WO2006002958A1 - Shielding for an x-ray source - Google Patents

Shielding for an x-ray source Download PDF

Info

Publication number
WO2006002958A1
WO2006002958A1 PCT/EP2005/007139 EP2005007139W WO2006002958A1 WO 2006002958 A1 WO2006002958 A1 WO 2006002958A1 EP 2005007139 W EP2005007139 W EP 2005007139W WO 2006002958 A1 WO2006002958 A1 WO 2006002958A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield
anode
tube
hollow body
ray tube
Prior art date
Application number
PCT/EP2005/007139
Other languages
German (de)
French (fr)
Inventor
Geoffrey Harding
Original Assignee
Yxlon International Security Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yxlon International Security Gmbh filed Critical Yxlon International Security Gmbh
Priority to EP05759475A priority Critical patent/EP1769520B1/en
Priority to DE502005006084T priority patent/DE502005006084D1/en
Publication of WO2006002958A1 publication Critical patent/WO2006002958A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1275Circulating fluids characterised by the fluid
    • H01J2235/1279Liquid metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/166Shielding arrangements against electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/167Shielding arrangements against thermal (heat) energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the shield 11 is arranged in the immediate vicinity of the interaction module 9 - and thus the focus. Since a significantly lower surface must therefore be covered at the same space angle required outside the housing 2, the total mass of the shield 11 is also significantly lower than the shields known from the prior art.
  • the shield 11 is inventively formed by the tube elements 10 itself. In this case, the tube elements 10 are so bent that only a small solid angle is available for the X-ray beam 12 generated in the forward direction in the forward direction to the incident electron beam 4 in order to be able to pass unhindered through the shield 11. The remaining generated X-radiation is scattered radiation and is absorbed by the shield 11.
  • the individually matched components lead to the fact that the entire liquid metal circuit can be made very compact and thus can be arranged completely in ⁇ within the anode housing 6. This also results in a very low weight for the anode 5, which is of the utmost importance with regard to a rotating arrangement on a gantry about the item of luggage to be examined. Due to the shield 11 in the described form, it is possible to effectively absorb both the scattering rays which are also produced in the focus but not required for the examination of a piece of luggage, and also to dissipate the heat which, within the hollow body 14, due to the irradiation by means of secondary electrons, which are returned from the electron beam 4, is generated.

Landscapes

  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The invention relates to a shielding (11) for an X-ray tube (1) whose anode module is configured as a liquid metal X-ray source having an interactive module (9) focused in a liquid metal circuit from tube elements (10) and being disposed inside an anode housing (6). The invention is characterized in that the tube elements (10) are bent to such a degree that they spatially delimit the emitted X-ray beam in the immediate vicinity of the interactive module (9) and just inside the anode housing (6).

Description

Abschirmung einer Röntgenquelle Shielding an X-ray source
Die Erfindung betrifft eine Abschirmung einer Röntgenquelle, deren Anodenmodul als eine Flüssigmetallröntgenquelle mit ei¬ nem Wechselwirkungsmodul in einem Flüssigmetallkreislauf aus Röhrenelementen ausgebildet ist und innerhalb eines Anodenge¬ häuses angeordnet ist.The invention relates to a shielding of an X-ray source whose anode module is formed as a liquid metal X-ray source with ei¬ nem interaction module in a liquid metal circuit of tubular elements and is disposed within an anode housing.
Konventionelle Röntgensysteme ermöglichen es nicht, explosive Stoffe mit ausreichender Genauigkeit in Gepäckstücken zu de- tektieren. Dieses Problem wird nur unbefriedigend durch Com¬ putertomographie(CT)-Systeme gelöst, da diese eine hohe Falschalarmrate aufweisen. In diesen Fällen ist es nötig, zu¬ sätzlich eine molekülspezifische Analyse wie etwa die XDT (x- ray diffraction tomography) vorzunehmen. Deshalb wurde vor nicht allzu langer Zeit die Verwendung einer Hochleistungs- Flüssigmetallanode innerhalb des Röntgensystems vorgeschla¬ gen. Allerdings bleibt auch hier das Problem, dass ein gewis¬ ser Grad an Leckstrahlung generiert wird, der in irgendeiner Weise abgeschirmt werden muss, da nur der für die Analyse be¬ nötigte Röntgenstrahl aus der Röntgenröhre austreten darf. Deshalb wurde eine Abschirmung aus Blei um die Röntgenröhre herum angeordnet, die lediglich eine Öffnung im Bereich des Austrittsfensters der Röntgenstrahlung aufweist. Da die HaIb- wertsschichtdicke beim Einsatz dieser Röntgenröhre im Gepäck¬ prüfbereich aufgrund der hohen Spannung von einigen 100 kv bei ca. 5 mm liegt, weist diese Abschirmung ein enormes Ge¬ wicht auf. Für eine CT-Anwendung ist dies problematisch, da die Röntgenröhre an einer Gantry um das zu untersuchende Ge¬ päckstück rotiert werden muss. Ein Lösungsversuch war es, die Bleiabschirmung so nah wie möglich an den Fokus der Röntgen- anode heranzubringen, und seine räumliche Ausdehnung zu mini- mieren. Dies schlug jedoch fehl, da der Elektronenstrahl ei¬ ner Flüssigmetallanodenröntgen- quelle für die Anwendung im Gepäckprüfbereich sehr hohe Leis¬ tungen aufweist, die im Bereich von über 10 kW liegen und die bei der Röntgenstrahlerzeugung entstehenden Streuelektronen einen so hohen Fluss aufweisen, dass die Abschirmung schnell aufgeschmolzen wird.Conventional X-ray systems do not make it possible to detect explosive substances with sufficient accuracy in pieces of luggage. This problem is only unsatisfactorily solved by computer tomography (CT) systems, since they have a high false alarm rate. In these cases, it is necessary to additionally carry out a molecule-specific analysis such as XDT (x-ray diffraction tomography). Therefore, not so long ago, the use of a high-performance liquid-metal anode within the X-ray system has been proposed. However, the problem here remains that a certain degree of leakage radiation is generated, which must be shielded in some way, since only that for the analysis required X-ray beam may exit from the X-ray tube. Therefore, a lead shield was placed around the X-ray tube, which has only one opening in the region of the X-ray exit window. Since the HaIb- value layer thickness when using this X-ray tube in Gepäck¬ test area due to the high voltage of some 100 kv is about 5 mm, this shield has an enormous Ge weight on. This is problematical for a CT application since the x-ray tube has to be rotated on a gantry around the piece of luggage to be examined. A solution attempt was to bring the lead shield as close as possible to the focus of the X-ray anode, and to minimize its spatial extent. mieren. However, this failed because the electron beam ei¬ ner liquid metal anode X-ray source for use in the luggage inspection area has very high Leis¬ lines that are in the range of about 10 kW and the resulting in the X-ray generation scattered electrons have such a high flux that the shield is melted quickly.
Aufgabe der Erfindung ist es demnach, eine Abschirmung für eine Flüssigmetallröntgenquelle vorzustellen, die möglichst leicht ist, nicht durch Streuelektronen aufgeschmolzen wird und eine gute Abschirmung der Streustrahlung ermöglicht.The object of the invention is therefore to present a shield for a liquid metal X-ray source, which is as light as possible, is not melted by scattered electrons and allows a good shielding of the scattered radiation.
Diese Aufgabe wird durch eine Abschirmung mit den Merkmalen des Patentanspruchs 1 gelöst. Da das Wechselwirkungsmodul der Flüssigmetallröntgenquelle, das den Fokus aufweist, in einen Flüssigmetallkreislauf eingebettet ist und somit Röhrenele¬ mente an den Einlass und den Auslass des Wechselwirkungsmo¬ duls anschließen, können diese Röhrenelemente dazu verwendet werden, die Streustrahlung zu absorbieren. Die Röhrenelemente sind dabei so gebogen, dass sie lediglich den Teil des Rönt¬ genstrahls durchlassen, der einem Austrittsfenster des Gehäu¬ ses der Röntgenröhre entspricht. Das Problem des Aufschmel- zens der Abschirmung besteht hier nicht, da das Flüssigmetall in den Röhrenelementen ständig umgewälzt wird und einer stän¬ digen Kühlung unterzogen wird. Da die Abschirmung direkt im Bereich der Anode, also auch um den Fokus herum, erfolgt, weist die Abschirmung aufgrund der sehr geringen räumlichen Ausdehnung nur ein geringes Gewicht auf. Im Ergebnis erhält man somit eine Selbstabschirmung der Röntgenquelle durch den Flüssigmetallkreislauf, der sowieso bei Flüssigmetallanoden vorhanden ist. Als positiver Zusatzeffekt fällt auch die Küh¬ lung des Gehäuses der Röntgenröhre weg, da sämtliche Streu¬ elektronen schon im Flüssigmetallkreislauf, also der Abschir- mung, abgefangen werden. Da die bevorzugten und bekannten Flüssigmetalle für die Flüssigmetallanode Bleilegierungen sind, erfolgt eine sehr gute Abschirmung der im Fokus entste¬ henden Streustrahlung.This object is achieved by a shield having the features of patent claim 1. Since the interaction module of the liquid metal X-ray source, which has the focus, is embedded in a liquid metal circuit and thus connect tube elements to the inlet and the outlet of the interaction module, these tube elements can be used to absorb the scattered radiation. The tube elements are bent in such a way that they only let through the part of the x-ray beam which corresponds to an exit window of the housing of the x-ray tube. The problem of melting the shield does not exist here, since the liquid metal in the tube elements is constantly circulated and subjected to constant cooling. Since the shielding takes place directly in the area of the anode, ie also around the focus, the shield has only a low weight due to the very small spatial extent. As a result, one obtains a self-shielding of the X-ray source by the liquid metal circuit, which is present anyway with liquid metal anodes. As a positive additional effect, the cooling of the housing of the X-ray tube also falls away, since all the scattering electrons are already in the liquid metal circuit, ie the shielding. be intercepted. Since the preferred and known liquid metals for the liquid-metal anode are lead alloys, there is a very good shielding of the scattered radiation which arises in the focus.
Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass das Wechselwirkungsmodul in einem Hohlkörper angeordnet ist, der aus einem Material guter Wärmeleitfähigkeit besteht, wo¬ bei der Hohlkörper an seinen Seitenflächen mit dem Anodenge- häuse verbunden ist. Der Hohlkörper kann dafür hergenommen werden, dass die Röhrenelemente des Flüssigmetallkreislaufs auf diesen aufgewickelt werden und somit eine bessere mecha¬ nische Stabilität der Abschirmung gegeben ist. Aufgrund der guten Wärmeleitfähigkeit wird ein hervorragender Abtransport der entstehenden Wärme gewährleistet.An advantageous development of the invention provides that the interaction module is arranged in a hollow body which consists of a material of good thermal conductivity, wherein the hollow body is connected to the anode housing at its side surfaces. The hollow body can be assumed that the tube elements of the liquid metal circuit are wound onto this and thus a better mechanical stability of the shielding is given. Due to the good thermal conductivity an excellent removal of the resulting heat is ensured.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente die Oberfläche des Hohlkörpers zumindest teilweise bedecken und an der Innenfläche des Ano- dengehäuses angeordnet sind. Dadurch wird wiederum die Stabi¬ lität der gesamten Abschirmung erhöht, da sie zum einen auf dem Hohlkörper angeordnet ist und zum anderen am Anodengehäu¬ se. Besonders bevorzugt sind die Röhrenelemente spiralförmig an der Oberfläche des Hohlkörpers und schneckenförmig an der Innenfläche des Anodengehäuses angeordnet.A further advantageous development of the invention provides that the tube elements at least partially cover the surface of the hollow body and are arranged on the inner surface of the anode housing. This in turn increases the stability of the entire shield, since it is arranged on the hollow body and on the anode housing. The tube elements are particularly preferably arranged spirally on the surface of the hollow body and helically on the inner surface of the anode housing.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente in guten thermischen Kontakt mit der Oberfläche des Hohlkörpers sind. Dadurch wird vermieden, dass sich der Hohlkörper so stark erhitzt, dass er zu schmel¬ zen beginnt, da seine Wärme von dem gekühlten Flüssigmetall¬ kreislauf abgeführt wird. Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente einen Raumwinkel von 50% bis 75% im Bereich des Fokus des Anodenmoduls abdecken. Dadurch ist es möglich, dass die freigesetzte überflüssige Streustrahlung effektiv absorbiert wird. An der Rückseite der Anode muss le¬ diglich eine kleine Öffnung vorhanden sein, durch die der E- lektronenstrahl ungehindert zwischen den Röhrenelementen dringen kann. An der Vorderseite sollte in seitlichen Rich¬ tungen so wenig Röntgenstrahlung wie möglich entweichen, so dass die Röhrenelemente auch hier nur einen möglichst kleinen Bereich nicht abdecken.A further advantageous development of the invention provides that the tube elements are in good thermal contact with the surface of the hollow body. This avoids that the hollow body heats up so much that it begins to melt, since its heat is dissipated from the cooled liquid metal circuit. A further advantageous development of the invention provides that the tube elements cover a solid angle of 50% to 75% in the region of the focus of the anode module. Thereby, it is possible that the released superfluous scattered radiation is effectively absorbed. Only a small opening must be present at the rear side of the anode, through which the electron beam can penetrate unhindered between the tube elements. At the front side, as little X-ray radiation as possible should escape in lateral directions, so that the tube elements here too do not cover only the smallest possible area.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente Biegungsradien größer als 10 mm, insbesondere im Bereich von 10 mm bis 20 mm, aufweisen. Wenn die Röhrenelemente keine scharfen Ecken aufweisen, erfolgt kein unnötiger Druckverlust innerhalb des Flüssigmetallkreis¬ laufes und die Pumpe für den Flüssigmetallkreislauf muss nicht unnötig groß dimensioniert werden.A further advantageous development of the invention provides that the tube elements have bending radii greater than 10 mm, in particular in the range of 10 mm to 20 mm. If the tube elements have no sharp corners, no unnecessary pressure loss takes place within the liquid metal circuit and the pump for the liquid metal circuit does not have to be unnecessarily large.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Hohlkörper und/oder das Anodengehäuse aus Kup¬ fer sind. Da Kupfer ein guter Wärmeleiter ist, wird eine Ü- berhitzung sowohl des Hohlkörpers als auch des Anodengehäuses vermieden. Die dort entstehende Wärme wird durch die an ihnen angebrachten Röhrenelemente des Flüssigkreislaufes abtrans¬ portiert.A further advantageous development of the invention provides that the hollow body and / or the anode housing are made of copper. Since copper is a good heat conductor, overheating of both the hollow body and the anode housing is avoided. The heat generated there is transported away by the tube elements of the liquid circuit attached to them.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass die Röhrenelemente aus Molybdän mit einem Durchmes¬ ser von 5 bis 20 mm, insbesondere 10 mm, sind. Molybdän hat den Vorteil, dass es einen Wärmeausdehnungskoeffizienten auf¬ weist, der hervorragend auf die restlichen Teile des Flüssig¬ metallkreislaufs abgestimmt ist. Darüber hinaus ist der an- gegebene Bereich des Durchmessers dafür geeignet, dass sich die benötigte Leistung des Pumpenmotors für die Umwälzung des Flüssigmetalls in Grenzen hält und somit der Motor sehr klein ausgebildet werden kann.A further advantageous development of the invention provides that the tube elements are made of molybdenum with a diameter of 5 to 20 mm, in particular 10 mm. Molybdenum has the advantage that it has a coefficient of thermal expansion auf¬, which is perfectly matched to the remaining parts of the liquid metal circuit. In addition, the other Given range of the diameter suitable that the required power of the pump motor for the circulation of the liquid metal is limited and thus the engine can be made very small.
Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass der Hohlkörper eine Höhe von 7 bis 20 mm, insbeson¬ dere 10 mm, hat. In diesen Abmessungen ist der Fokus der Röntgenanode in Form des Wechselwirkungsmoduls gut unter- bringbar und gleichzeitig ist die Höhe nicht zu groß, so dass die Abschirmung in Form der Röhrenelemente immer noch sehr nahe am Fokus angeordnet werden kann und somit nur einen kleinen räumlichen Bereich abdecken muss. Dadurch wird das Gewicht der Abschirmung möglichst gering gehalten.A further advantageous development of the invention provides that the hollow body has a height of 7 to 20 mm, in particular 10 mm. In these dimensions, the focus of the X-ray anode in the form of the interaction module is well accommodated and at the same time the height is not too large, so that the shield in the form of the tube elements can still be arranged very close to the focus and thus cover only a small spatial area got to. As a result, the weight of the shield is kept as low as possible.
Eine vorteilhafte Ausgestaltung der Erfindung wird weiter an¬ hand der Zeichnungen erläutert. Im Einzelnen zeigen:An advantageous embodiment of the invention will be further explained an¬ hand of the drawings. In detail show:
Figur 1 einen schematischen Längsschnitt durch eine erfindungsgemäße Abschirmung in einer Flüssig- metallanodenröntgenröhre in der Ebene des E- lektronenstrahlfokus undFIG. 1 shows a schematic longitudinal section through a shield according to the invention in a liquid metal anode X-ray tube in the plane of the electron beam focus and FIG
Figur 2 einen vergrößert dargestellten schematischen Querschnitt durch die Anode der Figur 1 in ei¬ ner Ebene senkrecht zum Elektronenstrahl.Figure 2 shows an enlarged schematic cross-section through the anode of Figure 1 in egg ner plane perpendicular to the electron beam.
In Figur 1 ist eine Röntgenröhre 1 im Längsschnitt darge¬ stellt. Die Röntgenröhre 1 weist ein Gehäuse 2 auf, in dem eine Kathode 3 sowie eine Anode 5 angeordnet sind.FIG. 1 shows an X-ray tube 1 in longitudinal section. The x-ray tube 1 has a housing 2, in which a cathode 3 and an anode 5 are arranged.
Die Kathode 3 ist in bekannter Art und Weise ausgeführt und wird mit negativer Hochspannung von ca. —250 kV betrieben. Im Filament wird ein Elektronenstrahl 4 erzeugt, der zur positiv geladenen Anode 5 hin beschleunigt wird. An der Anode 5 liegt eine positive Hochspannung von ca. +250 kV an. Dagegen wird das Gehäuse 2 auf Erdpotential gehalten. In einem solchen Fall erhält man ein Röntgenstrahlenspektrum, das bis zu 500 keV reicht. Diese Energie reicht aus, um typische Luftfracht¬ container in einer Vertikalprojektion zu durchdringen. Eine solche Röntgenröhre 1 ist somit für die Gepäcküberwachung ge¬ eignet, insbesondere auf Flughäfen.The cathode 3 is designed in a known manner and is operated with a negative high voltage of about -250 kV. In the filament, an electron beam 4 is generated, which is positive charged anode 5 is accelerated. At the anode 5 is a positive high voltage of about +250 kV. In contrast, the housing 2 is kept at ground potential. In such a case one obtains an X-ray spectrum which reaches up to 500 keV. This energy is sufficient to penetrate typical Luftfracht¬ container in a vertical projection. Such an X-ray tube 1 is therefore suitable for luggage monitoring, in particular at airports.
Als Anode 5 wird eine Flüssigmetallanode verwendet, wobei der Bereich des Fokus als ein Wechselwirkungsmodul 9 ausgebildet ist. An dessen Ein- und Austritt schließt sich jeweils ein Röhrenelement 10 an, durch das das Flüssigmetall 20 (siehe Fig. 2) mittels Elementen, die näher in Figur 2 dargestellt sind, umgewälzt wird. Als Röhrenelemente 10 werden Röhren aus Molybdän mit einem Durchmesser von 10 mm verwendet. Je nach Anwendungsfall sind natürlich auch andere Durchmesser und an¬ dere Materialien für die Röhrenelemente 10 möglich. Die ge¬ samte Flüssigmetallanode ist in einem Anodengehäuse 6 unter- gebracht. Das Anodengehäuse 6 weist eine Eintrittsapertur 7 auf, durch die der Elektronenstrahl 4 hindurchtritt. Er trifft auf das Wechselwirkungsmodul 9 im Bereich des Fokus auf und produziert dort einen Röntgenstrahl 12. Der Röntgen¬ strahl 12 tritt durch eine Austrittsapertur 8 im Anodengehäu- se 6 aus der Anode 5 aus. Er verlässt dann durch ein Aus¬ trittsfenster 13 das Gehäuse 2 und steht für die Untersuchung eines Gepäckstücks (nicht gezeigt) zur Verfügung.As the anode 5, a liquid metal anode is used, wherein the area of the focus is formed as an interaction module 9. At its inlet and outlet, in each case a tube element 10 connects, through which the liquid metal 20 (see FIG. 2) is circulated by means of elements which are shown in more detail in FIG. As tube elements 10 tubes of molybdenum are used with a diameter of 10 mm. Depending on the application, of course, other diameters and other materials for the tube elements 10 are possible. The entire liquid metal anode is accommodated in an anode housing 6. The anode housing 6 has an entrance aperture 7, through which the electron beam 4 passes. It impinges on the interaction module 9 in the region of the focus and produces an X-ray beam 12 there. The X-ray beam 12 exits the anode 5 through an exit aperture 8 in the anode housing 6. He then leaves through a Aus¬ exit window 13, the housing 2 and is available for the examination of a piece of luggage (not shown).
Das Anodengehäuse 2 weist glatte Konturen auf, beispielsweise ist es zylinder- oder kugelförmig ausgebildet, und ist po¬ liert. Dadurch wird eine Hochspannungsentladung aufgrund von Spitzeneffekten vermieden und es findet kein Funkenüberschlag statt. Sowohl die Eintrittsapertur 7 als auch die Austrittsapertur 8 können sehr klein gehalten werden, damit innerhalb des Ano¬ dengehäuses 6 nur ein kleines elektrisches Feld vorhanden ist.The anode housing 2 has smooth contours, for example, it is cylindrical or spherical, and is po¬ profiled. This avoids high-voltage discharge due to peak effects, and there is no sparkover. Both the entrance aperture 7 and the exit aperture 8 can be kept very small, so that only a small electric field is present within the anode housing 6.
Anders als bei Geräten gemäß dem Stand der Technik, wo die Abschirmung aus Blei gegen Streustrahlung außerhalb des Ge¬ häuses 2 angeordnet ist, ist erfindungsgemäß die Abschirmung 11 in der direkten Umgebung des Wechselwirkungsmoduls 9 - und somit des Fokus - angeordnet. Da somit bei demselben Raumwin¬ kel, der außerhalb des Gehäuses 2 benötigt wird, eine bedeu¬ tend geringere Oberfläche abgedeckt werden muss, ist auch die Gesamtmasse der Abschirmung 11 gegenüber den aus dem Stand der Technik bekannten Abschirmungen bedeutend geringer. Die Abschirmung 11 ist erfindungsgemäß durch die Röhrenelemente 10 selbst gebildet. Die Röhrenelemente 10 sind dabei so gebo¬ gen, dass in Vorwärtsrichtung zum einfallenden Elektronen¬ strahl 4 nur ein kleiner Raumwinkel für den in Vorwärtsrich¬ tung generierten Röntgenstrahl 12 zur Verfügung steht, um un- gehindert durch die Abschirmung 11 hindurchtreten zu können. Die restliche erzeugte Röntgenstrahlung ist Streustrahlung und wird durch die Abschirmung 11 absorbiert.Unlike devices according to the prior art, where the lead shield is arranged against stray radiation outside of the housing 2, according to the invention the shield 11 is arranged in the immediate vicinity of the interaction module 9 - and thus the focus. Since a significantly lower surface must therefore be covered at the same space angle required outside the housing 2, the total mass of the shield 11 is also significantly lower than the shields known from the prior art. The shield 11 is inventively formed by the tube elements 10 itself. In this case, the tube elements 10 are so bent that only a small solid angle is available for the X-ray beam 12 generated in the forward direction in the forward direction to the incident electron beam 4 in order to be able to pass unhindered through the shield 11. The remaining generated X-radiation is scattered radiation and is absorbed by the shield 11.
Dies ist möglich, da in den Molybdän-Leitungen der Röhrenele- mente 10 Bleiverbindungen zirkulieren. Diese weisen einen ho¬ hen Wirkungsquerschnitt mit Röntgenstrahlung auf, so dass ei¬ ne gute Absorption gewährleistet ist. Darüber hinaus werden auch Streuelektronen innerhalb der Abschirmung 11 effektiv absorbiert, so dass diese nicht gegen das Anodengehäuse 6 prallen. Eine Überhitzung der Röhrenelemente 10 oder sogar ein Aufschmelzen erfolgt nicht, da die in der Abschirmung 11 entstehende Wärme aufgrund des Umpumpens und Kühlens des Flüssigmetalls 20 (siehe Fig. 2) sofort abtransportiert wird. Die Röhrenelemente 10 sind dabei so gebogen, dass sie einen möglichst großen Biegeradius ohne Ecken aufweisen, in denen ein starker Druckabfall entstehen würde. Dadurch wird gewähr¬ leistet, dass der Pumpenmotor 15 (siehe Fig. 2) nur eine ge- ringe Leistungsaufnahme benötigt und somit auch nur eine ge¬ ringe räumliche Ausdehnung haben kann. Dies führt dazu, dass der Pumpenmotor 15 innerhalb des Anodengehäuses 6 unterge¬ bracht werden kann, was eine kompakte Bauweise der Anode 5 gewährleistet.This is possible because 10 lead compounds circulate in the molybdenum lines of the tube elements. These have a high cross-section with X-radiation, so that a good absorption is ensured. In addition, stray electrons within the shield 11 are also effectively absorbed, so that they do not collide against the anode housing 6. An overheating of the tube elements 10 or even a melting does not take place, since the heat generated in the shield 11 due to the pumping and cooling of the liquid metal 20 (see FIG. 2) is immediately removed. The tube elements 10 are bent so that they have the largest possible bending radius without corners in which a large pressure drop would occur. This ensures that the pump motor 15 (see FIG. 2) requires only a low power consumption and thus can only have a small spatial extent. As a result, the pump motor 15 can be accommodated within the anode housing 6, which ensures a compact construction of the anode 5.
In Fig. 2 ist ein Querschnitt durch das Anodengehäuse 6 dar¬ gestellt. Der Elektronenstrahl 4 trifft auf das Wechselwir¬ kungsmodul 9 auf, das in einem Hohlkörper 14 angeordnet ist. Der Hohlkörper 14 ist dabei aus einem Material mit guter Wär- meleitfähigkeit, beispielsweise Kupfer, gefertigt. Er weist eine Höhe von ca. 10 mm auf und ist an seinen Seiten mit dem Anodengehäuse 6 verbunden. Außerhalb des Hohlkörpers 14 und innerhalb des Anodengehäuses 6 sind sämtliche Komponenten un¬ tergebracht, die für den Flüssigmetallkreislauf nötig sind.FIG. 2 shows a cross section through the anode housing 6. The electron beam 4 impinges on the interaction module 9, which is arranged in a hollow body 14. The hollow body 14 is made of a material with good thermal conductivity, for example copper. It has a height of about 10 mm and is connected at its sides to the anode housing 6. Outside the hollow body 14 and within the anode housing 6, all components are un¬ accommodated, which are necessary for the liquid metal circuit.
Hierbei handelt es sich um einen Pumpenmotor 15, der über ei¬ ne Antriebswelle 19 mit einer Magnetscheibe 16 verbunden ist. Mittels des magnetohydrodynamischen Effekts wird das Flüssig¬ metall 20 durch die Röhrenelemente 10 gepumpt und durchströmt dabei auch das Wechselwirkungsmodul 9 (siehe auch Figur 1). Im Flüssigmetallkreislauf ist ein Wärmetauscher 18 angeord¬ net, beispielsweise ein Querstrom-Wärmetauscher, der die im Fokus und in der Abschirmung 11 entstehende Hitze an eine Kühlflüssigkeit, beispielsweise ein isolierendes Öl, abgibt. Neben dem Wärmetauscher 18 ist eine Expansionskammer 17 in den Flüssigmetallkreislauf integriert, die den Druck des Flüssigmetalls 20 innerhalb des Kreislaufes konstant hält. Dies ist nötig, da sich das Flüssigmetall 20 in Abhängigkeit seiner Temperatur ausdehnt oder zusammenzieht. Schließlich sind die zu Figur 1 schon ausgeführten Röhrenele¬ mente 10 so auf die Außenfläche des Hohlkörpers 14 aufgewi¬ ckelt, dass sie eine Spirale formen. Darüber hinaus sind die Röhrenelemente 10 gewunden, so dass sie in Form einer Helix an der Innenseite des sphärischen Anodengehäuses 6 anliegen. Sowohl die Verbindung der Röhrenelemente 10 mit dem Hohlkör¬ per 14 als auch mit dem Anodengehäuse 6 ist thermisch gut leitend, so dass eventuell in dem Anodengehäuse 6 oder dem Hohlkörper 14 entstehende Wärme sofort und gut durch das ge¬ kühlte Flüssigmetall 20 in den Röhrenelementen 10 abtranspor¬ tiert werden kann.This is a pump motor 15, which is connected via a drive shaft 19 to a magnetic disk 16. By means of the magnetohydrodynamic effect, the liquid metal 20 is pumped through the tube elements 10 and also flows through the interaction module 9 (see also FIG. 1). In the liquid metal circuit, a heat exchanger 18 is angeord¬ net, for example, a cross-flow heat exchanger, which emits the heat generated in the focus and in the shield 11 to a cooling liquid, such as an insulating oil. In addition to the heat exchanger 18, an expansion chamber 17 is integrated into the liquid metal circuit, which keeps the pressure of the liquid metal 20 within the circuit constant. This is necessary because the liquid metal 20 expands or contracts depending on its temperature. Finally, the tube elements 10 already designed for FIG. 1 are wound onto the outer surface of the hollow body 14 in such a way that they form a spiral. In addition, the tube elements 10 are wound so that they rest in the form of a helix on the inside of the spherical anode housing 6. Both the connection of the tube elements 10 with the Hohlkör¬ per 14 and the anode housing 6 is thermally well conductive, so that possibly in the anode housing 6 or the hollow body 14 resulting heat immediately and well by the ge cooled liquid metal 20 in the tube elements 10th can be abtransported.
Um den magnetohydrodynamischen Effekt, der durch die Magnet- Scheibe 16 zu einer Umwälzung des Flüssigmetalls 20 innerhalb des Flüssigmetallkreislaufes führt, besonders gut zur Geltung zu bringen, ist die Form der Führung der Röhrenelemente 10 in dem Bereich, der der Magnetscheibe 16 gegenüberliegt, opti¬ miert. Da dies jedoch nicht Gegenstand der Erfindung ist und aus dem Stand der Technik bekannt ist, wird hierauf nicht nä¬ her eingegangen. Darüber hinaus ist für die Ausgestaltung der Röhrenelemente 10 darauf zu achten — wie oben zur Figur 1 schon erwähnt -, dass möglichst keine scharfen Ecken vorhan¬ den sind, um Druckverluste zu vermeiden.In order to bring out particularly well the magnetohydrodynamic effect, which leads through the magnetic disk 16 to a circulation of the liquid metal 20 within the liquid metal circuit, the shape of the guide of the tube elements 10 in the region opposite to the magnetic disk 16 opti¬ mized. However, since this is not the subject of the invention and is known from the prior art, this will not be discussed further. In addition, care must be taken for the design of the tube elements 10 - as already mentioned above for FIG. 1 - that as far as possible no sharp corners are present in order to avoid pressure losses.
Im Ergebnis führen die im Einzelnen aufeinander abgestimmten Komponenten dazu, dass der gesamte Flüssigmetallkreislauf sehr kompakt ausgeführt werden kann und somit vollständig in¬ nerhalb des Anodengehäuses 6 angeordnet sein kann. Damit er- gibt sich auch ein sehr geringes Gewicht für die Anode 5, was hinsichtlich einer rotierenden Anordnung an einer Gantry um das zu untersuchende Gepäckstück von größter Bedeutung ist. Aufgrund der Abschirmung 11 in der beschriebenen Form ist es möglich, sowohl die im Fokus auch entstehenden, aber für die Untersuchung eines Gepäckstücks nicht benötigten Streustrah¬ len effektiv zu absorbieren als auch die Wärme abzuführen, die innerhalb des Hohlkörpers 14 aufgrund der Bestrahlung mittels Sekundärelektronen, die aus dem Elektronenstrahl 4 rückgestrahlt werden, erzeugt wird.As a result, the individually matched components lead to the fact that the entire liquid metal circuit can be made very compact and thus can be arranged completely in¬ within the anode housing 6. This also results in a very low weight for the anode 5, which is of the utmost importance with regard to a rotating arrangement on a gantry about the item of luggage to be examined. Due to the shield 11 in the described form, it is possible to effectively absorb both the scattering rays which are also produced in the focus but not required for the examination of a piece of luggage, and also to dissipate the heat which, within the hollow body 14, due to the irradiation by means of secondary electrons, which are returned from the electron beam 4, is generated.
Zusammenfassend kann gesagt werden, dass mittels der erfin- dungsgemäßen Abschirmung 11 eine Röntgenröhre 1 zur Verfügung gestellt wird, die mit einem bedeutend geringeren Gewicht als die bekannten Röntgenröhren eine gleichwertige Abschirmung von Streustrahlung ermöglicht und somit besser an einer Gantry um ein zu untersuchendes Gepäckstück rotiert werden kann. In summary, it can be said that by means of the inventive shielding 11, an X-ray tube 1 is provided which enables equivalent shielding of scattered radiation with a significantly lower weight than the known X-ray tubes and thus is better rotated on a gantry about a piece of luggage to be examined can.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Röntgenröhre Gehäuse Kathode Elektronenstrahl Anode Anodengehäuse Eintrittsapertur Austrittsapertur Wechselwirkungsmodul (mit Fokus) Röhrenelement Abschirmung Röntgenstrahl Austrittsfenster Hohlkörper Pumpenmotor Magnetscheibe Expansionskammer Wärmetauscher Antriebswelle Flüssigmetall X-ray tube Housing Cathode Electron beam Anode Anode housing Entry aperture Exit aperture Interaction module (with focus) Tube element Shield X-ray Exit window Hollow body Pump motor Magnetic disc Expansion chamber Heat exchanger Drive shaft Liquid metal

Claims

Patentansprüche claims
1. Abschirmung (11) einer Röntgenröhre (1), deren Anodenmo- dul als eine Flüssigmetallröntgenguelle mit einem Wech¬ selwirkungsmodul (9) mit Fokus in einem Flüssigmetall¬ kreislauf aus Röhrenelementen (10) ausgebildet ist und innerhalb eines Anodengehäuses (6) angeordnet ist, da¬ durch gekennzeichnet, dass die Röhrenelemente (10) so gebogen sind, dass sie den entstehenden Röntgenstrahl ( 12) in unmittelbarer Nähe zum Wechselwirkungsmodul (9) noch innerhalb des Anoden¬ gehäuses (6) räumlich begrenzen.1. shield (11) of an X-ray tube (1) whose anode module is formed as a liquid metal Xgenguelle with a Wech¬ selwirkungsmodul (9) with focus in a Flüssigmetall¬ circuit of tubular elements (10) and disposed within an anode housing (6) , da¬ characterized in that the tube elements (10) are bent so that they spatially limit the resulting X-ray beam (12) in the immediate vicinity of the interaction module (9) within the Anoden¬ housing (6).
2. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 1, dadurch gekennzeichnet, dass das WechselwirkungsmodulSecond shield (11) of an X-ray tube (1) according to claim 1, characterized in that the interaction module
(9) in einem Hohlkörper (14) angeordnet ist, der aus ei¬ nem Material guter Wärmeleitfähigkeit besteht, wobei der Hohlkörper (14) an seinen Seitenflächen mit dem Anoden- gehäuse (6) verbunden ist.(9) in a hollow body (14) is arranged, which consists of ei¬ nem material good thermal conductivity, wherein the hollow body (14) is connected at its side surfaces with the anode housing (6).
3. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Röhrenelemente (10) die Oberfläche des Hohlkörpers (14) zumindest teilweise be- decken und an der Innenfläche des Anodengehäuses (6) an¬ geordnet sind,3. shield (11) of an X-ray tube (1) according to claim 2, characterized in that the tube elements (10) at least partially cover the surface of the hollow body (14) and on the inner surface of the anode housing (6) are arranged an¬
4. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Röhrenelemente (10) spiralförmig an der Oberfläche des Hohlkörpers (14) an¬ geordnet und schneckenförmig an der Innenfläche des Ano¬ dengehäuses (6) angeordnet sind.4. Shielding (11) of an X-ray tube (1) according to claim 3, characterized in that the tube elements (10) arranged spirally on the surface of the hollow body (14) and helically arranged on the inner surface of the Ano¬ dengehäuses (6) ,
5. Abschirmung (11) einer Röntgenröhre (1) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Röhrenelemente5. shield (11) of an X-ray tube (1) according to claim 3 or 4, characterized in that the tube elements
(10) in gutem thermischen Kontakt mit der Oberfläche des Hohlkörpers (14) sind. (10) are in good thermal contact with the surface of the hollow body (14).
6. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röhrenelemente (10) einen Raumwinkel von 50% bis 75% im Bereich des Fokus des Anodenmoduls abdecken.6. shield (11) of an X-ray tube (1) according to any one of the preceding claims, characterized in that the tube elements (10) cover a solid angle of 50% to 75% in the region of the focus of the anode module.
7. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röhrenelemente (10) Biegungsradien größer als 10 mm, insbesondere im Bereich von 10 mm bis 20 mm, aufweisen.7. shield (11) of an X-ray tube (1) according to any one of the preceding claims, characterized in that the tube elements (10) bending radii greater than 10 mm, in particular in the range of 10 mm to 20 mm.
8. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Hohlkörper (14) und/oder das Anodengehäuse (6) aus Kup- fer sind.8. shield (11) of an X-ray tube (1) according to any one of the preceding claims, characterized in that the hollow body (14) and / or the anode housing (6) are made of copper fer.
9. Abschirmung (11) einer Röntgenröhre (1) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Röhrenelemente(10) aus Molybdän mit einem Durchmesser von 5 bis 20 mm sind.9. shield (11) of an X-ray tube (1) according to any one of the preceding claims, characterized in that the tube elements (10) made of molybdenum with a diameter of 5 to 20 mm.
10. Abschirmung (11) einer Röntgenröhre (1) nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass der Hohlkörper (14) eine Höhe von 7 bis 20 mm hat, insbeson- dere 10 mm. 10. shield (11) of an X-ray tube (1) according to any one of claims 2 to 9, characterized in that the hollow body (14) has a height of 7 to 20 mm, in particular 10 mm.
PCT/EP2005/007139 2004-07-01 2005-07-01 Shielding for an x-ray source WO2006002958A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05759475A EP1769520B1 (en) 2004-07-01 2005-07-01 Shielding for an x-ray source
DE502005006084T DE502005006084D1 (en) 2004-07-01 2005-07-01 SHIELDING OF AN X-RAY SOURCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004031973.1 2004-07-01
DE102004031973A DE102004031973B4 (en) 2004-07-01 2004-07-01 Shielding an X-ray source

Publications (1)

Publication Number Publication Date
WO2006002958A1 true WO2006002958A1 (en) 2006-01-12

Family

ID=35311315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/007139 WO2006002958A1 (en) 2004-07-01 2005-07-01 Shielding for an x-ray source

Country Status (4)

Country Link
EP (1) EP1769520B1 (en)
AT (1) ATE415699T1 (en)
DE (2) DE102004031973B4 (en)
WO (1) WO2006002958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863342B2 (en) 2015-09-25 2018-01-09 General Electric Company System and method for controlling an engine air-fuel ratio

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220189A1 (en) * 2013-10-07 2015-04-23 Siemens Aktiengesellschaft X-ray source and method for generating X-ray radiation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE726594C (en) * 1939-05-13 1942-10-16 Dr Med Werner Koose X-ray tube with anode made from circulating fluid
US2665390A (en) * 1951-08-18 1954-01-05 Gen Electric Anode target
US3226592A (en) * 1959-07-15 1965-12-28 Bristol Siddeley Engines Ltd Apparatus for producing a high velocity jet consisting of a plasma of ions and electrons
JPS63253854A (en) * 1987-04-06 1988-10-20 Power Reactor & Nuclear Fuel Dev Corp Electromagnetic pump inserted into tank
US20020080919A1 (en) * 2000-12-16 2002-06-27 Geoffrey Harding X-ray source having a liquid metal target
US20030081727A1 (en) * 2001-10-31 2003-05-01 Balasubramannian Kandankumarath X-ray generating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106740A1 (en) * 2001-02-14 2002-08-22 Philips Corp Intellectual Pty X-ray tube with a target made of a liquid metal
DE10129463A1 (en) * 2001-06-19 2003-01-02 Philips Corp Intellectual Pty X-ray tube with a liquid metal target
DE10130070A1 (en) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty X-ray tube with liquid metal target
US6961408B2 (en) * 2002-03-08 2005-11-01 Koninklijke Philips Electronics N.V. Device for generating X-rays having a liquid metal anode
EP1573774A2 (en) * 2002-12-11 2005-09-14 Koninklijke Philips Electronics N.V. X-ray source for generating monochromatic x-rays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE726594C (en) * 1939-05-13 1942-10-16 Dr Med Werner Koose X-ray tube with anode made from circulating fluid
US2665390A (en) * 1951-08-18 1954-01-05 Gen Electric Anode target
US3226592A (en) * 1959-07-15 1965-12-28 Bristol Siddeley Engines Ltd Apparatus for producing a high velocity jet consisting of a plasma of ions and electrons
JPS63253854A (en) * 1987-04-06 1988-10-20 Power Reactor & Nuclear Fuel Dev Corp Electromagnetic pump inserted into tank
US20020080919A1 (en) * 2000-12-16 2002-06-27 Geoffrey Harding X-ray source having a liquid metal target
US20030081727A1 (en) * 2001-10-31 2003-05-01 Balasubramannian Kandankumarath X-ray generating apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID B ET AL: "Liquid metal anode x-ray tube", PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, vol. 5196, January 2004 (2004-01-01), pages 432 - 443, XP002336484, ISSN: 0277-786X *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 068 (E - 716) 16 February 1989 (1989-02-16) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9863342B2 (en) 2015-09-25 2018-01-09 General Electric Company System and method for controlling an engine air-fuel ratio

Also Published As

Publication number Publication date
DE102004031973A1 (en) 2006-01-26
EP1769520A1 (en) 2007-04-04
DE102004031973B4 (en) 2006-06-01
EP1769520B1 (en) 2008-11-26
ATE415699T1 (en) 2008-12-15
DE502005006084D1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP0584871B1 (en) X-ray tube with anode in transmission mode
DE4425021B4 (en) X-ray tube assembly with a stationary sleeve
DE69814574T2 (en) Device for preventing the window of an X-ray tube from overheating
DE19957559A1 (en) X-ray system, for computer tomography, fluoroscopy, mammography, mobile radiography and medical, dental and industrial radiography, has a heat storage device between the cathode and anode for absorbing waste energy from the anode
DE102005049455B4 (en) Heat exchanger for a single-boiler generator of an X-ray diagnostic device with a rotary anode tube with glass housing
DE2902308C2 (en) X-ray tube
DE102006060135A1 (en) Structure for trapping scattered electrons
EP0777255A1 (en) X-ray tube, in particular microfocus X-ray tube
DE102013209447A1 (en) X-ray source and method for generating X-ray radiation
EP0021441B1 (en) Electron accelerator for x-ray therapy
DE102017002210A1 (en) Cooling device for X-ray generators
DE102004049642A1 (en) X-ray tube window cooling assembly for multi-slice computed tomography imaging system, has thermal exchange devices coupled to coolant circuit whose outlet directs coolant at window surface to impinge upon and cool window
EP1769520B1 (en) Shielding for an x-ray source
WO2013007484A1 (en) Monochromatic x-ray source
WO2015052039A1 (en) X-ray source and method for generating x-ray radiation
DE102008026938A1 (en) Radiation source and method for generating X-radiation
DE3514700A1 (en) X-ray tube
DE748187C (en) Roentgen tubes with rotating anode mounted on balls
DE102009007871B4 (en) X-ray target, X-ray tube and method for generating X-ray radiation
DE102005018342B4 (en) Apparatus and method for generating X-radiation
WO2014177308A1 (en) X-ray source and imaging system
DE19805290C2 (en) Monochromatic x-ray source
EP1028449B1 (en) X-ray tube
DE102008014897A1 (en) X-ray tube for use in industrial fine focus and micro-focus computer tomography, has transmission anode and X-ray discharge window, where transmission anode is arranged at X-ray discharge window
DE102010030713B4 (en) X-ray source for generating X-rays with a hollow body target and a method for generating X-radiation in a hollow body target

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005759475

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005759475

Country of ref document: EP