾホスファチジン酸、その誘導体及びそ れらの薬学上許容される塩から選択される基準物質、及び GPR92/93を含む脂質二 重層及び GPR92/93に共役し得る Gタンパク質の αサブユニットを含んでなる反応系 を接触させる工程、  (a) a reference substance selected from lysophosphatidic acid, its derivatives and pharmaceutically acceptable salts thereof, and a lipid bilayer containing GPR92 / 93 and GPR92 / in the presence and absence of the test substance Contacting a reaction system comprising an α subunit of a G protein that can be conjugated to 93,
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定し、被験物質存在下における測定値と被験物質非存在下における 測定値とを比較する工程、及び  (b) measuring the GDP-GTP exchange reaction of the subunit in (a) or the cell stimulating activity of the G protein, and comparing the measured value in the presence of the test substance with the measured value in the absence of the test substance; as well as
(c) 被験物質存在下における前記 (b)の測定値が、被験物質非存在下における前 記 (b)の測定値よりも小さ!/、被験物質を、 GPR92/93拮抗薬として選択する工程、 を含む、請求項 17又は 18に記載のスクリ一ユング方法  (c) the measurement value of (b) in the presence of the test substance is smaller than the measurement value of (b) in the absence of the test substance! /, the step of selecting the test substance as a GPR92 / 93 antagonist A screening method according to claim 17 or 18, comprising:
[21] リゾホスファチジン酸又はその誘導体力 式(1): [21] Lysophosphatidic acid or its derivative power Formula (1):
式 (1) :  Equation (1):
[化 13]  [Chemical 13]
Figure imgf000061_0001
Figure imgf000061_0001
〔式中、 R1は、水素原子、炭素数 8〜22のァシル基又は又は炭素数 8〜22の 1ーァ ルケ二ル基を表し、 [Wherein, R 1 represents a hydrogen atom, an acyl group having 8 to 22 carbon atoms, or a 1-alkenyl group having 8 to 22 carbon atoms,
R2は水素原子、 myo イノシトール 1ーィル基、 2—アンモ-ォェチル基又はホスホ ノ基を表し、 R3は水素原子又は炭素数 2〜22のァシル基を表し、 R1及び R3の少なくとも一方は炭 素数 8〜22のァシル基もしくは炭素数 8〜22の 1ーァルケ-ル基を表す。〕 で表される化合物である、請求項 17〜20のいずれかに記載のスクリーニング方法。 R 2 represents a hydrogen atom, myo inositol 1-yl group, 2-ammoethyl group or phosphono group, R 3 represents a hydrogen atom or an acyl group having 2 to 22 carbon atoms, and at least one of R 1 and R 3 represents an acyl group having 8 to 22 carbon atoms or a 1-alkenyl group having 8 to 22 carbon atoms. ] The screening method in any one of Claims 17-20 which is a compound represented by these.
[22] 式(1)で表される化合物力 リゾホスファチジン酸、 1-Acy卜 PAF又はそれらの薬学 上許容される塩である、請求項 21に記載のスクリーニング方法。  [22] The screening method according to claim 21, which is lysophosphatidic acid, 1-Acy 卜 PAF, or a pharmaceutically acceptable salt thereof, represented by the compound represented by formula (1).
[23] 式(1)において、
Figure imgf000062_0001
R2及び R3が以下の組み合わせを表すことを特徴とする、請求 項 21に記載のスクリーニング方法:
[23] In equation (1),
Figure imgf000062_0001
The screening method according to claim 21, characterized in that R 2 and R 3 represent the following combinations:
1) R1がォレオイル基を表し、 R2及び R3が水素原子を表す; 1) R 1 represents an oleoyl group, R 2 and R 3 represent a hydrogen atom;
2) R1がパルミトイル基を表し、 R2がァセチル基を表し、 R3が 2—アンモ-ォェチル基 を表す; 2) R 1 represents a palmitoyl group, R 2 represents a acetyl group, and R 3 represents a 2-ammoethyl group;
3) R1がドコサへキサエノィル基を表し、 R2及び R3が水素原子を表す; 3) R 1 represents a docosahexaenoyl group, R 2 and R 3 represent a hydrogen atom;
4) R3がドコサへキサエノィル基を表し、 R2及び R1が水素原子を表す; 4) R 3 represents a docosahexaenoyl group, R 2 and R 1 represent a hydrogen atom;
5) R1がステアロイル基を表し、 R3が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す; 5) R 1 represents a stearoyl group, R 3 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group;
6) R3がステアロイル基を表し、 R1が水素原子を表し、 R2が、 myo—イノシトール— 1— ィル基を表す;又は 6) R 3 represents a stearoyl group, R 1 represents a hydrogen atom, and R 2 represents a myo-inositol-1-yl group; or
7) R2がホスホノ基を表し、 R1及び R3がオタタノィル基を表す。 7) R 2 represents a phosphono group, and R 1 and R 3 represent an otatanyl group.
[24] 被験物質が GPR92/93作動薬であることを指標として化合物を選択することを含む、 インスリン分泌促進薬のスクリーニング方法。  [24] A method for screening an insulin secretagogue, comprising selecting a compound using as an index that the test substance is a GPR92 / 93 agonist.
[25] GPR92/93,又はリガンドが結合し得るそのフラグメントに被験物質を接触させ、該 G[25] GPR92 / 93 or a fragment to which a ligand can bind is contacted with a test substance, and the G
PR92/93又は該フラグメントに結合する化合物を選択することを特徴とする、請求項 2A compound that binds to PR92 / 93 or the fragment is selected.
4に記載の方法。 4. The method according to 4.
[26] GPR92/93を含む脂質二重層及び GPR92/93に共役し得る G蛋白質の αサブュ- ットを含んでなる反応系において、該サブユニットの GDP · GTP交換反応又は該 G 蛋白質の細胞刺激活性を、被験物質の存在下と非存在下で比較する工程を含む、 請求項 24に記載の方法。  [26] In a reaction system comprising a lipid bilayer containing GPR92 / 93 and an α subunit of G protein that can be conjugated to GPR92 / 93, the GDP / GTP exchange reaction of the subunit or cells of the G protein 25. The method of claim 24, comprising comparing the stimulating activity in the presence and absence of the test substance.
[27] 反応系が、  [27] The reaction system is
(0 GPR92/93をコードする DNAを含む発現ベクターをトランスフエタトした宿主真核 生物細胞、 GO GPR92/93の C末端側に GPR92/93に共役し得る G蛋白質の αサブュ ニットが融合したポリペプチドをコードする DNAを含む発現ベクターでトランスフエタト した宿主真核生物細胞、 Gii) GPR92/93をコードする DNAを含む発現ベクターでトラ ンスフ タトした、 GPR92/93に共役し得る G蛋白質を内因的に発現する宿主動物細 胞、又は Gv) GPR92/93及び GPR92/93に共役し得る G蛋白質を内因的に発現する動 物細胞、それらの細胞のホモジネート又はそれらの細胞由来の膜画分である、請求 項 26に記載のスクリーニング方法。 (0 Host eukaryotes transfected with expression vectors containing DNA encoding GPR92 / 93 Biological cells, host Eukaryotic cells transfected with an expression vector containing DNA encoding a polypeptide in which the α subunit of G protein that can be conjugated to GPR92 / 93 is coupled to the C-terminal side of GO GPR92 / 93, Gii ) Host animal cell that endogenously expresses G protein that can be conjugated to GPR92 / 93, or Gv) conjugated to GPR92 / 93 and GPR92 / 93, transferred with an expression vector containing DNA encoding GPR92 / 93 27. The screening method according to claim 26, which is an animal cell that endogenously expresses a G protein that can be produced, a homogenate of those cells, or a membrane fraction derived from those cells.
[28] 以下の(a)〜(d)の工程: [28] The following steps (a) to (d):
(a) 被験物質と、 GPR92/93を含む脂質二重層及び GPR92/93に共役し得る Gタン パク質の OCサブユニットを含んでなる反応系を接触させる工程、  (a) contacting a test substance with a reaction system comprising a lipid bilayer containing GPR92 / 93 and an OC subunit of G protein that can be conjugated to GPR92 / 93;
(b) (a)における該サブユニットの GDP · GTP交換反応又は該 Gタンパク質の細胞 刺激活性を測定する工程、及び  (b) a step of measuring the GDP · GTP exchange reaction of the subunit in (a) or the cell stimulating activity of the G protein; and
(c) (b)の結果に基づき、細胞刺激活性を有する被験物質を GPR92/93作動薬とし て選択する工程、  (c) selecting a test substance having cell stimulating activity as a GPR92 / 93 agonist based on the result of (b),
を含む、請求項 26又は 27に記載のスクリーニング方法。  The screening method according to claim 26 or 27, comprising:
[29] 請求項 14〜 19のいずれかに記載の方法で、被験物質が GPR92/93作動薬である か否かを評価することを含む、請求項 24に記載の方法。 [29] The method according to claim 24, comprising evaluating whether the test substance is a GPR92 / 93 agonist by the method according to any one of claims 14 to 19.
[30] インスリン分泌促進薬が血糖調節薬である、請求項 24〜29のいずれかに記載のス クリーニング方法。 [30] The screening method according to any one of claims 24 to 29, wherein the insulin secretagogue is a blood glucose regulator.
[31] インスリン分泌促進薬が耐糖能異常改善薬である、請求項 24〜29のいずれか〖こ 記載のスクリーニング方法。  [31] The screening method according to any one of claims 24 to 29, wherein the insulin secretagogue is an agent for improving glucose tolerance.
[32] インスリン分泌促進薬が糖尿病治療薬である、請求項 24〜29のいずれかに記載 のスクリーニング方法。 [32] The screening method according to any one of [24] to [29], wherein the insulin secretagogue is a therapeutic agent for diabetes.
[33] 請求項 24〜32のいずれかに記載の方法により得られるインスリン分泌促進薬。  [33] An insulin secretagogue obtained by the method according to any one of claims 24 to 32.
[34] 血糖調節薬であることを特徴とする、請求項 33に記載のインスリン分泌促進薬。 [34] The insulin secretagogue according to claim 33, which is a blood glucose regulator.
[35] 耐糖能異常改善薬であることを特徴とする、請求項 33に記載のインスリン分泌促進 薬。 [35] The insulin secretion-promoting agent according to claim 33, which is an agent for improving glucose tolerance abnormality.
[36] 生活習慣病治療薬であることを特徴とする、請求項 33に記載のインスリン分泌促進 薬。 [36] The promotion of insulin secretion according to claim 33, which is a therapeutic agent for lifestyle-related diseases medicine.
糖尿病治療薬であるであることを特徴とする、請求項 33に記載のインスリン分泌促 進薬。  34. The insulin secretagogue according to claim 33, which is a therapeutic agent for diabetes.
PCT/JP2005/011801 2004-06-30 2005-06-28 Receptor ligand WO2006003877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528689A JPWO2006003877A1 (en) 2004-06-30 2005-06-28 Receptor ligand

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-192733 2004-06-30
JP2004192733 2004-06-30
JP2004271320 2004-09-17
JP2004-271320 2004-09-17

Publications (1)

Publication Number Publication Date
WO2006003877A1 true WO2006003877A1 (en) 2006-01-12

Family

ID=35782685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011801 WO2006003877A1 (en) 2004-06-30 2005-06-28 Receptor ligand

Country Status (2)

Country Link
JP (1) JPWO2006003877A1 (en)
WO (1) WO2006003877A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090289A3 (en) * 2005-02-28 2006-12-07 Alphabeta Ab Compounds for reducing aggregation of amyloid beta-peptide
WO2012086406A1 (en) * 2010-12-22 2012-06-28 花王株式会社 Glp-1 secretagogue
JP2019520789A (en) * 2016-04-14 2019-07-25 マース インコーポレーテッドMars Incorporated Method of identifying regulator of GPR92

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092104A1 (en) * 2001-04-25 2002-11-21 Biosynergen, Inc. A pharmaceutical composition comprising lysophosphatidic acid
WO2003021262A1 (en) * 2001-08-28 2003-03-13 Takeda Chemical Industries, Ltd. Screening method
WO2003082335A1 (en) * 2002-04-03 2003-10-09 Sumitomo Pharmaceuticals Co., Ltd. Novel blood sugar controller and method of screening the same
JP2004517604A (en) * 2000-05-18 2004-06-17 インサイト・ゲノミックス・インコーポレイテッド G protein-coupled receptor
WO2005009469A1 (en) * 2003-07-28 2005-02-03 Sumitomo Pharmaceuticals Co., Ltd. Novel drug for regulating blood sugar and method of screening the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004517604A (en) * 2000-05-18 2004-06-17 インサイト・ゲノミックス・インコーポレイテッド G protein-coupled receptor
WO2002092104A1 (en) * 2001-04-25 2002-11-21 Biosynergen, Inc. A pharmaceutical composition comprising lysophosphatidic acid
WO2003021262A1 (en) * 2001-08-28 2003-03-13 Takeda Chemical Industries, Ltd. Screening method
WO2003082335A1 (en) * 2002-04-03 2003-10-09 Sumitomo Pharmaceuticals Co., Ltd. Novel blood sugar controller and method of screening the same
WO2005009469A1 (en) * 2003-07-28 2005-02-03 Sumitomo Pharmaceuticals Co., Ltd. Novel drug for regulating blood sugar and method of screening the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEE DK ET AL: "Discovery and mapping of ten novel G protein-coupled receptor genes.", GENE., vol. 275, 2001, pages 83 - 91, XP004307114 *
TAKUWA Y ET AL: "The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities.", J BIOCHEM., vol. 131, no. 6, 2002, pages 767 - 771, XP009028822 *
VASSILATIS DK ET AL: "The G protein-coupled receptor repertoires of human and mouse.", PROC NATL ACAD SCI USA., vol. 100, no. 8, 2003, pages 4903 - 4908, XP002992972 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090289A3 (en) * 2005-02-28 2006-12-07 Alphabeta Ab Compounds for reducing aggregation of amyloid beta-peptide
AU2006217544B2 (en) * 2005-02-28 2012-03-22 Alphabeta Ab Compounds for reducing aggregation of amyloid beta-peptide
AU2006217544B8 (en) * 2005-02-28 2012-04-05 Alphabeta Ab Compounds for reducing aggregation of amyloid beta-peptide
WO2012086406A1 (en) * 2010-12-22 2012-06-28 花王株式会社 Glp-1 secretagogue
JP2012144518A (en) * 2010-12-22 2012-08-02 Kao Corp Glp-1 secretagogue
JP2019520789A (en) * 2016-04-14 2019-07-25 マース インコーポレーテッドMars Incorporated Method of identifying regulator of GPR92
US11237177B2 (en) 2016-04-14 2022-02-01 Mars, Incorporated Methods for identifying modulators of GPR92
JP7039483B2 (en) 2016-04-14 2022-03-22 マース インコーポレーテッド Identification method of regulator of GPR92

Also Published As

Publication number Publication date
JPWO2006003877A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
Fernández-Salas et al. p53 and tumor necrosis factor α regulate the expression of a mitochondrial chloride channel protein
Gruber et al. Molecular cloning and transmembrane structure of hCLCA2 from human lung, trachea, and mammary gland
Dell'Angelica et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex
Denti et al. RanBPM is a phosphoprotein that associates with the plasma membrane and interacts with the integrin LFA-1
Martinez-Garay et al. The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody
Westphal et al. Tricellulin forms homomeric and heteromeric tight junctional complexes
US20040077535A1 (en) Novel physiologically active peptide and use thereof
JP6259320B2 (en) Translocation and mutant ROS kinase in human non-small cell lung cancer
US20070202520A1 (en) Novel lipase
JP2004113151A (en) Oncogene and its application
EP1560847A2 (en) Acetylated hmgb1 protein
KR100553300B1 (en) Promotion or Inhibition of Angiogenesis and Cardiovascularization
Johnson et al. Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs
JP3497133B2 (en) A-33 related antigens and their pharmacological uses
US7396920B2 (en) Tumour suppressor and uses thereof
Ruder et al. EBAG9 adds a new layer of control on large dense-core vesicle exocytosis via interaction with Snapin
McKenzie et al. Casein kinase Iε associates with and phosphorylates the tight junction protein occludin
WO2011156252A2 (en) Sulfation of wnt pathway proteins
Perez-Villar et al. Nuclear localization of the tyrosine kinase Itk and interaction of its SH3 domain with karyopherin α (Rch1α)
WO2006003877A1 (en) Receptor ligand
Wang et al. Characterization of Ceap-11 and Ceap-16, Two Novel Splicing–Variant–Proteins, Associated with Centrosome, Microtubule Aggregation and Cell Proliferation
KR20100076992A (en) Complexes of trpc domains and sestd1 domains and methods and uses involving the same
WO2003066860A1 (en) Angiogenesis inhibitors
AU2003231196C1 (en) Androgen-regulated PMEPA1 and cancer
Yuchi et al. Structural insights into disease mutations of the ryanodine receptor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528689

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase