WO2005123320A1 - Spot welding robot system - Google Patents

Spot welding robot system Download PDF

Info

Publication number
WO2005123320A1
WO2005123320A1 PCT/JP2005/011475 JP2005011475W WO2005123320A1 WO 2005123320 A1 WO2005123320 A1 WO 2005123320A1 JP 2005011475 W JP2005011475 W JP 2005011475W WO 2005123320 A1 WO2005123320 A1 WO 2005123320A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
robot
spot welding
program
welding current
Prior art date
Application number
PCT/JP2005/011475
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Takamaru
Original Assignee
Takamaru Engineers Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takamaru Engineers Co., Ltd. filed Critical Takamaru Engineers Co., Ltd.
Publication of WO2005123320A1 publication Critical patent/WO2005123320A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts

Definitions

  • the present invention relates to a robot system for spot welding that can automate highly accurate spot welding by using a multi-joint general-purpose robot.
  • a spot welding robot unit having an electric servomotor as an opening / closing drive source for a spot welding tip is a robot system for spot welding.
  • the spot welding tip (specifically, a movable chip that is driven linearly in a reciprocating manner by a screw mechanism, etc.) is attached to a step robot.
  • a configuration is known in which a robot control device that controls the robot is configured to perform control in synchronization with another robot axis.
  • a welding control device for controlling the welding current at the time of welding by the spot welding gun nit is used in combination with a conventional general spot welding machine.
  • Patent Document 1 Japanese Utility Model Publication No.
  • Spot welding is usually performed between two spot welding tips (in general, a combination of a fixed tip and a movable tip driven in a distance direction with respect to the fixed tip).
  • a metal plate is sandwiched at a predetermined pressure, and in this state, a predetermined welding current is passed through the tip to the welding position of the statement to be welded, so that the welding portion is heated and melted, and the two welding objects (metal plate) ) Are welded together. Therefore, when performing spot welding, the required welding strength and appearance of the welded parts are ensured.
  • the welding force and welding current at the welding point must be set according to the physical properties of the welding object such as the material and thickness.
  • high quality appearance is demanded, especially high strength spot welding to aluminum plate.
  • the pressing force ⁇ the current value during energization is changed, the welding current energization time, It is theorized that it is necessary to change What is important in this case is that the applied force and the welding current are closely related to each other, so that the applied force and the welding current that are changed in accordance with the elapsed time are changed on a common time axis. This must be performed so that the temporal relationship between the change in the pressing force and the change in the welding current during one welding cycle is as set. on the other hand,
  • one welding cycle is usually very short, not milliseconds, but milliseconds, the control of the applied pressure and welding current during that one welding cycle must be performed with high accuracy in milliseconds.
  • the time difference between the time when the applied pressure changes and the time when the welding current changes during one welding cycle described above must be accurate as set in ms.
  • the pressure applied to the welding location is controlled by the control of the electric servomotor which is a driving source for opening and closing the spot welding tip. Therefore, in the configuration described in Patent Document 1, the control of the pressing force is performed by the robot control device that controls the robot, while the welding current is controlled by a separate device from the robot control device. It will be controlled by the welding control device. That is As a result, the robot driving program set in the robot control device is executed based on the time information from the timer provided in the robot control device, and as a result, the spot welding gun unit is set at a predetermined spot welding point.
  • the electric servo motor which is a driving source for opening and closing the spot welding tip
  • the robot drive program is controlled by the robot drive program, and the spot welding tip presses the welding portion of the welding object across the welding portion.
  • a welding start command is output from the mouth robot control device (robot drive program) to the welding control device, and a welding program provided in the welding control device, that is, an evening image provided in the welding control device is provided.
  • the welding program executed based on the time information from the beginning operates, a welding current is applied to the welding location, and spot welding is performed on the welding location.
  • the pressurization control of the spot welding tip by the electric servomotor is performed based on time information given from the timer provided in the robot control device.
  • the welding current is controlled by the robot driving program to be executed, and the welding current is controlled by the welding current control program executed based on the time information provided by the timer provided in the dragon control device. That is, the pressurization control and the welding current control, which are essential requirements for spot welding, are executed based on different time information given from different timers. Even if the program is set up precisely using the time axis in ms units, when the pressurization control and the welding current control are independently verified, the pressurization control and the welding current are controlled on the time axis used by each program.
  • An object of the present invention is to provide a robot system for spot welding that can solve the conventional problems as described above, and its means are denoted by reference numerals in the embodiments described later.
  • the robot 1 is attached to the robot arm 8 at the last stage of the robot 1 and has a motor-driven servo motor 14 as an open / close drive source for the spot welding tips 11 and 13.
  • a current control device welding current control unit 29
  • main control device 19 includes a tip drive program 28 for controlling the electric servomotor 14 and the welding current control.
  • Welding current control program 27 that controls the welding position (welding current control unit 29), and one timer 25 that provides time information to both programs 27 and 28 Based on the start command (weld point arrival signal 22 a), it operates according to the common time information 25 a given from the tip drive program 28, the welding current control program 27 and the timer 25, and spot welding is performed.
  • the opening / closing drive of the chips 1 to 13 and the control of the welding current therebetween are performed on a common time axis in accordance with both programs 27 and 28.
  • the tip drive program 28 and the welding current control program 27 are shown to exist independently of each other. Since these two programs 27 and 28 are recorded in the memory of one hardware called the main control leaving 19, a chip driving program consists of a driving program section and a welding current control program section. It can be designed and recorded as one program (welding program 24). In addition, the main controller 19 and the welding current controller (welding current controller 29) do not need to be separately separated as hardware. It can also be implemented as a welding machine with a built-in drive program 28, welding current control program 27, control unit (servo amplifier, etc.) 26 of the electric servomotor 14.
  • the mouth robot 1 is not limited to the multi-joint general-purpose robot employed in the embodiment described later, but includes a final-stage robot arm that can reciprocate only in one-dimensional direction such as a vertical movement. It may be provided. That is, the system of the present invention includes a stationary foot-stepping start type spot welding machine provided with an elevating handle for driving the movable tip up and down, and the elevating and lowering drive for moving the welding object and the movable tip. The present invention can also be applied to an automatic spot welding machine or the like that can automatically change a welding position on a workpiece by sequentially moving one of the handles.
  • a tip drive program for controlling an electric servomotor for opening and closing a spot welding tip is separated from the robot control device.
  • the main control unit is installed together with the welding current control program that controls the welding current control unit, and one timer is used to provide common time information to both programs. Both programs can be operated on a common time axis. In other words, the change over time in the pressing force (the number of rotations of the electric servomotor) and the change over time in the welding current value due to the tip drive during one welding cycle are calculated.
  • the relative time relationship between the change in welding pressure and the change in welding current during a welding cycle can be expressed in ms. With this, it is possible to reproduce spots exactly as programmed and to automate spot welding with extremely high precision and high quality while using multi-joint general-purpose robots.
  • FIG. 1 is a side view of a multi-joint general-purpose robot to which a welding gun unit is attached, and a block diagram illustrating an external device used in combination.
  • FIG. 2 is a block diagram illustrating the configuration of the entire robot system of the present invention.
  • FIG. 3 is a graph illustrating the contents of a tip drive program (pressurization control program) and a welding current control program.
  • reference numeral 1 denotes a six-axis multi-joint general-purpose robot having a vertical axis 2a with respect to a base 2.
  • the first turntable 3 rotatably mounted around the first turntable 3, the first robot arm 4 supported movably around the horizontal axis 3 a with respect to the first turntable 3, and the first a-bottom Arm 5 connected to the distal end of the arm 4 in such a manner as to be capable of circulating around a horizontal axis 4a parallel to the horizontal axis 3a.
  • the distal end of the joint arm 5 is perpendicular to the horizontal axis 4a.
  • Sigma-bottom arm 6 rotatably connected around the axis 5a of the second robot arm 6 at the end of the second robot arm 6 around the axis 6a perpendicular to the axis 5a.
  • a third robot arm 7 connected to the third robot arm 7 and an axis perpendicular to the axis 6 a at the tip of the third robot arm 7. Pivotally connected around heart 7a
  • the final stage robot arm 8 is constructed.
  • a spot welding gun unit 9 is attached to the end of the final robot arm 8. As shown in FIG. 2, the spot welding gun unit 9 has a fixed chip 11 attached to the inside of the lower end of the C-shaped member 10. The C-shaped member is opposed to the fixed tip 11.
  • Chip open / close driving means 12 attached to the upper end side of 10; movable chip 13 supported by this chip open / close drive means 12 and driven in the near / far direction with respect to fixed chip 11; It consists of a motor-driven boom as a drive source, a transformer for welding current, and a welding current supply transformer.
  • As the tip opening / closing drive means 12 a screw feed mechanism using a ball screw can be used. The screw feed mechanism is driven by the electric servomotor 14 to drive the movable tip 1. 3 can be moved in the distance direction with respect to the fixed tip 11.
  • An encoder 16 (see FIG. 2) for detecting the current position of the movable chip 13 is interlocked with the electric servo motor 14.
  • a conventionally well-known robot controller 17 is used in combination with the multi-joint general-purpose robot 1.
  • a welding power source 18 for supplying a welding current to the movable chip 13 via the transformer 15 and the main control device 19 are used in combination.
  • the multi-joint general-purpose robot 1 is equipped with a robot axis driving means 20 and an ⁇ -bot axis position detector 21 as is well known in the art.
  • the robot control device 17 includes a robot driving program 22 for controlling the robot axis driving means 20 and a spot welding program based on signals from the robot axis position detectors 21. It is provided with a welding gun current position calculator 23 that calculates and outputs current position information (three-dimensional coordinate values and attitude data) of the gun unit 9.
  • Robot drive program The robot 22 moves the spot welding gun unit 9 in the home position to the spot welding point of the welding object set in the fixed position with respect to the multi-joint general-purpose robot 1 based on the activation finger.
  • the current position information of the spot welding gun unit 9 which is fed back in real time from the welding gun current position calculation unit 23 in order for the fixed tip 11 to move to the corresponding position and posture in a predetermined posture 2 3.
  • the main controller 19 includes a welding program 24, one timer 25, and a servo motor controller 26.
  • the welding program 24 is composed of a welding current control program 27 and a tip drive program 28, and both the programs 27 and 28 are provided with the common time information 25a from the timer 25.
  • the welding current control program 27 controls the welding current control unit 29 included in the welding power source 18, and pressurizes the fixed tip 11 and the movable tip 13 included in the spot welding gun unit 9. It controls the welding current flowing to the spot welding point of the sandwiched welding object.
  • the tip drive program 28 includes a position control based on the tip current position information 16a which is fed back in real time from the encoder 16 included in the spot welding gun unit 9, and a movable tip (not shown).
  • Pressurization control started just before 13 starts to pressurize the welding object that is, an application based on the current torque value measured and fed back from the load current value acting on the electric servomotor 14
  • Pressure control is performed via the servo motor-one control unit 26 to the electric servo motor 14 provided with the spot welding gun unit 9.
  • the electric servo motor 14 The driven tip opening / closing drive means 12 drives the movable tip 13 in the perspective direction with respect to the fixed tip 11 1 in accordance with the programmed opening / closing operation.
  • the spot welding point of the object to be welded can be pressurized at a predetermined pressure between the welding program and the welding process. Based on FIG. 3, the configuration of the welding program 24 will be described in more detail.
  • FIG. 3B is a graph showing a change in welding current with respect to a spot welding point set by the welding current control program 27, in which the horizontal axis represents time and the vertical axis represents current value.
  • the tip drive program 28 is a robot drive program of the robot controller 17 when the spot welding gun unit 9 (fixed tip 11) reaches the set spot welding point and stops. From the point when the welding point reaching signal (welding start command) 2 2a output from 2 2 is received, that is, from the start of welding, it can be moved by the electric servo motor 14 so that the applied pressure becomes P 1. After lowering the tip 13 and maintaining the state for a time X 1 ms, the movable tip 13 is further lowered by the electric servomotor 14 so as to increase the applied pressure from P1 to P2.
  • the electric servomotor 14 is supported so that the movable chip 13 is lifted and opened by the electric servomotor 14.
  • the welding current control program 27 controls the welding current so that the welding current of A ampere flows between the chips 11 and 13 for the time Y 2 ms from the time delayed from the welding start time by the time Y 1 ms. Control part 29.
  • the two programs of the welding current control program 27 and the tip drive program 28 operate based on the common time information 25 a given from one timer 25, and consequently, As shown in FIG. 3C, control of the welding current control unit 29 by the welding current control program 27 (welding 1 o
  • the current control) and the control of the electric servomotor 14 by the tip drive program 28 are executed on a common time axis, and the change in the pressing force and the change in the welding current are performed.
  • the temporal relationship between the two does not collapse. That is, when the tip drive program 28 and the welding current control program 27 operate on the basis of the time information given from the dedicated timers, both programs 27 , 28, there is a difference between the time axis of the graph of the pressure change shown in Fig. 3A and the time axis of the graph of the welding current change shown in Fig. 3B. Therefore, even if these two programs 27 and 28 are executed, as shown in Fig. 3C, the graph of the applied pressure change shown in Fig. 3A and the welding current shown in Fig. 3B will be obtained. The graph of the change is not superimposed, and the temporal relationship between the change in the applied pressure and the change in the welding current is broken. Does not occur.
  • One welding cycle is completed when the movable tip 13 is lifted and opened by the electric servomotor 14.At this time, the welding end signal 28a from the welding program 24 (chip drive program 28) is sent to the robot. This is output to the robot drive program 22 of the remote controller 17. Thus, when the next spot welding point is set, the robot drive program 22 operates again based on the welding end signal 28a, and the spot is moved toward the next spot welding point.
  • the multi-joint general-purpose robot 1 is driven by each axis driving means 2 0. The force controlled by the next spot ⁇ The next spot Depending on the structure of the welding object at the welding point, etc.
  • the electric servomotor 14 is controlled so that the ascending position of the movable tip 13 at the completion of the welding cycle is set to an intermediate position (closer to the fixed tip 11) lower than the ascending limit position (home position). Cycle at spot welding point Time can be reduced. Of course, when the spot welding for all the set spot welds is completed, the final welding end signal
  • the electric servomotor 14 is controlled so as to raise the movable tip 13 to the ascending position (home position), and the gun welding unit 9 for spot welding is controlled.
  • the robot axis driving means 20 is controlled so as to return to the home position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)
  • Manipulator (AREA)

Abstract

High-precision, high-quality spot welding is automated by utilizing an articulated general-purpose robot, or the like. The spot welding robot system comprises a spot welding gun unit (9) fixed to an articulated general-purpose robot (1), or the like, and having a servo motor (14) as the open/close drive source of spot welding chips (11, 13), a robot controller (17), a welding current control section (29), and a main controller (19). The main controller (19) comprises a chip drive program (28) for controlling the motor (14), a welding current control program (27) for controlling the welding current control section (29), and one timer (25) common to both programs and providing time information to both programs (27, 28). The open/close driving of the spot welding chips (11, 13) and welding current control between them are performed on a common time axis according to both programs (27, 28).

Description

明細書  Specification
スポッ ト溶接用ロボッ トシステム 技術分野  Robot system for spot welding
本発明は、 多関節汎用ロボッ トを利用して高精度のスポッ ト溶接を自 動化できるスポッ ト溶接用ロボッ トシステムに関するものである。 背景技術  The present invention relates to a robot system for spot welding that can automate highly accurate spot welding by using a multi-joint general-purpose robot. Background art
スポッ ト溶接用ロボッ トシステムとしては、 特許文献 1 に開示される ように、 スポッ ト溶接用チップの開閉駆動源として電動式サ一ボモータ 一を備えたスポッ ト溶接用ガンュニッ トをロボッ 卜の最終段ロボッ トァ ー厶に取り付け、 この電動式サ一ボ乇一夕一で開閉駆動されるスポッ ト 溶接用チップ (具体的には、 ねじ機構などで往復直線駆動される可動チ ップ) を前記ロボッ トの追加された 1軸芯として、 当該ロボッ トを制御 するロボッ ト制御装置により、 他のロボッ ト軸芯と同期的に制御するよ うに構成したものが知られている。 勿論この場合、 従来の一般的なスポ ッ ト溶接機と同様に、 スポッ ト溶接用ガンュニッ トによる溶接時の溶接 電流を制御する溶接用制御装置が併用される。  As disclosed in Patent Document 1, a spot welding robot unit having an electric servomotor as an opening / closing drive source for a spot welding tip is a robot system for spot welding. The spot welding tip (specifically, a movable chip that is driven linearly in a reciprocating manner by a screw mechanism, etc.) is attached to a step robot, As a single-axis core to which a robot is added, a configuration is known in which a robot control device that controls the robot is configured to perform control in synchronization with another robot axis. Of course, in this case, a welding control device for controlling the welding current at the time of welding by the spot welding gun nit is used in combination with a conventional general spot welding machine.
【特許文献 1】 実開平 5 - 3 3 9 6 8号公報  [Patent Document 1] Japanese Utility Model Publication No.
スポッ ト溶接は、 開閉駆動されるスポッ ト溶接用チップ (一般的には 、 固定チップと当該固定チップに対し遠近方向に駆動される可動チップ との組合せ) 間で通常二枚の溶接対象物 (金属板) を所定圧力で挟み付 け、 その状態で当該チップを通じて所定の溶接電流を溶接対象文の溶接 箇所に長洲ことにより、 当該溶接箇所を発熱溶融させて二枚の溶接対象 物 (金属板) を互いに溶着させることである。 而して、 スポッ ト溶接を 行う際しては、 要求される溶接強度や溶接箇所の外観状態が確保 できるように、 材質や厚みなど溶接対象物の物性に応じて、 溶接箇所に 対する加圧力と溶接電流などを設定することになるが、 近年の産業界で は、 スポッ ト溶接箇所に高い溶接強度と高品質の外観状態が要望され、 特にアルミニゥム板に対する高強度のスポッ ト溶接も要望される状況に あな。 Spot welding is usually performed between two spot welding tips (in general, a combination of a fixed tip and a movable tip driven in a distance direction with respect to the fixed tip). A metal plate is sandwiched at a predetermined pressure, and in this state, a predetermined welding current is passed through the tip to the welding position of the statement to be welded, so that the welding portion is heated and melted, and the two welding objects (metal plate) ) Are welded together. Therefore, when performing spot welding, the required welding strength and appearance of the welded parts are ensured. In order to be able to do so, the welding force and welding current at the welding point must be set according to the physical properties of the welding object such as the material and thickness. Nowadays, high quality appearance is demanded, especially high strength spot welding to aluminum plate.
このような要望に応えるためには、 一定圧力で溶接対象物を加圧して いる状態で一定の溶接電流を流せば良いという単純なことではなくなり To meet such demands, it is no longer a simple matter that a constant welding current should be applied while the welding target is pressurized at a constant pressure.
、 1溶接サイクル (溶接箇所に対する加圧開始から加圧終了までの時間 ) 中で加圧力ゃ通電中の電流値を変化させることや、 溶接電流の通電時 間、 通電開始時点ゃ通電終了時点などを変える必要があるということが 理論的に知られている。 この場合に重要なことは、 加圧力と溶接電流と は互いに密接に関係しているため、 経過時間に対応して変化せしめられ る加圧力や溶接電流は、 共通の時間軸芯上で変化せしめらちれることで あり、 1溶接サイクル中での加圧力の変化と溶接電流の変化との時間的 な相対関係が設定通りとなるように実行されなければならない。 一方、In one welding cycle (the time from the start of pressurization to the end of pressurization of the welded part), the pressing force ゃ the current value during energization is changed, the welding current energization time, It is theorized that it is necessary to change What is important in this case is that the applied force and the welding current are closely related to each other, so that the applied force and the welding current that are changed in accordance with the elapsed time are changed on a common time axis. This must be performed so that the temporal relationship between the change in the pressing force and the change in the welding current during one welding cycle is as set. on the other hand,
1溶接サイクルは、 通常、 秒単位ではなく、 m s単位の非常に短いもの であるから、 その 1溶接サイクル中でき加圧力や溶接電流の制御は、 m s単位で高精度に行われる必要があり、 当然、 上記の 1溶接サイクル中 でき加圧力の変化時期と溶接電流の変化時期とのずれ時間も m s単位で 設定された通りに正確でなければならない。 Since one welding cycle is usually very short, not milliseconds, but milliseconds, the control of the applied pressure and welding current during that one welding cycle must be performed with high accuracy in milliseconds. Naturally, the time difference between the time when the applied pressure changes and the time when the welding current changes during one welding cycle described above must be accurate as set in ms.
而して、 先に説明したようなスポッ ト溶接用ロボッ トシステムにおい ては、 スポッ ト溶接用チップの開閉駆動源である電動式サーボモ一夕一 の制御によって溶接箇所に対する加圧力が制御されるのであるから、 特 許文献 1 に記載の構成では、 加圧力の制御はロボッ トを制御するロボッ ト制御装置により実行されることになり、 一方、 溶接電流は、 ロボッ ト 制御装置とは別の溶接用制御装置によって制御されることになる。 即ち 、 ロボッ ト制御装置に設定されたロボッ ト駆動プログラムがこのロボッ ト制御装置が備える夕イマ一からの時間情報に基づいて実行される結果 、 スポッ ト溶接用ガンュニッ トが所定のスポッ ト溶接点に到達すると同 時にスポッ ト溶接用チップの開閉駆動源である電動式サ一ボーモーター が前記ロボッ ト駆動プログラムによって制御され、 スポッ ト溶接用チッ プが溶接対象物の溶接箇所を挟んで加圧を開始する。 このとき、 当該口 ボッ ト制御装置 (ロボッ ト駆動プログラム) から溶接用制御装置に溶接 開始指令が出力され、 この溶接用制御装置が備える溶接プログラム、 即 ち、 この溶接用制御装置が備える夕イマ一からの時間情報に基づいて実 行される溶接プログラムが動作し、 溶接箇所に溶接電流が流され、 溶接 箇所に対するスポッ ト溶接が行われる。 Thus, in the robot system for spot welding as described above, the pressure applied to the welding location is controlled by the control of the electric servomotor which is a driving source for opening and closing the spot welding tip. Therefore, in the configuration described in Patent Document 1, the control of the pressing force is performed by the robot control device that controls the robot, while the welding current is controlled by a separate device from the robot control device. It will be controlled by the welding control device. That is As a result, the robot driving program set in the robot control device is executed based on the time information from the timer provided in the robot control device, and as a result, the spot welding gun unit is set at a predetermined spot welding point. At the same time, the electric servo motor, which is a driving source for opening and closing the spot welding tip, is controlled by the robot drive program, and the spot welding tip presses the welding portion of the welding object across the welding portion. Start. At this time, a welding start command is output from the mouth robot control device (robot drive program) to the welding control device, and a welding program provided in the welding control device, that is, an evening image provided in the welding control device is provided. The welding program executed based on the time information from the beginning operates, a welding current is applied to the welding location, and spot welding is performed on the welding location.
【発明の開示】 DISCLOSURE OF THE INVENTION
以上のように、 従来のスポッ ト溶接用ロボッ トシステムにおいては、 スポッ ト溶接用チップの電動式サーボモータ一による加圧制御は、 ロボ ッ ト制御装置が備えるタイマーから与えられる時間情報に基づいて実行 されるロボッ ト駆動プログラムにより行われ、 溶接電流の制御は、 龍 用制御装置が備える夕イマ一から与えられる時間情報に基づいて実行さ れる溶接電流制御プログラムによって行われることになる。 即ち、 スポ ッ ト溶接を行う場合の必須要件である加圧制御と溶接電流制御とがそれ ぞれ別のタイマーから与えられる異なる時間情報に基づいて実行される ことになるので、 仮にそれぞれの制御プログラムを m s単位の時間軸を 使用して精密に組んだとしても、 加圧制御と溶接電流制御とをそれぞれ 単独で検証したとき、 各プログラムが使用する時間軸上で加圧制御と溶 接電流制御のそれぞれプログラム通りに実行されているだけであって、 加圧制御と溶接電流制御との組み合わせからなる溶接プログラムに時間 情報を与えるタイマーの特性 (精度) やプログラム起動時基準時点の誤 差などが原因で、 1溶接サイクル中での加圧力の変化と溶接電流との間 の時間的な相対関係にずれが生じることになり、 1溶接サイクル中での 加圧力の変化と溶接電流の変化との時間的な相対関係を m s単位で設定 された通りに正確に再現することが現実には不可能になるから、 高精度 なスポッ ト溶接を実現することができなかった。 As described above, in the conventional robot system for spot welding, the pressurization control of the spot welding tip by the electric servomotor is performed based on time information given from the timer provided in the robot control device. The welding current is controlled by the robot driving program to be executed, and the welding current is controlled by the welding current control program executed based on the time information provided by the timer provided in the dragon control device. That is, the pressurization control and the welding current control, which are essential requirements for spot welding, are executed based on different time information given from different timers. Even if the program is set up precisely using the time axis in ms units, when the pressurization control and the welding current control are independently verified, the pressurization control and the welding current are controlled on the time axis used by each program. Only the control is executed according to the program, and the welding program consisting of the combination of pressurization control and welding current control takes time. Due to the characteristics (accuracy) of the timer that gives the information or the error in the reference time at the start of the program, there is a deviation in the temporal relative relationship between the change in the pressing force during one welding cycle and the welding current. Since it becomes impossible in reality to accurately reproduce the temporal relationship between the change in the applied pressure and the change in the welding current in one welding cycle as set in ms, Accurate spot welding could not be achieved.
本発明は上記のような従来の問題点を解消し得るスポッ ト溶接用ロボ ッ トシステムを提供することを目的とするものであって、 その手段を後 述する実施形態の参照符号を付して示すと、 ロボッ ト 1、 このロボッ ト 1 の最終段ロボッ トアーム 8に取り付けられ且つスポッ ト溶接用チップ 1 1、 1 3の開閉駆動源として電動式サーボ一モータ一 1 4を備えたス ポッ ト溶接用ガンュニッ ト 9、 前記ロボッ ト 1 をロボッ ト駆動プログラ ム ト 2 2に基づいて制御するロボッ ト制御装置 1 7、 前記スポッ ト溶接 用ガンュニッ ト 9 による溶接時の溶接電流を制御する溶接電流制御装置 ( 溶接電流制御部 29) 、 、 及び主制御装置 19を備え、 前記主制御装置 1 9は、 前記電動式サーボモーター 1 4を制御するチップ駆動プログラム 2 8 と前記溶接電流制御装置 (溶接電流制御部 2 9 ) を制御する溶接電 流制御プログラム 2 7、 及びこれら両プログラム 2 7 , 2 8に対して時 間情報を与える両プログラム共通の 1つのタイマー 2 5を備え、 溶接開 始指令 (溶接点到達信号 2 2 a ) に基づき、 前記チップ駆動プログラム 2 8 と溶接電流制御プログラム 2 7 と前記タイマー 2 5から与えられる 共通の時間情報 2 5 aに従って動作し、 スポッ ト溶接用チップ 1 し 1 3の開閉駆動とその間の溶接電流の制御とが共通の時間軸芯上で両プロ グラム 2 7 , 2 8に従って実行される構成となっている。  An object of the present invention is to provide a robot system for spot welding that can solve the conventional problems as described above, and its means are denoted by reference numerals in the embodiments described later. The robot 1 is attached to the robot arm 8 at the last stage of the robot 1 and has a motor-driven servo motor 14 as an open / close drive source for the spot welding tips 11 and 13. Welding gun unit 9, robot control unit 17 for controlling robot 1 based on robot drive program 22, welding for controlling welding current at the time of welding by gun unit 9 for spot welding A current control device (welding current control unit 29); a main control device 19; and the main control device 19 includes a tip drive program 28 for controlling the electric servomotor 14 and the welding current control. Welding current control program 27 that controls the welding position (welding current control unit 29), and one timer 25 that provides time information to both programs 27 and 28 Based on the start command (weld point arrival signal 22 a), it operates according to the common time information 25 a given from the tip drive program 28, the welding current control program 27 and the timer 25, and spot welding is performed. The opening / closing drive of the chips 1 to 13 and the control of the welding current therebetween are performed on a common time axis in accordance with both programs 27 and 28.
尚、 理解を容易にするため、 チップ駆動プログラム 2 8 と溶接電流制 御プログラム 2 7 とが各々独立して存在するように表現しているが、 こ れら 2つのプログラム 2 7 , 2 8は主制御放置 1 9 という 1つのハ ー ド ウェアのメモリ一に記録されるものであるから、 チップ駆動プログラム 駆動プログラム部と溶接電流制御プログラム部とから成る 1つのプロ グラム (溶接プログラム 2 4 ) として設計し、 記録することができる。 また、 主制御装置 1 9 と溶接電流制御装置 (溶接電流制御部 2 9 ) とは 、 ハー ドウェアとして個別に分けておく必要はなく、 場合によっては両 者を 1つの筐体に内蔵させ、 チップ駆動プログラム 2 8、 溶接電流制御 プログラム 2 7、 電動式サーボモータ一 1 4の制御部 (サ一ボアンプな ど) 2 6などを内蔵する溶接機として実施することもできる。 また、 口 ボッ ト 1 としては、 後述する実施形態で採用している多関節汎用ロボッ 卜に限定されるものではなく、 昇降運動などの一次元方向にのみ往復移 動自在な最終段ロボッ トアームを備えたものであっても良い。 即ち、 本 発明のシステムは、 たとえ度、 可動チップを昇降駆動する昇降ハン ドル を備えた据置き型の脚踏み起動式スポッ ト溶接機や、 溶接対象物と可動 チップを昇降駆動する前記昇降ハン ドルとの内の何れか一方を移動させ て溶接対象物に対する溶接箇所を順次自動的に変えることができる自動 スポッ ト溶接機などにも応用することができるものである。 In order to facilitate understanding, the tip drive program 28 and the welding current control program 27 are shown to exist independently of each other. Since these two programs 27 and 28 are recorded in the memory of one hardware called the main control leaving 19, a chip driving program consists of a driving program section and a welding current control program section. It can be designed and recorded as one program (welding program 24). In addition, the main controller 19 and the welding current controller (welding current controller 29) do not need to be separately separated as hardware. It can also be implemented as a welding machine with a built-in drive program 28, welding current control program 27, control unit (servo amplifier, etc.) 26 of the electric servomotor 14. Further, the mouth robot 1 is not limited to the multi-joint general-purpose robot employed in the embodiment described later, but includes a final-stage robot arm that can reciprocate only in one-dimensional direction such as a vertical movement. It may be provided. That is, the system of the present invention includes a stationary foot-stepping start type spot welding machine provided with an elevating handle for driving the movable tip up and down, and the elevating and lowering drive for moving the welding object and the movable tip. The present invention can also be applied to an automatic spot welding machine or the like that can automatically change a welding position on a workpiece by sequentially moving one of the handles.
上記構成の本発明に係るスポッ ト溶接 fflロボッ トシステムによれば、 スポッ ト溶接用チップを開閉駆動する電動式サーボモーターを制御する チップ駆動プログラム (加圧制御プログラム) をロボッ ト制御装置から 切り離して、 溶接電流制御装置を制御する溶接電流制御プログラムと共 に主制御装置に組み込み、 これら両プログラムに対して 1つのタイマー から共通の時間情報を与えるようにしたので、 チップ駆動プログラムと 溶接電流制御プログラムの両者を共通の時間軸上で動作させることがで きる。 換言すれば、 1溶接サイクル中のチップ駆動による加圧力 (電動 式サーボモーターの回転数) の経時変化と溶接電流値 の経時変化とを 共通の時間軸上で設定することができると共に、 その設定通りに再現さ せることができるので、 1溶接サイクル中の加圧力の変化と溶接電流値 の変化との時間的な相対関係を m s単位でプログラム通り正確に再現さ せ、 多関節汎用ロボッ トを利用しながら極めて高精度で高品質なスポッ ト溶接を自動化させることができる。 According to the spot welding ffl robot system of the present invention having the above-described configuration, a tip drive program (pressurization control program) for controlling an electric servomotor for opening and closing a spot welding tip is separated from the robot control device. The main control unit is installed together with the welding current control program that controls the welding current control unit, and one timer is used to provide common time information to both programs. Both programs can be operated on a common time axis. In other words, the change over time in the pressing force (the number of rotations of the electric servomotor) and the change over time in the welding current value due to the tip drive during one welding cycle are calculated. Since it can be set on a common time axis and can be reproduced as set, the relative time relationship between the change in welding pressure and the change in welding current during a welding cycle can be expressed in ms. With this, it is possible to reproduce spots exactly as programmed and to automate spot welding with extremely high precision and high quality while using multi-joint general-purpose robots.
【図面の簡単な説明】 [Brief description of the drawings]
【図 1】 溶接ガンュニッ トが取り付けられた多関節汎用ロボッ ト の側面図と、 併用される外部装置を説明するプロック線図である。  FIG. 1 is a side view of a multi-joint general-purpose robot to which a welding gun unit is attached, and a block diagram illustrating an external device used in combination.
【図 2】 本発明ロボッ トシステム全体の構成を説明するプロック 線図である。  FIG. 2 is a block diagram illustrating the configuration of the entire robot system of the present invention.
【図 3】 チップ駆動プログラム (加圧制御プログラム) と溶接電 流制御プログラムの内容を説明するグラフである。 発明を実施するための最良の形態  FIG. 3 is a graph illustrating the contents of a tip drive program (pressurization control program) and a welding current control program. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の具体的実施例を添付図に基づいて説明すると、 図 1に おいて、 1 は 6軸の多関節汎用ロボッ 卜であって、 基台 2に対して垂直 軸心 2 aの周りに回転可能に搭載された第一回転台 3、 この第一回転台 3に対して水平軸心 3 aの周りに扇動自在に支持された第一ロボッ トァ ーム 4、 この第一 aボッ トアーム 4の先端部に前記水平軸心 3 aと平行 な水平軸心 4 aの周りに扇動自在に連結された関節アーム 5、 この関節 アーム 5の先端に 前記水平軸心 4 aに対し直角向きの軸心 5 aの周り に自転可能に連結された第二 σボッ トアーム 6、 この第二ロボッ トァー ム 6の先端に前記軸心 5 aに対し直角向きの軸心 6 aの周りに扇動自在 に連結された第三ロボッ トアーム 7、 及び当該第三ロボッ トアーム 7の 先端に前記軸心 6 aに対し直角向きの軸心 7 aの周りに自転可能に連結 された最終段ロボッ トアーム 8から構成されている。 Hereinafter, a specific embodiment of the present invention will be described with reference to the accompanying drawings. In FIG. 1, reference numeral 1 denotes a six-axis multi-joint general-purpose robot having a vertical axis 2a with respect to a base 2. The first turntable 3 rotatably mounted around the first turntable 3, the first robot arm 4 supported movably around the horizontal axis 3 a with respect to the first turntable 3, and the first a-bottom Arm 5 connected to the distal end of the arm 4 in such a manner as to be capable of circulating around a horizontal axis 4a parallel to the horizontal axis 3a. The distal end of the joint arm 5 is perpendicular to the horizontal axis 4a. Sigma-bottom arm 6 rotatably connected around the axis 5a of the second robot arm 6 at the end of the second robot arm 6 around the axis 6a perpendicular to the axis 5a. A third robot arm 7 connected to the third robot arm 7 and an axis perpendicular to the axis 6 a at the tip of the third robot arm 7. Pivotally connected around heart 7a The final stage robot arm 8 is constructed.
前記最終段ロボッ トアーム 8の先端には、 スポッ ト溶接用ガンュニッ ト 9が取り付けられている。 このスポッ ト溶接用ガンユニッ ト 9は、 図 2にも示すように、 C形部材 1 0の下端内側に取り付けられた固定チッ プ 1 1、 この固定チップ 1 1 に対向するように前記 C形部材 1 0の上端 側に取り付けられたチップ開閉駆動手段 1 2、 このチップ開閉駆動手段 1 2に支持されて前記固定チップ 1 1 に対し遠近方向に駆動される可動 チップ 1 3、 前記 チップ開閉駆動手段 1 2の駆動源としての電動式サ —ボモ一夕一 1 4、 及び溶接電流供給用 トランス 1 5などから構成され ている。 前記チップ開閉駆動手段 1 2としては、 ボールスク リ ユ ーを利 用したねじ送り機構を利用することができ、 このねじ送り機構を前記電 動式サーボモータ一 1 4で駆動して前記可動チップ 1 3を固定チップ 1 1 に対し遠近方向に移動させることができる。 また、 電動式サーボモ一 ター 1 4には、 可動チップ 1 3の現在位置検出のためのエンコーダ一 1 6 (図 2参照) が連動連結される。  A spot welding gun unit 9 is attached to the end of the final robot arm 8. As shown in FIG. 2, the spot welding gun unit 9 has a fixed chip 11 attached to the inside of the lower end of the C-shaped member 10. The C-shaped member is opposed to the fixed tip 11. Chip open / close driving means 12 attached to the upper end side of 10; movable chip 13 supported by this chip open / close drive means 12 and driven in the near / far direction with respect to fixed chip 11; It consists of a motor-driven boom as a drive source, a transformer for welding current, and a welding current supply transformer. As the tip opening / closing drive means 12, a screw feed mechanism using a ball screw can be used. The screw feed mechanism is driven by the electric servomotor 14 to drive the movable tip 1. 3 can be moved in the distance direction with respect to the fixed tip 11. An encoder 16 (see FIG. 2) for detecting the current position of the movable chip 13 is interlocked with the electric servo motor 14.
多関節汎用ロボッ ト 1 には、 従来周知のロボッ ト制御装置 1 7が併用 される。 スポッ ト溶接用ガンュニッ ト 9に対しては、 前記トランス 1 5 を介して可動チップ 1 3に溶接電流を供給する溶接電源 1 8 と主制御装 置 1 9 とが併用される。  A conventionally well-known robot controller 17 is used in combination with the multi-joint general-purpose robot 1. For the spot welding gun unit 9, a welding power source 18 for supplying a welding current to the movable chip 13 via the transformer 15 and the main control device 19 are used in combination.
図 2に基づいてシステム全体のハー ド構成を説明すると、 多関節汎用 ロボッ ト 1 は、 従来周知のように、 ロボッ ト各軸駆動手段 2 0 と αボッ ト各軸位置検出器 2 1を備えている。 また、 ロボッ ト制御装置 1 7は、 ロボッ ト各軸駆動手段 2 0を制御するロボッ ト駆動プ口グラム 2 2 と、 ロボッ ト各軸位置検出器 2 1 からの信号に基づいてスポッ ト溶接用ガン ユニッ ト 9の現在位置情報 ( 3次元座標値と姿勢データ) を演算出力す る溶接ガン現在位置演算部 2 3 とを備えている。 ロボッ ト駆動プログラ ム 2 2は、 起動指合に基づいてホームポジシヨ ンにあるスポッ ト溶接用 ガンュニッ ト 9を、 この多関節汎用ロボッ ト 1 に対して定位置にセッ ト された溶接対象物のスポッ ト溶接点に対しその固定チップ 1 1が所定の 姿勢で対応する位置及び姿勢に移動させるベく、 溶接ガン現在位置演算 部 2 3からリアルタイムにフィー ドバックされるスポッ ト溶接用ガンュ ニッ ト 9の現在位置情報 2 3. aに基づいてロボッ ト各軸駆動手段 2 0を 駆動制御する従来周知のプログラムであって、 ロボッ ト各軸駆動手段 2 0の手動運転によって行われる学習作業に基づいて設定される。 Explaining the hardware configuration of the entire system based on FIG. 2, the multi-joint general-purpose robot 1 is equipped with a robot axis driving means 20 and an α-bot axis position detector 21 as is well known in the art. ing. Further, the robot control device 17 includes a robot driving program 22 for controlling the robot axis driving means 20 and a spot welding program based on signals from the robot axis position detectors 21. It is provided with a welding gun current position calculator 23 that calculates and outputs current position information (three-dimensional coordinate values and attitude data) of the gun unit 9. Robot drive program The robot 22 moves the spot welding gun unit 9 in the home position to the spot welding point of the welding object set in the fixed position with respect to the multi-joint general-purpose robot 1 based on the activation finger. On the other hand, the current position information of the spot welding gun unit 9 which is fed back in real time from the welding gun current position calculation unit 23 in order for the fixed tip 11 to move to the corresponding position and posture in a predetermined posture 2 3. A conventionally well-known program for controlling the drive of each axis drive means 20 based on a, and is set based on a learning operation performed by manual operation of each axis drive means 20 of the robot.
主制御装置 1 9は、 溶接プ αグラム 2 4、 1つのタイマー 2 5、 及び サーボモーター制御部 2 6を備えている。 溶接プログラム 2 4は、 溶接 電流制御プログラム 2 7 とチップ駆動プログラム 2 8 とから成り、 これ ら両プログラム 2 7, 2 8に前記タイマー 2 5から共通の時間情報 2 5 aが与えられる。 溶接電流制御プログラム 2 7は、 溶接電源 1 8が備え る溶接電流制御部 2 9を制御し、 以て、 スポッ ト溶接用ガンュニッ ト 9 が備える固定チップ 1 1 と可動チップ 1 3 とで加圧挟持した溶接対象物 のスポッ ト溶接点に流される溶接電流を制御する。 チップ駆動プログラ ム 2 8は、 スポッ ト溶接用ガンュニッ ト 9が備える前記エンコーダー 1 6からリアルタイムにフィー ドバックされるチップ現在位置情報 1 6 a に基づく位置制御と、 図示省略しているが、 可動チップ 1 3が溶接対象 物を加圧し始める直前から開始される加圧制御、 即ち、 電動式サーボモ 一夕一 1 4に作用する負荷電流値から測定されフィ一ドバックされる現 在トルク値に基づく加圧制御とを、 スポッ ト溶接用ガンュニッ ト 9が備 える前記電動式サーボモーター 1 4に対しサーボモータ一制御部 2 6を 介して行うものであり、 この結果、 当該電動式サーボモーター 1 4で駆 動されるチップ開閉駆動手段 1 2が可動チップ 1 3を固定チップ 1 1 に 対して遠近方向にプログラム通りに開閉駆動すると共に、 両チップ 1 1 , 1 3間で溶接対象物のスポッ ト溶接点を所定圧力で加圧ことができる 図 3に基づいて、 溶接プログラム 2 4の構成をより具体的に説明する と、 図 3 Αは、 チップ駆動プログラム 2 8によって設定されたスポッ ト 溶接点に対する加圧力の変化を示すグラフであって、 横軸を時間、 縦軸 を圧力値としている。 図 3 Bは、 溶接電流制御プログラム 2 7によって 設定されたスポッ ト溶接点に対する溶接電流の変化を示すグラフであつ て、 横軸を時間、 縦軸を電流値としている。 The main controller 19 includes a welding program 24, one timer 25, and a servo motor controller 26. The welding program 24 is composed of a welding current control program 27 and a tip drive program 28, and both the programs 27 and 28 are provided with the common time information 25a from the timer 25. The welding current control program 27 controls the welding current control unit 29 included in the welding power source 18, and pressurizes the fixed tip 11 and the movable tip 13 included in the spot welding gun unit 9. It controls the welding current flowing to the spot welding point of the sandwiched welding object. The tip drive program 28 includes a position control based on the tip current position information 16a which is fed back in real time from the encoder 16 included in the spot welding gun unit 9, and a movable tip (not shown). Pressurization control started just before 13 starts to pressurize the welding object, that is, an application based on the current torque value measured and fed back from the load current value acting on the electric servomotor 14 Pressure control is performed via the servo motor-one control unit 26 to the electric servo motor 14 provided with the spot welding gun unit 9. As a result, the electric servo motor 14 The driven tip opening / closing drive means 12 drives the movable tip 13 in the perspective direction with respect to the fixed tip 11 1 in accordance with the programmed opening / closing operation. The spot welding point of the object to be welded can be pressurized at a predetermined pressure between the welding program and the welding process. Based on FIG. 3, the configuration of the welding program 24 will be described in more detail. It is a graph which shows the change of the pressing force with respect to the spot welding point set by program 28, and a horizontal axis is time and a vertical axis is a pressure value. FIG. 3B is a graph showing a change in welding current with respect to a spot welding point set by the welding current control program 27, in which the horizontal axis represents time and the vertical axis represents current value.
即ち、 チップ駆動プログラム 2 8は、 スポッ ト溶接用ガンュニッ ト 9 (固定チップ 1 1 ) が設定されたスポッ ト溶接点に到達して停止したと きにロボッ ト制御装置 1 7のロボッ ト駆動プログラム 2 2から出力され る溶接点到達信号 (溶接開始指令) 2 2 aを受けた時点、 即ち、 溶接開 始時点から、 加圧力が P 1 となるように電動式サーボモーター 1 4によ り可動チップ 1 3を降下させ、 その状態を時間 X 1 m sだけ保持した後 、 加圧力を P 1から P 2に高めるように電動式サーボモーター 1 4によ り可動チップ 1 3を更に降下させる。 そしてこの加圧力 P 2の状態を時 間 X 2 m sだけ保持させた後、 電動式サ一ボモーター 1 4により可動チ ップ 1 3を上昇開放させるように、 電動式サーボモータ一 1 4をサ一ボ モーター制御部 2 6を介して制御する。 一方、 溶接電流制御プログラム 2 7は、 前記溶接開始時点から時間 Y 1 m sだけ遅らせた時点から時間 Y 2 m sだけ Aアンペアの溶接電流をチップ 1 1, 1 3間に流すように 、 溶接電流制御部 2 9を制御する。  That is, the tip drive program 28 is a robot drive program of the robot controller 17 when the spot welding gun unit 9 (fixed tip 11) reaches the set spot welding point and stops. From the point when the welding point reaching signal (welding start command) 2 2a output from 2 2 is received, that is, from the start of welding, it can be moved by the electric servo motor 14 so that the applied pressure becomes P 1. After lowering the tip 13 and maintaining the state for a time X 1 ms, the movable tip 13 is further lowered by the electric servomotor 14 so as to increase the applied pressure from P1 to P2. Then, after maintaining the state of the pressing force P 2 for a time X 2 ms, the electric servomotor 14 is supported so that the movable chip 13 is lifted and opened by the electric servomotor 14. Control via motor control unit 26. On the other hand, the welding current control program 27 controls the welding current so that the welding current of A ampere flows between the chips 11 and 13 for the time Y 2 ms from the time delayed from the welding start time by the time Y 1 ms. Control part 29.
而して、 上記溶接電流制御プログラム 2 7 とチップ駆動プログラム 2 8の 2つのプログラムは、 1つのタイマー 2 5から与えられる共通の時 間情報 2 5 aに基づいて動作するので、 結果的に、 図 3 Cに示すように 、 溶接電流制御プログラム 2 7による溶接電流制御部 2 9の制御 (溶接 1 o Therefore, the two programs of the welding current control program 27 and the tip drive program 28 operate based on the common time information 25 a given from one timer 25, and consequently, As shown in FIG. 3C, control of the welding current control unit 29 by the welding current control program 27 (welding 1 o
電流制御) とチップ駆動プログラム 2 8による電動式サーボモーター 1 4の制御 (加圧力制御) とが共通の時間軸上で実行されることになり、 加圧力の変化と溶接電流の変化との間の時間的な相対関係が崩れること がない。 即ち、 チップ駆動プログラム 2 8 と溶接電流制御プログラム 2 7 とがそれぞれに専用のタイマーから与えられる時間情報に基づいて動 作するときは、 これら 2つのタイマーの特性の不一致などにより両プロ グラム 2 7, 2 8に与えられる時間情報の間でずれが生じた場合、 図 3 Aに示す加圧力変化のグラフの時間軸と図 3 Bに示す溶接電流変化のグ ラフとの時間軸との間にずれが生じることになるから、 これら両プログ ラム 2 7, 2 8を実行しても、 図 3 Cに示すように単純に図 3 Aに示す 加圧力変化のグラフと図 3 Bに示す溶接電流変化のグラフとを重ね合わ せた状態にはならず、 加圧力の変化と溶接電流の変化との間の時間的な 相対関係が崩れることになるのであるが、 本発明の構成ではこのような 不都合は生じない。 The current control) and the control of the electric servomotor 14 by the tip drive program 28 (pressing force control) are executed on a common time axis, and the change in the pressing force and the change in the welding current are performed. The temporal relationship between the two does not collapse. That is, when the tip drive program 28 and the welding current control program 27 operate on the basis of the time information given from the dedicated timers, both programs 27 , 28, there is a difference between the time axis of the graph of the pressure change shown in Fig. 3A and the time axis of the graph of the welding current change shown in Fig. 3B. Therefore, even if these two programs 27 and 28 are executed, as shown in Fig. 3C, the graph of the applied pressure change shown in Fig. 3A and the welding current shown in Fig. 3B will be obtained. The graph of the change is not superimposed, and the temporal relationship between the change in the applied pressure and the change in the welding current is broken. Does not occur.
尚、 電動式サーボモーター 1 4により可動チップ 1 3を上昇開放させ た時点で 1溶接サイクルが完了するが、 このとき溶接プログラム 2 4 ( チップ駆動プログラム 2 8 ) から溶接終了信号 2 8 aがロボッ ト制御装 置 1 7のロボッ ト駆動プログラム 2 2に対して出力される。 而して、 次 のスポッ ト溶接点が設定されているときは、 前記溶接終了信号 2 8 aに づいて再びロボッ ト駆動プログラム 2 2が動作し、 次のスポッ ト溶接点 に向けてスポッ ト溶接用ガンュニッ ト 9を移動させるベく、 多関節汎用 ロボッ ト 1 のロボッ ト各軸駆動手段 2 0が制御される力^ 次のスポッ ト 溶接点における溶接対象物の構造などに応じて、 1溶接サイクル完了時 における可動チップ 1 3の上昇位置を、 上昇限位置 (ホームポジショ ン ) よりも低い (固定チップ 1 1 に近い) 中間位置とするように電動式サ ーボモーター 1 4を制御し、 次のスポッ ト溶接点における溶接サイクル タイムの短縮を図ることができる。 勿論、 設定された全てのスポッ ト溶 接点に対するスポッ ト溶接が完了したときは、 その最終の溶接終了信号One welding cycle is completed when the movable tip 13 is lifted and opened by the electric servomotor 14.At this time, the welding end signal 28a from the welding program 24 (chip drive program 28) is sent to the robot. This is output to the robot drive program 22 of the remote controller 17. Thus, when the next spot welding point is set, the robot drive program 22 operates again based on the welding end signal 28a, and the spot is moved toward the next spot welding point. In order to move the welding gun unit 9, the multi-joint general-purpose robot 1 is driven by each axis driving means 2 0. The force controlled by the next spot ^ The next spot Depending on the structure of the welding object at the welding point, etc. The electric servomotor 14 is controlled so that the ascending position of the movable tip 13 at the completion of the welding cycle is set to an intermediate position (closer to the fixed tip 11) lower than the ascending limit position (home position). Cycle at spot welding point Time can be reduced. Of course, when the spot welding for all the set spot welds is completed, the final welding end signal
2 8 aの出力に基づいて、 可動チップ 1 3を上昇限位置 (ホームポジシ ョ ン) まで上昇させるように電動式サーボモー夕一 1 4が制御されると 共に、 スボッ ト溶接用ガンュニッ ト 9をホームポジショ ンに戻すように ロボッ ト各軸駆動手段 2 0が制御される。 Based on the output of 28a, the electric servomotor 14 is controlled so as to raise the movable tip 13 to the ascending position (home position), and the gun welding unit 9 for spot welding is controlled. The robot axis driving means 20 is controlled so as to return to the home position.

Claims

請求の範囲 The scope of the claims
請求項 1 Claim 1
• ロボッ ト、 このロボッ トの最終段ロボッ トアームに取り付けられ且つ スポッ ト溶接用チップの開閉駆動源として電動式サ一ボモーターを備え たスポッ ト溶接用ガンュニッ ト、 前記ロボッ トをロボッ ト駆動プ口グラ ムに基づいて制御するロボッ ト制御装置、 前記スポッ ト溶接用ガンュニ ッ トによる溶接時の溶接電流を制御する溶接電流制御装置、 及び主制御 装置を備え、 前記主制御装置は、 前記電動式サーボモーターを制御する チップ駆動プログラムと前記溶接電流制御装置を制御する溶接電流制御 プログラム、 及びこれら両プログラムに対して時間情報を与える両プロ グラム共通の 1つのタイマーを備え、 溶接開始指合に基づき、 前記チッ プ駆動プログラムと溶接電流制御プ□グラムとが前記タイマ一から与え られる共通の時間情報に従って動作し、 スポッ ト溶接用チップの開閉駆 動とその間の溶接電流の制御とが共通の時間軸上で両プログラムに従つ て実行される、 スポッ ト溶接用ロボッ トシステム。  • A robot, a spot welding gun unit mounted on the last robot arm of the robot and provided with an electric servo motor as a driving source for opening and closing the spot welding tip, and a robot driving port for the robot. A robot control device for controlling based on a program, a welding current control device for controlling a welding current at the time of welding by the spot welding gun unit, and a main control device. A chip drive program for controlling the servomotor, a welding current control program for controlling the welding current control device, and a timer common to both programs for providing time information to both programs are provided. The chip driving program and the welding current control program are provided from the timer. Operates in accordance with the time information through a control of the opening and closing drive movement between them of welding current chip spot welding is performed Te 従Tsu on both programs on a common time axis robotic system for spot welding.
PCT/JP2005/011475 2004-06-15 2005-06-15 Spot welding robot system WO2005123320A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004176661A JP4733367B2 (en) 2004-06-15 2004-06-15 Robot system for spot welding
JP2004-176661 2004-06-15

Publications (1)

Publication Number Publication Date
WO2005123320A1 true WO2005123320A1 (en) 2005-12-29

Family

ID=35509512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011475 WO2005123320A1 (en) 2004-06-15 2005-06-15 Spot welding robot system

Country Status (2)

Country Link
JP (1) JP4733367B2 (en)
WO (1) WO2005123320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108058175A (en) * 2016-11-07 2018-05-22 林肯环球股份有限公司 For the system and method and its control method of manufacture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332233B (en) * 2013-07-10 2016-06-08 哈尔滨工业大学 The big damping drive lacking climbing truss robot of three degree of freedom and control method thereof
KR102166234B1 (en) 2020-01-28 2020-10-16 한국 오바라 주식회사 System and method for resistance spot welding control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577060A (en) * 1991-09-20 1993-03-30 Na Detsukusu:Kk Controller for resistance welding machine
JPH05220580A (en) * 1992-02-12 1993-08-31 Nachi Fujikoshi Corp Welding robot system
JPH07144283A (en) * 1993-11-25 1995-06-06 Dengensha Mfg Co Ltd Method for controlling spot welder
JPH1085945A (en) * 1996-09-13 1998-04-07 Nissan Diesel Motor Co Ltd Motor-driven servo gun device
JP2004106057A (en) * 2002-07-23 2004-04-08 Dengensha Mfg Co Ltd Resistance welding control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577060A (en) * 1991-09-20 1993-03-30 Na Detsukusu:Kk Controller for resistance welding machine
JPH05220580A (en) * 1992-02-12 1993-08-31 Nachi Fujikoshi Corp Welding robot system
JPH07144283A (en) * 1993-11-25 1995-06-06 Dengensha Mfg Co Ltd Method for controlling spot welder
JPH1085945A (en) * 1996-09-13 1998-04-07 Nissan Diesel Motor Co Ltd Motor-driven servo gun device
JP2004106057A (en) * 2002-07-23 2004-04-08 Dengensha Mfg Co Ltd Resistance welding control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108058175A (en) * 2016-11-07 2018-05-22 林肯环球股份有限公司 For the system and method and its control method of manufacture

Also Published As

Publication number Publication date
JP2006000864A (en) 2006-01-05
JP4733367B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JPH05138366A (en) Device for controlling operation of tool including clamp
US7738996B2 (en) Method for positioning a welding robot tool
JP3114440B2 (en) Spot welding equipment
CN103157900A (en) Welding robot
CN108994439A (en) A kind of servo pressurization spot-welded system of automatic compensation calibration function
TWI617386B (en) Arc welding monitoring device
JP2002292477A (en) Processing and controlling method using friction and agitation, processing and controlling device, and computer program for executing method therefor, and storage media storing computer program therefor
JP2019058932A (en) Support and welding system for vehicle frame member
WO2005123320A1 (en) Spot welding robot system
JP2721952B2 (en) Control method of spot welding machine
KR20120000454A (en) Robot roller hemming apparatus
JP2827097B2 (en) Teach position teaching method of robot welding gun
JPH0924476A (en) Method for teaching spotting position of robot welding gun
JPH08206846A (en) Method and equipment for spot welding
JP3551339B2 (en) Control device and control method for spot welding robot
JP5069502B2 (en) Injection molding machine
KR100377678B1 (en) A method of trajectory control for servo welding gun
JP2002096177A (en) Welding gun position correcting method and device therefor
JP4646179B2 (en) Spot welding method
JP3959302B2 (en) Spot welding system and control method thereof
JP2012179657A (en) Spot welding method using spot welding gun
JPH07116856A (en) Method and equipment for spot welding
KR20130002390A (en) The equalizing spot welding method for spot welding gun device
WO2022168980A1 (en) Friction stir tool control method and friction stir device
WO2006085396A1 (en) Welding robot system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase