WO2005124228A1 - Light guide plate, method of manufacturing the same, back light, and liquid crystal display device - Google Patents

Light guide plate, method of manufacturing the same, back light, and liquid crystal display device Download PDF

Info

Publication number
WO2005124228A1
WO2005124228A1 PCT/JP2005/011882 JP2005011882W WO2005124228A1 WO 2005124228 A1 WO2005124228 A1 WO 2005124228A1 JP 2005011882 W JP2005011882 W JP 2005011882W WO 2005124228 A1 WO2005124228 A1 WO 2005124228A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
light
light source
scattering particles
Prior art date
Application number
PCT/JP2005/011882
Other languages
French (fr)
Japanese (ja)
Inventor
Masao Yamamoto
Original Assignee
Scalar Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scalar Corporation filed Critical Scalar Corporation
Publication of WO2005124228A1 publication Critical patent/WO2005124228A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses

Definitions

  • Light guide plate manufacturing method of light guide plate, backlight, liquid crystal display
  • the present invention relates to a light guide plate mainly used for a backlight of a liquid crystal display device.
  • Liquid crystal display devices have become very popular.
  • the liquid crystal display device includes a liquid crystal panel for displaying an image, and the image displayed on the liquid crystal panel is put on light from behind to be seen by human eyes.
  • a mechanism is required to guide the light to the liquid crystal panel from behind to display an image to human eyes.
  • a reflection type liquid crystal display device having a mechanism for reflecting light taken in from the outside behind a liquid crystal panel and guiding the light to the liquid crystal panel.
  • a backlight is used in almost all liquid crystal display devices other than the reflection type liquid crystal display device.
  • the backlight is a planar light source that emits light spontaneously and is arranged behind the liquid crystal panel.
  • Backlights are a very important component of LCDs, which have a significant effect on the thickness and power consumption of LCDs. For this reason, a wide variety of backlight technologies have been proposed and put into practical use.
  • a common type of backlight uses a light guide plate.
  • the light guide plate is formed of a transparent material in the form of a plate, and emits light introduced into the inside from a light source facing the end face from the emission face which is one of the wide faces.
  • a typical light guide plate has a projection on its emission surface or a surface opposite to the emission surface.
  • a sharp wave shape with a rhythm function is provided, and the light introduced into the interior from the light source is changed by changing the direction of the light introduced into the interior of the light source from the light source. From the emission surface.
  • the above-mentioned corrugated portion is manufactured by processing that requires a very high accuracy with an allowable error of several / m level. Therefore, the production of light guide plates, which are mostly made of resin products, requires very high technology, due to the inherent sink marks of resin products. In fact, the technology required to perform very precise processing is required, so that only a limited number of people can manufacture molds for manufacturing light guide plates, and molds for manufacturing light guide plates. It costs hundreds of millions of dollars to produce a
  • the light guide plate is an expensive component. Such a situation hinders a reduction in the price of a backlight using a light guide plate and a liquid crystal display device using the backlight.
  • An object of the present invention is to provide a technique for enabling a light guide plate generally used for a backlight of a liquid crystal display device to be manufactured at low cost without using precise processing. Disclosure of the invention
  • the present invention for solving the above-mentioned problems is as follows.
  • the light guide plate according to the present invention is formed by forming a transparent material into a plate shape, and emits light introduced into the inside from a light source facing the end face from its emission face. Further, scattering particles capable of scattering light are diffused inside the transparent material, and light introduced into the inside from the light source is scattered by the scattering particles and emitted from the emission surface. It has become.
  • the light guide plate according to the present invention is provided with light from the light source introduced inside the light guide plate.
  • the light guide plate of the present invention does not require a corrugated shape that requires precision machining, and therefore does not require precise machining that is necessary for forming a corrugated shape. Therefore, the light guide plate according to the present invention is inexpensive because it is free from the problem of price increase caused by precision processing.
  • the “emitting surface” is any one or two of the two widened surfaces of the plate-shaped light guide plate, and means a surface from which light is emitted. If there are two emission surfaces, the light guide plate of the present invention can be used for a double-sided liquid crystal display device. '
  • the light source used in combination with the light guide plate in the present invention can be appropriately selected as needed.
  • the light source an LED or other point light source can be used, or a small fluorescent lamp or other linear light source can be used.
  • the number of light sources may be singular or plural. If the light guide plate is rectangular, the light source will generally face at least one of the sides when the light guide plate is viewed perpendicular to the emission surface, but in this case there are two or more light sources. It may be a shape that straddles the side of.
  • the light introduced into the inside from the light source is scattered by the scattering particles and emitted from the emission surface. This is because the light scattered by the scattering particles is directly emitted from the emission surface. It includes both the case where the light is emitted and the case where the light scattered by the scattering particles is reflected from a surface other than the emission surface, such as the bottom surface, and then emitted from the emission surface.
  • the scattering particles to be diffused into the light guide plate according to the present invention are not particularly limited as long as they can scatter light from a light source introduced into the light guide plate. “Scattering” as referred to in the present specification includes both a case where light is reflected and a case where light is refracted.
  • the scattering particles may be those that generate at least one of reflection and refraction of light.
  • the scattering particles can be opaque, for example, a metal powder.
  • a transparent material such as silicon powder or acrylic powder can be used. If the scattering particles are transparent, not only light reflection but also refraction will occur.
  • the diameter of the scattering particles can be about 2 m to 12 m. visible light In order to scatter the particles, the diameter of the scattering particles is preferably this degree.
  • the shape of the scattering particles may be any shape. For example, it may be spherical. A plurality of types of scattering particles may be mixed. Materials of different materials, of different sizes, of different shapes, etc., can be arbitrarily mixed and used.
  • the scattering particles are mixed with a transparent material used for injection molding, extrusion molding, etc., and molded using the transparent material. By doing so, scattering particles can be diffused inside the light guide plate.
  • the scattering particles may be uniformly diffused throughout the light guide plate.
  • the scattering particles may have a different density for each part of the light guide plate.
  • the intensity of the light emitted from the light guide plate is changed to all parts of the emission surface of the light guide plate.
  • Any transparent material can be used as long as it can be made into a plate shape and has sufficient transparency (at least has translucency) to allow light to enter inside.
  • the transparent resin can be, for example, PMMA (acrylic), PC (polycarbonate), COP (cycloolefin polymer).
  • the number of the scattering particles is set such that the number per unit area when the light guide plate is viewed perpendicular to the emission surface increases in a place where the intensity of the light introduced from the light source becomes weaker. be able to. If the number of scattering particles per unit area when the light guide plate is viewed perpendicular to the emission surface is increased in a place where the intensity of light reaching from the light source becomes weaker, the light is theoretically emitted from the light guide plate Light intensity can be adjusted to be uniform at all parts of the light emitting surface of the light guide plate.
  • the number of scattered particles can be made to continuously change from place to place.
  • the technology for making gradient refractive lenses It could be applied to this.
  • this may be realized by dividing the light guide plate into a plurality of small sections. .
  • the density of the scattering particles in all of the plurality of small sections may be constant, and the density of the scattering particles in each of the plurality of small sections may be different from each other.
  • the manufacture of the sub-compartments is simpler and it is not difficult to combine them, so that the production of the sub-compartments is less than for a light guide plate in which the number of scattering particles varies continuously from place to place. It is simple and therefore contributes to reducing the manufacturing cost of the light guide plate.
  • the plurality of small sections in the light guide plate may divide the light guide plate in any manner.
  • the small sections may be arranged in order from the side closer to the part where the light source is expected to be exposed (the order of manufacture may be any).
  • a smaller section closer to the light source may have a smaller density of the scattering particles in the smaller section.
  • a part including a part where the light source is expected to be exposed may not include the scattering particles.
  • the light plate include the following. That is, a first small section formed of a transparent material and containing no scattering particles, a second small section formed of a transparent material and containing small numbers of scattering particles, and And at least a part thereof, in a state where there is an overlapping portion when viewed from a direction perpendicular to the emission surface.
  • the thickness of the second sub-section is increased as the intensity of the light introduced from the light source decreases, as the intensity of the received light decreases.
  • the density of the scattered particles in the second small section can be the same in any part of the second small section.
  • the scattering particles are located at a predetermined position where the light source is expected to be exposed. In a place where the distance from the light guide plate is larger than in a place where the distance is smaller, the number of light guide plates per unit area when viewed perpendicular to the emission surface is not reduced. be able to. For example, as the scattering particles are farther from a predetermined position where the light source is expected to face, the number per unit area when the light guide plate is viewed perpendicular to the emission surface is increased. It can be. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the emission surface of the light guide plate.
  • Examples of such light guide plates include the following.
  • a first subsection which is a small section formed of a transparent material and does not include scattering particles
  • a second subsection which is a small section formed of a transparent material and includes scattering particles at a predetermined density. At least a part of them is combined in such a state that there is an overlapping part when viewed from a direction perpendicular to the emission surface, and the first light section faces the light source.
  • the thickness thereof is prevented from increasing compared to a place where the distance is smaller, and the second sub-partition is It is a light guide plate whose thickness is not reduced at places where the distance from the predetermined position where the light source is expected to be exposed is larger than at places where the distance is smaller than that. .
  • the thickness of the first small section decreases as the distance from the predetermined position where the light source is expected to be exposed is increased (however, there may be a portion where the thickness does not change in a part thereof).
  • the thickness of the second sub-section increases as the distance from the predetermined position where the light source is expected to be seen is increased (however, a portion of the second sub-section where the thickness does not change). May be provided).
  • the density of the scattering particles in the second small section can be the same in any part of the second small section.
  • the light guide plate according to the present invention may have any shape as long as it has a plate shape.
  • the light guide plate may have a partially changed thickness.
  • the light source can face one or more sides of the rectangle.
  • the scattering particles may face the light source.
  • the number of light guide plates per unit area when viewed perpendicular to the emission surface does not decrease in places where the distance from the one side is larger than in places where the distance is smaller. You can do so.
  • the number of the scattering particles increases per unit area when the light guide plate is viewed perpendicular to the emission surface, as the distance from the one side where the light source is expected to face is longer. It can be. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the emission surface of the light guide plate.
  • the intensity of light emitted from the light guide plate can be reduced even with such a simple configuration. It can be made almost uniform in all parts of the emission surface.
  • Examples of the light guide plate in this case include the following.
  • a first subsection which is a small section formed of a transparent material and does not include scattering particles
  • a first subsection which is formed of a transparent material and includes scattering particles at a predetermined density
  • the first sub-compartment is At a place where the distance from a predetermined position where the light source is expected to be exposed is larger, the thickness is not increased as compared with a place where the great distance is smaller, and
  • the thickness of the second subsection is such that its thickness does not decrease at a place where the distance from a predetermined position where the light source is expected to be exposed is larger than at a place where the distance is smaller than that of the predetermined position.
  • the thickness of the first small section decreases as the distance from the one side where the light source is expected to face is increased (however, there may be a part where the thickness does not change).
  • the thickness of the second subsection increases as the distance from the side where the light source is expected to face is increased (however, there may be a portion where the thickness does not change). It may be done. Note that the density of the scattering particles in the second subsection can be the same in any part of the second subsection.
  • the light source can face two predetermined sides of the rectangle.
  • the light guide plate is rectangular and the light source is expected to face two opposite sides thereof, the light source faces the scattering particles. Where the distance from the closer one of the two sides is larger, the light guide plate is viewed perpendicular to the emission surface compared to a smaller distance. In this case, the number per unit area can be prevented from decreasing. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the light emitting surface of the light guide plate.
  • the light source facing the above two sides is a linear light source (preferably of a length along the sides), even with such a simple configuration, the intensity of the light emitted from the light guide plate can be reduced. It can be made almost uniform in all parts of the emission surface of the light guide plate.
  • Examples of the light guide plate in this case include the following.
  • a first subsection which is a small section formed of a transparent material and does not include scattering particles
  • a first subsection which is formed of a transparent material and includes scattering particles at a predetermined density
  • the first sub-compartment is At locations where the distance from the closer of the two sides where the light source is supposed to be exposed is greater, its thickness does not increase compared to locations where the distance is smaller.
  • the second sub-section is located at a greater distance from a closer one of the two sides on which the light source is to be aimed, and at a smaller distance therefrom. It is a light guide plate whose thickness is not reduced by comparison.
  • the thickness of the first subsection decreases as the distance from the closer one of the two sides where the light source is expected to face is increased (however, the thickness does not change in a part thereof).
  • the second sub-section has a thickness that increases with distance from a closer one of the two sides on which the light source is to be seen (however, (There may be a part where the thickness does not change in the part.)
  • the first sub-compartment has its second sub-compartment so that its thickness is maximum at the two sides where the light source is to be exposed, and its thickness is the minimum at the center of the two sides. It can be reversed.
  • the density of the scattering particles in the second small section can be the same even in the portion of the second small section that is misaligned.
  • the light guide plate is rectangular, the light source must be able to face all sides (four sides) of the rectangle. You can.
  • the scattering particles may be formed by diagonally dividing the rectangle of the light guide plate into four areas. In a place where the distance from the side at the end of the range is larger, a unit area when the light guide plate is viewed perpendicular to the emission surface is compared with a place where the distance is smaller. The number of hits can be kept from decreasing.
  • the light source facing all of the above sides is a linear light source (preferably of a length along the side)
  • the intensity of the light emitted from the light guide plate even with such a simple configuration. Can be made almost uniform at all parts of the emission surface of the light guide plate.
  • Examples of the light guide plate in this case include the following.
  • a first subsection which is a small section formed of a transparent material and does not include scattering particles
  • a first subsection which is formed of a transparent material and includes scattering particles at a predetermined density
  • two sub-compartments are combined in such a state that at least a part thereof overlaps when viewed from a direction perpendicular to the emission surface, and the first sub-compartment is In each area where the rectangle in the light guide plate is divided into four sections by a diagonal line, a place where the distance from the side at the end of the range is larger than a place where the distance is smaller than the place where the distance is smaller.
  • the thickness of the second sub-section is prevented from increasing, and the thickness of the second sub-section is larger at a location where the distance from the side at the end of the range is larger than at a location where the distance is smaller. It is a light guide plate that is not reduced.
  • the thickness of the first subsection decreases as the distance from the side at the end of the range decreases (however, part of the first subsection decreases).
  • the thickness of the second subsection increases as the distance from the side at the end of the range increases (however, the thickness does not change in a part thereof).
  • the first subsection has the maximum thickness on each side and the minimum thickness at the center of each side.
  • the second subdivision can be reversed. Note that the density of the scattering particles in the second subsection can be the same in any part of the second subsection.
  • Light from the light source may be introduced into the light guide plate from the first small section. This makes it easier to send the light from the light source far into the light guide plate while reducing loss.
  • the light entering the light guide plate from the first subsection enters the light guide plate. If the input light exceeds 80%, it can be considered that light from the light source is guided from the first subsection to the light guide plate.
  • the refractive index of the transparent material may be the same in all the portions, or may be different for each portion of the light guide plate.
  • the refractive index of the transparent material serving as the basis of the light guide plate may be changed depending on the position of the light guide plate so as to bend the light from the light source in a direction approaching the emission surface. If this is the case, the amount of light emitted from the emitting surface can be increased, thus helping to maintain the brightness as a planar light source.
  • the distribution of the refractive index can be continuously changed like a distributed refractive index type lens.
  • the light guide plate may be divided into a plurality of small sections, and the plurality of small sections are arranged in order from a side closer to a portion where the light source is expected to face. It may be.
  • the refractive index of the transparent material forming each of the small sections smaller as the closer to the light source. In this way, the amount of light emitted from the emitting surface can be increased without increasing the manufacturing difficulty.
  • light from the light source enters small sections far from the light source in order from small sections near the light source. At this time, when the light is incident from a material having a small refractive index to a material having a large refractive index, total reflection hardly occurs. Therefore, the above-described configuration is suitable for transmitting light to a section far from the light source.
  • each of the end faces of the plurality of small sections that are in contact with the adjacent small sections is provided with light coming into the next small section from one of the small sections to a portion where the light source is expected to be exposed.
  • the traveling direction may be changed so as to be refracted and approach the emission surface. This is also suitable for increasing the amount of light emitted from the emitting surface It is.
  • the light guide plate of the present invention may have the first small section and the second small section in some cases.
  • the refractive index of the transparent material forming the first small section may be smaller than the refractive index of the transparent material forming the second small section. That is, the refractive index of the transparent material forming the second small section may be higher than the refractive index of the transparent material forming the first small section.
  • the light guide plate having the small sections described above can be formed by a multicolor molding method in which one of the small sections is formed, and then the adjacent small sections are formed one after another. That is, such a light guide plate can be manufactured by molding each of the small sections by a multicolor molding method.
  • the multicolor molding method is a technology used when manufacturing a resin product in which a plurality of parts molded with resins of different colors are integrated, and various know-how is accumulated in the resin molding technology. It is an established technology.
  • the light guide plate having the small sections can be manufactured by using the multicolor molding method. Less difficulties. This also contributes to making the light guide plate at low cost.
  • the light guide plate according to the present invention can be used as a backlight by making the light source face the end. Further, such a backlight can be applied to a backlight of a liquid crystal display device.
  • FIG. 1 is a perspective view schematically showing the configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a configuration of a backlight of the liquid crystal display device shown in FIG.
  • 3A to 3E are side views showing modifications of the light guide plate included in the backlight shown in FIG.
  • FIG. 4A to 4E show another modification of the light guide plate included in the backlight shown in FIG. FIG.
  • FIG. 5 is a perspective view showing still another modification of the light guide plate included in the backlight shown in FIG.
  • FIG. 6 is a plan view showing still another modification of the light guide plate included in the backlight shown in FIG.
  • FIG. 7A and 7B are side views showing modified examples of the light guide plate included in the backlight shown in FIG.
  • FIG. 8 is a perspective view schematically showing a configuration of a backlight included in the liquid crystal display device according to the second embodiment.
  • FIG. 9 is a perspective view schematically showing a configuration of a backlight included in the liquid crystal display device according to the third embodiment.
  • FIG. 10 is a perspective view schematically showing a configuration of a backlight included in the liquid crystal display device according to the fourth embodiment.
  • FIG. 11 is a view for explaining a modification of the light guide plate included in the liquid crystal display device according to the fourth embodiment.
  • Each of the first to fourth embodiments relates to a liquid crystal display device including a backlight including the light guide plate according to the present invention.
  • the liquid crystal display device has a configuration schematically shown in FIG.
  • This liquid crystal display device is configured by combining a liquid crystal panel 100 and a backlight 200.
  • the backlight 200 is arranged on the back side of the liquid crystal panel 100, that is, on the side far from the eyes of a viewer of the liquid crystal display device.
  • the liquid crystal display transmits light from the backlight 200 to the liquid crystal panel 100. By doing so, the user can see a predetermined image.
  • the liquid crystal display device includes a case for accommodating the liquid crystal panel 100 and the backlight 200, a circuit board for controlling the driving of the liquid crystal panel 100, and the like. The description and illustration are omitted.
  • the liquid crystal panel 100 any existing liquid crystal panel may be used, but in this embodiment, the structure is as shown in FIG.
  • the liquid crystal panel 100 has a liquid crystal layer 110 in the middle.
  • the liquid crystal layer 110 is sandwiched between the alignment film layers 120.
  • a transparent electrode layer 130 is provided outside the both alignment film layers 120.
  • a glass substrate 140 is provided outside the transparent electrode layers 130, and a polarizing plate 150 is provided outside the glass substrates 140.
  • a color filter layer is provided between the front side of the liquid crystal panel 100, that is, the transparent electrode layer 130 nearer to the viewer's eyes and the glass substrate 140. 160 is provided.
  • the liquid crystal layer 110, the alignment film layer 120, the transparent electrode layer 130, the glass substrate 140, the polarizing plate 150, and the color filter layer 160 are all the same. , More specifically the same rectangular shape.
  • liquid crystal layer 110 alignment film layer 120, transparent electrode layer 130, glass substrate 140, polarizing plate 150, and color filter layer 160 are as follows. is there.
  • Both polarizing plates 150 have a function of converting natural light transmitted therethrough into linearly polarized light in a predetermined direction.
  • the one on the back side has a role of polarizing the light emitted from the Socrite 200.
  • the front one is polarized after passing through the rear polarizing plate 150, and then passes through the liquid crystal layer 110, and the polarization plane is rotated as necessary. It has the role of passing or blocking the light.
  • the liquid crystal layer 110 is driven as necessary, and the light polarized by passing through the rear polarizing plate 150 is maintained in the same polarization state or rotated 90 °. Let through. It is the transparent electrode layer 130 that controls the driving of the liquid crystal layer 110 performed to rotate the polarization plane, and the transparent electrode layer 130 is driven by a change in the potential difference therebetween. 10 control is realized.
  • the alignment film layer 120 sandwiches the liquid crystal layer 110, and the liquid crystal in the liquid crystal layer 110 It has the function of regulating the orientation direction.
  • the glass substrate 140 sandwiches a liquid crystal layer 110, an alignment film layer 120, a transparent electrode layer 130, and a color filter layer 160 therebetween.
  • the color fill layer 160 is a layer formed by a color fill layer for coloring light passing through it.
  • the color filter layer 160 is generally composed of fine filters of R (red), G (green), and B (blue) arranged in a matrix, and in this embodiment, it is so. .
  • Nosocrite 200 is configured as shown in FIG.
  • the backlight 200 in this embodiment includes a light guide plate 210 and a light source 220.
  • the light guide plate 210 combines the first small section 2 11 in which the scattering particles are not diffused and the second small section 2 12 in which the scattering particles are diffused, thereby forming a concave portion 20 OA described later. Except for it, it is formed to be a rectangular parallelepiped. That is, the light guide plate 210 has a rectangular shape when viewed from a direction perpendicular to its wide surface, and is formed in a thin plate shape.
  • the emission surface in this embodiment that is, the surface from which the light introduced from the light source 220 into the light guide plate 210 is emitted is the upper surface of the light guide plate 210 in FIG.
  • the first small section 2 1 1 is formed of a transparent resin, for example, PMMA, PC, COP (in this embodiment, PMMA).
  • the second subsection 211 is made of transparent resin (which may be the same as or different from the first subsection 211) plus scattering particles, for example, silicon or acrylic particles. It is formed.
  • the scattering particles in this embodiment are spheres, and their diameters are 7 m and 3 m in this embodiment. That is, in this embodiment, two types of scattering particles having different sizes are used.
  • the color temperature of the light emitted from the emitting surface can be adjusted by the size of the scattering particles. In this embodiment, the color temperature of light emitted from the emission surface is adjusted by using the scattering particles having the two diameters described above.
  • the refractive index of the transparent material forming the first small section 2 11 is smaller than (at least the same as) the refractive index of the transparent material forming the second small section 2 12.
  • the refractive index of the first small section 2 11 is 1.49
  • the refractive index of the second small section 2 12 is 1.55.
  • the scattering particles in the second small section 2 12 are uniformly diffused throughout the second small section 2 12.
  • the first small section 2 1 1 and the second small section 2 1 2 have the same right-angled triangular shape when viewed from the side, and their hypotenuse portions are in contact with each other. . Therefore, the thickness of the light guide plate 210 is the same in any part.
  • the first small section 2 1 1 and the second small section 2 1 2 are integrally formed by a multi-color (here, two-color) molding method. Since the two-color molding method is a well-known method, a detailed description thereof will be omitted.
  • the light guide plate 2 10 having the first small section 2 1 1 and the second small section 2 1 2 Can be manufactured. Such a manufacturing method is based on the following.
  • the raw materials of the first sub-compartment 211 and the second sub-compartment 212 in liquid or gel state in this embodiment, the raw material of the first sub-compartment 211 is liquid
  • PMM A tree Ji the raw material of the second sub-compartment 2 1 2 is a mixture of liquid PMMA resin and scattering particles.
  • One of the second sub-compartments 2 1 2 is formed first, and then the other sub-compartments, with the above-mentioned oblique sides of the first sub-compartments 2 1 1 and 2 1 2 being part of the mold. That is, the other of the raw materials of the first small section 2 11 or the second small section 2 12 is injected.
  • the light guide plate 210 is located at the center of the portion corresponding to one side of the above-described rectangle, more specifically, at the center portion of the end face where only the first small section 211 is exposed, and the light source 220 is located at the center. It has a recess 20 OA that is a hole with a circular cross section that fits inside.
  • the concave portion 200A may be formed by using a mold when the first small section 2 11 and the second small section 2 12 are manufactured by a two-color molding method.
  • the first small section 2 1 1 and the second small section 2 1 2 may be formed into a rectangular parallelepiped shape, and then the first small section 2 11 1 may be cut.
  • the light guide plate 210 is not necessarily required to have such a shape.
  • the end surface (side surface) excluding the inside of the concave portion OA and the bottom surface are formed from the inside of the light guide plate 210.
  • the light guide plate 210 is provided with a reflector that reflects light that is going to go outside.
  • the reflector can be manufactured, for example, by arranging a mirror-like member different from the light guide plate 210 around the light guide plate 210, or by using aluminum or the like in a necessary portion of the light guide plate 210. It can also be manufactured by vapor-depositing a metal.
  • the light source 220 is a point light source in this embodiment.
  • the light source 220 in this embodiment is an LED.
  • the light source 220 is controlled to be turned on as necessary.
  • the number of the light sources 220 in this embodiment is one, a plurality of the light sources 220 may be arranged at predetermined intervals on the side.
  • the light source 220 faces the inside of the above-mentioned concave portion 20OA provided in the light guide plate 210.
  • the light from the light source 220 is introduced into the light guide plate 210 from the inner surface of the concave portion 20OA.
  • the thickness of the first subsection 2 11 decreases as the distance from one side of the rectangular shape facing the light source 220 decreases.
  • the thickness of the second subsection 2 1 2 is increased. Since the first small section 2 11 1 does not contain scattered particles and the second small section 2 12 contains scattered particles at a certain density, the light guide plate 2 10 The longer the distance from the above one side of the rectangular shape facing 20, the greater the number of scattering particles per unit area when the light guide plate 210 is viewed perpendicular to the emission surface. ing.
  • the backlight 200 including the light guide plate 210 and the light source 220 functions as a planar light source.
  • the light source 220 in the first embodiment is a point light source, if a concentric circle centered on the light source 220 is considered, the light source 220 reaching the concentric circle becomes larger as the size of the concentric circle becomes larger. Light is reduced.
  • the light guide plate 210 is formed such that as the distance from the above one side of the light guide plate 210 facing the light source 220 increases, the unit area of the scattered particles when viewed perpendicular to the emission surface increases. More specifically, more specifically, the number of scattering particles per unit area when viewed perpendicular to the emission surface increases in proportion to the distance from the one side of the light guide plate 210. .
  • the light reaching from the light source 220 to a portion far from the above one side of the light guide plate 210 facing the light source 220 is close to the above one side. Since the amount of light is smaller than that of the part, even if light scattering by scattering particles The light emitted from the emission surface may be weakened as the distance from the one side of the light guide plate 210 facing the light source 220 increases. .
  • the number of scattering particles per unit area when viewed perpendicular to the emission surface increases in proportion to the distance from the above one side.
  • the weakness of the light scattered by the scattering particles can be compensated for by the number of scattering particles per unit area (that is, the number of times of light scattering), so that the light emitted from the emission surface of the light guide plate 210 Amount becomes nearly uniform across the emission surface.
  • the backlight 200 as a planar light source can emit light that is nearly uniform over its entire surface, and is therefore preferable.
  • light that exits from the light source 220 and travels from right to left in FIG. 2 in the light guide plate 210 when entering the second small partition 2 1 2 from the first small partition 2 1 1 Change its direction to get closer to the emission surface. This increases the amount of light exiting the emitting surface in this embodiment.
  • the light guide plate 210 in the first embodiment can be modified as shown in FIGS. 3A to 3E.
  • 3A to 3E are side views showing a state where the light guide plate 210 is viewed from the same direction as the front direction in FIG.
  • the light guide plates 210 in FIGS. 3A to 3E are all rectangular plates.
  • all of the light guide plates 210 of FIGS. 3A to 3E have the same vertical cross section except for the concave portion 200A.
  • the light guide plate 210 of FIG. 3A has a plane parallel to the emission surface in both the first subsection 2 1 1 and the second subsection 2 1 2, so that unlike the first embodiment, the light source As the distance from the side at which 220 is expected to face increases, the thickness of the first subsection 2 11 1 decreases, and as the distance increases, the thickness of the second subsection 2 1 2 increases. It has not become.
  • the first small section 2 1 1 is located at a larger distance from one side of the light guide plate 2 10 where the light source 2 2 0 is expected to face.
  • the second sub-compartment 2 1 2 is designed so that the light source 2 2 At places where the distance from the side is larger, the thickness is not reduced compared to places where the distance is smaller. This is illustrated in Figures 3B to 3E. The same applies to the light guide plate 210 thus obtained.
  • the light guide plate 210 may be as shown in FIG. 3B.
  • the shape of the first small section 2 11 in a side view is a right triangle
  • the shape of the second small section 2 12 in a side view is a trapezoid.
  • the light guide plate 210 may be as shown in FIG. 3C.
  • the side view shape of the first small section 211 is trapezoidal, and the side view shape of the second small section 211 is a right triangle.
  • the light guide plate 210 can be as shown in FIG. 3D.
  • the line formed by the boundary surface between the first small section 2 11 and the second small section 2 12 is a curve. That is, in this modified example, the boundary surface between the first small section 2 11 and the second small section 2 12 is a curved surface.
  • the curve created by the interface can be, for example, part of a logarithmic curve.
  • the light guide plate 210 may be as shown in FIG. 3E.
  • the line formed by the interface between the first subsection 2 11 and the second subsection 2.12 is curved. This curve touches both the emission surface and the bottom surface.
  • the curve created by the interface can be, for example, part of a logarithmic curve.
  • the light guide plate 210 in the first embodiment can be modified as shown in FIGS. 4A to 4E.
  • 4A to 4E are side views showing a state where the light guide plate 210 is viewed from the same direction as the front direction in FIG. Note that all of the light guide plates 210 in FIGS. 4A to 4E are rectangular plates. In addition, all of the light guide plates 210 of FIGS. 4A to 4E have the same vertical cross section except for the concave portion 200A.
  • the light guide plate 210 can be as shown in FIG. 4A.
  • the light guide plate 210 of FIG. 4 includes not only the first small section 2 11 and the second small section 2 12 but also the third small section 2 13 and the fourth small section 2 14.
  • the side view shape of the first small section 2 11 is the same as that of the first embodiment.
  • the side view shape of the second small section 2 1 2, the third small section 2 13, and the fourth small section 2 14 is a plurality of straight lines passing through the right vertex through the second small section 2 12 of the first embodiment. And is formed by slicing.
  • the refractive index of the first subsection 2 11 is larger than the refractive index of the image 2 12, and the refractive index of the fourth small section 2 14 is larger than the refractive index of the third small section 2 13.
  • the first subsection 2 11, the second subsection 2 12, the third subsection 2 13, and the fourth subsection 2 14 all have a high density of scattered particles in any location. Has been made the same.
  • the density of the scattered particles in the first subsection 2 11 1 is smaller than the density of the scattered particles in the second subsection 2 12
  • the fourth subsection 2 is larger than the density of the scattered particles in the third subsection 2 13. It is the density of the scattering particles in 14.
  • the first subsection 2 11 does not contain scattering particles.
  • the second subsection 2 12 not only the second subsection 2 12 but also the third subsection 2 13 and the fourth subsection 2 14 contain particles. This can be seen as having a small section containing scattering particles in addition to the second small section 2 1 2, but only dividing the second small section 2 1 2 containing scattering particles into a plurality. You can see it.
  • the second subsection 2 1 2 in the present invention may be divided into a plurality of sections, and each subsection obtained by dividing the second subsection 2 1 2 into a plurality is divided into other subsections. Either the density or the refractive index of the scattering particles may be different.
  • the light guide plate 210 may be as shown in FIG. 4B.
  • the side view shape of the first small section 2 11 is a right-angled triangle similar to the case of the first embodiment.
  • the side view shape of the second small section 2 12 and the third small section 2 13 is a shape formed by diagonally dividing the second small section 2 12 in the first embodiment in the middle. ing.
  • the light guide plate 210 may be as shown in FIG. 4C.
  • the side view shape of the first small section 211 in the light guide plate 210 of FIG. 4C is a right-angled triangle similar to the case of the first embodiment.
  • the side view shape of the second small section 2 1 2 and the third small section 2 13 is a straight line in which the inclination angle of the emission surface with respect to the back surface is smaller than the inclination angle of the hypotenuse when the first small section 2 11 1 is viewed in side view.
  • a shape obtained by dividing a portion of the light guide plate 210 other than the first small section 211 is obtained.
  • the light guide plate 210 can be as shown in FIG. 4D.
  • Figure 4D In the light plate 210, the shapes of the first subsection 2 11 to the fourth subsection 2 14 are all trapezoids in side view. Further, in this embodiment, the inclination of the line formed by the boundary surface that defines the first subsection 2 1 1 and the second subsection 2 1 2 with respect to the back surface> the second subsection 2 1 2 and the third subsection The slope of the line created by the boundary that separates 2 1 3 with respect to the back of the emission surface> The slope of the line created by the boundary that separates 3rd and 4th small sections 2 1 3 and 2 1 4 with respect to the back It has become.
  • the light guide plate 210 may be as shown in FIG. 4E.
  • the line formed by the boundary surface between the first subsection 2 1 1 and the second subsection 2 1 2, and the second subsection 2 1 2 and the third subsection 2 1 is a curve.
  • the above-described curve created by the interface can be, for example, part of a logarithmic curve.
  • the light guide plate 210 in the first embodiment can be modified as shown in FIG. FIG. 5 is a perspective view showing the backlight 200.
  • the light guide plate 210 in this modification includes a first small section 2 11 and a second small section 2 1 2.
  • the first small section 2 11 and the second small section 2 12 of the light guide plate 210 in this modification are the same as those of the first embodiment except for their shapes.
  • the first small section 2 1 1 in this modification has a shape like a half-cut shell-shaped object turned down.
  • the line created by the interface between the first sub-section 2 1 1 and the second sub-section 2 1 2 is cut along the plane passing through A—A to D—D in FIG. In this case, it will be as shown in the lower half of Figure 5.
  • the first subdivision 2 11 is located at a greater distance from the location where the light source 220 is expected to be exposed (i.e., the recess 20 OA).
  • the thickness is made smaller than in a small place.
  • the second small section 2 12 is configured such that its thickness is larger at a place where the distance from the recess 20 OA is longer than at a place where the distance is shorter.
  • the first small section 2 11 and the second small section 2 12 in this modified example consider that the light from the light source 220 that reaches there is weakened if the distance from the light source 220 is large.
  • the first subsection 2 1 1 is reduced in thickness at a place where the intensity of the light introduced from the light source 2 20 is weakened, and the second subsection 2 1 2 is configured by the light source 2 2 It can be said that the thickness increases as the intensity of light introduced from zero decreases.
  • auxiliary light sources as shown in the plan view of FIG. 6 are provided at both ends of the side where the light source 220 faces.
  • Section 2 1 2 A can be provided. Thereby, uniform light can be easily emitted from the entire emission surface of the light guide plate 210.
  • the auxiliary small section 2 12 A has, for example, a triangular prism shape having a cross section shown in the plan view of FIG. 6 and extending from the emission surface to the surface opposite to the emission surface.
  • the light guide plate 210 in the first embodiment can be modified as shown in FIGS. 7A and 7B.
  • 7A and 7B are side views showing a state where the light guide plate 210 is viewed from the same direction as the front direction in FIG.
  • Each of the light guide plates 210 shown in FIGS. 7A and 7B has the same vertical cross-section everywhere except for the concave portion 20OA.
  • the light guide plate 210 has gradation.
  • This gradation conceptually shows the density of scattering particles diffused inside the light guide plate 210. The darker the gradation, the higher the density of scattering particles.
  • the scattered particles in the light guide plate 210 are closer to the unit area when viewed in a direction perpendicular to the emission surface as the intensity of the light introduced from the light source 220 decreases. Can be said to be increasing.
  • the intensity of emitted light differs depending on the emission direction.
  • a change in the concentration of the scattered particles that compensates for this can be given to the light guide plate 210 described above.
  • the light guide plate 210 shown in FIG. 7B is also provided with gradation.
  • the gradation in FIG. 7B indicates the refractive index at that portion of the light guide plate 210.
  • the light from the light source 220 bends in a direction approaching the emission surface, so that the amount of light emitted from the emission surface can be increased.
  • the liquid crystal display device according to the second embodiment is basically the same as that of the first embodiment.
  • the liquid crystal display device includes a liquid crystal panel 100 and a backlight 200.
  • the liquid crystal panel in the liquid crystal display device of the second embodiment is not different from the liquid crystal panel 100 of the first embodiment.
  • the liquid crystal display device according to the second embodiment is different from the liquid crystal display device according to the first embodiment in the backlight 200 thereof.
  • the backlight 200 included in the liquid crystal display device according to the second embodiment is configured as shown in FIG.
  • the light source 220 in the backlight 200 is a linear light source, unlike the light source 220 of the first embodiment which was a point light source.
  • the light source 220 has a cylindrical shape that is the same as the length of one side of the rectangular shape of the light guide plate 210 on which the light source 220 faces.
  • the light source 220 can be, for example, a small fluorescent lamp, which is the case in this embodiment.
  • the shape of the concave portion 200A is different from that of the concave portion 200A of the first embodiment, because the light source 220 is a linear light source.
  • the concave portion 20OA provided in the light guide plate 210 in the second embodiment is a groove having a semicircular cross section. The linear light source 220 described above is inserted into the groove-shaped concave portion 20OA.
  • the light inside the light guide plate 210 that can reach the light source 220 is the side where the light source 220 faces. It becomes smaller as the distance from becomes longer.
  • the longer the distance from the above one side of the rectangular shape facing the light source 220 the larger the unit area of the scattering particles when viewed perpendicular to the emission surface.
  • the use of the light guide plate 210 with a larger number per unit enables better compensation by the number of times of light scattering described above.
  • the reflection member 230 is a light guide plate 210 It has a U-shaped cross section provided with a groove for accommodating the protruding light source 220 therein, and the inside of the groove is a mirror surface.
  • the liquid crystal display device according to the third embodiment is basically the same as that of the first embodiment.
  • the liquid crystal display device includes the same liquid crystal panel 100 as that of the first embodiment, and further includes a backlight 200.
  • the liquid crystal display device according to the third embodiment is different from the liquid crystal display device according to the first embodiment in a backlight 200 thereof.
  • the backlight 200 included in the liquid crystal display device according to the third embodiment is configured as shown in FIG.
  • the light source 220 in the backlight 200 is a linear light source similar to that described in the second embodiment. Then, two light sources 220 in the third embodiment are provided on each of two opposite sides of the light guide plate 210 which is rectangular when viewed from a plane perpendicular to the emission surface. ing.
  • the light guide plate 210 in this embodiment includes two first small sections 2 11 and a second small section 2 12.
  • the shape of the first small section 2 1 1 is the same as that of the first embodiment, with the right side in the figure being a right triangle in side view and the same shape as the first embodiment.
  • the first subsection 2 1 1 on the right side is inverted from the center of the side.
  • the portion on the left side with the center of the two sides described above as a center has a shape obtained by inverting the second small section 2 12 on the right side with the center of the two sides facing each other as the center.
  • the light guide plate 210 in this embodiment has a shape obtained by inverting the light guide plate 210 shown in FIG. 8 at the left end portion and connecting the inverted light guide plate 210 at the left end portion. Has become.
  • the light guide plate 210 shown in the modification of the first embodiment is inverted at the left end using FIGS. 3A to 3E, 4A to 4E, etc.
  • the light guide plate 210 in the shape of a circle is also possible to use in the shape of a circle as the light guide plate 210 of this embodiment.
  • the resulting light guide plate 210 can be used as the light guide plate 210 of the present embodiment.
  • the liquid crystal display device according to the fourth embodiment is basically the same as that of the first embodiment.
  • the liquid crystal display device includes the same liquid crystal panel 100 as that of the first embodiment, and further includes a backlight 200.
  • the liquid crystal display device according to the fourth embodiment is different from the liquid crystal display device according to the first embodiment in a backlight 200 thereof.
  • the backlight 200 included in the liquid crystal display device according to the fourth embodiment is configured as shown in FIG.
  • the light source 220 in the backlight 200 is a linear light source similar to that described in the second embodiment.
  • four light sources 220 are provided on each of four sides of the light guide plate 210 which is rectangular when viewed from a plane perpendicular to the emission surface. .
  • the light guide plate 210 in this embodiment includes a first small section 2 11 and a second small section 2 12.
  • the second small section 2 12 has a quadrangular pyramid shape in which the emission surface is a bottom surface and the surface on the back side of the emission surface is a vertex opposed to the bottom surface.
  • the first small section 2 11 1 has a shape obtained by removing the above-described second small section 2 12 having a square pyramid shape from the light guide plate 2 10.
  • a light guide plate 210 shown in FIG. 2 is defined as a straight line that is perpendicular to the emission surface and that connects both ends of the side facing the light source 220 and the center of the side facing the side.
  • the part that has an isosceles triangular shape (Fig. 11 (A)) when viewed from the direction perpendicular to the emission surface created by cutting two planes is slightly changed in the ratio of the base to the height.
  • the light guide plate 210 shown in the modified example of the first embodiment using 4E or the like is perpendicular to the emission surface thereof, and faces both ends of the side facing the light source 220 and the side.
  • the light guide plate 210 obtained by combining four parts obtained by cutting out two planes including a straight line connecting the center of the side with a slight change in the ratio of the base to the height is It can be used as the light guide plate 210 of the embodiment.

Abstract

A light guide plate, a method of manufacturing the light guide plate, a back light, and a liquid crystal display device. The light guide plate (210) easily manufacturable at low cost is formed by combining a first small compartment (211) with a second small compartment (212) formed in a plate-like right-angled triangular shape in side view. The first small compartment (211) is formed of a transparent material. The second small compartment (212) is formed by adding scattered particles to a transparent material, and formed integrally with the first small compartment (211). A light source (220) faces the surface of the light guide plate (210) to which only the first small compartment (211) is exposed. A light coming from the light source (220) advances from the first small compartment (211) to the second small compartment (212), is scattered by the scattered particles, and then is discharged from a discharge surface (an upper surface in Fig. 2).

Description

明 細 書 導光板、 導光板の製造方法、 バックライト、 液晶表示装置 技術分野  Light guide plate, manufacturing method of light guide plate, backlight, liquid crystal display
本発明は、主として液晶表示装置のバックライトに用いられる導光板に関する。 発明の背景  The present invention relates to a light guide plate mainly used for a backlight of a liquid crystal display device. Background of the Invention
液晶表示装置が非常に普及している。  Liquid crystal display devices have become very popular.
液晶表示装置は、 画像を表示する液晶パネルを含んでおり、 液晶パネルに表示 された画像を、 背後からの光に乗せて人の目に見せるようにされている。 しかし ながら、 液晶表示装置における液晶パネルそれ自体は、 発光する機能を持たない ので、 画像を人の目に見せるための光をその背後から液晶パネルに導くための機 構が必要となる。  The liquid crystal display device includes a liquid crystal panel for displaying an image, and the image displayed on the liquid crystal panel is put on light from behind to be seen by human eyes. However, since the liquid crystal panel itself in the liquid crystal display device does not have a function of emitting light, a mechanism is required to guide the light to the liquid crystal panel from behind to display an image to human eyes.
液晶表示装置における液晶パネルに、 その背後から光を導くための機構には 様々なものがある。 例えば、 外部から取入れた光を液晶パネルの背後で反射して 液晶パネルに導くようにする機構を備えた反射型液晶表示装置が知られている。 他方、 反射型液晶表示装置以外の液晶表示装置のほぼすベて (例えば、 透過型液 晶表示装置、 或いは半透過型液晶表示装置) では、 バックライトが用いられてい る。 バックライトは、 自発的に発光する面状光源であり、 液晶パネルの背後に配 されるものである。 バックライトからの光を液晶パネルに導くことによって、 液 晶パネルに表示された画像は人の目に見えるようになる。  There are various mechanisms for guiding light from behind to a liquid crystal panel in a liquid crystal display device. For example, there has been known a reflection type liquid crystal display device having a mechanism for reflecting light taken in from the outside behind a liquid crystal panel and guiding the light to the liquid crystal panel. On the other hand, in almost all liquid crystal display devices other than the reflection type liquid crystal display device (for example, a transmissive liquid crystal display device or a transflective liquid crystal display device), a backlight is used. The backlight is a planar light source that emits light spontaneously and is arranged behind the liquid crystal panel. By guiding the light from the backlight to the LCD panel, the image displayed on the LCD panel becomes visible to human eyes.
バックライトは液晶表示装置の厚さや消費電力に非常に大きな影響を与える液 晶表示装置の中でも重要性の高い部品である。 そのため、 バックライトに関して は、 多種多様な技術が提案され、 また、 実用化されている。  Backlights are a very important component of LCDs, which have a significant effect on the thickness and power consumption of LCDs. For this reason, a wide variety of backlight technologies have been proposed and put into practical use.
バックライ卜の中で一般的なのは、 導光板を用いるものである。  A common type of backlight uses a light guide plate.
導光板は、 透明材料を板状に形成したものであり、 その端面に臨ませた光源か らその内部に導入された光をその広い面の一方である放出面から放出するように なっている。 一般的な導光板は、 その放出面、 或いは放出面とは反対側の面にプ リズムの機能を有する鋭い波形状が設けられており、 光源からその内部に導入さ れた光の方向をその波形状の部分で変化させることで、 光源からその内部に導入 された光を導光板の放出面から放出させられるようになつている。 The light guide plate is formed of a transparent material in the form of a plate, and emits light introduced into the inside from a light source facing the end face from the emission face which is one of the wide faces. . A typical light guide plate has a projection on its emission surface or a surface opposite to the emission surface. A sharp wave shape with a rhythm function is provided, and the light introduced into the interior from the light source is changed by changing the direction of the light introduced into the interior of the light source from the light source. From the emission surface.
ところで、 上述の波形状の部分は、 許容誤差が数// mレベルという非常に精度 の求められる加工により製造される。 したがって、 樹脂製品であることがほとん どである導光板の製造には、樹脂製品につきものの "ひけ"があることなどから、 非常に高度な技術が要求される。 実際、 非常に精密な加工を行うための技術が必 要となるので、 導光板を製造するための金型を製造できる者は限られており、 ま た、 導光板を製造するための金型を製造するためには数億円レベルの費用が必要 となる。  By the way, the above-mentioned corrugated portion is manufactured by processing that requires a very high accuracy with an allowable error of several / m level. Therefore, the production of light guide plates, which are mostly made of resin products, requires very high technology, due to the inherent sink marks of resin products. In fact, the technology required to perform very precise processing is required, so that only a limited number of people can manufacture molds for manufacturing light guide plates, and molds for manufacturing light guide plates. It costs hundreds of millions of dollars to produce a
このようなコストはすべて、 導光板の値段に跳ね返る。 したがって、 導光板は 高価な部品となる。 このような事情は、 導光板を用いるバックライトや、 バック ライトを用いる液晶表示装置の価格を下げることの妨げとなっている。  All of these costs translate into the cost of light guide plates. Therefore, the light guide plate is an expensive component. Such a situation hinders a reduction in the price of a backlight using a light guide plate and a liquid crystal display device using the backlight.
もっとも、 上述の如き波形状を有さない導光板も提案されている。 しかしなが ら、そのような導光板でも、非常に精密な加工が必要となる点には変わりがない。 したがって、 導光板は一般に、 精密な加工が要求されるため製造が難しいものと なり、 非常に高価なものになっている。  However, a light guide plate having no wave shape as described above has also been proposed. However, such a light guide plate still requires very precise processing. Therefore, the light guide plate is generally difficult to manufacture because it requires precise processing, and is very expensive.
本発明は、 一般的には液晶表示装置のバックライトに用いられる導光板を、 精 密な加工によらずに安価に製造できるようにするための技術を提供することをそ の課題とする。 発明の開示  An object of the present invention is to provide a technique for enabling a light guide plate generally used for a backlight of a liquid crystal display device to be manufactured at low cost without using precise processing. Disclosure of the invention
上述の課題を解決するための本願発明は、 以下のようなものである。  The present invention for solving the above-mentioned problems is as follows.
本願発明による導光板は、 透明材料を板状に形成したものであり、 その端面に 臨ませた光源からその内部に導入された光をその放出面から放出するようになつ ている。 そして、 透明材料の内部に、 光を散乱させることのできる散乱粒子が拡 散されており、 前記光源からその内部に導入された光を、 前記散乱粒子で散乱さ せて前記放出面から放出するようになっている。  The light guide plate according to the present invention is formed by forming a transparent material into a plate shape, and emits light introduced into the inside from a light source facing the end face from its emission face. Further, scattering particles capable of scattering light are diffused inside the transparent material, and light introduced into the inside from the light source is scattered by the scattering particles and emitted from the emission surface. It has become.
このように、 本願発明による導光板は、 導光板の内部に導入した光源からの光 の方向をその光が放出面から放出されるように変化させるにあたって、 導光板の 放出面にプリズムの機能を有する波形状を用いる代わりに、 導光板の内部に拡散 して配した散舌し粒子を用いるようにしている。 したがって、 本願発明における導 光板は、 精密加工が必要となる波形状が必要ないので、 波形状を作るために必要 となる精密な加工も不要となる。 したがって、 本願発明による導光板は、 精密な 加工が原因となって生じる価格の上昇の問題と無縁であり、 安価なものとなる。 なお、 本願発明における 『放出面』 とは、 板状にされた導光板の広くされた 2 つの面のうちの任意の一面又は二面であり、 光が放出される面を意味する。 放出 面を二面とすれば、 本願発明の導光板は、 両面タイプの液晶表示装置に用いるこ とができる。 ' As described above, the light guide plate according to the present invention is provided with light from the light source introduced inside the light guide plate. In order to change the direction of the light so that the light is emitted from the emission surface, instead of using a wavy shape having the function of a prism on the emission surface of the light guide plate, scattering particles distributed inside the light guide plate Is used. Therefore, the light guide plate of the present invention does not require a corrugated shape that requires precision machining, and therefore does not require precise machining that is necessary for forming a corrugated shape. Therefore, the light guide plate according to the present invention is inexpensive because it is free from the problem of price increase caused by precision processing. In the present invention, the “emitting surface” is any one or two of the two widened surfaces of the plate-shaped light guide plate, and means a surface from which light is emitted. If there are two emission surfaces, the light guide plate of the present invention can be used for a double-sided liquid crystal display device. '
本願発明における導光板に組合わせて用いられる光源は、 必要に応じて適当に 選択することができる。 例えば、 光源としては、 L E Dその他の点状光源を用い ることができ、 或いは小型の蛍光灯その他の線状光源を用いることができる。 ま た、 光源の数は、 単数であっても複数であってもよい。 導光板が矩形の場合、 光 源は、 一般的に、 導光板を放出面に対して垂直に見た場合の辺の少なくとも一つ に臨ませることになるが、 この場合の光源は 2つ以上の辺に跨るような形状のも のであっても構わない。  The light source used in combination with the light guide plate in the present invention can be appropriately selected as needed. For example, as the light source, an LED or other point light source can be used, or a small fluorescent lamp or other linear light source can be used. Further, the number of light sources may be singular or plural. If the light guide plate is rectangular, the light source will generally face at least one of the sides when the light guide plate is viewed perpendicular to the emission surface, but in this case there are two or more light sources. It may be a shape that straddles the side of.
また、 本願発明では、 光源からその内部に導入された光を、 散乱粒子で散乱さ せて前記放出面から放出するようにしているが、 これは、 散乱粒子で散乱した光 がそのまま放出面から放出される場合と、 散乱粒子で散乱した光が、 例えば底面 などの放出面以外の面で反射した後に放出面から放出される場合の双方を含む。 本願発明による導光板の内部に拡散させる散乱粒子は、 導光板の内部に導入さ れた光源からの光を散乱できるようなものであればその詳細を問わない。 本願明 細書でいう 『散乱』 には、 光を反射する場合と、 屈折する場合の双方が含まれる。 散乱粒子は光の反射と屈折の少なくとも一方を生じるようなものであればよい。 散乱粒子は、 例えば、 金属の粉末などの不透明なものとすることができる。 ま た、 シリコンの粉末、 アクリルの粉末などの透明なものとすることができる。 散 乱粒子を透明なものとすれば、 光の反射のみならず屈折も生じることになる。 また、 散乱粒子の直径は、 2 m〜 l 2 m程度とすることができる。 可視光 を散乱させるには、 散乱粒子の直径はこの程度がよい。 Further, in the present invention, the light introduced into the inside from the light source is scattered by the scattering particles and emitted from the emission surface. This is because the light scattered by the scattering particles is directly emitted from the emission surface. It includes both the case where the light is emitted and the case where the light scattered by the scattering particles is reflected from a surface other than the emission surface, such as the bottom surface, and then emitted from the emission surface. The scattering particles to be diffused into the light guide plate according to the present invention are not particularly limited as long as they can scatter light from a light source introduced into the light guide plate. “Scattering” as referred to in the present specification includes both a case where light is reflected and a case where light is refracted. The scattering particles may be those that generate at least one of reflection and refraction of light. The scattering particles can be opaque, for example, a metal powder. In addition, a transparent material such as silicon powder or acrylic powder can be used. If the scattering particles are transparent, not only light reflection but also refraction will occur. Further, the diameter of the scattering particles can be about 2 m to 12 m. visible light In order to scatter the particles, the diameter of the scattering particles is preferably this degree.
散乱粒子の形状は、 どのようなものでもよい。 例えば、 球形であってもよい。 散乱粒子は、 また、 複数種類のものが混合されていてもよい。 素材の異なるも の、 大きさの異なるもの、 形状の異なるものなど、 任意に混合して用いることが できる。  The shape of the scattering particles may be any shape. For example, it may be spherical. A plurality of types of scattering particles may be mixed. Materials of different materials, of different sizes, of different shapes, etc., can be arbitrarily mixed and used.
導光板の内部に散乱粒子を拡散させる方法はどのようなものであっても構わな レ^ 射出成形、 押出し成形などに用いる透明材料に散乱粒子を混合させておき、 その透明材料を用いて成形を行えば、 導光板の内部に散乱粒子を拡散させること ができる。  Any method can be used to diffuse the scattering particles into the light guide plate. ^ The scattering particles are mixed with a transparent material used for injection molding, extrusion molding, etc., and molded using the transparent material. By doing so, scattering particles can be diffused inside the light guide plate.
また、 散乱粒子は、 導光板の中全体で一様に拡散させてあっても構わない。 他 方、 散乱粒子は、 その密度が導光板の部分ごとに異なるようにされていても構わ ない。  Further, the scattering particles may be uniformly diffused throughout the light guide plate. On the other hand, the scattering particles may have a different density for each part of the light guide plate.
導光板の部分ごとに散乱粒子の密度を変化させる際に、 その変化を適切なもの とすれば、 少なくとも理論上では、 導光板から放出される光の強度を導光板の放 出面のすべての部分で一様になるように調整できる。 ' なお、 透明材料は板状にでき、 且つその内部に光を導入できる程度の透明度が ある (少なくとも透光性を有する) ものであれば、 どのようなものを用いてもよ レ^ 透明材料は、 例えば、 透明な樹脂とすることができる。 透明な樹脂は、 例え ば、 P MMA (アクリル)、 P C (ポリカーポネイト)、 C O P (シクロォレフィ ンポリマー) とすることができる。  When the density of the scattering particles is changed in each part of the light guide plate, and if the change is appropriate, at least in theory, the intensity of the light emitted from the light guide plate is changed to all parts of the emission surface of the light guide plate. Can be adjusted to be uniform. 'Any transparent material can be used as long as it can be made into a plate shape and has sufficient transparency (at least has translucency) to allow light to enter inside. Can be, for example, a transparent resin. The transparent resin can be, for example, PMMA (acrylic), PC (polycarbonate), COP (cycloolefin polymer).
例えば、 前記散乱粒子は、 前記光源から導入された光の強度の弱くなる場所ほ ど、 前記導光板を前記放出面に対して垂直に見た場合における単位面積あたりの 数が多くなるようにすることができる。 光源から届く光の強度が弱くなる場所ほ ど、 導光板を放出面に対して垂直に見た場合における単位面積あたりの散乱粒子 の数を多くしておけば、 理論上、 導光板から放出される光の強度を導光板の放出 面のすべての部分で一様になるように調整できるようになる。  For example, the number of the scattering particles is set such that the number per unit area when the light guide plate is viewed perpendicular to the emission surface increases in a place where the intensity of the light introduced from the light source becomes weaker. be able to. If the number of scattering particles per unit area when the light guide plate is viewed perpendicular to the emission surface is increased in a place where the intensity of light reaching from the light source becomes weaker, the light is theoretically emitted from the light guide plate Light intensity can be adjusted to be uniform at all parts of the light emitting surface of the light guide plate.
導光板を放出面に対して垂直に見た場合における単位面積あたりの散乱粒子の 数を変化させるにあたっては、 例えば、 散乱粒子の数が場所により連続的に変化 するようにすることができる。 例えば、 分布屈折型レンズを作る場合の技術をこ れに応用できる可能性がある。 また、 導光板を放出面に対して垂直に見た場合に おける単位面積あたりの散乱粒子の数を変化させるにあたっては、 導光板を複数 の小区画に区分することによりそれを実現させてもよい。 この場合、 前記複数の 小区画はすべてその内部における前記散乱粒子の密度が一定であり、 且つ前記複 数の小区画のそれぞれにおける前記散乱粒子の密度が互いに異なるものとするこ とができる。 このようにすると、 小区画の製造が簡単であり、 且つそれを組合わ せることにも困難がないので、 散乱粒子の数が場所により連続的に変化するよう な導光板よりも、 その製造が簡単であり、 したがって、 導光板の製造コストを下 げるに寄与する。 In changing the number of scattered particles per unit area when the light guide plate is viewed perpendicular to the emission surface, for example, the number of scattered particles can be made to continuously change from place to place. For example, the technology for making gradient refractive lenses It could be applied to this. Further, when changing the number of scattering particles per unit area when the light guide plate is viewed perpendicular to the emission surface, this may be realized by dividing the light guide plate into a plurality of small sections. . In this case, the density of the scattering particles in all of the plurality of small sections may be constant, and the density of the scattering particles in each of the plurality of small sections may be different from each other. In this way, the manufacture of the sub-compartments is simpler and it is not difficult to combine them, so that the production of the sub-compartments is less than for a light guide plate in which the number of scattering particles varies continuously from place to place. It is simple and therefore contributes to reducing the manufacturing cost of the light guide plate.
前記導光板における前記複数の小区画は、 導光板をどのように区画するもので あってもよい。 例えば、 小区画は、 前記光源が臨ませられることが予定される部 分に近い側から順に並べられた(製造の順序はどれからでもよい。) ものとなって いてもよい。 この場合、 前記光源に近い小区画ほど、 その小区画における前記散 乱粒子の密度が小さくなるようにされていてもよい。 また、 前記導光板における 前記複数の小区画のうち、 前記光源が臨ませられることが予定される部分を含む ものは、 前記散乱粒子を含まないようにされていてもよい。  The plurality of small sections in the light guide plate may divide the light guide plate in any manner. For example, the small sections may be arranged in order from the side closer to the part where the light source is expected to be exposed (the order of manufacture may be any). In this case, a smaller section closer to the light source may have a smaller density of the scattering particles in the smaller section. In addition, among the plurality of small sections in the light guide plate, a part including a part where the light source is expected to be exposed may not include the scattering particles.
前記散舌 L粒子を、 前記光源から導入された光の強度の弱くなる場所ほど、 前記 導光板を前記放出面に対して垂直に見た場合における単位面積あたりの数が多く なるようにした導光板の例として、 以下のものを挙げることができる。 即ち、 透 明材料により形成された、 散乱粒子を含まない小区画である第 1小区画と、 透明 材料により形成された、散乱粒子を所定の密度で含む小区画である第 2小区画と、 を、 少なくともそれらの一部に前記放出面に対して垂直な方向から見た場合に重 なり合う部分が存在するような状態で組合わせてなるとともに、 前記第 1小区画 は、 前記光源から導入された光の強度が弱くなる場所ほどその厚さが減るように され、 且つ前記第 2小区画は、 前記光源から導入された光の強度が弱くなる場所 ほどその厚さが増すようにされてなる導光板である。 なお、 前記第 2小区画中の 散乱粒子の密度は、 前記第 2小区画中のいずれの部分でも同じにすることができ る。  A guide in which the tongue L particles are arranged such that the number per unit area when the light guide plate is viewed perpendicularly to the emission surface increases as the intensity of light introduced from the light source decreases. Examples of the light plate include the following. That is, a first small section formed of a transparent material and containing no scattering particles, a second small section formed of a transparent material and containing small numbers of scattering particles, and And at least a part thereof, in a state where there is an overlapping portion when viewed from a direction perpendicular to the emission surface. The thickness of the second sub-section is increased as the intensity of the light introduced from the light source decreases, as the intensity of the received light decreases. Light guide plate. The density of the scattered particles in the second small section can be the same in any part of the second small section.
また、 前記散乱粒子は、 前記光源が臨ませられることが予定された所定の位置 からの距離がより大きい場所では、 それよりも距離が小さい場所に比較して、 前 記導光板を前記放出面に対して垂直に見た場合における単位面積あたりの数が少 なくならないようにすることができる。 例えば、 前記散乱粒子は、 前記光源が臨 ませられることが予定された所定の位置から遠いほど、 前記導光板を放出面に対 して垂直に見た場合における単位面積あたりの数が多くなるようにすることがで きる。 これも、 導光板から放出される光の強度を導光板の放出面のすべての部分 で一様になるように調整するに有用である。 Also, the scattering particles are located at a predetermined position where the light source is expected to be exposed. In a place where the distance from the light guide plate is larger than in a place where the distance is smaller, the number of light guide plates per unit area when viewed perpendicular to the emission surface is not reduced. be able to. For example, as the scattering particles are farther from a predetermined position where the light source is expected to face, the number per unit area when the light guide plate is viewed perpendicular to the emission surface is increased. It can be. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the emission surface of the light guide plate.
このような導光板の例として、 以下のものを挙げることができる。  Examples of such light guide plates include the following.
即ち、 透明材料により形成された、 散乱粒子を含まない小区画である第 1小区 画と、 透明材料により形成された、 散乱粒子を所定の密度で含む小区画である第 2小区画と、 を、 少なくともそれらの一部に前記放出面に対して垂直な方向から 見た場合に重なり合う部分が存在するような状態で組合わせてなるとともに、 前 記第 1小区画は、 前記光源が臨ませられることが予定された所定の位置からの距 離がより大きい場所では、 それよりも距離が小さい場所に比較して、 その厚さが 増さないようにされ、 且つ前記第 2小区画は、 前記光源が臨ませられることが予 定された所定の位置からの距離がより大きい場所では、 それよりも距離が小さい 場所に比較して、 その厚さが減らないようにされてなる導光板である。  That is, a first subsection, which is a small section formed of a transparent material and does not include scattering particles, and a second subsection, which is a small section formed of a transparent material and includes scattering particles at a predetermined density. At least a part of them is combined in such a state that there is an overlapping part when viewed from a direction perpendicular to the emission surface, and the first light section faces the light source. In a place where the distance from the predetermined position where the event is scheduled is larger, the thickness thereof is prevented from increasing compared to a place where the distance is smaller, and the second sub-partition is It is a light guide plate whose thickness is not reduced at places where the distance from the predetermined position where the light source is expected to be exposed is larger than at places where the distance is smaller than that. .
この場合、 前記第 1小区画は、 前記光源が臨ませられることが予定された所定 の位置から遠くなるほどその厚さが減る (ただし、 その一部に厚さが変化しない 部分があってもよい) ようにされ、 且つ前記第 2小区画は、 前記光源が臨ませら れることが予定された所定の位置から遠くなるほどその厚さが増す (ただし、 そ の一部に厚さが変化しない部分があってもよい)ようにされていてもよい。なお、 前記第 2小区画中の散乱粒子の密度は、 前記第 2小区画中のいずれの部分でも同 じにすることができる。  In this case, the thickness of the first small section decreases as the distance from the predetermined position where the light source is expected to be exposed is increased (however, there may be a portion where the thickness does not change in a part thereof). And the thickness of the second sub-section increases as the distance from the predetermined position where the light source is expected to be seen is increased (however, a portion of the second sub-section where the thickness does not change). May be provided). The density of the scattering particles in the second small section can be the same in any part of the second small section.
本願発明による導光板は板状であればどのような形状でもよい。 導光板は、 ま た、 その厚さが部分的に変化しているものであってもよい。  The light guide plate according to the present invention may have any shape as long as it has a plate shape. The light guide plate may have a partially changed thickness.
導光板が矩形である場合、 光源はその矩形の一辺、 或いは複数の辺に臨ませる ことができる。 前記導光板が矩形であり、 且つその一辺に前記光源が臨ませられ ることが予定されている場合、 前記散乱粒子は、 前記光源が臨ませられることが 予定された前記一辺からの距離がより大きい場所では、 それよりも距離が小さい 場所に比較して、 前記導光板を前記放出面に対して垂直に見た場合における単位 面積あたりの数が少なくならないようにすることができる。 例えば、 前記散乱粒 子は、前記光源が臨ませられることが予定された前記一辺からの距離が遠いほど、 前記導光板を放出面に対して垂直に見た場合における単位面積あたりの数が多く なるようにすることができる。 これも、 導光板から放出される光の強度を導光板 の放出面のすべての部分で一様になるように調整するに有用である。 特に、 上記 一辺に臨ませられる光源が線状光源 (望ましくはその辺に沿う長さの) である場 合には、 このような簡単な構成でも導光板から放出される光の強度を導光板の放 出面のすべての部分でほぼ一様にできる。 If the light guide plate is rectangular, the light source can face one or more sides of the rectangle. When the light guide plate is rectangular and the light source is expected to face one side thereof, the scattering particles may face the light source. The number of light guide plates per unit area when viewed perpendicular to the emission surface does not decrease in places where the distance from the one side is larger than in places where the distance is smaller. You can do so. For example, the number of the scattering particles increases per unit area when the light guide plate is viewed perpendicular to the emission surface, as the distance from the one side where the light source is expected to face is longer. It can be. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the emission surface of the light guide plate. In particular, when the light source facing the one side is a linear light source (preferably having a length along the side), the intensity of light emitted from the light guide plate can be reduced even with such a simple configuration. It can be made almost uniform in all parts of the emission surface.
この場合の導光板の例として、 以下のものを挙げることができる。  Examples of the light guide plate in this case include the following.
即ち、 透明材料により形成された、 散乱粒子を含まない小区画である第 1小区 画と、 透明材料により形成された、 散乱粒子を所定の密度で含む小区画である第 That is, a first subsection, which is a small section formed of a transparent material and does not include scattering particles, and a first subsection, which is formed of a transparent material and includes scattering particles at a predetermined density.
2小区画と、 を、 少なくともそれらの一部に前記放出面に対して垂直な方向から 見た場合に重なり合う部分が存在するような状態で組合わせてなるとともに、 前 記第 1小区画は、 前記光源が臨ませられることが予定された所定の位置からの距 離がより大きい場所では、 それよりも ί巨離が小さい場所に比較して、 その厚さが 増さないようにされ、 且つ前記第 2小区画は、 前記光源が臨ませられることが予 定された所定の位置からの距離がより大きい場所では、 それよりも距離が小さい 場所に比較して、その厚さが減らないようにされてなる導光板である。 この場合、 前記第 1小区画は、 前記光源が臨ませられることが予定された前記一辺から遠く なるほどその厚さが減り (ただし、 その一部に厚さが変化しない部分があっても よい)、且つ前記第 2小区画は、前記光源が臨ませられることが予定された前記一 辺から遠くなるほどその厚さが増す (ただし、 その一部に厚さが変化しない部分 があってもよい) ようにされてもよい。 なお、 前記第 2小区画中の散舌し粒子の密 度は、 前記第 2小区画中のいずれの部分でも同じにすることができる。 And two sub-compartments are combined in such a state that at least a part thereof overlaps when viewed from a direction perpendicular to the emission surface, and the first sub-compartment is At a place where the distance from a predetermined position where the light source is expected to be exposed is larger, the thickness is not increased as compared with a place where the great distance is smaller, and The thickness of the second subsection is such that its thickness does not decrease at a place where the distance from a predetermined position where the light source is expected to be exposed is larger than at a place where the distance is smaller than that of the predetermined position. This is a light guide plate made in accordance with the present invention. In this case, the thickness of the first small section decreases as the distance from the one side where the light source is expected to face is increased (however, there may be a part where the thickness does not change). In addition, the thickness of the second subsection increases as the distance from the side where the light source is expected to face is increased (however, there may be a portion where the thickness does not change). It may be done. Note that the density of the scattering particles in the second subsection can be the same in any part of the second subsection.
導光板が矩形である場合、 光源はその矩形の対向する所定の二辺に臨ませるこ とができる。 前記導光板が矩形であり、 且つその対向する二辺に前記光源が臨ま せられることが予定されている場合、 前記散乱粒子は、 前記光源が臨ませられる ことが予定された前記二辺のうちのより近いものからの距離がより大きい場所で は、 それよりも距離が小さい場所に比較して、 前記導光板を前記放出面に対して 垂直に見た場合における単位面積あたりの数が少なくならないようにすることが できる。 これも、 導光板から放出される光の強度を導光板の放出面のすべての部 分で一様になるように調整するに有用である。 特に、 上記二辺に臨ませられる光 源が線状光源 (望ましくはその辺に沿う長さの) である場合には、 このような簡 単な構成でも導光板から放出される光の強度を導光板の放出面のすべての部分で ほぼ一様にできる。 When the light guide plate is rectangular, the light source can face two predetermined sides of the rectangle. When the light guide plate is rectangular and the light source is expected to face two opposite sides thereof, the light source faces the scattering particles. Where the distance from the closer one of the two sides is larger, the light guide plate is viewed perpendicular to the emission surface compared to a smaller distance. In this case, the number per unit area can be prevented from decreasing. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the light emitting surface of the light guide plate. In particular, when the light source facing the above two sides is a linear light source (preferably of a length along the sides), even with such a simple configuration, the intensity of the light emitted from the light guide plate can be reduced. It can be made almost uniform in all parts of the emission surface of the light guide plate.
この場合の導光板の例として、 以下のものを挙げることができる。  Examples of the light guide plate in this case include the following.
即ち、 透明材料により形成された、 散乱粒子を含まない小区画である第 1小区 画と、 透明材料により形成された、 散乱粒子を所定の密度で含む小区画である第 That is, a first subsection, which is a small section formed of a transparent material and does not include scattering particles, and a first subsection, which is formed of a transparent material and includes scattering particles at a predetermined density.
2小区画と、 を、 少なくともそれらの一部に前記放出面に対して垂直な方向から 見た場合に重なり合う部分が存在するような状態で組合わせてなるとともに、 前 記第 1小区画は、 前記光源が臨ませられることが予定された前記二辺のうちのよ り近いものからの距離がより大きい場所では、 それよりも距離が小さい場所に比 較して、 その厚さが増さないようにされ、 且つ前記第 2小区画は、 前記光源が臨 ませられることが予定された前記二辺のうちのより近いものからの距離がより大 きい場所では、 それよりも距離が小さい場所に比較して、 その厚さが減らないよ うにされてなる導光板である。 And two sub-compartments are combined in such a state that at least a part thereof overlaps when viewed from a direction perpendicular to the emission surface, and the first sub-compartment is At locations where the distance from the closer of the two sides where the light source is supposed to be exposed is greater, its thickness does not increase compared to locations where the distance is smaller. And wherein the second sub-section is located at a greater distance from a closer one of the two sides on which the light source is to be aimed, and at a smaller distance therefrom. It is a light guide plate whose thickness is not reduced by comparison.
この場合、 前記第 1小区画は、 前記光源が臨ませられることが予定された前記 二辺のうちのより近いものから遠くなるほどその厚さが減り (ただし、 その一部 に厚さが変化しない部分があってもよい)、且つ前記第 2小区画は、前記光源が臨 ませられることが予定された前記二辺のうちのより近いものから遠くなるほどそ の厚さが増す (ただし、 その一部に厚さが変化しない部分があってもよい) よう にされてもよい。 例えば、 第 1小区画は、 光源が臨ませられることが予定された 前記二辺でその厚さが最大、 前記二辺の中央でその厚さが最小となるように、 第 2小区画はその逆となるようにすることができる。 なお、 前記第 2小区画中の散 乱粒子の密度は、前記第 2小区画中のレずれの部分でも同じにすることができる。 導光板が矩形である場合、 光源はその矩形のすべての辺 (四辺) に臨ませるこ とができる。 前記導光板が矩形であり、 且つそのすベての辺に前記光源が臨ませ られることが予定されている場合、 前記散乱粒子は、 前記導光板における矩形を 対角線で 4つに区切った各範囲において、 その範囲の端部にある辺からの距離が より大きい場所では、 それよりも距離が小さい場所に比較して、 前記導光板を前 記放出面に対して垂直に見た場合における単位面積あたりの数が少なくならない ようにすることができる。 これも、 導光板から放出される光の強度を導光板の放 出面のすべての部分で一様になるように調整するに有用である。 特に、 上記すベ ての辺に臨ませられる光源が線状光源 (望ましくはその辺に沿う長さの) である 場合には、 このような簡単な構成でも導光板から放出される光の強度を導光板の 放出面のすべての部分でほぼ一様にできる。 In this case, the thickness of the first subsection decreases as the distance from the closer one of the two sides where the light source is expected to face is increased (however, the thickness does not change in a part thereof). And the second sub-section has a thickness that increases with distance from a closer one of the two sides on which the light source is to be seen (however, (There may be a part where the thickness does not change in the part.) For example, the first sub-compartment has its second sub-compartment so that its thickness is maximum at the two sides where the light source is to be exposed, and its thickness is the minimum at the center of the two sides. It can be reversed. In addition, the density of the scattering particles in the second small section can be the same even in the portion of the second small section that is misaligned. If the light guide plate is rectangular, the light source must be able to face all sides (four sides) of the rectangle. You can. In the case where the light guide plate is rectangular and the light source is expected to face all sides thereof, the scattering particles may be formed by diagonally dividing the rectangle of the light guide plate into four areas. In a place where the distance from the side at the end of the range is larger, a unit area when the light guide plate is viewed perpendicular to the emission surface is compared with a place where the distance is smaller. The number of hits can be kept from decreasing. This is also useful for adjusting the intensity of light emitted from the light guide plate so as to be uniform at all portions of the emission surface of the light guide plate. In particular, when the light source facing all of the above sides is a linear light source (preferably of a length along the side), the intensity of the light emitted from the light guide plate even with such a simple configuration. Can be made almost uniform at all parts of the emission surface of the light guide plate.
この場合の導光板の例として、 以下のものを挙げることができる。  Examples of the light guide plate in this case include the following.
即ち、 透明材料により形成された、 散乱粒子を含まない小区画である第 1小区 画と、 透明材料により形成された、 散乱粒子を所定の密度で含む小区画である第 That is, a first subsection, which is a small section formed of a transparent material and does not include scattering particles, and a first subsection, which is formed of a transparent material and includes scattering particles at a predetermined density.
2小区画と、 を、 少なくともそれらの一部に前記放出面に対して垂直な方向から 見た場合に重なり合う部分が存在するような状態で組合わせてなるとともに、 前 記第 1小区画は、 前記導光板における矩形を対角線で 4つに区切った各範囲にお いて、 その範囲の端部にある辺からの距離がより大きい場所では、 それよりも距 離が小さい場所に比較して、 その厚さが増さないようにされ、 且つ前記第 2小区 画は、 その範囲の端部にある辺からの距離がより大きい場所では、 それよりも距 離が小さい場所に比較して、その厚さが減らないようにされてなる導光板である。 この場合、前記導光板における矩形を対角線で 4つに区切った各範囲において、 前記第 1小区画は、その範囲の端部にある辺から遠くなるほどその厚さが減り(た だし、その一部に厚さが変化しない部分があってもよい)、且つ前記第 2小区画は、 その範囲の端部にある辺から遠くなるほどその厚さが増す (ただし、 その一部に 厚さが変化しない部分があってもよい) ようにされてもよい。 例えば、 導光板に おける矩形を対角線で 4つに区切った各範囲のそれぞれで、 第 1小区画は、 各辺 でその厚さが最大、 各辺の中央でその厚さが最小となるように、 第 2小区画は、 その逆となるようにすることができる。 なお、 前記第 2小区画中の散乱粒子の密 度は、 前記第 2小区画中のいずれの部分でも同じにすることができる。 前記光源からの光は、 前記第 1小区画から前記導光板に導入されるようにする ことができる。 それにより、 光源からの光を導光板の中で損失を減らしながら遠 くまで送りやすくなる。 And two sub-compartments are combined in such a state that at least a part thereof overlaps when viewed from a direction perpendicular to the emission surface, and the first sub-compartment is In each area where the rectangle in the light guide plate is divided into four sections by a diagonal line, a place where the distance from the side at the end of the range is larger than a place where the distance is smaller than the place where the distance is smaller. The thickness of the second sub-section is prevented from increasing, and the thickness of the second sub-section is larger at a location where the distance from the side at the end of the range is larger than at a location where the distance is smaller. It is a light guide plate that is not reduced. In this case, in each range where the rectangle in the light guide plate is divided into four by a diagonal line, the thickness of the first subsection decreases as the distance from the side at the end of the range decreases (however, part of the first subsection decreases). There may be a portion where the thickness does not change), and the thickness of the second subsection increases as the distance from the side at the end of the range increases (however, the thickness does not change in a part thereof). (There may be parts). For example, in each of the four sections of the rectangle on the light guide plate divided by a diagonal line, the first subsection has the maximum thickness on each side and the minimum thickness at the center of each side. The second subdivision can be reversed. Note that the density of the scattering particles in the second subsection can be the same in any part of the second subsection. Light from the light source may be introduced into the light guide plate from the first small section. This makes it easier to send the light from the light source far into the light guide plate while reducing loss.
なお、 光源からの光のすべてを第 1小区画から導光板に導入するのは実際のと ころ難しい場合があるので、 本願の場合では、 第 1小区画から導光板に入る光が 導光板に入る光の 8 0 %を超えれば、 光源からの光が第 1小区画から導光板に導 入されると考えてよい。  Note that it may be difficult in practice to introduce all of the light from the light source into the light guide plate from the first subsection.In the present case, the light entering the light guide plate from the first subsection enters the light guide plate. If the input light exceeds 80%, it can be considered that light from the light source is guided from the first subsection to the light guide plate.
また、 透明材料の屈折率は、 そのすベての部分で同一であってもよいし、 導光 板の部分ごとに異なるものとなっていてもよい。導光板の基本となる透明材料は、 前記光源からの光を前記放出面に近づける方向で曲げるように、 その部位により 屈折率が変化させられていてもよい。 このようになっていれば、 放出面から放出 される光の量を増やせるようになるので、 面状光源としての明るさ確保に一役買 う。  Further, the refractive index of the transparent material may be the same in all the portions, or may be different for each portion of the light guide plate. The refractive index of the transparent material serving as the basis of the light guide plate may be changed depending on the position of the light guide plate so as to bend the light from the light source in a direction approaching the emission surface. If this is the case, the amount of light emitted from the emitting surface can be increased, thus helping to maintain the brightness as a planar light source.
透明材料を、 その部位により屈折率が変化させられたものとする場合には、 そ の屈折率の分布を、 分布屈折率型のレンズのように連続的に変化させることがで さる。  In the case where the refractive index of the transparent material is changed depending on the portion, the distribution of the refractive index can be continuously changed like a distributed refractive index type lens.
また、 上述したように、 前記導光板は、複数の小区画に区分されていてもよく、 前記複数の小区画は、 前記光源が臨ませられることが予定される部分に近い側か ら順に並べられていてもよい。 この場合、 各小区画を、 前記光源に近いものほど、 その小区画を形成する前記透明材料の屈折率が小さくなるようにすることができ る。 このようにすれば、 製造的な難易度を増すことなく、 放出面から放出される 光の量を増やせるようになる。 また、 光源からの光は、 光源に近い小区画から順 に光源から遠い小区画へと入っていく。 このとき、 屈折率が小さいものから屈折 率が大きいものへの入射の場合には、 全反射が起こりにくいので、 上述の如き構 成は、 光源から遠い区画まで光を届かせるに好適である。  Further, as described above, the light guide plate may be divided into a plurality of small sections, and the plurality of small sections are arranged in order from a side closer to a portion where the light source is expected to face. It may be. In this case, it is possible to make the refractive index of the transparent material forming each of the small sections smaller as the closer to the light source. In this way, the amount of light emitted from the emitting surface can be increased without increasing the manufacturing difficulty. In addition, light from the light source enters small sections far from the light source in order from small sections near the light source. At this time, when the light is incident from a material having a small refractive index to a material having a large refractive index, total reflection hardly occurs. Therefore, the above-described configuration is suitable for transmitting light to a section far from the light source.
また、 前記複数の小区画の隣接する小区画と接する端面はそれぞれ、 前記小区 画の 1つから前記光源が臨ませられることが予定される部分にその次に近い小区 画に入ってくる光が、 そこで屈折して前記放出面に近づくように進行方向を変え るようにされていてもよい。 これも放出面から放出される光の量を増やすに好適 である。 In addition, each of the end faces of the plurality of small sections that are in contact with the adjacent small sections is provided with light coming into the next small section from one of the small sections to a portion where the light source is expected to be exposed. However, the traveling direction may be changed so as to be refracted and approach the emission surface. This is also suitable for increasing the amount of light emitted from the emitting surface It is.
上述したように、 本願発明の導光板は、 第 1小区画と第 2小区画を有する場合 がある。 そのような場合、 前記第 1小区画を形成する透明材料の屈折率は、 前記 第 2小区画を形成する透明材料の屈折率よりも小さくされていてもよい。つまり、 前記第 2小区画を形成する透明材料の屈折率は、 前記第 1小区画を形成する透明 材料の屈折率よりも大きくされていてもよい。  As described above, the light guide plate of the present invention may have the first small section and the second small section in some cases. In such a case, the refractive index of the transparent material forming the first small section may be smaller than the refractive index of the transparent material forming the second small section. That is, the refractive index of the transparent material forming the second small section may be higher than the refractive index of the transparent material forming the first small section.
以上で説明した小区画を有する導光板は、 前記小区画の 1つを成形した後、 そ れと隣接する小区画を次々に成形する多色成形法によって成形されたものとする ことができる。 つまり、 そのような導光板は、 前記小区画のそれぞれを多色成形 法によって成形することで製造することができる。 多色成形法は、 異なる色の榭 脂によって成形された複数の部分が一体となった樹脂製品を製造する際に用いら れる技術であり、 樹脂による成形技術の中では、 様々なノウハウが蓄積された確 立された技術になっている。  The light guide plate having the small sections described above can be formed by a multicolor molding method in which one of the small sections is formed, and then the adjacent small sections are formed one after another. That is, such a light guide plate can be manufactured by molding each of the small sections by a multicolor molding method. The multicolor molding method is a technology used when manufacturing a resin product in which a plurality of parts molded with resins of different colors are integrated, and various know-how is accumulated in the resin molding technology. It is an established technology.
したがって、 導光板を上述の樹脂製品と、 小区画のそれぞれを上述の異なる色 の樹脂によって成形された複数の部分とみなして多色成形法を用いれば、 小区画 を有する導光板を製造することについての困難は少なくなる。 これは、 導光板を 低価格で作るにも寄与する。  Therefore, if the light guide plate is regarded as the above-described resin product and each of the small sections is regarded as a plurality of portions formed of the above-described resins of different colors, the light guide plate having the small sections can be manufactured by using the multicolor molding method. Less difficulties. This also contributes to making the light guide plate at low cost.
本願発明による導光板は、 その端部に光源を臨ませることで、 バックライトと することができる。 また、 かかるバックライトは、 液晶表示装置のバックライト に応用することができる。 図面の簡単な説明  The light guide plate according to the present invention can be used as a backlight by making the light source face the end. Further, such a backlight can be applied to a backlight of a liquid crystal display device. Brief Description of Drawings
図 1は、 本発明の第 1実施形態による液晶表示装置の構成を概略で示す斜視図 である。  FIG. 1 is a perspective view schematically showing the configuration of the liquid crystal display device according to the first embodiment of the present invention.
図 2は、 図 1に示した液晶表示装置のバックライトの構成を概略で示す斜視図 である。  FIG. 2 is a perspective view schematically showing a configuration of a backlight of the liquid crystal display device shown in FIG.
図 3 A〜図 3 Eは、 図 2に示したバックライ卜に含まれる導光板の変形例を示 す側面図である。  3A to 3E are side views showing modifications of the light guide plate included in the backlight shown in FIG.
図 4 A〜図 4 Eは、 図 2に示したバックライ卜に含まれる導光板の他の変形例 を示す側面図である。 4A to 4E show another modification of the light guide plate included in the backlight shown in FIG. FIG.
図 5は、 図 2に示したバックライトに含まれる導光板の更に他の変形例を示す 斜視図である。  FIG. 5 is a perspective view showing still another modification of the light guide plate included in the backlight shown in FIG.
図 6は、 図 2に示したバックライ卜に含まれる導光板の更に他の変形例を示す 平面図である。  FIG. 6 is a plan view showing still another modification of the light guide plate included in the backlight shown in FIG.
図 7 A、 図 7 Bは、 図 2に示したバックライトに含まれる導光板の変形例を示 す側面図である。  7A and 7B are side views showing modified examples of the light guide plate included in the backlight shown in FIG.
図 8は、 第 2実施形態による液晶表示装置に含まれるバックライ卜の構成を概 略で示す斜視図である。  FIG. 8 is a perspective view schematically showing a configuration of a backlight included in the liquid crystal display device according to the second embodiment.
図 9は、 第 3実施形態による液晶表示装置に含まれるバックライトの構成を概 略で示す斜視図である。  FIG. 9 is a perspective view schematically showing a configuration of a backlight included in the liquid crystal display device according to the third embodiment.
図 1 0は、 第 4実施形態による液晶表示装置に含まれるバックライ卜の構成を 概略で示す斜視図である。  FIG. 10 is a perspective view schematically showing a configuration of a backlight included in the liquid crystal display device according to the fourth embodiment.
図 1 1は、 第 4実施形態による液晶表示装置に含まれる導光板の変形例を説明 するための図である。 発明を実施するための最良の形態  FIG. 11 is a view for explaining a modification of the light guide plate included in the liquid crystal display device according to the fourth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の好ましい第 1〜第 4実施形態を、図面を参照しながら説明する。 第 1〜第 4実施形態において、 重複する部分には同じ符号を付し、 また、 重複す る説明は省略するものとする。  Hereinafter, preferred first to fourth embodiments of the present invention will be described with reference to the drawings. In the first to fourth embodiments, the same reference numerals are given to the overlapping portions, and the overlapping description is omitted.
なお、 第 1〜第 4実施形態はいずれも、 本願発明による導光板を含んでなるバ ックライ卜を含んで構成された液晶表示装置に関する。  Each of the first to fourth embodiments relates to a liquid crystal display device including a backlight including the light guide plate according to the present invention.
《第 1実施形態》 << 1st Embodiment >>
第 1実施形態による液晶表示装置は、 概略で図 1に示したような構成とされて いる。  The liquid crystal display device according to the first embodiment has a configuration schematically shown in FIG.
この液晶表示装置は、 液晶パネル 1 0 0と、 バックライト 2 0 0とを組合わせ て構成されている。 バックライト 2 0 0は、 液晶パネル 1 0 0の背面側、 即ちこ の液晶表示装置を見る者の目から遠い側に配されている。  This liquid crystal display device is configured by combining a liquid crystal panel 100 and a backlight 200. The backlight 200 is arranged on the back side of the liquid crystal panel 100, that is, on the side far from the eyes of a viewer of the liquid crystal display device.
この液晶表示装置は、 バックライト 2 0 0からの光を液晶パネル 1 0 0に透過 させることにより、所定の画像を使用者が見られるようにするものとされている。 なお、 液晶表示装置は、 液晶パネル 1 0 0及びバックライト 2 0 0を収納する ケースや、 液晶パネル 1 0 0の駆動の制御を行うための回路基板などを備えてい るが、 それらは極めて一般的なものなので、 説明、 図示とも省略する。 This liquid crystal display transmits light from the backlight 200 to the liquid crystal panel 100. By doing so, the user can see a predetermined image. The liquid crystal display device includes a case for accommodating the liquid crystal panel 100 and the backlight 200, a circuit board for controlling the driving of the liquid crystal panel 100, and the like. The description and illustration are omitted.
液晶パネル 1 0 0は、 既存のどのような液晶パネルを用いてもよいが、 この実 施形態では、 図 1に示したような構造となっている。 液晶パネル 1 0 0は、 その 中程に液晶層 1 1 0を備えている。 液晶層 1 1 0は、 配向膜層 1 2 0によって挟 まれている。両配向膜層 1 2 0の外側には、透明電極層 1 3 0が設けられている。 また、 両透明電極層 1 3 0の外側にはガラス基板 1 4 0が、 また、 両ガラス基板 1 4 0の外側には偏光板 1 5 0が設けられている。 なお、 液晶パネル 1 0 0の前 面側、 即ち、 この液晶表示装置を見る者の目から近い方の透明電極層 1 3 0と、 ガラス基板 1 4 0との間には、 カラーフィル夕層 1 6 0が設けられている。  As the liquid crystal panel 100, any existing liquid crystal panel may be used, but in this embodiment, the structure is as shown in FIG. The liquid crystal panel 100 has a liquid crystal layer 110 in the middle. The liquid crystal layer 110 is sandwiched between the alignment film layers 120. A transparent electrode layer 130 is provided outside the both alignment film layers 120. A glass substrate 140 is provided outside the transparent electrode layers 130, and a polarizing plate 150 is provided outside the glass substrates 140. Note that a color filter layer is provided between the front side of the liquid crystal panel 100, that is, the transparent electrode layer 130 nearer to the viewer's eyes and the glass substrate 140. 160 is provided.
なお、 この実施形態では、 液晶層 1 1 0、 配向膜層 1 2 0、 透明電極層 1 3 0、 ガラス基板 1 4 0、 偏光板 1 5 0、 カラーフィル夕層 1 6 0はすべて、 同一の形 状、 より詳細には同一の矩形形状とされている。  In this embodiment, the liquid crystal layer 110, the alignment film layer 120, the transparent electrode layer 130, the glass substrate 140, the polarizing plate 150, and the color filter layer 160 are all the same. , More specifically the same rectangular shape.
上述の液晶層 1 1 0、 配向膜層 1 2 0、 透明電極層 1 3 0、 ガラス基板 1 4 0、 偏光板 1 5 0、 カラ一フィル夕層 1 6 0は、 以下のようなものである。  The above-mentioned liquid crystal layer 110, alignment film layer 120, transparent electrode layer 130, glass substrate 140, polarizing plate 150, and color filter layer 160 are as follows. is there.
2つの偏光板 1 5 0はともに、 それを透過した自然光を所定の向きの直線偏光 に変える機能を有するものである。 この実施形態における偏光板 1 5 0のうち、 背面側のものは ソクライト 2 0 0から放出された光を偏光化する役割を持つ。 他方、 偏光板 1 5 0のうち前面側のものは、 背面側の偏光板 1 5 0を通過して偏 光化された後液晶層 1 1 0を通過して必要に応じて偏光面が回転させられた光を 通過させ、 或いは遮断する役割を持っている。 液晶層 1 1 0は必要に応じて駆動 され、 背面側の偏光板 1 5 0を通過して偏光化された光を、 その偏光面をそのま ま維持した状態、 或いは 9 0 ° 回転した状態で通過させる。 かかる偏光面の回転 を行うために行われる液晶層 1 1 0の駆動の制御を行うのが、 透明電極層 1 3 0 であり、 透明電極層 1 3 0はその間の電位差の変化によって液晶層 1 1 0の制御 を実現する。  Both polarizing plates 150 have a function of converting natural light transmitted therethrough into linearly polarized light in a predetermined direction. Of the polarizing plates 150 in this embodiment, the one on the back side has a role of polarizing the light emitted from the Socrite 200. On the other hand, among the polarizing plates 150, the front one is polarized after passing through the rear polarizing plate 150, and then passes through the liquid crystal layer 110, and the polarization plane is rotated as necessary. It has the role of passing or blocking the light. The liquid crystal layer 110 is driven as necessary, and the light polarized by passing through the rear polarizing plate 150 is maintained in the same polarization state or rotated 90 °. Let through. It is the transparent electrode layer 130 that controls the driving of the liquid crystal layer 110 performed to rotate the polarization plane, and the transparent electrode layer 130 is driven by a change in the potential difference therebetween. 10 control is realized.
配向膜層 1 2 0は、 液晶層 1 1 0を挟み込んでおり、 液晶層 1 1 0中の液晶の 配向方向を規制する機能を有している。 The alignment film layer 120 sandwiches the liquid crystal layer 110, and the liquid crystal in the liquid crystal layer 110 It has the function of regulating the orientation direction.
また、 ガラス基板 1 4 0は、 その間にある、 液晶層 1 1 0、 配向膜層 1 2 0、 透明電極層 1 3 0、 及びカラーフィル夕層 1 6 0を挟持するものである。  The glass substrate 140 sandwiches a liquid crystal layer 110, an alignment film layer 120, a transparent electrode layer 130, and a color filter layer 160 therebetween.
カラーフィル夕層 1 6 0は、 それを通った光に色をつけるためのカラ一フィル 夕により形成される層である。 カラーフィルタ層 1 6 0は、 一般には、 R (赤)、 G (緑)、 B (青) の微細なフィル夕がマトリクス状に配されてなり、 この実施形 態ではそのようにされている。  The color fill layer 160 is a layer formed by a color fill layer for coloring light passing through it. The color filter layer 160 is generally composed of fine filters of R (red), G (green), and B (blue) arranged in a matrix, and in this embodiment, it is so. .
他方、 ノ ソクライト 2 0 0は、 図 2のように構成されている。  On the other hand, Nosocrite 200 is configured as shown in FIG.
この実施形態におけるバックライト 2 0 0は、 導光板 2 1 0及び光源 2 2 0を 備えて構成されている。 導光板 2 1 0は、 散乱粒子が拡散していない第 1小区画 2 1 1と、散乱粒子が拡散されている第 2小区画 2 1 2を組合わせることにより、 後述する凹部 2 0 O Aを除けば直方体となるように形成されている。 つまり、 導 光板 2 1 0は、その広い面に垂直な方向から見れば、矩形となる形状をしており、 薄い板状に形成されている。 なお、 この実施形態における放出面、 即ち導光板 2 1 0中に光源 2 2 0から導入された光が射出される面は、 導光板 2 1 0の図 2に おける上側の面である。  The backlight 200 in this embodiment includes a light guide plate 210 and a light source 220. The light guide plate 210 combines the first small section 2 11 in which the scattering particles are not diffused and the second small section 2 12 in which the scattering particles are diffused, thereby forming a concave portion 20 OA described later. Except for it, it is formed to be a rectangular parallelepiped. That is, the light guide plate 210 has a rectangular shape when viewed from a direction perpendicular to its wide surface, and is formed in a thin plate shape. The emission surface in this embodiment, that is, the surface from which the light introduced from the light source 220 into the light guide plate 210 is emitted is the upper surface of the light guide plate 210 in FIG.
第 1小区画 2 1 1は、 透明な樹脂、 例えば P MMA、 P C、 C O P (この実施 形態では、 P MMA) によって形成されている。 第 2小区画 2 1 2は、 この実施 形態では、 透明な樹脂 (第 1小区画 2 1 1と同じでも、 異なってもよい) に、 例 えばシリコン、 又はアクリルの粒子である散乱粒子を加えて形成されている。 な お、 この実施形態における散乱粒子は球体であり、 その直径は、 この実施形態で は、 7 mと、 3 mである。 つまり、 この実施形態では、 大きさの異なる 2種 類の散乱粒子を用いている。 散乱粒子の大きさにより、 放出面から放出される光 の色温度を調節できる。 この実施形態では、 上述の 2つの直径の散乱粒子を用い ることで、 放出面から放出される光の色温度を調整している。  The first small section 2 1 1 is formed of a transparent resin, for example, PMMA, PC, COP (in this embodiment, PMMA). In this embodiment, the second subsection 211 is made of transparent resin (which may be the same as or different from the first subsection 211) plus scattering particles, for example, silicon or acrylic particles. It is formed. The scattering particles in this embodiment are spheres, and their diameters are 7 m and 3 m in this embodiment. That is, in this embodiment, two types of scattering particles having different sizes are used. The color temperature of the light emitted from the emitting surface can be adjusted by the size of the scattering particles. In this embodiment, the color temperature of light emitted from the emission surface is adjusted by using the scattering particles having the two diameters described above.
なお、 この実施形態では、 第 1小区画 2 1 1を作る透明材料の屈折率は、 第 2 小区画 2 1 2を作る透明材料の屈折率よりも小さく (少なくとも同じに) されて いる。 この実施形態では、 第 1小区画 2 1 1の屈折率が 1 . 4 9、 第 2小区画 2 1 2の屈折率が 1 . 5 5になっている。 第 2小区画 2 1 2中の散乱粒子は、 この実施形態では、 第 2小区画 2 1 2の中 全体に均一に拡散させられている。 第 1小区画 2 1 1と、 第 2小区画 2 1 2は、 側面から見た場合に同一形状の直角三角形形状となっており、 且つその斜辺部分 同士を当接させた状態とされている。 したがって、 導光板 2 1 0の厚さはどの部 分でも同一となっている。 In this embodiment, the refractive index of the transparent material forming the first small section 2 11 is smaller than (at least the same as) the refractive index of the transparent material forming the second small section 2 12. In this embodiment, the refractive index of the first small section 2 11 is 1.49, and the refractive index of the second small section 2 12 is 1.55. In this embodiment, the scattering particles in the second small section 2 12 are uniformly diffused throughout the second small section 2 12. The first small section 2 1 1 and the second small section 2 1 2 have the same right-angled triangular shape when viewed from the side, and their hypotenuse portions are in contact with each other. . Therefore, the thickness of the light guide plate 210 is the same in any part.
第 1小区画 2 1 1と、 第 2小区画 2 1 2は、 多色 (ここでは、 2色) 成形法に よって一体に成形されている。 2色成形法は良く知られた方法であるので詳しい 説明を省略するが、 例えば以下のようにして、 第 1小区画 2 1 1及び第 2小区画 2 1 2を備える導光板 2 1 0を製造することができる。かかる製造方法は、 まず、 液状ないしゲル状とされた第 1小区画 2 1 1、 第 2小区画 2 1 2の原料 (この実 施形態では、 第 1小区画 2 1 1の原料は液状の P MM A樹 Ji旨、 第 2小区画 2 1 2 の原料は液状の P MMA樹脂に散乱粒子を混入したものである。)の一方を所定の 型に射出することで第 1小区画 2 1 1、 第 2小区画 2 1 2の一方をまず成形し、 続けてその第 1小区画 2 1 1、 第 2小区画 2 1 2の上述の斜辺部分を型の一部と した他の型に、 第 1小区画 2 1 1又は第 2小区画 2 1 2の原料の他方を射出する というものである。  The first small section 2 1 1 and the second small section 2 1 2 are integrally formed by a multi-color (here, two-color) molding method. Since the two-color molding method is a well-known method, a detailed description thereof will be omitted. For example, as described below, the light guide plate 2 10 having the first small section 2 1 1 and the second small section 2 1 2 Can be manufactured. Such a manufacturing method is based on the following. First, the raw materials of the first sub-compartment 211 and the second sub-compartment 212 in liquid or gel state (in this embodiment, the raw material of the first sub-compartment 211 is liquid) PMM A tree Ji, the raw material of the second sub-compartment 2 1 2 is a mixture of liquid PMMA resin and scattering particles.) 1. One of the second sub-compartments 2 1 2 is formed first, and then the other sub-compartments, with the above-mentioned oblique sides of the first sub-compartments 2 1 1 and 2 1 2 being part of the mold. That is, the other of the raw materials of the first small section 2 11 or the second small section 2 12 is injected.
導光板 2 1 0は、上述した矩形の一辺に相当する部分の中央に、より詳細には、 第 1小区画 2 1 1のみが露出している端面の中心部分に、 光源 2 2 0がその内部 に収まる大きさの断面円形の穴とされた凹部 2 0 O Aを備えている。 この凹部 2 0 0 Aは、 第 1小区画 2 1 1と、 第 2小区画 2 1 2を 2色成形法で製造するとき に型を用いて作られたものであってもよいし、 第 1小区画 2 1 1と、 第 2小区画 2 1 2を直方体形状とした後に第 1小区画 2 1 1を削るなどして作られたもので あってもよい。  The light guide plate 210 is located at the center of the portion corresponding to one side of the above-described rectangle, more specifically, at the center portion of the end face where only the first small section 211 is exposed, and the light source 220 is located at the center. It has a recess 20 OA that is a hole with a circular cross section that fits inside. The concave portion 200A may be formed by using a mold when the first small section 2 11 and the second small section 2 12 are manufactured by a two-color molding method. The first small section 2 1 1 and the second small section 2 1 2 may be formed into a rectangular parallelepiped shape, and then the first small section 2 11 1 may be cut.
また、 この実施形態による導光板 2 1 0は、 必ずしもそうなっている必要はな いが、 凹部 2 0 O Aの内部を除く端面 (側面) 及び、 底面に、 導光板 2 1 0の内 部から外に出ようとする光を導光板 2 1 0の中に反射する反射体を備えている。 反射体は、 例えば、 導光板 2 1 0とは別の鏡状の部材を導光板 2 1 0の周りに配 して製造することもできるし、 導光板 2 1 0の必要な部分にアルミなどの金属を 蒸着させることによって製造することもできる。 光源 2 2 0は、 この実施形態では、 点状光源とされている。 この実施形態にお ける光源 2 2 0は、 L E Dである。 光源 2 2 0は、 必要に応じて点灯するように 制御される。 なお、 この実施形態における光源 2 2 0は 1つであるが、 光源 2 2 0はその辺に、 所定の間隔をあけて複数配してもよい。 Further, the light guide plate 210 according to this embodiment is not necessarily required to have such a shape. However, the end surface (side surface) excluding the inside of the concave portion OA and the bottom surface are formed from the inside of the light guide plate 210. The light guide plate 210 is provided with a reflector that reflects light that is going to go outside. The reflector can be manufactured, for example, by arranging a mirror-like member different from the light guide plate 210 around the light guide plate 210, or by using aluminum or the like in a necessary portion of the light guide plate 210. It can also be manufactured by vapor-depositing a metal. The light source 220 is a point light source in this embodiment. The light source 220 in this embodiment is an LED. The light source 220 is controlled to be turned on as necessary. Although the number of the light sources 220 in this embodiment is one, a plurality of the light sources 220 may be arranged at predetermined intervals on the side.
光源 2 2 0は、 この実施形態では、 導光板 2 1 0に設けられた上述の凹部 2 0 O Aの内部に臨まされている。 光源 2 2 0からの光は、 凹部 2 0 O Aの内側の面 から導光板 2 1 0の内部に導入されることになる。  In this embodiment, the light source 220 faces the inside of the above-mentioned concave portion 20OA provided in the light guide plate 210. The light from the light source 220 is introduced into the light guide plate 210 from the inner surface of the concave portion 20OA.
この実施形態による導光板 2 1 0は、 上述したようなものなので、 光源 2 2 0 が臨まされた矩形形状の一辺からの距離が遠い場所ほど第 1小区画 2 1 1の厚さ が減り、 第 2小区画 2 1 2の厚さが増すようになつている。 そして、 第 1小区画 2 1 1には散乱粒子が含まれず、 且つ第 2小区画 2 1 2には散乱粒子が一定の密 度で含まれているので、 導光板 2 1 0は、 光源 2 2 0が臨ませられた矩形形状の 上記一辺からの距離が遠いほど、 導光板 2 1 0を放出面に対して垂直に見た場合 における散乱粒子の単位面積あたりの数が多くなるようになっている。  Since the light guide plate 210 according to this embodiment is as described above, the thickness of the first subsection 2 11 decreases as the distance from one side of the rectangular shape facing the light source 220 decreases. The thickness of the second subsection 2 1 2 is increased. Since the first small section 2 11 1 does not contain scattered particles and the second small section 2 12 contains scattered particles at a certain density, the light guide plate 2 10 The longer the distance from the above one side of the rectangular shape facing 20, the greater the number of scattering particles per unit area when the light guide plate 210 is viewed perpendicular to the emission surface. ing.
この実施形態による導光板 2 1 0に光源 2 2 0から光が導入されると、 その光 は導光板 2 1 0を進み、 導光板 2 1 0内に含まれる散乱粒子に当たって散乱させ られる。 散乱させられた光は、 直接、 或いは反射体で反射した後、 導光板 2 1 0 の放出面から外部に射出される。 このようにして、 導光板 2 1 0と光源 2 2 0を 含むバックライト 2 0 0は、 面状の光源として機能する。  When light is introduced from the light source 220 into the light guide plate 210 according to this embodiment, the light travels through the light guide plate 210 and scatters on the scattering particles contained in the light guide plate 210. The scattered light is emitted to the outside from the emission surface of the light guide plate 210 directly or after being reflected by a reflector. Thus, the backlight 200 including the light guide plate 210 and the light source 220 functions as a planar light source.
第 1実施形態における光源 2 2 0は点状光源なので、 光源 2 2 0を中心とした 同心円を考えた場合、 その同心円の大きさが大きくなる場所ほど、 そこに到達す る光源 2 2 0からの光は少なくなる。 つまり、 この導光板 2 1 0は、 光源 2 2 0 が臨まされた導光板 2 1 0の上記一辺からの距離が遠くなるほど、 放出面に対し て垂直に見た場合における散乱粒子の単位面積あたりの数が多くなり、 より詳細 には、 導光板 2 1 0の上記一辺からの距離に比例して放出面に対して垂直に見た 場合における散乱粒子の単位面積あたりの数が多くなるのである。 導光板 2 1 0 がこのようになっていない場合には、 光源 2 2 0の臨まされた導光板 2 1 0の上 記一辺から遠い部分に光源 2 2 0から届く光は、 上記一辺から近い部分に比べて その光量が少なくなるため、 そこで散乱粒子による光の散乱が生じたとしてもそ の散乱光が弱くなつてしまい、 したがって、 放出面から放出される光は、 光源 2 2 0が臨まされた導光板 2 1 0の上記一辺からの距離が遠いところほど弱くなつ てしまうおそれがある。 ここで、 本実施形態における導光板 2 1 0のように、 上 記一辺からの距離に比例して放出面に対して垂直に見た場合における散乱粒子の 単位面積あたりの数が多くなるようになっていれば、 散乱粒子で散乱した光の弱 さを単位面積あたりの散乱粒子の数 (即ち、 光の散乱の回数) により補償できる ので、 導光板 2 1 0の放出面から放出される光の量が、 放出面の全体で均一に近 くなる。 これは、 面状光源としてのバックライト 2 0 0が、 その全面で均一に近 い光を放出できることを意味するので、 好ましいことであるといえる。 Since the light source 220 in the first embodiment is a point light source, if a concentric circle centered on the light source 220 is considered, the light source 220 reaching the concentric circle becomes larger as the size of the concentric circle becomes larger. Light is reduced. In other words, the light guide plate 210 is formed such that as the distance from the above one side of the light guide plate 210 facing the light source 220 increases, the unit area of the scattered particles when viewed perpendicular to the emission surface increases. More specifically, more specifically, the number of scattering particles per unit area when viewed perpendicular to the emission surface increases in proportion to the distance from the one side of the light guide plate 210. . When the light guide plate 210 is not configured as described above, the light reaching from the light source 220 to a portion far from the above one side of the light guide plate 210 facing the light source 220 is close to the above one side. Since the amount of light is smaller than that of the part, even if light scattering by scattering particles The light emitted from the emission surface may be weakened as the distance from the one side of the light guide plate 210 facing the light source 220 increases. . Here, as in the case of the light guide plate 210 in the present embodiment, the number of scattering particles per unit area when viewed perpendicular to the emission surface increases in proportion to the distance from the above one side. If so, the weakness of the light scattered by the scattering particles can be compensated for by the number of scattering particles per unit area (that is, the number of times of light scattering), so that the light emitted from the emission surface of the light guide plate 210 Amount becomes nearly uniform across the emission surface. This means that the backlight 200 as a planar light source can emit light that is nearly uniform over its entire surface, and is therefore preferable.
なお、 この実施形態では光源 2 2 0から出て導光板 2 1 0内を図 2中右から左 方向へ進む光は、 第 1小区画 2 1 1から第 2小区画 2 1 2に入るときに放出面に 近づくようにその方向を変える。 これにより、 この実施形態では、 放出面から出 る光の量が増える。  Note that, in this embodiment, light that exits from the light source 220 and travels from right to left in FIG. 2 in the light guide plate 210 when entering the second small partition 2 1 2 from the first small partition 2 1 1 Change its direction to get closer to the emission surface. This increases the amount of light exiting the emitting surface in this embodiment.
第 1実施形態における導光板 2 1 0は、 また、 図 3 A〜図 3 Eに示したように 変形することができる。 図 3 A〜図 3 Eはいずれも、 導光板 2 1 0を図 2の前面 方向と同じ方向から見た状態を示す側面図である。 なお、 図 3 A〜図 3 Eの導光 板 2 1 0はすべて、 矩形の板状である。 また、 図 3 A〜図 3 Eの導光板 2 1 0は すべて、 その縦断面が、 凹部 2 0 0 Aを除いて、 いずれの場所でも同じになって いる。  The light guide plate 210 in the first embodiment can be modified as shown in FIGS. 3A to 3E. 3A to 3E are side views showing a state where the light guide plate 210 is viewed from the same direction as the front direction in FIG. The light guide plates 210 in FIGS. 3A to 3E are all rectangular plates. In addition, all of the light guide plates 210 of FIGS. 3A to 3E have the same vertical cross section except for the concave portion 200A.
図 3 Aの導光板 2 1 0は、 第 1小区画 2 1 1、 第 2小区画 2 1 2ともに、 放出 面に対して平行な面を持つので、 第 1実施形態の場合と異なり、 光源 2 2 0が臨 むことが予定された辺からの距離が遠くなるほど第 1小区画 2 1 1の厚さが減り、 またその距離が遠くなるほど第 2小区画 2 1 2の厚さが増すようにはなっていな レ。 ただし、 この変形例では、 第 1小区画 2 1 1は、 光源 2 2 0が臨ませられる ことが予定された導光板 2 1 0の一辺からの距離がより大きい場所では、 それよ りも距離が小さい場所に比較して、 その厚さが増さないようにされており、 第 2 小区画 2 1 2は、 光源 2 2 0が臨ませられることが予定された導光板 2 1 0の一 辺からの距離がより大きい場所では、 それよりも距離が小さい場所に比較して、 その厚さが減らないようにされている。 この点については、 図 3 B〜図 3 Eに示 された導光板 2 1 0も同様である。 The light guide plate 210 of FIG. 3A has a plane parallel to the emission surface in both the first subsection 2 1 1 and the second subsection 2 1 2, so that unlike the first embodiment, the light source As the distance from the side at which 220 is expected to face increases, the thickness of the first subsection 2 11 1 decreases, and as the distance increases, the thickness of the second subsection 2 1 2 increases. It has not become. However, in this modified example, the first small section 2 1 1 is located at a larger distance from one side of the light guide plate 2 10 where the light source 2 2 0 is expected to face. The second sub-compartment 2 1 2 is designed so that the light source 2 2 At places where the distance from the side is larger, the thickness is not reduced compared to places where the distance is smaller. This is illustrated in Figures 3B to 3E. The same applies to the light guide plate 210 thus obtained.
導光板 2 1 0は、 図 3 Bに示したようなものとすることができる。 図 3 Bの導 光板 2 1 0は、 第 1小区画 2 1 1の側面視形状が直角三角形、 第 2小区画 2 1 2 の側面視形状が台形となっている。  The light guide plate 210 may be as shown in FIG. 3B. In the light guide plate 210 of FIG. 3B, the shape of the first small section 2 11 in a side view is a right triangle, and the shape of the second small section 2 12 in a side view is a trapezoid.
導光板 2 1 0は、 図 3 Cに示したようなものとすることができる。 図 3 Cの導 光板 2 1 0は、 第 1小区画 2 1 1の側面視形状が台形、 第 2小区画 2 1 2の側面 視形状が直角三角形となっている。  The light guide plate 210 may be as shown in FIG. 3C. In the light guide plate 210 of FIG. 3C, the side view shape of the first small section 211 is trapezoidal, and the side view shape of the second small section 211 is a right triangle.
導光板 2 1 0は、 図 3 Dに示したようなものとすることができる。 図 3 Dの導 光板 2 1 0では、 第 1小区画 2 1 1と第 2小区画 2 1 2の間の境界面が作る線が 曲線となっている。 つまり、 この変形例では、 第 1小区画 2 1 1と第 2小区画 2 1 2の間の境界面が曲面となっている。 境界面が作る曲線は、 例えば、 対数曲線 の一部とすることができる。  The light guide plate 210 can be as shown in FIG. 3D. In the light guide plate 210 of FIG. 3D, the line formed by the boundary surface between the first small section 2 11 and the second small section 2 12 is a curve. That is, in this modified example, the boundary surface between the first small section 2 11 and the second small section 2 12 is a curved surface. The curve created by the interface can be, for example, part of a logarithmic curve.
導光板 2 1 0は、 図 3 Eに示したようなものとすることができる。  The light guide plate 210 may be as shown in FIG. 3E.
図 3 Eの導光板 2 1 0では、 第 1小区画 2 1 1と第 2小区画 2.1 2の間の境界 面が作る線が曲線となっている。 また、 この曲線は、 放出面と、 底面の双方に触 れている。 境界面が作る曲線は、 例えば、 対数曲線の一部とすることができる。 第 1実施形態における導光板 2 1 0は、 また、 図 4 A〜図 4 Eに示したように 変形することができる。 図 4 A〜図 4 Eはいずれも、 導光板 2 1 0を図 2の前面 方向と同じ方向から見た状態を示す側面図である。 なお、 図 4 A〜図 4 Eの導光 板 2 1 0はすべて、 矩形の板状である。 また、 図 4 A〜図 4 Eの導光板 2 1 0は すべて、 その縦断面が、 凹部 2 0 0 Aを除いて、 いずれの場所でも同じになって いる。  In the light guide plate 210 of FIG. 3E, the line formed by the interface between the first subsection 2 11 and the second subsection 2.12 is curved. This curve touches both the emission surface and the bottom surface. The curve created by the interface can be, for example, part of a logarithmic curve. The light guide plate 210 in the first embodiment can be modified as shown in FIGS. 4A to 4E. 4A to 4E are side views showing a state where the light guide plate 210 is viewed from the same direction as the front direction in FIG. Note that all of the light guide plates 210 in FIGS. 4A to 4E are rectangular plates. In addition, all of the light guide plates 210 of FIGS. 4A to 4E have the same vertical cross section except for the concave portion 200A.
導光板 2 1 0は、 図 4 Aに示したようなものとすることができる。 図 4の導光 板 2 1 0は、 第 1小区画 2 1 1、 第 2小区画 2 1 2のみならず、 第 3小区画 2 1 3、 第 4小区画 2 1 4を備えている。 第 1小区画 2 1 1の側面視形状は第 1実施 形態の場合と同様である。 第 2小区画 2 1 2、 第 3小区画 2 1 3、 第 4小区画 2 1 4の側面視形状は、 第 1実施形態の第 2小区画 2 1 2を右側の頂点を通る複数 の直線で薄切りにすることで形成される形状となっている。  The light guide plate 210 can be as shown in FIG. 4A. The light guide plate 210 of FIG. 4 includes not only the first small section 2 11 and the second small section 2 12 but also the third small section 2 13 and the fourth small section 2 14. The side view shape of the first small section 2 11 is the same as that of the first embodiment. The side view shape of the second small section 2 1 2, the third small section 2 13, and the fourth small section 2 14 is a plurality of straight lines passing through the right vertex through the second small section 2 12 of the first embodiment. And is formed by slicing.
この変形例における導光板 2 1 0では、 第 1小区画 2 1 1の屈折率 <第 2小区 画 2 1 2の屈折率ぐ第 3小区画 2 1 3の屈折率ぐ第 4小区画 2 1 4の屈折率、 と なっている。 また、 第 1小区画 2 1 1、 第 2小区画 2 1 2、 第 3小区画 2 1 3、 第 4小区画 2 1 4はともに、 その内部における散乱粒子の密度がいずれの場所に おいても同じになるようにされている。 この実施形態では、 第 1小区画 2 1 1に おける散乱粒子の密度ぐ第 2小区画 2 1 2における散乱粒子の密度 <第 3小区画 2 1 3における散乱粒子の密度ぐ第 4小区画 2 1 4における散乱粒子の密度とな つている。 この実施形態では、第 1小区画 2 1 1には散乱粒子は含まれていない。 なお、 この変形例では、 第 2小区画 2 1 2のみならず、 第 3小区画 2 1 3及び第 4小区画 2 1 4にも散舌し粒子が入っている。 これは、 第 2小区画 2 1 2以外にも 散乱粒子の入っている小区画を設けたと見ることもできるが、 散乱粒子の入って いる第 2小区画 2 1 2を複数に分けただけと見ることもできる。 つまり、 本願発 明における第 2小区画 2 1 2は、 複数に分割されていてもよく、 また第 2小区画 2 1 2を複数に分割したものである各小区画は、 他の小区画と散乱粒子の密度、 屈折率のいずれかが異なるものとすることができる。 In the light guide plate 210 in this modification, the refractive index of the first subsection 2 11 <the second subsection The refractive index of the third small section 2 13 is larger than the refractive index of the image 2 12, and the refractive index of the fourth small section 2 14 is larger than the refractive index of the third small section 2 13. The first subsection 2 11, the second subsection 2 12, the third subsection 2 13, and the fourth subsection 2 14 all have a high density of scattered particles in any location. Has been made the same. In this embodiment, the density of the scattered particles in the first subsection 2 11 1 is smaller than the density of the scattered particles in the second subsection 2 12 <the fourth subsection 2 is larger than the density of the scattered particles in the third subsection 2 13. It is the density of the scattering particles in 14. In this embodiment, the first subsection 2 11 does not contain scattering particles. In this modification, not only the second subsection 2 12 but also the third subsection 2 13 and the fourth subsection 2 14 contain particles. This can be seen as having a small section containing scattering particles in addition to the second small section 2 1 2, but only dividing the second small section 2 1 2 containing scattering particles into a plurality. You can see it. In other words, the second subsection 2 1 2 in the present invention may be divided into a plurality of sections, and each subsection obtained by dividing the second subsection 2 1 2 into a plurality is divided into other subsections. Either the density or the refractive index of the scattering particles may be different.
なお、 第 1小区画 2 1 1〜第 4小区画 2 1 4 (第 4小区画 2 1 4は存在しない 場合もある。)における屈折率の相対的な関係、及び散乱粒子の密度の相対的な関 係は、 図 4 B〜図 4 Eで示した変形例でも、 上述したものと同様である。  The relative relationship between the refractive index and the relative density of the scattered particles in the first subsection 2 11 to the fourth subsection 2 14 (the fourth subsection 2 14 may not exist). Such a relationship is the same as that described above in the modified examples shown in FIGS. 4B to 4E.
導光板 2 1 0は、 また、 図 4 Bに示したようなものとすることができる。 図 4 Bの導光板 2 1 0は、 第 1小区画 2 1 1の側面視形状が第 1実施形態の場合と同 様の直角三角形となっている。 第 2小区画 2 1 2、 第 3小区画 2 1 3の側面視形 状は、 第 1実施形態における第 2小区画 2 1 2をその中ほどで斜め方向に分断し て作られる形状となっている。  The light guide plate 210 may be as shown in FIG. 4B. In the light guide plate 210 of FIG. 4B, the side view shape of the first small section 2 11 is a right-angled triangle similar to the case of the first embodiment. The side view shape of the second small section 2 12 and the third small section 2 13 is a shape formed by diagonally dividing the second small section 2 12 in the first embodiment in the middle. ing.
導光板 2 1 0は、 図 4 Cに示したようなものとすることができる。 図 4 Cの導 光板 2 1 0における第 1小区画 2 1 1の側面視形状は、 第 1実施形態の場合と同 様の直角三角形である。 第 2小区画 2 1 2、 第 3小区画 2 1 3の側面視形状は、 放出面の裏面に対する傾斜角が第 1小区画 2 1 1を側面視した場合の斜辺の傾斜 角よりも小さい直線で、 導光板 2 1 0のうちの第 1小区画 2 1 1を除いた部分を 分断することで得られる形状となっている。  The light guide plate 210 may be as shown in FIG. 4C. The side view shape of the first small section 211 in the light guide plate 210 of FIG. 4C is a right-angled triangle similar to the case of the first embodiment. The side view shape of the second small section 2 1 2 and the third small section 2 13 is a straight line in which the inclination angle of the emission surface with respect to the back surface is smaller than the inclination angle of the hypotenuse when the first small section 2 11 1 is viewed in side view. Thus, a shape obtained by dividing a portion of the light guide plate 210 other than the first small section 211 is obtained.
導光板 2 1 0は、 図 4 Dに示したようなものとする.ことができる。 図 4 Dの導 光板 2 1 0では、 第 1小区画 2 1 1〜第 4小区画 2 1 4の形状はすべて側面視で 台形となっている。 また、 この実施形態では、 第 1小区画 2 1 1と第 2小区画 2 1 2を区画する境界面が作る線の放出面の裏面に対する傾き〉第 2小区画 2 1 2 と第 3小区画 2 1 3を区画する境界面が作る線の放出面の裏面に対する傾き >第 3小区画 2 1 3と第 4小区画 2 1 4を区画する境界面が作る線の放出面の裏面に 対する傾きとなっている。 The light guide plate 210 can be as shown in FIG. 4D. Figure 4D In the light plate 210, the shapes of the first subsection 2 11 to the fourth subsection 2 14 are all trapezoids in side view. Further, in this embodiment, the inclination of the line formed by the boundary surface that defines the first subsection 2 1 1 and the second subsection 2 1 2 with respect to the back surface> the second subsection 2 1 2 and the third subsection The slope of the line created by the boundary that separates 2 1 3 with respect to the back of the emission surface> The slope of the line created by the boundary that separates 3rd and 4th small sections 2 1 3 and 2 1 4 with respect to the back It has become.
導光板 2 1 0は、 図 4 Eに示したようなものとすることができる。 図 4 Eの導 光板 2 1 0では、 第 1小区画 2 1 1と第 2小区画 2 1 2の間の境界面が作る線、 及び第 2小区画 2 1 2と第 3小区画 2 1 3の間の境界面が作る線が曲線となって いる。境界面が作る上述の曲線は、 例えば、対数曲線の一部とすることができる。 なお、 第 1実施形態における導光板 2 1 0は、 図 5に示したように変形するこ とができる。 図 5は、 バックライト 2 0 0を示す斜視図である。  The light guide plate 210 may be as shown in FIG. 4E. In the light guide plate 210 of FIG. 4E, the line formed by the boundary surface between the first subsection 2 1 1 and the second subsection 2 1 2, and the second subsection 2 1 2 and the third subsection 2 1 The line created by the boundary between 3 is a curve. The above-described curve created by the interface can be, for example, part of a logarithmic curve. Note that the light guide plate 210 in the first embodiment can be modified as shown in FIG. FIG. 5 is a perspective view showing the backlight 200.
この変形例における導光板 2 1 0は、 第 1小区画 2 1 1と、 第 2小区画 2 1 2 を備えている。 この変形例における導光板 2 1 0の第 1小区画 2 1 1と第 2小区 画 2 1 2は、 その形状を除けば第 1実施形態のものと同様である。  The light guide plate 210 in this modification includes a first small section 2 11 and a second small section 2 1 2. The first small section 2 11 and the second small section 2 12 of the light guide plate 210 in this modification are the same as those of the first embodiment except for their shapes.
この変形例における第 1小区画 2 1 1は、 図 5に示したように、 半分に切断し た貝殻状のものを伏せたような形状をしている。 第 1小区画 2 1 1と第 2小区画 2 1 2の境界面が作る線は、 光源 2 2 0が臨まされた端面に平行な図 5の A— A 〜 D— Dを通る面で切断した場合、 図 5の下半分に示されたようなものとなる。 この変形例では、 第 1小区画 2 1 1は、 光源 2 2 0が臨ませられることが予定 された場所 (即ち、 凹部 2 0 O A) からの距離がより大きい場所では、 それより も距離が小さい場所に比較して、その厚さが小さくなるようにされている。また、 第 2小区画 2 1 2は、 凹部 2 0 O Aからの距離がより大きい場所では、 それより も距離が小さい場所に比較してその厚さが大きくなるようにされている。 また、 この変形例における第 1小区画 2 1 1及び第 2小区画 2 1 2は、 光源 2 2 0から の距離が大きければそこに到達する光源 2 2 0からの光が弱くなることを考慮す れば、 第 1小区画 2 1 1は、 光源 2 2 0から導入された光の強度が弱くなる場所 ほどその厚さが減るようにされ、 第 2小区画 2 1 2は、 光源 2 2 0から導入され た光の強度が弱くなる場所ほどその厚さが増すようにされてなるといえる。 なお、 理論上は上述のとおりなのであるが、 実際 L E Dを光源 2 2 0に使用し た場合には、 光源 2 2 0が臨んでいる辺の両端部分の方向に向かう光が少なくな るので(L E Dは側面方向に射出する光が前方に射出する光より少ない)、その点 を考慮して、 光源 2 2 0が臨んでいる辺の両端部分に、 図 6の平面図に示したよ うな補助小区画 2 1 2 Aを設けることができる。 これにより、 導光板 2 1 0の放 出面の全体から、 均一な光を放出しやすくなる。 なお、 この補助小区画 2 1 2 A は、 例えば、 図 6の平面図に示した断面を有し、 放出面から放出面の反対側の面 にまで及ぶ三角柱形状のものとすることができる。 As shown in FIG. 5, the first small section 2 1 1 in this modification has a shape like a half-cut shell-shaped object turned down. The line created by the interface between the first sub-section 2 1 1 and the second sub-section 2 1 2 is cut along the plane passing through A—A to D—D in FIG. In this case, it will be as shown in the lower half of Figure 5. In this variation, the first subdivision 2 11 is located at a greater distance from the location where the light source 220 is expected to be exposed (i.e., the recess 20 OA). The thickness is made smaller than in a small place. Further, the second small section 2 12 is configured such that its thickness is larger at a place where the distance from the recess 20 OA is longer than at a place where the distance is shorter. In addition, the first small section 2 11 and the second small section 2 12 in this modified example consider that the light from the light source 220 that reaches there is weakened if the distance from the light source 220 is large. In this case, the first subsection 2 1 1 is reduced in thickness at a place where the intensity of the light introduced from the light source 2 20 is weakened, and the second subsection 2 1 2 is configured by the light source 2 2 It can be said that the thickness increases as the intensity of light introduced from zero decreases. Although the above is theoretically as described above, when an LED is actually used for the light source 220, the amount of light traveling toward both ends of the side where the light source 220 faces is reduced. The LED emits less light in the side direction than light emitted in the front direction). In consideration of this point, auxiliary light sources as shown in the plan view of FIG. 6 are provided at both ends of the side where the light source 220 faces. Section 2 1 2 A can be provided. Thereby, uniform light can be easily emitted from the entire emission surface of the light guide plate 210. The auxiliary small section 2 12 A has, for example, a triangular prism shape having a cross section shown in the plan view of FIG. 6 and extending from the emission surface to the surface opposite to the emission surface.
第 1実施形態における導光板 2 1 0は、 また、 図 7 A、 図 7 Bに示したように 変形することができる。 図 7 A、 図 7 Bは、 導光板 2 1 0を図 2の前面方向と同 じ方向から見た状態を示す側面図である。 図 7 A、 図 7 Bに示した導光板 2 1 0 はすべて、 その縦断面が、 凹部 2 0 O Aを除いて、 いずれの場所でも同じになつ ている。  The light guide plate 210 in the first embodiment can be modified as shown in FIGS. 7A and 7B. 7A and 7B are side views showing a state where the light guide plate 210 is viewed from the same direction as the front direction in FIG. Each of the light guide plates 210 shown in FIGS. 7A and 7B has the same vertical cross-section everywhere except for the concave portion 20OA.
図 7 Aでは、 導光板 2 1 0にグラデーションをつけてある。 このグラデーショ ンは、 導光板 2 1 0の内部に拡散された散乱粒子の密度を観念的に示すものであ る。 グラデーションの色の濃い部分ほど、 散乱粒子の密度は大きくなる。 図 7 A を見ればわかるように、 この導光板 2 1 0における散乱粒子は、 光源 2 2 0から 導入された光の強度が弱くなる場所ほど放出面に垂直に見た場合の単位面積あた りの数が増えるようになっているといえる。  In FIG. 7A, the light guide plate 210 has gradation. This gradation conceptually shows the density of scattering particles diffused inside the light guide plate 210. The darker the gradation, the higher the density of scattering particles. As can be seen from FIG. 7A, the scattered particles in the light guide plate 210 are closer to the unit area when viewed in a direction perpendicular to the emission surface as the intensity of the light introduced from the light source 220 decreases. Can be said to be increasing.
なお、 上述したように、 実際の L E Dは、 それを光源に使用した場合、 射出方 向によって射出される光の強度が異なるものとなる。 これを補償するような散乱 粒子の濃度の変化を、 上述の導光板 2 1 0に与えることもできる。  As described above, when an actual LED is used as a light source, the intensity of emitted light differs depending on the emission direction. A change in the concentration of the scattered particles that compensates for this can be given to the light guide plate 210 described above.
図 7 Bに示す導光板 2 1 0にもグラデーションをつけてある。 図 7 Bにおける グラデーションは、 導光板 2 1 0のその部分における屈折率を示すものとなって いる。 グラデーションの色の濃い部分ほどその場所における屈折率が大きく、 グ ラデーシヨンの色の薄い部分ほどその場所における屈折率が小さいことを示す。 このような屈折率の変化を与えると、 光源 2 2 0からの光は放出面に近づく方向 に曲がっていくので、 放出面からでる光の量を増すことができる。  The light guide plate 210 shown in FIG. 7B is also provided with gradation. The gradation in FIG. 7B indicates the refractive index at that portion of the light guide plate 210. The darker the gradation color, the higher the refractive index at that location, and the lighter the gradation color, the lower the refractive index at that location. When such a change in the refractive index is given, the light from the light source 220 bends in a direction approaching the emission surface, so that the amount of light emitted from the emission surface can be increased.
《第 2実施形態》 第 2実施形態における液晶表示装置は、 基本的に第 1実施形態のものと同様で ある。 << 2nd Embodiment >> The liquid crystal display device according to the second embodiment is basically the same as that of the first embodiment.
第 2施形態における液晶表示装置は、 液晶パネル 1 0 0と、 バックライ卜 2 0 0を備えている。 第 2実施形態の液晶表示装置における液晶パネルは、 第 1実施 形態の液晶パネル 1 0 0と変わらない。  The liquid crystal display device according to the second embodiment includes a liquid crystal panel 100 and a backlight 200. The liquid crystal panel in the liquid crystal display device of the second embodiment is not different from the liquid crystal panel 100 of the first embodiment.
第 2実施形態における液晶表示装置が第 1実施形態における液晶表示装置と異 なるのは、 そのバックライト 2 0 0についてである。  The liquid crystal display device according to the second embodiment is different from the liquid crystal display device according to the first embodiment in the backlight 200 thereof.
第 2実施形態における液晶表示装置が備えるバックライト 2 0 0は、 図 8に示 したようにされる。  The backlight 200 included in the liquid crystal display device according to the second embodiment is configured as shown in FIG.
図 8に示したように、 このバックライト 2 0 0における光源 2 2 0は、 点状光 源であった第 1実施形態の光源 2 2 0と異なり、 線状光源となっている。 この光 源 2 2 0は、 この実施形態では、 その光源 2 2 0が臨ませられる導光板 2 1 0の 矩形形状の一辺の長さと同じ円筒形状とされている。 この光源 2 2 0は、 例えば 小型の蛍光灯とすることができ、 この実施形態ではそうされている。  As shown in FIG. 8, the light source 220 in the backlight 200 is a linear light source, unlike the light source 220 of the first embodiment which was a point light source. In this embodiment, the light source 220 has a cylindrical shape that is the same as the length of one side of the rectangular shape of the light guide plate 210 on which the light source 220 faces. The light source 220 can be, for example, a small fluorescent lamp, which is the case in this embodiment.
また、 第 2実施形態では、 凹部 2 0 0 Aの形状が、 光源 2 2 0が線状光源であ ることに伴って、 第 1実施形態の凹部 2 0 O Aとは異なるものとなっている。 図 8を見れば明らかなように、 第 2実施形態における導光板 2 1 0に設けられた凹 部 2 0 O Aは断面半円形状の溝となっている。上述の線状とされた光源 2 2 0は、 この溝状とされた凹部 2 0 O Aの内部に挿入されている。  In the second embodiment, the shape of the concave portion 200A is different from that of the concave portion 200A of the first embodiment, because the light source 220 is a linear light source. . As is apparent from FIG. 8, the concave portion 20OA provided in the light guide plate 210 in the second embodiment is a groove having a semicircular cross section. The linear light source 220 described above is inserted into the groove-shaped concave portion 20OA.
第 2実施形態で示したような線状の光源 2 2 0が用いられる場合、 光源 2 2 0 力、ら届く導光板 2 1 0内部の光は、 光源 2 2 0が臨ませられた上記辺からの距離 が遠くなるほど少なくなる。 ここで、 第 1施形態に示したような、 光源 2 2 0が 臨ませられた矩形形状の上記一辺からの距離が遠いほど、 放出面に対して垂直に 見た場合における散乱粒子の単位面積あたりの数が多くなるようにされた導光板 2 1 0を用いれば、 上述した光の散乱の回数による補償をよりよく行えるように なる。  In the case where the linear light source 220 as shown in the second embodiment is used, the light inside the light guide plate 210 that can reach the light source 220 is the side where the light source 220 faces. It becomes smaller as the distance from becomes longer. Here, as shown in the first embodiment, the longer the distance from the above one side of the rectangular shape facing the light source 220, the larger the unit area of the scattering particles when viewed perpendicular to the emission surface. The use of the light guide plate 210 with a larger number per unit enables better compensation by the number of times of light scattering described above.
なお、 第 2実施形態による光源 2 2 0の導光板 2 1 0から遠い側には、 導光板 2 1 0の端面に向かわない光源 2 2 0からの光を導光板 2 1 0の内部に導く機能 を有する反射部材 2 3 0が設けられている。 反射部材 2 3 0は、 導光板 2 1 0か ら食み出た光源 2 2 0をその内部に収納するための溝を備える断面コの字型の形 状をしており、 且つその溝の内側を鏡面としたものである。 Note that, on the side of the light source 220 according to the second embodiment far from the light guide plate 210, light from the light source 220 that does not face the end face of the light guide plate 210 is guided into the light guide plate 210. A reflecting member 230 having a function is provided. The reflection member 230 is a light guide plate 210 It has a U-shaped cross section provided with a groove for accommodating the protruding light source 220 therein, and the inside of the groove is a mirror surface.
《第 3実施形態 > <Third embodiment>
第 3実施形態における液晶表示装置は、 基本的に第 1実施形態のものと同様で ある。  The liquid crystal display device according to the third embodiment is basically the same as that of the first embodiment.
第 3実施形態における液晶表示装置は、 第 1実施形態のものと同様の液晶パネ ル 1 0 0を備えており、 また、 バックライト 2 0 0を備えている。  The liquid crystal display device according to the third embodiment includes the same liquid crystal panel 100 as that of the first embodiment, and further includes a backlight 200.
第 3実施形態における液晶表示装置が第 1実施形態における液晶表示装置と異 なるのは、 そのバックライト 2 0 0についてである。  The liquid crystal display device according to the third embodiment is different from the liquid crystal display device according to the first embodiment in a backlight 200 thereof.
第 3実施形態における液晶表示装置が備えるバックライト 2 0 0は、 図 9に示 したようにされる。  The backlight 200 included in the liquid crystal display device according to the third embodiment is configured as shown in FIG.
図 9に示したように、 このバックライト 2 0 0における光源 2 2 0は、 第 2実 施形態で説明したのと同様の線状光源となっている。 そして、 第 3実施形態にお ける光源 2 2 0は、 放出面に対して垂直な面から見た場合に矩形とされている導 光板 2 1 0の、 向かい合う 2辺のそれぞれに 2本設けられている。  As shown in FIG. 9, the light source 220 in the backlight 200 is a linear light source similar to that described in the second embodiment. Then, two light sources 220 in the third embodiment are provided on each of two opposite sides of the light guide plate 210 which is rectangular when viewed from a plane perpendicular to the emission surface. ing.
この実施形態における導光板 2 1 0は、 図 9に示されたように、 2つの第 1小 区画 2 1 1と第 2小区画 2 1 2とを備えて構成される。 第 1小区画 2 1 1の形状 は、 図中右側のものは側面視で直角三角形であり第 1実施形態と同様の形状とな つており、 図中左側のものはそれを、 向かい合う上述の 2辺の中心を中心として 右側の第 1小区画 2 1 1を反転した形状となっている。 第 2小区画 2 1 2は 1つ であるが、 第 2小区画 2 1 2は、 向かい合う上述の 2辺の中心を中心として右側 の部分は第 1実施形態の場合と同様に、 他方、 向かい合う上述の 2辺の中心を中 心として左側の部分は、 向かい合う上述の 2辺の中心を中心として右側の第 2小 区画 2 1 2を反転した形状となっている。  As shown in FIG. 9, the light guide plate 210 in this embodiment includes two first small sections 2 11 and a second small section 2 12. The shape of the first small section 2 1 1 is the same as that of the first embodiment, with the right side in the figure being a right triangle in side view and the same shape as the first embodiment. The first subsection 2 1 1 on the right side is inverted from the center of the side. There is one second small section 2 1, but the second small section 2 12 faces the right side centering on the center of the two sides facing each other similarly to the case of the first embodiment. The portion on the left side with the center of the two sides described above as a center has a shape obtained by inverting the second small section 2 12 on the right side with the center of the two sides facing each other as the center.
' つまり、 この実施形態における導光板 2 1 0は、 図 8に示した導光板 2 1 0を その左端の部分で反転させたものを、 反転を行わせたその左端の部分で接続した 形状となっている。 That is, the light guide plate 210 in this embodiment has a shape obtained by inverting the light guide plate 210 shown in FIG. 8 at the left end portion and connecting the inverted light guide plate 210 at the left end portion. Has become.
なお、 図 3 A〜図 3 E、 図 4 A〜図 4 Eなどを用いて第 1実施形態の変形例で 示した導光板 2 1 0をその左端の部分で反転させそれを元の導光板と接続した形 状の導光板 2 1 0を、 この実施形態の導光板 2 1 0として用いることも可能であ る。 例えば、 図 7で示した散乱粒子の分布と屈折率の分布がともに連続的に変化 する導光板 2 1 0をその左端で反転させ、 それを元の導光板 2 1 0と接続するこ とにより得られる形状の導光板 2 1 0を、 本実施形態の導光板 2 1 0として用い ることができる。 It should be noted that the light guide plate 210 shown in the modification of the first embodiment is inverted at the left end using FIGS. 3A to 3E, 4A to 4E, etc. Connected with It is also possible to use the light guide plate 210 in the shape of a circle as the light guide plate 210 of this embodiment. For example, by inverting the light guide plate 210 in which both the distribution of the scattering particles and the distribution of the refractive index shown in FIG. 7 continuously change at the left end, and connecting it to the original light guide plate 210. The resulting light guide plate 210 can be used as the light guide plate 210 of the present embodiment.
《第 4実施形態 > << 4th Embodiment>
第 4実施形態における液晶表示装置は、 基本的に第 1実施形態のものと同様で ある。  The liquid crystal display device according to the fourth embodiment is basically the same as that of the first embodiment.
第 4実施形態における液晶表示装置は、 第 1実施形態のものと同様の液晶パネ ル 1 0 0を備えており、 また、 バックライト 2 0 0を備えている。  The liquid crystal display device according to the fourth embodiment includes the same liquid crystal panel 100 as that of the first embodiment, and further includes a backlight 200.
第 4実施形態における液晶表示装置が第 1実施形態における液晶表示装置と異 なるのは、 そのバックライト 2 0 0についてである。  The liquid crystal display device according to the fourth embodiment is different from the liquid crystal display device according to the first embodiment in a backlight 200 thereof.
第 4実施形態における液晶表示装置が備えるバックライト 2 0 0は、 図 1 0に 示したようにされる。  The backlight 200 included in the liquid crystal display device according to the fourth embodiment is configured as shown in FIG.
図 1 0に示したように、 このバックライト 2 0 0における光源 2 2 0は、 第 2 実施形態で説明したのと同様の線状光源となっている。 そして、 光源 2 2 0は、 第 4実施形態では、 放出面に対して垂直な面から見た場合に矩形とされている導 光板 2 1 0の、 4辺のそれぞれに 4つ設けられている。  As shown in FIG. 10, the light source 220 in the backlight 200 is a linear light source similar to that described in the second embodiment. In the fourth embodiment, four light sources 220 are provided on each of four sides of the light guide plate 210 which is rectangular when viewed from a plane perpendicular to the emission surface. .
この実施形態における導光板 2 1 0は、 図 1 0に示されたように、 第 1小区画 2 1 1と第 2小区画 2 1 2とを備えて構成される。 第 2小区画 2 1 2は、 この実 施形態では放出面を底面とし、 放出面の裏側の面を底面と対向する頂点とする四 角錘形状とされている。 第 1小区画 2 1 1は、 導光板 2 1 0から、 上述の四角錘 形状とされた第 2小区画 2 1 2を除いた形状とされている。  As shown in FIG. 10, the light guide plate 210 in this embodiment includes a first small section 2 11 and a second small section 2 12. In this embodiment, the second small section 2 12 has a quadrangular pyramid shape in which the emission surface is a bottom surface and the surface on the back side of the emission surface is a vertex opposed to the bottom surface. The first small section 2 11 1 has a shape obtained by removing the above-described second small section 2 12 having a square pyramid shape from the light guide plate 2 10.
ところで、 まず、 図 2に示した導光板 2 1 0を、 放出面と垂直であり、 且つ光 源 2 2 0が臨んでいる辺の両端とその辺に対向する辺の中央とを結ぶ直線を含む 2つの平面で切り取ることによって作られる放出面と垂直な方向から見て 2等辺 三角形形状となっている部分 (図 1 1 (A) ) を、 その底辺と高さの比に多少変化 を与えて 4つ組合わせて(図 1 1 (B ))、隣接する部分を接続すると(図 1 1 ( C) )、 図 1 0に示した導光板 2 1 0となる。 このように、 図 3 A〜図 3 E、 図 4 A〜図 4 Eなどを用いて第 1実施形態の変形例で示した導光板 2 1 0を、 それらの放出 面と垂直であり、 且つ光源 2 2 0が臨んでいる辺の両端とその辺に対向する辺の 中央とを結ぶ直線を含む 2つの平面で切り取ることによって得られる部分を、 そ の底辺と高さの比に多少変化を与えて 4つ組合わせて得られる導光板 2 1 0を、 本実施形態の導光板 2 1 0として用いることができる。 By the way, first, a light guide plate 210 shown in FIG. 2 is defined as a straight line that is perpendicular to the emission surface and that connects both ends of the side facing the light source 220 and the center of the side facing the side. The part that has an isosceles triangular shape (Fig. 11 (A)) when viewed from the direction perpendicular to the emission surface created by cutting two planes is slightly changed in the ratio of the base to the height. When the four parts are combined (FIG. 11 (B)) and the adjacent parts are connected (FIG. 11 (C)), the light guide plate 210 shown in FIG. 10 is obtained. Thus, Fig. 3A to Fig. 3E, Fig. 4A to Fig. The light guide plate 210 shown in the modified example of the first embodiment using 4E or the like is perpendicular to the emission surface thereof, and faces both ends of the side facing the light source 220 and the side. The light guide plate 210 obtained by combining four parts obtained by cutting out two planes including a straight line connecting the center of the side with a slight change in the ratio of the base to the height is It can be used as the light guide plate 210 of the embodiment.

Claims

請 求 の 範 囲 The scope of the claims
1 . 透明材料を板状に形成したものであり、 その端面に臨ませた光源からその 内部に導入された光をその放出面から放出するようになっている導光板であって、 透明材料の内部に、 光を散乱させることのできる散乱粒子が拡散されており、 前記光源からその内部に導入された光を、 前記散乱粒子で散乱させて前記放出面 から放出するようになっているとともに、 1. A light guide plate that is formed of a transparent material in a plate shape and emits light introduced into the interior from a light source facing the end face from an emission surface thereof. Inside, scattering particles capable of scattering light are diffused, and light introduced into the inside from the light source is scattered by the scattering particles and emitted from the emission surface,
前記透明材料は、 前記光源からの光を前記放出面に近づける方向で曲げるよう に、 その部位により屈折率が変化させられている、  The transparent material has a refractive index that is changed depending on a position of the transparent material so as to bend the light from the light source toward the emission surface.
導光板。  Light guide plate.
2 . 前記散舌し粒子は、 前記光源から導入された光の強度の弱くなる場所ほど、 前記導光板を前記放出面に対して垂直に見た場合における単位面積あたりの数が 多くなるようになつている、  2. In the place where the intensity of light introduced from the light source becomes weaker, the number of particles per unit area when the light guide plate is viewed perpendicularly to the emission surface is increased in the place where the intensity of light introduced from the light source is reduced. It's been,
請求の範囲第 1項記載の導光板。  The light guide plate according to claim 1.
3 . 前記導光板は、 複数の小区画に区分されているとともに、 3. The light guide plate is divided into a plurality of small sections,
前記複数の小区画はすべてその内部における前記散乱粒子の密度が一定であり、 且つ前記複数の小区画のそれぞれにおける前記散乱粒子の密度が互いに異なるも のとされてなる、  All of the plurality of small sections have a constant density of the scattering particles inside thereof, and the density of the scattering particles in each of the plurality of small sections is different from each other.
請求の範囲第 1項又は第 2項記載の導光板。  3. The light guide plate according to claim 1 or 2.
4. 前記導光板における前記複数の小区画は、 前記光源が臨ませられることが 予定される部分に近い側から順に並べられており、且つ前記光源に近いものほど、 その小区画における前記散乱粒子の密度が小さくなるようにされている、 4. The plurality of small sections in the light guide plate are arranged in order from a side closer to a portion where the light source is expected to be exposed, and the closer to the light source, the more the scattering particles in the small section. The density of is reduced,
請求の範囲第 3項記載の導光板。  4. The light guide plate according to claim 3, wherein:
5 . 前記導光板における前記複数の小区画のうち、 前記光源が臨ませられるこ とが予定される部分を含むものは、 前記散乱粒子を含まないようにされている、 請求の範囲第 3項又は第 4項記載の導光板。 5. The light guide plate according to claim 3, wherein, among the plurality of small sections, a section including a portion where the light source is expected to be exposed is configured not to include the scattering particles. Or the light guide plate according to item 4.
6 . 透明材料により形成された、 前記散乱粒子を含まない小区画である第 1小 区画と、 6. a first sub-compartment formed of a transparent material, the sub-compartment not including the scattering particles;
透明材料により形成された、 前記散乱粒子を所定の密度で含む小区画である第 2小区画と、 The second section is a small section formed of a transparent material and containing the scattering particles at a predetermined density. 2 small parcels,
を、 少なくともそれらの一部に前記放出面に対して垂直な方向から見た場合に 重なり合う部分が存在するような状態で組合わせてなるとともに、  And in such a state that at least a part thereof has an overlapping portion when viewed from a direction perpendicular to the emission surface,
前記第 1小区画は、 前記光源から導入された光の強度が弱くなる場所ほどその 厚さが減るようにされ、 且つ前記第 2小区画は、 前記光源から導入された光の強 度が弱くなる場所ほどその厚さが増すようにされてなる、  The thickness of the first subsection is reduced as the intensity of the light introduced from the light source decreases, and the intensity of the light introduced from the light source is reduced in the second subsection. The more the place, the thicker it is,
請求の範囲第 1項又は第 2項記載の導光板。  3. The light guide plate according to claim 1 or 2.
7 . 前記散乱粒子は、 前記光源が臨ませられることが予定された所定の位置か らの距離がより大きい場所では、 それよりも距離が小さい場所に比較して、 前記 導光板を前記放出面に対して垂直に見た場合における単位面積あたりの数が少な くならないようになっている、  7. The scattering particles cause the light guide plate to move toward the emission surface at a location where the distance from a predetermined position where the light source is expected to face is larger than at a location where the distance is smaller. The number per unit area when viewed perpendicularly to
請求の範囲第 1項記載の導光板。  The light guide plate according to claim 1.
8 . 透明材料により形成された、 前記散乱粒子を含まない小区画である第 1小 区画と、  8. A first sub-section formed of a transparent material and not including the scattering particles,
透明材料により形成された、 前記散乱粒子を所定の密度で含む小区画である第 2小区画と、  A second small section formed of a transparent material, the second small section being a small section containing the scattering particles at a predetermined density;
を、 少なくともそれらの一部に前記放出面に対して垂直な方向から見た場合に 重なり合う部分が存在するような状態で組合わせてなるとともに、  And in such a state that at least a part thereof has an overlapping portion when viewed from a direction perpendicular to the emission surface,
前記第 1小区画は、 前記光源が臨ませられることが予定された所定の位置から の距離がより大きい場所では、 それよりも距離が小さい場所に比較して、 その厚 さが増さないようにされ、 且つ前記第 2小区画は、 前記光源が臨ませられること が予定された所定の位置からの距離がより大きい場所では、 それよりも距離が小 さい場所に比較して、 その厚さが減らないようにされてなる、  The first sub-section is such that its thickness is not increased at a place where the distance from a predetermined position where the light source is expected to be exposed is larger than that at a place where the distance is smaller than that of the first sub-section. And the second sub-compartment has a thickness at a place where the distance from a predetermined position where the light source is expected to be projected is larger than that at a place where the distance is smaller than the place where the light source is expected to be seen. Is not reduced,
請求の範囲第 1項又は第 7項記載の導光板。  8. The light guide plate according to claim 1 or claim 7.
9 . 前記導光板は矩形であり、 且つその一辺に前記光源が臨ませられることが 予定されており、 9. The light guide plate is rectangular, and the light source is expected to face one side thereof,
前記散乱粒子は、 前記光源が臨ませられることが予定された前記一辺からの距 離がより大きい場所では、 それよりも距離が小さい場所に比較して、 前記導光板 を前記放出面に対して垂直に見た場合における単位面積あたりの数が少なくなら ないようになっている、 The scattering particles cause the light guide plate to move away from the emission surface at a place where the distance from the one side where the light source is supposed to face is larger than at a place where the distance is smaller. If the number per unit area when viewed vertically is small Not to be,
請求の範囲第 1項記載の導光板。  The light guide plate according to claim 1.
1 0 . 透明材料により形成された、 前記散乱粒子を含まない小区画である第 1 小区画と、 10. A first subsection formed of a transparent material and not including the scattering particles,
透明材料により形成された、 前記散乱粒子を所定の密度で含む小区画である第 2小区画と、  A second small section formed of a transparent material, the second small section being a small section containing the scattering particles at a predetermined density;
を、 少なくともそれらの一部に前記放出面に対して垂直な方向から見た場合に 重なり合う部分が存在するような状態で組合わせてなるとともに、  And in such a state that at least a part thereof has an overlapping portion when viewed from a direction perpendicular to the emission surface,
前記第 1小区画は、 前記光源が臨ませられることが予定された前記一辺からの 距離がより大きい場所では、 それよりも距離が小さい場所に比較して、 その厚さ が増さないようにされ、 且つ前記第 2小区画は、 前記光源が臨ませられることが 予定された前記一辺からの距離がより大きい場所では、 それよりも距離が小さい 場所に比較して、 その厚さが減らないようにされてなる、  The first subsection is provided so that its thickness is not increased at a place where the distance from the one side where the light source is expected to face is larger than that at a place where the distance is smaller than the one side. And the thickness of the second sub-section does not decrease at a place where the distance from the one side where the light source is expected to face is larger than that at a place where the distance is smaller than the one side. Like that,
請求の範囲第 9項記載の導光板。  10. The light guide plate according to claim 9, wherein:
1 1 . 前記導光板は矩形であり、 且つその対向する所定の二辺に前記光源が臨 ませられることが予定されており、 1 1. The light guide plate is rectangular, and the light source is expected to face two predetermined opposite sides thereof,
前記散乱粒子は、 前記光源が臨ませられることが予定された前記二辺のうちの より近いものからの距離がより大きい場所では、 それよりも距離が小さい場所に 比較して、 前記導光板を前記放出面に対して垂直に見た場合における単位面積あ たりの数が少なくならないようになっている、  The scattering particles may cause the light guide plate to be located at a greater distance from a closer one of the two sides on which the light source is to be exposed, as compared to a smaller distance. The number per unit area when viewed perpendicular to the emission surface is not reduced,
請求の範囲第 1項記載の導光板。  The light guide plate according to claim 1.
1 2 . 透明材料により形成された、 前記散乱粒子を含まない小区画である第 1 小区画と、 1 2. A first sub-compartment formed of a transparent material, which is a sub-compartment not containing the scattering particles,
透明材料により形成された、 前記散乱粒子を所定の密度で含む小区画である第 2小区画と、  A second small section formed of a transparent material, the second small section being a small section containing the scattering particles at a predetermined density;
を、 少なくともそれらの一部に前記放出面に対して垂直な方向から見た場合に 重なり合う部分が存在するような状態で組合わせてなるとともに、  And in such a state that at least a part thereof has an overlapping portion when viewed from a direction perpendicular to the emission surface,
前記第 1小区画は、 前記光源が臨ませられることが予定された前記二辺のうち のより近いものからの距離がより大きい場所では、 それよりも距離が小さい場所 に比較して、 その厚さが増さないようにされ、 且つ前記第 2小区画は、 前記光源 が臨ませられることが予定された前記二辺のうちのより近いものからの距離がよ り大きい場所では、 それよりも距離が小さい場所に比較して、 その厚さが減らな いようにされてなる、 The first sub-section is located at a location where the distance from a closer one of the two sides where the light source is to be projected is larger, and where the distance is smaller than that. And the second sub-division has a greater distance from the closer one of the two sides on which the light source is to be exposed, as compared to At larger locations, the thickness is not reduced compared to locations at shorter distances.
請求の範囲第 1 1項記載の導光板。  The light guide plate according to claim 11, wherein:
1 3 . 前記導光板は矩形であり、 且つそのすベての辺に前記光源が臨ませられ ることが予定されており、  13. The light guide plate is rectangular, and the light source is expected to face all sides thereof.
前記散乱粒子は、 前記導光板における矩形を対角線で 4つに区切った各範囲に おいて、 その範囲の端部にある辺からの距離がより大きい場所では、 それよりも 距離が小さい場所に比較して、 前記導光板を前記放出面に対して垂直に見た場合 における単位面積あたりの数が少なくならないようになっている、  In each of the ranges in which the rectangle of the light guide plate is divided into four by a diagonal line, the scattering particles are compared with a place where the distance from the side at the end of the range is larger than a place where the distance is smaller. Then, the number per unit area when the light guide plate is viewed perpendicular to the emission surface is not reduced,
請求の範囲第 1項記載の導光板。  The light guide plate according to claim 1.
1 4. 透明材料により形成された、 前記散乱粒子を含まない小区画である第 1 小区画と、  1 4. a first sub-compartment formed of a transparent material, the sub-compartment not including the scattering particles;
透明材料により形成された、 前記散乱粒子を所定の密度で含む小区画である第 2小区画と、  A second small section formed of a transparent material, the second small section being a small section containing the scattering particles at a predetermined density;
を、 少なくともそれらの一部に前記放出面に対して垂直な方向から見た場合に 重なり合う部分が存在するような状態で組合わせてなるとともに、  And in such a state that at least a part thereof has an overlapping portion when viewed from a direction perpendicular to the emission surface,
前記第 1小区画は、 前記導光板における矩形を対角線で 4つに区切った各範囲 において、 その範囲の端部にある辺からの距離がより大きい場所では、 それより も距離が小さい場所に比較して、 その厚さが増さないようにされ、 且つ前記第 2 小区画は、 その範囲の端部にある辺からの距離がより大きい場所では、 それより も距離が小さい場所に比較して、 その厚さが減らないようにされてなる、 請求の範囲第 1 3項記載の導光板。  In each of the first subsections, in each of the four sections of the diagonal rectangle in the light guide plate, where the distance from the edge at the end of the range is larger, the location is smaller than the location where the distance is smaller. The thickness of the second sub-compartment is such that its thickness is not increased, and the second sub-compartment is located at a greater distance from the edge at the end of the area than at a smaller distance. 14. The light guide plate according to claim 13, wherein a thickness thereof is not reduced.
1 5 . 前記第 2小区画中の前記散乱粒子の密度は、 前記第 2小区画中のいずれ の部分でも同じになっている、 15. The density of the scattering particles in the second subsection is the same in any part of the second subsection.
請求の範囲第 6項、 第 8項、 第 1 0項、 第 1 2項、 又は第 1 4項記載の導光板。  The light guide plate according to claim 6, 8, 10, 10, 12, or 14.
1 6 . 前記光源からの光は、 前記第 1小区画から前記導光板に導入されるよう にされている、 請求の範囲第 6項、 第 8項、 第 1 0項、 第 1 2項、 又は第 1 4項記載の導光板。16. Light from the light source is adapted to be introduced into the light guide plate from the first small section, The light guide plate according to claim 6, 8, 10, 10, 12, or 14.
1 7 . 前記導光板は、 複数の小区画に区分されているとともに、 17. The light guide plate is divided into a plurality of small sections,
前記複数の小区画は、 前記光源が臨ませられることが予定される部分に近い側 から順に並べられており、 且つ前記光源に近いものほど、 その小区画を形成する 前記透明材料の屈折率が小さくなるようにされている、  The plurality of small sections are arranged in order from the side closer to the portion where the light source is expected to face, and the closer to the light source the refractive index of the transparent material that forms the smaller section is, Are being made smaller,
請求の範囲第 1項記載の導光板。  The light guide plate according to claim 1.
1 8 . 前記複数の小区画の隣接する小区画と接する端面はそれぞれ、 前記小区 画の 1つから前記光源が臨ませられることが予定される部分にその次に近い小区 画に入ってくる光が、 そこで屈折して前記放出面に近づくように進行方向を変え るようにされている、  18. Each of the end faces of the plurality of sub-sections that are in contact with the adjacent sub-sections, the light coming into the sub-section next to the portion where the light source is expected to be exposed from one of the sub-sections. However, the direction of travel is changed so as to be refracted and approach the emission surface.
請求の範囲第 1 7項記載の導光板。  The light guide plate according to claim 17.
1 9 . 前記第 2小区画を形成する透明材料の屈折率は、 前記第 1小区画を形成 する透明材料の屈折率よりも大きくされてなる、 19. The refractive index of the transparent material forming the second small section is set to be larger than the refractive index of the transparent material forming the first small section,
請求の範囲第 6項、 第 8項、 第 1 0項、 第 1 2項、 第 1 4項、 又は第 1 6項記 載の導光板。  A light guide plate according to claim 6, 8, 10, 10, 12, 14, or 16.
2 0 . 前記導光板は、 前記小区画の 1つを成形した後、 それと隣接する小区画 を次々に成形する多色成形法によって成形されたものである、  20. The light guide plate is formed by a multicolor molding method in which one of the small sections is formed, and then the adjacent small sections are formed one after another.
請求の範囲第 3項〜第 6項、 第 8項、 第 1 0項、 第 1 2項、 第 1 4項〜第 1 8 項、 又は第 1 9項のいずれかに記載の導光板。  The light guide plate according to any one of claims 3 to 6, 8, 10, 10, 12, 14 to 18, or 19.
2 1 . 請求の範囲第 3項〜第 6項、 第 8項、 第 1 0項、 第 1 2項、 第 1 4項〜 第 1 9項、 又は第 2 0項記載の導光板の製造方法であって、 21. The method for manufacturing a light guide plate according to Claims 3 to 6, 8, 10, 10, 12, 14, 19, or 20. And
前記小区画のそれぞれを多色成形法によって成形することで前記導光板を製造 する、 導光板の製造方法。  A method for manufacturing a light guide plate, wherein the light guide plate is manufactured by molding each of the small sections by a multicolor molding method.
2 2 . 請求の範囲第 1項〜第 2 0項のいずれかに記載の導光板の端部に光源を 臨ませてなるバックライト。  22. A backlight in which a light source faces an end of the light guide plate according to any one of claims 1 to 20.
2 3 . 請求の範囲第 2 2項記載のバックライトを備えてなる液晶表示装置。  23. A liquid crystal display device comprising the backlight according to claim 22.
PCT/JP2005/011882 2004-06-22 2005-06-22 Light guide plate, method of manufacturing the same, back light, and liquid crystal display device WO2005124228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004183853A JP2007273090A (en) 2004-06-22 2004-06-22 Light guide plate, manufacturing method of light guide plate, backlight, and liquid crystal display device
JP2004-183853 2004-06-22

Publications (1)

Publication Number Publication Date
WO2005124228A1 true WO2005124228A1 (en) 2005-12-29

Family

ID=35509771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011882 WO2005124228A1 (en) 2004-06-22 2005-06-22 Light guide plate, method of manufacturing the same, back light, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2007273090A (en)
WO (1) WO2005124228A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252455A (en) * 2008-04-03 2009-10-29 Rohm Co Ltd Organic electroluminescent device
WO2021018139A1 (en) * 2019-07-31 2021-02-04 京东方科技集团股份有限公司 Transparent display apparatus and backlight module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010097110A1 (en) * 2009-02-24 2010-09-02 Agc Glass Europe Laminated glass diffused lighting panel
JP6043135B2 (en) * 2012-09-20 2016-12-14 武藤工業株式会社 Light guide plate creation method and apparatus, and light guide plate
KR101447943B1 (en) * 2013-10-25 2014-10-13 동양산업(주) Lighting device for displaying standby status of electronics
DE102013222702A1 (en) * 2013-11-08 2015-05-13 Osram Opto Semiconductors Gmbh Optoelectronic component, optoelectronic assembly, method for producing an optical element and method for producing an optoelectronic component
EP4063715B1 (en) 2019-11-19 2024-01-03 Mitsubishi Electric Corporation Light diffuser, light fixture, and method for manufacturing light diffuser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429290A (en) * 1990-05-25 1992-01-31 Sumitomo Electric Ind Ltd Light transmission plate
JPH06324330A (en) * 1993-04-05 1994-11-25 Yasuhiro Koike Light scattering and transmitting light source device
JPH07134298A (en) * 1993-11-11 1995-05-23 Enplas Corp Surface light source device
JPH0949928A (en) * 1995-08-09 1997-02-18 Kenwood Corp Lighting plate for liquid crystal display
JPH09269416A (en) * 1996-03-29 1997-10-14 Seiko Epson Corp Illuminator
JP2002296591A (en) * 2001-04-02 2002-10-09 Nippon Telegr & Teleph Corp <Ntt> Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429290A (en) * 1990-05-25 1992-01-31 Sumitomo Electric Ind Ltd Light transmission plate
JPH06324330A (en) * 1993-04-05 1994-11-25 Yasuhiro Koike Light scattering and transmitting light source device
JPH07134298A (en) * 1993-11-11 1995-05-23 Enplas Corp Surface light source device
JPH0949928A (en) * 1995-08-09 1997-02-18 Kenwood Corp Lighting plate for liquid crystal display
JPH09269416A (en) * 1996-03-29 1997-10-14 Seiko Epson Corp Illuminator
JP2002296591A (en) * 2001-04-02 2002-10-09 Nippon Telegr & Teleph Corp <Ntt> Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009252455A (en) * 2008-04-03 2009-10-29 Rohm Co Ltd Organic electroluminescent device
WO2021018139A1 (en) * 2019-07-31 2021-02-04 京东方科技集团股份有限公司 Transparent display apparatus and backlight module

Also Published As

Publication number Publication date
JP2007273090A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP6688744B2 (en) Optical system with variable viewing angle
US7401967B2 (en) Prism sheet and backlight module incorporating same
US7969531B1 (en) Integrated multi-function light guide for LCD backlighting
US20070064417A1 (en) Lighting system and back-light device using this lighting system
EP1662279A1 (en) Prism sheet and backlight unit employing the same
WO2005124228A1 (en) Light guide plate, method of manufacturing the same, back light, and liquid crystal display device
JP5071675B2 (en) Illumination device and display device
US8348490B2 (en) Planar light source device and method of manufacturing divided prism mold
KR20070007648A (en) Two-way light transmission reflective-transmissive prism sheet and two-way back light assembly and liquid crystal display device comprising the same
CN108646465B (en) Display device
US8118469B2 (en) Surface illuminating device and image display apparatus
JP4542478B2 (en) Light guide plate, planar illumination device using the same, and liquid crystal display device
JP2001147329A (en) Light guide plate, surface light source device and liquid crystal display device
US7857476B2 (en) Display backlight including an array of optical waveguides
JPH06324331A (en) Liquid crystal display device
JP3936871B2 (en) Light guide block
JP2003021727A (en) Light guide body and surface light source device and liquid crystal display device both using the body
WO2019123850A1 (en) Light source device and display device using same
KR101850428B1 (en) Light emitting module, display device including the same
WO2012165474A1 (en) Light-emitting element, photochromic element, display device, and illumination device
WO2022222083A1 (en) Backlighting module and display apparatus
CN116203763B (en) Backlight module and display device
US20110205449A1 (en) Lighting device, display device and television receiver
KR100897738B1 (en) Back light assembly for emitting the light both sides and liquid crystal display device using the same
RU2364904C1 (en) Backlighting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP